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ABSTRACT

Outpatient clinic appointment scheduling is an important topic in OR/IE studies. Open-

access policy shows its strength in improving patient access and satisfaction, as well as

reducing no-show rate. The traditional far-in-advance scheduling plays an important role

in handling chronic and follow-up care. This dissertation discusses a hybrid policy under

which a clinic deals with three types of patients. The first type of patients are those who

request their appointments before the visit day. The second type of patients schedule their

appointment on the visit day. The third type of patients are walk-in patients who go to the

clinic without appointments and wait to see the physician in turn.

In this dissertation, the online scheduling policy is addressed for the Type 2 and Type

3 patients, and the offline scheduling policy is used for the Type 1 patients. For the on-

line scheduling policy, two stochastic integer programming (SIP) models are built under

two different sets of assumptions. The first set of assumptions ignores the endogenous

uncertainty in the problem. An aggregate assigning method is proposed with the deter-

ministic equivalent problem (DEP) model. This method is demonstrated to be better than

the traditional one-at-a-time assignment through both overestimation and underestimation

numerical examples. The DEP formulations are solved using the proposed bound-based

sampling method, which provides approximated solutions and reasonable sample size with

the least gap between lower and upper bound of the original objective value.

On the basis of the first set of assumptions and the SIP model, the second set of assump-

tions considers patient no-shows, preference, cancellations and lateness, which introduce

endogenous uncertainty into the SIP model. A modified L-shaped method and aggre-

gated multicut L-shaped method are designed to handle the model with decision depen-

dent distribution parameter. Distinctive optimality cut generation schemes are proposed
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for three types of distribution for linked random variables. Computational experiments

are conducted to compare performance and outputs of different methods. An alternative

formulation of the problem with simple recourse function is provided, based on which, a

mixed integer programming model is established as a convenient complementary method

to evaluate results with expected value.

The offline scheduling aims at assigning a certain number of Type 1 patients with

deterministic service time and individual preferences into a limited number of blocks,

where the sum of patients’ service time in a block does not exceed the block length. This

problem is associated with bin packing problem with restrictions. Heuristic and meta-

heuristic methods are designed to adapt the added restrictions to the bin packing problem.

Zigzag sorting is proposed for the algorithm and is shown to improve the performance

significantly. A clique based construction method is designed for the Greedy Randomized

Adaptive Search Procedure and Simulated Annealing. The proposed methods show higher

efficiency than traditional ones.

This dissertation offers a series of new and practical resolutions for the clinic schedul-

ing problem. These methods can facilitate the clinic administrators who are practicing the

open-access policy to handle different types of patients with deterministic or nondetermin-

istic arrival pattern and system efficiency. The resolutions range from operations level to

management level. From the operations aspect, the block-wise assignment and aggregated

assignment with SIP model can be used for the same-day request scheduling. From the

management level, better coordination of the assignment of the Type 1 patients and the

same-day request patients will benefit the cost-saving control.
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1. INTRODUCTION

1.1 Background Introduction

Under the Affordable Care Act (ACA), making clinics accessible for more patients

when they need the care is a topic that is gaining increasing attention from medical practi-

tioners. “Open-access policy" is among the solutions to enhancing clinic accessibility. Un-

der this policy, clinics can accept patients who send their requests on the same day when

they need the medical care. This dissertation addresses the outpatient clinic block-wise

scheduling problem under a hybrid scheduling policy combining regular far-in-advance

policy and the open-access policy. Open access policy allows patients request their medi-

cal appointments close to their visit dates. Under this policy, patients can receive medical

care when they need it, they can choose clinic care instead of turning to urgent care. An-

other positive effect is the decrease in appointment delay which is also known as indirect

waiting time [1]. The appointment delay is defined as the time length between patient

request and their visit date. As a consequence of reduction in indirect waiting time, pa-

tient satisfaction is improved. What’s more, a longer appointment delay may increase the

chances of patients missing an appointment, which leads to the increase of no-show rate.

Therefore, the open-access policy is an effective way to reduce no-show probability. De-

spite the advantages of the open-access policy, the traditional far-in-advance scheduling

is still practiced by clinics for chronic and follow-up care [2]. The comparison between

open-access policy and traditional far-in-advance policy has been discussed in [3], [1, 2]

and is extensively studied in [4, 5]. Among the large amount of research work regard-

ing outpatient clinic scheduling, open access policy is fairly mentioned but rarely studied

quantitatively under the three-type-patient framework which is derived from the differ-

ences in their request time and style, and consequently their arrival patterns and schedul-
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ing rules are also distinctive. The three types of patients include (1) the regular patients

under the traditional far-in-advance assignment, (2) the same-day request patients under

open-access policy who do not arrive at the clinic until the service time, and (3) the walk-

in patients under open-access policy who arrive at the clinic without appointments. It is

obvious that Type 2 and Type 3 patients are the same-day request patients.

The clinic scheduling is conducted over a block-based one-day horizon. The block-

based scheduling method divides a clinic day into several time intervals with equal or

unequal lengths where each interval is a block [6, 7]. Based on the three-type-patient

framework, different research approaches are leveraged for scheduling different types of

patients. The scheduling methods can be classified into online scheduling and offline

scheduling. If the decision for all patients is made before the first block of a clinic day then

the scheduling is considered static or offline [8, 9]. The offline scheduling is associated

with decisions made with full information about number of people to be scheduled and

their service time. In contrast, if the decision is made one by one or ahead of each block

then the scheduling is considered dynamic or online [10, 11, 12, 6, 13, 14]. The online

scheduling handles the scheduling without complete information about number of people

or service time.

As it happens in a real clinic day, at the beginning of the day, the clinic already knows

the assignment of Type 1 patients in all the blocks. So when the clinic makes decision

for the same-day requests, assignment of Type 1 patients are given as known information.

Since the traditional far-in-advance policy deals with chronic and follow-up care, so the

service time of each Type 1 patients is more predictable than the same-day requests. With

this information, we can use offline scheduling approach to arrange the appointments of

Type 1 patient. In practice, one policy for allocating Type 1 patients is to arrange the

follow-up or chronic care patients into a limited portion of blocks leaving other blocks

empty for the same-day requests. The occupied blocks for Type 1 patients are supposed

2



to be fully utilized so that the same-day request decision maker can ignore them, conse-

quently, the same-day request assignment will have decision variables with fewer dimen-

sions.

However, for the same-day request patients, the clinic knows less information. At

the beginning of each block, the clinic knows the assignments of same-day requests re-

ceived in all previous blocks, and how many patients have overflowed from the immediate

previous block. The clinic does not know for sure how many same-day requests will ar-

rive at the current block, or how many assigned patients will make the appointments, or

how many patients can be handled in the current block. These incomplete information

is not deterministic but tractable through prediction or distribution fitting, so we call it

uncertain information. Since“uncertain" data is considered in scheduling, stochastic In-

teger Programming (SIP) is therefore exploited for the same-day request patients online

scheduling.

1.2 Research Topics and Contributions

According to the real scenarios in clinics, this dissertation studies the online scheduling

for Type 2 and Type 3 patients in which assignment of Type 1 patients are taken as known

information, arrivals and clinic throughput in future are uncertain. Assignment of Type

1 patients is addressed separately through offline scheduling. Three topics are discussed

for the assignment problems for same-day requests and regular requests. The first and

second topics focus on same-day request online scheduling with different assumptions on

the uncertain data. The third topic describes the offline scheduling of Type 1 patients. The

content and contributions of three topics are stated below.
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1.2.1 Topic I: General block-wise online scheduling method for the same-day re-

quest patients

Under this topic, a two-stage SIP model for decision in each block is proposed to han-

dle online scheduling with uncertain information about block throughput and no-shows

of Type 1 patient. In those papers addressing open-access policy, either the phone-call

requests [4] or the walk-in patients [7] is treated as the single type of same-day requests.

This dissertation offers a pioneer work which provides exact optimization solution meth-

ods for online scheduling under the three-type-patient framework. The general model

considers patient preferences and FCFS rule of Type 3 patients. An innovation in schedul-

ing method namely, the aggregated assignment, is established. It distinguishes itself from

the traditional one-at-a-time scheduling method by estimating the number of requests the

clinic may receive in one block. In contrast to the papers addressing online scheduling

which deals with deterministic number of patients in a clinic day and taking individual

service time as uncertain data, this dissertation does not specify the number of patients

to be served in a day. Individual service time is not directly used as uncertain data. In-

stead, throughput of each block is set as one of the essential uncertain data. For the online

scheduling part, the dissertation has innovations in sampling method which generates a

reasonably small sample size that minimizes the bounds, and the SIP solution method

which addresses endogenous uncertainty where the decision variables of the first-stage

influence the distribution of uncertain data of the second-stage.

At the time of writing this dissertation, a paper on this topic titled “Block Based Out-

patient Clinic Online Scheduling Under Open-access Policy: A Stochastic Programming

Model for Aggregate Assignment. By Yu Fu, Amarnath Banerjee” is under review in

Manufacturing & Service Operations Management.
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1.2.2 Topic II: Online scheduling for the same-day request patients with endoge-

nous uncertainty

This topic is addressed on the basis of Topic I where no-shows of Type 2 patients,

cancellations as well as punctuality of patients are introduced into the model. It is obvious

that the assigned number of patients will affect the arrived number of patients for appoint-

ments. To be concrete, the number of Type 2 patients that are assigned in each block is

a decision variable, if the no-show probability of Type 2 patients is considered, then the

number of Type 2 patients who will make the visits with appointment becomes a random

variable depending on the decision variable. This type of uncertainty is call endogenous

uncertainty [15]. In this problem, the decision variables decide the upper bound of some

of the random variables. Although SP model with endogenous uncertainty is well studied

in literature, no existing method can be applied to handle the clinic scheduling problem

here. Based on the analysis of problem properties, this dissertation considers different

situations about the dependent random variables distribution, and develops a modified L-

shaped algorithm as well as an aggregated multicut L-shaped algorithm to solve the SIP

model.

At the time of writing this dissertation, a paper on this topic titled “Open-access Out-

patient Clinic Online Scheduling under Endogenous Uncertainty. By Yu Fu, Amarnath

Banerjee, Lewis Ntaimo” is being prepared for submission.

1.2.3 Topic III: Offline Scheduling for Type 1 patients

The clinic is assumed to know more information about Type 1 patients. In this topic,

the number of Type 1 patients to be served in a clinic day and their expected service time

are assumed to be deterministic. This dissertation suggests that the assignment of Type

1 patients can be handled as an offline scheduling. Generally speaking, this topic offers

allocation plan of the patients into blocks so that accumulative service time in a block

5



does not exceed the block length and minimum number of blocks are occupied. The de-

cision time horizon is not necessarily restricted to one clinic day, so the blocks under

consideration may span several days. Each patient has preference on the blocks, so the

individual assignment must obey the corresponding restrictions. Given the service time of

each patient and the time limit of each block, the clinic assigns all these patients into the

blocks following the assignment restrictions. The target is that the smallest possible num-

bers of blocks are used to serve as many as possible Type 1 patients, so that more blocks

are available for the same-day requests patients. Contributions of the dissertation on this

topic include: developed integer programming formulations of the problem considering

different types of assignment targets. Analyzed the complexity of the problem and the

relation with other classical problems. Proposed a heuristic method which can perform

the assignment efficiently and effectively compared with traditional heuristics like first-fit

and best-fit. Designed a meta-heuristic algorithm with maximum independent set based

construction, neighborhood representation and local search methods. The performance of

the heuristic and meta-heuristic methods is compared with with the exact solution method

as well as existing construction methods.

At the time of writing this dissertation, a paper on this topic titled “Zigzag Sorting and

Maximum Independent Set Based Heuristic Meta-heuristic Methods for Restricted Bin

Packing: An Application in Clinic Scheduling. By Yu Fu, Amarnath Banerjee” is under

review in European Journal of Operational Research.
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2. LITERATURE REVIEW

2.1 Clinic Scheduling Classifications

Since the pioneering study on clinic appointments scheduling in the 1950’s by Bai-

ley [16] and Lindley [17] until now, new theories, methodologies and technology have

been introduced for the clinic scheduling problem. For a comprehensive review on lit-

erature about clinic scheduling before 2003, a broad background statement is available

in [18]. The study in [19] offers a coherent update on this topic up to 2008. Beside the

online/offline scheduling division, the following paragraphs provide different perspectives

for classification of clinic scheduling.

Table 2.1: Classification of Clinic Scheduling Problems from the Perspective of Decisions
Types Service Al-

lowance
Appointment
Order

Blocks Literature

Type A known known (+) [20, 16, 21, 22, 23, 24]
Type B decision known (+) [20, 9, 11, 25, 12]
Type C decision decision (+) [10, 6, 14]
Type D (-) decision known [26, 13]

From the perspective of the known and unknown information and decision variables

in the problem, we extend the three-type division in [20] into four types as shown in Table

2.1. The symbol (+) means blocks may or may not appear as known information in these

problem types. The symbol (-) indicates that the service allowance may or may not be

set as a decision variable. For Type A problem, there are no more decisions to be made

when the scheduling result is completely available, the target is then to analyze the cost or

factor effects. In this dissertation, multiple patients are assigned to multiple blocks, and
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the scheduling is completed dynamically for each block. The order of block defines the

order of services. So this research falls into the category of Type D.

From the view of objectives of clinic scheduling, research papers aim at reducing cost,

increasing revenue or combination of the two. The cost consists of patients’ waiting time,

doctors’ idle time, overtime and so on [18]. The revenue is usually calculated by number

of patients served or scheduled [27, 1]. The combination of revenue and cost can be either

cost-savings as the difference between revenue and cost [10, 6, 14], or average cost which

is cost per served patient [13]. In this dissertation, the cost-saving objective function con-

siders possible revenue of appointments, the waiting-time costs associated with overflows

and the idle-time costs associated with patient shortage. In addition, the overtime cost can

be added to the objective function using the number of overflowed patients from the last

block.

For patient arrival mode, literature for optimal scheduling can be classified as non no-

show arrival [25], arrival with no-show [12, 14], arrival with no-show and cancellations

[1]. This work takes no-show rates as an essential factor influencing clinic scheduling

decision, and also discusses cancellation and lateness of patients.

As for patient choice, articles can be divided into two categories. One is to allow

patients make choices among time blocks in a day [28, 27, 29], the other category offers

choices over days for a patient [30]. This paper deals with same-day requests, so patients’

choices are circumscribed in the current day. Another way to classify the problem is to

distinguish who defines the scope of patients’ choices. [27, 29] assume that the patients

decide their preference on the blocks and the clinic can accept one of the choices or reject.

Feldman et al.[30] suppose that the clinic defines a scope of choices and the patient chooses

one of the choices or declines the scheduling. This dissertation goes with the proposal

from [30] with some departure. In this work, the clinic does not know how many same-

day patients will send their request nor their preference, but the clinic can estimate their
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choice scope which is reflected in this dissertation as assignment restrictions. Here, two

assignment restrictions are proposed: (1) the attendance delay for Type 2 patients who

cannot attend clinic immediately after request, and (2) the tolerance constraint for Type 3

patients who cannot wait too long in the clinic. Other particular patients’ preferences can

be included in these two types of assignment restrictions.

2.2 Clinic Appointments Online Scheduling

From the methods exploited for clinic scheduling, there are analytic study based on

queuing theory [31, 32, 26, 33, 34], Markov-chain [35, 36, 1, 7], simulation modeling [37,

38], dynamic programming [39, 8, 40], stochastic programming (SP) as adopted in Topic

I and II of this dissertation [10, 11, 12, 6, 25, 14], and other approximation algorithms

[20, 41, 40, 42, 43]. Among these approaches, queuing theory, Markov-chain and dynamic

programming are often applied together as stochastic analytic method. The following

paragraphs present online clinic scheduling literature using stochastic analytic method,

simulation and heuristiscs method, and stochastic programming method.

Muthuraman, Lawley [6] and Chakraborty [10] work out a sequential assignment

method for multiple type of patients to clinic time blocks. For each arrived request, their

algorithm assigns it to one of the blocks by trying each block one by one from the current

block to the final block to find the one with the lowest average cost. The cost is calculated

based on the distributions of number of arriving patients at the beginning of a block and

the number of overflows among blocks which have been formulated. Tsai and Teng [14]

present a very similar work to [10] with improvement in applying this method to multiple

resources and calculation of overflows using convolution estimation method and joint cu-

mulative estimation method. The differences between this work and those above are quite

perceptible. First of all, they assign only one patient at a time, using the one-at-a-time

mode. An aggregated assignment is proposed here. Second, their assignment method is
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exhaustive and based on the first order statistic, i.e. the expected value of random variables.

In this dissertation, a two-stage SIP model is introduced to handle multiple assignments

with uncertain data. Third, the ways of formulating the overflows are not the same. They

define the number of overflows as a random variable related to arrival number, assignment

and service time. This model does not specify the distribution of overflows since they are

decision variables, but the distribution of number of served patients per block as well as

input and output of blocks are used here to address overflows.

Peng, Qu and Shi [13] assume three types of patients differentiated by their arrival

modes, which is adopted in this paper. They work out comprehensive stochastic formu-

lations to depict the assignment constraints such as FCFS rules, no-shows, cancellations,

overtime, idle time, starting time and waiting time. However, the subtle considerations and

some nonlinear and stochastic constraints make it far from a solvable stochastic program-

ming model. They use discrete-event simulation to determine some parameters. These

parameters are assumed to be random variables here. Genetic algorithm is used in their

paper to pursue local optimal allocations for Type 2 and Type 3 patients with block ca-

pacity up to 2, as well as best arrangement for Type 1 patients. In comparison with this

work, the same assumption about the types of patients are shared, but significantly distinc-

tive methodologies are used. The advantage of this work is the promise of convergence,

i.e., instead of a local optimal solution obtained from a meta-heuristic, the two-stage SIP

model will return an exact global optimal result of the samples or report infeasibility or

unboundedness.

Denton and Gupta [11] propose a two-stage stochastic programming model (SP) based

sequential bounding approach to obtain the optimal appointment scheduling for a single

server system. Their model is built on the basis of earlier research by Weiss [44] and

Wang [9]. To facilitate solving the model fast and effectively, they developed aggregation

bounds for the recourse function and bounds for dual multipliers in a block. Robinson
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and Chen[25] also use a similar model as [9], but rather than solving it as a two-stage

model, they take the approximation model as a linear model and then solve it with con-

jugate gradient search. Erdogan and Denton [12] extend this approach in [11] to clinic

appointment. They develop a multi-stage stochastic model on the basis of a two-stage

model and utilize nested decomposition algorithm and customized cuts to achieve optimal

solution. They prove theoretically that the FCFS policy is optimal for scheduling with 2

patients. Although SP is the common tool to achieve best scheduling, these works differ

from this dissertation in their focus. Their work is carried out to answer a question, such

as, what are the best time allowance for each of the predefined sequence of patients given

their random service time? They focus more about the time the scheduled patients should

come to see the doctor. This work offers answer to how many of the randomly arrived

walk-ins and phone-call requests can be assigned in the remaining blocks. They ignore the

arrival mode and patients’ choices, which are considered here.

2.3 Stochastic Programming and Stochastic Integer Programming

The online scheduling in this dissertation uses SIP models for scheduling optimization.

The advantage of SP for dealing with uncertainty in data, has also brought more complex-

ity to calculation. The large sample space of random variable in SP prevents people to

exhaust every possibility in the distribution; instead, the sampling method is prevalently

adopted to shrink the number of scenarios during calculation [45]. The integer version of

SP makes the solving process even harder [46] due to the loss of convexity. Ahmed [47]

summarizes three difficulties of solving SIP models: (1) the tractability of the second-

stage model, (2) the difficulty of evaluating the expected value in objective function, and

(3) the optimization of the objective function. Nevertheless, there is a large body of re-

search work for solving SIP models. Ahmed also introduces corresponding state-of-art

in conquering the three difficulties [47]. According to [47], the difficulty of evaluating
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the expected value can be solved by various sampling methods. Existing sampling meth-

ods include the interior sampling methods where samples are drawn during the course of

solving the SP problem [48, 49, 50], and the exterior sampling methods which deal with

the approximation model of the problem [46]. For the interior sampling methods, King

and Wets [48] suggest that one can increase the number of scenarios by one at each iter-

ation. For the nth step, there will be n samples drawn. When n gets large enough one

can obtain the average value of solutions as an approximation of optimal solution. Higle

and Sen [49, 50] develop a stochastic decomposition method which generates only one

new sample at each iteration. As for exterior sampling methods, Kleywegt, Shapiro and

Homen de Melo [46] discuss in detail the convergence and lower bound for sample size

N . In this dissertation, a new sampling method based on bounds of objective values that

distinguishes from the existing methods is developed.

Research of SIP algorithms started from early 1980’s. Stougie [51] in his thesis pro-

posed algorithms for SIP. Schultz [52, 53] discussed properties of SIP and then with his

coauthors conducted a study on the state-of-art on the topic [54]. After that, various meth-

ods are worked out to solve SIP which include but not limited to dual decomposition

method designed by Caroe and Schultz [55], cutting plane methods from Caroe [56] as

well as Sherali and Fraticelli [57], branch-and-bound method [58], and disjunctive decom-

position methods from Sen, Higle and Ntaimo [59, 60, 61]. For SIP model with binary-first

stage and pure integer complete recourse function, Laporte and Louveaux [62] propose a

cut (named as L2 cut by [59, 60, 61]) to handle the binary-first stage properly. The SIP

models in Topic I and II of this dissertation fall in this category. For the model in Topic

I, it is very convenient to convert the SIP model into a DEP integer model, which can

be solved by CPLEX efficiently. As for the SIP model in Topic II, either L2 cut or DEP

transformation cannot be applied directly due to the endogenous uncertainty.
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2.4 Stochastic Programming with Endogenous Uncertainty

Jonsbråten [63] states that two-stage SP problems can be divided into two categories

based on the uncertainty types : (1) SP with exogenous uncertainty where random vari-

ables are independent of first-stage decision variables; (2) SP with endogenous uncertainty

where random variables depend on first-stage decision variables. For SP model associ-

ated with endogenous uncertainty, there are subtle classifications addressed in literature

[64, 65, 66]. Nevertheless, all the divisions are derived on basis of the two types: (I) the

decision variables of the previous stage determine the uncertain information structure. (II)

The decision variables of the previous stage change the probability distribution of random

variables. There also exist models combining both parts. For type (I), the problem sub-

categories include: (a) decision dependent uncertain information revelation time, and (b)

decision dependent number of random variables. For type (II), the subcategories can be (c)

decision dependent distribution selection, or (d) decision dependent distribution parame-

ters.

Research on type (I) topic can be found in [67, 68]. Existing solution methods for

type (II) are customized according to the structure of the problem. For type (c) prob-

lems, Ahmed [69] proposes a 0-1 hyperbolic programming formulation based method to

address the endogenous uncertainty where a decision alters distributions of random vari-

ables. Viswanath, Peeta and Salman [70] construct an equivalent deterministic program of

a two-stage stochastic programming model for transportation network with decision de-

pendent probability distribution of the random variables. Held and Woodruff [71] develop

heuristics for multi-stage interdiction of stochastic networks. The method is specialized

for the network structure.

For type (d) problems Vayanos, Kuhn and Rustem [72] propose a robust optimization

based method to resolve the uncertainty where the uncertainty component can be observed
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only if the related binary variable is set to 1. To some extent, their work also falls into

the category of (b). Laumanns, Prestwich and Kawas [73] study a SP problem with de-

cision dependent probability of scenarios via Bayes’ Rule. Their method is general but

only applicable to binary random variables. The problem in this dissertation belongs to

category (d) of type (II) where the first-stage decision variable defines the upper bound of

the random variable. None of the existing methods can be applied directly to this problem,

so a modified L-shaped method and aggregated multicut L-shaped method are proposed

to solve this problem. The designed algorithms can be generalized to solve two-stage

SP with decision dependent distribution parameter which is relevant to upper bound of

random variables.

Solution methods for SP/SIP with endogenous uncertainty rest on methods for SP/SIP

with exogenous uncertainty. This dissertation inherits most theories from SP/SIP meth-

ods. The L-shaped method built by Van Slyke and Wets [74] is modified and the multicut

L-shaped method is provided by Birge and Louveaux [75] to accommodate the endoge-

nous uncertainty. For multicut L-shaped method, Trukhanov, Ntaimo and Schaefer [76]

develop a adaptive multicut aggregation method which contributes to reduce the size of the

master problem. Two aggregation schemes are proposed in their dissertation: redundancy

threshold and round on the number of aggregates. In this dissertation, a new aggregation

scheme is exploited based on the subsets of random variables.

Application areas of the SP/SIP with endogenous uncertainty focus on gas [77], vac-

cination [66], networks [69, 71, 70] and location problem [69]. In scheduling area, SP

models are adopted [11, 25, 44, 9] but none of them address endogenous uncertainty. This

dissertation introduces SP/SIP with endogenous uncertainty into the scheduling problem

as a complementary method for the widely used first-order analytic models.
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2.5 Bin Packing

In Topic III, the offline clinic scheduling problem is associated with the Bin Packing

Problem (BPP), which was studied for the first time by Johnson [78]. BPP is to assign

n items with size in (0, 1] into n bins with capacity of 1, and minimize the number of

bins used. BPP is proven to be NP-complete [79, 80]. There are several approximation

methods for BPP. The simplest one is the Next-Fit (NF) algorithm [81]. This method

assigns the items in their index order to the bin which has capacity for it, the bins are

checked also in their index order. If the current Bin i cannot hold the current item, a new

bin , Bin i+ 1 is introduced as the current bin, and the new item will start from the current

bin. NF is a 2-approximation method [81]. There is a similar method named First-Fit

(FF), its difference from NF is that the new item will always start the check from Bin 1.

The upper bound of FF objective is 1.7k∗ + 2 where k∗ is the optimal number of bins

used. Another approximation method called Best-Fit (BF) is designed based on FF, the

improvement is that BF searches the bin with the smallest residual capacity. BF has an

approximation ratio of 1.7. If we sort the item in a non-increasing order according to

their size, and apply the order on NF, FF, BF, we get Next-fit Decreasing (NFD), First-fit

Decreasing (FFD) and Best-fit Decreasing (BFD) algorithms. The approximation ratio

of these methods can as small as 1.5[81]. However, given the assignment restrictions of

the clinic scheduling problem, those approximations cannot guarantee feasible solutions.

FF and FFD are implemented for this problem, but it always ran into infeasible solutions

where some patients cannot be assigned to their blocks because they are occupied by other

patients. Besides the approximation approaches, there are research studies about the exact

method on BPP [82, 83, 84, 85]. In this paper, a zig-zag sorting method is used to pre-

define the order of items (patients), maximum-degree fit and feasibility restore mechanism

are established for the approximation method.
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As for the application of meta-heuristics on BPP, Layeb and Chenche used Greed Ran-

domized Adaptive Search Procedure (GRASP) to minimize the number of bins[86]. In

construction phase, the greedy randomized algorithm is based on both FF and BF heuris-

tics. Tabu Search is used as the local search algorithm. The neighborhood is defined as

randomly selecting a bin from the result in the construction phase and packing all the

items in the bin to other bins by using the First Fit strategy. By using benchmark data

sets from three different classes, the GRASP result is shown to be very close to the best

known result. Genetic Algorithm was applied in one-dimensional Bin Packing problem

in [87]. The author introduced a new-defined chromosome which starts with the number

of used bins and is followed by the weights of items in all the bins. The mutation phase

moves the chromosome to its neighborhood which is defined as moving one object to an-

other bin. The iterations are stopped as the difference between the best and worst solution

reaches zero. Brugger et al. [88] proposed an ant colony optimization approach for the

one-dimensional bin packing. Each ant constructs a solution by sequentially filling bins

until all the items have been packed. If no more items can be added to the current bin,

a new bin will be opened. By proposing a new pheromone decoding scheme and a new

pheromone update strategy, they reached a result at least as good as hybrid grouping ge-

netic algorithm by Falkenaue [89]. In this dissertation, Maximum Independent Set (MIS)

is used to represent the allocation problem [90], GRASP and simulated annealing (SA) are

used as search procedures.
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3. BLOCK-BASED OUTPATIENT CLINIC ONLINE SCHEDULING UNDER

OPEN-ACCESS POLICY: A STOCHASTIC PROGRAMMING MODEL FOR

AGGREGATE ASSIGNMENT

In this section, the same-day request scheduling is conducted over a block-based one-

day horizon. At the beginning of the day, the clinic already knows the assignment of 

Type 1 patients in all the blocks. At the beginning of each block, the clinic knows the 

assignments of same-day requests received in all previous blocks, and how many patients 

have overflowed from the immediate previous b lock. The clinic does not know for sure 

how many same-day requests will arrive at the current block, or how many assigned pa-

tients will make the appointments, or how many patients can be handled in the current 

block. These incomplete information is not deterministic but tractable through prediction 

or distribution fitting, so we call it uncertain i nformation. Since scheduling problem is an 

optimization problem and we are introducing “uncertain" data into scheduling, stochastic 

Integer Programming is therefore exploited. The numbers of Type 1 and Type 2 patients 

arriving for visits and number of patients served per block are set as random variables. 

The decision variables are defined to assign the same-day requests received in the current 

block to the remaining blocks. In order to solve the SIP model, we derive a transforma-

tion from SIP to integer programming. To overcome the difficulty of large-scale sample 

space, a bound-based sampling method is developed. Distinguished from the traditional 

one-at-a-time assignment in other clinic scheduling papers, this work establishes an ag-

gregate assignment method with the SIP model. Besides the above features, this work also 

considers patients preferences, first-come-first-serve (FCFS) rule, patient lateness and can-

cellations. Additionally, although the distributions of the random variables are specified 

for calculation purpose, the generic framework of the study can be applied to any type of
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distributions.

The work in this section demonstrates its strength and creativity in both the modeling 

and solution method parts. For the modeling part, it deals with dynamic scheduling for 

the same-day-request patients with no-shows and various restrictions, the comprehensive-

ness of the model is not found in previous literature. Especially the aggregate assignment 

contrasts to most online scheduling methods. For the solution method part, the bound-

based sampling method designed here makes the two-stage SIP model produce reasonable 

solutions easily and fast.

3.1 Problem Statement and Formulation

3.1.1 Assumptions

For the block-wise scheduling, analysis and decisions are carried out within each 

block. The benefit of the block-wise scheduling is that the decision maker can aggregate 

information and resources of one block and make decisions accordingly. For example, the 

first and second block in the morning of the clinic day may expect more requests than the 

last block in the day. The block containing the current clock time is referred as the “current 

block". The blocks lying earlier than the current block on the time line are the “previous 

blocks". The current block and the following blocks are the “remaining blocks". For the 

convenience of calculation and demonstration, we assume that the length of blocks are 

equal. However, the analysis and method can also be applied to the case of unequal length 

blocks. This section approximates reality from both event sequence and availability of 

information. We assume that the event sequence in one block is:

• Step 0: At the beginning of the day, the clinic observes the number of Type 1 patients

assigned for each block of the current day.

• Step 1: At the beginning of the current block, the clinic observes the number of Type
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2 and Type 3 patients assigned today before the current block.

• Step 2: The clinic estimates Type 2 and Type 3 requests received at this block.

• Step 3: The clinic makes assignment plan for the estimated Type 2 and Type 3

requests.

• Step 4: The clinic starts to receive Type 2 and Type 3 requests and assign them one

by one following the decision in Step 3.

• Step 5: The clinic starts to observe the arrivals of Type 1 and 2 patients for service

in the current block.

• Step 6: The end of the current block. The successive block starts a new process from

Step 1.

Step 2 is the estimation of number of requests which defines the dimension of de-

cision variables in Step 3. The significant difference of this method from one-at-a-time

assignment is that, the assigning decision is based on estimation. Step 4 is the begin-

ning of assignment. The two-stage SIP model is developed on the basis on basis of this

event sequence. The first stage involves the steps before decision Step 3, while the second

stage evaluates the consequence of the decision. Information observed in Step 0 and 1 is

deterministic, information estimated in Step 2 is also taken as deterministic. Information

observed after Step 4 is uncertain. So the first stage deals with the deterministic data, while

the second stage estimates consequence and gives feedback with random scenarios. The

random variables in the second stage includes information about: the number of arrived

Type 1 and Type 2 patients with appointments in each of the remaining blocks, as well as

the number of patients the clinic can serve in each of the remaining blocks.

After the assign decision, consequences of the decision can be calculated using second-

stage decision variables and random variables. If the number of patients that can be served
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in a block exceeds the number of patients that may arrive in a block, an idle-time cost

associated with patient shortage is produced. If the number of arrival exceeds the number

of patients that can be served in a block, then an overflow cost associated with patient

waiting time is generated. Moreover, the real overflows will be added to the number of

patients to be served in the immediate successive block. More assumptions of this model

are: (1) There is one physician in the system. (2) The clinic can reject requests of Type 2

and Type 3 patients. (3) There is a delay between arrival time of Type 2 patient requests

and their scheduled block. (4) There is a waiting length tolerance for Type 3 patients. (5)

Type 1 patients have no-show rates, all Type 2 patients will make the visits. (6) Assignment

of Type 3 patients follows a FCFS rule. (7) The probability distribution of uncertain data is

known and is discrete and independent. (8) Waiting time cost is generated when patients

overflow from original block into the successive block. (9) All patients who make the

visits will come on time. (10) All blocks have equal length.

3.1.2 Decision Model for One Block

3.1.2.1 Notations

Indices used in the model are:

• i, i ∈ 1, · · · ,m: index of the current block.

• j, j ∈ 1, · · · , h: index of the remaining blocks.

• k, k ∈ 1, · · · , ŝ: index of Type 2 patients who send requests in block i.

• t, t ∈ 1, · · · , ŵ: index of Type 3 patients who arrive in block i.

• n, n ∈ 1, · · · , N : index of a scenario of the random variable.

Estimated parameters:

• ŝ: estimated number of Type 2 patient requests received in one block.
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• ŵ: estimated number of Type 3 patients arrive at one block.

First-stage parameters are fixed as:

• m: number of blocks per clinic day.

• l: length of one block.

• r := {rj}: number of Type 1 patients scheduled for block j.

• A: the assign restriction matrix for Type 2 patient requests at block i.

• B: the assign restriction matrix for Type 3 patient requests at block i.

• c2: unit revenue of assigning one Type 2 patients.

• c3: unit revenue of assigning one Type 3 patients.

• cf : unit cost for one patient overflows from one block to its successive block.

• cs: unit cost for idle-time of physician (evaluated by patient shortage).

• N : number of scenarios of the random variable.

• ξ: mean service time for one patient.

• h := m− i+ 1: number of remaining blocks.

• ā := {āj}: number of Type 2 patients assigned to block j before the current block.

• b̄ := {b̄j}: number of Type 3 patients assigned to block j before the current block.

First-stage decision variables are set as follows:

• X i := {xijk}: 0-1 decision variable showing whether kth Type 2 patient requested

in current block is assigned to block j.
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• Y i := {yijt}: 0-1 decision variable showing whether tth Type 3 patient arrived at

current block is assigned to block j.

• zi := {zit}: 0-1 decision variable showing whether tth Type 3 patient is assigned.

• ai := {aij}: nonnegative integer variable for number of Type 2 patients assigned to

block j till the end of current block.

• bi := {bij}: nonnegative integer variable for number of Type 3 patients assigned to

block j till the end of current block.

• βi: the largest index of block which the Type 3 patients requested in block i are

assigned to, so βi ∈ [i,m].

• q́i: number of patients overflow from previous assigned block to the current block.

The superscript i means that they are the decision of the current block i. It also applies

to the following notations. It is ignored in the modeling part. Second-stage parameters

(random variables) are listed below: Let ω̃ be the random variable and ω be its outcome,

it contains the information of following uncertain data:

• νi(ω) := {νij(ω)}: number of Type 1 patients assigned to block j and will arrive at

block j.

• τ i(ω) := {τ ij(ω)}: number of patients can be served in block j.

• ηi(ω) := {ηij(ω)}: right-hand-side of second-stage model with outcome ω which

is a linear combination of the above random variables for blocks, i.e. ηij(ω) =

νij(ω)− τ ij(ω).

Second-stage variables are defined as:
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• qi := {qij}: nonnegative integer variable for number of patients overflow from block

j − 1 to block j.

• gi := {gij}: nonnegative integer variable for number of patients that can be served

but are not assigned to block j (patient shortage or surplus capacity in block j).

3.1.2.2 Formulations

Suppose the current block is the ith block of the clinic day. The SIP-i model below is

the two stage SIP decision model for block i. All the decision variables associated with

remaining blocks are indexed from 1 to h, and their original indices are from i to i + h.

Function and constraints (3.1a) to (3.1i) belong to the first-stage. Constraints (3.2b) to

(3.2d) are the second-stage constraints.

(SIP-i) min −c2

∑h
j=1

∑ŝ
k=1 xjk − c3

∑h
j=1

∑ŵ
t=1 yjt + E[Q(X, Y,a, b, ω)] (3.1a)

s.t.
∑h

j=1 xjk ≤ 1, ∀k = 1, · · · , ŝ (3.1b)∑h
j=1 yjt ≤ 1, ∀t = 1, · · · , ŵ (3.1c)

xjk ≤ Ajk, j = 1, · · · , h, k = 1, · · · , ŝ (3.1d)

yjt ≤ Bjtzt, j = 1, · · · , h, t = 1, · · · , ŵ (3.1e)

aj = āj+i +
∑ŝ

k=1 xjk, j = 1, · · · , h (3.1f)

bj = b̄j+i +
∑ŵ

p=1 yjt, j = 1, · · · , h (3.1g)∑ŵ
t=1(i+ j)yjt ≥ βi−1

∑ŵ
p=1 zt, j = 1, · · · , h, t = 1, · · · , ŵ (3.1h)

xjk, yjt ∈ {0, 1}, j = 1, · · · , h, k = 1, · · · , ŝ, t = 1, · · · , ŵ (3.1i)

aj, bj ∈ Z+, j = 1, · · · , h (3.1j)
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where

Q(X, Y,a, b, ω) = min cf
∑h

j=1 qj + cs
∑h

j=1 gj (3.2a)

s.t. qj+1 − qj − gj = η(ω)j + aj + bj, j = 1, · · · , h (3.2b)

q1 = q́ (3.2c)

qj, gj ∈ Z+, j = 1, · · · , h (3.2d)

Objective function (3.1a) is designed to minimize unassigned same-day requests received

in the current block and minimize the overflow and patient shortage costs of the remaining

blocks. E[Q(X, Y,a, b, ω)] is the expectation of the second-stage objective function value.

From the second stage model, we can see that the SIP-i model has relatively complete

recourse since for any η(ω) + a + b ∈ Zh, we can always find q, g such that (3.2b) to

(3.2d) are satisfied.

Constraints (3.1b) and (3.1c) are about decisions of accepting or rejecting patient re-

quests. Constraints (3.1d) and (3.1e) are about patient assignment restrictions. Matrix A

with binary entries is the restriction matrix for Type 2 patients. It can be defined using a

series of arrival delay factor ρ = {ρk} associated with the kth patient as shown in (3.3).

The delay factor indicates the time length in terms of number of clinic blocks the patient

needs to arrive at the clinic after request. So any block beyond the arrival delay i+ ρk can

be chosen to serve the patient. In a similar way, matrix B consists of binary entries for

waiting tolerance of Type 3 patients. Each entry is defined by tolerance factor δt for tth

patient as stated in (3.4).

Ajk =


1 if j + i ∈ [min{i+ ρk,m},m]

0 otherwise
(3.3)
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Bjt =


1 if j + i ∈ [j + i,min{i+ δt,m}]

0 otherwise
(3.4)

Constraints (3.1f) and (3.1g) are designed to store the accumulated number of patients

assigned to each block by the end of current block. Variables a, b appear in both first-

stage model and second-stage model. Constraint (3.1h) is about the FCFS rule for Type 3

patients. We do not apply this rule to Type 2 patients because of their delay restrictions.

The element (i+ j)yjt on the left hand side gives the index of block where the tth Type 3

patient is assigned to, βi−1 is the largest index of assigned block for Type 3 patients who

arrived in the previous block. This constraint guarantees that if the tth Type 3 patient’s

request is accepted, then the block assigned to this patient cannot be earlier than the last

assigned block for Type 3 patients who came earlier than the current block. This constraint

goes with the assumption that Type 3 patients arrived in the same block do not obey the

FCFS rule.

The second-stage objective function (3.2a) is established to evaluate the cost of over-

flows and patient shortage for the remaining blocks as the consequence of assigning de-

cision in the first-stage. Constraint (3.2b) is derived from input-output balance of each

remaining blocks as a consequence of decisions made by the end of the current block. For

block j, the input number of patients includes νj , pj , aj , bj , the number of patients can

be served (output) in it is τj . Especially, for the first block, q́ = 0. If the input number is

larger than the served number, then a positive number of patients qj+1 will overflow to the

next block, which means:

qj+1 = max{νj + qj + aj + bj − τj, 0} (3.5)

If the input number is smaller than the served number, then it generates a positive patient
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shortage gj which means:

gj = max{τj − νj − qj − aj − bj, 0} (3.6)

Given the definition of ηj , i.e.

ηj := νj − τj (3.7)

These equations lead to constraint (3.2b).

3.1.3 Estimation of Parameters and Uncertain Data

3.1.3.1 Number of Same-Day Requests

For estimating the number of same-day requests, we assume that arrival of requests

follows a Non-homogeneous Poisson Process (NHPP) which suggests different mean val-

ues for Poisson process during different periods of time. The Poisson process is widely

used for patient arrival in clinic scheduling studies [18]. NHPP is usually suggested in

phone-call arrival process [91]. Since estimation of request is done before the scheduling

decision, in practice, the clinic can use other methods for estimation. Here it is assumed

that the Type 2 requests in block i is from a NHPP with intensity function given by:

λ(i) =


λ1 if i ∈ [1, bm/4c] ∪ [bm/2c+ 1, bm/2c+ bm/4c]

λ2 if i ∈ [bm/4c+ 1, bm/2c]

λ3 if i ∈ [bm/2c+ bm/4c+ 1,m]

(3.8)

Let Si be the number of requests received by the end of block i, Si−1 be the number of

requests received by the end of block i− 1, then the number of requests received in block
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i denoted by si = Si − Si−1 has a Poisson distribution with mean given by:

E[si] =

∫ i

i−1

λ(i) di (3.9)

The expected number of requests received in block i equals the mean of si. We assume

the arrival of Type 3 patients also follows NHPP with intensity function:

ζ(i) =


ζ1 if i ∈ [1, bm/4c] ∪ [bm/2c+ 1, bm/2c+ bm/4c]

ζ2 if i ∈ [bm/4c+ 1, bm/2c] ∪ [bm/2c+ bm/4c+ 1,m]

(3.10)

In the same way, the expected number of walk-in patients that arrive in block i denoted by

wi is:

E[wi] =

∫ i

i−1

ζ(i) di (3.11)

3.1.3.2 Attendance

If we do not consider punctuality and cancellation of patients, the attendance of pa-

tients can be assumed to follow Binomial distribution as suggested in literature [6, 18].

Let p1 be the no-show probability of one Type 1 patient, assume that the number of regular

patients that arrive at the ith block follows Binomial Distribution νi ∼ B(ri, 1 − p1), and

v be a 1× ri vector such that:

Pr{νi patients arrive at block i} =

(
ri
νi

)
(1− p1)νipri−νi1 , νi = 1, · · · , ri (3.12)
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In the same way, if we assume each of the Type 2 patient has a no-show rate of p2, then

we have:

Pr{αi patients arrive at block i} =

(
ai
αi

)
(1− p2)αipai−αi

2 , αi = 1, · · · , ai (3.13)

3.1.3.3 Number of Patients that Can be Served in a Block

In literature, the distributions suggested for service time include: Exponential, Uni-

form, Gamma, Weibull and a few others [18]. In this dissertation, the number of patients

served in a block is set as a random variable. The distribution of this random variable

can be derived from the service time. Three distributions are considered here: Poisson,

Discrete Uniform and distribution derived from exponential service time. For the first two

distributions, the mean served number is li
ξ

, where li is the length of block i. For the last

one, the following analysis is performed. Let T ik be the sum of service time of the first k

patients in block i, then we have:

Pr{τ patients are served in block i} = Pr{T iτ+1 > li AND T iτ ≤ li} (3.14)

Assume that service time of each patient follows a homogeneous Exponential Distribu-

tion with mean ξ, so T ik follows a Gamma Distribution with shape parameter k and scale

distribution ξ. Then the distribution can be updated as follows:

Pr{τ patients are served in block i} = Pr{T iτ+1 > l}Pr{T iτ ≤ l}

= (1− F (l; τ + 1, ξ))F (l; τ, ξ)

, τ ≥ 1 (3.15)

where F (∗) is the cdf of Gamma Distribution. If there are unequal lengths of blocks,

different values for li can be plugged in accordingly.

28



3.1.4 Special Cases

3.1.4.1 Unequal Lengths of Blocks

Assume that the blocks have unequal lengths, then estimation of number of patient re-

quests received in a block should be adjusted with the length of the block. The distribution

of number of patients that can be served in a block should also be updated. This situation

has been discussed in detail in Section 3.1.3.3.

3.1.4.2 No-shows of Type 2 Patients

The SIP-i model is built based on the assumption of zero no-show rates of Type 2

patients. In reality, the same-day request patients can also have a certain rate of no-show

[13]. In this situation, we can define a new random variable α := {αj} representing the

number of Type 2 patients arriving with appointments. The distribution of αj depends on

the value of aj which is a first-stage decision variable. Introducing this random variable

brings endogenous uncertainty to this problem. It means that the decision variable will

affect the distribution of the random variable. The definition of ηj should be changed into:

ηj := νj + αj − τj (3.16)

With endogenous uncertainty, SIP-i can only be solved by stage-wise decomposition with 

special cuts which is discussed in Section 4.

3.1.4.3 Cancellations of Same-day Request Patients

If the cancellation of patients is considered, additional assumptions and settings need

to be introduced. This section only considers cancellations of Type 2 and Type 3 patients.

Cancellations of Type 1 patients will be discussed in Section 3.1.4.4. For the current day,
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given the index of current block as i, let (p, j, t) be a triple of index associated with every

assigned patients so far. Suppose the decision of cancellation is made at the beginning

of each block. For t = 2, 3, the triple denotes patients with type t that made the request

at (i − p)th block of today and were assigned to the the (i + j)th block. Especially,

cancellation for Type 3 patients means they leave the clinic before the assigned block. Let

L be the length between the request received block and the block when the patient decides

to cancel the appointment. Let αpjt be the probability that patient with (p, j, t) who have

not canceled the appointment by the current block will arrive for the appointment. Then

the probability is defined as:

αpj2 = Pr{L ≥ i+ j + 1, arrive for appointment | L ≥ i} (3.17)

αpj3 = Pr{L ≥ i+ j + 1 | L ≥ i} (3.18)

Let apj2 be the number of Type 2 patients who request in block i − p and are assigned

to block (i + j). Let âpj2 be the number of Type 2 patient who have not canceled the

appointment by the current block and arrive at the assigned block. bpj3 and b̂pj3 can be

defined for Type 3 patients in a similar manner. Assume that âpjt and b̂pjt are random

variables from binomial distribution as shown below:

âpj2 ∼ B
{
apj2, αpj2

}
(3.19)

â0j2 ∼ B
{ ŝ∑

k=1

xjk, α0j2

}
(3.20)

b̂pj3 ∼ B
{
bpj3, αpj3

}
(3.21)

b̂0j3 ∼ B
{ ŵ∑

t=1

yjt, α0j3

}
(3.22)
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Before solving SIP-i, the values of αpj2 and αpj3 can be determined through statistic infer-

ence or forecasting. Then aj, bj need to be removed from (3.2b), and αj in (3.16) need to

be replaced with
∑

p âpj2 +
∑

p b̂pj3.

3.1.4.4 Cancellations of Type 1 Patients

Liu, Ziya and Kulkarni [1] study the cancellation under far-in-advance scheduling pol-

icy where the cancellation is assumed to be handled on a daily basis at the beginning of

each day. In this work, a new method is designed to handle the combination of daily can-

cellation and block-wise cancellation. For cancellations of Type 1 patients, let p in the

triple (p, j, t) denote the number of days since the day when the patient sent the appoint-

ment request until today. Let D be the length between the request received day and the

day when the patient decides to cancel the appointment.

Let θpj1 be the probability that the patient with (p, j, 1) who has not canceled the ap-

pointment until the current block will make the appointment of today. Assuming that the

cancellation behavior of patients is independent of the appointment date, we have:

θpj1 = Pr{L ≥ i+ j + 1, arrive for appointment | L ≥ i,D ≥ p} (3.23)

Let ν̂pj1 be the number of Type 1 patients who make the visit in the assigned block, we

have:

ν̂pj1 ∼ B
{
ri+j, θpj1

}
(3.24)

Then in SIP-i model, νj in (3.16) is replaced with
∑

p ν̂pj1, aj, bj are removed from (3.2b),

αj in (3.16) is replaced with
∑

p âpj2 +
∑

p b̂pj3. The information about ratio θpj1 can be

obtained through a study of historical data.
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3.1.4.5 Punctuality of Type 1 and Type 2 Patients

If we relax the assumption about patient punctuality, and assume that patients may

arrive earlier or later than the assigned block, the SIP-i model can be modified accordingly.

According to [18], in relevant literature, the punctual arrival of patients is processed in the

following ways: (1) empirical distribution of arrival time, (2) exponential distribution of

arrival time, (3) allow only one block earliness or lateness. Contrasting to these methods,

here it is assumed that the clinic only tolerates one-block lateness but can handle all early

arrivals. It implies three situations:

• If the patients arrive earlier, they will still be served in their original assigned blocks.

Their waiting time before the assigned block will not incur any cost.

• If the patients arrive more than one block behind, then they will be treated as walk-in

patients. Their original appointments will be taken as no-shows.

• If the patients arrive at the immediate successive block of their original assigned

block, they will be served in the block when they arrive.

To handle lateness, let γ := {γj} denote the number of patients who arrive at block j but

was assigned to j − 1. This uncertain data is associated with ri+j−1 + aj−1. Let ι1 be the

probability that a patient will be late, ι2 be the probability that a patient will be late by only

one block. Then the probability that a patient can make the appointment at the assigned

block is 1− ι1. If the cancellations analyzed above are considered, the following updates

are needed:

âpj2 ∼ B
{
apj2, αpj2(1− ι1)

}
(3.25)

â0j2 ∼ B
{ ŝ∑

k=1

xjk, α0j2(1− ι1)

}
(3.26)
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b̂0j3 ∼ B
{ w̃∑

t=1

yjt, α0j3

}
(3.27)

ν̂pj1 ∼ B
{
ri+j, θpj1(1− ι1)

}
(3.28)

γj ∼ B
{
ri+j−1 + aj−1, ι2

}
(3.29)

In Step 2, the number of Type 1 and Type 2 patients that arrived at the current block

but assigned to block i − 2 or before are determined and added to the estimated walk-in

patient number. In formula (3.31b) w̃ is used instead of ŵ to distinguish this difference.

Then (3.16) should be replaced with:

ηj :=
∑
p

ν̂pj1 +
∑
p

âpj2 +
∑
p

b̂pj3 + γj − τj (3.30)

Rest of the SIP-i model remains the same except for removing aj, bj from (3.2b). Value of

ι1 and ι2 can be obtained through analysis of historical data.

3.2 Solve The SIP-i Model

3.2.1 Deterministic Equivalent Problem and Bound-Based Sampling Method

For a SP model with any discrete distributed random variable, the deterministic equiv-

alent problem (DEP) can be derived. DEP is obtained by associating each second-stage

variable with all scenarios of the random variable. For the SIP-i model, assume that there

are N scenarios for random variable ω̃, the nth scenario has probability pn. Then change

the second-stage decision variables q, g into two-dimensional matrices, i.e. qnj denotes
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overflow to block j under scenario n. The DEP model of SIP-i is presented below.

(DEP-i) min −c2

∑h
j=1

∑ŝ
k=1 xjk − c3

∑h
j=1

∑ŵ
t=1 yjt

−
∑N

n=1 pn

(
cf
∑m

j=1 q
n
j + cs

∑m
j=1 g

n
j

)
(3.31a)

s.t. contraints (3.1b) to (3.1i)

qnj+1 − qnj − gnj = η(ω)nj + bj, j = 1, · · · , h, n = 1, · · · , N (3.31b)

qn1 = q́, n = 1, · · · , N (3.31c)

qnj+1, g
n
j ∈ Z+, j = 1, · · · , h, n = 1, · · · , N (3.31d)

DEP-i is an integer programming problem, which can be solved using CPLEX for small

N . The value of N can be determined using distributions of random variables. Similar to

the SIP-i model, for DEP-i, assume that the arrival of Type 1 patients follows a Binomial

Distribution described in Section 3.4.2, Type 2 patients have full attendance, and number

of patients served in one block follows Poisson Distribution with mean l
ξ
. There is no

cancellation. Let τ ′ be the smallest integer such that Pr{τ > τ ′} ≤ 0.05, where τ denotes

the number of patients that can be served in one block. Then the number of scenarios for

block j is rjτ ′ and

N ≈
h∏
j=1

(rjτ
′) (3.32)

For example, let l
ξ

= 5, then τ ′ = 8, let rj = 2, j = 1, · · · , 10, N ≈ 1610. DEP-i with

1610 scenarios is an approximation of the original problem, since it only includes 95%

percent possible values of τ . This large number makes CPLEX unable to solve DEP-i, so

sample average approximation (SAA) method is adopted to pick a small sample size N̂

and draw M batches of samples. By solving the M approximated DEP-i models with N̂
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scenarios for each, the lower bound of objective function value of the original DEP-i can

be obtainted [92]. Let f̂n
N̂

be the objective function value of the nth batch, then the lower

bound is given by

LMN̂ =
1

M

m∑
n=1

f̂n
N̂

(3.33)

The upper bound of the original DEP-i problem can be obtained by calculating objective

function value with some feasible solution X̂, Ŷ with M̄ batches of N̄ scenarios where

M̄ � M . Let f̄n
N̄

(X̂, Ŷ ) be the objective function value for the nth batch, then the upper

bound is

UM̄N̄ =
1

M̄

M̄∑
n=1

f̄nN̄(X̂, Ŷ ) (3.34)

The confidence intervals of the lower and upper bounds can be determined using sam-

ple standard deviation of f̂n
N̂

and f̄n
N̄

(X̂, Ŷ ) based on the central limit theorem [92].

A proper approximation of the original problem goes with a reasonable sample size

which makes the model calculable and the objective function close to the “true value”. It

is hard to obtain the “true value” of the original problem, but the lower bound and upper

bound of the original problem can be utilized to find a good estimation of the “true value”.

Algorithm 1 below is designed to obtain the proper sample size for the approximation. This

algorithm aims at finding a sample size that reasonably shrinks the average gap between

lower bound and upper bound of the original problem. It increases the sample size used in

lower bound calculation as in (3.33), and compares the average gap between the adaptive

lower bound and averaged upper bound. Note that the upper bound compared in Algorithm

1 is not exactly the one as shown in (3.34) but an average level of upper bounds. n̄ is the

step length which indicates how much N̂ increases per iteration, n2 is the baseline for N̂ ,
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n1 is the number of iterations we have in searching for a good sample size. At the end of

this algorithm, the sample size of lower bound with the smallest gap over the n1 iterations

will be output as suggested sample size. The optimal solution will be derived from the

approximation with the output sample size N̂ . All the computational experiments are also

performed with this sample size.

Algorithm 1: Bound-Based Sampling Method
1 Initialization: choose values for n1, n2, n̄,M, N̄ , M̄ where M̄ �M , let D0 =∞ ;
2 for t = 1, · · · , n1 do
3 let N̂ = n2 + t× n̄ ;
4 for n = 1, · · · ,M do
5 solve DEP-i with N̂ samples, get solution X̂, Ŷ and objective value f̂n

N̂
;

6 plug in X̂, Ŷ into objective function with N̄ samples and M̄ batches and
obtain Un

M̄N̄
using (3.34) ;

7 get difference dn
N̂

= Un
M̄N̄
− f̂n

N̂
;

8 end
9 Get d̄t

N̂
= 1

M

∑M
n=1 d

n
N̂

;
10 Let Dt = 1

t

∑t
k=1 d̄

t
N̂

;
11 if Dt < Dt−1 then
12 N̂(t)∗ = n2 + t× n̄ ;
13 (X∗, Y ∗) = argmin(X̂,Ŷ ){fnN̂ | n = 1, · · · ,M, N̂ = N̂(t)∗};
14 end
15 end
16 Output N̂(t)∗ as a proper sample size;

The results from bound-based sampling method in Algorithm 1 are compared with

those from some existing exterior and interior sampling methods. For exterior sampling

method, in [46], the lower bound of sample size for ε-optimal solution to original problem
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with 1− α probability is:

N ≥ 3σ2
max

(ε− δ)2
log

(
|S|
α

)
(3.35)

Here S is the set of feasible solutions, σ2
max is the maximal variance of differences between

objective values and δ ∈ [0, ε]. In DEP-i, the set of feasible solution consists of values for

X, Y,a, b. Since a, b depend on X, Y , so the values of X, Y is under concern. The binary

property of X, Y makes it easy to find out the upper bound of |S|. Since m is the number

of blocks, si + wi be the number of patients need to be assigned in block i. For each

patient, only one of the m blocks can be set to 1, so we have:

|S| ≤ 2m(si+wi) (3.36)

Using this method, let (ε− δ)2 ≈ 3, α = 0.01, we get |S| ≈ 2250, so the lower bound can

be written as 38σ2
max. Since σ2

max is the maximum variance of the objective function value,

it will be no less than the squared difference between when the clinic decides to accept all

patients requested in block 1 and reject all patients in block 1 which is (s + w)2 = 625.

Under this situation, the lower bound of sample size is larger than 38×625 = 23750 which

is still too large for CPLEX to handle. Therefore, the method in [46] does not fit DEP-i.

For interior sampling method, the method proposed by [49, 50] does not apply to the 

DEP-i model since it works on the basis of the stage-wise decomposition method of SP. 

So here sampling method in Algorithm 1 is only compared with the method from [48]. 

Figure 3.1 shows the comparison of our bound-Based sampling method and Kleyweget’s 

lower bound as well as King and Wets’ sampling method on the DEP-1 model. For all the 

numerical calculations in this section, I have consulted with a clinic in town that provides 

outpatient services. The data used in this comparison has been adapted from their historical
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patient arrival and service time data. Values for the parameters are: n1 = 20, n2 = 10, n̄ =

10,M = 20, M̄ = 2000, N̄ = 50, s = 12, w = 13,m = 10, ξ = 5, c1 = c2 = c3 = c4 =

1. Unless specially mentioned, the computational experiments in the following context in

this section will use this setting. For the method in [48], the step length is changed from 

1 to 10 to keep it consistent with the sampling method. Their procedure after modification 

is illustrated in Algorithm 2.

Algorithm 2: Interior Sampling Algorithm for King and Wets [48]
1 Let iter = 0;n = 0;Fn = 0;
2 while Stop criteria not satisfied do
3 iter = iter + 1, n = n+ n̄;
4 solve DEP-i with n samples to obtain objective function value f̂ iter

n ;
5 Let Fn = 1

n

∑n
t=1 f̂

iter
n ;

6 N̂∗ = argminn{Fn};
7 end

Figure 3.1: Comparison of Sampling Methods
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Figure 3.1 shows the gap Dt of averaged bounds as calculated in Algorithm 1 and the

averaged objective function value Ft as calculated in Algorithm 2 over different number

of samples. It is obvious that the bound-based sampling method in the algorithm sug-

gests implies a sample size of 110, while King and Wets’ algorithm implies sample size

180. The average computational time for DEP-i with 110 scenarios is around 0.21 second.

Using the same settings and equipment, the average time for DEP-i with 180 scenarios

is around 0.36 second. Based on the experiments, besides the slight advantage in saving

computational time, the Bound-Based sampling method also shows smaller gap in bounds

as 5.93 from 110 scenarios versus 6.47 over 180 scenarios. Another benefit of the sampling

method is that it produces bounds for the objective function value while proposing a proper

sample size. In addition, while using this algorithm, the confidence interval (C.I.) of the

objective function value and the best solution can also be calculated with little cost of time.

3.2.2 The Aggregate Assignment Method

The aggregate assignment method distinguishes itself from the one-at-a-time assign-

ment in [6] by the feature of scheduling multiple patients at the decision step in each

block. The fundamental step of the aggregate assignment is to estimate how many same-

day requests the clinic receives in each block. After the estimation, the DEP-i model is

implemented with the estimated number of requests, the assignment of each received re-

quest will follow the optimal solution of the DEP-i model according to the type of patient

and the order of arrival. If the real number of requests of Type 2 or Type 3 patients is

more than the estimated value, run the DEP- i model for each additional single request.

Algorithm 3 shows how the aggregate assignment works using DEP-i. The one-at-a-time

assignment procedure is shown in Algorithm 4.

Theoretically, from an overall perspective, the aggregate assignment makes a better
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Algorithm 3: The Aggregate Assignment Method

1 Initialization: q́i = 0, βi = 0, ∀i = 1, · · · ,m , choose value for M, N̂, M̄, N̄ where
M̄ �M ;

2 for i = 1, · · · ,m do
3 Step 1: the current block is block i, q́i = qi−1

m+1;
4 Step 2: estimate ŝ and ŵ according to Section 3.3.1 or other prediction methods;
5 Step 3: choose proper sample size and run DEP-i model following Algorithm 1,

obtain the optimal assignment solution;
6 Step 4: assign received requests one by one following the optimal assignment

solution, update ā, b̄ accordingly;
7 Step 5:
8 if number of requests go beyond the estimated value then
9 for each additional request do

10 set DEP-i model for one request;
11 implement Step 3 and assign the request using the obtained solution ;
12 update ā, b̄ accordingly;
13 end
14 end
15 Step 6: when all the requests of the current block are handled, update βi,

i = i+ 1 go to Step 1;
16 end

Figure 3.2: Aggregate Underestimation Costs vs. Average One-at-a-time Costs

use of the available space of the remaining blocks, since it considers optimal assignment

for a group of patients instead of an individual request. The advantage of aggregated as-
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Algorithm 4: The One-at-a-time Assignment Method

1 Initialization: q́i = 0, βi = 0, ∀i = 1, · · · ,m , choose value for M, N̂, M̄, N̄ where
M̄ �M ;

2 for i = 1, · · · ,m do
3 Step 1: the current block is block i, q́i = qi−1

m+1;
4 Step 2: for each request do
5 set DEP-i model for this request properly ;
6 choose proper sample size and run DEP-i model following Algorithm 1,

obtain the optimal assignment solution;
7 assign following the result of the solution, update ā, b̄ accordingly;
8 end
9 Step 3: when all the requests of the current block are handled, update βi,

i = i+ 1 go to Step 1;
10 end

Table 3.1: Person-wise Assignment Cost Comparison
Probabilities Under Over

4 requests 6 requests 8 requests 10 requests 16 requests
< Avg 0.25 1 1 0.9375 0.9375

< Lower Bnd 0 0.5 0.5625 0.1875 0.6875
> Upper Bnd 0 0 0 0 0

signment method is demonstrated through the following experiment. In the experiment,

the two assignment methods under two cases of accuracy of request estimation are com-

pared: underestimation and overestimation. Table 3.1 shows the cost comparison between

aggregate assignment and the one-at-a-time assignment for Block 1 for underestimation

and overestimation.

For underestimation, from Algorithm 3 it is easy to see that when the estimated request

is smaller than the real number of requests, the clinic needs to run DEP-1 with aggregated

mode for the estimated number, and then run DEP-1 with one-at-a-time mode for each of

the remaining requests. In the experiment, four underestimation of request numbers are
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Figure 3.3: Aggregate Underestimation Costs vs. 95% C.I. of One-at-a-time Costs

evaluated taking 16 as the real number of requests received. They are: (1) 4 same-day

requests with 2 Type 2 requests and 2 Type 3 requests; (2) 6 same-day requests including

3 Type 2 and 3 Type 3 requests; (3) 8 same-day requests including 4 of each type; (4) 10

same-day requests with 5 of each type. The average assignment cost of the 16 same-day

requests received in Block 1 is drawn using Algorithm 3 over 20 batches of 110 samples for

the aggregated assignment. The average cost and 95% confidence interval (C.I.) of the one-

at-a-time assignment are calculated using Algorithm 4. Table 3.1 shows the percentage of

the assignment costs obtained from Algorithm 3 less than or greater than the average costs

or bounds obtained from Algorithm 4. Figures 3.2 and 3.3 illustrate the plots of the costs

comparison. It is obvious that the aggregate assignment is no worse than the one-at-a-time

assignment for the underestimation situation. For estimation larger than 6 requests, the

aggregate assignment is significantly better than the one-at-a-time assignment on average.

For the case of overestimation, assume that the real number of requests is 16, and the

estimation of requests ranges from 16 to 20. The DEP-1 model with one-at-a-time mode

is run for 20 batches of sample size 110 for 16 requests, then take the average assignment

cost for the 16 requests and 95% C.I. of the costs. In contrast, the DEP-1 model is run
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Figure 3.4: Aggregate Overestimation Costs vs. Average One-at-a-time Costs

Figure 3.5: Aggregate Overestimation Costs vs. 95% C.I. of One-at-a-time Costs

under aggregated mode for 16, 17, 18, 19, 20 estimated requests for the first block, and

then take the average assignment cost for the first 16 requests. The last column of Table

3.1 as well as Figures 3.4 and 3.5 show the comparison results. The prompt observation

is that in the situation of overestimation, aggregate assignment is better than one-at-a-time

assignment on average. From Figure 3.5, it can be seen that if the real request number is

less than 6, then the former is no worse than the latter; if the real request number is larger

than or equal to 6, then the former is dominantly better than the latter.
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3.3 Sensitivity Analysis and Value of SIP model

3.3.1 Importance of Request Estimation

Although under both underestimation and overestimation, the aggregate assignment

shows strength in gaining better cost level on average, the importance of accuracy of re-

quest estimation can also be detected in Figures 3.2 to 3.5. It is not hard to discover that

the performance of aggregate assignment is overwhelming when the estimation is close to

the real value. So it is worth conducting more experiments to explore the effect of request

estimation. In the following experiments, the estimated requests ŝ, ŵ of the first block are

set to the same value increasing from 5 to 43, so the total number of requests goes from 10

to 86. Then solve DEP-1 for each of the estimations with 20 batches each and take aver-

age results. Figures 3.6 to 3.8 plot the objective function value and its three components:

revenue associated with total number of assigned requests, cost of overflows (as patient

waiting time cost), and cost of patient shortage (as physician idle time cost). A prompt ob-

servation on the trend of objective function over increment of requests is the bowl shape.

It goes down from 10 requests to 34 requests, then keeps a flat pattern between 34 requests

and 68 requests, and then goes up again presenting apparently three pieces of segments

with two break points: 34 requests and 68 requests. There are obvious trembles in all of

the three segments which are caused by the randomness of scenarios. This bowl shape can

be interpreted in the following way: when the estimated request number is close to the real

capacity of the system, the model gradually approaches saturation status with small over-

flows or shortages, which produces the flatness of the second segment. In the first segment,

the overflow is close to zero, and the shortage cost dominates. So from Figure 3.8 it is easy

to observe that the trend of objective function value follows the trend of shortage cost in

the first segment. In the second segment, the overflow cost preserves an increasing trend

in the first half interval, then keeps a high level until the end of the second segment. The
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number of assigned requests also demonstrates a similar trend as an offset of the overflow

cost. Together with the stable trend of shortage, they lead to a low and flat objective value

level in this segment. In the third segment, the overflow level drops as a result of decreased

number of assigned request, the conciliation among the three components leads to a mild

increase in objective function value as compared with the second segment. Therefore, un-

der the initial setting: c1 = c2 = c3 = 1, τ ∼ Poisson(5), m = 10, ri ∼ uniform(0, 5),

if the estimation falls in the second interval [34,68], then a low level overall cost can be

guaranteed.

Figure 3.6: Objective Value and Assigned Requests of DEP-1 with Different Request
Estimations
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Figure 3.7: Objective Value and Overflow Cost (q) of DEP-1 with Different Request Esti-
mations

Figure 3.8: Objective Value and Patient Shortage Cost (g) of DEP-1 with Different Re-
quest Estimations

3.3.2 Further Sensitivity Analysis

Besides the number of requests, the clinic manager may also be interested in the in-

fluence of scheduling parameters. With the DEP-i model and the bound-based sampling

method, it is very convenient to conduct sensitivity analysis on parameters and settings.

Here six factors are chosen to be studied: ri, c2, c3, cf , cs, l. Each factor has five levels

as shown in the second column of Table 3.2. Since the objective function coefficient is
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involved as a factor, the magnitude of the objective function is no longer a proper metric.

So the components of the objective function are utilized: the average number of assigned

request, the average sum of q and the average sum of g, as the metrics for the evaluation.

The third to eighth columns of Table 3.2 present the ranks of the impact of factors under

the metrics using the entropy-based analysis addressed in [24]. The higher the informa-

tion gain is, the more the factor contributes to the change of the corresponding metric.

Rank 1 implies the highest information gain, and 5 is the lowest. Columns 3 to 5 are the

results obtained under the distribution of τ ∼ Poisson( l
ξ
), and Columns 6 to 8 are with

distribution of τ ∼ Discrete Uniform(0, 2l
ξ

). We can see that under Poisson distribution

of τ , unit overflow cost and patient shortage cost are the most significant factors toward

total overflow cost and total patient shortage cost. Since ξ is fixed in this experiment,

l is proportional to the mean throughput of each block, so the mean throughput is the

most important factor toward assignment ratio of the same-day request. Since value of

ri decides the capacity available for the same-day request, we can say that the available

capacity of each block is also important to the assignment ratio of the same-day request.

The importance rank changes when we set the distribution of τ as Uniform. However, the

overflow cost still dominates. This implies that the clinic needs to give more priority to

controlling the waiting time cost. Given the fact that the two distributions of τ share the

same mean value, the deviation between the ranks under the two distributions reveals that

the second and higher order statistics of block throughput bring significant impact to the

assignment decision. The monotonic trends of these components versus increases of the

factors are depicted using ↑ for increase and ↓ for decrease in Table 3.2. The changes of

the values of the three objective components are monotonic with the increase of the six

factors except for the block length. For the block length, the trends of total overflow cost

are convex curves for both distributions, and the trend of total patient shortage cost is also

a convex curve for uniform distribution. This indicates that the clinic can find a proper
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block throughput to minimize the overflow and patient shortage cost in a certain scope.

Except for the block length, the trends of the components remain consistent under the two

different distributions.

Table 3.2: Rank of Importance of Parameters under Different Distributions of τ
Factors Levels Poisson Uniform∑∑

X +∑∑
Y

∑
q
∑
g

∑∑
X +∑∑
Y

∑
q
∑
g

ri 1, 2, 3, 4, 5 2↓ 4↑ 4↓ 2↓ 3↑ 4↓
c2 1, 2, 4, 6, 8 6↑ 6↑ 6↓ 4↑ 6↑ 6↓
c3 1, 2, 4, 6, 8 4↑ 5↑ 5↓ 3↑ 5↑ 5↓
cf 1, 2, 4, 6, 8 3↓ 1↓ 1↑ 1↓ 1↓ 1↑
cs 1, 2, 4, 6, 8 5↑ 2↑ 2↓ 6↑ 2↑ 2↓

l
58, 68, 78, 88,

98
1 ↑ 3 3↑ 5↑ 4 3

3.3.3 Value of SP Model

One highlighted feature of stochastic programming is to make decision involving data

uncertainty. The trade-off between gaining more information before a decision and incur-

ring less cost on information leads to a question: how much we know about the uncertainty

is sufficient for a good decision? Stochastic programming practitioners embrace the Ex-

pected Value of Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS)

to measure information cost and benefit. EVPI is the difference in objective value between

solution with complete information and the current SP solution with partial information

[75]. VSS is the the difference in objective value between the current SP solution and

the expected value problem solution [75]. Since the sample space of DEP-i model is too

large to be calculated, so it is hard to get EVPI. Instead of EVPI, the Expected Value of

Better Information (EVBI) can be used. To obtain EVBI, we draw a large sample with
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large batches to approximate the solution of full sample space. For each of the sample,

the DEP-i model is run and take the sample mean of the optimal objective function values,

this mean value is named as “Wait-and-See" (WS) value [75]. Let the average optimal

objective function value obtained by solving DEP-i with batches of 110 samples be the

“Here-and-Now" (HN) value [75]. Then we have EVBI = HN - WS. To obtain VSS, plug

in expectation value of the random variables into DEP-i, and obtain the expected optimal

solution. After that, we put this solution into the batches of 110 samples drawn for HN,

and calculate the corresponding objective value for each of the scenario using expected

optimal solution. The average value of the objectives is the “Expected Results using Ex-

pected Value" (EEV) [75]. Then we have VSS = EEV - HN. Figure 3.9 presents the EVBI

and VSS for different request estimations. Apparently, in most cases, both EVBI and

VSS are more than double of the objective function value. This manifests the value of the

current SIP solution in delivering useful result efficiently. It is obvious that the VSS is

always higher than EVBI which demonstrates that if the uncertainty of data is ignored, a

solution with a significant difference from the current SIP model may be obtained, while

if better information are purchased with higher cost, the deviation of the results from the

current model is not significant. Hence the current model is a better choice than WS in

saving calculation cost, and is better than EEV in obtaining better solution. Increase of

VSS is relatively stable compared with the convex trend of EVBI as the increment of

number of estimated requests. This observation implies that the cost of utilizing better in-

formation will increase faster if the model size becomes larger. The gap between the two

values stays almost constant at low request number, then starts to decrease after request

of 30. This implies that the SIP model can give a more valuable solution compared with

first-order statistics (the expected value problem), and the advantage of SIP model over

expected value problem may reach a stable status beyond a certain model size.
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Figure 3.9: EVBI and VSS for Different Request Estimations

3.4 Conclusions of the Section

This section suggests the clinic administrators who are practicing the open-access pol-

icy and block-wise assignment to adopt the aggregated assignment with SIP model. This 

method obeys the real event sequence of the clinic and is able to handle various real situ-

ations such as no-shows, patient preferences, FCFS rules, cancellation, earliness and late-

ness. It delivers a reasonable solution with the best revenue-cost balance incurring limited 

computational cost. Leaning on the estimation of the same-day requests in each block, the 

SIP model executes the aggregate assignment which is shown through numerical examples 

to perform better than the traditional one-at-a-time assignment for both overestimation and 

underestimation. Rather than exhausting every sample in the sample space of the random 

variables, the bound-based sampling method is developed to gain a reasonable sample 

size for the approximation. This sampling method provides a lower gap between upper 

bound and lower bound of original objective value. Using the sample size gained from 

the sampling method, sensitivity analysis is performed on a few parameters and settings 

which in practice can offer meaningful suggestions for clinic cost control as well as key 

factor identification and m onitoring. The advantage of the SIP model over the first-order
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statistics model is demonstrated through entropy analysis for different distributions of τ .

Demonstration of value of the SIP model is also enhanced through VSS and EVBI value

evaluation.
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4. OUTPATIENT CLINIC ONLINE SCHEDULING: STOCHASTIC INTEGER

PROGRAMMING WITH ENDOGENOUS UNCERTAINTY

4.1 Introduction

In the outpatient clinic online scheduling problem, patient assignment is planned be-

fore actual patient attendance. The decision is made without full information regarding

how many patients will make the appointments on time, and how many patients with ap-

pointments will arrive at the clinic and will be served in a certain time interval. This

Modified L-shaped formulates the clinic scheduling problem in a two-stage stochastic in-

teger programming with endogenous uncertainty. The endogenous uncertainty arises from

the dependence of uncertain information on the decision, which in this problem is reflected

by the fact that the assigned number of patients always gives an upper bound on the num-

ber of patients that arrive with appointments. Modified L-shaped and aggregated multicut

L-shaped methods are designed to solve the model. Based on the computational experi-

ments, the aggregated multicut L-shaped method needs less number of iterations than the

modified L-shaped method to achieve the same optimal solution. Distinctive optimality

cut generation schemes are proposed under three types of distributions for decision de-

pendent random variables; namely Poisson distribution, discrete uniform distribution and

empirical distribution. The first two types of distributions are handled with explicit form of

population mean, while the empirical distribution is handled via the central limit theorem.

It is shown in computational experiments that the optimality cuts generated through cen-

tral limit theory and those cuts generated with explicit distribution lead to similar optimal

objective costs. These methods offer generic resolution for decision-uncertainty relation-

ships in SP with the following features: 1) decision variables act as parameters in the

random variable distributions and 2) decision variables decide the population mean of the
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random variables. An alternative formulation of the problem with simple recourse func-

tion is provided, based on which, a mixed integer programming model is established as

a convenient method to obtain an approximation of the stochastic integer programming

model. This approximation method is applicable to any stochastic programming problem

with endogenous uncertainty and simple recourse function.

In this section, most assumptions in previous section are adopted expect that Type 2 

patients have no-show rates. In the two-stage SIP model, the first stage makes decisions 

about assignment with respect to patient preferences and FCFS rule. The second stage 

evaluates the consequence of the first-stage decision based on the estimation of resulted 

overflow and patient shortage cost. It is obvious that the assigned number of patients will 

affect the number of patients arrived with appointments. To be precise, number of Type 2 

patients that are assigned in each block is a decision variable, if the no-show probability of 

Type 2 patients is considered, then the number of Type 2 patients who will make the visits 

becomes a random variable depending on the decision variable. This type of uncertainty 

where a random variable depends on decision variable is called endogenous uncertainty 

[15]. In this problem, the decision variable impacts the upper bound of the random vari-

able, which means that the number of Type 2 patients who attend the appointment in a 

block cannot exceed the number of Type 2 patients who are assigned to this block. Al-

though stochastic programming (SP) with endogenous uncertainty is well studied in the 

literature, relevant papers are designed for their own specified types of endogenous un-

certainty which are not the same as in this section. Therefore, no existing method can be 

applied to handle the uncertainty in this scheduling problem. Two sets of two-stage SIP 

formulations for the clinic scheduling problem are developed. In the first set of formula-

tions, different situations about the decision dependent random distributions are consid-

ered. A modified L-shaped algorithm and an aggregated multicut L-shaped algorithm to 

solve the SIP model are devised. Both algorithms provide generic ways to solve SP prob-
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lems with decision dependent distribution parameters, such as mean. In the second set of

formulations, the second stage is modeled as a simple recourse problem. The lower bound

of the second stage are derived leveraging population means and sample means of random

variables. Using the bound, a mixed-integer programming model combining the first-stage

and second-stage models is constructed. The objective function value of the model can be

used as an approximation of expected result of using the expected value solution (EEV).

The remainder of this section is arranged in the following way: followed by the proper-

ties and formulations of the two-stage SIP model for clinic scheduling in Section 2. Section 

3 presents the modified L-shaped method and the aggregated multicut L-shaped method. 

After that, numerical examples are provided for comparison of the methods. Different 

distributions of the random variables and adaptive solution methods are also discussed in 

Section 3. Section 4 provides alternative two-stage SIP formulations with simple recourse 

function. The last section is about the conclusions.

4.2 Problem Formulations

4.2.1 Decision Model

4.2.1.1 Formulations

Assumptions of the model in this section are the same as previous section except for 

that no-show rates of Type 2 patients are considered here. SIPE-i below has the same 

first-stage formulations as Section 3. The second-stage constraints in Equations (4.2b) to 

(4.2e) are different from previous section.
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(SIPE-i) min −c2

∑h
j=1

∑ŝ
k=1 xjk − c3

∑h
j=1

∑ŵ
t=1 yjt + E[Q(X, Y,a, b, ω)](4.1a)

s.t.
∑h

j=1 xjk ≤ 1, ∀k = 1, · · · , ŝ (4.1b)∑h
j=1 yjt ≤ 1, ∀t = 1, · · · , ŵ (4.1c)

xjk ≤ Ajk, j = 1, · · · , h, k = 1, · · · , ŝ (4.1d)

yjt ≤ Bjtzt, j = 1, · · · , h, t = 1, · · · , ŵ (4.1e)

aj = āj+i +
∑ŝ

k=1 xjk, j = 1, · · · , h (4.1f)

bj = b̄j+i +
∑ŵ

p=1 yjt, j = 1, · · · , h (4.1g)∑ŵ
t=1(i+ j)yjt ≥ βi−1

∑ŵ
p=1 zt, j = 1, · · · , h, t = 1, · · · , ŵ (4.1h)

xjk, yjt ∈ {0, 1}, j = 1, · · · , h, k = 1, · · · , ŝ, t = 1, · · · , ŵ (4.1i)

aj, bj ∈ Z+, j = 1, · · · , h, k = 1, · · · , ŝ, t = 1, · · · , ŵ (4.1j)

where

Q(X, Y,a, b, ω) = min cf
∑h

j=1 qj + cs
∑h

j=1 gj (4.2a)

s.t. qj+1 − qj ≥ η(ω)j + αj + bj, j = 1, · · · , h (4.2b)

gj + qj ≥ −η(ω)j − αj − bj, j = 1, · · · , h (4.2c)

q1 = q́ (4.2d)

qj, gj ∈ Z+, j = 1, · · · , h (4.2e)

Objective function (4.1a) is designed to minimize unassigned same-day requests received

in the current block and minimize the overflow and patient shortage costs of the remaining

blocks. In order to have less accumulative overflows, the optimization solver may give a

solution with more assignments to the last block. This will lead to a large “overtime” cost

which is usually calculated as the difference between the real finish time of a clinic day and
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the end time of the last block. The total number of patients assigned to the last block can

also explain the “overtime”, since the more patients are assigned to the last block, the later

the clinic day will be finished. So the clinic can control the number of patients assigned

to the last block in order to reduce the “overtime” cost. Let co be the unit overtime cost of

assigning one patient to the last block, then the objective function can be written as:

min −c2

h∑
j=1

ŝ∑
k=1

xjk − c3

h∑
j=1

ŵ∑
t=1

yjt + co(ah + bh) + E[Q(X, Y,a, b, ω)] (4.3)

where E[Q(X, Y,a, b, ω)] is the expectation of the second-stage objective function value.

Second-stage objective function (4.2a) is established to evaluate the cost of overflows

and patient shortage for the remaining blocks as the consequence of assigning decision in

the first-stage. Constraints (4.2c) and (4.2d) are derived from input-output balance of each

remaining blocks as a consequence of decisions made by the end of the current block. For

block j, the input number of patients includes νj , pj , αj , bj , the number of patients can

be served (output) in it is τj . Especially, for the first block, q́ = 0. If the input number is

larger than the served number, then a positive number of patients qj+1 will overflow to the

next block, which means:

qj+1 = max{νj + qj + αj + bj − τj, 0} (4.4)

If the input number is smaller than the served number, then it generates a positive patient

shortage gj which means:

gj = max{τj − νj − qj − αj − bj, 0} (4.5)
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Constraint (4.2b) and (4.2c) are derived through these two equations and the definition of

ηj , i.e.

ηj := νj − τj (4.6)

4.2.2 Properties of SIPE-i

The SIPE-i model in this section has some interesting properties which facilitate ob-

taining the optimal solution.

• Property I: the SIPE-i model has complete recourse.

• Property II: the coefficient matrix of the second-stage model is totally unimodular.

• Property III: the second-stage model can be reformulated as a simple integer re-

course.

Proving Property I is trivial since for any η(ω)+α+b ∈ Zh, there alway exist vectors q, g 

such that (4.2b) to (4.2e) are satisfied. With this property, no feasibility cuts are needed for 

the L-shaped method. Proof of Property II is illustrated below. Property III is addressed 

later in Section 4.4 of this section.

Proof:
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The coefficient matrix is like:

q1 q2 q3 · · · qn−1 qn qn+1 g1 g2 · · · gn

−1 1 0 · · · 0 0 0 0 0 · · · 0

0 −1 1 · · · 0 0 0 0 0 · · · 0

...
...

... . . . ...
...

... 0 0 · · · 0

0 0 0 · · · 0 −1 1 0 0 · · · 0

1 0 0 · · · 0 0 0 1 0 · · · 0

0 1 0 · · · 0 0 0 0 1 · · · 0

...
...

... . . . ...
...

...
...

... . . . · · ·

0 0 0 · · · 0 1 0 0 0 · · · 1

(4.7)

This coefficient matrix can be decomposed in the following way :

Dn×(n+1) 0n×n

In×n 0n×1 In×n
(4.8)

where

Dn×(n+1) =



−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0

...
...

... . . . ...
...

0 0 0 · · · 0 −1 1


(4.9)

D has only two non-zero entries 1 and -1 in each column, all its sub squared nonsingular

matrices have only two structures:

• all -1 diagonals with all 0 lower triangular

• all 1 diagonals with all 0 upper triangular
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For both structures the determinant of the sub nonsingular matrices are either -1 or 1. So

D is a totally unimodular. Since the coefficient matrix is a combination of D and identity

matrices and all 0 matrices, so the coefficient matrix is also totally unimodular. (The end

of proof)

Property II is very useful because if integral restrictions of the second stage model is

relaxed, it can still get integral optimal solutions. This is an advantage for the following

reason: in the L-shaped algorithm, the dual solution of the second stage is necessary in

generating optimality cut for the master problem. The cut can be generated only if the

second-stage model follows the duality theorem of linear programming. Without Property

II, the linear relaxation of the second-stage can not retain all the information of the original

problem. With Property II, the dual solution of the relaxation of the second-stage model

can be directly used in the optimality cut.

4.3 Modified L-shaped Method and Aggregated Multicut L-shaped Method for En-

dogenous Uncertainty

4.3.1 Modified L-shaped Method for Endogenous Uncertainty

The first-stage decision variable a and the second-stage random variable α introduce

endogenous uncertainty into the problem since the distribution of uncertain random vari-

able vector α depends on vector a. Let the random variables which are associated with

endogenous uncertainty be the “Linked Variables", the random variables which are irrel-

evant to endogenous uncertainty be the “Unlinked Variables". This section discusses the

solution method for the decision model (SIPE-i) with an additional assumption: the dis-

tribution of the linked variables are not empirical. Recall that α denotes the vector of

numbers of patients that will arrive with appointments for the remaining blocks. In rele-

vant literature, binomial distribution and discrete uniform distribution for patient arrivals

are widely used [6, 18]. Solution methods for these two distributions are demonstrated
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accordingly in this section. N samples are drawn from the sample space of ηj(ω), let the

nth scenario be ηj(ω)n. suppose there are K different scenarios for α. The value of kth

scenario αkj comes from integer points in [0, aj], Therefore, there are NK scenarios in this

scheduling problem with respect to vector a. The second-stage model with indices k and

n is:

(subn,k) fn,k = min cf
∑h

j=1 q
n,k
j + cs

∑h
j=1 g

n,k
j (4.10a)

s.t. qn,kj+1 − q
n,k
j ≥ η(ω)nj + αkj + bj, j = 1, · · · , h (4.10b)

gn,kj + qn,kj ≥ −η(ω)nj − αkj − bj, j = 1, · · · , h (4.10c)

qn,k1 = q́ (4.10d)

qn,kj , gn,kj ∈ Z+, j = 1, · · · , h (4.10e)

Define λn,kj as the dual variable associated with jth overflow constraint in (4.10b) and µn,kj

as the dual variable associated with jth patient shortage constraint in (4.10c). According

to Weak Duality Theorem, the primal sub problem defines a upper bound of the dual sub

problem as illustrated below:

fn,k ≥max
h∑
j=1

[(ηnj + αkj + bj)λ
n,k
j + (−ηnj − αkj − bj)µ

n,k
j ]

= max
h∑
j=1

[ηnj (λn,kj − µ
n,k
j ) + αkj (λ

n,k
j − µ

n,k
j ) + bj(λ

n,k
j − µ

n,k
j )]

(4.11)

Let λ∗j , µ
∗
j be the optimal solution of the dual problem associated with scenario n, k, pn

be the probability of scenario n of ηj , p̃k be the probability of kth scenario of α. Define
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u = E[fn,k], the following inequality can be derived:

u ≥ E
[ h∑
j=1

[ηnj (λ∗j − µ∗j) + αkj (λ
∗
j − µ∗j) + bj(λ

∗
j − µ∗j)]

]

=
N∑
n=1

K∑
k=1

pnp̃k

h∑
j=1

[ηnj (λ∗j − µ∗j) + αkj (λ
∗
j − µ∗j) + bj(λ

∗
j − µ∗j)]

(4.12)

Using sampling method, pn is replaced with 1
N

. If it is assumed that αj follows binomial

distribution with individual no-show probability p2, i.e. αj ∼ binomial(aj, 1 − p2), then

in the inequalities above, the sample mean of αj is replaced with the population mean

aj(1 − p2), so that aj can be used as a first-stage variable in the optimality cut shown in

(4.12). The cut has the formulation as:

u− 1
N

∑N
n=1

∑K
k=1 p̃k

∑h
j=1 bj(λ

∗
j − µ∗j)− 1

N

∑N
n=1

∑h
j=1 aj(1− p2)(λ∗j − µ∗j)

≥ 1
N

∑N
n=1

∑K
k=1 p̃k

∑h
j=1 η

n
j (λ∗j − µ∗j) (4.13)

If it is assumed that αj follows discrete uniform distribution in [0, aj], i.e. αj ∼ unif(0, aj),

then the sample mean of αj can be replaced with population mean 1
2
aj , then the explicit

form of the cut becomes:

u− 1
N

∑N
n=1

∑K
k=1 p̃k

∑h
j=1 bj(λ

∗
j − µ∗j)− 1

N

∑N
n=1

∑h
j=1

1
2
aj(λ

∗
j − µ∗j)

≥ 1
N

∑N
n=1

∑K
k=1 p̃k

∑h
j=1 η

n
j (λ∗j − µ∗j) (4.14)

The master problem with optimality cuts is presented below. Here only one cut with all

NK scenarios is added to the master problem per iteration. Modified L-shaped method
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with aggregated multicuts is addressed in the next section.

(Master) min −c2

∑h
j=1

∑ŝ
k=1 xjk − c3

∑h
j=1

∑ŵ
t=1 yjt + u (4.15a)

s.t. All first-stage Constraints in (4.1b) to (4.1j) (4.15b)

Optimality cuts in (4.13) or (4.14) (4.15c)

Based on the master and subproblems, a modified L-shaped method aiming at solving SIP

with Endogenous Uncertainty is proposed. Algorithm 5 describes the procedure of the

method. This method distinguishes itself from regular L-shaped method for SP in two

aspects:

• It divides the random variables in the second stage into two subsets: linked variables

and unlinked variables, draw samples from the two subsets separately and indepen-

dently.

• It replaces the sample mean of the linked variables with population mean so that the

linked decision variables appear in the cut formulation.

Initial solution a0, b0 can be obtained by ignoring the no-shows of Type 2 patients and

solving the deterministic equivalent program (DEP) for the resulting regular two-stage

SIP. Due to the relative complete recourse property of the problem, the feasibility cut is

not considered in this method.

4.3.2 Aggregated Multicut L-shaped Method for Endogenous Uncertainty

Based on the division of linked variables and unlinked variables and the modified L-

shaped method in Algorithm 5, the aggregated multicut L-shaped method is proposed.

This method aggregates K scenarios of the linked variables and generates one cut for each

scenario of the unlinked variables.
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Algorithm 5: Modified L-shaped Method for Endogenous Uncertainty
1 Initialization: set iteration index d = 0, lb =∞, ub =∞, ε = 0.001 ;
2 get initial solution a0, b0;
3 let F d be the objective value of master problem, ud be the optimal value of u;
4 Step 1:
5 d = d+ 1;
6 for each scenario n = 1, , N do
7 draw K samples from ad−1 for each value of αk, k = 1, · · · , K do
8 solve the subproblem, let fn,kd be the objective value of the subproblem with

scenario n, k at iteration d ;
9 end

10 end
11 generate optimality cut in (4.15c);
12 compute upper bound ub = min{F d−1 − ud−1 +

∑N
n=1

∑K
k=1 pnp̃kf

n,k
d , ub};

13 if the upper bound is updated, update the incumbent solution;
14 Step 2:
15 add the optimality cut to Master with Uni-cut and solve the master problem;
16 set lower bound lb = max{F d, lb};
17 Step 3:
18 if ub− lb < ε|ub| then
19 stop, the current solution of the master problem is ε - optimal;
20 else
21 return to Step 1;
22 end

The sub problems remain the same as in (4.10a) to (4.10e). For the master problem,

let u := {un}, n = 1, · · · , N be the decision variable vector associated with N scenarios

of the unlinked variables, λn∗j , µ
n∗
j be the optimal dual solution for the nth scenario. For

scenario n the sub dual problem satisfies:

un ≥
K∑
k=1

pnp̃k

h∑
j=1

[ηnj (λn∗j − µn∗j ) + αkj (λ
n∗
j − µn∗j ) + bj(λ

n∗
j − µn∗j )] (4.16)
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If αj follows binomial distribution, the cut for scenario n is:

un −
∑K

k=1 p̃k
∑h

j=1 bj(λ
n∗
j − µn∗j )−

∑h
j=1 aj(1− p2)(λn∗j − µn∗j )

≥
∑K

k=1 p̃k
∑h

j=1 η
n
j (λn∗j − µn∗j ) (4.17)

If it is assumed that αj follows discrete uniform distribution, the cut for scenario n is:

un −
∑K

k=1 p̃k
∑h

j=1 bj(λ
n∗
j − µn∗j )−

∑h
j=1

1
2
aj(λ

n∗
j − µn∗j )

≥
∑K

k=1 p̃k
∑h

j=1 η
n
j (λn∗j − µn∗j ) (4.18)

(Master with multicut) min − c2

h∑
j=1

ŝ∑
k=1

xjk − c3

h∑
j=1

ŵ∑
t=1

yjt +
N∑
n=1

un

s.t. All first-stage Constraints in (4.1b) to (4.1j)

Optimality cuts in (4.17) or (4.18) , n = 1, · · · , N

(4.19)

The aggregated multicut L-shaped method is described in Algorithm 6.

4.3.3 Comparison of Modified L-shaped Method and Aggregated Multicut L-shaped

Method

In this section, a simplified numerical example is adopted to compare the performance

of the two proposed methods. In this numerical example, let the number of remaining

blocks h = 2 or 3 or 5, length of each block is l = 30 min, estimated number of Type 2

requests received the current block is ŝ = 1 to 20, estimated number of Type 3 patients

arrived at the current block is ŵ = 2 to 20, number of patients overflow to the current

block is q́ = 1 and all the objective coefficients are set to 1. Assume that there are two

scenarios of the random variable η(ω), each of them are equally likely to occur. The

first scenario is each of the remaining block has νj = 1 Type 1 patient who will arrive

for service. The second scenario is νj = 2. In this numerical example, patients have no
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Algorithm 6: Aggregated Multicut L-shaped Method for Endogenous Uncertainty
1 Initialization: set iteration index d = 0, lb =∞, ub =∞, ε = 0.001 ;
2 get initial solution a0, b0, let un = −∞, n = 1, · · · , N ;
3 let F d be the objective value of master problem with multicut , ud be the optimal

value of u;
4 Step 1:
5 d = d+ 1;
6 for each scenario n = 1, · · · , N do
7 draw K samples from ad−1 for each value of αk, k = 1, · · · , K do
8 solve the subproblem, let fn,kd be the objective value of the subproblem with

scenario n, k at iteration d ;
9 end

10 if ud−1
n ≤ 1

N

∑K
k=1 p̃kf

n,k
d then

11 generate optimality cut in (4.16) for n ;
12 end
13 compute upper bound ub = min{F d−1−

∑
n u

d−1
n +

∑N
n=1

∑K
k=1 pnp̃kf

n,k
d , ub};

14 update incumbent solution if upper bound is updated;
15 end
16 Step 2:
17 if ∃n, s.t. ud−1

n > fn,kd then
18 stop;
19 current incumbent solution is optimal;
20 else
21 add the generated optimality cuts to Master with multicut and solve the master

problem;
22 set lower bound lb = max{F d, lb};
23 return to Step 1;
24 end

assignment preferences or restrictions. No Type 2 patients or Type 3 patients from previous

blocks have been assigned to the remaining blocks (ā = 0, b̄ = 0). Table 4.1 shows

the optimization results under the modified L-shaped and aggregated multicut L-shaped

method. It is obvious that both methods can solve the simplified small scale problem

within a few iterations and produce the same objective function value. As the size of the

problem increases, the L-shaped method tends to take more iterations than the multicut, as
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well explained in [75, 76].

Table 4.1: Comparison of Performance and Outputs of Modified L-shaped and Aggregated
Multicut L-shaped Methods

parameters # iterations obj value
h ŝ ŵ τ1, τ2 L-shaped Multicut L-shaped Multicut
2 1 2 4,3 2 1 -1.5 -1.5
2 2 3 4,3 2 2 -3.5 -3.5
2 4 4 4,3 3 2 -3.2777 -3.2777
2 5 5 4,3 2 2 -4.0833 -4.0833
2 6 6 4,3 3 3 -4.7666 -4.7666
2 7 7 5,4 2 2 -6.375 -6.375
2 8 8 5,4 2 2 -7 -7
3 8 8 5,4 2 3 -9.1666 -9.1666
3 9 9 5,4 3 3 -8.1111 -8.1111
3 10 10 5,4 2 5 -9.4762 -9.4762
5 10 10 5,4 6 4 -8.25 -8.25
5 12 12 5,4 6 6 -6.25 -6.25
5 15 15 8,6 4 4 -13.5 -13.5
5 16 16 8,6 5 4 -14.2 -14.2
5 20 20 8,6 7 5 -16.3571 -16.3571
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4.3.4 Linked Random Variables Without Closed-form Expectations

For the situation when the linked variables have empirical distribution, they do not

have close-form expectations, cuts in (4.13) or (4.14) are no longer valid. To overcome

this difficulty, assume that there is some relationship between each linked variable and its

sample mean as well as sample standard deviation. In this problem, the linked variable is

a = {aj}. Let K be the sample size, ãj be the sample mean, µj be the population mean

and sj be the sample standard deviation. From Central Limit Theory,
√
K
sj

(ãj − µj) →

Normal(0, 1). Let δ be the accuracy control parameter, the value of aj is supposed to sat-

isfy:

√
K
∣∣aj − ãj∣∣ ≤ δsj (4.20)

From the property of standard normal distribution, the distances of 99.7% of the data

are within 3 times of standard deviation. So here one can choose δ to be 3. In (4.20)

the population mean of αj is approximated by aj and therefore obtain the relationship

between aj and the sample data αj . This approximation is based on the assumption that

the clinic expects Type 2 patients arrive for their service with zero no-show rates. The

deviation of this approximation from real result depends on the underlying distribution of

αj . For example if the real distribution of α is αj ∼ binomial
(
aj, (1− p2)

)
, but empirical

distribution and approximation are used above, the average deviation is around ajp2 which

will be small if p2 is low. With this approximation, the master problem in modified L-
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shaped algorithm becomes:

min −c2

∑h
j=1

∑ŝ
k=1 xjk − c3

∑h
j=1

∑ŵ
t=1 yjt + u (4.21)

s.t. All first-stage Constraints in (4.1b) to (4.1j) (4.22)

u− 1
N

∑N
n=1

∑K
k=1 p̃k

∑h
j=1 bj(λ

∗
j − µ∗j)− 1

N

∑N
n=1

∑h
j=1 aj(λ

∗
j − µ∗j)

≥ 1
N

∑N
n=1

∑K
k=1 p̃k

∑h
j=1 η

n
j (λ∗j − µ∗j) (4.23)

√
K(aj − ãj) ≤ δsj (4.24)

√
K(aj − ãj) ≥ −δsj (4.25)

In order to verify the accuracy of this approximation method, the results of this method

are compared with Algorithm 5 on the same test sets. In this experiment, it is assumed

that the true distribution of αj is binomial, i.e. αj ∼ binomial
(
aj, (1 − p2)

)
. In Method

1 empirical data and formulations from (4.20) to (4.25) are used, in Method 2 Algorithm

5 is used. Table 4.2 shows the difference between objective function values of Method 2

and Method 1 over 15 test sets with the same sample size of 110 but different number of

same-day requests. The direct observation from the table is that when the model size is

not large, the differences between the two methods are within 1. Since integer unit cost

coefficient is used and all the decision variables are integers, the difference of two methods

in assigning patients is not significant. When the model size increases, a larger sample size

is needed to be used to reduce the deviation.
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Table 4.2: Objective Value Differences Between Method 2 and Method 1

# requests Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Average
20 1.49 -0.26 1.12 -0.22 -0.52 0.4
30 -0.84 -1.32 -1.23 -3.21 -0.77 0.322
40 0.86 1.485 0.915 0.84 -2.1 -1.474

4.4 Alternative Formulations with Simple Recourse

According to Property III of SIPE-i, the second stage can be formulated in the simple

recourse format:

qj+1 = max{q́ +

j∑
k=1

νk +

j∑
k=1

αk +

j∑
k=1

bk −
j∑

k=1

τk, 0} (4.26a)

gj = max{−q́ −
j∑

k=1

νk −
j∑

k=1

αk −
j∑

k=1

bk +

j∑
k=1

τk, 0} (4.26b)

Note that equations (4.26a) and (4.26b) show the accumulative output and input of blocks

with indices from i to j+i. From the comparison between the models with different second

stage formulations, we can see that neither the overflow constraints in (4.4) and (4.26a) nor

the patient shortage constraints in (4.26b) and (4.5) are the same. For any future block,

if the patient shortage of previous block is positive, then calculation in (4.4) and (4.26a)

will be different, so does (4.26b) and (4.5). These differences result from the definition of

patient shortage in two models. In model (4.1), gj is shortage at the particular block j, but

in model (4.26), gj is the total shortage of the remaining blocks 1 to j. Under the simple

recourse formulation, the third component of the first stage model can be written in the

following way:
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E[Q(X, Y,a, b, ω)] = E[cf

h+1∑
j=2

qj + cs

h∑
j=1

qj]

= cf

h∑
j=1

E[max{q́ +

j∑
k=1

νk +

j∑
k=1

αk +

j∑
k=1

bk −
j∑

k=1

τk, 0}]

+ cs

h∑
j=1

E[max{−q́ −
j∑

k=1

νk −
j∑

k=1

αk −
j∑

k=1

bk +

j∑
k=1

τk, 0}]

(4.27)

Let η̂j :=
∑j

k=1 νk+
∑j

k=1 αk−
∑j

k=1 τk, ẑj := −q́−
∑j

k=1 bk, so η̂j is linear combination

of random variables. Then qj, gj can written in the following way:

qj+1 = max{η̂j − ẑj, 0}

gj = max{ẑj − η̂j, 0}
(4.28)

Given these definitions, it is easy to derive the following equations.

E[qj+1] =E[max{η̂j − ẑj, 0}]

=
N∑

n=nj
1

pn(η̂j − ẑj)

=
N∑

n=nj
1

pnη̂j −
N∑

n=nj
1

pnẑj

=− ẑj(1−
nj
1∑

n=1

pn) +
N∑

n=nj
1

pnη̂j

(4.29)

E[gj] =E[max{ẑj − η̂j, 0}]

=

nj
1∑

n=1

pn(ẑj − η̂j)

=

nj
1∑

n=1

pnẑj −
nj
1∑

n=1

pnη̂j

(4.30)
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where nj1 is the largest index such that η̂j(nj
1) ≤ ẑj . Use the equations above, we have:

E[gj]− E[qj+1]

=
N∑

n=nj
1

pnẑj −
nj
1∑

n=1

pnη̂j + ẑj(1−
nj
1∑

n=1

pn)−
N∑

n=nj
1

pnη̂j

=ẑj −
N∑
n=1

pnη̂j

=ẑj − E[η̂j]

(4.31)

E[gj] + E[qj+1] =E[max{ẑj − η̂j, 0}] + E[max{η̂j − ẑj, 0}]

=E[|ẑj − η̂j|]

≥
∣∣E[ẑj − η̂j]

∣∣
(4.32)

From the inequality above, it is easy to obtain the following formulas.

E[gj]− E[qj+1] = ẑj − E[η̂j] (4.33)

E[qj+1]− E[gj] = E[η̂j]− ẑj (4.34)

E[gj] + E[qj+1] ≥ ẑj − E[η̂j] (4.35)

E[gj] + E[qj+1] ≥ E[η̂j]− ẑj (4.36)

From (4.34) and (4.36), we get:

E[gj] ≥ 0

E[qj+1] ≥ E[η̂j]− ẑj
(4.37)
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From (4.35) and (4.36), we can obtain:

E[qj+1] ≥ 0

E[gj] ≥ ẑj − E[η̂j]

(4.38)

Assume the numbers of Type 1 and 2 patients who make their visits all follow Binomial

distribution, and the block throughput follows Poisson distribution. Under this assumption,

all the uncertain data has closed-form expectation, i.e.

E[αk] = ak(1− p2) (4.39)

E[νk] = rk(1− p1) (4.40)

E[τk] =
li
ξ

(4.41)

Let uj := csE[gj] + cfE[qj+1] be a decision variable, using inequality pairs in (4.37) and

(4.38), we have:

uj ≥ cf
(
E[η̂j]− ẑj

)
= cf

(
q́ +

j∑
k=1

bk +

j∑
k=1

E[νk] +

j∑
k=1

E[αk]−
j∑

k=1

E[τk]

)

= cf

(
q́ +

j∑
k=1

bk +

j∑
k=1

rk(1− p1) +

j∑
k=1

ak(1− p2)−
j∑

k=1

li
ξ

) (4.42)

uj ≥ cs
(
ẑj − E[η̂j]

)
= cs

(
− q́ −

j∑
k=1

bk −
j∑

k=1

E[νk]−
j∑

k=1

E[αk] +

j∑
k=1

E[τk]

)

= cs

(
− q́ −

j∑
k=1

bk −
j∑

k=1

rk(1− p1)−
j∑

k=1

ak(1− p2) +

j∑
k=1

li
ξ

) (4.43)
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Let vj := q́+
∑j

k=1 rk(1−p1)−
∑j

k=1
li
ξ

, vj which can be calculated as a parameter before

decision. The SIP model considering no-shows of Type 2 patients can be transformed into

the following integer programming model IN-i.

(IN-i) min −c2

∑h
j=1

∑ŝ
k=1 xjk − c3

∑h
j=1

∑ŵ
t=1 yjt +

∑
j uj (4.44)

s.t.
∑h

j=1 xjk ≤ 1, ∀k = 1, · · · , ŝ (4.45)∑h
j=1 yjt ≤ 1, ∀t = 1, · · · , ŵ (4.46)

xjk ≤ Ajk, j = 1, · · · , h, k = 1, · · · , ŝ (4.47)

yjt ≤ Bjtzt, j = 1, · · · , h, t = 1, · · · , ŵ (4.48)

aj −
∑ŝ

k=1 xjk = āj+i, j = 1, · · · , h (4.49)

bj −
∑ŵ

p=1 yjt = b̄j+i, j = 1, · · · , h (4.50)∑ŵ
t=1(i+ j)yjt − βi−1

∑ŵ
p=1 zt ≥ 0, j = 1, · · · , h, t = 1, · · · , ŵ (4.51)

uj − cf
∑j

k=1 ak(1− p2)− cf
∑j

k=1 bk ≥ cfvj, j = 1, · · · , h, (4.52)

uj + cs
∑j

k=1 ak(1− p2) + cs
∑j

k=1 bk ≥ −csvj, j = 1, · · · , h, (4.53)

xjk, yjt, zt ∈ {0, 1}, aj, bj, uj ∈ Z+,

j = 1, · · · , h, k = 1, · · · , ŝ, t = 1, · · · , ŵ (4.54)

It is obvious that IN-i model takes advantage of the simple recourse structure. It leverages

expected values of random variables and the relationship between linked decision vari-

ables and linked random variables to achieve a bound for the original SIP-i problem. This

reminds us about the Expected Results of Using Expected Value (EV) Solution (EEV) of

the SP model, which measures the average objective function value among scenarios under

EV solution.

Comparing with procedure of obtaining EEV, IN-i model shows its strength in two

aspects: (1) It is easy to operate, one does not need to iterate every scenario for obtaining
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EEV; instead, the population mean is used in place of sample mean in IN-i for all the

random variables. (2) It works smoothly for SIP-i with Endogenous uncertainty in this

problem. If EEV is applied to this problem, due to the reason of endogenous uncertainty,

some transformations need to be done to obtain the EV solution. Especially, there are

different sample spaces ofα for different values of awhich makes it nontrivial to calculate

EEV. The population mean in IN-i and the relationship between linked decision variables

and linked random variables overcome the difficulty brought by endogenous uncertainty.

To compare IN-i and EEV, an additional assumption is adopted that Type 2 patients have

zero no-show rates so that endogenous uncertainty is absent here. Figure 4.1 illustrates the

difference between the two methods. The IN-i model and EEV are run to produce results

over different number of requests under 20 batches of 110 samples, and compare average

difference between the two methods on three objective components: number of assigned

Type 2 patients (denoted with“s”), number of assigned Type 3 patients (denoted with “w”)

and total cost of overflows and patient shortage (denoted with “cost”). On average, for all

request numbers, the two methods produce very close results. The IN-i model shows a

little higher costs but the average difference is around 2% of the cost of EEV. Hence IN-i

can be used as a substitute of EEV for SP with endogenous uncertainty.

4.5 Conclusions of the Section

This section exploits two-stage SIP model with endogenous uncertainty to address the 

clinic scheduling problem. A modified L-shaped method and an aggregated multicut L-

shaped method are designed to solve the model. Both methods perform well in producing 

optimal solutions. The underlying framework of these two methods offers a way to han-

dle SP with decision dependent distribution parameters where the linked decision variable 

may not be involved in the second stage model. Here the potential relationship between 

decision variable and random variable is found and interpreted as equations or inequal-
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Figure 4.1: Comparison of Computational Results of IN and EEV

ities which can be included in optimality cut. By doing this, the optimality cut retains 

results from scenarios of linked random variable and the participation of linked decision 

variable. This framework is flexible to deal with different types of distributions includ-

ing empirical distribution where the relationship between decision variable and dependent 

random variable is not explicit. Patient cancellations, earliness and lateness can also be 

addressed under this framework. Introduction of these factors will increase the complex-

ity of endogenous uncertainty. This section provides insights about the objective bounds 

of SP model with simple recourse function, based on which, the derived IN-i model can 

replace the EEV solution and overcome the calculation difficulty caused by endogenous 

uncertainty. Besides the IN-i model, another advantage of simple recourse function in this 

problem is to use a simplified version of optimality cut in modified / multicut L-shaped 

methods with prerequisite that the coefficient m atrix i n ( 4.26a) a nd ( 4.26b) i s s till uni-

modal. With this prerequisite, the simplified cut in [75] can be applied to Algorithms 5 

and 6 as a good topic for future work.
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5. ZIGZAG SORTING AND MAXIMUM INDEPENDENT SET BASED METHODS

IN CLINIC SCHEDULING

5.1 Introduction

As it happens in a real clinic day, at the beginning of the day, the clinic already knows

the assignment of Type 1 patients in all the blocks. So when the clinic makes decision for

the same-day requests, assignment of Type 1 patients is considered as known information.

Since the traditional far-in-advance policy typically deals with chronic and follow-up care,

so the service time of each Type 1 patients is more predictable than the same-day requests.

With this information, the offline scheduling approach can be used to arrange the appoint-

ments of Type 1 patients. In practice, one policy for allocating Type 1 patients is to arrange

the follow-up or chronic care patients into a limited portion of blocks leaving other blocks

empty for the same-day requests. The occupied blocks for Type 1 patients are supposed to

be fully utilized so that the same-day request decision maker can skip them, consequently,

the same-day request assignment will have decision variables with fewer dimensions.

This section addresses the block-wise offline scheduling problem for Type 1 patients, 

where blocks are equal-length time intervals in a clinic day. The decision time horizon 

is not necessarily restricted to one clinic day, so the blocks under consideration may span 

several days. Each patient has preference on the blocks, so the individual assignment 

must obey the corresponding restrictions. Given the service time of each patient and the 

time limit of each block, the clinic assigns all these patients into the blocks following the 

assignment restrictions. The target is that the clinic uses the smallest possible numbers 

of blocks to serve the Type 1 patients, so that more blocks are available for the same-day 

requests patients.

The remainder of this section is arranged in the following way: Section 5.2 describes
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the integer programming formulations of the problem considering different types of as-

signment targets. Section 5.3 analyzes the complexity of the problem and the relation

with other classical problems. Section 5.4 proposes a heuristic method which can perform

the assignment efficiently and effectively. Section 5.5 designs a meta-heuristic algorithm

with maximum independent set based construction, neighborhood representation and local

search methods. Section 5.6 compares the performance of the heuristic and meta-heuristic

methods with the exact solution method. Section 5.7 compares the performance of the

construction method in this dissertation with existing construction methods. Section 5.9

draws conclusions about the work.

5.2 Problem Statement and Formulations

Assignment of Type 1 patients is addressed under the following assumptions: (1) the

number of Type 1 patients to be assigned is known; (2) the expected service time of each

patient is known; (3) the number of blocks under consideration is fixed, blocks have fixed

equal lengths; (4) no-shows of Type 1 patients is not considered here; (5) patient prefer-

ences (restrictions) on the blocks are known. With these assumptions, the offline schedul-

ing for Type 1 patients is trying to assign n patients into m blocks following the patients’

preferences. The clinic wants to use the least number of blocks to serve these patients and

there are no overflows from these blocks. This scheduling problem is a clinic patient as-

signment problem. Notations of the formulations of the clinic patient assignment problem

are listed below:

Indices:

• j: index for patients.

• i: index for blocks.

Parameters:
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• n: number of patients to be assigned in a day.

• m: number of blocks of a clinic day.

• A := {aij}: 0-1 restrictions of patients choices on the blocks. aij = 1 means patient

j can be assigned to block i, aij = 0 means patient j cannot be assigned to block i.

• t := {tj}: service time of patient j.

• l: length of each block.

• cu: cost of utilizing one block.

• ce: cost of unit time beyond block length.

• ra: unit revenue of assigning one patient.

Variables:

• xij: 0-1 decision variable indicating whether patient j is assigned to block i.

• yi: 0-1 decision variable indicating whether block i is used.

• z: maximum makespan of blocks.

Formulations of the clinic patients assignment problem can be addressed from different

perspectives. If the clinic needs to handle all n patients, and set a soft threshold for the

makespan, the following formulation named as Assign-All (AA) can be used:
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(AA) min f = cu
∑m

i=1 yi + ce(z − l) (5.1a)

s.t. xij − yiaij ≤ 0, i = 1, · · · ,m, j = 1, · · · , n (5.1b)∑m
i=1 xij = 1, j = 1, · · · , n (5.1c)∑n

j=1 xijtj − z ≤ 0, i = 1, · · · ,m (5.1d)

xij, yi ∈ {0, 1}, z ∈ Z+, i = 1, · · · ,m, j = 1, · · · , n (5.1e)

Objective function (5.1a) is designed to minimize the total cost generated from number of

blocks used and the length of the maximum makespan. Constraint (5.1b) is the assignment

restriction, (5.1c) assures one patient is assigned to only one block, (5.1d) defines the max

makespan.

Suppose the clinic can reject the requests of some patients, but stick to the rule that the

maximum makespan cannot go beyond the block length, and the clinic wants to assign as

many patients as possible, then the following formulation named as Makespan-Restriction

(MR) can be used:

(MR) min f = cu
∑m

i=1 yi − ra
∑m

i=1

∑n
j=1 xij (5.2a)

s.t. xij − yiaij ≤ 0, i = 1, · · · ,m, j = 1, · · · , n (5.2b)∑m
i=1 xij ≤ 1, j = 1, · · · , n (5.2c)∑n
j=1 xijtj ≤ l, i = 1, · · · ,m (5.2d)

xij, yi ∈ {0, 1}, z ∈ Z+, i = 1, · · · ,m, j = 1, · · · , n (5.2e)

If the clinic needs to handle all the n patients and the block length is a hard threshold,

the Assign-All-Makespan-Restriction (AAMR) model can be used. The advantage of this

model is that it satisfies all the requirements of the clinic patient assignment, but the dis-
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advantage is that under strict restrictions, the feasible set may be empty or very small.

(AAMR) min f = cu
∑m

i=1 yi + z (5.3a)

s.t. xij − yiaij ≤ 0, i = 1, · · · ,m, j = 1, · · · , n (5.3b)∑m
i=1 xij = 1, j = 1, · · · , n (5.3c)∑n

j=1 xijtj − z ≤ 0, i = 1, · · · ,m (5.3d)

z ≤ l (5.3e)

xij, yi ∈ {0, 1}, z ∈ Z+, i = 1, · · · ,m, j = 1, · · · , n (5.3f)

5.3 Complexity and Transformations of The Problem

5.3.1 Complexity Analysis

The analysis can be started from the AA model which has a soft threshold on makespan.

The corresponding decision problem is:

• AA-Decision: Given n patients with individual service time tj , m blocks and re-

striction matrix A, is there an assignment satisfying the assignment to assign the n

patients into k of the blocks with makespan of z?

Theorem 5.3.1. The AA-Decision problem is NP-complete.

Proof:

It can be shown by reducing satisfiability problem (SAT) into AA-Decision. Let φ be

an instance of conjunctive normal form (CNF) of the satisfiability problem with n clause

Cj, j = 1, · · · , n and m variables, Xi, i = 1, · · · ,m and the negations of the variables

X̄i, i = 1, · · · ,m. Then one can obtain an instance of AA-Decision by mapping each

clause to one patient and associating each variable X with one block. The literal Xi

means that block i can be chosen, the literal X̄i denotes that block i cannot be chosen. For
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example, let φ in (5.4) indicate the 6 patients and 5 blocks with restriction matrix A in

(5.5).

φ =(X1 ∨X2 ∨ X̄3 ∨ X̄4 ∨X5) ∧ (X1 ∨X2 ∨X3 ∨ X̄4 ∨ X̄5)

∧ (X1 ∨ X̄2 ∨X3 ∨X4 ∨X5) ∧ (X1 ∨X2 ∨X3 ∨X4 ∨X5)

∧ (X1 ∨X2 ∨X3 ∨X4 ∨ X̄5) ∧ (X1 ∨ X̄2 ∨X3 ∨X4 ∨ X̄5)

(5.4)

AT =



1 1 0 0 1

1 1 1 0 0

1 0 1 1 1

1 1 1 1 1

1 1 1 1 0

1 0 1 1 0


(5.5)

This transformation costs O(nm) time. It is easy to detect from the one-one mapping

of the two that φ is true if and only if the AA-Decision in (5.5) is “Yes”. The one-one

mapping also implies that AA-Decision is a special case of SAT, since SAT is in NP, so

does AA-Decision. Hence AA-Decision problem is NP-complete.

5.3.2 Relation with Bin Packing Problem

If the restriction on assignment and the minimization of the maximum makespan are

relaxed, then the problem becomes a BPP without unit bin capacity. To obtain the standard

BPP with unit bin capacity, the service time of each patient can be worked out using

the time limit of the max makespan, i.e., tj
l

. BPP has been proved to be NP-complete

[79, 80]. To transform the input of instance of BPP with assign restriction into the input

of basic BPP, the processing time can be changed from a vector t into a matrix T such that
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T := {tij} where

tij =


tj
aij l
, if aij = 1, i = 1, · · · ,m, j = 1, · · · , n

+∞, if aij = 0, i = 1, · · · ,m, j = 1, · · · , n
(5.6a)

This transformation can be implemented in polynomial time O(nm). The advantage of

this transformation is that a feasible BPP solution will satisfy all the strict restrictions:

makespan and full assignment. The disadvantage of this representation is that, if approx-

imation method of BPP is adopted to solve it, it is easy to run into a situation where the

full assignment cannot be satisfied in the end. So this transformation is close to the MR

problem.

Using this transformation, it can be shown that MR is NP-complete The decision ver-

sion of MR problem is:

• MR-Decision: Given n patients with individual service time tj , m blocks and re-

striction matrix A, is there an assignment satisfying the assignment and makespan

restriction to assign the s (s ≤ n) patients into k of the blocks?

Theorem 5.3.2. The MR-Decision problem is NP-complete.

Proof:

To show, one can reduce a partition problem into the MR-decision. In partition, get

n integer numbers t1, t2, · · · , tn and decide if there is a set S ⊂ {1, · · · , n} such that∑
j∈S tj =

∑
j /∈S tj . A transformation similar to (5.6a) can be used to get the correspond-

ing tij and construct the MR-decision instance with 2 blocks. Let tij = 2
tj

aij
∑n

j=1 tj
, so if

there is an S that makes
∑

j∈S tj =
∑

j /∈S tj true, then 1 ≤
∑2

i=1

∑
j∈S tij ≤ 2 which

means the MR-decision is true. If
∑2

i=1

∑
j∈S tij = 1 which implies MR-decision is true,

then
∑

j /∈S tj = 1 which also means
∑

j∈S tj =
∑

j /∈S tj , so the partition instance is true.
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Verifying whether an assignment of an instance of MR-Decision is true costs polynomial

time, so it is easy to show that MR-Decision is in NP. Thus, the MR-Decision problem is

NP-complete.

5.3.3 Relation with Maximum Independent Set Problem

The method which transforms clinic assignment problem into a maximum independent

set problem is modified on the basis of the work from Gabrel [90]. One can construct a

graph G = (V,E) in the following way: let
∑n

i=1

∑m
j=1 aij = b and

∑n
i=1 aij = bj .

Let a vertex denote the pair v = (i, j) for patient j and block i with aij = 1, hence

|V | = b. Connect the vertices which share the same patient, i.e., (i, j) → (k, j) ∈ E, j =

1, · · · , n; i, k = 1, · · · ,m, i 6= k. Graph G constructed in the way above has n cliques.

A feasible solution for the clinic assignment problem would be a maximum independent

set I of G. Let s(I) be the number of blocks in the maximum independent set I , p(I) be

the length of the maximum makespan of these blocks. The target is minimum number of

blocks to complete the service of all the patients within a short time no more than l. The

objective function in (5.1a) is equivalent to:

f(I) = cus(I) + ce(p(I)− l) (5.7)

An example is given by the assignment restriction matrix A shown below and the

corresponding graph G presented in Figure 5.1.

AT =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 1 0


(5.8)
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Figure 5.1: Transformation from Clinic Patients Assignment Problem to Maximum Inde-
pendent Set Problem

The AA problem is an optimization problem which aims at finding a maximum in-

dependent set I of size n such that the objective function value f in (5.7) is minimized.

The transformation will take O(n3) time if using each column of A is constructed by each

clique of G. The advantage of this transformation is that any feasible solution will pre-

serve the all-assigning restriction. However, the makespan restriction is not guaranteed.

Therefore this transformation is close to the AA model.

5.4 Approximation Methods of BPP-based MR

The existing approximation methods for BPP mentioned in literature review do not

work well due to the assignment restrictions. Under these methods, some patients which

are assigned late cannot find proper blocks. The unsuccessful trial on using the existing

approximation methods of BPP shows that the feasibility of assignment can be achieved

through multiple adjustments of an assignment. Specifically, if the procedure runs into

an infeasible solution, it can alter the current assignment to find a way out. Let the term

“degree of patient” denote the number of blocks in which a patient can be served ac-

cording to restriction matrix A. The “degree of blocks" is defined in a similar way. The
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degree of each patient and each block will be updated during the assignment where the

assigned patients and blocks with insufficient residual capacity will be removed from the

candidate sets. To reduce the risk of running into an infeasible solution during the pro-

cedure, give highest priority to those patients who currently have only one choice on the

blocks (call them 1-degree patients). The decreasing processing time order of item in

NFD, FFD, BFD leads to a better approximation ratio since it tries to place “small” items

into the residual space. When it applies to the patient assignment problem, the “large”

item will take the bin so that “smaller” items have no suitable bins when they are to be

assigned. If the patients are sorted increasingly according to their service time, then no

enough “small” items are left to take the residual capacity of blocks which make the as-

signment away from “optimal”. So it is suggested to rearrange the patients order in a

“zigzag” way. Suppose the clinic has an even number of patients. Sort the patients in

non-decreasing order with respect to service time, i.e. j(1), j(2), · · · , j(n), then rearrange

the order based on the sorted order. The “zigzag" order based on non-decreasing sorted

index is j(n
2

), j(n
2

+1), j(n
2
−1), j(n

2
+2), j(n

2
−2), · · · , j(n−1), j(2), j(n), j(1). The advantage of this

order is that the groups of patients whose sum service time can fit a capacity limit of a

block are close to each other, i.e. patients with medium service length are close to patients

with medium service length, patients with long service time are close to patients with short

service time. For the patients with degree larger than 1, it always finds the block with max-

imum degree of patients following the Zigzag sorting order. So the algorithm is named as

Max Fit Based on Zigzag Sorting with Retained Feasibility as presented in Algorithm 7.

To avoid the procedure running into a dead-lock in the case where it is unable to assign

all the patients, define maximum number of loops N that can be performed by the inner

while loop. To implement this algorithm, four lists can be used for storage:

• a list of patients preserving the zigzag sorted order who need to be assigned with
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Algorithm 7: Max Fit Based on Zigzag Sorting with Retained Feasibility
1 Initialization: Rearrange the order of jobs in the “zigzag” way, let J be set of

patients, M be the set of blocks ;
2 while J 6= do
3 while there exists 1-degree patient in J do
4 assign the 1-degree patients based on their order;
5 remove the assigned patient from J ;
6 remove the blocks from M which has not enough capacity ;
7 if 1-degree patient does not find a block then
8 find all the target blocks which the 1-degree patient can use ;
9 take the patients which are assigned to the target blocks as candidate

patients ;
10 swap the unassigned 1-degree patient with the candidate patient with

highest degree;
11 end
12 end
13 for the first patient in the order remaining in J do
14 find the blocks associated with it as candidate blocks;
15 find the candidate block with the maximum degree within the makespan

limit ;
16 assign the all the patients available to this block properly, remove the

assigned patients and the block with insufficient residual capacity ;
17 break;
18 end
19 end

and their adaptive degree.

• a list of blocks with sufficient adaptive residual capacity and adaptive degree.

• a list of block-based assignment showing all assignments that have been done.

• a patient-block adjacency matrix storing restriction matrix A.

Using the lists, Lines 4-6 takeO(m) time, Line 8 searches the fourth list usingO(m) time,

getting the candidate patients list takesO(mn) time, finding the one with max degree costs

takes O(mn). Since it is necessary to go over the fourth list for each candidate, there are
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at most N loops between Lines 3-11, so the inner while loop costs O(Nmn). Lines 14-17

cost time O(m), Lines 13 -17 are executed only once per outer while loop. So the total

computational complexity of Algorithm 7 is O(Nmn2).

Table 5.1 shows the performance of different heuristic methods where the length of

each block is set to the maximum service time of patients. They are: I: Max fit with zigzag

sorting; II: First fit with zigzag sorting; III: Best fit with zigzag sorting; IV: Mixed first

fit and best fit with zigzag sorting; V: First fit without zigzag sorting; VI: Best fit without

zigzag sorting; VII: Mixed first fit and best fit without zigzag sorting. The zigzag sorting

is performed for patients based on their service time. The first fit with zigzag sorting is to

assign patients one by one following their order to the first block that is able to serve them.

The best fit with zigzag sorting is to assign patients one by one following their order to the

block with minimum residual capacity that is able to serve them.

Table 5.1: Comparison of Heuristics Algorithms
Algorithms with Zigzag Sorting without Zigzag Sorting
Cases I II III IV V VI VII
1 0 1 2 1 1 2 1
2 0 0 1 1 0 1 1
3 0 0 1 1 0 1 0
4 0 0 1 0 0 1 1
5 0 0 1 2 1 1 1
6 0 0 1 0 0 1 0
7 0 0 1 0 0 1 0
8 0 0 1 0 0 1 1
9 0 0 1 1 0 1 1
10 0 0 1 1 2 3 3
sum 0 1 11 7 4 13 9

The comparison shows that except for the proposed max fit with zigzag sorting, all
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traditional methods are not reliable in providing assignment for all the patients. The zigzag

sorting method improves the assignment ratio. From the performance perspective, first fit

is better than best fit.

Theorem 5.4.1. Zigzag sorting based algorithm has approximation ratio 2 in finding min-

imum number of blocks used.

Proof. Let s be the number of blocks used given by the zigzag sorting based algorithm

, s∗ be the optimum number of blocks needed to be used. Assume that every block can

serve all patients. Let k be the index of the last patient to be assigned whose service time

is shorter than half of the block length. So for those patients that are already assigned with

service time shorter than half of the block length, their block must have residual less than

the service time of k. Let the number of occupied blocks be s1. For the rest of patients

who are not assigned, their service time is larger than half of the block length. Let the

number of these patients be s2. Then s = s1 + s2 + 1 or s = s1 + s2. For each case, the

relationship is l
2
s1 ≤

∑
i∈s1 ti,

l
2
s2 ≤

∑
i∈s2 ti, thus

∑
i ti ≥

sl
2

. In the optimal solution,

s∗l ≥
∑

i ti. Thus, s ≤ 2s∗.

5.5 Meta-heuristic for MIS-based AA

In this section, the patient scheduling problem is reduced into a maximum indepen-

dent set problem on a graph with n cliques as mentioned previously. This transformation

provides a new perspective to develop representation methods for meta-heuristics. It is

obvious that a combination of one vertex from each clique of the graph is a feasible so-

lution to the problem. Local search in neighborhood can be used to improve the solution

for shorter makespan of blocks. In literature, heuristic methods like FFD and NFD are

usually used to construct initial solutions for meta-heuristics for bin-packing problem. A
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procedure for Greedy Randomized Construction of feasible solutions is presented in Al-

gorithm 8. The construction algorithm runs in time O(nm logm) where the sorting costs

O(m logm) and dominates inside the for loop. The solution constructed this way may

violate the max makespan limit, so the meta-heuristic will select a better solution over the

iterations.

Algorithm 8: Greedy Random Construction
1 Initialize α, let J be set of patients, M be the set of blocks ;
2 for each patient j = 1, · · · , n do
3 get the subset of blocks associated with patient j, denoted as

Mj ∈M,Mj = {i | i ∈M,aij = 1} ;
4 sort blocks in Mj in a non-increasing order according to their degree |Mj|, let

p = |Mj| ;
5 let k = b1 + αpc, choose the first k blockes in sorted Mj to form a Restricted

Candidate List (RCL);
6 randomly pick one block in the RCL, assign patient j to it; remove patient j

from set J ;
7 end
8 Return the solution;

The neighborhood of a solution can be defined in the following way: replace one vertex

in the solution say (i, j) with another vertex (k, j) , these two vertices share the same patient

but different blocks. Denote the current solution as I , and the neighborhood of it as N(I),

then we have

N(I) = {I ′ | I ′ = I\(i, j) ∪ (k, j)} (5.9)

The local search procedure is to find a solution which is optimum in its neighborhood

as shown in Algorithm 9.
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Algorithm 9: Local Search
1 Input: solution I0 ;
2 I = I0;
3 while there exists I ′ ∈ N(I) such that f(I ′) < f(I) using (5.7) do
4 I = I’;
5 end
6 Return I;

The greedy Randomized Adaptive Search Procedure (GRASP) in Algorithm 10 and

Simulated Annealing (SA) in Algorithm 11 are adopted. For SA, the initial temperature

is the maximum difference between two neighbor solutions. The final temperature is the

minimum difference between two neighbor solutions.

Algorithm 10: GRASP for MIS-based AA
1 Initialize the maximum number of iterations N , i = 0, I∗ = ; while i < N do
2 i = i+ 1;
3 I = Greedy Random Construction();
4 Local Search(I) ;
5 if f(I∗) > f(I) then
6 I∗ = I;
7 end
8 end
9 Return I∗;

5.6 Accuracy and Efficiency of the Designed Heuristic and Meta-heuristic Methods

In this section, accuracy and efficiency of the designed algorithms are demonstrated

through numerical experiments. The proposed max fit zigzag construction, GRASP, and

Simulated Annealing algorithms were developed in Matlab and then empirically evaluated

by 13 instances of the clinic assignment problem which were randomly generated. The in-
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Algorithm 11: SA for MIS-based AA
1 Initialize the temperature control parameter c, i = 0, t0 is the initial temperature, tf

is the final temperature, f(I∗) =∞;
2 I = Greedy Random Construction();
3 while i < N do
4 i = i+ 1;
5 t = t0;
6 I = I0;
7 while t < tf do
8 take a solution I ′ randomly from N(I);
9 if f(I ′) < f(I) then

10 I = I ′ ;
11 else
12 if e

f(I′)−f(I)
t > random(0,1) then

13 I = I ′

14 end
15 end
16 if f(I) < f(I∗) then
17 I∗ = I
18 end
19 t = ct;
20 end
21 end
22 Return I∗;

put test instances are shown in Table 5.2. Optimum results under AA model using CPLEX

are shown in Table 5.3. Table 5.4 shows the results using max fit zigzag method. Table 5.5

summarizes the results from GRASP, Table 5.6 summarizes results from SA. The codes

for GRASP and Simulated Annealing were run on MATLAB program through the Virtual

Open Access Lab at our institution.

First, the accuracy of the results are discussed. It is obvious that all 3 proposed heuris-

tic algorithms can produce solutions with decent quality. Approximate solutions gener-

ated by the max degree based on the zigzag sorting method are guaranteed to be within

the approximation ratio of 2. For small-scale instances, such as instance 1 to 9, GRASP
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and Simulated Annealing were able to generate the same solutions as obtained by using

CPLEX. Note that in the proposed Simulated Annealing procedure, the approximate so-

lutions are obtained with only one set of cooling process. For even larger-scale instances,

repeated cooling process with the best solution obtained by the last cooling process as a

initial solution may be introduced to improve approximation rate. All the experiments in

the remaining sections are performed using the same computer with Intel Core i7-2640

and 4 GB RAM.

Table 5.2: Test Instances
Test index No. of blocks No. of patients

1 10 12
2 8 9
3 5 6
4 12 12
5 14 15
6 8 9
7 10 12
8 14 15
9 13 12
10 16 18
11 20 21
12 50 51
13 30 30

From the running time of the algorithms, the max degree based on Zigzag approxima-

tion method maintained an obvious advantage regarding time efficiency, especially when

dealing with large-scale instances. Its running time was the smallest among the three pro-

posed algorithms. GRASP performed the worst with large-scale instances regarding run-

time. Since the neighborhood is exhausted in each iteration of the local search of GRASP,

the runtime of GRASP heavily depends on the size of instance and the number of itera-
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Table 5.3: Best Solutions of AA Model from CPLEX
Test index Max makespan No. of used blocks

1 21 6
2 19 3
3 41 2
4 16 6
5 13 6
6 28 4
7 14 4
8 14 7
9 14 4

10 10 7
11 11 7
12 9 10
13 8 11

Table 5.4: Results from Approximation Method
Test index Max makespan No. of used blocks Runtime(seconds)

1 21 6 0.00742
2 19 3 0.0094
3 41 2 0.003801
4 16 7 0.0091
5 13 7 0.0147
6 28 4 0.0037
7 14 5 0.0042
8 14 8 0.0037
9 14 4 0.00796

10 10 8 0.0657
11 11 8 0.011079
12 9 11 0.012572
13 8 12 0.010109

tions. The runtime of SA mainly depends on the number of iterations, which is affected

by the choice of temperatures. However, when the problem size is small, GRASP is still a

good tool to generate local optimal solutions.
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Table 5.5: Results from GRASP
Test index Max makespan No. of used blocks Runtime(sec) Best iteration

1 21 6 2.4484 3
2 19 3 1.1532 3
3 41 2 0.4655 1
4 16 6 2.4526 1
5 13 6 4.6111 3
6 28 4 1.2337 1
7 14 5 1.8321 1
8 14 7 4.7488 5
9 14 4 3.6318 1

10 10 7 32.2791 145
11 11 7 94.5149 69
12 7 14 1368.3354 76
13 8 11 209.5082 20

Table 5.6: Results from SA
Test index Max makespan No. of used blocks Runtime(sec)

1 21 6 0.7551
2 19 3 0.8896
3 41 2 0.865
4 16 6 0.872
5 13 6 0.6921
6 28 4 0.6799
7 14 5 0.7204
8 14 7 0.7971
9 14 4 0.7686

10 10 7 1.0423
11 11 7 0.985
12 7 14 1.5029
13 8 12 1.0657

5.7 Comparison with Other Construction Method in Meta-Heuristics

The performance of different construction methods for GRASP are compared. In the

following experiments, we keep the neighborhood representation in Equation (5.9) and
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local search in Algorithm 9 but change the construction method. Ten construction meth-

ods are implemented. They are: 1. Clique-based greedy randomized construction with

zigzag sorting of patients. 2. Clique-based greedy construction with zigzag sorting. 3.

First fit construction with zigzag sorting. 4. Best fit construction with zigzag sorting. 5.

Randomly-mixed first fit and best fit construction with zigzag sorting. Algorithms 6 to 10

are modified on the basis of 1 to 5 by removing the zigzag sorting of patients.

Table 5.7 shows the absolute distance of the output of the methods to the optimal

solution under the metric of number of blocks used. 11 test cases are evaluated under

these methods, the last row shows the average distance of the output of the methods to the

optimal solution. Method 1 has the least distance among zigzag based methods. Method

6 shows the least distance among methods without zigzag sorting. These demonstrate the

advantage of the proposed clique based greedy randomized construction methods. Best fit

methods have better performance than first fit in these experiments.

Table 5.7: Comparison of Meta-heuristic Algorithms on Number of Blocks Used
Algorithms with Zigzag sorting without Zigzag sorting
Test Cases opt 1 2 3 4 5 6 7 8 9 10

1 6 5 4 6 6 6 6 4 5 4 4
2 3 4 3 3 3 3 4 4 3 3 3
3 2 2 2 2 2 2 2 2 2 2 2
4 6 6 5 5 4 4 6 3 5 5 5
5 6 7 6 6 4 6 7 3 6 5 6
6 4 4 4 4 5 4 5 4 4 5 5
7 4 6 5 6 5 6 5 4 6 6 6
8 7 7 3 6 4 5 8 4 6 7 7
9 4 5 6 5 4 4 5 4 5 5 5

10 7 6 5 5 4 4 7 4 5 5 5
11 7 7 4 6 5 6 7 3 5 5 5

Avg dist to opt 0.64 1.36 0.73 1.27 0.91 0.55 1.73 0.91 1.09 1.00
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Table 5.8 shows the rank of the 10 methods within the two subsets: zigzag based

methods or non-zigzag methods with respect to the metric of makespan of the blocks. The

methods are supposed to produce solutions with shorter makespan, thus Rank 1 implies

the shortest makespan and Rank 5 implies the longest makespan. Each row in the table

records number of times for each rank over the 11 test cases of one method. For example,

Method 1 has Rank 1 nine times, Rank 3 once and Rank 5 once in the 11 test cases. The

last column shows the accumulative rank score for the methods. For example, the score 16

for Method 1 is obtained by 1× 9 + 3× 1 + 4× 1. The lower the accumulative rank score

is, the better the method is in producing a better solution. Again, Method 1 (clique-based

greedy randomized construction with zigzag sorting of patients) and Method 2 (clique-

based greedy randomized construction without zigzag sorting of patients) dominate over

other methods.

Table 5.8: Comparison of Meta-heuristic Algorithms on Rank of Makespan (Increasing
Order)

Ranks
Algorithms 1 2 3 4 5 accum rank

1 9 0 1 1 0 16
2 1 6 1 0 3 31
3 1 2 5 3 0 32
4 0 2 1 7 1 40
5 0 1 3 0 7 46
6 11 0 0 0 0 11
7 0 3 1 0 7 44
8 0 6 3 1 1 30
9 0 1 6 4 0 36

10 0 1 1 6 3 44

Table 5.9 shows the rank of the 10 methods within the two subsets but with respect to

the objective function value, which consists both number of blocks used and the makespan

96



of blocks. The accumulative rank is calculated in a similar manner as in Table 5.8. Method

1 and Method 6 are still outstanding among these methods.

Table 5.9: Comparison of Meta-heuristic Algorithms on Rank of Objective Function Value
(Increasing Order)

Ranks
Algorithms 1 2 3 4 5 accum rank

1 6 1 2 1 1 23
2 3 3 1 0 4 32
3 1 2 3 4 1 35
4 1 3 2 4 1 34
5 0 2 3 2 4 41
6 11 0 0 0 0 11
7 0 3 1 0 7 44
8 0 6 3 1 1 30
9 0 1 6 4 0 36

10 0 1 1 6 3 44

Figure 5.2 shows the standardized ranks of the 10 methods under the three metrics:

number of assigned blocks, makespan of blocks and objective value. The advantage of

clique based construction methods is quite obvious. Additionally, on average, the perfor-

mance of zigzag methods is better than non-zigzag methods as shown by the line in the

figure.
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Figure 5.2: Comparison of Different Construction Methods for Meta-heuristics

5.8 Comparison with CPLEX on Larger Size Problems

In this section, performance of meta-heuristics proposed in this section is compared 

with CPLEX on AA problem. As shown in Table 5.7, CPLEX can deliver global optimal 

solution in short time when the size of the problem is not large. Based on extra exper-

iments, CPLEX keeps this advantage until the number of blocks or patients increases to 

around 100. Table 5.10 shows the comparison of performance between the methods in 

limited time for large size problems. Method (a) is to use regular GRASP, method (b) is 

through GRASP with zigzag sorting, and method (c) is to use CPLEX. Test cases 1 to 9 

have 1-minute time limit while test cases 10 to 18 have 5-minute time limit. Test cases 1 

to 3 share the same input data with 100 blocks and 120 patients. Test cases 4 to 6 share the 

same input data with 200 blocks and 220 patients. Test cases 7 to 9 share the same input 

data with 300 blocks and 320 patients. Both the meta-heuristic methods are implemented 

in Java, and the AA model is also built in Java and solved using Concert Library of CPLEX
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12.6. All the experiments are run on the same computer as mentioned in previous section. 

We can see that as the size of problem increases, performance of CPLEX drops faster than 

meta-heuristics. This is reflected by the large objective function values of CPLEX and the 

large relative gaps. It implies that when the size of the problem is large, meta-heuristic 

methods developed in this section can be a better choice than CPLEX to generate better 

solution efficiently.

Table 5.10: Comparison of Meta-heuristic Algorithms and CPLEX Performance on Large
Size AA Problems

Test Case No. Method No. used blocks Max makespan Obj value Gap
1 (a) 37 31.0 68.0 -
2 (b) 32 35.0 67.0 -
3 (c) 14 46.6 60.6 67.90%
4 (a) 16 157.0 173.0 -
5 (b) 15 156.0 171.0 -
6 (c) 8 427.1 435.1 98.02%
7 (a) 15 216.0 231.0 -
8 (b) 16 208.0 224.0 -
9 (c) 11 521.8 532.8 98.50%
10 (a) 23 44.0 67.0 -
11 (b) 32 28.0 60.0 -
12 (c) 15 42.4 57.4 66.23%
13 (a) 57 43.0 100.0 -
14 (b) 58 44.0 102.0 -
15 (c) 17 98.0 115.0 92.68%
16 (a) 89 49.0 138.0 -
17 (b) 82 61.0 143.0 -
18 (c) 10 594.6 604.6 98.64%
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5.9 Conclusions to the Section

This section aims at assigning a certain number of patients with deterministic ser-

vice time and individual preferences into a limited number of blocks where the sum of 

patients’ service time in a block does not exceed the block length. This optimization prob-

lem is associated with three classical NP complete problems: the bin packing problem 

(BPP), minimum makespan problem and the maximum independent set (MIS) problem. 

A heuristic algorithm based on Zigzag sorting and feasibility restore policy is proposed to 

get an approximation solution of this assignment. Unlike the traditional heuristic meth-

ods which easily encounter the situation of infeasibility, this method guarantees to find a 

2-approximate feasible solution at a fast speed. A meta-heuristic algorithm based on MIS 

transformation is designed. Performance of these two algorithms are compared with (c) 

mixed integer programming solver and with traditional approximation and meta-heuristic 

methods. The designed clique based algorithms exhibit advantages in giving better so-

lution than traditional construction methods, and they are even better than (c) when the 

problem size is large. Although these methods are designed, implemented and evaluated 

under the topic of clinic scheduling, they can also be applied to other scheduling problems 

like job-shop problem with scheduling restrictions. The advantage of performing a good 

scheduling of Type 1 patients offers a clinic the flexibility to plan the scheduling of the 

same-day request patients as they arrive or call the clinic for an appointment.
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6. CONCLUSIONS

As stated earlier, this dissertation provides insights about the hybrid clinic scheduling

policy that handles both far-in-advance requests and same-day requests. For each topic,

models are established on the basis of assumptions obeying the real rules, solution meth-

ods are developed so that exact or approximately optimal solutions can be worked out

efficiently. Advanced and detailed analysis can enhance the impact of the research to real

clinic management. For the same-day requests, this dissertation suggests the clinic admin-

istrators who are practicing the open-access policy and block-wise assignment to adopt the

aggregated assignment with SIP model. This method obeys the real event sequence of the

clinic and is able to handle various real situations such as no-shows, patient preferences,

FCFS rules, cancellation, earliness and lateness. For the chronic and follow-up requests,

the clinic can try to assign them into aggregated blocks so that there are empty blocks to

handle the same-day requests for reduced estimation and reduced uncertainty.

In implementation of the proposed method, the clinic is suggested to process and an-

alyze historical data to gain information about the parameters such as no-show ratios,

cancellation ratios, distributions of uncertain data and so on. Accuracy of these informa-

tion is a prerequisite condition for an appropriate decision. So one of the future work can

be determining how to collect data from a clinic and developing reasonable and reliable

estimators of the parameters. This work falls into the category of statistic inference and

statistical learning.

The online scheduling part of the dissertation focuses on decision in each block, how-

ever, some block-wise features may pop up if the clinic performs the assignment through-

out all the blocks. This can be a good topic for further research. A multi-stage SIP model

based on block-wise request estimation can be exploited to handle the overall scheduling.
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Analysis in Topic II will be useful for developing the multi-stage SIP solution method.

Additionally, the objective function of SIP models in Topics I and II are risk-neutral. To

consider the risk of a decision, a risk measure can be introduced into the model to obtain

a mean-risk SIP model which tries to measure the cost and risk of the model. Risk mea-

sure can be chosen properly so that the objective function of the model is amenable to be

optimized. There are ample problems that can be addressed about the offline scheduling.

Further work can try to explore the connections between the clinic scheduling and vehicle

routing problem with distance limitations and time window restrictions. If there are dif-

ferent physicians in different blocks, the minimum makespan with parallel non-identical

machines may shed light on the solution method. What’s more, for both online and offline

part, the clinic can leverage simulation experiments for comparison or as a complemen-

tary tool to yield estimations of the hybrid scheduling policy. Simulation optimization is

a good choice to handle the decision problem facing uncertainty during the assignment

procedure.

The proposed methods do not specify the orders of appointments within the blocks, but

the output of SIP-i model offers sufficient information. In practice, the clinic manager can

arrange the appointments based on the optimal values of X,Y following their requests

sequence. Time allowance of each appointment can be obtained from mean service time

or the ratio of block length over upper bound of block throughput. In our model, the clinic

gives options for patients for the appointments, but the choice of patients is not involved.

In practice, a patient can choose one of the appointment requests which are received in the

same block. Apparently, the patient who sends a request earlier in the block can have more

choices than those who send a request later. In implementation of the proposed method,

the clinic is suggested to process and analyze historical data to gain information about

the parameters such as no-show ratios, cancellation ratios, distributions of uncertain data

and so on. Accuracy of these information is a prerequisite condition for the appropriate
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decision. It is recommended that decision makers of the clinic should pay attention to the

consistency and stability of work efficiency of the block throughput, find a proper length

for blocks, and make policies to reduce the waiting time cost and physician idle-time cost.

What is more, better coordination of the assignment of the Type 1 patients and the same-

day request patients will result in the cost-saving control. Last but not least, it has been

shown that the overall cost stays at a low level when estimation of the same-day requests

is close to the “real" request number the clinic needs. Implementing the proposed method

will not ask for a high level of accuracy in estimation of the same-day requests, a “scope”

of the requests is sufficient.

Although all the computational experiments in Section 3 and 4 are conducted for the 

first block, it is easy to apply the established modeling and solution methods to the re-

maining blocks. To do so, one only need to update the initial overflow number, and the 

accumulative same-day assignment of each block. Although the model is designed to cater 

to special situations like punctuality and cancellations, numerical studies on them are not 

provided here. One can also compare two ways of dispersion of capacity for the same-day 

request assignment in the future: (1) the scattered capacity for the same-day request where 

the Type 1 patients are assigned evenly into all the blocks. (2) the gathered capacity for 

the same-day requests where the Type 1 patients are assigned to a part of blocks leaving 

other blocks empty for the same-day requests. This comparison will provide insights about 

the traditional far-in-advance assignment as well as cooperation of the far-in-advance and 

open-access policies. Additionally, multi-stage model with endogenous uncertainty can be 

worked out for this problem in the future. Effort can be dedicated towards exploring meth-

ods to solve the multi-stage model with endogenous uncertainty with decision dependent 

random bounds.

Finally, the author will be pleased if any work from this dissertation can contribute to

improve the well-being of sick people.
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stochastic global optimization,” Mathematical Programming, vol. 83, no. 3, pp. 425

– 450, 1998.

[59] S. Sen, J. L. Higle, and L. Ntaimo, “A summary and illustration of disjunctive decom-

position with set convexification,” Network Interdiction and Stochastic Integer Pro-

gramming in Operations Research /Computer Science Interfaces, vol. 22, pp. 105–

125.

[60] Z. Sen and J. Higle, “The c3 theorem and a d2 algorithm for large scale stochas-

tic mixed-integer programming: Set convexification,” Mathematical Programming,

vol. 104, no. 1, pp. 1–20, 2005.

[61] Z. Sen and H. D. Sherali, “Decomposition with branch-and cut approaches for two

stage stochastic mixed-integer programming,” Mathematical Programming, vol. 106,

no. 2, pp. 203–223, 2006.

[62] G. Laporte and F. V. Louveaux, “The integer l-shaped method for stochastic integer

programs with complete recourse,” Operations Research Letters, vol. 13, pp. 133–

142, 1993.

[63] T. W. Jonsbråten, “Optimization models for petroleum field exploitation,” PhD Dis-

sertation. Norwegain School of Economics and Business Administration. 1998.

110



[64] T. W. Jonsbråten, R. J.-B. Wets, and D. L. Barton, “A class of stochastic programs

with decision dependent random elements,” Annals of Operations Research, vol. 82,

pp. 83–106, 1997.

[65] V. Goel and I. E. Grossmann, “A class of stochastic programs with decision depen-

dent uncertainty,” Mathematical Programming, vol. 108, no. 2, pp. 355–394, 2006.

[66] L. Hellemo, A. Tomasgard, and P. I. Barton, “Stochastic programming with decision

dependent probabilities.” http://strato.impa.br/videos/2014-festival-incerteza/09-

AsgeirTomasgard.pdf. Accessed: 2016 –07–10.

[67] V. Gupta and I. E. Grossmann, “Solution strategies for multistage stochastic program-

ming with endogenous uncertainties,” Computers & Chemical Engineering, vol. 35,

no. 11, pp. 2235–2247, 2011.

[68] V. Gupta and I. E. Grossmann, “A new decomposition algorithm for multistage

stochastic programs with endogenous uncertainties,” Computers & Chemical Engi-

neering, vol. 62, pp. 62–79, 2014.

[69] S. Ahmed, “Strategic planning under uncertainty: Stochastic integer programming

approaches,” PhD Dissertation. University of Illinois at Urbana-Champaign. 2000.

[70] K. Viswanath, S. Peeta, and S. F. Salman, “Investing in the links of a stochastic net-

work to minimize expected shortest path length,” Technical Report of Purdue Uni-

versity, 2004.

[71] H. Held and D. L. Woodruff, “Heuristics for multi-stage interdiction of stochastic

networks,” Journal of Heuristics, vol. 11, no. 5–6, pp. 483–1092, 2005.

[72] P. Vayanos, D. Kuhn, and B. Rustem, “Decision rules for information discovery in

multi-stage stochastic programming,” 2011 50th IEEE Conference on Decision and

Control and European Control Conference, pp. 7368–7373, 2011.

111



[73] M. Laumanns, S. Prestwich, and B. Kawas, “Distribution shaping and scenario

bundling for stochastic programs with endogenous uncertainty,” International Con-

ference on Operations Research, 2014.

[74] R. M. Van Slyke and R. J. B. Wets, “L-shaped linear programs with applications

to optimal control and stochastic programming,” Journal of Applied Mathematics,

vol. 17, pp. 638–663, 1969.

[75] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming. Springer

Series in Operations Research and Financial Engineering, 2011.

[76] S. Trukhanov, L. Ntaimo, and A. Schaefer, “Adaptive multicut aggregation for two-

stage stochastic linear programs with recourse,” European Journal of Operational

Research, vol. 206, pp. 395–406, 2010.

[77] L. Hellemo, “Managing uncertainty in design and operation of natural gas infrastruc-

ture,” PhD Dissertation. Norwegain University of Science and Technology. 2016.

[78] D. S. Johnson, “Approximation algorithms for combinatorial problems,” J. Comput.

System Sci., vol. 9, pp. 256–278, 1974.

[79] J. Blazewicz and K. Ecker, “A linear time algorithm for restricted bin packing and

scheduling problems,” Operations Research Letters, vol. 2, pp. 80–83, 1983.

[80] J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan, “Scheduling subject to resource

constraints: classification and complexity,” Discrete Applied Mathematics, vol. 5,

no. 1, pp. 11–24, 1993.

[81] S. Martello and T. Paolo, Knapsack problems: algorithms and computer implemen-

tations, ch. Bin-packing problem, pp. 221– 240. New York: Johnwiley& Sons Ltd,

1990.

112



[82] S. Eilon and N. Christofides, “The loading problem,” Management Science, vol. 17,

pp. 259–267, 1971.

[83] M. S. Hung and J. R.Brown, “An algorithm for a class of loading problem,” Naval

Research Logistics Quarterly, vol. 25, pp. 289–297, 1978.

[84] S. Martello and T. Paolo., “Lower bounds and reduction procedures for the bin pack-

ing problem,” Discrete Applied Mathematics, vol. 28, pp. 59–70, 1990.

[85] R. E. Korf, “A new algorithm for optimal bin packing,” American Association for

Artificial Intelligence 2002 Proceedings, pp. 731–736, 2002.

[86] A. Layeb and S. Chenche., “A novel grasp algorithm for solving the bin packing

problem,” International Journal of Information Engineering and Electronic Busi-

ness, vol. 4, no. 2, pp. 8 –14, 2012.

[87] S. Martello and T. Paolo., “Application of genetic algorithm for the bin packing

problem with a new representation scheme,” Mathematical Sciences, vol. 4, no. 3,

pp. 253–266, 2010.

[88] B. Brugger, K. F. Doerner, R. F. Hartl, and M. Reimann, “Antpacking âĂŞ an ant
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