ESL-TR-15-11-01

ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP)

VOLUME I—TECHNICAL REPORT

Annual Report to the Texas Commission on Environmental Quality January 2014-December 2014

Jeff Haberl, Ph.D., P.E., Bahman Yazdani, P.E., Juan-Carlos Baltazar, Ph.D., P.E., Sung Lok Do, Ph.D., Shelly Ellis, Jaya Mukhopadhyay, Ph.D., Patrick Parker, Larry Degelman, P.E., Gali Zilbertshtein, Ph.D., David Claridge, Ph.D., P.E.

November 2015

Energy Systems Laboratory

November 13, 2015

Chairman Bryan W. Shaw, Ph. D.,P. E. Texas Commission on Environmental Quality P. O. Box 13087 Austin, TX 78711-3087

Dear Chairman Shaw:

The Energy Systems Laboratory (ESL) at the Texas A&M Engineering Experiment Station of the Texas A&M University System is pleased to provide its annual report, "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)," as required under Texas Health and Safety Code Ann. § 388.003 (e) (Senate Bill 5, 77R as amended 78 R & 78S).

The Laboratory is required to annually report the energy savings from statewide adoption of the Texas Building Energy Performance Standards in Senate Bill 5 (SB 5), as amended, and the relative impact of proposed local energy code amendments in the Texas non-attainment and near-non-attainment counties as part of the Texas Emissions Reduction Plan (TERP).

Please contact me at (979) 845-1280 should you or any of the TCEQ staff have any questions concerning this report or any of the work presently being done to quantify emissions reduction from energy efficiency and renewable energy measures as a result of the TERP implementation.

Sincerely,

David E. Claudo

David E. Claridge, Ph.D., P.E. Director

Enclosure

cc: Commissioner Toby Baker Commissioner Joe Niermann Executive Director Zak Covar Executive Director Richard A. Hyde, P.E.

Disclaimer

This report is provided by the Texas A&M Engineering Experiment Station (TEES) as required under Section 388.003 (e) of the Texas Health and Safety Code and is distributed for purposes of public information. The information provided in this report is intended to be the best available information at the time of publication. TEES makes no claim or warranty, express or implied that the report or data herein is necessarily error-free. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the Energy Systems Laboratory or any of its employees. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Texas Engineering Experiment Station or the Energy Systems Laboratory.

VOLUME I - TECHNICAL REPORT

Energy Efficiency/Renewable Energy Impact In The Texas Emissions Reduction Plan

Executive Summary

The Energy Systems Laboratory (Laboratory), at the Texas A&M Engineering Experiment Station of The Texas A&M University System, in fulfillment of its responsibilities under Texas Health and Safety Code Ann. § 388.003 (e), submits its annual report, <u>Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions</u> <u>Reduction Plan (TERP)</u> to the Texas Commission on Environmental Quality.

The report is organized in two volumes.

- Volume I Technical Report provides a detailed report of activities, methodologies and findings, including an executive summary and overview;
- Volume II Technical Appendix contains detailed data from simulations for each of the counties included in the analysis.

The ESL worked with the EPA and TCEQ regarding a new version of eGRID for all ERCOT counties in Texas. A new version of eGRID was developed and presented in this report, which is based on the ERCOT congestion management zones. As the TCEQ moved the base year to more recent years, this updated version of eGRID, representing the current Texas market, has been used to estimate the emissions reduction from wind power in the next year's report.

Accomplishments:

a. Energy Code Amendments

The Laboratory was requested by several Councils of Governments (COGs) and municipalities to analyze the stringency of several proposed residential and commercial energy code amendments, including: the 2012 IECC and the ASHRAE Standards 90.1-2010. Results of the analysis are included in this Volume I-Technical Report.

b. Technical Assistance

The Laboratory provided technical assistance to the TCEQ, PUCT, SECO, ERCOT, and several political subdivisions, as well as stakeholders participating in improving the compliance of the Texas Building Energy Performance Standards (TBEPS). The Laboratory also worked closely with the TCEQ to refine the integrated NOx emissions reduction calculation procedures that provide the TCEQ with a standardized, creditable NOx emissions reduction from energy efficiency and renewable energy (EE/RE) programs, which are acceptable to the US EPA. These activities have improved the accuracy of the creditable NOx emissions reduction from EE/RE initiatives contained in the TERP and have assisted the TCEQ, local governments, and the building industry with effective, standardized implementation and reporting.

c. NOx Emissions Reduction

Under the TERP legislation, the Laboratory must determine the energy savings from energy code adoption and, when applicable, from more stringent local codes or above-code performance ratings, and must report these reductions annually to the TCEQ.

Figure 1 shows the integrated NOx emissions reduction through 2020 for the electricity and natural gas savings from the various EE/RE programs.

November 2015

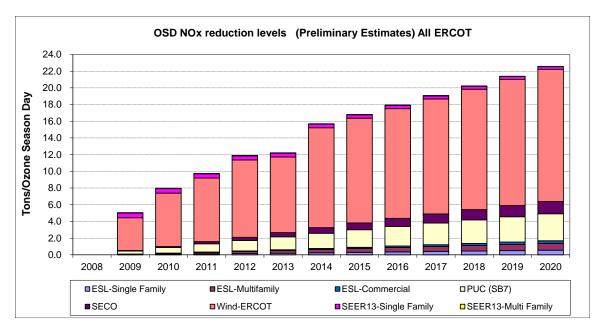


Figure 1: OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008)

In 2014 (Table 1), the total integrated annual savings from all programs are 23,684,427 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 927,408 MWh/year (3.9% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program are 2,675,295 MWh/year (11.3%),
- Savings from SECO's Senate Bill 5 program are 936,047 MWh/year (4.0%),
- Electricity savings from green power purchases (wind) are 18,857,560 MWh/year (79.6%), and
- Savings from residential air conditioner retrofits¹ are 288,118 MWh/year (1.2%).

By 2020, the total integrated annual savings from all programs will be 34,278,170 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 2,294,744 MWh/year (6.7% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program will be 4,728,263 MWh/year (13.8%),
- Savings from SECO's Senate Bill 5 program will be 2,098,664 MWh/year (6.1%),
- Electricity savings from green power purchases (wind) will be 24,944,707 MWh/year (72.8%), and
- Savings from residential air conditioner retrofits will be 211,793 MWh/year (0.6%).

In 2014 (Table 2), the total integrated annual NOx emissions reductions from all programs are 6,494 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 233 tons-NOx/year (3.6% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 669 tons-NOx/year (10.3%),
- NOx emissions reductions from SECO's Senate Bill 5 program are 241 tons-NOx/year (3.7%),
- NOx emissions reductions from green power purchases (wind) are 5,283 tons-NOx/year (81.4%), and
- NOx emissions reductions from residential air conditioner retrofits are 68 tons-NOx/year (1.0%).

By 2020, the total integrated annual NOx emissions reductions from all programs will be 9,332 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

¹ This assumes air conditioners in existing homes are replaced with the more efficient SEER 13 units, versus an average of SEER 11, which is slightly more efficient than the previous minimum standard of SEER 10.

November 2015

- NOx emissions reductions from code-compliant residential and commercial construction will be 578 tons-NOx/year (6.2% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 1,183 tons-NOx/year (12.7%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 533 tons-NOx/year (5.7%),
- NOx emissions reductions from green power purchases (wind) will be 6,989 tons-NOx/year (74.9%), and
- NOx emissions reductions from residential air conditioner retrofits will be 50 tons-NOx/year (0.5%).

PROGRAM	ANNUA	L											
FROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family (MWh)	0	21,748	55,268	93,760	153,171	220,975	293,313	366,737	441,309	517,093	594,153	672,557	752,372
ESL-Multifamily (MWh)	0	50,218	94,867	167,566	262,939	357,717	463,922	569,704	675,096	780,131	884,845	989,268	1,093,435
ESL-Commercial (MWh)	0	0	25,750	54,550	87,230	126,228	170,173	214,773	260,065	306,088	352,880	400,483	448,937
PUC (SB7) (MWh)	0	538,841	976,984	1,437,883	1,831,318	2,267,414	2,675,295	3,062,781	3,430,894	3,780,601	4,112,822	4,428,433	4,728,263
SECO (MWh)	0	71,910	154,786	347,175	508,375	705,060	936,047	1,155,485	1,363,951	1,561,993	1,750,134	1,928,867	2,098,664
Wind-ERCOT (MWh)	0	3,273,150	8,135,429	10,995,427	13,049,580	15,723,534	18,857,560	19,757,605	20,700,609	21,688,621	22,723,790	23,808,366	24,944,707
SEER13-Single Family (MWh)	0	343,330	326,163	309,855	294,362	279,644	265,662	252,379	239,760	227,772	216,383	205,564	195,286
SEER13-Multifamily (MWh)	0	29,021	27,569	26,191	24,881	23,637	22,456	21,333	20,266	19,253	18,290	17,376	16,507
Total Annual (MWh)	0	4,328,218	9,796,817	13,432,406	16,211,857	19,704,209	23,684,427	25,400,797	27,131,950	28,881,552	30,653,297	32,450,913	34,278,170

Table 1: Annual and OSD Electricity Savings for the Different Programs (Base Year 2008)

PROGRAM	OZONE SEASON DAY - OSD												
IROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family (MWh)	0	124	283	468	626	808	1,002	1,199	1,400	1,604	1,811	2,022	2,237
ESL-Multifamily (MWh)	0	233	460	744	999	1,253	1,539	1,823	2,107	2,390	2,671	2,953	3,233
ESL-Commercial (MWh)	0	0	71	149	239	346	466	588	713	839	967	1,097	1,230
PUC (SB7) (MWh)	0	1,476	2,677	3,939	5,017	6,212	7,330	8,391	9,400	10,358	11,268	12,133	12,954
SECO (MWh)	0	197	424	951	1,393	1,932	2,565	3,166	3,737	4,279	4,795	5,285	5,750
Wind-ERCOT (MWh)	0	14,246	23,054	27,654	33,273	32,560	42,806	44,849	46,990	49,233	51,582	54,044	56,624
SEER13-Single Family (MWh)	0	2,445	2,323	2,207	2,097	1,992	1,892	1,798	1,708	1,622	1,541	1,464	1,391
SEER13-Multifamily (MWh)	0	195	186	176	167	159	151	144	136	130	123	117	111
Total OSD (MWh)	0	18,918	29,477	36,289	43,812	45,262	57,751	61,958	66,190	70,453	74,759	79,115	83,530

Table 2: Annual and OSD NOx Emissions Reductions for the Different Programs (Base Year 2008)

PROCRAM	PROGRAM ANNUAL (in tons NOx)												
FROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0	5	14	23	38	54	72	91	109	128	147	166	186
ESL-Multifamily	0	13	24	43	67	91	118	145	172	199	225	252	278
ESL-Commercial	0	0	6	14	22	32	43	54	66	77	89	101	114
PUC (SB7)	0	135	246	362	460	567	669	766	858	946	1,029	1,108	1,183
SECO	0	19	43	92	133	183	241	296	348	398	445	490	533
Wind-ERCOT	0	895	2,262	3,053	3,648	4,399	5,283	5,535	5,800	6,076	6,366	6,670	6,989
SEER13-Single Family	0	81	77	73	69	66	62	59	56	53	51	48	46
SEER13-Multifamily	0	7	6	6	6	6	5	5	5	5	4	4	4
Total Annual (Tons NOx)	0	1,154	2,677	3,664	4,443	5,397	6,494	6,951	7,413	7,882	8,357	8,840	9,332

PROGRAM	OZONE	SEASON I	DAY - OSD	(in tons NC)x/day)								
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0	0.03	0.07	0.11	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55
ESL-Multifamily	0	0.06	0.12	0.19	0.26	0.32	0.39	0.46	0.54	0.61	0.68	0.75	0.82
ESL-Commercial	0	0.00	0.02	0.04	0.06	0.09	0.12	0.15	0.18	0.21	0.24	0.28	0.31
PUC (SB7)	0	0.37	0.67	0.99	1.26	1.55	1.83	2.10	2.35	2.59	2.82	3.03	3.24
SECO	0	0.05	0.12	0.25	0.37	0.50	0.66	0.81	0.95	1.09	1.22	1.34	1.46
Wind-ERCOT	0	3.93	6.40	7.62	9.28	9.06	11.97	12.55	13.15	13.77	14.43	15.12	15.84
SEER13-Single Family	0	0.57	0.54	0.51	0.49	0.46	0.44	0.42	0.40	0.38	0.36	0.34	0.32
SEER13-Multifamily	0	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03
Total OSD (Tons NOx)	0	5.05	7.97	9.76	11.90	12.22	15.70	16.81	17.94	19.08	20.23	21.39	22.58

d. Technology Transfer

The Laboratory, along with the TCEQ, hosts the annual Clean Air Through Energy Efficiency (CATEE) conference, which is attended by top experts and policy makers in Texas and from around the country. At the conference, the latest educational programs and technology is presented and discussed, including efforts by the Laboratory, and others, to reduce air pollution in Texas through energy efficiency and renewable energy. These efforts have produced significant success in bringing EE/RE closer to US EPA acceptance in the Texas SIP. The Laboratory will continue to provide superior technology to the State of Texas through such efforts with the TCEQ and the US EPA.

To accelerate the transfer of technology developed as part of the TERP, the Laboratory has also made presentations at national, state and local meetings and conferences, which includes the publication of peer-reviewed papers. The Laboratory will continue to provide technical assistance to the TCEQ, counties and communities working toward obtaining full SIP credit for the energy efficiency and renewable energy projects that are lowering emissions and improving the air quality for all Texans.

These efforts have been recognized nationally by the US EPA. In 2007, the Laboratory was awarded a National Center of Excellence on Displaced Emissions Reduction (CEDER) by the US EPA so that these accomplishments could be rapidly disseminated to other states for their use. The benefits of CEDER include:

- Reducing the financial, technical, and administrative costs of determining the emissions reduction from EE/RE measures;
- Continuing to accelerate implementation of EE/RE strategies as a viable clean air effort in Texas and other states;
- Helping other states better identify and prioritize cost-effective clean air strategies from EE/RE; and
- Communicating the results of quantification efforts through case-studies and a clearinghouse of information.

The Energy Systems Laboratory provides the annual report, <u>Energy Efficiency/Renewable Energy (EE/RE) Impact</u> in the Texas Emissions Reduction Plan (TERP), to the Texas Commission on Environmental Quality (TCEQ) in fulfillment of its responsibilities under Texas Health and Safety Code Ann. § 388.003 (e). If any questions arise, please contact us by phone at (979) 845-9213, or by email at terpinfo@tamu.edu.

Acknowledgements

This work has been completed as a fulfillment of the requirements in Texas Health Code, Senate Bill 5, Section 388.003, and through Senate Bill 20, House Bill 2481 and House Bill 2129, which requires the Laboratory to assist TCEQ in quantifying emissions reductions credits from energy efficiency and renewable energy programs, through a contract with the Texas Environmental Research Consortium (TERC). Similarly, selected Code training workshops were funded by the US DOE through the Texas State Energy Conservation Office (SECO). Partial funding on the Texas Climate Vision project, a joint project with the City of Austin was also provided by the US DOE through SECO.

The authors are also grateful for the timely input provided by the following individuals, and agencies: Mr. Art Diem, US EPA, for providing the eGRID database and Vincent Meiller and Robert Gifford, TCEQ.

Numerous additional individuals at the Laboratory contributed significantly to this report, including, Chunliu Mao, Sukjoon Oh and Yifu Sun.

Table of Contents

Executiv	ve Summary	4
Acknow	ledgements	8
	erview	
1.1	Legislative Background	
1.2	Laboratory Funding for the TERP	
1.3	Code Adoption	16
1.4	Accomplishments since January 2014	
1.5	Technology Transfer	
1.6	Energy and NOx Reductions from New Residential and Commercial Construction, Including Residential Air Conditione	
1.7	Retrofits Integrated NOx Emissions Reductions Reporting Across State Agencies	
1.7	Technology for Calculating and Verifying Emissions Reduction from Energy Used in Buildings	
1.9	Evaluation of Additional Technologies for Reducing Energy Use in Existing Buildings	25
1.10	Planned Focus for 2015	
2 Int	roduction	27
2.1	Background	27
2.2	Energy Systems Laboratory's Responsibilities in the TERP	
2.2.1	(SB 5) Section 386.205. Evaluation of State Energy Efficiency Programs (w/PUCT)	30
2.2.2		
2.2.3		
2.2.4 2.2.5		
2.2.5		
2.2.7		
2.2.8		
2.2.9	(SB 20, HB 2481, HB 2129). Additional Energy-Efficiency Initiatives	32
2.2.10	(
2.2.1		
2.2.12		
	atewide Air Emissions Calculations from Wind and Other Renewables	
3.1	Analysis of wind farms using an improved method and 2014 data	
3.2 3.3	Analysis of emissions reductions from wind farms Degradation analysis	
3.5 3.4	Analysis of other renewable sources	
3.5	Review of electricity savings and transmission planning study reported by ERCOT	
	lculated NOx Reductions Potential from Energy Savings of New Construction in 2014	
4.1	2014 Results for New Single-family Residential Construction	
4.2	2014 Results for New Multi-family Residential Construction	
4.3	2014 Results for New Residential Construction (Single-family and Multi-family)	65
4.4	2014 Results for Commercial Construction	
4.5	2014 Results for New Residential (Single-family and Multi-family) and Commercial Construction	100
	lculation of Integrated NOx Emissions Reductions from Multiple State Agencies Participating in the	
Te	xas Emissions Reduction Plan (TERP)	107
5.1	Background	107
5.2	Description of the Analysis Method	
5.3	Calculation Procedure	
5.4	Results	
	13 Year Activities of Energy Systems Laboratory for Texas Emissions Reduction Plan	
6.1	IC3 Texas Building Registry (TBR)	
6.1.1 6.1.2	Background Texas Building Registry Current Version	
6.1.2	Usage Reports	
6.1.4		
6.2	IC3 Enhancements	
6.2.1	History of IC3 Enhancements	
6.2.2	Changes in Single-Family Input File	
6.3	Laboratory's TERP Web Site "esl.tamu.edu/terp"	
6.4 6.4.1	Activities of Technical Transfer Technical Assistance to the TCEQ	
0.4.1		150

6.4.2	Code Training	157
6.4.3	ASHRAE Standard 90.1 Standards Committee Activities	158
6.4.3.1	SSPC 90.1 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014	158
6.4.3.2	SSPC 90.1 at the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014	164
6.4.4	ASHRAE Standard 90.2 Standards Committee Activities	
6.4.4.1	SSPC 90.2 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014	186
6.4.4.2	SSPC 90.2 at the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014	
6.4.5	ASHRAE Standard 189.1 Standards Committee Activities	
6.4.5.1	SSPC 189.1 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014	190
6.4.5.2	SSPC 189.1 at the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014	
6.4.6	Other Meetings	210
6.4.6.1	North Central Texas Council Government (NCTCG) Meetings from 2014.	210
6.4.6.2	North Texas Assciation of Energy Engineers (NTAEE).	258
6.4.6.3	State Agency Energy Advisory Group (SAEAG)	
6.4.6.4	The South-central Partnership for Energy Efficiency as a Resource (SPEER) Meetings from 2014	
6.4.6.5	Other	
6.4.7	Published Papers, Theses, etc	303
6.4.7.1	Theses and Dissertations	
6.4.7.2	Published Papers	
	ar Test Bench	
6.5.1	Solar Test Bench Setup	
6.5.2	2014 STB Activities	
6.5.2.1	Regular Maintenance	
6.5.2.2	Weekly Report	
6.5.2.3	Multi-Pyranometer Array	
	Future work Plan	
6.5.3.1	Camera Installation	
6.5.3.2	Wire Protection in Mechanical Room	
6.5.4	Acknowledgements	
References	311	
Bibliograph	у	
• •	Presentations to Various Entities at Conferences and Workshops in 2014	

List of Figures

Figure 1: OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008)	5
Figure 2: Integrated OSD Individual Programs NOx Emissions Reduction Projections through 2020 (Base Year	
2008)	23
Figure 3: US EPA Nonattainment and Near Nonattainment	
Figure 4: Available NWS, TMY2 and WYEC2 weather files compared to IECC/IRC weather zones for Texas	29
Figure 5: Comparison of 2014 Measured and 2008 Estimated Wind Power Production for Each Wind Farm	
Figure 6: Comparison of 2014 OSP Measured and 2008 OSP Estimated Wind Power Production for Each Wind	
Farm	35
Figure 7: Electricity Generation by Renewable Resources (ERCOT: 2001–2014 Annual)	
Figure 8: 2014 Annual Electricity Savings by County from New Single-family and Multi-family Residences	
Figure 9: Map of 2014 Annual Electricity Savings by County from New Single-family and Multi-family Residen	
Figure 10: 2014 Annual NOx Reductions by County from New Single-family and Multi-family Residences	
Figure 11: Map of 2014 Annual NOx Reductions by County from New Single-family and Multi-family Residences.	
Figure 11. Wap of 2014 Annual NOX Reductions by County from New Single failing and Multi failing Residence	
Figure 12: Calculation Method for 2014 Energy Savings from New Commercial Buildings	
Figure 12: Calculation Method for 2014 Energy Savings from New Commercial Buildings	
Figure 14: 2014 New Commercial Building Construction by Type (Dodge 2015)	
Figure 15: 2014 Annual Electricity Savings by County from New Commercial Construction	
Figure 16: 2014 Annual NOx Reductions by County from New Commercial Construction	
Figure 17: 2014 Annual Electricity Savings by County from New Residential and Commercial Construction	
Figure 18: Map of 2014 Annual Electricity Savings by County from New Residential and Commercial Construct	
Figure 19: 2014 Annual NOx Reductions by County from New Residential and Commercial Construction	
Figure 20: Map of 2014 Annual NOx Reductions by County from New Residential and Commercial Construction	
Figure 21: Process Flow Diagram of the NOx Emissions Reduction Calculations	
Figure 22: Integrated OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008)	
Figure 23: Integrated OSD Individual Programs NOx Emissions Reduction Projections through 2020 (Base Year	
2008)	
Figure 24: IC3 2014 Certificates and Projects	
Figure 25: IC3 2014 Active Users and Certificates	
Figure 26: IC3 2014 Certificates – Counties with at least 10 Certificates	
Figure 27: IC3 2014 Certificates – Cities with at least 200 Certificates	
Figure 28: Database Schema	
Figure 29: IC3 Usage Growth in 2014	
Figure 30: Users and Certificates 2014	
Figure 31: Counties Generating Single-Family HomesIC3 Certificates in 2014	
Figure 32: Counties Generating Multi-Family Homes IC3 Certificates in 2014	.115
Figure 33: Cities Generating Single-Family Homes IC3 Certificates in 2014	
Figure 34: Cities Generating Multi-Family Homes IC3 Certificates in 2014	.129
Figure 35: Top 10 Cities Generating Certificates in 2014	
Figure 36: Yearly Average Wall Cavity Insulation Distribution by County for Single-Family Homes in 2014	.130
Figure 37: Yearly Average Wall Cavity Insulation Distribution by County for Multi-Family Homes in 2014	.131
Figure 38: Yealry Average Water Heater Energy Factor Distribution for Single-Family Homes in 2014	
Figure 39: Yealry Average Water Heater Energy Factor Distribution for Multi-Family Homes in 2014	
Figure 40: Average Window to Wall Ratio across Counties for Single-Family Homes in 2014	
Figure 41: Average Window to Wall Ratio across Counties for Multi-Family Homes in 2014	
Figure 42: Average A/C SEER across Counties for Single-Family Homes in 2014	
Figure 43 Average A/C SEER across Counties for Multi-Family Homes in 2014	
Figure 44: Average Ceiling Insulation across Counties for Single-Family Homes in 2014	
Figure 45: Average Ceiling Insulation across Counties for Multi-Family Homes in 2014	
Figure 46: Average Heating Efficiency across Counties for Single-Family Homes in 2014	
Figure 47: Average Heating Efficiency across Counties for Multi-Family Homes in 2014	

Figure 48: Average SHGC across Counties for Single-Family Homes in 2014	142
Figure 49: Average SHGC across Counties for Multi-Family Homes in 2014	143
Figure 50: Average HVAC Tonnage to Sq Ft across Counties for Single-Family Homes in 2014	144
Figure 51: Average HVAC Tonnage to Sq Ft across Counties for Multi-Family Homes in 2014	145
Figure 52: Average U Factor across Counties for Single-Family Homes in 2014	146
Figure 53: Average U Factor across Counties for Multi-Family Homes in 2014	147
Figure 54. TERP Home Page	154
Figure 55: TERP –Letters and Reports	155
Figure 56: TERP Links	155
Figure 57: CATEE Conference	156
Figure 58: (a) MPA located on STB; (b) MPA sensors positons	310

List of Tables

Table 1: Annual and OSD Electricity Savings for the Different Programs (Base Year 2008)	6
Table 2: Annual and OSD NOx Emissions Reductions for the Different Programs (Base Year 2008)	6
Table 3: Adjustment Factors used for the Calculation of the Annual and OSD NOx Savings for the Different	
Programs	22
Table 4: Summary of 90th Percentile Hourly Wind Power Analysis for Forty Five Wind Farms (69 Sites) in Tex	as 37
Table 5: Number of Identified Projects for Other Renewable Sources	38
Table 6: Annual Electricity Generation by Renewable Resources (MWh, ERCOT: 2001 - 2014)	39
Table 7: 2014 and 2006 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New	N
Single-family Residences	44
Table 8: 2014 Annual Electricity Savings from New Single-family Residences	46
Table 9: Allocation of CM Zones for Each of Applicable ERCOT Counties	
Table 10: 2014 Totalized Annual Electricity Savings by CM Zone from New Single-family Residences	52
Table 11: 2014 Annual NOx Reductions from New Single-family Residences Using 2010 eGRID	53
Table 12: 2014 and 2006 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for Net	ew
Multi-family Residences	
Table 13: 2014 Annual Electricity Savings from New Multi-family Residences	61
Table 14: 2014 Totalized Annual Electricity Savings by CM Zone from New Multi-family Residences	63
Table 15: 2014 Annual NOx Reductions from New Multi-family Residences Using 2010 eGRID	64
Table 16: 2014 Annual NOx Reductions from New Single-family and Multi-family Residences	66
Table 17: Commercial Building Types in the US DOE Report and Dodge Database	75
Table 18: Commercial Building Floor Area for Retail and Food Service Types from CBECS Database	75
Table 19: Resultant % Distribution of Commercial Building Floor Area for Retail and Food Service Types	75
Table 20: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Apartment, Healthcare,	and
Lodging Building Types	81
Table 21: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Office and Education	
Building Types	84
Table 22: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Retail and Food Service	e
Building Types	87
Table 23: Annual Electricity and Natural Gas Savings from New Commercial Construction	90
Table 24: 2014 Totalized Annual Electricity Savings by CM Zone from New Commercial Construction	93
Table 25: 2014 Annual NOx Reductions from New Commercial Construction Using 2010 eGRID	94
Table 26: 2014 Annual Electricity and Natural Gas Savings and NOx Reductions from New Commercial	
Construction	95
Table 27: 2014 Annual NOx Reductions from New Residential and Commercial Construction	
Table 28: Final Adjustment Factors used for the Calculation of the Annual and OSD NOx Savings for the Differ	ent
Programs	112
Table 29: Example of NOx Emissions Reduction Calculations using 2010 eGRID	114
Table 30: Annual and OSD Electricity Savings for the Different Programs (Base Year 2008)	
Table 31: Annual and OSD NOx Emissions Reduction Values for the Different Programs (Base Year 2008)	115
Table 32: Changes in Single-Family Input file	
Table 33: List of all short courses/workshops conducted in 2014	157
Table 34. List of the sensors updated to the end of 2014	309

1 Overview

The Energy Systems Laboratory (Laboratory), at the Texas A&M Engineering Experiment Station of the Texas A&M University System, is pleased to provide our annual report, <u>Energy Efficiency/Renewable Energy Impact in</u> the Texas Emissions Reduction Plan (TERP), to the Texas Commission on Environmental Quality (TCEQ) in fulfillment of its responsibilities under Texas Health and Safety Code Ann. § 388.003 (e). This annual report:

- Provides an estimate of the energy savings and NOx reductions from energy code compliance in new residential construction in all ERCOT counties;
- Provides an estimate of the standardized, cumulative, integrated energy savings and NOx reductions from the TERP programs implemented by the Laboratory, SECO, the PUC and ERCOT in all ERCOT Texas;
- Describes the technology developed to enable the TCEQ to substantiate energy and emissions reduction credits from energy efficiency and renewable energy initiatives (EE/RE) to the U.S. Environmental Protection Agency (US EPA), including the development of a web-based emissions reduction calculator; and
- Outlines progress in advancing EE/RE strategies for credit in the Texas State Implementation Plan (SIP).

The report is organized in two volumes.

Volume I – Technical Report – provides a detailed report of activities, methodologies and findings, including an executive summary and overview;

Volume II – Technical Appendix – contains detailed data from simulations for each of the counties included in the analysis.

1.1 Legislative Background

The TERP was established in 2001 by the 77th Legislature through the enactment of Senate Bill 5 to:

- Ensure that Texas air meets the Federal Clean Air Act requirements (Section 707, Title 42, United States Code); and
- Reduce NOx emissions in non-attainment and near-non-attainment counties through mandatory and voluntary programs, including the implementation of energy efficiency and renewable energy programs (EE/RE).

To achieve the clean air and emissions reduction goals of the TERP, Senate Bill 5 created a number of EE/RE programs for credit in the SIP:

- The Texas Building Energy Performance Standards (TBEPS) as the building energy code for all new residential and commercial buildings;
- A municipality or county may request the Laboratory to determine the energy impact of proposed energy code changes;
- An annual evaluation by the Public Utility Commission of Texas (PUCT), in cooperation with the Laboratory, of the emissions reduction of energy demand, peak electric loads and the associated air contaminant reductions from utility-sponsored programs established under Senate Bill 5, and utility-sponsored programs established under the electric utility restructuring act (Section 39.905 Utilities Code);
- A 5% electricity reduction goal each year for facilities of political subdivisions in non-attainment and nearnon-attainment counties from 2002 through 2009; and
- Annual report to TCEQ to be provided by the Laboratory on the energy savings and resultant emissions reduction from implementation of building energy codes and which identifies the municipalities and counties whose codes are more or less stringent than the un-amended code.

Passed during the 78th Legislature (2003), HB 1365 and HB 3235 amended TERP to enhance its effectiveness with these additional energy efficiency initiatives:

- TCEQ is required to conduct outreach to non-attainment and near-non-attainment counties on the benefits of implementing energy efficiency measures as a way to meet the air quality goals under the federal Clean Air Act;
- TCEQ is required develop a methodology for computing emissions reduction from energy efficiency initiatives;

- A voluntary Energy-Efficient Building Program at the General Land Office (GLO), in consultation with the Laboratory, for the accreditation of buildings that exceed the state energy code requirements by 15% or more;
- Municipalities are allowed to adopt an optional, alternate energy code compliance mechanism through the use of accredited energy efficiency programs determined to be code-compliant by the Laboratory, as well as the US EPA's Energy Star New Homes program; and
- The Laboratory is required to develop and administer a statewide training program for municipal building inspectors seeking to become code-certified inspectors for enforcement of energy codes.

Senate Bill 5 was again amended during the 79th Legislature (2005) through SB 20, HB 2481 and HB 2129. These enhanced the effectiveness of Senate Bill 5 by adding the following energy efficiency initiatives:

- 5,880 MW of generating capacity is required from renewable energy technologies by 2015;
- 500 MW from non-wind renewables;
- The PUCT is required to establish a target of 10,000 megawatts of installed renewable capacity by 2025;
- The TCEQ is required to develop methodology for computing emissions reduction from renewable energy initiatives and the associated credits;
- The Laboratory is required to assist the TCEQ in quantifying emissions reduction credits from energy efficiency and renewable energy programs;
- The Texas Environmental Research Consortium (TERC) is required to contract with the Laboratory to develop and annually calculate creditable emissions reduction from wind and other renewable energy resources for the state's SIP; and
- The Laboratory is required to develop at least three alternative methods for achieving a 15 % greater potential energy savings in residential, commercial and industrial construction.

The 80th Legislature (2007), through SB 12, and HB 3693 further amended Senate Bill 5 to enhance its effectiveness by adding the following energy efficiency initiatives:

- The Laboratory is required to provide written recommendations to the State Energy Conservation Office (SECO) about whether or not the energy efficiency provisions of latest published edition of the International Residential Code (IRC) or the International Energy Conservation Code (IECC) are equivalent to or better than the energy efficiency and air quality achievable under the editions adopted under the 2001 IRC/IECC. The Laboratory shall make its recommendations no later than six months after publication of new editions at the end of each three-year code development cycle of the International Residential Code and the International Energy Conservation Code.
- The Laboratory is required to consider comments made by persons who have an interest in the adoption of the energy codes in the recommendations made to SECO.
- The Laboratory is required to develop a standardized report format to be used by providers of home energy ratings, including different report formats for rating newly constructed residences from those for existing residences. The form must be designed to give potential buyers information on a structure's energy performance, including: insulation; types of windows; heating and cooling equipment; water heating equipment; additional energy conserving features, if any; results of performance measurements of building tightness and forced air distribution; and an overall rating of probable energy efficiency relative to the minimum requirements of the International Energy Conservation Code or the energy efficiency chapter of the International Residential Code, as appropriate.
- The Laboratory is encouraged to cooperate with an industry organization or trade association to: develop guidelines for home energy ratings; provide training for individuals performing home energy ratings and providers of home energy ratings; and provide a registry of completed ratings for newly constructed residences and residential improvement projects for the purpose of computing the energy savings and emissions reduction benefits of the home energy ratings program.
- The Laboratory is required to include information on the benefits attained from this program in an annual report to the commission.

The 81st Legislature (2009) extended the date of the TERP to 2019 and required the TCEQ to contract with Laboratory to compute emissions reduction from wind and other renewable energy resources for the SIP.

The 82nd Legislature (2011) the Laboratory's responsibilities under TERP increased as new legislatively allocated energy efficiency initiatives were introduced:

- Each political subdivision, institution of higher education or state agency shall establish a goal to reduce the electric consumption by the entity by at least 5% each fiscal year for 10 years, beginning September 1, 2011. Each entity annually shall report to SECO, on forms provided by SECO, regarding the entity's goal, the entity's efforts to meet the goal, and progress the entity has made. The Laboratory is required to calculate energy savings and emissions reduction for each political subdivision, institution of higher education or state agency, based on the information collected by SECO.
- Beginning April 1, 2012, all electric cooperatives that had retail sales of more than 500,000 MWh in 2005 and all municipally owned utilities must report each year to SECO, on a standardized form developed by SECO, information regarding the combined effects of the energy efficiency activities of the electric cooperative/utility from the previous calendar year, including the annual goals, programs enacted to achieve those goals, and any achieved energy demand or savings goals. The Laboratory is required to calculate energy savings and emissions reduction for municipally owned utilities and for electric cooperatives, based on the information collected by SECO.
- SECO is required to appoint a new advisory committee for selecting high-performance building design evaluation systems. The Laboratory will send a representative to participate at the new advisory committee.
- The Laboratory may conduct outreach to the real estate industry on the value of energy code compliance and above code construction.

The 83rd Legislature (2013) the Laboratory's responsibilities under TERP kept the same as previous years.

1.2 Laboratory Funding for the TERP

The Laboratory expended \$181,855 in FY 2002; \$372,226 in FY 2003; \$635,683.84 in FY 2004; \$1,107,366.13 in FY 2005; \$952,012.70 in 2006; \$947,114.62 in FY 2007; \$908,512.65 in FY 2008; \$949,927.94 in FY 2009; \$902,843.35 in FY 2010, \$853,421.69 in FY 2011; \$434,481.91 in FY 2012 (with the 50% Legislature cut in ESL funding), and \$447,907.94 in FY 2013. In FY 2014 the Laboratory expended \$453,122.25. The Laboratory has also supplemented these funds with competitively awarded Federal and State grants to provide the needed statewide training for the new mandatory energy codes and to provide technical assistance to cities and counties in helping them implement adoption of the legislated energy efficiency codes. In addition, the ESL received an award from the US EPA in the spring of 2007 to establish a Center of Excellence for the Determination of Emissions Reduction (CEDER) which has helped to enhance the EE/RE emissions calculations.

1.3 Code Adoption

One of the TERP's energy efficiency programs to reduce emissions from stationary sources was the establishment of the Texas Building Energy Performance Standards (TBEPS) that define the building energy codes for all new residential and commercial construction statewide. The original TBEPS were based on the energy efficiency chapter of the 2000 International Residential Code (IRC), including the 2001 Supplement, for Single-Familyresidences, (i.e., one- and two-family residences of three stories or less above grade) and the 2000 International Energy Conservation Code (IECC), including the 2001 Supplement, for commercial, industrial and residential buildings over three stories.

Over the years since the establishment of the TERP, newer editions of the IRC and the IECC have been published. The Energy Systems Laboratory was mandated to review the stringency of the new code editions and provide recommendations to the State on whether to upgrade the TBEPS to the new editions. In the time frame of 2002-2009, with the laboratory's recommendations and additional input from stakeholder meetings and public comment periods, the State of Texas did not adopt any of the newer editions of the energy efficiency codes as the TBEPS. During this timeframe, several individual jurisdictions did adopt the newer editions of the IRC and the IECC.

With the laboratory's recommendation, on April 1, 2011, SECO updated the TBEPS commercial and residential (excluding single-family) energy codes to the 2009 International Energy Conservation Code (IECC). On January 1, 2012, the TBEPS for Single-Familyresidential was updated to Chapter 11 (Energy Efficiency) of the 2009 International Residential Code (IRC).

In the timeframe of 2012-2014, with the laboratory's recommendations and additional input from stakeholder meetings and public comment periods, the State of Texas did not adopt the 2012 editions of the energy efficiency codes as the TBEPS. During this timeframe, several individual jurisdictions did adopt the newer editions of the IRC and the IECC. As of the time of this report, SECO has not adopted the 2012.

1.4 Accomplishments since January 2014

Since January 2014, the Laboratory has accomplished the following:

- Calculated energy and resultant NOx reductions from implementation of the Texas Building Energy Performance Standards (IECC/IRC codes) to new residential and commercial construction for all non-attainment and near-non-attainment counties;
- Enhanced the Laboratory's IECC/IRC Code-Traceable Test Suite for determining emissions reduction due to code and above-code programs;
- Enhanced the IC3 calculator, which is energy code compliance software based on the Texas Building Energy Performance Standards by resolving minor defects found in the model and webpage.
- Continued development and testing of key procedures for validating simulations of building energy performance;
- Provided energy code training workshops, including: residential, commercial IECC/IRC energy code training sessions at the 22nd Building Professional Institute (BPI), UT Arlington;
- Provided energy code training workshops, including: residential, commercial IECC/IRC energy code training sessions at the 14th Building Professional Institute (BPI), Houston;
- Reviewed several local code proposed amendments and analyzed their stringency. For: the City of Houston and Austin Energy Green Building Program
- Maintained and updated the Laboratory's Texas Emissions Reduction Plan (TERP) website;
- Maintained a builder's residential energy code Self-Certification Form (Ver.1.3) for use by builders outside municipalities;
- Reviewed several local code proposed amendments and analyzed their stringency. For: the City of Houston. and the North Central Texas Council of Governments (NCTCOG);
- Hosted the Clean Air Through Energy Efficiency (CATEE) Conference in November 2014, in Dallas, Texas. Conference sessions included key talks by the TCEQ, PUCT, ERCOT, EPA, SECO, several ISDs and cities, and the Laboratory about quantifying emissions reduction from EE/RE opportunities and guidance on key energy efficiency and renewable energy topics; the various topics covered: Learning from Green Schools and Exisiting Buildings; Innovative Technologies and Techniques; PACE as a New Program in Texas; Alternative Financing for Energy Efficiency; Commercial & Institutional Green Building Performance; Collaboration is the Key – Piblic/Private Partnerships; Utilities – Efficiency Resources; Energy Codes Discussion; and Regional Applications.
- Provided technical assistance to the TCEQ regarding specific issues, including:
 - Enhancement of the standardized, integrated NOx emissions reduction reporting procedures to the TCEQ for EE/RE projects, and
 - Enhancement of the procedures for weather normalizing NOx emissions reduction from renewable projects.
- Participated as exhibitors at several conferences, including at the Clean Air Through Energy Efficiency Conference in Dallas, Texas, the Texas Green Home Summit in Plano, Texas, and TCEQ Environmental Trade Fair and Conference, Austin, Texas; and
- The ESL participated in a project with the South-central Partnership for Energy Efficiency as a Resource (SPEER), funded and administered by the Texas Comptroller of Public Accounts State Energy Conservation Office (SECO). From January to April 2013, the project focused on reviewing the current practice of local jurisdictions to meet compliance with the Texas Building Energy Performance Standards -- the energy efficiency chapter of the 2009 International Residential Code (IRC) for Single-Familyresidential construction, and the 2009 International Energy Conservation Code (IECC) for commercial and residential construction, excluding single-family.

Worked toward the code compliance tools for commercial buildings, retail and school buildings, and new Application Programming Interface (API)

1.5 Technology Transfer

To accelerate the transfer of technology developed as part of the TERP program, the Laboratory:

- Delivered "Statewide Air Emissions Calculations from Wind and Other Renewables," to the Texas Commission on Environmental Quality in October 2014;
- Updated previously developed degradation analysis to determine if degradation could be observed in the measured power from Texas wind farms;
- Updated previously developed database of other renewable projects in Texas, including: solar photovoltaic, geothermal, hydroelectric, and Landfill Gas-fired Power Plants;
- Applied previously developed estimation techniques for hourly solar radiation from limited data sets;
- Along with the TCEQ and the US EPA, is host to the annual Clean Air Through Energy Efficiency (CATEE) Conference attended by top Texas and national experts, and policy makers; and
- Continued the National Center of Excellence on Displaced Emissions Reduction (CEDER) by the US EPA. The benefits of CEDER include:
 - Reducing the financial, technical, and administrative costs of determining the emissions reduction from EE/RE measures;
 - Continuing to accelerate implementation of EE/RE strategies as a viable clean air effort in Texas and other states;
 - Helping other states identify and prioritize cost-effective clean air strategies from EE/RE, and;
 - Communicating the results of quantification efforts through case-studies and a clearinghouse of information.

Presentations of the paper at the Annual ASHRAE Conference, held in Seattle, WA, June 2014

• Baltazar, J.C., Mao, C., and Haberl, J., 2014, "Verification of Energy Savings from the Implementation of the Residential Building Codes in Texas", Proceedings of the 2014 Annual ASHRAE Conference, Seattle, WA, June 2014.

Presentations of the paper at the 14th International Conference for Enhanced Building Operations, held in Beijing, China, September 2014

• Haberl, J.; Yazdani, B.; Baltazar, J.C.; Mukhopadhyay, J.; Zilbershtein, G.; Ellis, S.; Parker, P., 2014 "Calculation of Intergrated Nox Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs across State Agencies in Texas" Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 2014

Four presentations to the Clean Air Through Energy Efficiency Conference held in San Antonio, Texas, December 2014.

- Claridge, D., 2014 "Energy Efficiency and Energy Policy" *Clean Air Through Energy Efficiency Conference*, Dallas, Texas, November 2014
- Ellis, S., 2014 "2015 IECC: What's new in next edition" *Clean Air Through Energy Efficiency Conference*, Dallas, Texas, November 2014
- Ellis, S., 2014 "International Energy Conservation Code 2012 & 2015" *Clean Air Through Energy Efficiency Conference*, Dallas, Texas, November 2014
- Haberl, J.; Yazdani, B., 2014 "Energy Efficiency and Renewable Energy Impacts on Emission Reductions" *Clean Air Through Energy Efficiency Conference*, Dallas, Texas, November 2014

The Laboratory has and will continue to provide leading-edge technical assistance to the TCEQ, counties and communities working toward obtaining full SIP credit for the energy efficiency and renewable energy projects that are lowering emissions and improving the air quality for all Texans. The Laboratory will continue to provide superior technology to the State of Texas through efforts with the TCEQ and US EPA. The efforts taken by the Laboratory have produced significant success in bringing EE/RE closer to US EPA acceptance in the SIP. These activities were designed to more accurately calculate the creditable NOx emissions reduction from EE/RE initiatives

contained in the TERP and to assist the TCEQ, local governments, and the building industry with standardized, effective implementation and reporting.

1.6 Energy and NOx Reductions from New Residential and Commercial Construction, Including Residential Air Conditioner Retrofits

State adoption of the energy efficiency provisions of the International Residential Code (IRC) and International Energy Conservation Code (IECC) became effective September 1, 2001. The Laboratory has developed and delivered training to assist municipal inspectors to become certified energy inspectors. The Laboratory also supported code officials with guidance on interpretations as needed. This effort, based on a requirement of HB 3235, 78th Texas Legislature, supports a more uniform interpretation and application of energy codes throughout the state. In general, the State is experiencing a true market transformation from low energy efficiency products to high energy efficiency products. These include: low solar heat gain windows, higher efficiency appliances, high efficiency air conditioners and heat pumps, increased insulation, lower thermal loss ducts and in-builder participation in "above-code" code programs such as Energy Star New Homes, which previously had no state baseline and almost no participation.

In 2014, the following savings were calculated:

- In 2014, the annual electricity savings from code-compliant residential and commercial Construction are 927,408 MWh/year (3.9% of the total electricity savings),
- Savings from residential air conditioner retrofits² are 288,118 MWh/year (1.2%).
- In 2014, the OSD electricity savings from code-compliant residential and commercial Construction are 3,007 MWh/day (5.2%),
- Savings from residential air conditioner retrofits are 2,043 MWh/day (3.5%).
- By 2020, the annual electricity savings from code-compliant residential and commercial Construction will be 2,294,744 MWh/year (6.7% of the total electricity savings),
- Savings from residential air conditioner retrofits will be 211,793 MWh/year (0.6%).
- By 2020, the OSD electricity savings from code-compliant residential and commercial Construction will be 6,700 MWh/day (8.0%),
- Savings from residential air conditioner retrofits will be 1,502 MWh/day (1.8%).
- In 2014, the annual NOx emissions reduction from code-compliant residential and commercial Construction are 233 tons-NOx/year (3.6% of the total NOx savings),
- NOx emissions reductions from residential air conditioner retrofits are 68 tons-NOx/year (1.0%).
- In 2014, the OSD NOx emissions reduction from code-compliant residential and commercial Construction are 0.76 tons-NOx/day (4.8%)
- NOx emissions reductions from residential air conditioner retrofits are 0.47 tons-NOx/day (3.0%).
- By 2020, the NOx emissions reduction from code-compliant residential and commercial Construction will be 578 tons-NOx/year (6.2% of the total NOx savings),
- NOx emissions reductions from residential air conditioner retrofits will be 50 tons-NOx/year (0.5%).
- By 2020, the OSD NOx emissions reduction from code-compliant residential and commercial Construction will be 1.69 tons-NOx/day (7.5%),
- NOx emissions reductions from residential air conditioner retrofits will be 0.35 tons-NOx/day (1.5%).

 $^{^{2}}$ This assumes air conditioners in existing homes are replaced with the more efficient SEER 13 units, versus an average of SEER 11, which is slightly more efficient than the previous minimum standard of SEER 10.

1.7 Integrated NOx Emissions Reductions Reporting Across State Agencies

In 2005, the Laboratory began to work with the TCEQ to develop a standardized, integrated NOx emissions reduction across state agencies implementing EE/RE programs so that the results can be evaluated consistently. As required by the legislation, the TCEQ receives the following reports:

- From the Laboratory, savings from code compliance and renewables;
- From the Laboratory, in cooperation with the Electric Reliability Council of Texas (ERCOT), the savings from electricity generated from wind power;
- From the Public Utility Commission of Texas (PUCT) on the impacts of the utility-administered programs designed to meet the mandated energy efficiency goals of SB7 and SB5; and
- From the State Energy Conservation Office (SECO) on the impacts of energy conservation in state agencies and political subdivisions.

In 2014, the total integrated annual savings from all programs are 23,684,427 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 927,408 MWh/year (3.9% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program are 2,675,295 MWh/year (11.3%),
- Savings from SECO's Senate Bill 5 program are 936,047 MWh/year (4.0%),
- Electricity savings from green power purchases (wind) are 18,857,560 MWh/year (79.6%), and
- Savings from residential air conditioner retrofits³ are 288,118 MWh/year (1.2%).

In 2014, the total integrated OSD savings from all programs are 57,751 MWh/day, which would be a 2,406 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 3,007 MWh/day (5.2%),
- Savings from the PUC's Senate Bill 7 programs are 7,330 MWh/day (12.7%),
- Savings from SECO's Senate Bill 5 program are 2,565 MWh/day (4.4%),
- Electricity savings from green power purchases (wind) are 42,806 MWh/day (74.1%), and
- Savings from residential air conditioner retrofits are 2,043 MWh/day (3.5%).

By 2020, the total integrated annual savings from all programs will be 34,278,170 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 2,294,744 MWh/year (6.7% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program will be 4,728,263 MWh/year (13.8%),
- Savings from SECO's Senate Bill 5 program will be 2,098,664 MWh/year (6.1%),
- Electricity savings from green power purchases (wind) will be 24,944,707 MWh/year (72.8%), and
- Savings from residential air conditioner retrofits will be 211,793 MWh/year (0.6%).

By 2020, the total integrated OSD savings from all programs will be 83,530 MWh/day, which would be a 3,480 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 6,700 MWh/day (8.0%),
- Savings from the PUC's Senate Bill 7 programs will be 12,954 MWh/day (15.5%),
- Savings from SECO's Senate Bill 5 program will be 5,750 MWh/day (6.9%),
- Electricity savings from green power purchases (wind) will be 56,624 MWh/day (67.8%), and
- Savings from residential air conditioner retrofits will be 1,502 MWh/day (1.8%).

³ This assumes air conditioners in existing homes are replaced with the more efficient SEER 13 units, versus an average of SEER 11, which is slightly more efficient than the previous minimum standard of SEER 10.

In 2014, the total integrated annual NOx emissions reductions from all programs are 6,494 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 233 tons-NOx/year (3.6% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 669 tons-NOx/year (10.3%),
- NOx emissions reductions from SECO's Senate Bill 5 program are 241 tons-NOx/year (3.7%),
- NOx emissions reductions from green power purchases (wind) are 5,283 tons-NOx/year (81.4%), and
- NOx emissions reductions from residential air conditioner retrofits are 68 tons-NOx/year (1.0%).

In 2014, the total integrated OSD NOx emissions reductions from all programs are 15.70 tons-NOx/day. The integrated OSD NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 0.76 tons-NOx/day (4.8%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 1.83 tons-NOx/day (11.7%),
- NOx emissions reductions from SECO's Senate Bill 5 program are 0.66 tons-NOx/day (4.2%),
- NOx emissions reductions from green power purchases (wind) are 11.97 tons-NOx/day (76.3%), and
- NOx emissions reductions from residential air conditioner retrofits are 0.47 tons-NOx/day (3.0%).

By 2020, the total integrated annual NOx emissions reductions from all programs will be 9,332 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 578 tons-NOx/year (6.2% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 1,183 tons-NOx/year (12.7%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 533 tons-NOx/year (5.7%),
- NOx emissions reductions from green power purchases (wind) will be 6,989 tons-NOx/year (74.9%), and
- NOx emissions reductions from residential air conditioner retrofits will be 50 tons-NOx/year (0.5%).

By 2020, the total integrated OSD NOx emissions reductions from all programs will be 22.58 tons-NOx/day. The integrated OSD NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 1.69 tons-NOx/day (7.5%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 3.24 tons-NOx/day (14.4%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 1.46 tons-NOx/day (6.5%),
- NOx emissions reductions from green power purchases (wind) will be 15.84 tons-NOx/day (70.2%), and
- NOx emissions reductions from residential air conditioner retrofits will be 0.35 tons-NOx/day (1.5%).

Table 3: Adjustment Factors used for the Calculation of the Annual and OSD NOx Savings for the Different Programs

	ESL-Single Family ¹⁶	ESL ¹⁶ - Multifamily	ESL ¹⁶ - Commercial	PUC (SB7) ¹⁵	SECO ¹⁵	Wind-ERCOT ⁸	SEER13 Single Family	SEER13 Multi Family
Annual Degradation Factor ¹¹	2.0%	2.0%	2.0%	5.0%	5.0%	0.0%	5.0%	5.0%
T&D Loss ⁹	7.0%	7.0%	7.0%	7.0%	7.0%	0.0%	7.0%	7.0%
Initial Discount Factor	20.0%	20.0%	20.0%	10.0%	60.0%	10.0%	20.0%	20.0%
Growth Factor	3.3%	1.5%	3.3%	0.0%	0.0%	4.8%	N.A.	N.A.
Weather Normalized	Yes	Yes	Yes	No	No	No	Yes	Yes

Note: For Wind-ERCOT, the OSD energy consumption is the average daily consumption of the measured data in the months of July, August and September.

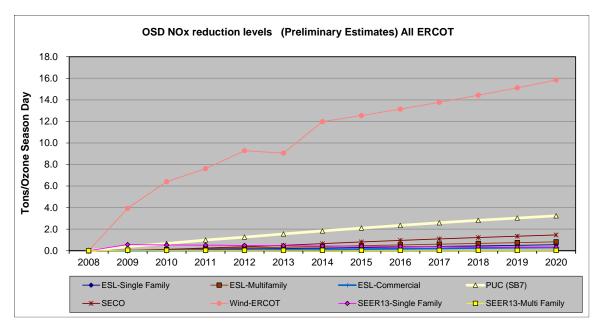


Figure 2: Integrated OSD Individual Programs NOx Emissions Reduction Projections through 2020 (Base Year 2008)

1.8 Technology for Calculating and Verifying Emissions Reduction from Energy Used in Buildings

In 2004 and 2005, the Laboratory developed a web-based Emissions Reduction Calculator, known as "*eCalc*," which contains the underlying technology for determining NOx emissions reduction from power plants that generate the electricity for the user⁴. The emissions reduction calculator was being used to calculate emissions reduction for consideration for SIP credits from energy efficiency and renewable energy programs in the TERP.

In 2007, the Laboratory enhanced the calculator to provide additional functions and usability, including:

- Renaming the product IC3 v2.0
- Enhanced the Laboratory's IECC/IRC Code-Traceable Test Suite for determining emissions reduction due to code and above-code programs;
- Enhanced web-based emissions calculator, including:
 - $\circ~$ Use of the calculator to determine 15% above code residential and commercial options.
 - o Gathered, cleaned and posted weather data archive for 17 NOAA stations;
 - o Performed comparative testing of the calculator vs. other, non-web-based simulation programs;
 - Developed and tested radiant barrier simulation;
 - Using the web-based emissions calculator, started development of the derivative version Texas Climate Vision calculator for the City of Austin;
- Continued the development of verification procedures, including:
 - Completed the calibrated simulation of a high-efficiency office building in Austin, Texas;
 - o Continued work to develop a calibrated simulation of an office building in College Station; and
 - Continued work to develop a calibrated simulation of a K-12 school in College Station;

In 2008, work on both web based calculators continued;

- Deployed IC3 v3.2 to handle a wider selection of Single-Familybuilding configurations (<u>http://ic3.tamu.edu</u>);
- Delivered TCV v1.0 to the City of Austin for their testing;
- Continued to operate the original eCalc;
- Supported modeling efforts by building enhanced tools for batch simulation;
- Provided training on both IC3 and TCV.

⁴ eCalc reports NOx, SOx and CO2 emissions reduction from the US EPA eGRID database for power providers in the ERCOT region.

In 2009, IC3 developments included:

- A sister product, AIM was created for the State Comptroller's office.
- Usage statistics continue to climb.
- Updated to v3.6 which included 3 story houses, external cladding, more sophisticated ceiling/roof models, enhanced foundation modeling and the ability to copy projects

In 2010 there were several software updates including:

- IC3
 - 3.9.0 Slab Insulation Support
 - \circ 3.7.0 3.8.0 First Version of Multifamily Released along with numerous tweaks and fixes
 - o 3.6.2 New Building Model Integrated, Updated Artwork and Illustrations
- DDP
 - $\circ~~1.7.05$ Added Heat Reject Recording for Electric and Gas
- Web Reports and Texas Building Registry
 - Registry 0.x First versions of the Web Reports on TCV, eCalc, and IC3
 - Registry 1.0 City and County Reports
 - Registry 1.1 Cross-linked Reports for City and County
 - IC3 Reports 1.0 Updated Certificate Reports which replace Registry 1.1 and evolve into the Texas Building Registry

The 2011 software updates include:

- IC3
 - 3.9.4 Added approval workflow to start a new 2009 IECC job as further refinements were needed to the BDL
 - o 3.9.5 Various IECC 2009 fixes and refinements implemented
 - 3.9.6 Updated BDL to 4.01.08, SHGC max does not apply to Climate Zone 4, 0.35 ACH minimum to all projects, Ventilation Fans added to % Air Conditioning Calculation
 - o 3.9.7 Corrected Certificate and Status screens to reflect insulation and floor construction.
 - 3.9.8- Set minimum R-value for insulated sheathing to R-2;
 - 3.10.0 Updated and corrected problems with several text and value fields; Corrected and printed MF and SF Certificates;
 - 3.10.3 Changed Certificate to Energy Audit Report; Added a new Certificate to be printed out; Added Inspector's list for a project; Added Pagination in projects page
 - o 3.11.0 12/22/2011-Added Austin Energy 2009 IECC Energy Code Support
- Web Reports and Texas Building Registry
 - TBR Reports 1.0.5 Added 4 new reports
 - TBR Reports 1.0.6 Added 9 new reports
 - Registry 2.0 Included 7 new Parameterized reports

The 2012 software updates include:

- IC3
 - o 3.12 Deprecated the 2000/2001 and 2006 Code (as of 1/1/2012)
 - 3.12.1 Added a version of the energy report with a signature line, as requested by some municipalities. Improved the algorithm.
 - \circ 3.12.2 Alter help text to be more clear. Improved the algorithm.
 - \circ 3.12.3 Alter help pictures to make them clearer.
 - 3.12.4 Added optional input for water heaters to allow for better detail. Updated user manual. Improved the transform algorithms.

The 2013 software updates include:

• IC3

- 3.12.5 Bug fix in energy report
- 3.13.0 Added support for manual J. Added NCTCOG 2012 amendments

There were no significant enhancements to IC3 in the calendar year 2014. We performed routine maintenance on the program and the database during this time. The API interface was under development.

1.9 Evaluation of Additional Technologies for Reducing Energy Use in Existing Buildings

The Laboratory provided technical assistance to the TCEQ, the PUCT, SECO and ERCOT, as well as Stakeholders participating in the Energy Code and Renewables programs.

- In 2014, the Laboratory continued to work with the TCEQ to develop an integrated NOx emissions reductions calculation that provided the TCEQ with a creditable NOx emissions reductions from energy efficiency and renewable energy (EE/RE) programs reported to the TCEQ in 2014 by the Laboratory, PUCT, SECO, and ERCOT (i.e., wind).
- At the request of the TCEQ, the Laboratory has continued the development of procedures for quantifying NOx emissions reductions from wind turbines that includes weather normalization and the quantification of NOx emissions reductions from the new Federal regulations for SEER 13 air conditioners.

1.10 Planned Focus for 2015

In FY 2015, the Energy Systems Laboratory will continue in its cooperative efforts with the TCEQ, PUCT, SECO, US EPA and others to evaluate the energy savings resulted from the EE/RE measures and programs of the TERP and their impact on air quality, and continue with the energy code state-wide implementation assistance under the Texas Building Energy Performance Standards program of the TERP. The Laboratory team will:

- Assist the TCEQ to obtain SIP credits from energy efficiency and renewable energy using the Laboratory's Emissions Reduction Calculator technology.
- Verify, document and report energy efficiency and renewable energy savings in all TERP EE/RE programs for the SIP in each non-attainment and affected county using the TCEQ/US EPA approved technology.
- Assist the PUCT with determining emissions reductions credits from energy efficiency programs funded by SB 7 and SB 5.
- Assist political subdivisions and Councils of Governments with calculating emissions reductions from local code changes and voluntary EE/RE programs for SIP inclusion.
- Continue to refine the cost-effective techniques to implement 15% above code (2009 IECC) energy efficiency in low-priced and moderately-priced residential housing.
- Continue to refine the cost-effective methods and techniques to implement 15% above code energy efficiency in commercial buildings.
- Continue to develop creditable procedures for calculating NOx emissions reductions from green renewable technologies, including wind power, solar energy and geothermal energy systems.
- Continue development of well-documented, integrated NOx emissions reductions methodologies for calculating and reporting NOx reductions, including a unified database framework for required reporting to TCEQ of potentially creditable measures from the ESL, PUCT, and SECO SB 5 initiatives.
- Upon request, provide written recommendations to the State Energy Conservation Office (SECO) about whether or not the energy efficiency provisions of latest published edition of the International Residential Code (IRC), or the International Energy Conservation Code (IECC), are equivalent to, or better than, the energy efficiency and air quality achievable under the editions adopted under the 2009 IRC/IECC. This will consider comments made by persons who have an interest in the adoption of the energy codes in the recommendations made to SECO.

- Develop a standardized report format to be used by providers of home energy ratings, including different report formats for rating newly constructed residences from those for existing residences.
- Continue to cooperate with an industry organization or trade association to: develop guidelines for home energy ratings; provide training for individuals performing home energy ratings and providers of home energy ratings; and provide a registry of completed ratings for newly constructed residences and residential improvement projects for the purpose of computing the energy savings and emissions reductions benefits of the home energy ratings program.
- Include all benefits attained from this program in an annual report to the commission.
- Enhance Single-Famimily and Multifamily IC3 software to support and add other features to enhance adoption.
- Engage production builders and municipalities in overcoming obstacles to use IC3 for their new home construction.
- The Calculation Engine XML Interface Service (CEXIS) was developed. This is an API interface for our calculation engine. It generates the same results as the IC3 website, but allows for a direct programming interface, without having to manually enter the data into the IC3 website.
- We also begin work on IC3 version 4. This is to be a complete retooling of the website using ASP.NET 4.5 and using the CEXIS interface to run the projects. It will be limited to IECC 2015 or later and will run concurrently with version 3.14 for a time, as this will handle IECC 2009 and 2012 codes. We plan to retire version 3.14 when the state mandates the IECC 2015 code for new construction (September 2016).

The Laboratory has and will continue to provide leading-edge technical assistance to counties and communities working toward obtaining full SIP credit for the energy efficiency and renewable energy projects that are lowering emissions and improving the air for all Texans. The Laboratory will continue to provide superior technology to the State of Texas through efforts with the TCEQ and US EPA. The efforts taken by the Laboratory have produced significant success in bringing EE/RE closer to US EPA acceptance in the SIP.

If any questions arise, please contact us by phone at 979-845-1280, or by email at terpinfo@tamu.edu.

2 Introduction

2.1 Background

In 2001, the Texas Legislature adopted the Texas Emissions Reduction Plan, identifying thirty-eight counties in Texas where a focus on air quality improvements was deemed critical to public health and economic growth. These areas are shown on the map in Figure 3 as non-attainment and near nonattainment. In 2008, the twenty counties designated as nonattainment counties include: Brazoria, Chambers, Collin, Dallas, Denton, Ellis, Fort Bend, Hardin, Harris, Jefferson, Galveston, Johnson, Kaufman, Liberty, Montgomery, Orange, Parker, Rockwall, Tarrant, and Waller Counties. The fourteen counties designated as Ozone Early Action Compact counties include: Bastrop, Bexar, Caldwell, Comal, Gregg, Guadalupe, Harrison, Hays, Rusk, Smith, Travis, Upshur, Williamson, and Wilson County.

These counties represent several geographic areas of the state, which have been assigned to different climate zones by the 2001 IECC⁵ as shown in Figure 4, based primarily on Heating Degree Days (HDD). These include climate zone 5 or 6 (i.e., 2,000 to 2,999 HDD₆₅) for the Dallas-Ft. Worth and El Paso areas, and climate zones 3 and 4 (i.e., 1,000 to 1,999 HDD₆₅) for the Houston-Galveston-Beaumont-Port Arthur-Brazoria areas. Also shown in Figure 4 are the locations of the various weather data sources, including the Typical Meteorological Year (TMY2) (NREL 1995) stations, the Weather Year for Energy Calculations (WYEC2) (Stoffel 1995) weather stations, the National Weather Service weather stations, (NWS) (NOAA 1993) weather stations, the ASHRAE 90.1 1989 weather locations⁶, the ASHRAE 90.1 1999 weather locations, the solar stations measured by the National Renewable Energy Laboratory (NREL)⁷, the solar stations measured by the TCEQ⁸, and F-CHART and PV F-CHART weather locations⁹.

⁵ The "2000 IECC" notation is used to signify the 2000 International Residential Code (IRC), which includes the International Energy Conservation Code (IECC) as modified by the 2001 Supplement (IECC 2001), published by the ICC in March of 2001, as required by Senate Bill 5.

⁶ The ASHRAE 90.1-1989 and 90.1-1999 weather stations are used in the emissions calculator for determining the building characteristics.

⁷ The NREL stations were the primary source of the 1999 global horizontal, direct normal and diffuse solar radiation used to determine the 1999 peak-day and annual emissions for the DOE-2 simulations for code-compliant housing and commercial buildings.

⁸ The TCEQ stations were used as the secondary source for global horizontal solar radiation when the NREL sites were missing data or no NREL site was nearby.

⁹ The F-Chart and PV F-Chart weather locations are used to determine the solar thermal or electricity produced by the systems specified by the use in the emissions calculation. The monthly energy or electricity production from F-Chart or PV F-Chart is then weather-normalized using ASHRAE's Inverse Model Toolkit to develop coefficients that are then used to determine the 1999 annual and peak day energy or electricity production for emissions calculations.

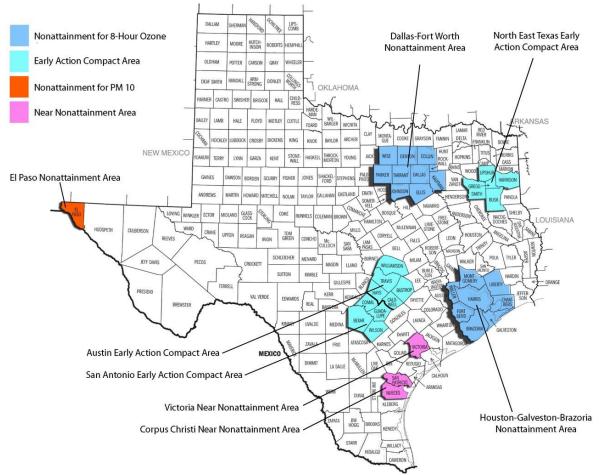


Figure 3: US EPA Nonattainment and Near Nonattainment

2.2 Energy Systems Laboratory's Responsibilities in the TERP

In 2001, Texas Senate Bill 5 outlined the following responsibilities for the Energy Systems Laboratory (ESL) within the TERP:

- Sec. 386.205. Evaluation of State Energy Efficiency Programs.
- Sec. 388.003. Adoption of Building Energy Efficiency Performance Standards.
- Sec. 388.004. Enforcement of Energy Standards Outside of Municipality.
- Sec. 388.007. Distribution of Information and Technical Assistance.
- Sec. 388.008. Development of Home Energy Ratings.

In 2003 these responsibilities were modified by the following:

- House Bill 1365, including modifications to:
- o Sec. 388.004. Enforcement of Energy Standards Outside of Municipality
- Sec. 388.009. Energy-Efficient Building Program
- House Bill 3235 which includes modifications to
 - Sec. 388.009. Certification of Municipal Building Inspectors.

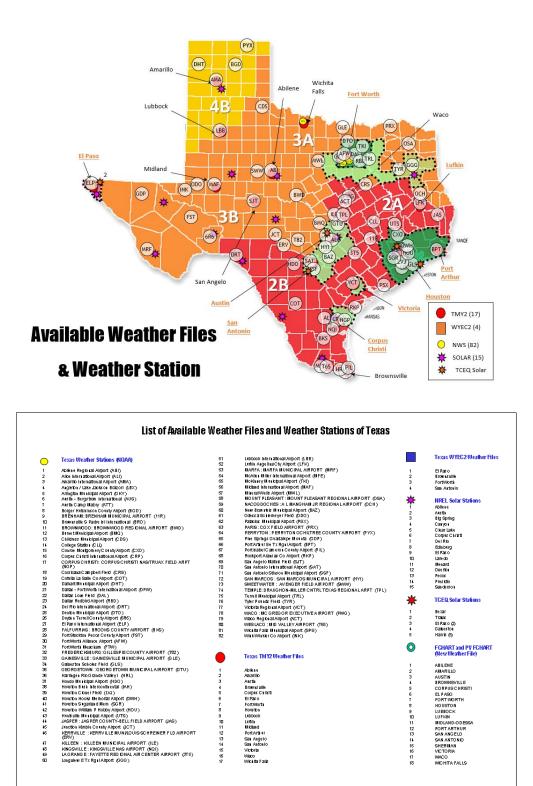


Figure 4: Available NWS, TMY2 and WYEC2 weather files compared to IECC/IRC weather zones for Texas

In 2005 these same responsibilities were further updated:

• with Senate Bill 20, House Bill 2481, and 2129.

These responsibilities were further updated in 2007:

• with Senate Bill 12 and House Bill 3693.

These responsibilities were further updated in 2009:

• with House Bill 1796.

These responsibilities were further updated in 2011:

• with Senate Bills 898 and 924, and House Bill 51.

These responsibilities were not updated in 2012. They remained unchanged in 2013. They were not updated in 2014.

In the following sections, each of these tasks is further described.

2.2.1 (SB 5) Section 386.205. Evaluation of State Energy Efficiency Programs (w/PUCT)

The Laboratory is instructed to assist the Public Utility Commission of Texas (PUCT) and provide an annual report that quantifies by county the reductions of energy demand, peak loads, and associated emissions of air contaminants achieved from the programs implemented under this subchapter and from those implemented under Section 39.905, Utilities Code (i.e., Senate Bill 7).

To implement procedures for evaluating state energy-efficiency programs, in 2004, the Laboratory held several meetings with the Public Utility Commission of Texas to discuss the development of a framework for reporting emissions reduction from the State Energy Efficiency Programs administered by the PUCT. The State Energy-Efficiency Programs administered by the PUCT include programs under Senate Bill 7 (i.e., Section 39.905 Utilities Code) and Senate Bill 5.

In 2003 and 2004, the Laboratory worked with the TCEQ to identify a method to help the PUCT more accurately report their deemed savings as peak-day savings in 1999, using the Laboratory's new emissions reductions calculator. In 2005, this method was implemented in the TCEQ's Integrated Emissions Calculations, which was reported in previous (from 2005-2013) annual reports.

2.2.2 (SB 5) Sec. 388.003. Adoption of Building Energy Efficiency Performance Standards

In 2001, TERP adopts the energy efficiency chapter of the 2001 International Residential Code (2001 IRC) as an energy code for Single-Family residential construction, and the 2001 International Energy Conservation Code (2001 IECC) for all other residential, commercial and industrial construction in the state. It requires that municipalities establish procedures for administration and enforcement, and ensure that code-certified inspectors perform inspections.

TERP provides that local amendments, in non-attainment areas and affected counties, may not result in less stringent energy efficiency requirements. The Laboratory is to review local amendments, if requested, and submit an annual report of savings impacts to the TCEQ. The Laboratory is also authorized to collect fees for certain of its tasks in Sections 388.004, 388.007 and 388.008.

2.2.3 (SB 5) Sec. 388.004. Enforcement of Energy Standards Outside of Municipality

For construction outside of the local jurisdiction of a municipality, TERP provides for a building to comply if:

• a building certified by a national, state, or local accredited energy efficiency program shall be considered in compliance;

November 2015

- a building with inspections from private code-certified inspectors using the energy efficiency chapter of the International Residential Code or International Energy Conservation Code shall be considered in compliance; and
- a builder who does not have access to either of the above methods for a building shall certify compliance using a form provided by the Laboratory, enumerating the code-compliance features of the building.

2.2.4 (SB 5) Sec. 388.007. Distribution of Information and Technical Assistance

The Laboratory is required to make available to builders, designers, engineers, and architects code implementation materials that explain the requirements of the International Energy Conservation Code and the energy efficiency chapter of the International Residential Code. TERP authorizes the Laboratory to develop simplified materials to be designed for projects in which a design professional is not involved. It also authorizes the Laboratory to provide local jurisdictions with technical assistance concerning implementation and enforcement of the International Energy Conservation Code and the energy efficiency chapter of the International Residential Code.

2.2.5 (SB 5) Sec. 388.008. Development of Home Energy Ratings.

TERP requires the Laboratory to develop a standardized report format to be used by providers of home energy ratings (HERs). The form must be designed to give potential buyers information on a structure's energy performance, including certain equipment. TERP requires the Laboratory to establish a public information program to inform homeowners, sellers, buyers, and others regarding home energy ratings.

2.2.6 (HB 1365) Sec. 388.004. Enforcement of Energy Standards Outside of Municipality

At the 78th Legislature (2003), House Bill 1365 modified Section 388.004 of The TERP to include the following new requirements:

- That builders shall retain for three years documentation which shows their building is in compliance with the Texas Building Energy Performance Standards, and that builders shall provide a copy of the compliance documentation to homeowners.
- That Single-Family residences built in unincorporated areas of counties, which were completed on or after September 1, 2001, but not later than August 31, 2003, are considered in compliance with the Texas Building Energy Performance Standards.

To help builders comply with these requirements, the Laboratory will enhance the current form, which is posted on the Laboratory's The TERP website.

2.2.7 (HB 1365) Sec. 388.009. Energy-Efficient Building Program

In 2003, House Bill 1365 modified the TERP, adding a new Section 388.009. In this section the General Land Office, the TCEQ and the Laboratory, working with an advisory committee, may develop an energy-efficient building accreditation program for buildings that exceed the building energy performance standards under Section 388.003 by 15% or more. This program shall be updated annually to include best available energy-efficient building practices. This program shall use a checklist system to produce an energy-efficient building scorecard to help: (1) home buyers compare potential homes and, by providing a copy of the completed scorecard to a mortgage lender, qualify for energy-efficient mortgages under the National Housing Act; and (2) communities qualify for emissions reduction credits by adopting codes that meet or exceed the energy-efficient building or energy performance standards established under this chapter. This effort may include a public information program to inform homeowners, sellers, buyers, and others regarding energy-efficient building ratings. The Laboratory shall establish a

system to measure the reduction in energy and emissions produced under the energy-efficient building program and report those savings to the commission.

2.2.8 (HB 3235) Sec. 388.009. Certification of Municipal Inspectors

Also in 2003, House Bill 3235 modified the TERP to add the new Section 388.009. In this section the Laboratory is required to develop and administer a state-wide training program for municipal building inspectors who seek to become code-certified inspectors. To accomplish this, the Laboratory will work with national code organizations to assist participants in the certification program and is allowed to collect a reasonable fee from participants in the program to pay for the costs of administering the program. This program is required to be developed no later than January 1, 2004, with state-wide training sessions starting no later than March 1, 2004.

2.2.9 (SB 20, HB 2481, HB 2129). Additional Energy-Efficiency Initiatives

The 79th Legislature (2005), through SB 20, HB 2481 and HB 2129, amended SB 5 to enhance its effectiveness by adding the following additional energy-efficiency initiatives, including requiring 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables.

This legislation also requires PUCT to establish a target of 10,000 MW of installed renewable capacity by 2025, and requires TCEQ to develop a methodology for computing emissions reductions from renewable energy initiatives and the associated credits. The Laboratory is to assist TCEQ in quantifying emissions reductions credits from energy-efficiency and renewable-energy programs, through a contract with the Texas Environmental Research Consortium (TERC) to develop and annually calculate creditable emissions reductions from wind and other renewable energy resources for the state's SIP.

Finally, this legislation requires the Laboratory to develop at least 3 alternative methods for achieving a 15% greater potential energy savings in residential, commercial and industrial construction. To accomplish this, the Laboratory will be using the code-compliance calculator to ascertain which measures are best suited for reducing energy use without requiring substantial investments.

2.2.10 (SB 12, HB 3693). Additional Energy-Efficiency Initiatives

The 80th Legislature (2007), through SB 12, and HB 3693 amended SB 5 to enhance its effectiveness by adding several new energy efficiency initiatives. First, it requires the Laboratory to provide written recommendations to the State Energy Conservation Office (SECO) about whether or not the energy efficiency provisions of latest published edition of the International Residential Code (IRC), or the International Energy Conservation Code (IECC), are equivalent to or better than the energy efficiency and air quality achievable under the editions adopted under the 2001 IRC/IECC. The laboratory shall make its recommendations not later than six months after publication of new editions at the end of each three-year code development cycle of the International Residential Code and the International Energy Conservation Code. As part of this work with SECO, the Laboratory is required to consider comments made by persons who have an interest in the adoption of the energy codes in the recommendations made to SECO.

In addition, it requires the Laboratory to develop a standardized report format to be used by providers of home energy ratings, including different report formats for rating newly constructed residences from those for existing residences. The form must be designed to give potential buyers information on a structure's energy performance, including: insulation; types of windows; heating and cooling equipment; water heating equipment; additional energy conserving features, if any; results of performance measurements of building tightness and forced air distribution; and an overall rating of probable energy efficiency relative to the minimum requirements of the International Energy Conservation Code or the energy efficiency chapter of the International Residential Code, as appropriate.

It also encourages the Laboratory to cooperate with an industry organization or trade association to: develop guidelines for home energy ratings; provide training for individuals performing home energy ratings and providers of home energy ratings; and provide a registry of completed ratings for newly constructed residences and residential improvement projects for the purpose of computing the energy savings and emissions reductions benefits of the home energy ratings program. Finally, it requires the Laboratory shall include information on the benefits attained from this program in an annual report to the commission.

2.2.11 (HB 1796). TERP Term & Additional Energy- Efficiency Initiatives

The 81st Legislature (2009), through HB 1796, amended sections Sec. 386.252 (a) and (b), to extend the date of the TERP to 2019 and require the TCEQ to contract with Laboratory to compute emissions reduction from wind and other renewable energy resources for the SIP.

2.2.12 (HB 51, SB 898, SB 924). Additional Energy-Efficiency Initiatives & Refinement of Ongoing Initiatives

The 82nd Legislature (2011) through HB-1, the Laboratory's responsibilities under TERP increased:

The 82nd Legislature (2011), through SB 898, amended Sec 388.005 (c), (d) and (e), which per the amendment, requires each political subdivision, institution of higher education or state agency to establish a goal to reduce the electric consumption by the entity by at least 5% each fiscal year for 10 years, beginning September 1, 2011. SB 898 further elaborated and enhanced the annual reporting requirements for those entities, and required SECO to develop a standardized form for reporting. SB 898 adds the Laboratory as the entity in charge of calculating energy savings and estimated emissions reduction for each political subdivision, institution of higher education or state agency, based on the information collected by SECO. The Laboratory shall share the analysis with the TCEQ, EPA and ERCOT.

The 82nd Legislature (2011), through SB 924, amended Sec 39.9051, Utilities Code, (f), (g) and (h), to enhance the reporting requirements by all municipally owned utilities and electric cooperatives that had retail sales of more than 500,000 MWh in 2005, regarding combined effects of their energy efficiency activities. Per the amended sections, beginning April 1, 2012, these entities must report each year to SECO, on a standardized form developed by SECO. The report of information regarding the combined effects of the energy efficiency activities of the electric cooperative/utility from the previous calendar year should include the annual goals, programs enacted to achieve those goals, and any achieved energy demand or savings goals. SB 924 adds the Laboratory as the entity in charge of calculating energy savings and estimated emissions reduction for municipally owned utilities and for electric cooperatives, based on the information collected by SECO. The Laboratory shall share the analysis with the PUCT, ERCOT, EPA and TCEQ.

The 82nd Legislature, through HB 51, required SECO to appoint a new advisory committee for selecting highperformance building design evaluation systems. The committee includes a representative from the Laboratory and meets at least once every two years.

The 82nd Legislature, through HB 51, modified Sec 388.003 (e) on the Laboratory's review of proposed local code amendments, which should be compared to the unamended code (instead of the "base" code), and added to Sec 388.007 (c) the fact that Laboratory is allowed to provide technical assistance concerning the implementation of local code amendments.

In addition, HB 51 added Sec 388.007 (d), which allows The Laboratory to conduct outreach to the real estate industry on the value of energy code compliance and above code construction.

The 83rd Legislature (2013) the Laboratory's responsibilities under TERP kept the same as previous years.

3 Statewide Air Emissions Calculations from Wind and Other Renewables

The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its tenth annual report, "Statewide Air Emissions Calculations from Wind and Other Renewables," to the Texas Commission on Environmental Quality.

The report is organized in several deliverables:

- a summary report, which details the key areas of work
- supporting documentation
- supporting data files, including weather data, and wind production data, which have been assembled as part of the seventh year's effort

This executive summary provides key areas of accomplishment this year, including:

- continuation of stakeholder's meetings
- analysis of power generation from wind farms using improved method and 2014 data
- analysis of emissions reductions from wind farms
- updates on degradation analysis
- analysis of other renewables, including solar PV, solar thermal, biomass, hydroelectric, geothermal, and landfill gas
- review of electricity generation by renewable sources and transmission planning study reported by ERCOT

3.1 Analysis of wind farms using an improved method and 2014 data

In this report, the weather normalization procedures, developed together with the Stakeholders, were presented and applied to all the wind farms that reported their data to ERCOT during the 2014 measurement period, together with wind data from the nearby NOAA weather stations or the zone average wind speed provided from ERCOT.

In the 2010 Wind and Renewables report to the TCEQ (Haberl et al. 2010), weather normalization analysis methods were reviewed. This report used the same analysis method as the previous 2010 report to present the same weather normalization procedure, including:

- the processing of weather and power generation data, modeling of daily power generation versus daily wind speed using the ASHRAE Inverse Model Toolkit (IMT) for two separate periods, i.e., Ozone Season Period (OSP), from July 15 to September 15, and Non-Ozone Season Period (Non-OSP);
- predicting 2008 wind power generation as a baseline, using developed coefficients from 2014 daily OSP and Non-OSP models for all the wind farms; and
- the analysis on monthly capacity factors generated using the models

A summary of total wind power production in the base year (2008) for all of the wind farms in the ERCOT region using the developed procedure is presented, and two new wind farms which started operation in 2011 and 2014 were added, including Sherbino 2 and Goldthwaite 1 wind farms. The Sherbino 2 wind farm was added in this year's report because the data of the wind farm was available from 2014 even though the operation started in 2011. In addition, Texas Wind Power Project and Delaware Mountain wind farms were removed in this year's report because the two wind farms were shut down due to significant damage by ice storms in 2013. Figure 5 shows the measured annual wind power generation in 2014 and the estimated wind power generation in 2014 is 34,300,904 MWh/yr., which is 14.53% higher than what the same wind farms would have produced in 2008. Figure 6 shows the same comparison but for the Ozone Season Period. The measured wind power generation in the OSP of 2014 is 72,600 MWh/day, which is 30.17% higher than the 2008 OSP baseline wind production. For the analysis of this year, the measured 2014 wind power generation is fairly higher than the 2008 baseline wind power production.

This report also includes an uncertainty analysis that was performed on all the daily regression models for the entire year and Ozone Season Period.

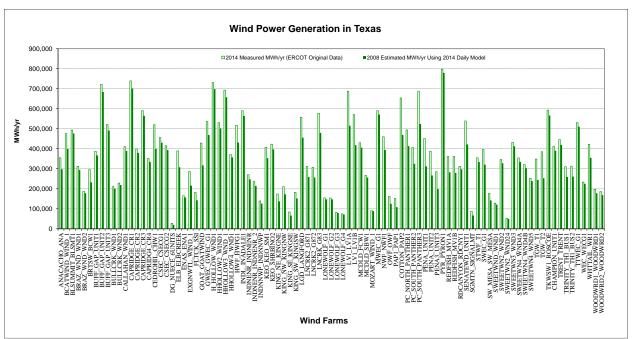


Figure 5: Comparison of 2014 Measured and 2008 Estimated Wind Power Production for Each Wind Farm

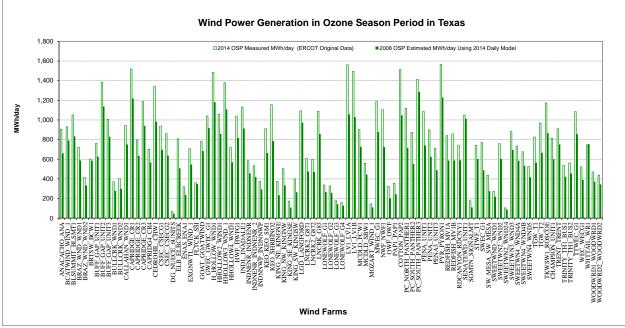


Figure 6: Comparison of 2014 OSP Measured and 2008 OSP Estimated Wind Power Production for Each Wind Farm

3.2 Analysis of emissions reductions from wind farms

In this report, the procedure for calculating annual and peak-day, county-wide NOx reductions from electricity savings from wind projects implemented in the congestion management (CM) zones in ERCOT was presented and,

calculating the NOx emission reductions based on the special version of 2010 eGRID, developed by the ESL and EPA for the TCEQ. According to the developed models, the total MWh savings for all the wind farms in the base year 2008 within the ERCOT region are 29,950,120 MWh/yr and 55,772 MWh/day in the Ozone Season Period. The total NOx emissions reductions across all the counties amount are 8,217.00 tons/yr and 15.43 tons/day for the Ozone Season Period. Based on the 2014 measured ERCOT data, the total MWh savings for all the wind farms within the ERCOT region are 34,300,904 MWh/yr and 72,600 MWh/day in the Ozone Season Period. The total NOx emissions reductions in 2014 across all the counties amount are 9,473.45 tons/yr and 20.21 tons/day for the Ozone Season Period. Compared to the base year 2008, the total annual NOx emissions reductions increased by 15.29%, and the total NOx emissions reductions increase 30.99% for the Ozone Season Period.

3.3 Degradation analysis

This report contains an updated analysis to determine what degradation could be observed in the measured power from Texas wind farms. By TCEQ request on reference to the degradation of the wind farm power output, the ESL has been evaluating any observed degradation from the measured data for all the Texas wind farms.

For the analysis, a statistical index was established for each site that used the 10th, 25th, 50th, 75th, 90th, and 99th percentiles of the hourly power generation over a 12-month sliding period, as well as mean, minimum and maximum hourly power generation of the same 12-month period. These indices were then displayed using one data symbol for each 12-month slide, beginning from the first 12-month period until the last 12-month period for each of the wind farms.

As shown in Table 4, of the sixty nine sites analyzed, forty nine sites showed an increase when one compares the 90th percentile of the whole period to the 90th percentile of the first 12-month period, ranging from 0.1% to 296.7%. The remaining twenty sites showed a decrease from -0.1% to -15.2%. The weighted average of this increase across all wind farms is 18.9% (positive), which indicates that no degradation was observed from the aggregate energy production from these wind farms over the analyzed operation period. Similarly, the wind farms of Big Spring Wind Power (-14.4%) and Snyder Wind Project (-15.2%) have a decrease on production with a percentage larger than 10%, which may be caused by wind farm operations issues, the meter problems or other related issues.

Average of the Sliding 12-mo 90th Precentile Hourly Wind Power First 12-mo 90th Percentile Hourly Minimum of the Sliding 12-mo 90th Precentile Maximum of the Sliding 12-mo 90th Precentile No. of Months of Wind Power Hourly Wind Power Hourly Wind Power Capacity (MW) Wind Farm Data % Diff. vs. % Diff. vs. % Diff. vs. First First 12-m MW мw мw MW First 12-mo First 12-mo Ending Mo 12-mo Brazos Wind Ranch Dec-04 127.4 -0.1% -26.7% 139.4 9.3% 160 127.5 93.5 121 Barton Chapel Wind 1 Apr-09 60.0 79.5 32.5% 60.0 0.0% 89.1 48.5% 69 120 Buffalo Gap 1 Nov-06 100.9 98.5 -2.3% 75.4 -25.2% 105.7 4.8% 98 120 Buffalo Gao 2 183.4 -5.8% Apr-08 172.8 104.9 -42.8% 207.6 13.2% 81 233 Buffalo Gap 3 Jun-09 86.4 136.8 58.3% 0.0% 170 86.4 152.1 76.0% 67 Bull Creek Wind Plant Dec-09 93.9 87.9 -6.4% 41.5 -55.8% 130.4 38.9% 61 180 Big Spring Wind Power Dec-02 -14.4% 16.3 -40.1% 27.2 27.2 23.3 0.0% 145 41 Callahan Divide Wind Feb-06 93.3 95.3 2.1% 86.7 -7.1% 101.5 8.8% 107 114 Capricorn Ridge Wind 1&2 Aug-08 258.0 247.0 -4 3% 174.5 -32 4% 291.2 12.8% 77 364 Capricorn Ridge Wind 3 Jan-09 120.3 135.3 12.5% 97.9 -18.6% 153.5 27.6% 72 186 Capricorn Ridge Wind 4 112.5 Apr-09 85.2 84.5 -0.8% 67.6 -20.6% 92.8 9.0% 69 Camp Springs Wind Energy Center Apr-08 111.3 106.0 -4.7% 95.0 -14.6% 120.9 8.6% 81 130 Camp Springs Energy Expension Jan-09 94.0 96.8 3.0% 88.9 -5.4% 107.9 14.8% 72 120 Cedro Hill Wind Dec-11 136.3 128.9 -5.4% 120.5 -11.6% 136.9 0.4% 37 150 Champion Wind Farm lan-09 89.4 103.0 15.2% 87 7 -1.9% 113.2 26.6% 72 126.5 Desert Sky Dec-02 89.0 118.3 32.8% 83.1 -6.7% 134.4 50.9% 145 160.5 Elbow Creek Wind Dec-09 104.5 94.5 98.4 4.1% 91.6 -3.1% 10.6% 61 121.9 Forest Creek Wind Farm 105.2 106.5 -7.5% Dec-07 1.2% 97.3 111.2 5.7% 85 124.2 Goat Wind Feb-09 61.4 91.9 49.8% 61.4 0.0% 122.6 99.8% 71 150 Gulf Wind 1 108.1 71.3% 0.0% 119.4 89.1% 61 141.6 Dec-09 63.1 63.1 Gulf Wind 2 Dec-09 74.7 118.3 58.2% 74.7 0.0% 126.3 69.0% 61 141.6 Hackberry Wind Dec-09 138.0 125.1 -9.3% 105.8 -23.3% 140.6 1.9% 61 165.5 Horse Hollow Phase 1 Jun-06 157.0 165.3 5.3% 141.3 -10.0% 185.1 17.9% 103 213 145.7 137.9 Horse Hollow Phase 2 Aug-07 -5.4% 99.0 -32.1% 151.5 4.0% 89 184 Horse Hollow Phase 3 May-07 169.2 165.3 -2.3% 123.9 -26.8% 187.7 11.0% 92 223.5 88.7 Horse Hollow Phase 4 Jun-07 88.6 0.1% 80.9 -8.7% 94.8 6.9% 91 115 Inadale Wind Dec-09 81.9 128.4 56.9% 81.9 0.0% 166.3 103.1% 61 197 Indian Mesa Dec-02 48.0 59.4 23.8% 36.3 -24.4% 72.2 50.5% 145 82.5 King Mountain Wind Ranch-NE Dec-02 41.8 47.3 13.0% 36.3 -13.2% 56.4 34.8% 145 79.3 King Mountain Wind Ranch-NW Dec-02 44.7 55.7 24.7% 40.2 -10.1% 65.3 46.1% 145 79.3 King Mountain Wind Ranch-SE 21.6 10.5% 29.8% Dec-02 23.9 18.4 -15.0% 28.1 145 40.3 King Mountain Wind Ranch-SW Dec-02 41.6 47.3 13.8% 38.4 -7.6% 53.7 29.1% 145 79.3 Langford Wind 115.7 -1.1% 134.3 16.0% 150 Dec-10 126.4 9.2% 114.4 49 Lone Star - Post Oak Wind Dec-08 126.5 157.1 24.2% 126.5 0.0% 170.5 34.8% 73 200 Lone Star - Mesquite Wind Feb-08 106.1 150.9 42.3% 106.1 0.0% 168.1 58.5% 83 200 Loraine Windpark I Dec-10 30.4 34.9 14.7% 25.9 -14.8% 42.3 39.2% 49 126 Loraine Windpark II -7.6% 55.7% 49 124.5 Dec-10 27.8 35.1 26.1% 25.7 43.3 111.7 McAdoo Wind Dec-09 135.6 21.4% 111.7 0.0% 143.6 28.5% 61 150 Notrees Windpower Dec-09 97.8 113.2 15.7% 97.8 0.0% 122.9 25.7% 61 153 -3.6% Ocotillo Windpower Dec-09 39.1 42.6 8.8% 37.7 47.2 20.7% 61 58.8 Panther Creek 1 Dec-09 114.4 120.1 5.0% 107.8 -5.8% 128.9 12.7% 61 142.5 Panther Creek 2 Dec-09 91.8 96.2 4.8% 85.2 -7.2% 104.2 13.5% 61 115.5 Panther Creek 3 Dec-09 105.0 145.7 38.8% 105.0 0.0% 177.1 68.8% 61 199.5 Papalote Creek Wind Farm 135.7 -73.6% 157.9 180 Dec-10 150.1 -9.6% 39.6 5.2% 61 Papalote Creek Wind Farm II Dec-11 174.2 170.0 -2.4% 162.8 -6.5% 176.4 1.2% 37 200.1 Penascal Wind 1 296.7% 141.5 Dec-09 30.6 121.5 30.6 0.0% 361.8% 61 161 Penascal Wind 2 Dec-09 83.3 113.3 36.0% 83.3 0.0% 125.4 50.5% 61 142 Penascal Wind 3 Dec-10 68.3 82.1 20.2% 68.3 0.0% 88.8 30.0% 61 101 Pyron Wind Farm Dec-09 157.2 184.3 17.3% 151.4 -3.7% 219.5 39.7% 61 249 Red Canyon 1 Aug-07 75.8 76.4 0.7% 72.7 -4.1% 79.1 4.4% 89 84 Dec-08 169.4 160.2 -5.4% -22.3% 179.8 6.2% 73 Roscoe Wind Farm 131.6 209 Sand Bluff Wind Farm Dec-07 39.5 68.0 72.0% 39.5 0.0% 75.4 90.6% 85 90 Sherbino I Wind Dec-09 104.7 112.6 7.6% -11.8% 128.1 22.4% 61 150 92.3 Silver Star Wind Apr-09 40.6 46.3 13.9% 39.5 -2.7% 50.5 24.4% 69 60 South Trent Wind Farm Dec-09 67.7 84.5 24.8% 65.4 -3.5% 91.0 34.4% 61 101.2 Southwest Mesa Wind Dec-02 51.1 47.5 -7.0% 37.2 -27.1% 56.5 10.6% 145 74.6 Stanton Wind Energy Dec-08 95.2 19.9% 79.4 0.0% 107.0 34.7% 73 120 79.4 Sweetwater Wind 1 Dec-04 34.1 33.0 -3.0% 29.9 -12.2% 34.9 2.4% 121 37.5 Sweetwater Wind 2 (unit 1) 71.4 14.4% 88.0 23.3% 97.5 Jan-06 81.7 71.4 0.0% 108 Sweetwater Wind 2 (unit 2) May-08 13.8 13.9 1.1% 12.0 -13.1% 14.8 7.8% 80 16 Sweetwater Wind 3 Dec-06 99.6 101.1 1.5% 67.1 -32 7% 111.2 11.6% 97 135 Sweetwater Wind 4 Mar-08 161.0 172.5 7.2% 156.5 -2.8% 182.2 13.2% 82 240.8 Sweetwater Wind 5 Dec-08 66.5 63.9 -4.0% 56.3 -15.3% 69.3 4.3% 73 80.5 Snyder Wind Project Dec-08 44.9 -15.2% 36.1 -31.8% 52.9 0.0% 73 63 52.9 145 Trent Mesa Dec-02 108.8 120.2 10.4% 90.7 -16.7% 132.8 22.0% 150 Dec-09 Turkey Track Wind Energy Center 77.4 124.0 60.3% 77.0 -0.5% 143.1 85.0% 61 169.5 Whirlwind Dec-08 54.0 49.0 -9.3% 39.8 -26.3% 56.9 5.4% 73 60 Wolf Ridge Wind Dec-09 105.9 106.3 0.3% 101.2 -4.5% 108.8 2.7% 61 112.5 14.5% -5.7% 112.4 31.8% Woodward Mountain Ranch Dec-02 85.3 97.6 80.4 145 159.7 Weighted Average: 18.9% -12.9% 35.0% 9489.2 Total:

Table 4: Summary of 90th Percentile Hourly Wind Power Analysis for Forty Five Wind Farms (69 Sites) in Texas

3.4 Analysis of other renewable sources

Five specific renewable sources were determined: solar, biomass, hydroelectric, geothermal, and landfill gas-fired. To generate/save energy throughout the State of Texas, six types of renewable energy projects were identified: solar photovoltaic (PV) including solar power, solar thermal, biomass power, hydroelectric power, geothermal HVAC, and landfill gas-fired power projects. The solar photovoltaic project accounts for all PV installations in Texas whereas the solar power project accounts for only solar power plant Construction. Table 5 presents the number of newly located renewable energy projects and total renewable energy projects included in this report.

This report also presents county-wide annual/Ozone Season Day (OSD) energy savings and annual NOx emission reductions for solar photovoltaic including solar power, solar thermal, biomass, and hydroelectric projects. The annual/OSD energy savings calculation for solar photovoltaic and solar thermal was conducted using the eCalc tool. The power generation data for the other renewable energy projects (solar power, biomass, and hydroelectric), which were obtained from the ERCOT, were used to evaluate the annual/OSD energy generation. Then, the annual NOx emission reductions calculation was conducted with the special version of Texas 2010 eGrid, based on their energy savings/generation.

In 2014, the total annual/OSD energy savings from each renewable projects across all the counties were:

- solar photovoltaic projects with 7% T&D loss: 312,037 MWh/yr and 938 MWh/day; in addition, solar power projects only with 7% T&D loss: 291,121 MWh/yr and 798 MWh/day,
- solar thermal projects with 7% T&D loss: 248 MWh/yr and 0.7 MWh/day,
- biomass projects with 7% T&D loss: 493,735 MWh/yr and 1,353 MWh/day, and •
- hydroelectric projects with 7% T&D loss: 50,202 MWh/yr and 138 MWh/day.

In 2014, the annual NOx emission reductions from renewable projects across all the counties were:

- solar photovoltaic projects: 100.9 tons/yr; in addition, solar power projects only: 96.0 tons/yr,
- solar thermal projects: 0.1 tons/yr, •
- biomass projects: 135.7 tons/yr, and •
- hydroelectric projects: 16.6 tons/yr.

Table 5: Number of Identified Projects for Other Renewable Sources

Renewable Energy Projects	Number of 2014 New Projects	Total Number of Projects
Solar Photovoltaic ¹⁰	113	4,647
(Solar Power)	(3)	(12)
Solar Thermal	0	38
Biomass ¹¹	1	20
Hydroelectric ¹²	1	27
Geothermal	0	286
Landfill Gas-Fired ¹³	2	34

¹⁰ The Open PV project database of National Renewable Energy Laboratory (NREL) (https://openpv.nrel.gov/).

¹¹ This report includes one more biomass project information which was not identified in the previous year report; however, it does not mean the State of Texas has a new biomass power plant constructed in 2014. ¹² This report includes one more hydroelectric project information which was not identified in the previous year report; however, it does not mean the State of Texas

has a new hydroelectric power plant constructed in 2014.

¹³ Landfill gas fired projects information from EPA have seven sub-categories for their status: operational, candidates, potential, construction, shutdown, planned, and other. EPA rearranged/added/removed some projects information within the seven sub-categories. Operational projects were considered for the number of the projects. This report includes four more (new) and two less (shutdown) operational landfill gas-fired project information which was not identified in the previous year report; however, the new operational projects do not mean the State of Texas has new landfill gas-fired projects constructed in 2014.

3.5 Review of electricity savings and transmission planning study reported by ERCOT

In this report, the information posted on ERCOT's Renewable Energy Credit Program site www.texasrenewables.com is reviewed. In particular, information posted under the "Public Reports" tab was downloaded and assembled into an appropriate format for review. This includes ERCOT's 2001 through 2014 reports to the Legislature and information from ERCOT's listing of REC generators.

Each year ERCOT is required to compile a list of grid-connected sources that generate electricity from renewable energy and report them to the Legislature. Table 6 contains the data reported by ERCOT from 2001 to 2014. Figure 7 is included to better illustrate the annual data collected by ERCOT.

Year	Biomass (MWh)	Hydro (MWh)	Landfill gas (MWh)	Solar (MWh)	Wind (MWh)	Total (MWh)
2001	0	30,639	0	0	565,597	596,236
2002	0	312,093	29,412	87	2,451,484	2,793,076
2003	39,496	239,684	154,206	220	2,515,482	2,949,087
2004	36,940	234,791	203,443	211	3,209,630	3,685,014
2005	58,637	310,302	213,777	227	4,221,568	4,804,512
2006	60,569	210,077	306,087	470	6,530,928	7,108,131
2007	54,101	382,882	356,339	1,844	9,351,168	10,146,333
2008	70,833	445,428	387,110	3,338	16,286,440	17,193,150
2009	73,364	507,507	412,923	4,492	20,596,105	21,594,390
2010	97,535	609,257	464,904	14,449	26,828,660	28,014,805
2011	137,004	267,113	497,645	36,580	30,769,674	31,708,016
2012	288,988	389,197	537,966	133,642	32,746,534	34,096,328
2013	200,564	294,238	550,845	178,326	36,909,385	38,133,358
2014	343,469	227,820	518,580	312,757	40,584,226	41,986,853

Table 6: Annual Electricity Generation by Renewable Resources (MWh, ERCOT: 2001 - 2014)

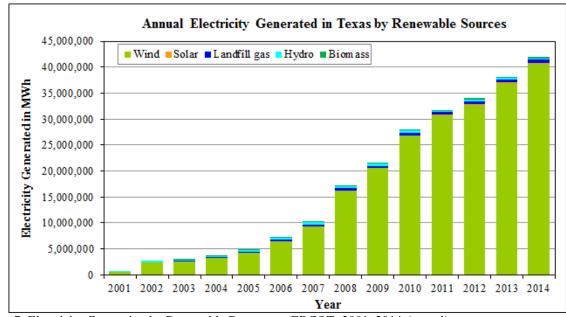


Figure 7: Electricity Generation by Renewable Resources (ERCOT: 2001-2014 Annual)

4 Calculated NOx Reductions Potential from Energy Savings of New Construction in 2014

A complete reporting of the savings, using 2008 base year (the implementation of the 2006 IECC and the ASHRAE Standard 90.1-2004), requires tracking and analyzing savings for new construction buildings that undergo a building permit. The adoption of the energy code and standard in Texas is expected to impact the following types of buildings:

- single-family residential
- multi-family residential
- commercial
- industrial

The following sections report the calculated energy savings associated with new construction activities for both residential (i.e., single-family and multi-family) and commercial buildings.

4.1 2014 Results for New Single-family Residential Construction

This section provides the potential electricity and natural gas savings and the associated NOx emissions reductions in 2014 using the 2008 base year which implemented the 2006 IECC for new single-family residences in the 36 nonattainment and affected counties as well as other counties in the ERCOT region¹⁴. To calculate the NOx emissions reductions, the following procedures were adopted. First, new construction activity was determined by county. To accomplish this, the number of 2014 building permits per county was obtained from the real estate center at Texas A&M University (REC 2015). Next, energy savings attributable to the 2006 IECC were calculated using the Laboratory's code-traceable, DOE-2.1e simulation, which was developed for the TERP. For the savings calculation, the 2014 Home Innovation Research Labs (HIRL) data¹⁵ were used to determine the appropriate construction data corresponding to housing types. Then the NOx reductions potential from the electricity and natural gas savings in each county was calculated using the US EPA's 2010 eGRID database¹⁶.

In Table 7¹⁷, the 2014 new single-family and 2006 IECC code-compliant building characteristics are shown for each county. The building characteristics reflect those published by the HIRL, ARI, and GAMA for Texas. The 2006 IECC code-compliant characteristics are the minimum building code characteristics required for each county for single-family residences (i.e., Type A.1). In Table 7, the rows are first sorted by the US EPA's non-attainment, affected designation, and then other ERCOT counties alphabetically. Next, in the fourth column, the HIRL's survey classification is listed. The fifth through eighth columns show the HIRL's survey data: average glazing U-value, Solar Heat Gain Coefficient (SHGC), roof insulation, and wall insulation, respectively. In addition, the ninth through twelfth columns show the 2006 IECC minimum requirements for glazing U-value, SHGC, roof insulation, and wall insulation.

All the houses were assumed to have air-conditioner efficiency equal to a SEER of 13¹⁸, furnace efficiency (AFUE) of 0.80, and domestic water heater efficiency of 0.78 for a natural gas type and 1 for an electric type. The values shown in Table 7 represent the only changes that were made to the simulation to obtain the savings calculations. All other variables in the simulation remained the same for the 2014 new single-family and the 2006 IECC code-compliant simulations. In cases where the 2014 values were more efficient than the 2006 IECC requirements, the 2014 values were used in the 2014 new single-family simulations. Otherwise, the 2006 IECC values were used in both simulations. For example, in the Collin County, according to the HIRL's survey data, the roof insulation is R-27.09, which is less than the code-required insulation of R-30. Therefore, R-30 was used in the 2014 simulation.

¹⁴ The three new counties added in the 2003 Legislative session (i.e., Henderson, Hood, and Hunt) were included in the ERCOT region. ¹⁵ For the 2014 report, the 2014 HIRL data (previously, NAHB data) were used. In 2013, the NAHB Research Center announced that it has

changed its name to Home Innovation Research Labs (HIRL). See more at: http://www.homeinnovation.com

¹⁶ This preliminary analysis does not include actual power transfers on the grid, and assumes transmission and distribution losses of 7%. Counties were assigned to utility service districts as indicated.

¹⁷ Hardin, Jefferson, and Orange Counties were removed from Table 7 and Table 8 because since 2012 they are not in the category of

[&]quot;Nonattainment County" based on [http://www.tceq.texas.gov/airquality/sip/bpa/bpa-status], and these counties do not belong to ERCOT region. ¹⁸ Based on the regulation effective.

In Table 8, the code-traceable simulation results for single-family residences are shown for each county. In a similar fashion to Table 7, Table 8 is first divided into the US EPA's non-attainment and affected classifications, followed by an alphabetical list of other ERCOT counties. In the third column, the 2006 IECC climate zone is listed followed by the number of new projected housing units¹⁹ in the fourth column. In the fifth column, the total simulated energy use is listed if all new Construction had been built to pre-code specifications. In the sixth columns, the total county-wide energy use for code-compliant Construction is shown. The values in the fifth and sixth columns come from the associated 24 simulation runs for each county, which were then distributed according to the HIRL's survey data to account for 1 story, 2 story, slab-on-grade, crawlspace, and three different system types (i.e., central air conditioning with electric resistance heating, heat pump heating, or a natural gas-fired furnace). In the seventh column, the total annual electricity savings are shown for each county. A 7% transmission and distribution loss is used in the 2014 report, which represents a fixed 1.07 multiplier for the electricity use. In the eighth and natural gas-fired furnaces and domestic water heaters. Finally, in the tenth column, the total annual natural gas savings are shown for each county.

In

¹⁹ The number of the new housing units in 2014 were obtained from the Real Estate Center at Texas A&M University.

Table 9, the Congestion Management (CM) Zones²⁰ assignments for each county are shown. In Table 10, the annual electricity savings are assigned to CM Zones provider(s) according to

²⁰ ERCOT region has employed the Congestion Management (CM) since 2010, and it is currently divided into four zones: Houston (H), North (N), South (S), and West (W).

Table 9²¹. The total electricity savings for each CM Zone, as shown in Table 10, then entered into the bottom row of Table 11, which is the 2010 US EPA's eGRID database²² for Texas. Next, the county's NOx reductions (lbs) are calculated using the assigned 2010 eGrid proportions (lbs-NOx/MWh) to each CM zone in the county. The calculated NOx reductions are presented in the columns adjacent to the corresponding CM Zone columns. By adding the NOx reductions values in each row, then, the total of the NOx reductions per county (lbs and Tons) is calculated. Counties that do not show NOx reductions represent counties that do not have power plants in eGRID's database.

²¹ Of a total of 202 counties, 138 counties are not included in this table since the corresponding providers could not be assigned for these 138 counties.

²² This preliminary analysis does not include actual power transfers on the grid, and assumes transmission and distribution losses of 7%. Counties were assigned to CM Zones as indicated.

Table 7: 2014 and 2006 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New Single-family Residences

			Division		2014 A	verage			200	6 IECC	
	County	Climate		Glazing U-value		Roof Insulation	Wall Insulation	Glazing U-value		Roof Insulation	Wall Insulation
	county	Zone	East or West	(Btu/hr-ft ² -F)	SHGC	(hr-ft ² -F/Btu)	(hr-ft ² -F/Btu)	(Btu/hr-ft ² -F)	SHOC	(hr-ft ² -F/Btu)	(hr-ft ² -F/Btu)
	BRAZORIA	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	CHAMBERS	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	COLLIN	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	DALLAS DENTON	3	West Texas West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	EL PASO	3	West Texas West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	ELLIS	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	FORT BEND	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	GALVESTON	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
Non-attainment	HARRIS JOHNSON	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75 0.65	0.4	30 30	13
	KAUFMAN	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	LIBERTY	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	MONTGOMERY	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	PARKER	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	ROCKWALL TARRANT	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30 30	13
	WALLER	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	WISE	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	BASTROP	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	BEXAR CALDWELL	2	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.75	0.4	30	13
	COMAL	2	West Texas West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	GREGG	3	East Texas	0.39	0.53	26.12	13.55	0.65	0.4	30	13
	GUADALUPE	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	HARRISON	3	East Texas	0.39	0.53	26.12	13.55	0.65	0.4	30	13
A.65 1	HAYS	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
Affected	NUECES RUSK	2	East Texas East Texas	0.39	0.53	26.12 26.12	13.55	0.75 0.65	0.4	30	13
1	SAN PATRICIO	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	SMITH	3	East Texas	0.39	0.53	26.12	13.55	0.65	0.4	30	13
1	TRAVIS	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	UPSHUR	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	VICTORIA WILLIAMSON	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4	30	13
	WILSON	2	West Texas West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	ANDERSON	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
1	ANDREWS	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	ANGELINA	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	ARANSAS ARCHER	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75 0.65	0.4	30 30	13
	ATASCOSA	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	AUSTIN	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	BANDERA	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	BASTROP	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	BAYLOR BEE	3	West Texas	0.39	0.53	27.09 26.12	13.56	0.65 0.75	0.4	30 30	13
	BELL	2	East Texas West Texas	0.39	0.53	27.09	13.55	0.75	0.4	30	13
	BEXAR	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	BLANCO	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	BORDEN	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	BOSQUE BRAZORIA	2	West Texas East Texas	0.39	0.53	27.09 26.12	13.56	0.75	0.4	30	13
	BRAZOS	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	BREWSTER	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	BRISCOE	4	West Texas	0.39	0.53	27.09	13.56	0.4	NR	38	13
	BROOKS	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	BROWN BURLESON	3	West Texas East Texas	0.39	0.53	27.09 26.12	13.56	0.65 0.75	0.4	30 30	13
	BURNET	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	CALDWELL	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	CALHOUN	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	CALLAHAN	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	CAMERON	2	East Texas	0.39	0.53	26.12 26.119	13.55 13.548	0.75	0.4	30 30	13
1	CHAMBERS CHEROKEE	2	East Texas East Texas	0.39	0.53	26.119	13.548	0.75	0.4	30	13
	CHILDRESS	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	CLAY	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	COKE	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
ERCOT	COLEMAN	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56	0.65	0.4	30	13
	COLORADO	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	COMAL	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	COMANCHE	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
1	CONCHO	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30 30	13
	COOKE	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56	0.65	0.4	30	13
	COTTLE	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	CRANE	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	CROCKETT	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
1	CROSBY CULBERSON	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56	0.65	0.4	30 30	13
	DALLAS	3	West Texas West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	DAWSON	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	DE WITT	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
1	DELTA	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	DENTON DICKENS	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30	13
	DIMMIT	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	DUVAL	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
	EASTLAND	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	ECTOR	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	EDWARDS	2	West Texas West Texas	0.39	0.53	27.09 27.09	13.56	0.75	0.4	30	13
	ELLIS	3	West Texas West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	FALLS	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	FANNIN	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	FAYETTE	2	East Texas	0.39	0.53	26.12	13.55	0.75	0.4	30	13
			West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
	FISHER	3		0.57	0.77	07	10.71				
	FOARD	3	West Texas	0.39	0.53	27.09	13.56	0.65	0.4	30	13
				0.39 0.39 0.39	0.53 0.53 0.53	27.09 26.12 27.09	13.56 13.55 13.56	0.65 0.75 0.65	0.4 0.4 0.4	30 30 30	13 13 13

Table 7: 2014 and 2006 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New Single-family Residences (Continued)

			Division		2014 A	verage			2006	IBCC	
	County	Climate Zone	East or West	Glazing U-value (Btu/hr-ft ² -F)	SHOC	Roof Insulation (hr-ft ² -F/Btu)	Wall Insulation (hr-ft ² -F/Btu)	Glazing U-value (Btu/hr-ft ² -F)	SHOC	Roof Insulation (hr-ft ² -F/Btu)	Wall Insulation (hr-ft ² -F/Btu)
	FRIO	2	West Texas	0.39	0.53	27.09	13.56	0.75	0.4	30	13
	GALVESTON GILLESPIE	2 3 3	East Texas West Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	26.12 27.09 27.09	13.55 13.56 13.56	0.75 0.65 0.65	0.4 0.4 0.4	30 30 30	13 13 13
	GLASSCOCK GOLIAD GONZALES	2	West Texas East Texas West Texas	0.39 0.39	0.53 0.53	27.09 26.12 27.09	13.55 13.55 13.56	0.75	0.4 0.4 0.4	30 30 30	13 13 13
	GRAYSON GRIMES	3	West Texas East Texas	0.39	0.53	27.09 27.09 26.12	13.56	0.65	0.4 0.4	30	13
	GUADALUPE HALL	2	West Texas	0.39	0.53	27.09 27.09	13.56	0.75	0.4	30	13
	HAMILTON HARDEMAN	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30	13
	HARRIS HASKELL	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4	30 30	13 13
	HAYS HENDERSON	2	West Texas East Texas	0.39	0.53	27.09 26.12	13.56 13.55	0.75	0.4	30 30	13 13
	HIDALGO HILL	2	East Texas West Texas	0.39 0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4	30 30	13 13
	HOOD HOPKINS	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30 30	13
	HOUSTON HOWARD	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4	30 30	13
	HUDSPETH HUNT	3	West Texas West Texas	0.39 0.39	0.53 0.53	27.09 27.09	13.56 13.56	0.65	0.4 0.4	30 30	13 13
	IRION JACK	3	West Texas West Texas	0.39 0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30 30	13 13
	JACKSON JEFF DAVIS JIM HOGG	2 3 2	East Texas West Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	26.12 27.09 27.09	13.55 13.56 13.56	0.75 0.65 0.75	0.4 0.4 0.4	30 30 30	13 13 13
	JIM HOGG JIM WELLS JOHNSON	2 2 3	West Texas East Texas West Texas	0.39 0.39	0.53 0.53	27.09 26.12 27.09	13.55 13.55 13.56	0.75 0.65	0.4 0.4 0.4	30 30 30	13 13 13
	JONES KARNES	3	West Texas West Texas	0.39 0.39	0.53	27.09 27.09 27.09	13.56	0.65	0.4 0.4	30	13
	KAUFMAN KENDALL	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56	0.65	0.4	30	13
	KENEDY KENT	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55	0.75	0.4	30	13
	KERR KIMBLE	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30	13 13
	KING KINNEY	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.68	0.4 0.4	30 30	13 13
	KLEBERG KNOX	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4	30 30	13 13
	LA SALLE LAMAR	2	West Texas East Texas	0.39 0.39	0.53	27.09 26.12	13.56 13.55	0.75	0.4 0.4	30 30	13 13
	LAMPASAS LAVACA	3	West Texas East Texas	0.39	0.53 0.53	27.09 26.12	13.56 13.55	0.68	0.4 0.4	30 30	13 13
	LEE LEON	2	West Texas East Texas	0.39 0.39	0.53 0.53	27.09 26.12	13.56 13.55	0.75	0.4 0.4	30 30	13 13
	LIMESTONE LIVE OAK	2	West Texas East Texas	0.39 0.39	0.53	27.09 26.12	13.56 13.55	0.75	0.4	30 30	13
	LLANO LOVING	3	West Texas West Texas East Texas	0.39	0.53	27.09 27.09	13.56	0.65	0.4	30 30	13
	M ADISON M ARTIN M ASON	2 3 3	East Texas West Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	26.12 27.09 27.09	13.55 13.56 13.56	0.75 0.65 0.65	0.4 0.4 0.4	30 30 30	13 13 13
	MATAGORDA MAVERICK	2	East Texas West Texas	0.39 0.39	0.53	26.12 27.09	13.55 13.55	0.75	0.4 0.4	30	13
	MCCULLOCH MCLENNAN	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56	0.65	0.4	30	13
	MCMULLEN MEDINA	2	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.75	0.4	30	13
ERCOT	MENARD MIDLAND	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30 30	13 13
	MILAM MILLS	2	West Texas West Texas	0.39 0.39	0.53	27.09 27.09	13.56 13.56	0.75	0.4	30 30	13 13
	MITCHELL MONTAGUE	3 3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30 30	13
	MONTGOMERY MOTLEY	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4	30 30	13
	NACOGDOCHES NAVARRO	3	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.65	0.4	30 30	13
	NOLAN NUECES	3	West Texas East Texas	0.39 0.39	0.53 0.53	27.09 26.12	13.56 13.55	0.65	0.4 0.4	30 30	13 13
	PALO PINTO PARKER	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56	0.65	0.4	30 30	13
	PECOS PRESIDIO	3 3 3	West Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	27.09 27.09 27.09	13.56 13.56 13.56	0.65	0.4	30 30	13 13
	RAINS REAGAN REAL	3	West Texas West Texas West Texas	0.39 0.39	0.53 0.53	27.09 27.09 27.09	13.56 13.56	0.65 0.65 0.75	0.4 0.4 0.4	30 30 30	13 13 13
	RED RIVER REEVES	3	East Texas West Texas	0.39	0.53	26.12 27.09	13.55	0.65	0.4	30	13
	REFUGIO ROBERTSON	2	East Texas East Texas	0.39	0.53	26.12 26.12	13.55 13.55	0.75	0.4	30 30	13 13
	ROCKWALL RUNNELS	3	West Texas West Texas	0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4	30 30	13
	RUSK SAN PATRICIO	3	East Texas East Texas	0.39	0.53	26.12 26.12	13.55 13.55	0.65	0.4	30 30	13 13
	SAN SABA SCHLEICHER	3	West Texas West Texas	0.39 0.39	0.53	27.09 27.09	13.56 13.56	0.65	0.4 0.4	30 30	13 13
	SCURRY SHACKELFORD	3	West Texas West Texas	0.39	0.53 0.53	27.09 27.09	13.56 13.56	0.65	0.4	30 30	13
	SMITH SOMERVELL	3	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.65	0.4	30 30	13
	STARR STEPHENS	2 3	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4	30 30	13 13
	STERLING STONEWALL	3	West Texas West Texas	0.39	0.53	27.09 27.09 27.09	13.56 13.56 13.56	0.65	0.4	30 30	13 13 13
	SUTTON TARRANT TAYLOR	3 3 3	West Texas West Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	27.09 27.09 27.09	13.56 13.56 13.56	0.65 0.65 0.65	0.4 0.4 0.4	30 30 30	13 13 13
	TERRELL THROCKMORTON	3	West Texas West Texas West Texas	0.39 0.39	0.53 0.53	27.09 27.09 27.09	13.56 13.56	0.65	0.4 0.4 0.4	30 30 30	13 13 13
	TITUS TOM GREEN	3	West Texas East Texas West Texas	0.39 0.39	0.53 0.53	27.09 26.12 27.09	13.56 13.55 13.56	0.65	0.4	30 30 30	13 13 13
	TRAVIS UPTON	2	West Texas West Texas	0.39	0.53	27.09 27.09 27.09	13.56 13.56	0.75	0.4 0.4	30	13 13 13
	UVALDE VAL VERDE	2	West Texas West Texas	0.39 0.39	0.53	27.09 27.09	13.56 13.56	0.75	0.4 0.4	30 30	13 13
	VAN ZANDT VICTORIA	3	West Texas East Texas	0.39	0.53	27.09 26.12	13.56 13.55	0.68	0.4	30 30	13 13
	WALLER WARD	2	East Texas West Texas	0.39 0.39	0.53 0.53	26.12 27.09	13.55 13.56	0.75	0.4 0.4	30 30	13 13
	WASHINGTON WEBB	2	East Texas West Texas	0.39 0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4 0.4	30 30	13 13
	WHARTON WICHITA	2	East Texas West Texas	0.39	0.53	26.12 27.09	13.55 13.56	0.75	0.4	30 30	13
	WILBARGER WILLACY	3	West Texas East Texas	0.39	0.53	27.09 26.12	13.56 13.55	0.65	0.4	30 30	13 13
	WILLIAMSON WILSON WINKLER	2 2 3	West Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	27.09 27.09 27.09	13.56 13.56 13.56	0.75 0.75 0.68	0.4 0.4 0.4	30 30 30	13 13 13
	WINKLER WISE YOUNG	3	West Texas West Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	27.09 27.09 27.09	13.56 13.56 13.56	0.68	0.4 0.4 0.4	30 30 30	13 13 13
	YOUNG ZAPATA ZAVALA	3 2 2	West Texas West Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	27.09 27.09 27.09	13.56 13.56 13.56	0.65 0.75 0.75	0.4 0.4	30 30 30	13 13 13
		<u> </u>		0.39		ar.09	1.7.30	w./J			-13

	2014 Summary TRY 2008								
	County	Climate Zone	No. of Projected Units (2014)	Precode Total Annual Elec. Use (MWh/yr)	Code- compliant Total Annual Elec, Use (MWh/yr)	Total Annual Elec. Savings (MWh/yr) w/ 7% of T&D Loss	Precode Total NG Use (Therm/yr)	Code- compliant Total NG Use (Therm/yr)	Total Annual NG Savings (Therm/yr)
	BRAZORIA	3	2,466	33,761	31,919	1,970	489,792	462,185	27,607
	CHAMBERS COLLIN	3	377 7,115	5,045	4,777	287 8,166	77,223	73,242	3,980 120,103
	DALLAS	3	3,974	122,535	114,903 64,120	4,553	1,053,412 590,991	933,308 523,442	67,549
	DENTON	3	5,041	86,817	81,409	5,786	746,346	661,252	85,094
	EL PASO ELLIS	2 3	2,260	34,407	32,308	2,245	420,172 182,913	367,061	53,111 20,620
	FORT BEND	3	8,465	111,235	105,176	6,483	1,978,372	1,844,161	134,211
Nonattain-ment	GALVESTON	3	2,638	34,661	32,774	2,019	617,658	574,707	42,950
County	HARRIS JOHNSON	2	18,533 775	243,534 13,176	230,268	14,194 924	4,331,385 129,341	4,037,548	293,837 14,581
	KAUFMAN	2	239	4,066	3,800	285	39,729	35,239	4,491
	LIBERTY	2	300	3,944	3,729	230	70,110	65,276	4,833
	MONTGOMERY PARKER	3	5,511 382	72,418	68,473 6,073	4,221 456	1,287,987 63,501	1,200,611 56,323	87,376 7,178
	ROCKWALL	2	965	16,419	15,342	1,152	160,414	142,281	18,133
	TARRANT	2	5,282	89,800	83,916	6,296	881,521	782,145	99,376
	WALLER WISE	2	53	66 902	62 843	63	1,169 8,810	1,089 7,814	79
	BASTROP	2	167	2,464	2,319	154	43,844	38,834	5,010
	BEXAR CALDWELL	2	3,324	52,370	49,669	2,890	345,874	309,824	36,050
	COMAL	3	258	4,285	4,027 24,267	277 1,412	33,192 168,983	29,422	3,770 17,613
	GREGG	3	197	2,913	2,737	188	64,159	59,719	4,440
	GUADALUPE HARRISON	2	766	11,714	11,081	676 50	87,885	78,457	9,428
1 mm	HARRISON HAYS	2	1,757	782	735	1,566	17,404 218,321	16,209 193,149	1,195 25,173
Affected County	NUECES	3	1,262	17,226	16,228	1,068	249,929	234,329	15,600
	RUSK SAN PATRICIO	2	3 236	39	37	200	879	813	66 2,917
	SANPATRICIO	2	383	3,221 5,645	3,035	360	46,738	43,821	8,637
	TRAVIS	3	5,729	90,976	85,448	5,915	824,498	729,432	95,066
	UPSHUR	3	13	195	182	13	4,424	3,918	506
	VICTORIA WILLIAMSON	2 3	163	2,189 62,424	2,065	133 4,058	37,819 565,736	35,193 500,505	2,626 65,230
	WILSON	2	34	520	492	30	3,901	3,482	418
	ANDERSON	2	3	39	37	2	879	813	66
	ANDREWS ANGELINA	3	53	853	806	50	9,662 22,572	8,491 20,872	1,171 1,700
	ARANSAS	2	169	2,444	2,300	154	29,705	28,150	1,556
	ARCHER	3	9	158	149	10	1,757	1,540	217
	ATASCOSA AUSTIN	2	67	1,011 329	962	53	7,326 4,761	6,489 4,498	838 263
	BANDERA	2	1	16	15	1	98	4,498	11
	BAYLOR	3	0	0		0	0	0	
	BEE BELL	2	11 1,848	154 29,850	145 28,311	9 1,646	2,178 270,041	2,055	123 32,661
	BLANCO	3	3	27,850	47	3	385	341	43
	BORDEN	3	19	271	256	16	9,220	8,090	1,130
	BOSQUE BRAZOS	2	955	48 13,077	46 12,363	3 764	438 189,457	385	53 10,468
	BREWSTER	3	4	66	62	4	579	509	70
	BRISCOE	4	7	130	122	9	2,256	1,985	271
	BROOKS BROWN	2	0	0	0 1,103	0 64	0 10,521	9,249	0 1,272
	BURLESON	2	8	1,100	1,103	6	1,587	1,499	88
	BURNET	3	261	4,335	4,073	280	33,492	29,709	3,783
	CALHOUN CALLAHAN	2	74	1,036	977 79	63 5	14,653 834	13,824	829
	CAMERON	2	1,179	17,595	16,530	1,140	166,678	157,636	9,042
	CHEROKEE	2	6	78	74	5	1,759	1,626	
	CHILDRESS CLAY	3	0	0		0	0 976	0	
	COKE	3	0	0	0	0	0	0	0
ERCOT	COLEMAN COLORADO	3	0	0			0	0	0 110
	COLORADO	2 3	3	137	129	8	1,984 438	1,874	53
	CONCHO	3	1	17	16	1	145	127	17
	COOKE CORYELL	3	26			30	3,858	3,419	
	CORVELL	2	114	1,841		102	16,658	14,644	
	CRANE	3	1	17	16	1	166	146	20
	CROCKEIT CROSBY	3	19	315	297	19	2,750	2,419	332
	CROSBY	3	1	71	67	4	2,426	2,129	297
	DAWSON	3	7	195	184	12	6,452	5,634	818
	DE WITT DELTA	2	5	67	63 32	4	1,160 296	1,080	81
	DICKENS	3	0			0	296	262	
	DIMMIT	2	5	79	75	4	428	388	40
	DUVAL EASTLAND	2	0	0		0	0	0	
	ECTOR	3	430	6,923	6,541	409	78,392	68,888	9,504
	EDWARDS	2	0	0	0	0	0	0	0
	ERATH FALLS	3	42	678	641 166	39	7,804	6,889 1,604	915 220
	FALLS	3	10	175	166	10	1,824	1,604	220
	FAYEITE	2	6	79	75	5	1,402	1,307	95
	FISHER FOARD	3	0	0		0	0	0	
								147	19
	FRANKLIN	3	1	17	16	1	166	147	1)
	FRANKLIN FREESTONE FRIO	3 2 2	7	112 196	106	6 10	1,161	1,021	140

5	Savings			4 Summary		, 11051		5 (001	
	County	Climate Zone	No. of Projected Units (2014)	Precode Total Annual Elec. Use (MWh/yr)	Code- compliant Total Annual Elec. Use (MWh/yr)	Total Annual Elec. Savings (MWh/yr) w/ 7% of T&D Loss	Precode Total NG Use (Therm/yr)	Code- compliant Total NG Use (Therm/yr)	Total Annual NG Savings (Therm/yr)
	GILLESPIE GLASSCOCK	3	39	619	582	40	5,613	4,966	647
	GOLIAD GONZALES	2	0	0	0	0 24	0	0 2,765	0 332
	GRAYSON GRIMES	3	203	3,453	3,226	242	33,855	29,998	3,858
	HALL	3	0	0	186	0	0	0	0
	HAMILTON HARDEMAN	3	2	32	30	2	332	292	40
	HASKELL HENDERSON	3	2 71	32 1,047	31 984	2 67	372 23,363	328 21,762	44 1,601
	HIDALGO HILL	2	2,871	39,865 160	37,476 151	2,557	434,889 1,658	407,676	27,213 200
	HOPKINS HOUSTON	3	8	136	127 62	10	1,330	1,180	150
	HOWARD	3	30	713	672	43	7,123	6,273	851
	HOOD HUDSPETH	2 3	117	1,989	1,859	139	19,526	17,325	2,201
	HUNT IRION	2	69	1,174	1,097	82	11,507	10,196	1,311 0
	JACK JACKSON	3	5	81	76 203	5	929 3.712	820 3.455	109 258
	JEFF DAVIS JIM HOGG	3	0	0	0	0	0	0	0
	JIMWELLS	2	26	355	334	22	5,149	4,828	321
	JONES KARNES	3	1 70	16	15 999	1 54	186 7,791	164 6,931	22 860
	KENDALL KENEDY	3	380	5,741	5,460	301 0	41,427	36,756 0	4,671
	KENT KERR	3	0	0	0	0	0 9,355	0 8,276	0 1,079
	KIMBLE KING	3	2	32	30	2	9,333 322 0	283	39
	KINNEY	2	1	15	14	1	115	102	12
	KLEBERG KNOX	2 3	36	488	461	30	6,693	6,248 0	445
	LA SALLE LAMAR	2	11 27	165	157	8 23	1,028	929 7.942	99 615
	LAMPASAS LAVACA	3	155	2,473	2,343	139	25,699 2.416	22,601	3,099 179
	LEE	2	3	48	45	3	432	383	49
	LEON LIMESTONE	2	0	0 64	0 60	0	0 663	0	0 80
	LIVEOAK LLANO	2 3	12 202	164 3,208	154 3,013	10 209	2,377 29,071	2,228 25,719	148 3,352
	LOVING MADISON	3	0	0	0	0	0 935	0 871	0 63
	MARTIN	3	3	48	46	3	547	481	66
	MASON MATAGORDA	3	222	64 2,982	60 2,812	4	576 51,509	509 47,932	66 3,577
	MAVERICK MCCULLOCH	2 3	70	1,052	1,002	54	6,542	5,913	629
ERCOT	MCLENNAN MCMULLEN	2	606	9,668	9,161	542	100,476	88,361	12,115
	MEDINA MENARD	2 3	26	398	376	23	2,983	2,663	320
	MIDLAND MILAM	3	917	14,764	13,949	872	167,176	146,907 995	20,269
	MILLS	3	0	0	0	0	0	0	0
	MITCHELL MONTAGUE	3	5	81	76	5	929 1,835	820	109 209
	MOTLEY NACOGDOCHES	3	0	418	0	0	0 9,381	0 8,674	0 707
	NAVARRO NOLAN	3	23	367	348 0	21	3,813	3,354	460
	PALO PINTO	3	5	81	76	5	929	820	109
	PECOS PRESIDIO	3	7	111 143	105	7	1,129	991 1,275	137 176
	RAINS REAGAN	3	3	51	48	4	499 182	442	56
	REAL RED RIVER	2	0	0	0	0	0	0	0 182
	REEVES	3	3	48	46	3	2,333 547 1,392	481	66
	ROBERTSON	2	51	670	634	39	11,919	11,111	809
	RUNNELS SAN SABA	3	4	64	60	4	645 0	567 0	78 0
	SCHLEICHER SCURRY	3	1 8	16	15	1 6	161 4,207	142	20 518
	SHACKELFORD SOMERVELL	3	0	0	0	0	0	0	0 339
	STARR	2	0	0	0	0	0	0	0
	S TEPHENS S TERLING	3	0	0	0	0	0	0	0
	STONEWALL SUTTON	3	0	0	0	0	0	0	0
	TAYLOR TERRELL	3	278	4,487	4,244	260	51,656	45,601	6,055
	THROCKMORTON TITUS	3	0 22	0 322	0	0	0 6,972	0 6,471	0 501
	TOM GREEN UPTON	3	229	3,643	3,442	215	36,921	32,435	4,486
	UVALDE	2	13	199	188	11	1,492	1,332	160
	VAL VERDE VAN ZANDT	2 3	81	1,239	1,172	72	9,293 1,496	8,296 1,327	997 169
	WARD WASHINGTON	3	19 83	306 1,091	289 1,031	18 64	3,464 19,398	3,044 18,082	420 1,316
	WEBB WHARTON	2	954 90	14,344	13,657	735	89,165 20.882	80,590 19,432	8,574 1,450
	WICHITA	3	93	1,630	1,534	103	20,331 437	17,867	2,464
	WILLACY	2	98	1,361	1,279	87	14,845	13,916	929
	WINKLER WISE	3	0	902	0 843	0 63	0 8,810	0 7,814	0 996
	YOUNG ZAPATA	3	33	533	504	31	6,132	5,413	719
	ZAVALA TOTAL	2	11 99,567	173	165	992,459	941	853	88 1,586,334
	NOTAL STAL		99,567			92,459			1,000,034

Table 8: 2014 Annual	Electricity Saving	s from New Single	e-family Residence	s (Continued)

6	Plant		CM Zones	Percentage	
County	Plant	н	N	W	S
Andrew s	Fullerton	0.10	0.58	99.31	0.0
Atascosa	San Miguel	11.04	0.74	0.04	88.1
	Bastrop Energy Center Lost Pines 1 Pow er Project	-			
Bastrop	Sim Gideon 1	11.04	0.74	0.04	88.1
	Sim Gideon 2	-	-		
	Sim Gideon 3				
	Arthur Von Rosenberg				
	Covel Gardens	-			
	JK Spruce	-			
	J K Spruce 2 J T Deely 1	-			
	J T Deely 2	-			
	Leon Creek				
Bexar	O W Sommers 1	11.04	0.74	0.04	88.1
	O W Sommers 2	_			
	University of Texas at San Antonio	-			
	V H Braunig 1 V H Braunig 2	-			
	V H Braunig 3				
	V H Braunig 6				
	W B Tuttle				
Bosque	Bosque County Peaking	13.35	81.87	3.95	0.8
	BASF Freeport Works	_			
	Chocolate Bayou Plant	_			
Brazoria	Chocolate Bayou Works Dow Chemical Texas Operation	99.06	0.01	0.00	0.9
	Freeport Energy Center (expansion)		2.01	2.00	0.0
	Oyster Creek Unit VIII				
	Sw eeny Cogen Facility				
	Bryan 3	_			
	Bryan 4	-			
	Bryan 5	-			
Brazos	Bryan 6 Bryan 7	13.09	72.93	3.52	10.4
	Dansby 1	- 1			
	Dansby 2				
	Dansby 3				
	Point Comfort Operations				
Calhoun	Seadrift Coke LP	11.04	0.74	0.04	88.1
	Union Carbide Seadrift Cogen La Palma 4				
	La Palma 4 La Palma 5	-			
Cameron	La Palma 6	11.04	0.74	0.04	88.1
	La Palma 7				
	Silas Ray				
	Baytow n Energy Center	_			
Chambers	Cedar Bayou 1	99.06	0.01	0.00	0.9
	Cedar Bayou 2 Enterprise Products Operating	-			
	Stryker Creek 1				
Cherokee	Stryker Creek 2	13.35	81.87	3.95	0.8
	Stryker Creek 3				
Coke	Jameson Gas Processing Plant	0.00	0.00	0.00	0.0
	Ray Olinger 2	-			
Collin	Ray Olinger 3	13.35	81.87	3.95	0.8
	Ray Olinger 4 Ray Olinger 5	- 10.00	01.07	0.00	0.0
	University of Texas at Dallas				
	C E New man				
D	Lake Hubbard 1		o 	0.05	
Dallas	Lake Hubbard 2	13.35	81.87	3.95	0.8
	Mountain Creek	-			
D	State Farm Insur Support Center Central Spencer 4				
Denton	Spencer 5	13.35	81.87	3.95	0.8
	Odessa Ector Generating Station				
Ector	Quail Run Energy Center	0.97	0.60	91.36	7.0
	Quail Run Energy Center		0.00	01.00	1.0
	Quail Run Energy Center Ennis Tractebel Pow er LP				
Elis	Midlothian Energy Facility	13.35	81.87	3.95	0.8
Fannin	Valley	13.35	81.87	3.95	0.8
	Fayette Pow er Project	11.89	30.55	1.48	56.0
Fayette	Winchester Power Park	11.89	30.55	1.48	56.U
	Brazos Valley Generating Facility	-			
	W A Parish 1	_			
	W A Parish 2	-			
Fort Bend	W A Parish 3 W A Parish 4	99.06	0.01	0.00	0.9
	W A Parish 5		2.01	2.50	5.0
	W A Parish 7 (Uprated)				
	W A Parish 8	_			
	W A Parish GT1				
Freestone	Big Brow n 1 (Upgrade)	- 40.00	04.07	3.05	
redstone	Big Brow n 2 Freestone Power Generation I P	13.35	81.87	3.95	0.8
	Freestone Pow er Generation LP Pearsall 1				
Frio	Pearsall 2	0.10	0.58	99.31	0.0
	Pearsall 3				
	Green Pow er 2				
	P H Robinson				
	Pow er Station 4	_			
Galveston	S&L Cogeneration	99.06	0.01	0.00	0.9
	Texas City Plant Union Carbide	-			
	Texas City Power Plant	-			
Goliad	Valero Refining Texas City	0.00	0.00	0.00	
Goliad Grimes	Coleto Creek	0.00	0.00	0.00	0.0
0.4180	Gibbons Creek Guadalupe Generating Station				
Guadalupe		11.04	0.74	0.04	88.1

Table 9: Allocation of CM Zones for Each of Applicable ERCOT Counties

County	Plant			Percentage	
		н	N	w	S
	AES Deepwater Altura Cogen				
	Bayou Cogen Plant				
	Cedar Bayou 4				
	Channel Energy Center				
	Channelview Cogeneration Plant				
	Clear Lake Cogeneration Ltd Deepw ater				
	Deer Creek Energy Center				
	Deer Park Energy Center				
	Exelon LaPorte Generating Station				
	ExxonMobil Baytow n Refinery				
	ExxonMobil Baytow n Turbine Greens Bayou 5				
	Greens Bayou Others				
	Hiram Clarke				
larris	Houston Chemical Complex Battleground	99.06	0.01	0.00	0.93
	Pasadena Deservative				
	Pasadena Cogeneration Rice University				
	Sam Bertron 1				
	Sam Bertron 2				
	Sam Bertron 3				
	Sam Bertron 4				
	Sam Bertron Others				
	San Jacinto Steam Electric Station Shell Deer Park				
	T H Wharton				
	Texas Medical Center				
	Texas Petrochemicals				
	Valero Refining Texas Houston				
	Webster Westhollow Technology Center				
twe	Hays Energy Project	44.04	0.74	0.04	00.4
Hays	Southwest Texas State University	11.04	0.74	0.04	88.1
lenderson	Trinidad	13.35	81.87	3.95	0.8
	Frontera Energy Center				
lidalgo	Hidalgo Energy Center J L Bates 1	11.04	0.74	0.04	88.1
	J L Bates 2		0.71	0.01	00.11
	Magic Valley Generating Station				
	DeCordova Steam Electric Station 1				
hood	DeCordova Steam Electric Station CTs	13.35	81.87	3.95	0.8
	Wolf Hollow I, L.P. Rig Spring Carbon Plant				
low ard	Big Spring Carbon Plant C R Wing Cogen Plant	0.20	0.59	98.34	0.8
	Engine Plant				
lunt	Greenville	11.08	2.24	0.11	86.57
	Pow erlane Plant				
Jack	Jack County Project	13.35	81.87	3.95	0.84
Johnson	Jack Energy Facility Johnson County	13.35	81.87	3.95	0.84
Kaufman	Forney Energy Center	13.35	81.87	3.95	0.84
amar	Lamar Pow er Project	13.35	81.87	3.95	0.84
ana	Paris Generating Station	13.33	01.07	3.95	0.8-
imestone	Limestone 1	0.00	0.00	0.00	0.0
lano	Limestone 2 (Uprated)	11.04	0.74	0.04	88.1
	Thomas C Ferguson Baylor University Cogen	11.04	0.74	0.04	00.1
/cLennan	Lake Creek	13.35	81.87	3.95	0.8
ACCOUNTER 1	Tradinghouse 1	13.33	01.07	3.55	0.0-
	Tradinghouse 2				
Ailam	Sandow 5	11.04	0.74	0.04	88.1
	Sandow No 4 Sandow Station	11.04	0.74	0.04	00.1
Aitchell	Morgan Creek	0.10	0.58	99.31	0.0
lolan	TXU Sw eetw ater Generating Plant	0.10	0.58	99.31	0.0
	Barney M. Davis 1				
	Barney M. Davis 2 Barney M. Davis Power Plant (repowering)				
	Celanese Engineering Resin				
	Corpus Christi		0.74		00.4
lueces	Corpus Christi Energy Center	11.04	0.74	0.04	88.1
	Corpus Refinery				
	Nueces Bay Power Plant (repowering)				
	Valero Refinery Corpus Christi East Valero Refinery Corpus Christi West				
	R W Miler 1				
Palo Pinto	R W Miller 2	13.35	81.87	3.95	0.8
	R W Miller 3	13.35	01.07	3.95	0.6
	R W Miller Others				
Parker	North Texas Weatherford	13.35	81.87	3.95	0.8
ecos	Weatherford Yates Gas Plant	0.10	0.58	99.31	0.0
leagan	Midkiff Plant	0.10	0.58	99.31	0.0
	Oak Grove 1	5.10	2.00		0.0
lobertson	Oak Grove 2	11.34	11.28	0.55	76.8
	Twin Oaks Pow er One 1	11.34	11.20	0.55	/0.0
huak	Tw in Oaks Pow er One 2		A ***	0.00	
lusk	Martin Lake	0.00	0.00	0.00	0.0
San Patricio	Gregory Pow er Facility Ingleside Cogeneration	11.04	0.74	0.04	88.1
Scurry	EG178 Facility	0.10	0.58	99.31	0.0
	Eagle Mountain	13.35	81.87	3.95	0.8
Tarrant			01.8/	3.95	0.8

Table 9: Allocation of CM Zones for Each of Applicable ERCOT Counties (Continued)

0	Plant	CM Zones Percentage						
County	Plant	н	N	W	S			
	Central Utility Plant							
	Decker Creek 1							
	Decker Creek 2							
	Decker Creek GT (1-4)							
Fravis	Hal C Weaver Power Plant	11.04	0.74	0.04	88.18			
	Holly Street 3							
	Holly Street 4							
	Mueller Energy Center							
	Sand Hill							
Upton	Benedum Plant	0.10	0.58	99.31	0.01			
	Sam Rayburn							
Victoria	Victoria (refurbish)	11.04	0.74	0.04	88.18			
	Victoria Texas Plant							
	Permian Basin 5							
Ward	Permian Basin 6	0.10	0.58	99.31	0.01			
	Permian Basin Others							
	Laredo 1							
Webb	Laredo 2	11.04	0.74	0.04	88.18			
WEDD	Laredo 3	11.04	0.74	0.02				
	Laredo Energy Center (refurbish)							
	Colorado Bend Energy Center							
Wharton	Colorado Bend Energy Center	11.04	0.74	0.04	88.18			
wharton	Colorado Bend Energy Center	11.04	0.74	0.04	00.10			
	New gulf Cogen							
Wichita	PPG Industries Works 4	0.10	0.58	99.31	0.01			
Wichita	Signal Hill Wichita Falls Pow er LP	0.10	0.56	55.51	0.01			
Wilbarger	Oklaunion	13.35	81.87	3.95	0.84			
Wise	Bridgeport Gas Processing Plant	13.35	81.87	3.95	0.94			
MPR.	Wise County Pow er LP	13.35	01.07	3.95	0.84			
Young	Graham 1	13.35	81.87	3.95	0.84			
loung	Graham 2	13.35	01.0/	3.95	0.04			

Table 9: Allocation of CM Zones for Each of Applicable ERCOT Counties (Continued)

Table 10: 2014 Totalized Annual Electricity Savings by CM Zone from New Single-family Residences

CM Zone	Total Electricity Savings by CM Zone (MWh) 2014-TRY 2008
Houston (H)	30,589
North (N)	24,177
West (W)	1,784
South (S)	16,062
Total	72,612

Area	County	н	NOx Reductions (lbs)	N	NOx Reductions (lbs)	w	NOx Reductions (lbs/year)	s	NOx Reductions (lbs)	Total Nox Reductions (lbs)	Total Nox Reductions (Tons)
	Brazoria	0.0562032	1719.22	0.0000071	0.17	0.0000003	0.00	0.0005265	8.46	1727.85	0.86
	Chambers	0.0204500	625.55	0.0000026	0.06	0.0000001	0.00	0.0001916	3.08	628.69	0.31
Houston- Galveston Area	Fort Bend	0.0313463	958.87	0.0000040	0.10	0.0000002	0.00	0.0002937	4.72	963.68	0.48
Galveston Area	Galveston	0.0226620	693.22	0.0000029	0.07	0.0000001	0.00	0.0002123	3.41	696.70	0.35
	Harris	0.1486911	4548.38	0.0000189	0.46	0.0000009	0.00	0.0013930	22.37	4571.21	2.29
	Collin	0.0012932	39.56	0.0079329	191.79	0.0003832	0.68	0.0000809	1.30	233.34	0.12
	Dallas	0.0024826	75.94	0.0152295	368.20	0.0007356	1.31	0.0001554	2.50	447.95	0.22
	Denton	0.0001267	3.87	0.0007770	18.79	0.0000375	0.07	0.0000079	0.13	22.85	0.0
	Tarrant	0.0004742	14.50	0.0029089	70.33	0.0001405	0.25	0.0000297	0.48	85.56	0.0
	Ellis	0.0029920	91.52	0.0183544	443.75	0.0008865	1.58	0.0001873	3.01	539.87	0.2
Dallas/ Fort	Johnson	0.0007256	22.20	0.0044512	107.62	0.0002150	0.38	0.0000454	0.73	130.92	0.0
Worth Area	Kaufman	0.0059718	182.68	0.0366343	885.71	0.0017695	3.16	0.0003738	6.00	1077.54	0.5
	Parker	0.0000012	0.04	0.0000075	0.18	0.0000004	0.00	0.0000001	0.00	0.22	0.0
	Henderson	0.0006908	21.13	0.0042376	102.45	0.0002047	0.37	0.0000432	0.69	124.64	0.0
	Hood	0.0050771	155.31	0.0311454	753.00	0.0015044	2.68	0.0003178	5.10	916.10	0.4
	Hunt	0.0088463	270.60	0.0047066	113.79	0.0002273	0.41	0.0652823	1048.55	1433.35	0.7
San Antonio	Bexar	0.0138906	424.91	0.0009368	22.65	0.0002273	0.08	0.1109355	1781.82	2229.46	1.1
Area	Guadalupe	0.0032029	97.97	0.0002160	5.22	0.0000452	0.08	0.0255795	410.85	514.07	0.2
	Bastrop	0.0032029	103.34	0.0002100	5.51	0.0000104	0.02	0.0253793	433.34	542.21	0.2
Austin Area	Hays	0.0008331	25.48	0.0002278	1.36	0.0000110	0.02	0.0209798	106.87	133.72	0.2
Ausuil Aitd	Hays Travis	0.0008331	158.41	0.0003493	8.44	0.0000027	0.00	0.0066557	664.28	831.16	0.0
Corpus Christi	Nueces	0.0031783	393.31	0.0003493	20.97	0.0000109	0.03	0.1026870	1649.34	2063.69	1.0
Area	San Patricio	0.0128378	46.19	0.0001018	2.46	0.0000419	0.07	0.1020870	193.69	2003.09	0.1
Victoria Area		0.0013100	64.82	0.0001018	3.46	0.0000049	0.01	0.0120391	271.84	340.13	0.1
victoria Area	Victoria	0.0021192		0.0001429	0.56	0.0000009		0.0109244	0.00		0.1
	Andrews		0.11 67.92				6.96		2.23	7.63	
	Bosque	0.0022204		0.0136212	329.32	0.0006579	1.17	0.0001390		400.65	0.2
	Brazos	0.0024089	73.69	0.0112305	271.52	0.0005425	0.97	0.0047829	76.82	423.00	0.2
	Calhoun	0.0009466	28.96	0.0000638	1.54	0.0000031	0.01	0.0075598	121.42	151.93	0.0
	Cameron	0.0063536	194.35	0.0004285	10.36	0.0000207	0.04	0.0507425	815.01	1019.77	0.5
	Cherokee	0.0027392	83.79	0.0168033	406.25	0.0008116	1.45	0.0001714	2.75	494.24	0.2
	Ector	0.0019215	58.78	0.0006604	15.97	0.0911346	162.58	0.0146527	235.35	472.67	0.2
	Fannin	0.0000041	0.12	0.0000249	0.60	0.0000012	0.00	0.0000003	0.00	0.73	0.0
	Fayette	0.0051867	158.66	0.0103217	249.55	0.0004986	0.89	0.0283993	456.14	865.24	0.4
	Freestone	0.0047643	145.74	0.0292268	706.62	0.0014117	2.52	0.0002982	4.79	859.66	0.4
	Hidalgo	0.0053716	164.31	0.0003623	8.76	0.0000175	0.03	0.0428994	689.04	862.14	0.4
	Howard	0.0002411	7.38	0.0007641	18.47	0.1283942	229.05	0.0009490	15.24	270.14	0.1
	Jack	0.0030783	94.16	0.0188839	456.56	0.0009121	1.63	0.0001927	3.09	555.44	0.2
	Lamar	0.0040001	122.36	0.0245388	593.28	0.0011853	2.11	0.0002504	4.02	721.77	0.3
Other ERCOT	Llano	0.0040314	123.32	0.0002719	6.57	0.0000131	0.02	0.0321966	517.14	647.05	0.3
counties	McLennan	0.0056576	173.06	0.0347066	839.10	0.0016764	2.99	0.0003541	5.69	1020.84	0.5
	Milam	0.0012686	38.81	0.0000856	2.07	0.0000041	0.01	0.0101316	162.73	203.61	0.1
	Mitchell	0.0000311	0.95	0.0001910	4.62	0.0324260	57.85	0.0000019	0.03	63.45	0.0
	Nolan	0.0000293	0.89	0.0001795	4.34	0.0304745	54.37	0.0000018	0.03	59.63	0.0
	Palo Pinto	0.0036129	110.52	0.0221635	535.85	0.0010705	1.91	0.0002261	3.63	651.91	0.3
	Pecos	0.0000020	0.06	0.0000121	0.29	0.0020520	3.66	0.0000001	0.00	4.02	0.0
	Robertson	0.0039506	120.85	0.0055755	134.80	0.0002693	0.48	0.0246170	395.39	651.52	0.3
	Upton	0.0000025	0.08	0.0000156	0.38	0.0026494	4.73	0.0000002	0.00	5.18	0.0
	Ward	0.0001995	6.10	0.0012239	29.59	0.2078335	370.77	0.0000125	0.20	406.67	0.2
	Webb	0.0042017	128.53	0.0002834	6.85	0.0000137	0.02	0.0335565	538.98	674.38	0.3
	Wharton	0.0021095	64.53	0.0001423	3.44	0.0000069	0.01	0.0168474	270.60	338.58	0.1
	Wichita	0.0000121	0.37	0.0000743	1.80	0.0126190	22.51	0.000008	0.01	24.69	0.0
	Wilbarger	0.0179710	549.72	0.1102430	2665.35	0.0053249	9.50	0.0011247	18.07	3242.63	1.6
	Wise	0.0010202	31.21	0.0062583	151.31	0.0003023	0.54	0.0000638	1.03	184.08	0.0
	Young	0.0071054	217.35	0.0435880	1053.83	0.0021054	3.76	0.0004447	7.14	1282.08	0.6
	Total	0.4414501	13503.71	0.4812863	11636.06	0.5345786	953.68	0.6829349	10969.15	37062.60	18.5
Energy			[
Savings											
by PCA											
(MWh)	1	30,589		24,177		1,784		16,062			

Table 11: 2014 Annual NOx Reductions from New Single-family Residences Using 2010 eGRID

4.2 2014 Results for New Multi-family Residential Construction

This section provides the potential electricity and natural gas savings and the associated NOx emissions reductions in 2014 using the 2008 base year which implemented the 2006 IECC for new multi-family residences in the 36 nonattainment and affected counties as well as other counties in the ERCOT region²³. To calculate the NOx emissions reductions, the following procedures were adopted. First, new construction activity was determined by county. To accomplish this, the number of 2014 building permits per county was obtained from the real estate center at Texas A&M University (REC 2015). Next, energy savings attributable to the 2006 IECC were calculated using the Laboratory's code-traceable, DOE-2.1e simulation, which was developed for the TERP. For the savings calculation, the 2014 HIRL's survey data²⁴ were used to determine the appropriate construction data corresponding to housing types. Then, the NOx reductions potential from the electricity and natural gas savings in each county was calculated using the US EPA's 2010 eGRID database²⁵.

In

²³ The three new counties added in the 2003 Legislative session (i.e., Henderson, Hood, and Hunt) were included in the ERCOT region.
²⁴ For the 2014 report, the 2014 HIRL data (previously, NAHB data) were used. The NAHB Research Center announced that it has changed its name to Home Innovation Research Labs (HIRL). See more at: http://www.homeinnovation.com

²⁵ This analysis assumes transmission and distribution losses of 7%. Counties were assigned to utility service districts as indicated.

Table 12²⁶, the 2014 new multi-family and 2006 IECC code-compliant building characteristics are shown for each county. The 2006 IECC code-compliant characteristics are the minimum building code characteristics required for each county for multi-family residences (i.e., Type A.2). In

²⁶ Hardin, Jefferson, and Orange Counties were removed from Table 12 and Table 13 because since 2012 they are not in the category of "Nonattainment County" based on [<u>http://www.tceq.texas.gov/airquality/sip/bpa/bpa-status</u>], and these counties do not belong to ERCOT region.

Table 12, the rows are first sorted by the US EPA's non-attainment, affected designation, and other ERCOT counties, alphabetically. Next, in the fourth column, the HIRL's survey classification is listed. The fifth through eighth columns show the HIRL's survey data including: average glazing U-value, Solar Heat Gain Coefficient (SHGC), roof insulation, and wall insulation, respectively. In addition, the ninth through twelfth columns show the 2006 IECC minimum requirements for glazing U-value, SHGC, roof insulation, and wall insulation.

All the houses were assumed to have air conditioner efficiency equal to a SEER of 13 and furnace efficiency (AFUE) of 0.80, and domestic water heater efficiency of 0.78 for a natural gas type and 1 for an electric type. The values shown in

Table 12 represent the only changes that were made to the simulations to obtain the savings calculations. All other variables in the simulations remained the same for the 2014 new multi-family and the 2006 IECC code-compliant simulations. In cases where the 2014 new multi-family values were more efficient than the 2006 IECC requirements, the 2014 new multi-family values were used in 2014 new multi-family simulations. Otherwise, the 2006 IECC values were used in both simulations.

In Table 13, the code-traceable simulation results for multi-family residences are shown for each county. In a similar fashion to

Table 12, Table 13 is first divided into the US EPA's non-attainment and affected classifications, followed by an alphabetical list of other ERCOT counties. In the third column, the 2006 IECC climate zone is listed followed by the number of new projected housing units²⁷ in the fourth column. In the fifth column, the total simulated energy use is listed if all new Construction had been built to pre-code specifications. In the sixth column, the total county-wide energy use for code-compliant Construction is shown. The values in the fifth and sixth columns come from the associated 144 simulation runs for each county, which were then distributed according to the HIRL's survey data to account for 1, 2 or 3 story, and 3 different fuel options (i.e., central air conditioning with electric resistance heating, heat pump heating, or a natural gas-fired furnace). In the seventh column, the total annual electricity savings are shown for each county. A 7% transmission and distribution loss is used, which represents a fixed 1.07 multiplier for the electricity use. In the eighth and ninth columns, the total annual pre-code and code-compliant natural gas use is shown for those residences that had natural gas-fired furnaces and domestic water heaters. Finally, in the tenth column, the total annual natural gas savings are shown for each county.

The annual electricity savings from Table 13 are assigned to CM Zones²⁸ provider(s) in a similar fashion to the single-family residential assignments. The total electricity savings for each CM Zone, as shown in Table 14, are then entered into the bottom row of Table 15, the 2010 US EPA's eGRID database for Texas. Next, the county's NOx reductions (lbs) are calculated using the assigned 2010 eGrid proportions (lbs-NOx/MWh) to each CM zone in the county. The calculated NOx reductions are presented in the columns adjacent to the corresponding CM Zone columns. By adding the NOx reductions values in each row, then, the total of the NOx reductions per county (lbs and Tons) is calculated. Counties that do not show NOx reductions represent counties that do not have power plants in eGRID's database.

²⁷ The number of the new housing units in 2014 were obtained from the Real Estate Center at Texas A&M University.

²⁸ ERCOT region has employed the Congestion Management (CM) since 2010, and it is currently divided into four zones: Houston (H), North (N), South (S), and West (W).

Table 12: 2014 and 2006 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New Multi-family Residences

		Division 2014 Average 2006 IECC										
	County	Climate Zone	East or West	Glazing U-value (Btu/hr-ft ² -F)	SHOC	Roof Insulation (hr-ft ² -F/Btu)	Wall Insulation (hr-ft ² -F/Btu)	Glazing U-value (Btu/hr-ft ² -F)	SHOC	Roof Insulation (hr-ft ² -F/Btu)	Wall Insulation (hr-ft ² -F/Btu)	
	BRAZORIA CHAMBERS	2	East Texas East Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13	
	COLLIN	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	DALLAS	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	DENTON	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	EL PASO ELLIS	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13	
	FORT BEND	2	East Texas	0.39	0.53	29.81	14.86	0.05	0.4	30	13	
	GALVESTON	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
Non-attainment		2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	JOHNSON	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	KAUFMAN LIBERTY	3	West Texas East Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13	
	MONTGOMERY	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	PARKER	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	ROCKWALL	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	TARRANT WALLER	3	West Texas East Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13	
	WISE	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	BASTROP	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BEXAR	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	CALDWELL	2	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30 30	13	
	GREGG	3	West Texas East Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30	13	
	GUADALUPE	2	West Texas	0.39	0.53	29.81	14.86	0.05	0.4	30	13	
	HARRISON	3	East Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	HAYS	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
Affected	NUECES RUSK	2	East Texas East Texas	0.39 0.39	0.53	29.81 29.81	14.86 14.86	0.75 0.65	0.4	30 30	13 13	
	SAN PATRICIO	2	East Texas	0.39	0.53	29.81	14.86	0.05	0.4	30	13	
	SMITH	3	East Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	TRAVIS	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	UPSHUR VICTORIA	3	West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30 30	13	
	WILLIAMSON	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30	13	
	WILSON	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	ANDERSON	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	ANDREWS	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	ANGELINA ARANSAS	2	East Texas East Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30 30	13	
	ARCHER	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	ATASCOSA	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	AUSTIN	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BANDERA BASTROP	2	West Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30 30	13	
	BASTROP BAYLOR	2	West Texas West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BEE	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BELL.	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BEXAR	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BLANCO BORDEN	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30 30	13	
	BOSQUE	2	West Texas	0.39	0.53	29.81	14.86	0.05	0.4	30	13	
	BRAZORIA	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BRAZOS		East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BREWSTER BRISCOE	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4 NR	30 38	13	
	BROOKS	2	East Texas	0.39	0.53	29.81	14.86	0.4	0.4	30	13	
	BROWN	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	BURLESON	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	BURNET	3	West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30	13	
	CALDWELL CALHOUN	2	West Texas East Texas	0.39	0.53	29.81	14.80	0.75	0.4	30 30	13	
	CALLAHAN	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	CAMERON	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	CHAMBERS	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	CHEROKEE CHILDRESS	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13	
	CLAY	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	COKE	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
ERCOT	COLEMAN	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	COLLIN COLORADO	3	West Texas East Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30 30	13	
	COMAL	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	COMANCHE	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	CONCHO	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	COOKE	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30 30	13	
	CORTELL	3	West Texas	0.39	0.53	29.81	14.80	0.75	0.4	30	13	
	CRANE	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	CROCKETT	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	CROSBY CULBERSON	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30 30	13	
	DALLAS	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30	13	
	DAWSON	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	DE WITT	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	DELTA	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30	13	
	DENTON DICKENS	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30 30	13	
	DIMMIT	2	West Texas	0.39	0.53	29.81	14.86	0.05	0.4	30	13	
	DUVAL	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	EASTLAND	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	ECTOR EDWARDS	3	West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30 30	13	
	EDWARDS	2	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30 30	13	
	ERATH	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	FALLS	2	West Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13	
	FANNIN	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	FAYETTE	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.75 0.65	0.4	30 30	13	
	LICUED				0.53							
	FISHER FOARD	3	West Texas	0.39	0.53	29.81	14.86	0.65	0.4	30	13	
	FOARD FORT BEND		West Texas East Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30 30	13	
	FOARD	3	West Texas									

Table 12: 2014 and 2006 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New Multi-family Residences (Continued)

			Division		2014 A	verage			2006	IBCC	
	County	Climate Zone	East or West	Glazing U-value (Btu/hr-ft ² -F)	SHOC	Roof Insulation (hr-ft ² -F/Btu)	Wall Insulation (hr-ft ² -F/Btu)	Glazing U-value (Btu/hr-ft ² -F)	SHGC	Roof Insulation (hr-ft ² -F/Btu)	Wall Insulation (hr-ft ² -F/Btu)
	FRIO GALVESTON	2	West Texas East Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30	13
	GILLESPIE GLASSCOCK	3	West Texas West Texas	0.39 0.39 0.39	0.53 0.53	29.81 29.81 29.81	14.86 14.86	0.65	0.4	30	13 13 13
	GOLIAD GONZALES	2	West Texas East Texas West Texas	0.39 0.39 0.39	0.53 0.53	29.81 29.81 29.81	14.86 14.86	0.75	0.4 0.4 0.4	30 30 30	13 13 13
	GRAYSON GRIMES	3	West Texas East Texas	0.39	0.53	29.81 29.81 29.81	14.86 14.86	0.65	0.4 0.4	30	13
	GUADALUPE HALL	2	West Texas West Texas	0.39	0.53 0.53	29.81 29.81 29.81	14.86 14.86	0.75	0.4 0.4 0.4	30 30 30	13 13 13
	HAMILTON HARDEMAN	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4 0.4 0.4	30	13
	HARRIS HASKELL	2	East Texas West Texas	0.39	0.53 0.53	29.81 29.81	14.86	0.75	0.4 0.4 0.4	30	13
	HAYS HENDERSON	2	West Texas East Texas	0.39	0.53	29.81 29.81 29.81	14.86 14.86	0.75	0.4 0.4	30	13 13 13
	HIDALGO HILL	2	East Texas West Texas	0.39	0.53	29.81 29.81 29.81	14.86 14.86	0.75	0.4	30 30 30	13
	HOOD HOPKINS	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30	13
	HOUSTON	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30	13
	HUDSPETH HUNT	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30	13
	IRION	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30	13
	JACKSON JEFF DAVIS	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30	13
	JIM HOGG JIM WELLS	2	West Texas East Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30	13
	JOHNSON JONES	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.65	0.4	30	13
	KARNES KAUFMAN	2	West Texas West Texas	0.39	0.53	29.81 29.81	14.86	0.75	0.4	30	13
	KENDALL KENEDY	3	West Texas West Texas East Texas	0.39 0.39 0.39	0.53 0.53	29.81 29.81 29.81	14.86 14.86	0.65	0.4 0.4 0.4	30 30 30	13 13 13
	KENEDY KENT KERR	3	West Texas West Texas	0.39 0.39 0.39	0.53 0.53	29.81 29.81 29.81	14.86 14.86	0.65	0.4 0.4 0.4	30 30 30	13 13 13
	KERR KIMBLE KING	3	West Texas West Texas West Texas	0.39 0.39 0.39	0.53 0.53	29.81 29.81 29.81	14.86 14.86	0.65	0.4	30 30 30	13 13 13
	KING KINNEY KLEBERG	2	West Texas West Texas East Texas	0.39	0.53 0.53	29.81 29.81 29.81	14.86 14.86	0.75	0.4 0.4	30 30 30	13 13 13
	KNOX	3	West Texas West Texas	0.39 0.39	0.53	29.81 29.81 29.81	14.86 14.86	0.65	0.4	30	13
	LA SALLE LAMAR LAMPASAS	2 3 3	West Texas East Texas West Texas	0.39 0.39 0.39	0.53 0.53 0.53	29.81 29.81 29.81	14.86 14.86 14.86	0.75 0.65 0.65	0.4 0.4 0.4	30 30 30	13 13 13
	LAVACA	2	East Texas	0.39	0.53	29.81	14.86	0.75	0.4	30	13
	LEE LEON LIMESTONE	2	West Texas East Texas West Texas	0.39	0.53	29.81 29.81 29.81	14.86 14.86	0.75	0.4	30 30	13 13
	LIVEOAK	2	West Texas East Texas West Texas	0.39	0.53	29.81	14.86 14.86	0.75	0.4	30 30	13 13
	LLANO LOVING	3	West Texas	0.39	0.53 0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13
	M ADISON M ARTIN	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13
	MASON MATAGORDA	3	West Texas East Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.68	0.4	30 30	13
	M AVERICK M CCULLOCH	2	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13
	MCLENNAN MCMULLEN	2	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13
	MEDINA MENARD	2	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13
ERCOT	MIDLAND MILAM	3	West Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.68	0.4	30 30	13 13
	MILLS MITCHELL	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13
	MONTAGUE MONTGOMERY	3	West Texas East Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13
	MOTLEY NACOGDOCHES	3	West Texas East Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13 13
	NAVARRO NOLAN	3	West Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4 0.4	30 30	13 13
	NUECES PALO PINTO	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13 13
	PARKER PECOS	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13
	PRESIDIO RAINS	3	West Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4 0.4	30 30	13 13
	REAGAN REAL	3	West Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.68	0.4 0.4	30 30	13 13
	RED RIVER REEVES	3	East Texas West Texas	0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13 13
	REFUGIO ROBERTSON	2	East Texas East Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.75	0.4 0.4	30 30	13 13
	ROCKWALL RUNNELS	3	West Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4 0.4	30 30	13 13
	RUSK SAN PATRICIO	3	East Texas East Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4 0.4	30 30	13 13
	SAN SABA SCHLEICHER		West Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4 0.4	30 30	13 13
	SCURRY SHACKELFORD	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13
	SMITH SOMERVELL	3	East Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13 13
	STARR STEPHENS	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13
	STERLING STONEWALL	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13
	SUTTON TARRANT	3	West Texas West Texas	0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13 13
	TAYLOR TERRELL	3	West Texas West Texas	0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13 13
	THROCKMORTON TITUS	3	West Texas East Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13 13
	TOM GREEN TRAVIS	3	West Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.68	0.4	30 30	13 13
	UPTON UVALDE	3	West Texas West Texas	0.39 0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.68	0.4	30 30	13 13
	VAL VERDE VAN ZANDT	2	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13 13
	VICTORIA WALLER	2	East Texas East Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13 13
	WARD WASHINGTON	3	West Texas East Texas	0.39	0.53 0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13 13
	WEBB WHARTON	2	West Texas East Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30 30	13 13
	WICHITA WILBARGER	3	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13 13
	WILLACY	2	East Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.75	0.4	30	13
	WILLIAMSON							0.75	0.4		13
	WILLIAMSON WILSON WINKLER	2	West Texas West Texas	0.39	0.53	29.81 29.81	14.86 14.86	0.65	0.4	30 30	13
	WILSON		West Texas West Texas West Texas West Texas							30 30 30 30	

	County	Climate Zone	No. of Projected Units (2013)	Precode Total Annual Elec. Use (MWh/yr)	Code- compliant Total Annual Elec. Use (MWh/yr)	Total Annual Elec. Savings (MWh/yr) w/ 7% of T&D Loss	Precode Total NG Use (Therm/yr)	Code-compliant Total NG Use (Therm/yr)	Total Annual N Savings (Therm/yr)
	BRAZORIA	2	1,014	45,664	44,083	1,691.83	219,991	219,688	302.
	CHAMBERS COLLIN	2	0 3,915	0 195,172	0 185,685	0.00	0 1,146,748	1,064,571	0. 82,176.
	DALLAS	2	10,386	517,216	492,126	26,846.02	3,049,191	2,828,964	220,227.
	DENTON	2	669	33,351	31,730	1,734.67	195,958	181,915	14,042.
	EL PASO ELLIS	3	783	34,913	33,269	1,760.06	260,489	237,048	23,440.
	FORT BEND	2	803	34,772	33,643	1,208.53	186,400	186,639	-239.
lonattain-	GALVESTON	2	368	15,933	15,416	553.25	85,482	85,533	-51.
ment County	HARRIS JOHNSON	2	21,527	932,176	901,897 8,621	32,398.59 495.87	4,997,051 59,477	5,003,471 55,034	-6,419
county	KAUFMAN	2	0		0,021		0	0,004	
	LIBERTY	3	0				0	0	
	MONTGOMERY PARKER	3	1,634		71,046		354,501	353,925	576
	ROCKWALL	2	0			0.00	0	0	
	TARRANT	3	3,705	184,506	175,556		1,087,739	1,009,177	78,561
	WALLER WISE	2	77	3,468	3,348	128.72	16,705	16,678	27
	BASTROP	3	0				0	0	0
	BEXAR	3	3,635	167,938	161,274	7,130.69	826,787	784,278	42,509
	CALDWELL COMAL	3	451	20,836	20,010	0.00 884.72	0 102,581	97,307	0 0
	GREGG	2	451		3,205	123.32	20,297	20,312	5,274
	GUADALUPE	3	0	0	0	0.00	0	0	0
	HARRISON	3	26	1,248	1,206	45.71	7,689	7,695	-5
Affected	HAYS NUECES	2	549	25,196	23,971 52,940	1,310.66	152,703 236,344	141,184 236,114	229
County	RUSK	2	0	0	0	0.00	0	0	0
	SAN PATRICIO	3	7	324	311	13.49	1,390	1,389	1
	SMITH TRAVIS	3	14 6,948	688 333,473	663	25.89	3,818 1,773,810	3,818	-0
	UPSHUR	3	8	399	379	20.73	2,350	2,178	125,420
	VICTORIA	2	672	30,630	29,530	1,176.70	142,878	142,697	180
	WILLIAMSON WILSON	2	937	44,972	42,865	2,254.31	239,214	222,569	16,645
	ANDERSON	2	0			0.00	0	0	
	ANDREWS	3	102		4,633	287.14	35,061	32,120	2,940
	ANGELINA ARANSAS	2	10		425	15.08	2,623	2,626	-2
	ARANSAS	3	0				0	0	
	ATASCOSA	2	2	92	89	3.90	461	436	25
	AUSTIN	2	3	135	130	5.02	651	650	1
	BANDERA BAYLOR	2 3	0			0.00	0	0	
	BEE	2	0	0	0	0.00	0	0	0
	BELL	2	143	6,815	6,493	344.60	42,424	39,095	3,328
	BLANCO BORDEN	3	32		1,464	76.99	8,170	7,601	568
	BOSQUE	2	0		0		0	0	
	BRAZOS	2	831		36,132	1,389.21	180,288	179,995	293
	BREWSTER BRISCOE	3 4	7	337		18.29	2,082	1,917	165
	BROOKS	2	0		0	0.00	0	0	
	BROWN	3	6				1,780	1,640	
	BURLESON BURNET	2	0				0	0	
	CALHOUN	2	7	319	308	12.26	1,488	1,486	1
	CALLAHAN	3	0		0	0100	0	0	
	CAMERON CHEROKEE	2	238				43,756	43,613	142
	CHILDRESS	3	0	0	0		0	0	(
	CLAY	3	0				0	0	
ERCOT	COKE COLEMAN	3	0		0	0.00	0	0	
	COLORADO	2	0	0	0	0.00	0	0	(
	COMANCHE	3	0				0		
	CONCHO COOKE	3	0				0		
	CORYELL	2	32	1,525		77.11	9,493	8,749	
	COTTLE	3	0				0		
	CRANE CROCKETT	3	0				0		
	CROSBY	3	0	0	0	0.00	0	0	(
	CULBERSON	3	0				0		
	DAWSON DEWITT	3	0				0	0	
	DELTA	3	0	0	0	0.00	0	0	(
	DICKENS	3	0				0	0	
	DIMMIT DUVAL	2	0				0	0	
	EASTLAND	3	0				0	0	0
	ECTOR	3	126		5,723	354.71	43,310	39,678	3,631
	EDWARDS ERATH	2 3	43		0	0.00	0 14,955	13,728	1,226
	FALLS	2	0	0	1,951		14,933	13,728	1,220
	FANNIN	3	20	978	927	53.53	6,385	5,917	468
	FAYEITE	2	0				0	0	
	FISHER FOARD	3	0				0	0	
	FRANKLIN	3	0				0		
	FREES TONE FRIO	2	0	0	0	0.00	0	0	(

Table 13: 2014 Annual Electricity Savings from New Multi-family Residences

			1	2014 Summar	y TRY 2008				
	County	Climate Zone	No. of Projected Units (2013)	Precode Total Annual Elec. Use (MWh/yr)	Code- compliant Total Annual Elec. Use (MWh/yr)	Total Annual Elec. Savings (MWh/yr) w/ 7% of T&D Loss	Precode Total NG Use (Therm/yr)	Code-compliant Total NG Use (Therm/yr)	Total Annual NO Savings (Therm/yr)
	GILLESPIE GLASSCOCK	3	0	0	0	0.00	0	0	0.0
	GOLIAD GONZALES	2	0	0	0 342	0.00	0	0	0.0
	GRAYSON GRIMES	3	68	3,324	3,153	182.01	21,709	20,117	1,591.5
	HALL HAMILTON	3	0	0	0	0.00	0	0	0.0
	HARDEMAN	3	0	0	0	0.00	0	0	0.0
	HASKELL HENDERSON	3	0		0	0.00	0	0	0.0
	HIDALGO HILL	2	633	28,059	26,962	1,174.13	118,630	118,677	-47.7
	HOOD HOPKINS	3	4	195	185	10.66	1,279	1,184	95.5
	HOUSTON HOWARD	2 3	0		0 182	0.00	0	0	0.0
	HUDSPETH HUNT	3	0		0		0 958	0	0.0
	IRION JACK	3	0		0	0.00	0	0	0.0
	JACKSON	2	2	88	85	3.21	456	455	0.9
	JEFF DAVIS JIM HOGG	3	0	0	0	0.00	0	0	0.0
	JIM WELLS JONES	2 3	0	0	0	0.00	0	0	0.0
	KARNES KENDALL	2	8	0	339 0	0.00	1,824	1,820	3.7
	KENEDY KENT	2	0	0	0	0.00	0	0	0.0
	KERR KIMBLE	3	26	1,193 143	1,135 135	62.07 8.08	7,232	6,686 878	545.5
	KING KINNEY	3	0	0	0	0.00	0	0	0.0
	KLEBERG KNOX	2	0		0		0	0	0.0
	LASALLE	2	13	572	550	22.79	2,714	2,714	-0.2
	LAMAR LAMPASAS	3	16	3,801	742 3,611	203.44	5,106 25,694	4,724	382.0
	LAVACA LEE	2	0	0	0	0.00	0	0	0.0
	LEON LIMESTONE	2	0		0		0	0	0.0
	LIVEOAK	2	0	0	0		0	0	0.0
	LOVING MADISON	3	0	0	0	0.00	0	C	
	MARTIN	3	0	0	0	0.00	0	0	0.0
	MASON MATAGORDA	3	0	0	0	0.00	0	0	0.0
	MAVERICK MCCULLOCH	2	29		1,228	50.84	6,054 0	6,055	-0.6
ERCOT	MCLENNAN MCMULLEN	2	864		39,233 0	2,082.08	256,322	236,211	20,110.9
	MEDINA MENARD	2	24		1,065	47.08	5,459	5,178	280.6
	MIDLAND MILAM	3	636		49,600	3,074.13	375,354	343,877	31,476.7
	MILLS MITCHELL	3	0	0	0	0.00	0	0	0.0
	MONTAGUE MOTLEY	3	0	0	0	0.00	0		0.0
	NACOGDOCHES	3	36	1,620	1,565	58.97	8,647	8,630	17.6
	NAVARRO NOLAN	3	0	0	0	0.00	0		
	PALO PINTO PECOS	3	0	0	0	0.00	0	0	0.0
	PRESIDIO RAINS	3	0	100	0 95	0.00	0 586	0 544	0.0
	REAGAN REAL	3	18	872	826 0	48.49	5,784	5,294	490.1
	RED RIVER REEVES	3	0		0	0.00	0	0	0.0
	REFUGIO ROBERTSON	2	16		703	28.02	3,402	3,398	4.
	RUNNELS SAN SABA	3	0		0	0.00	0	0	0.0
	SAN SABA SCHLEICHER SCURRY	3	0	0	0	0.00	0	C	0.0
	SHACKELFORD	3	0	0	0	0.00	0	0	0.0
	SOMERVELL STARR	3	0	0	0	0.00	0	0	0.0
	STEPHENS STERLING	3	0	0	0	0.00	0	C	0.0
	STONEWALL SUTTON	3	0	0	0	0.00	0	0	0.0
	TAYLOR TERRELL	3	0		0		0		0.0
	THROCKMORTON THUS	3	0	0	0	0.00	0	0	0.0
	TOM GREEN UPTON	3	400	19,253	18,276	1,045.01	118,964	109,528	9,436.
	UVALDE VAL VERDE	2	0	0	0	0.00	0	1,726	0.0
	VAL VERDE VAN ZANDT WARD	3	80	3,988	3,794	207.43	23,433	21,726	1,679.
	WASHINGTON	3	0	90	0 87	0.00	0 434	433	0.
	WEBB WHARTON	2	765	0	34,033 0	0.00	151,935	151,787	147.
	WICHITA WILBARGER	3	50	0	2,439		18,644	16,999	1,644.
	WILLACY WINKLER	2 3	0	0	0	0.00	0		
	WISE YOUNG	3	0		0		0		
	ZAPATA ZAVALA	2	0	0	0	0.00	090	0	0.0
_	TOTAL	2	64,976		0	134,583	0		701,16

CM Zone	Total Electricity Savings by CM Zone (MWh) 2014-TRY 2008
Houston (H)	46,017
North (N)	43,010
West (W)	2,899
South (S)	28,964
Total	120,890

Table 14: 2014 Totalized Annual Electricity Savings by CM Zone from New Multi-family Residences

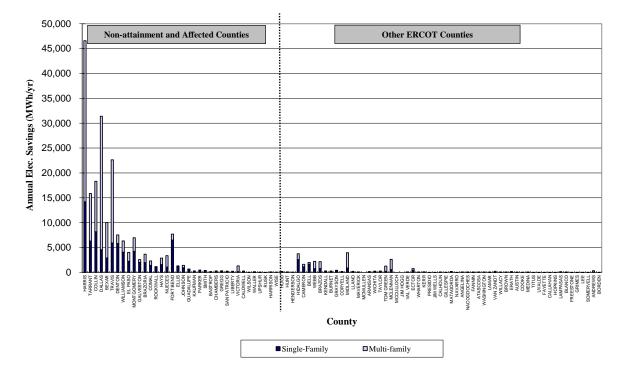
Area	County	н	NOx Reductions (lbs)	Ν	NOx Reductions (lbs)	W	NOx Reductions (lbs/year)	s	NOx Reductions (lbs)	Total Nox Reductions (lbs)	Total Nox Reductions (Tons)
	Brazoria	0.0562032	2586.29	0.0000071	0.31	0.0000003	0.00	0.0005265	15.25	2601.85	1.3
	Chambers	0.0204500	941.04	0.0000026	0.11	0.0000001	0.00	0.0001916	5.55	946.71	0.4
Houston- Galveston Area	Fort Bend	0.0313463	1442.46	0.0000040	0.17	0.0000002	0.00	0.0002937	8.51	1451.14	0.7
Galveston Area	Galveston	0.0226620	1042.83	0.0000029	0.12	0.0000001	0.00	0.0002123	6.15	1049.11	0.5
	Harris	0.1486911	6842.30	0.0000189	0.81	0.0000009	0.00	0.0013930	40.35	6883.46	3.4
	Collin	0.0012932	59.51	0.0079329	341.20	0.0003832	1.11	0.0000809	2.34	404.16	0.2
	Dallas	0.0024826	114.24	0.0152295	655.03	0.0007356	2.13	0.0001554	4.50	775.90	0.3
	Denton	0.0001267	5.83	0.0007770	33.42	0.0000375	0.11	0.0000079	0.23	39.59	0.0
	Tarrant	0.0004742	21.82	0.0029089	125.11	0.0001405	0.41	0.0000297	0.86	148.20	0.0
	Ellis	0.0029920	137.68	0.0183544	789.43	0.0008865	2.57	0.0001873	5.42	935.10	0.4
Dallas/ Fort	Johnson	0.0007256	33.39	0.0044512	191.45	0.0002150	0.62	0.0000454	1.32	226.78	0.1
Worth Area	Kaufman	0.0059718	274.81	0.0366343	1575.65	0.0017695	5.13	0.0003738	10.83	1866.42	0.9
	Parker	0.0000012	0.06	0.0000075	0.32	0.0000004	0.00	0.0000001	0.00	0.38	0.0
	Henderson	0.0006908	31.79	0.0000075	182.26	0.0002047	0.59	0.0000432	1.25	215.89	0.0
	Hood	0.0000908	233.63	0.0042370	1339.58	0.0015044	4.36	0.0000432	9.20	1586.77	0.1
		0.0030771	407.08	0.0311434	202.43	0.0013044	4.56	0.0652823	9.20	2501.01	1.2
San Art. 1	Hunt	0.0088463	639.20	0.0047066	40.29	0.0002273	0.06		3213.14	3892.76	1.2
San Antonio Area	Bexar				40.29		0.13	0.1109355			
меа	Guadalupe	0.0032029	147.39	0.0002160		0.0000104		0.0255795	740.88	897.59	0.4
	Bastrop	0.0033782	155.46	0.0002278	9.80	0.0000110	0.03	0.0269798	781.44	946.73	0.4
Austin Area	Hays	0.0008331	38.34	0.0000562	2.42	0.0000027	0.01	0.0066537	192.72	233.48	0.1
	Travis	0.0051785	238.30	0.0003493	15.02	0.0000169	0.05	0.0413577	1197.89	1451.26	0.7
Corpus Christi	Nueces	0.0128578	591.67	0.0008672	37.30	0.0000419	0.12	0.1026870	2974.23	3603.32	1.8
Area	San Patricio	0.0015100	69.48	0.0001018	4.38	0.0000049	0.01	0.0120591	349.28	423.16	0.2
Victoria Area	Victoria	0.0021192	97.52	0.0001429	6.15	0.0000069	0.02	0.0169244	490.20	593.88	0.3
	Andrews	0.0000037	0.17	0.0000230	0.99	0.0039003	11.31	0.0000002	0.01	12.47	0.0
	Bosque	0.0022204	102.18	0.0136212	585.85	0.0006579	1.91	0.0001390	4.03	693.96	0.3
	Brazos	0.0024089	110.85	0.0112305	483.03	0.0005425	1.57	0.0047829	138.53	733.98	0.3
	Calhoun	0.0009466	43.56	0.0000638	2.75	0.0000031	0.01	0.0075598	218.96	265.27	0.1
	Cameron	0.0063536	292.37	0.0004285	18.43	0.0000207	0.06	0.0507425	1469.71	1780.57	0.8
	Cherokee	0.0027392	126.05	0.0168033	722.72	0.0008116	2.35	0.0001714	4.97	856.08	0.4
	Ector	0.0019215	88.42	0.0006604	28.40	0.0911346	264.20	0.0146527	424.40	805.43	0.4
	Fannin	0.0000041	0.19	0.0000249	1.07	0.0000012	0.00	0.0000003	0.01	1.27	0.0
	Fayette	0.0051867	238.68	0.0103217	443.94	0.0004986	1.45	0.0283993	822.56	1506.62	0.7
	Freestone	0.0047643	219.24	0.0292268	1257.06	0.0014117	4.09	0.0002982	8.64	1489.03	0.7
	Hidalgo	0.0053716	247.18	0.0003623	1257.00	0.0000175	0.05	0.0428994	1242.54	1505.35	0.7
	-	0.0002411	11.10	0.0003623	32.86	0.1283942	372.22	0.0009490	27.49	443.67	0.2
	Howard	0.0002411	11.10	0.0007841	812.20	0.1283942	2.64	0.0009490	5.58	962.08	0.2
	Jack		141.65		1055.43		3.44		5.58	962.08	0.4
	Lamar	0.0040001		0.0245388		0.0011853		0.0002504			
Other ERCOT	Llano	0.0040314	185.51	0.0002719	11.69	0.0000131	0.04	0.0321966	932.54	1129.79	0.5
counties	McLennan	0.0056576	260.35	0.0347066	1492.75	0.0016764	4.86	0.0003541	10.26	1768.21	0.8
	Milam	0.0012686	58.38	0.0000856	3.68	0.0000041	0.01	0.0101316	293.45	355.52	0.1
	Mitchell	0.0000311	1.43	0.0001910	8.21	0.0324260	94.00	0.0000019	0.06	103.71	0.0
	Nolan	0.0000293	1.35	0.0001795	7.72	0.0304745	88.35	0.0000018	0.05	97.47	0.0
	Palo Pinto	0.0036129	166.26	0.0221635	953.26	0.0010705	3.10	0.0002261	6.55	1129.17	0.5
	Pecos	0.0000020	0.09	0.0000121	0.52	0.0020520	5.95	0.0000001	0.00	6.56	0.0
	Robertson	0.0039506	181.79	0.0055755	239.80	0.0002693	0.78	0.0246170	713.01	1135.38	0.5
	Upton	0.0000025	0.12	0.0000156	0.67	0.0026494	7.68	0.0000002	0.00	8.47	0.0
	Ward	0.0001995	9.18	0.0012239	52.64	0.2078335	602.52	0.0000125	0.36	664.71	0.3
	Webb	0.0042017	193.35	0.0002834	12.19	0.0000137	0.04	0.0335565	971.93	1177.51	0.5
	Wharton	0.0021095	97.07	0.0001423	6.12	0.0000069	0.02	0.0168474	487.97	591.18	0.3
	Wichita	0.0000121	0.56	0.0000743	3.20	0.0126190	36.58	0.0000008	0.02	40.36	0.0
	Wilbarger	0.0179710	826.97	0.1102430	4741.60	0.0053249	15.44	0.0011247	32.58	5616.58	2.8
	Wise	0.0010202	46.95	0.0062583	269.17	0.0003023	0.88	0.0000638	1.85	318.84	0.1
	Young	0.0071054	326.97	0.0435880	1874.74	0.0021054	6.10	0.0004447	12.88	2220.69	1.1
	Total	0.4414501	20314.14	0.0455880	20700.33	0.5345786	1549.77	0.6829349	19780.54	62344.78	31.1
Energy Savings by PCA											
(MWh)		46,017		43,010		2,899		28,964			

Table 15: 2014 Annual NOx Reductions from New Multi-family Residences Using 2010 eGRID

4.3 2014 Results for New Residential Construction (Single-family and Multi-family)

Table 16 presents the individual and combined annual electricity savings and NOx emissions reductions resulted from the new single-family and multi-family Construction in 2014. In addition, Table 16 includes the combined natural gas savings from the new Construction for both single-family and multi-family and the corresponding NOx emissions reductions²⁹.

The total NOx reductions from electricity and natural gas savings from total new single-family and multi-family Construction in 2014 are 60.2 tons NOx/year, including 18.53 tons NOx/year (30.78 %) from single-family residential electricity savings, 31.17 tons NOx/year (51.78 %) from multi-family residential electricity savings, and 10.49 tons NOx/year (17.43 %) from natural gas savings from both single-family and multi-family residences. Figure 8 through Figure 11 show the electricity savings and NOx reductions tabulated in Table 16. Figure 8 shows the annual electricity savings by county using a stacked bar chart and Figure 9 shows the spatial distribution of the electricity savings by county across the state. Figure 10 shows the annual NOx reductions by using a stacked bar chart and Figure 11 shows the spatial distribution of the NOx reductions by county across the state.


²⁹ 0.092 lb-NOx/MMBtu of emission rate was used for the calculation.

		Electricity Sa Resultant NOx (Single Family	Reductions	Electricity Sa Resultan Reduct (Multifamily	t NOx tions	Total Electricity Resultant NOx (Single and M House	Reductions ulti-Family	Total Natural Gas Resultant NOX I (Single and Multi-F	Reductions	Total No Reduction
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual No Reduction: (Tons)
	HARRIS	14,194.37	2.29	32,398.59	3.44	46,592.97	5.73	287,417.28	1.32	
	TARRANT COLLIN	6,295.60 8,166.47	0.04	9,576.79 10,151.29	0.07	15,872.39 18,317.77	0.12	177,937.55 202,280.08	0.82	
	DALLAS	4,553.12	0.22	26,846.02	0.39	31,399.14	0.61	287,776.81	1.32	
	BEXAR TRAVIS	2,890.39	0.42	7,130.69	1.95	10,021.08 22.630.70	3.06	78,559.35	0.36	
	DENTON	5,914.61	0.42	1,734.67	0.73	22,630.70	1.14	218,492.86 99,136.12	0.46	
	WILLIAMSON	4,058.36		2,254.31		6,312.67	0.00	81,875.59	0.38	
	EL PASO	2,245.15		1,760.06		4,005.21	0.00	76,551.77	0.35	
	MONT GOMERY GALVEST ON	4,220.86 2,018.54	0.35	2,731.60 553.25	0.52	6,952.46 2,571.79	0.00	87,952.16 42,899.41	0.40	
	BRAZORIA	1,970.50	0.86	1,691.83	1.30	3,662.33	2.16	27,909.06	0.13	
	COMAL	1,412.15		884.72		2,296.87	0.00	22,886.97	0.11	
	ROCKWALL HAYS	1,151.83	0.07	0.00	0.12	1,151.83 2,876.81	0.00	18,132.63 36,691.45	0.08	
New	NUECES	1,068.28	1.03	2,292.59	1.80	3,360.87	2.83	15,830.23	0.17	
Non- attainment	FORT BEND	6,483.32	0.48	1,208.53	0.73	7,691.85	1.21	133,971.39	0.62	
and Affected	ELLIS JOHNSON	1,306.32	0.27	0.00	0.47	1,306.32	0.74	20,620.17	0.09	
Counties	GUADALUPE	923.72 676.48	0.07	495.87	0.11 0.45	1,419.59 676.48	0.18	19,024.08 9,428.03	0.09	
	KAUFMAN	285.27	0.54	0.00	0.43	285.27	1.47	4,490.88	0.02	
	PARKER	455.96	0.00	0.00	0.00	455.96	0.00	7,177.89	0.03	
	SMITH BASTROP	359.93 154.28	0.27	25.89	0.47	385.82 154.28	0.00	8,636.33 5,009.56	0.04	
	CHAMBERS	286.95	0.27	0.00	0.47	286.95	0.79	3,980.35	0.02	
	GREGG	187.54		123.32		310.86	0.00	4,425.06	0.02	
	SAN PATRICIO LIBERT Y	199.77 230.22	0.12	13.49	0.21	213.26	0.33	2,918.69	0.01	
	LIBERT Y VICTORIA	230.22 133.16	0.17	0.00 1,176.70	0.30	230.22 1,309.86	0.00	4,833.36 2,806.63	0.02	
	CALDWELL	276.89		0.00		276.89	0.00	3,770.11	0.02	
	WILSON	30.03		0.00		30.03	0.00	418.48	0.00	
	WALLER UPSHUR	3.83 12.93		128.72 20.73		132.55 33.67	0.00	106.43 677.15	0.00	
	RUSK	2.37	0.00	0.00	0.00	2.37	0.00	66.25	0.00	
	HARRISON	49.91		45.71		95.62	0.00	1,189.62	0.01	
	WISE	63.26	0.09	0.00	0.16	63.26	0.25	995.89	0.00	
	HOOD HUNT	139.45 82.28	0.46	10.66	0.79	150.12 90.31	1.25	2,296.79 1,381.39	0.01	
	HENDERSON	66.72	0.06	0.00	0.11	66.72	0.17	1,601.08	0.01	
	HIDALGO	2,556.97	0.43	1,174.13	0.75	3,731.10	1.18	27,165.41	0.12	
	CAMERON BELL	1,139.73 1,646.10	0.51	481.24 344.60	0.89	1,620.97 1,990.70	1.40	9,184.52 35,989.29	0.04	
	WEBB	734.80	0.34	1,473.81	0.59	2,208.61	0.93	8,722.04	0.04	
	BRAZOS	764.38	0.21	1,389.21	0.37	2,153.59	0.58	10,761.41	0.05	
	KENDALL BURNET	300.73 280.06		0.00		300.73 280.06	0.00	4,670.83 3,783.29	0.02	
	GRAYSON	242.08		182.01		424.09	0.00	5,449.09	0.02	
	CORYELL	101.55		77.11		178.66	0.00	2,759.64	0.01	
	MIDLAND LLANO	871.95 208.54	0.32	3,074.13	0.56	3,946.08 208.54	0.00	51,745.62 3,351.96	0.24	
	MAVERICK	53.92	0.52	50.84	0.50	104.76	0.00	628.53	0.00	
	MCMULLEN	0.00		0.00		0.00	0.00	0.00	0.00	
	ARANSAS	154.04		0.00		154.04	0.00	1,555.70	0.01	
	WICHITA TAYLOR	103.14 260.02	0.01	154.40	0.02	257.55 260.02	0.03	4,109.02 6,055.13	0.02	
	TOM GREEN	214.63		1,045.01		1,259.64	0.00	13,922.49	0.06	
	MCLENNAN	541.77	0.51	2,082.08	0.88	2,623.85	1.39	32,225.77	0.15	
	MCCULLOCH JIM HOGG	0.00		0.00		0.00	0.00	0.00	0.00	
	VAL VERDE	71.53		15.69		87.23	0.00	1,090.51	0.01	
	ECTOR	408.88	0.24	354.71	0.40	763.58	0.64	13,136.42	0.06	
	WHARTON	73.52 67.11	0.17	0.00 62.07	0.30	73.52	0.46	1,450.01 1,624.11	0.01	
	PRESIDIO	8.44		62.07		8.44	0.00	1,624.11 176.32	0.01	
ther ERCOT		22.01		0.00		22.01	0.00	321.40	0.00	
Counties	GILLESPIE	62.66	0.08	12.26	0.13	74.92	0.21	831.29 647.16	0.00	
	MATAGORDA	40.26		0.00		40.26	0.00	647.16 3,576.69	0.00	
	NAVARRO	20.56		0.00		20.56	0.00	459.80	0.00	
	ANGELINA NACOGDOCHES	60.73 25.24		15.08		75.81 84.21	0.00	1,697.47 724.37	0.01	
	FANNIN	11.93	0.00	53.53	0.00	65.46	0.00	658.14	0.00	
	ATASCOSA	52.74		3.90		56.64	0.00	863.11	0.00	
	WASHINGTON	63.57		3.34		66.91	0.00	1,316.65	0.01	
	LAMAR VAN ZANDT	23.43 10.74	0.36	42.86 207.43	0.63	66.29 218.18	0.99	996.81 1,848.33	0.00	
	WILLACY	87.28		0.00		87.28	0.00	928.91	0.00	
	BROWN	64.13		14.46		78.59	0.00	1,412.16	0.01	
	ERATH AUSTIN	39.28 19.21		119.60		158.88 24.22	0.00	2,141.47 264.14	0.01	
	COOKE	29.80		0.00		24.22 29.80	0.00	439.32	0.00	
	MEDINA	22.96		47.08		70.04	0.00	600.68	0.00	
	TITUS	19.09	0.00	0.00	0.00	19.09	0.00	500.95	0.00	
	UVALDE FAYETTE	11.48	0.43	0.00	0.75	4.60	0.00	160.01 95.13	0.00	
	CALLAHAN	4.00	0.43	0.00	0.75	4.60	0.00	95.13	0.00	
	HOPKINS	9.55		0.00		9.55	0.00	150.32	0.00	
	LAMPASAS	138.57		0.00		138.57	0.00	0.00	0.00	
	BLANCO FREESTONE	3.22 6.26	0.43	76.99	0.74	80.21	0.00	611.95 139.94	0.00	
	GRIMES	11.49	0.00	0.00	0.00	11.49	0.00	237.82	0.00	
				0.00	1	3.10	0.00	49.45	0.00	
	LEE	3.10								
	LEE SOMERVELL ANDREWS	3.10 21.45 50.40	0.00	0.00 0.00 287.14	0.01	21.45 337.54	0.00	49.43 338.65 4,111.62	0.00	

Table 16: 2014 Annual NOx Reductions from New Single-family and Multi-family Residences

		Electricity Sa Resultant NOx (Single Family	Reductions	Electricity Sa Resultan Reduct (Multifamily	t NOx tions	Total Electricity Resultant NOx (Single and M House	Reductions ulti-Family	Total Natural Gas Resultant NOx (Single and Multi-F	Reductions	Total Nox Reductions
	County	Total Annual Electricity Savings per County w/7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual Nox Reductions (Tons)
CHER	ROKEE	4.73	0.25	(MWh/County) 0.00	0.43	4.73	0.68	132.50	0.00	0
DIMN		3.94 9.83		0.00		3.94 9.83	0.00	39.83 219.91	0.00	0
COLC	ORADO	8.00		0.00		8.00	0.00	109.62	0.00	0
FRIO		10.23	0.00	0.00	0.00	10.23	0.00	162.55 122.68	0.00	0
JACK	GON	13.07	0.10	3.21	0.10	16.28	0.00	258.72	0.00	0
ANDI	ERSON	2.37 8.94		0.00		2.37 8.94	0.00	66.25 199.92	0.00	0
CULE	BERSON	0.74		0.00		0.74	0.00	21.17	0.00	0
MASC		4.13	0.00	0.00	0.00	4.13	0.00	66.38 137.14	0.00	
RAIN	4S	3.58		5.19		8.77	0.00	98.35	0.00	(
LAV	ACA O PINTO	8.62 4.68	0.33	0.00	0.56	8.62	0.00	178.84 108.91	0.00	(
KIME	BLE	1.87		8.08		9.95	0.00	116.08	0.00	
MAD		3.06 9.67		0.00		3.06	0.00	63.42 216.56	0.00	(
REFU	JGIO	4.90		28.02		32.92	0.00	100.96	0.00	(
LIME	ESTONE	3.58 5.37	0.00	0.00	0.00	3.58	0.00	79.97	0.00	
BEE		9.31		0.00		9.31	0.00	123.29	0.00	
MAR	TIN ZALES	2.85 23.84		0.00		2.85 39.94	0.00	66.31 443.75	0.00	
BURL	LESON	6.40		0.00		6.40	0.00	87.69	0.00	
KARY		54.42 29.66		12.82		67.24 29.66	0.00	864.18 445.02	0.00	
BREV	WSTER	4.08		18.29		22.37	0.00	234.98	0.00	
WINF	KLER NKLIN	0.00		0.00		0.00	0.00	0.00	0.00	
YOU	NG	30.87	0.64	5.56	1.11	36.43	1.75	775.83	0.00	
HOUS		3.94		0.00		3.94	0.00	110.42 518.11	0.00	
BOSQ	QUE	2.67	0.20	0.00	0.35	6.50	0.55	53.02	0.00	
	IANCHE	2.67		0.00		2.67	0.00	53.02	0.00	
BRISC		8.83 1.02		0.00		8.83	0.00	270.66 17.46	0.00	
ZAVA	ALA	8.66		0.00		8.66	0.00	87.62	0.00	
NOL/ BROO		0.00	0.03	0.00	0.05	0.00	0.08	0.00	0.00	
ROBE	ERTSON	39.06	0.33	0.00	0.57	39.06	0.89	808.59	0.00	
	OAK	10.16		0.00		10.16	0.00	148.34 39.98	0.00	
JONE		0.94		0.00		0.94	0.00	21.78	0.00	
REAG		0.95	0.20	48.49	0.33	49.45	0.00	512.28 419.97	0.00	
	RIVER	6.94	0.20	0.00	0.55	6.94	0.00	182.16	0.00	
HASK		1.87 43.44	0.14	0.00	0.22	1.87 54.70	0.00	43.56 965.99	0.00	
	SABA	0.00		0.00		0.00	0.00	0.00	0.00	
r ERCOT		4.68	0.28	0.00	0.48	4.68	0.76	108.91	0.00	
RUNP	PHENS NELS	3.75		0.00		3.75	0.00	78.36	0.00	
REEV		2.85		0.00		2.85	0.00	66.31	0.00	
DE W	DRESS	4.08		0.00		4.08	0.00	80.56	0.00	
CROS		4.14		0.00		4.14	0.00	297.40 817.72	0.00	
DAW	/SON CHELL	4.68	0.03	0.00	0.05	4.68	0.00	817.72 108.91	0.00	
WILE	BARGER	2.22	1.62	0.00	2.81	2.22	4.43	52.99	0.00	
COLE	EMAN ON	0.00	0.00	0.00	0.00	0.00	0.00	0.00 22.11	0.00	
COKE	E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	CKETT DEMAN	19.37		0.00		19.37	0.00	331.77	0.00	
BANI	DERA	0.80		0.00		0.80	0.00	10.77	0.00	
BAYI		0.00		0.00		0.00	0.00	0.00	0.00	
CRAN	NE	1.00		0.00		1.00	0.00	20.11	0.00	
DELT		2.30		0.00		2.30	0.00	33.76	0.00	
DUV/	AL	0.00		0.00		0.00	0.00	0.00	0.00	
	LAND ARDS	0.00		0.00		0.00	0.00	0.00	0.00	
FISHI	ER	0.00		0.00		0.00	0.00	0.00	0.00	
FOAR	RD SSCOCK	0.00		0.00		0.00	0.00	0.00	0.00	
GOLI	IAD	0.00		0.00		0.00	0.00	0.00	0.00	
HALI	L SPETH	0.00		0.00		0.00	0.00	0.00	0.00	
IRIO?	N	0.00		0.00		0.00	0.00	0.00	0.00	
	DAVIS	0.00		0.00		0.00	0.00	0.00	0.00	
KENI		0.00		0.00		0.00	0.00	0.00	0.00	
KING		0.00		0.00		0.00	0.00	0.00	0.00	
KINN KNO2		0.88		0.00		0.88	0.00	12.31	0.00	
LA S/	ALLE	8.47		22.79		31.26	0.00	98.59	0.00	
LEON		0.00		0.00		0.00	0.00	0.00	0.00	
MEN	ARD	0.00		0.00		0.00	0.00	0.00	0.00	
MILL MON	LS IT AGUE	0.00 13.12		0.00		0.00 13.12	0.00	0.00 209.03	0.00	
MOT	LEY	0.00		0.00		0.00	0.00	0.00	0.00	
REAL	L .EICHER	0.00		0.00		0.00	0.00	0.00	0.00	
	EICHER CKELFORD	0.94		0.00		0.94	0.00	19.59	0.00	
STAR	RR	0.00		0.00		0.00	0.00	0.00	0.00	
STER	RLING NEWALL	0.00		0.00		0.00	0.00	0.00	0.00	
SUTT	FON	0.00		0.00		0.00	0.00	0.00	0.00	
TERF	RELL OCKMORTON	0.00		0.00		0.00	0.00	0.00	0.00	
ZAPA		0.00		0.00		0.00	0.00	0.00	0.00	
	AL	92,395.71	18.53	134,379.34	31.17	226,775.05	49.70	2,281,365.12	10.49	60

Table 16: 2014 Annual NOx Reductions from New Single-family and Multi-family Residences (Continued)

Annual Elec. Savings w/ 7% T&D Loss (Single and Multi-family Residences)

Annual Elec. Savings w/ 7% T&D Loss (Single and Multi-family Residences)

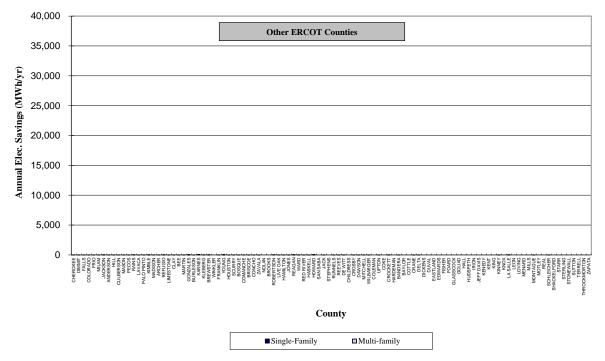


Figure 8: 2014 Annual Electricity Savings by County from New Single-family and Multi-family Residences

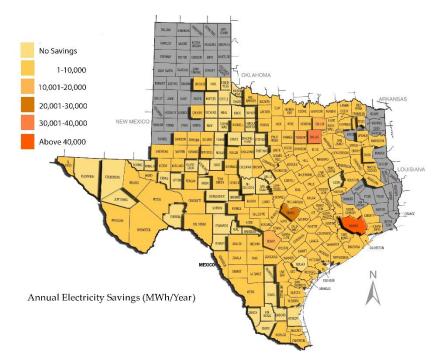
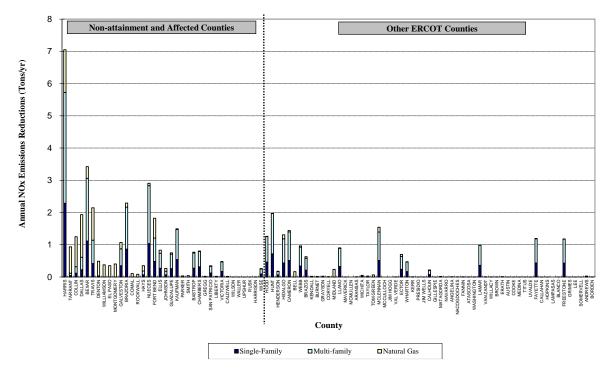



Figure 9: Map of 2014 Annual Electricity Savings by County from New Single-family and Multi-family Residences

Total Annual NOx Emissions Reductions (Single and Multi-Family Residences)

Total Annual NOx Emissions Reductions (Single and Multi-Family Residences)

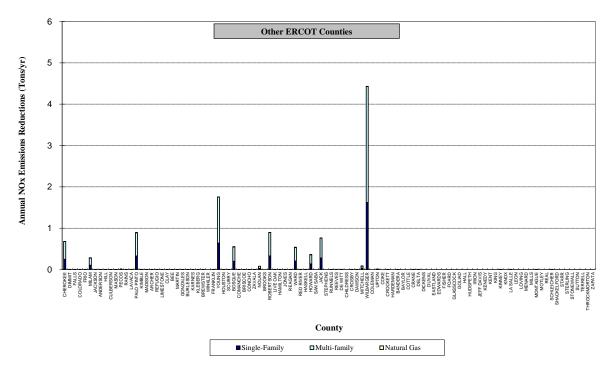


Figure 10: 2014 Annual NOx Reductions by County from New Single-family and Multi-family Residences

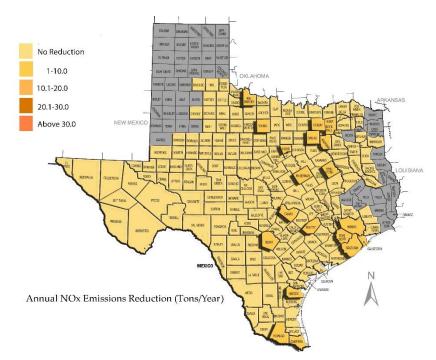
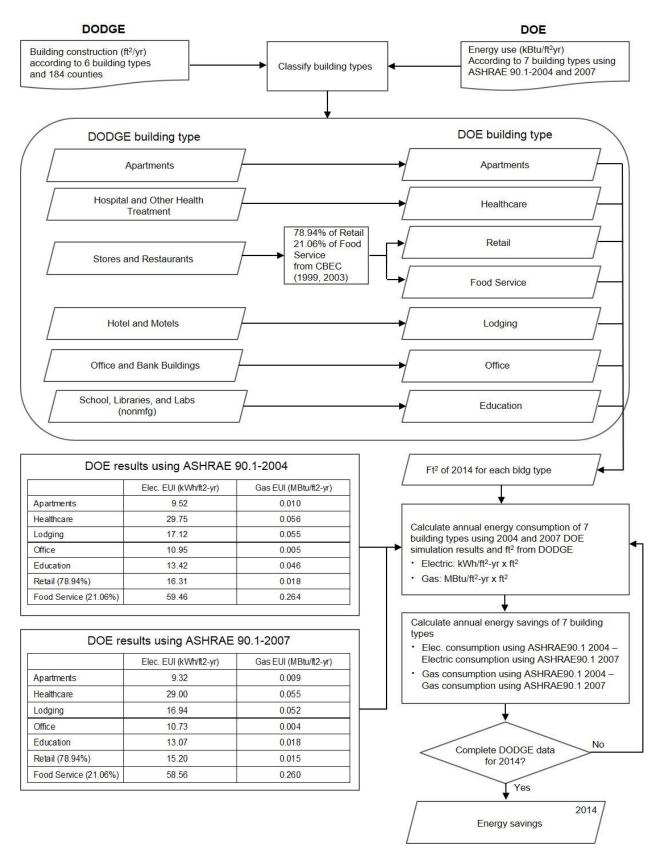


Figure 11: Map of 2014 Annual NOx Reductions by County from New Single-family and Multi-family Residences

4.4 2014 Results for Commercial Construction

This section reports the calculated energy savings and emissions reductions from new commercial Construction in 2014 that were built to meet ASHRAE Standard 90.1-2007.

To determine the energy savings and emissions reductions from new commercial Construction in all counties in the ERCOT region as well as the 36 non-attainment and affected counties, data from two sources (i.e., Dodge and DOE) were merged into one analysis as shown in Figure 12. Beginning in the upper left of Figure 12, the Dodge database of the square footage of new commercial Construction per county in Texas (Dodge 2015) was categorized by the building types in the report published by the US Department of Energy (DOE) (USDOE 2011). This allowed for the new Construction to be tracked by county and building type. The next block in Figure 12 and Table 17 show the categories from the Dodge database and the DOE report. The Dodge "stores and restaurant" category had to be split into two categories to match the two DOE categories for "retail" and "food". To accomplish this, information published in the 1999 and 2003 CBECS database (Table 18) by the US DOE's EIA was used to determine the percentages used to split the Dodge conditioned area for each county as shown in Table 19 (i.e., 21.06% for food and 78.94% for retail). As a result, six Dodge building types were categorized into seven DOE building types and the resultant square footage of new commercial Construction by the seven DOE building types is shown in Figure 13 for all building types and in Figure 14 for each building type.


In the next step, the annual energy savings were calaulated. To accomplish this, this report used the resultant square footage and savings of the annual energy use intensity (EUI). The DOE report included the annual EUI values, which comply with the ASHRAE Standard 90.1-2004 and 2007, by seven building types (DOE 2011). The annual energy use for each building type was calculated by multiplying the annual EUI value by the resultant square footage. Then, the annual energy use from ASHRAE Standard 90.1-2004 to the annual energy use from ASHRAE Standard 90.1-2007. From Table 20 to Table 22 show the annual energy use calculated for new commercial Construction, by building type, for ASHRAE Standard 90.1-2004 and ASHRAE Standard 90.1-2007. Table 23 shows the county-wide annual electricity and natural gas savings by building type³⁰.

³⁰ In this table (-) values are savings, (+) values are increased energy use.

In the next calculation step, CM Zones were assigned to each county as shown in Table 24. In the case where more than one provider was shown in a county, a percentage of electricity use was allocated. In Table 25, the total electricity savings by CM Zones are shown for 2014 for all estimated new commercial Construction. In addition, Table 25 shows the calculated annual NOx emissions reductions from electricity savings, using the 2010 eGRID for Texas.

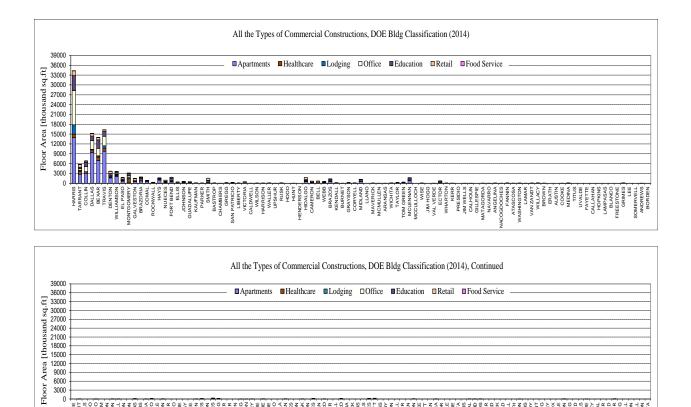
Table 26 shows the transformation of the annual county-wide electricity and natural gas savings, along with the associated 2014 NOx emissions reductions with 7% T&D losses³¹. Figure 15 shows the bar chart of the annual electricity savings for 2014. Figure 16 presents the NOx emissions reductions resulted from the electricity and natural gas savings. The total NOx reductions from electricity and natural gas savings from new commercial Construction in 2014 are calculated to be 48.49 tons NOx/year which represents 11.26 tons NOx/year from electricity savings and 37.23 tons NOx/year from natural gas savings.

 $^{^{31}}$ 0.092 lb-NOx/MMBtu of emission rate was used for the calculation.

Figure 12: Calculation Method for 2014 Energy Savings from New Commercial Buildings

No	DOE Building Types	Dodge Building Types
1	Apartments	Apartments
2	Healthcare	Hospitals and Other Health Treatment
3	Lodging	Hotels and Motels
4	Office	Office and Bank Buildings
5	Education	Schools, Libraries, and Labs (nonmfg)
6	Retail	Stores and Restaurants
7	Food Service	Stores and Restaurants

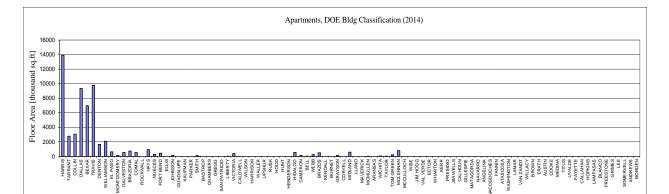
Table 17: Commercial Building Types in the US DOE Report and Dodge Database

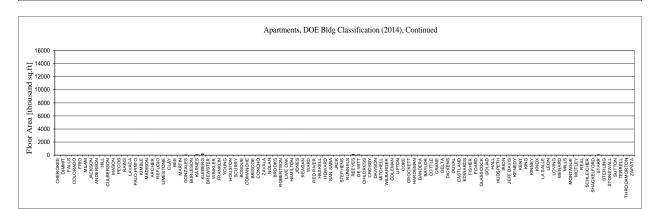

Table 18: Commercial Building Floor Area for Retail and Food Service Types from CBECS Database

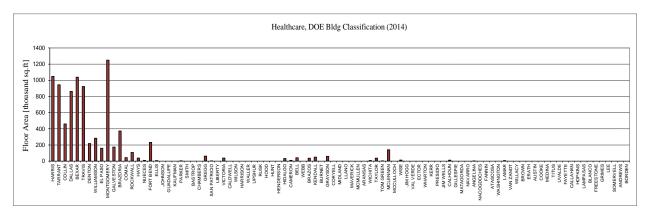
		CBECS	5 (1999)	CBECS	S (2003)
		All (million square feet)	South (million square feet)	All (million square feet)	South (million square feet)
Food	Food Sales	994	392	1,255	487
roou	Food Service	1,851	676	1,654	764
Retail	Retail (Other Than Mall)	4,766	1,566	4,317	1,844
Ketali	Enclosed and Strip Malls	5,631	2,513	6,875	3,251

Table 19: Resultant % Distribution of Commercial Building Floor Area for Retail and Food Service Types

	So	uth	A	.11
	Food %	Retail %	Food %	Retail %
CBECS (1999)	20.75 79.25		21.48	78.52
CBECS (2003)	19.71	80.29	20.63	79.37
Average	20.23	79.77	21.06	78.94


SCHLEICH




RUNNE

CHEROKEE DIMMIT FALLS COLORADO FRIO MILAM ANDERSON MASON MAS MARTIN GONZALES GONZALES BURLEXLES RURLEX KARNES KARNES KARNES REWYTER WINKLER FRANKLIN YOUNG HOUSTON BOCURRY BOCURRY BOCURRY BOCURRY BOCURRY BOCURRY BOCURRY BROOKS BROOKS COBERTSON LIVE OAK HAMILTON WAR RED RIVEH HASKELI HOWARC SAN SABA ARCI ARCI REFL LIMES Figure 13: All the Types of 2014 New Commercial Building Construction (Dodge 2015)

REAC

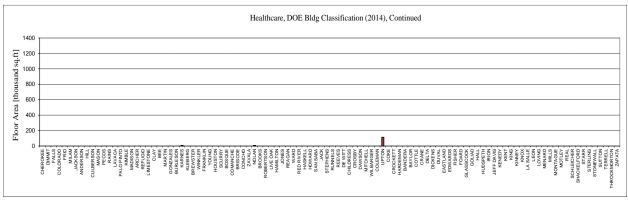
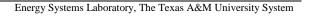



Figure 14: 2014 New Commercial Building Construction by Type (Dodge 2015)

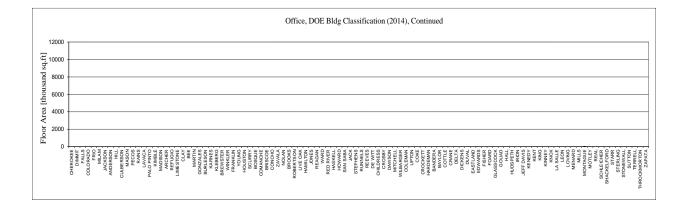
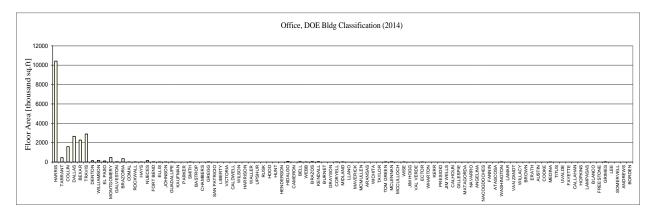
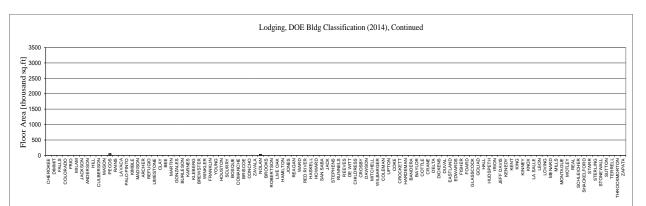
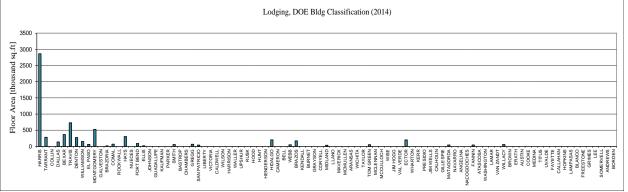
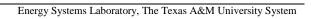
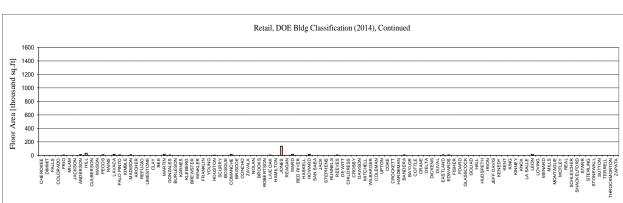
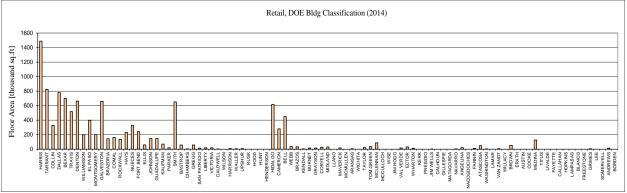
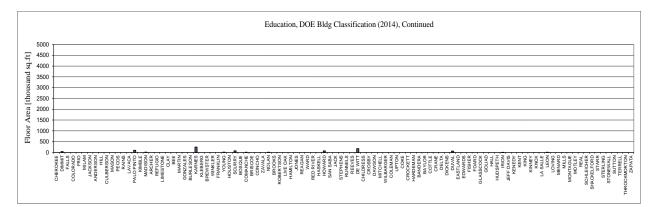
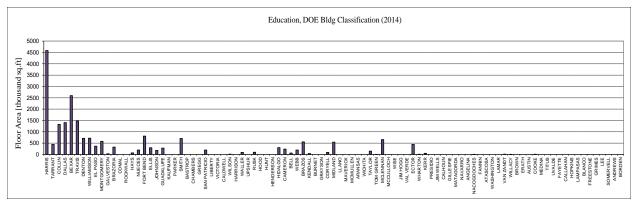
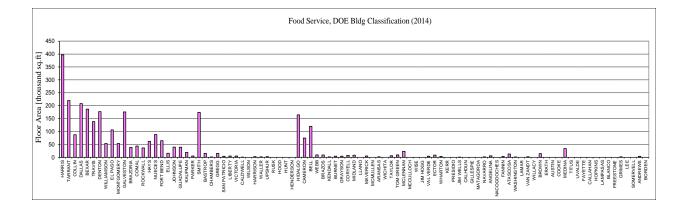






Figure 14: 2014 New Commercial Building Construction by Type (Dodge 2015) (Continued)


Figure 14: 2014 New Commercial Building Construction by Type (Dodge 2015) (Continued)

November 2015

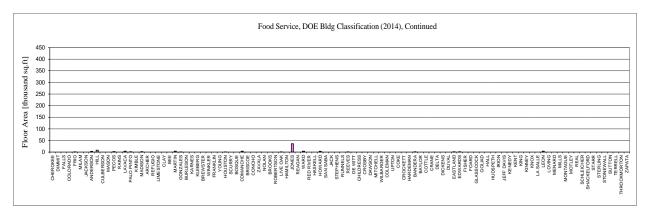


Figure 14: 2014 New Commercial Building Construction by Type (Dodge 2015) (Continued)

Table 20: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Apartment, Healthcare, and Lodging Building Types

		Apart	ments			Healt	hcare			Lodging			
Non-attainment Counties	Electricity (k			a/yr), DOE		Wh/yr), DOE		ı/yr), DOE		Wh/yr), DOE		u/yr), DOE	
	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	
Brazoria	6915015	6766076	7333	6534	11116352	10837074	20983	20367	292673	289666	945	887	
Chambers	0	0	0	0	0	0	0	0	0	0	0	0	
Collin	29111643	28484623	30870	27508	13683495	13339722	25829	25070	0	0	0	0	
Dallas	88920809	87005592	94291	84021	25683325	25038079	48480	47055	2358496	2334265	7613	7152	
Denton	15742613	15403541	16693	14875	6484787	6321868	12241	11881	4708435	4660061	15199	14278	
El Paso	5815852	5690587	6167	5495	4762451	4642803	8990	8725	1050883	1040086	3392	3187	
Ellis	0	0	0	0	193354	188496	365	354	321769	318463	1039	976	
Fort Bend	4182346	4092265	4435	3952	6919089	6745260	13060	12677	1528402	1512699	4934	4635	
Galveston	5078631	4969245	5385	4799	5199728	5069094	9815	9527	0	0	0	0	
Harris	132524457	129670084	140527	125222	31207292	30423267	58907	57176	49032080	48528325	158280	148683	
Johnson	1457297	1425909	1545	1377	0	0	0	0	0	0	0	0	
Kaufman	0	0	0	0	0	0	0	0	0	0	0	0	
Liberty	113345	110904	120	107	0	0	0	0	0	0	0	0	
Montgomery	1192507	1166822	1265	1127	37183410	36249245	70188	68125	8987275	8894940	29012	27253	
Parker	0	0	0	0	151708	147897	286	278	0	0	0	0	
Rockwall	0	0	0	0	3200748	3120335	6042	5864	0	0	0	0	
Tarrant	26379926	25811743	27973	24926	28101734	27395730	53045	51486	4821397	4771862	15564	14620	
Waller	0	0	0	0	0	0	0	0	0	0	0	0	
Wise	0	0	0	0	407530	397292	769	747	0	0	0	0	
		Apart	ments			Healt	hcare			Lod	ging		
Affected Counties	Electricity (k	Wh/yr), DOE	Gas (mBt	a/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBt	ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBt	u/yr), DOE	
	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	
Bastrop	0	0	0	0	0	0	0	0	0	0	0	0	
Bexar	66396528	64966449	70406	62738	30889002	30112973	58306	56593	6284760	6220190	20288	19058	
Caldwell	0	0	0	0	0	0	0	0	0	0	0	0	
Comal	5039579	4931034	5344	4762	1308856	1275973	2471	2398	1198075	1185766	3868	3633	
Gregg	0	0	0	0	1844297	1797963	3481	3379	1153575	1141723	3724	3498	
Guadalupe	0	0	0	0	0	0	0	0	0	0	0	0	
Harrison	0	0	0	0	0	0	0	0	0	0	0	0	
Hays	8914274	8722274	9453	8423	1154173	1125177	2179	2115	5240723	5186880	16918	15892	
Nueces	2607894	2551724	2765	2464	279619	272594	528	512	0	0	0	0	
Rusk	0	0	0	0	0	0	0	0	0	0	0	0	
San Patricio	0	0	0	0	89240	86998	168	164	703441	696214	2271	2133	
Smith	1035347	1013048	1098	978	0	0	0	0	1026922	1016371	3315	3114	
Travis	93122205	91116496	98746	87991	27450280	26760643	51815	50293	12518173	12389562	40410	37960	
Upshur	0	0	0	0	0	0	0	0	0	0	0	0	
Victoria	3570853	3493942	3786	3374	1142274	1113577	2156	2093	0	0	0	0	
Williamson	19852571	19424977	21051	18759	8430223	8218429	15913	15445	2608381	2581582	8420	7910	
Wilson	0	0	0	0	0	0	0	0	0	0	0	0	

	Apartments				Healthcare				Lodging			
Other ERCOT Counties	Electricity (k	Wh/yr), DOE	Gas (mBtu	ı/yr), DOE	Electricity (Wh/yr), DOE		u/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBtu	a/yr), DOE
			2004 (Annual)								2004 (Annual)	
ANDERSON	0	0		0	0		0	0	0	0	0	0
ANDREWS	0	0	0	0	0	0	0	0	0	0	0	0
ANGELINA	0	0		0	113038	110198	213	207	0	0		0
ARANSAS	0	0	0	0	0	0	0	0	0	0	0	0
ARCHER	0	0	0	0	0	0	0	0	0	0	0	0
ATASCOSA	0	0	0	0	0	0	0	0	0	0	0	0
AUSTIN	0	0	0	0	0	0	0	0	0	0	0	0
BANDERA	0	0	0	0	0	0	0	0	0	0	0	0
BAYLOR	0	0	0	0	0	0	0	0	0	0	0	0
BEE	0	0		0	0		0	0	0	0	0	0
BELL	380993	372787	404	360	1249363	1217975	2358	2289	0	0		0
BLANCO	0	0		0	0		0	0	0	0		0
BORDEN	0	0		0	0		0			0		0
BOSQUE	0	0		0	0		0			0		0
BRAZOS	4611915	4512582		4358	1100629		2078	2017	2935284	2905127	9475	8901
BREWSTER	0	0		0	0		0	0	0	0		0
BRISCOE	0	0		0	0		0	0		0		0
BROOKS	0	0		0	0		0			0		0
BROWN	0	0		0	0		0			0		0
BURLESON	0	0		0	0		0			0		0
BURNET	0	0		0	0		0			0		0
CALHOUN	0	0		0	380758		719			0		0
CALLAHAN	0				0		0	0				0
CAMERON	1204889	1178938		1139	297467	289994	562	545	0	0		0
CHEROKEE	0	0		0	0	0	0	0		0		0
CHILDRESS	0	0		0	0		0			0		0
CLAY	0	0		0	0		0			0		0
COKE	0	0		0	0		0			0		0
COLEMAN	0	0		0	0		0			0		0
COLORADO	0	0		0	0		0			0		0
COMANCHE	0				0		0			0		0
CONCHO	0	0		0	0		0			0		0
COOKE	0	0		0	0		0	0		0		0
CORYELL	0	0		0	0		0			0		0
COTTLE	0	0		0	0		0			0		0
CRANE	0	0		0	0		0			0		0
CROCKETT	0	0		0	0		0			0		0
CROSBY	0	0		0	0		0			0		0
CULBERSON	0	0		0	0		0			0		0
DAWSON	0				0		0					0
DE WITT	457191 0	447344		432	0		0			0		0
DELTA	0	0			0		0			0		0
DICKENS	0			0								0
DIMMIT DUVAL		0		0	0		0			0		0
	0	0		0	0		0			0		0
EASTLAND	0	0		0	0		0					10375
ECTOR	0				0		0			3386209		10373
EDWARDS	0	0		0	0		0			0		0
ERATH FALLS	0	0		0	0		0			0		0
	0	0		0	0		0			762278	2486	2336
FANNIN	0										2480	2330
FAYETTE FISHER	0	0		0	0		0			0	0	0
FOARD	0	0		0	0		0			0		0
FRANKLIN	0	0		0	0		0			0		0
FREESTONE	0			0	0		0			0		0
FRIO	0				0		0					
GILLESPIE	0	0		0	0		0			0		0
GLASSCOCK	0	0		0	0		0			0		0
GOLIAD	0	0		0	0		0			0		0
GONZALES	409567	400746		387	0		0	0	0	0		0
GRAYSON	1111546	1087605		1050	1784804		3369	3270	0	0		0
GRIMES	0	1087603		1050	1/84804		3369	3270	0	0		0
HALL	0	0		0	0		0		0	0		0
HAMILTON	0				0		0			0		
HARDEMAN	0	0		0	0		0			0		0
HASKELL	0			0	0		0	0		0		0
HENDERSON	0	0		0	0	-	0			0	-	0
HIDALGO	5160544	5049394		4876	978667	954080	1847	1793	3486399	3450579		10572
HILL	0	5049394		4878	978007		0			0		
HOOD	0	0		0	0		0			0		0
HOPKINS	0				0		0			0		
HOUSTON	0				0		0					
HOWARD	0				0		0					
HUDSPETH	0				0		0			0		
HUNT	0	0		0	1029237		1943	1886	0			
IRION	0				1029237		1943					
JACK	0			0	0		0			0		
		0		0	0		0					
							0	0	0	0	0	
JACKSON	0				n	0	0	0	0	0	0	
	0	0	0	0	0		0					0

Table 20: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Apartment, Healthcare, and Lodging Building Types (Continued)

Apartments Healthcare										Lod	lging	
Other ERCOT Counties	Electricity (k	Wh/yr), DOE		u/yr), DOE	Electricity (k	wh/yr), DOE		u/yr), DOE	Electricity (k	Wh/yr), DOE		u/yr), DOE
	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)
JIM WELLS	0						0					0
JONES	0											
KARNES	619113		657		237974		449			÷		
KENDALL	0		0			1449970	2808	2725		÷		0
KENEDY	0			0			0	0		0 0		0
KENT	0		÷	0				-		÷		0
KERR	0			0			0			0 0		0
KIMBLE	0			0			0			÷		
KING	0			0			0	÷		0 0		
KINNEY	0									÷		
KLEBERG KNOX	1714467				0		0			÷		
LA SALLE	0						0	0		0 0		0
LAMAR	0						410	398				0
LAMPASAS	0						410					0
LAVACA	0						0			0 0		0
LEE	0						0					0
LEON	0						0					
LIMESTONE	0					0	0					0
LIVE OAK	0											0
LLANO	0						0					
LOVING	0			0			0			0 0		
MADISON	0		0	0	0	0	0	0	0	0	0	0
MARTIN	0		0	0	0	0	0	0	0	0	0	0
MASON	0			0			0			0		0
MATAGORDA	0			0		0	0	÷		747033	2437	2289
MAVERICK	0						0			÷		
MCCULLOCH	0							÷		÷		
MCLENNAN	7517936		7972	7104	4179415		7889	7657		0		
MCMULLEN	57149	55918	61	54	0		0	0		0		0
MEDINA	0							-		ų,		0
MENARD	0			0			0			0 0		0
MIDLAND	5475816		5806	5174	0		0			592883		1817
MILAM	0			0	0		0	-		0 0		0
MILLS	0											
MITCHELL	0									÷		
MONTAGUE MOTLEY	0						0					
NACOGDOCHES	0			0			0	0		0		0
NAVARRO	0						0	0		0		0
NOLAN	0					214596	416			508185	0	1557
PALO PINTO	0			0			410			0		1557
PECOS	0						0			965552		2958
PRESIDIO	0											
RAINS	0									÷		
REAGAN	0						0			0		
REAL	0						0			0 0		0
RED RIVER	0		0	0	0	0	0	0	0	0 0	0	0
REEVES	1079161	1055918	1144	1020	0	0	0	0	0	0 0	0	0
REFUGIO	0	0		0	0	0	0	0	0			0
ROBERTSON	0	0	0	0	0	0 0	0	0	0	0 0	0 0	0
RUNNELS	0	0	0	0	0	0 0	0	0	0	0	0 0	0
SAN SABA	0	0	0	0	0	0	0	0	0	0	0	0
SCHLEICHER	0						0					0
SCURRY	0			0			0	0		0 0		0
SHACKELFORD	0			0		0	0	0				0
SOMERVELL	0		0	0	0			-		÷		0
STARR	476241	465983	505	450	0		0	0		0 0		0
STEPHENS	0						0	÷		0		0
STERLING	0						0	÷		0		0
STONEWALL	0									÷		
SUTTON	0 257170							2071		÷		
TAYLOR TERRELL	257170		273				2134	20/1		0 0		0
THROCKMORTON	0		÷			0	0			÷		0
TITUS	0						0	0		0 0		0
TOM GREEN	2014498						213					2683
UPTON	2014498						6345	6159				
UVALDE	0											
VAL VERDE	0											
VAL VERDE VAN ZANDT	0											
WARD	0											
WASHINGTON	0							÷				
WEBB	2286908			2161	0							2595
WHARTON	0						0					
WICHITA	466716						427	414				
WILBARGER	0											
WILLACY	0											
WINKLER	0											
YOUNG	0											
ZAPATA	0						0			0	0	0
ZAVALA	0		0	0	0	0	0	0	0			0
				1		1			T	1	-	
Total	553275510	541358807	586687	522790	264989801	258332422	500195	485497	120059107	118825623	387562	364063

Table 20: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Apartment, Healthcare, and Lodging Building Types (Continued)

		Of	fice			Educ	ation	
Non-attainment Counties	Electricity (k	Wh/yr), DOE	Gas (mBt	ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBt	u/yr), DOE
	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)
Brazoria	3827407	3748879	1573	1421	4367734	4253296	14903	5939
Chambers	0	0	0	0	0	0	0	0
Collin	17390338	17033533	7146	6458	17853482	17385705	60919	24274
Dallas	29149623	28551548	11978	10825	18895081	18400013	64473	25691
Denton	1503585	1472736	618	558	9599887	9348362	32756	13052
El Paso	1224332	1199212	503	455	4914036	4785284	16767	6681
Ellis	27378	26816	11	10	4006664	3901686	13671	5448
Fort Bend	282538	276741	116	105	10862960	10578341	37066	14770
Galveston	416142	407603	171	155	408049	397358	1392	555
Harris	114167348	111824931	46913	42396	61599278	59985323	210185	83753
Johnson	128128	125499	53	48	2416079	2352776	8244	3285
Kaufman	0	0	0	0	0	0	0	0
Liberty	0	0	0	0	0	0	0	0
Montgomery	5207245	5100406	2140	1934	7803935	7599465	26628	10611
Parker	0	0	0	0	0	0	0	0
Rockwall	300060	293904	123	111	0	0	0	0
Tarrant	4991509	4889096	2051	1854	5961004	5804820	20340	8105
Waller	0	0	0	0	1208040	1176388	4122	1643
Wise	192739	188785	79	72	0	0	0	0
		Of	fice			Educ	ation	
Affected Counties	Electricity (k	Wh/yr), DOE	Gas (mBt	ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBt	u/yr), DOE
	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)
Bastrop	0	0	0	0	0	0	0	0
Bexar	24896218	24385412	10230	9245	34854625	33941403	118929	47390
Caldwell	0	0	0	0	0	0	0	0
Comal	88704	86884	36	33	0	0	0	0
Gregg	306631	300339	126	114	0	0	0	0
Guadalupe	234353	229545	96	87	3773110	3674251	12874	5130
Harrison	0	0	0	0	0	0	0	0
Hays	169742	166259	70	63	942271	917583	3215	1281
Nueces	1626237	1592871	668	604	2606681	2538384	8894	3544
Rusk	0	0	0	0	1342266	1307098	4580	1825
San Patricio	0	0	0	0	2610708	2542305	8908	3550
Smith	183978	180204	76	68	9468345	9220266	32307	12874
Travis	31653043	31003605	13007	11754	19880304	19359423	67834	27030
Upshur	0	0	0	0	0	0	0	0
Victoria	0	0	0	0	0	0	0	0
Williamson	1921917	1882484	790	714	9657605	9404567	32953	13131
Wilson	0	0	0	0	201340	196065	687	274

Table 21: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Office and Education Building Types

Table 21: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Office and Education Building Types (Continued)

		Of	fice		Education					
Other ERCOT Counties	Electricity (k	Wh/yr), DOE		ı/yr), DOE	Electricity (k	Wh/yr), DOE		ı/yr), DOE		
	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)		
ANDERSON	0	0	0	0	0	0	0	0		
ANDREWS	0	0	0	0	0	0	0	0		
ANGELINA	0	0	0	0	0	0	0	0		
ARANSAS	0	0	0	0	0	0	0	0		
ARCHER	0	0	0	0	0	0	0	0		
ATASCOSA	0	0	0	0	0	0	0	0		
AUSTIN	0	0	0	0	0	0	0	0		
BANDERA	0	0	0	0	0	0	0	0		
BAYLOR	0	0	0	0	0	0	0	0		
BEE	0	0	0	0	0	0	0	0		
BELL	459946	450509	189	171	853681	831314	2913	1161		
BLANCO	0	0	0	0	0	0	0	0		
BORDEN	0	0	0	0	0	0	0	0		
BOSQUE	0	0	0	0	0	0	0	0		
BRAZOS	526748	515940	216	196	7438839	7243935	25382	10114		
BREWSTER	0	0	0	0	0	0	0	0		
BRISCOE	0	0	0	0	0	0	0	0		
BROOKS	0	0	0	0	0	0	0	0		
BROWN	0	0	0	0	0	0	0	0		
BURLESON	0	0	0	0	0	0	0	0		
BURNET	0		0		0		0	0		
CALHOUN	0		0	0	0		0	0		
CALLAHAN	0		0	0	0	0	0	0		
CAMERON	0		0	0	3146272	3063837	10736	4278		
CHEROKEE	0		0	0	0	0	0	0		
CHILDRESS	0		0	0	0	0	0	0		
CLAY	0		0		0		0	0		
COKE	0		0		0		0	0		
COLEMAN	0		0	0	0	0	0	0		
COLORADO	0		0	0	0	0	0	0		
COMANCHE	0		0		131542	128096	449	179		
CONCHO	0	0	0	0	0	0	0	0		
COOKE	0	0	0	0	134227	130710	458	183		
CORYELL	54755	53632	23	20	1220120	1188152	4163	1659		
COTTLE	0	0	0	0	0	0	0	0		
CRANE	0		0	0	0		0	0		
CROCKETT	0		0	0	0	0	0	0		
CROSBY	0		0	0	0	0	0	0		
CULBERSON	0		0	0	0	0	0	0		
DAWSON	0		0		0	0	0	0		
DE WITT	0		0	0	2389234	2326634	8152	3249		
DELTA	0		0	0	0	0	0	0		
DICKENS	0		0	0	0	0	0	0		
DIMMIT	0		0	0	536906	522839	1832	730		
DUVAL	0		0		859050	836542	2931	1168		
EASTLAND	0	0	0	0	0	0	0	0		
ECTOR	237639	232763	98	88	5958319	5802206	20331	8101		
EDWARDS	0	0	0	0	0	0	0	0		
ERATH	0		0	0	0		0	0		
FALLS	0		0		0		0	0		
FANNIN	0	0	0	0	0	0	0	0		
FAYETTE	0		0	0	0	0	0	0		
FISHER	0	0	0	0	0	0	0	0		
FOARD	0		0	0	0		0	0		
FRANKLIN	0		0		0		0	0		
FREESTONE	0	0	0	0	0	0	0	0		
FRIO	0		0	0	0	0	0	0		
GILLESPIE	0	0	0	0	0	0	0	0		
GLASSCOCK	0		0		0		0	0		
GOLIAD	0		0	0	0		0	0		
GONZALES	0		0	0	0		0	0		
GRAYSON				0			0	0		
GRIMES	438044	429056	180	163	0	0	0			
HALL	0		0	0	0					
HAMILTON	0									
HARDEMAN HASKELL	0		0		0		0	0		
HASKELL HENDERSON	0		0	0	0		0			
	756721									
HIDALGO HILL		741195	311	281	4042906	3936978 0	13795	5497		
	0		0							
HOOD	0		0	0	1677833	1633872	5725	2281		
HOPKINS	0		0	0	0	0	0	0		
HOUSTON HOWARD	0		0		939586	914968	3206	1278		
	0				939586		3206	1278		
HUDSPETH HUNT	0		0		0	0	0	0		
IRION	0		0		110066	107182	376	150		
JACK	0		0		0	10/182	376	0		
	0		0		0		0			
		. 0	. 0	0	0	0	0	0		
JACKSON					0	0		0		
JACKSON JEFF DAVIS JIM HOGG	0	0		0	0		0	0		

Table 21: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Office and Education Building Types (Continued)

NCMULLEN 0<			Of	fice			Education					
INVERIAS00000000ANAL49190148170CO000	Other ERCOT Counties	Electricity (k			ı/yr), DOE	Electricity (k			ı/yr), DOE			
DONES00		2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)			
KABRYAL00013395813395011395BENDALL93939033910033910033910033910033910033910033910KENY00000000000KENY000									0			
KANDALL49.798449.79619.7019.8159.79759.79719.78KENRP0000000000KERR00000000000KERR00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
EXEMPY 0 0 0 0 0 0 0 KNN 0<									4541			
KANT00<									748			
SCRB 0									0			
KAMALE 0 0 0 0 0 0 0 0 KNOC 0 0 0 0 0 0 0 0 KADAN 0 0 0 0 0 0 0 0 KADAN 0 0 0 0 0 0 0 0 LAMAA 0 0 0 0 0 0 0 0 LAVAAN 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
KNNC 0 0 0 0 0 0 0 0 KNNY 0 0 0 0 0 0 0 0 KNNY 0 0 0 0 0 0 0 0 KNNY 0 0 0 0 0 0 0 0 KNNY 0 0 0 0 0 0 0 0 LANLE 0 0 0 0 0 0 0 0 0 LANC 0									913			
KNNEY 0 0 0 0 0 0 KAR 0 0 0 0 0 0 0 KAR 0 0 0 0 0 0 0 0 KAR 0 0 0 0 0 0 0 0 0 LAMAR 0									0			
KLBERG 0 0 0 0 0 0 LAMAL 0 0 0 0 0 0 0 LAMAL 0 0 0 0 0 0 0 0 LAMAAS 0 0 0 0 0 0 0 0 0 LAVACA 0 0 0 0 0 0 0 0 0 LAMASAS 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>									0			
KNNK 0 0 0 0 0 0 0 LAMAR 0 0 0 0 0 0 0 LAMAR 0 0 0 0 0 0 0 0 LAMAR 0 0 0 0 0 0 0 0 0 LAMAR 0									0			
LASALIF 0 0 0 0 0 0 0 LAMAAS 0 0 0 0 0 0 0 LAMAASS 0 0 0 0 0 0 0 LAMASAS 0 0 0 0 0 0 0 0 LAMASAS 0 0 0 0 0 0 0 0 LIMSTOR 0 0 0 0 0 0 0 0 0 LIMSTOR 0									0			
LAMRAK 0 0 0 0 0 0 LAMPASA 0 0 0 0 0 0 0 LAMPASA 0 0 0 0 0 0 0 0 LAMPASA 0 0 0 0 124813 121500 456 LAMPASA 0 0 0 0 10 0 0 0 LAMASA 0 0 0 0 10 0 0 0 LAMASA 0 0 0 0 0 0 0 0 0 LOVING 0									0			
LAMPASAS 0 0 0 0 0 0 0 LAXACA 0 0 0 0 0 0 0 0 LASA 0 0 0 0 0 0 0 0 0 LMS TOME 0									0			
LAVACA 0 0 0 0 0 0 0 0 LEE 0 0 0 0 0 0 0 0 0 LANS CASK 0									0			
LEE 0 0 0 0 0 0 0 0 LAMSO X04L 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<>									0			
LEON 0 0 12833 121569 426 LIMESTORE 0 0 0 0 0 0 0 LIMESTORE 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<>									0			
LIME TOKE 0 0 0 0 0 0 0 0 LLANG 0 <									170			
LINE OAK 0 0 0 0 0 0 0 0 LAND 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>									0			
LAND 0 0 0 0 0 0 MADINAN 0									0			
LOVING 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
MADISON 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
MARTN 0 0 0 0 0 0 0 MATAGNDA 0 0 0 0 0 0 0 0 MATAGNDA 0									259			
MASN 0									0			
MATAGORDA 0		0	0		0		0	0	0			
ACCULACH 0<			0		0		0		0			
NCLENNAN 394229 380131 16/2 14/6 8799372 8509332 30020 MEDNINA 3476 5363 2 2 0 0 0 MEDNA 3476 5363 2 2 0 0 0 MELAND 264544 121 100 724178 7093619 24856 MILLAN 0 0 0 0 0 0 0 0 MICHEL 0 0 0 0 0 0 0 0 0 MOT AGUE 38329 37542 16 14 0 0 0 0 NACCEDCOLIES 0	MAVERICK	0	0	0	0	0	0	0	0			
MCMULLEN 0<								-	0			
MEDINA 5476 5363 2 2 0 0 0 MENARD 0 0 0 0 0 0 0 0 MIDLAND 204584 28850 121 109 728478 7093619 2855 MILLA 0 0 0 0 0 0 0 0 MILLA 0 0 0 0 0 0 0 0 MITCHEIL 38.329 37542 16 14 0 0 0 0 NACOCEDOCHES 0 0 0 0 28756 101 NACOCEDOCHES 0 0 0 0 134227 130710 458 PALO PINTO 0 0 0 0 0 0 0 0 RANN 0 0 0 0 0 0 0 0 0 REAL 0 0 0		394239	386151				8569332		11965			
MERARD 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
MIDLAND 294554 298540 121 109 7284478 7093619 24856 MILAM 0 0 0 0 0 0 0 0 MITCHEL 0 0 0 0 0 0 0 0 MONTACUE 38329 37542 16 14 0 0 0 0 MONTACUE 38329 37542 16 14 0 0 0 0 NACOCODCHES 0 0 0 0 29363 28756 10 NACOCODCHES 0 0 0 0 132417 1290105 4529 PALO PINTO 0 0 0 0 0 0 0 0 0 RAINS 0		5476	5363						0			
MILAM 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
MILLS 0 0 0 0 0 0 0 0 MICTGLEL 3329 37542 16 14 0 0 0 MOTLEY 0 0 0 0 0 0 0 0 0 NACCEDOCHES 0									9904			
MITCHELL 0 0 0 0 0 0 0 MOTLEY 33329 37542 16 14 0 0 0 MOTLEY 0 0 0 0 29356 101 NACOCDOCHES 0 0 0 29356 101 NAVARO 0 0 0 134227 130710 458 PALO PINTO 0 0 0 0 0 0 0 0 PROS 0 0 0 0 0 0 0 0 0 RAINS 0 0 0 0 0 0 0 0 0 REAL 0 0 0 0 0 0 0 0 0 REAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <									0			
MONTACUE 38329 37542 16 14 0 0 0 0 NACCEDOCIES 0 0 0 0 28550 101 NAVARRO 0 0 0 0 28756 101 NAVARRO 0 0 0 134227 130710 458 PALO PINTO 0 0 0 134227 130710 458 PECOS 0 0 0 0 0 0 0 0 PECOS 0 0 0 0 0 0 0 0 0 REAGAN 0 0 0 0 0 0 0 0 0 REACAN 0<									0			
MOTLEY 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
NACOGEDOCHES 0 0 0 0 28756 101 NAVARRO 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
NAVARO 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
NOLAN 0 0 0 134227 130710 458 PALO PINTO 0 0 0 0 1290105 4520 PECSD 0 0 0 0 0 0 0 PECSD 0 0 0 0 0 0 0 RAINS 0 0 0 0 0 0 0 0 REAGAN 0 0 0 0 0 0 0 0 0 REAGAN 0 0 0 0 0 0 0 0 0 READ PINER 0									40			
PALO PINTO 0 0 0 1324817 1290105 4520 PECOS 0									0 183			
PECOS 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1801</td>									1801			
PRESIDO 0 0 0 0 0 0 0 RAINS 0 0 0 0 0 0 0 0 REAL 0 0 0 0 0 0 0 0 0 RED RIVER 0									0			
RAINS 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
REACAN 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
REAL 0 0 0 0 0 0 0 0 RED RIVER 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<>									0			
RED RIVER 0 0 0 0 0 0 0 REFUGIO 0									0			
REEVES 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
ROBERTSON 0					0		0		0			
ROBERTSON 0									0			
SAN SABA 0 0 0 0 0 0 0 0 SCHLEICHER 0	ROBERTSON	0	0	0	0	0	0	0	0			
SCHLEICHER 0 0 0 0 0 0 0 0 SCURRY 0		0		0	0	0	0	0	0			
SCURRY 0 0 0 0 1020122 993394 3481 SHACKELFORD 0 <td< td=""><td>SAN SABA</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	SAN SABA	0	0	0	0	0	0	0	0			
SHACKELFORD 0 <th< td=""><td>SCHLEICHER</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	SCHLEICHER	0	0	0	0	0	0	0	0			
SOMERVELL 0						1020122			1387			
STARR 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
STEPHENS 0<									0			
STERLING 0<									0			
STONEWALL 0									0			
SUTTON 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
TAYLOR 0 0 0 0 1959709 1908362 6687 TERRELL 0<									0			
TERRELL 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
THROCKMORTON 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2665</td></t<>									2665			
TITUS 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
TOM GREEN 248590 243489 102 92 21476 20914 73 UPTON 0									0			
UPTON 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>29</td>									29			
UVALDE 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>29</td>									29			
VAL VERDE 0									0			
VAN ZANDT 0 0 0 0 193286 188222 660 WARD 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
WARD 0									263			
WASHINGTON 328533 321792 135 122 0 0 0 WEBB 117177 114773 48 44 2606681 2538384 8894 WHARTON 0 0 0 0 107381 104568 366 WICHITA 0 0 0 0 0 0 0 WILBARGER 0 0 0 0 0 0 0 0 WILLACY 0 0 0 0 0 0 0 0 0 YOUNG 0 0 0 0 0 0 0 0 0 ZAPATA 0 0 0 0 0 0 0 0 0									0			
WEBB 117177 114773 48 44 2606681 2538384 8894 WHARTON 0 0 0 0 107381 104568 366 WICHITA 0 0 0 0 0 0 0 0 0 WILBARGER 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0			
WHARTON 0 0 0 0 104568 366 WICHARGER 0									3544			
WICHITA 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>146</td>									146			
WILBARGER 0									0			
WILLACY 0 0 0 0 10457 37 WINKLER 0									0			
WINKLER 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td>									15			
YOUNG 0 0 0 0 185233 180379 632 ZAPATA 0									0			
ZAVALA 0 0 0 0 0 0 0 0 0	YOUNG	0	0		0	185233	180379	632	252			
	ZAPATA	0	0	0	0	0	0	0	0			
	ZAVALA	0	0	0	0	0	0	0	0			
1 0021 1 2442838691 2392718001 1003811 907141 2022260021 2855422121 100062001 24			220			20222	205-122					
[[277203007 237211000] 100301 20114] 273220073 263343313 1000328 3	Total	244283869	239271800	100381	90714	293226093	285543313	1000528	398682			

		Re	tail		Food Service				
Non-attainment Counties	Electricity (k	Wh/yr), DOE	Gas (mBt	ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBt	u/yr), DOE	
	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	
Brazoria	2356061	2195180	2535	2181	2291736	2256722	10178	10011	
Chambers	64373	59978	69	60	62616	61659	278	274	
Collin	5354567	4988936	5762	4958	5208378	5128802	23132	22751	
Dallas	12733029	11863568	13702	11789	12385395	12196165	55008	54102	
Denton	10825006	10085832	11648	10022	10529464	10368590	46765	45995	
El Paso	6505561	6061336	7000	6023	6327948	6231266	28105	27642	
Ellis	966886	900863	1040	895	940489	926119	4177	4108	
Fort Bend	3937068	3668230	4237	3645	3829579	3771069	17008	16728	
Galveston	10759345	10024655	11578	9961	10465596	10305698	46481	45716	
Harris	24271291	22613952	26118	22471	23608642	23247938	104854	103127	
Johnson	2424297	2258756	2609	2245	2358109	2322081	10473	10301	
Kaufman	1169018	1089193	1258	1082	1137102	1119729	5050	4967	
Liberty	319291	297489	344	296	310574	305829	1379	1357	
Montgomery	3270161	3046862	3519	3028	3180880	3132281	14127	13895	
Parker	307704	286693	331	285	299303	294730	1329	1307	
Rockwall	2229889	2077624	2400	2065	2169010	2135870	9633	9475	
Tarrant	13450147	12531719	14473	12453	13082934	12883047	58106	57149	
Waller	108147	100762	116	100	105194	103587	467	460	
Wise	0	0	0	0	0	0	0	0	
		Re	tail			Food S	ervice		
Affected Counties	Electricity (k	Wh/yr), DOE	Gas (mBt	ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBt	u/yr), DOE	
	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	2004 (Annual)	2007 (Annual)	
Bastrop	948862	884070	1021	878	922956	908855	4099	4032	
Bexar	11403078	10624431	12270	10557	11091754	10922289	49262	48451	
Caldwell	15450	14395	17	14	15028	14798	67	66	
Comal	2667628	2485472	2871	2470	2594797	2555152	11524	11335	
Gregg	948862	884070	1021	878	922956	908855	4099	4032	
Guadalupe	2399835	2235965	2582	2222	2334315	2298650	10367	10197	
Harrison	154496	143946	166	143	150278	147982	667	656	
Hays	3756823	3500292	4043	3478	3654255	3598424	16230	15962	
Nueces	5380316	5012927	5790	4981	5233424	5153466	23243	22861	
Rusk	0	0	0	0	0	0	0	0	
San Patricio	254918	237511	274	236	247958	244170	1101	1083	
Smith	10633174	9907099	11442	9845	10342869	10184846	45936	45179	
Travis	8448346	7871460	9091	7822	8217691	8092137	36497	35896	
Upshur	149346	139148	161	138		143049	645	635	
Victoria	311567	290292	335	288	303060	298430	1346	1324	
Williamson	3253424	3031268	3501	3012	3164600	3116250	14055	13824	
Wilson	0	0	0	0		0			

Table 22: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Retail and Food Service Building Types

Table 22: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Retail and Food Service Building Types (Continued)

Other ERCOT Counties ANDERSON ANDREWS ANGELINA ARANSAS ARCHER AT ASCOSA AUSTIN BANDERA BAYLOR BEE BELL	Electricity (k) 2004 (Annual) 193120 245906 355340 117159 0 798228 0 117159		Gas (mBt	a/yr), DOE 2007 (Annual) 179 228		Wh/yr), DOE 2007 (Annual) 184977	2004 (Annual) 834	821
ANDREWS ANGELINA ARANSAS ARCHER AT ASCOSA AUSTIN BANDERA BAYLOR BEE	193120 245906 355340 117159 0 798228 0	179933 229114 331076 109159	208 265	179	187847	184977	834	821
ANDREWS ANGELINA ARANSAS ARCHER AT ASCOSA AUSTIN BANDERA BAYLOR BEE	245906 355340 117159 0 798228 0	229114 331076 109159	265					
ANGELINA ARANSAS ARCHER AT ASCOSA AUSTIN BANDERA BAYLOR BEE	355340 117159 0 798228 0	331076 109159		228	239192			
ARANSAS ARCHER AT ASCOSA AUSTIN BANDERA BAYLOR BEE	117159 0 798228 0	109159	382			235538	1062	1045
ARCHER AT ASCOSA AUSTIN BANDERA BAYLOR BEE	0 798228 0			329	345639	340358	1535	1510
AT ASCOSA AUSTIN BANDERA BAYLOR BEE	798228 0		126	108	113961	112220	506	498
AUSTIN BANDERA BAYLOR BEE	0	743722	859	0 739	0 776435	0 764573	0 3448	0 3392
BANDERA BAYLOR BEE		0	0	0	0	04373	0	0
BAYLOR BEE		109159	126	108	113961	112220	506	498
BEE	0	0	0	0	0	0	0	0
BELL	0	0	0	0	0	0	0	0
	7338551	6837446	7897	6794	7138195	7029135	31703	31181
BLANCO	0	0	0	0	0	0	0	0
BORDEN	0	0	0		0	0		0
BOSQUE	0	0	0	0	0	0	0	0
BRAZOS	540735	503812	582	501	525972	517936	2336	2298
BREWSTER	0	0	0	0	0	0	0	0
BRISCOE BROOKS	0	0	0	0	0	0	0	0
BROWN	872901	813296	939	808	849070	836097	3771	3709
BURLESON	0	0	0	0	0	0	0	0
BURNET	272943	254305	294	253	265491	261434	1179	1160
CALHOUN	0	0	0	0	0	0	0	0
CALLAHAN	0	0	0	0	0	0	0	0
CAMERON	4575651	4263207	4924	4236	4450727	4382727	19767	19442
CHEROKEE	0	0	0	0	0	0	0	0
CHILDRESS	0	0	0	0	0	0	0	0
CLAY	0	0	0		0	0	0	0
COKE	0	0	0	0	0	0	0	0
COLEMAN COLORADO	0	0	0	0	0	0	0	0
COMANCHE	245906	229114	265	228	239192	235538	1062	1045
CONCHO	0	0	0	0	0	0	0	0
COOKE	0	0	0	0	0	0	0	0
CORYELL	457050	425841	492	423	444572	437779	1974	1942
COTTLE	0	0	0	0	0	0	0	0
CRANE	0	0	0	0	0	0	0	0
CROCKETT	0	0	0	0	0	0	0	0
CROSBY	0	0	0	0	0	0	0	0
CULBERSON	0	0	0	0	0	0	0	0
DAWSON DE WITT	0	0	0	0	0	0	0	0
DEWITT	0	0	0	0	0	0	0	0
DICKENS	0	0	0	0	0	0	0	0
DIMMIT	0	0	0	0	0	0	0	0
DUVAL	0	0	0	0	0	0	0	0
EASTLAND	96560	89966	104	89	93924	92489	417	410
ECTOR	526573	490617	567	488	512197	504371	2275	2237
EDWARDS	106860	99563	115	99	103942	102354	462	454
ERATH	0	0	0	0	0	0	0	0
FALLS	0	0	0	0	0	0	0	0
FANNIN	193120	179933	208	179	187847	184977	834	821
FAYETTE FISHER	0	0	0	0	0	0	0	0
FOARD	0	0	0	0	0	0	0	0
FRANKLIN	0	0	0	0	0	0	0	0
FREESTONE	0	0	0	0	0	0	0	0
FRIO	83685	77971	90	77	81400	80157	362	356
GILLESPIE	0	0	0	0	0	0	0	0
GLASSCOCK	0	0	0	0	0	0		0
GOLIAD	0	0	0	0	0	0	0	0
GONZALES	64373	59978	69	60	62616	61659	278	274
GRAYSON	266505	248307	287	247	259229	255269	1151	1132
GRIMES	115872	107960	125	107	112708	110986	501	492
HALL HAMILTON	0	0		0	0	0		0
HAMILION HARDEMAN	0	0	0	0	0	0	0	0
HASKELL	0	0	0	0	0	0	0	0
HENDERSON	293542	273498	316	272	285528	281165	1268	1247
HIDALGO	10057677	9370899	10823	9312	9783085	9633614	43450	42734
HILL	514986	479821	554	477	500926	493273	2225	2188
HOOD	1931198	1799328	2078	1788	1878472	1849772	8343	8206
HOPKINS	0	0	0	0	0	0	0	0
HOUSTON	19312	17993	21	18	18785	18498	83	82
HOWARD	234319	218318	252	217	227921	224439	1012	996
HUDSPETH	0	0	0	0	0	0	0	0
HUNT IRION	272943	254305	294	253	265491	261434	1179 0	1160
JACK	0	0			0	0		0
JACKSON	0	0						0
JEFF DAVIS	0	0	0	0	0	0	0	0
JIM HOGG	0	0			0	0		0

Energy Systems Laboratory, The Texas A&M University System

Table 22: Energy Use of ASHRAE Standard 90.1-2004 and 90.1-2007 Code-Compliant Retail and Food Service Building Types (Continued)

		Ret	tail			Food S	Service	
Other ERCOT Counties		Wh/yr), DOE		ı/yr), DOE		Wh/yr), DOE		ı/yr), DOE
		2007 (Annual)		2007 (Annual)		2007 (Annual)		2007 (Annual)
JIM WELLS JONES	29612 2214440	27590 2063229	32 2383	27 2050	28803 2153982	28363 2121072	128 9567	126 9409
KARNES	2214440	2003229	0	0	2155982	0	0	0
KENDALL	90123	83969	97	83	87662	86323	389	383
KENEDY	0		0	0	0	0	0	0
KENT	0	0	0	0	0	0	0	0
KERR	0	0	0	0	0	0	0	0
KIMBLE KING	0	0	0	0	0	0	0	0
KINNEY	0		0	0	0	0	0	0
KLEBERG	0		0	0	0	0	0	0
KNOX	0		0	0	0	0	0	0
LA SALLE	0		0	0	0	0	0	0
LAMAR	0	0	0	0	0	0	0	0
LAMPASAS LAVACA	244618	227915	263	226	237940	234304	1057	1039
LEE	0	0	0	0	0	0	0	0
LEON	245906	229114	265	228	239192	235538	1062	1045
LIMESTONE	0	0	0	0	0	0	0	0
LIVE OAK	77248	71973	83	72	75139	73991	334	328
LLANO	0	0	0	0	0	0	0	0
LOVING MADISON	0 132609	0 123554	0 143	0 123	0 128988	0 127018	0 573	0 563
MARTIN	245906	229114	265	228	239192	235538	1062	1045
MASON	0	0	0	0	0	0	0	0
MATAGORDA	0	0	0	0	0	0	0	0
MAVERICK	302554	281895	326	280	294294	289798	1307	1286
MCCULLOCH	0	0	0	0	0	0	0	0
MCLENNAN MCMULLEN	1417499	1320707	1525	1312	1378799	1357733	6124	6023 0
MEDINA	2059944	1919283	2217	1907	2003704	1973090	8899	8753
MENARD	0	0	0	0	0	0	0	0
MIDLAND	500824	466626	539	464	487151	479708	2164	2128
MILAM	0		0	0	0	0	0	0
MILLS	0		0	0	0	0	0	0
MIT CHELL MONT AGUE	0		0	0	0	0	0	0
MONTAGUE	0	0	0	0	0	0	0	0
NACOGDOCHES	0	0	0	0	0	0	0	0
NAVARRO	93985	87567	101	87	91419	90022	406	399
NOLAN	0	0	0	0	0	0	0	0
PALO PINTO	117159	109159	126	108	113961	112220	506	498
PECOS PRESIDIO	150633	140348	162	139	146521	144282	651	640 0
RAINS	0		0	0	0	0	0	0
REAGAN	0		0	0	0	0	0	0
REAL	0	0	0	0	0	0	0	0
RED RIVER	0	0	0	0	0	0	0	0
REEVES	86260	80370	93	80	83905	82623	373	367
REFUGIO ROBERT SON	0		0	0	0	0	0	0
RUNNELS	0	0	0	0	0	0	0	0
SAN SABA	0		0	0	0	0	0	0
SCHLEICHER	0	0	0	0	0	0	0	0
SCURRY	0	0	0	0	0	0	0	0
SHACKELFORD	0		0	0	0	0	0	0
SOMERVELL ST ARR	0		0	0	0	0	0	0
STEPHENS	0		0	0	0	0	0	0
STERLING	0		0		0		0	
STONEWALL	0		0	0	0	0		
SUTTON	0		0	0	0	0	0	0
TAYLOR TERRELL	387527	361065	417	359	376947	371188	1674	1647
THROCKMORTON	0		0	0	0	0	0	0
TITUS	0		0	0	0		0	0
TOM GREEN	576784	537399	621	534	561037	552465	2492	2451
UPTON	0	0	0	0	0	0	0	
UVALDE	0		0	0	0	0	0	0
VAL VERDE VAN ZANDT	279380		301	259	271752	267600 130717	1207 590	1187
WARD	136471 245906	127153 229114	265	228	132745 239192	235538	1062	580 1045
WASHINGTON	64373	59978	69	60	62616	61659	278	274
WEBB	583222	543397	628	540	567299	558631	2520	2478
WHARTON	213719	199126	230	198	207884	204708	923	908
WICHITA	0		0	0	0	0		0
WILBARGER	0		0		0			
WILLACY WINKLER	0		0	0	0	0	0	0
YOUNG	0		0		0		0	
ZAPATA	0		0	0	0	0	0	0
		0	0	0	0	0	0	0
ZAVALA	0	0	0	0	0	0	0	0

Energy Systems Laboratory, The Texas A&M University System

Counties	Apart	ments	Healt	hcare	Lod	ging	Off	ice	Educ	ation	Re	tail	Food S	ervice	Te	otal	Total*1.07 (T&	D loss) for eGrid
Counties	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	MWh/yr	Therm/yr
Non-attainment Counties																		
(square feet in thousands)																		
Brazoria	-148939	-799	-279278	-617	-3007	-57	-78528	-151	-114438	-8965	-160881	-354	-35014	-168	-820086	-11110	877	118880
Chambers	0	0	0	0	0	0	0	0	0	0	-4396	-10	-957	-5	-5352	-14	6	152
Collin	-627020	-3362	-343773	-759	0	0	-356804	-688	-467777	-36644	-365631	-804	-79576	-381	-2240581	-42639	2397	456235
Dallas	-1915217	-10269	-645246	-1425	-24231	-462	-598074	-1153	-495068	-38782	-869461	-1913	-189230	-906	-4736528	-54910	5068	587536
Denton	-339072	-1818	-162918	-360	-48374	-922	-30850	-59	-251525	-19704	-739174	-1626	-160874	-770	-1732787	-25259	1854	270272
El Paso	-125264	-672	-119648	-264	-10797	-206	-25120	-48	-128752	-10086	-444225	-977	-96681	-463	-950488	-12716	1017	136063
Ellis	0	0	-4858	-11	-3306	-63	-562	-1	-104978	-8224	-66023	-145	-14369	-69	-194095	-8513	208	91084
Fort Bend	-90081	-483	-173829	-384	-15703	-299	-5797	-11	-284619	-22296	-268838	-591	-58510	-280	-897378	-24345	960	260491
Galveston	-109386	-587	-130634	-288	0	0	-8538	-16	-10691	-838	-734690	-1616	-159898	-766	-1153837	-4111	1235	43985
Harris	-2854373	-15305	-784026	-1731	-503754	-9597	-2342417	-4518	-1613955	-126432	-1657339	-3646	-360704	-1727	-10116567	-162956	10825	1743631
Johnson	-31388	-168	0	0	0	0	-2629	-5	-63303	-4959	-165540	-364	-36028	-173	-298889	-5669	320	60659
Kaufman	0	0	0	0	0	0	0	0	0	0	-79825	-176	-17373	-83	-97198	-259	104	2769
Liberty	-2441	-13	0	0	0	0	0	0	0	0	-21802	-48	-4745	-23	-28989	-84	31	896
Montgomery	-25685	-138	-934164	-2063	-92335	-1759	-106839	-206	-204470	-16018	-223299	-491	-48599	-233	-1635392	-20907	1750	223703
Parker	0	0	-3811	-8	0	0	0	0	0	0	-21011	-46	-4573	-22	-29396	-77	31	819
Rockwall	0	0	-80413	-178	0	0	-6156	-12	0	0	-152266	-335	-33139	-159	-271974	-683	291	7309
Tarrant	-568183	-3047	-706004	-1559	-49535	-944	-102413	-198	-156184	-12235	-918429	-2020	-199887	-957	-2700634	-20959	2890	224262
Waller	0	0	0	0	0	0	0	0	-31652	-2480	-7385	-16	-1607	-8	-40644	-2503	43	26787
Wise	0	0	-10238	-23	0	0	-3955	-8	0	0	0	0	0	0	-14193	-30	15	323
Affected Counties																		
(square feet in thousands)																		
Bastrop	0	0	0	0	0	0	0	0	0	0	-64792	-143	-14101	-68	-78893	-210	84	2248
Bexar	-1430079	-7668	-776029	-1713	-64569	-1230	-510806	-985	-913222	-71539	-778647	-1713	-169465	-811	-4642817	-85660	4968	916563
Caldwell	0	0	0	0	0	0	0	0	0	0	-1055	-2	-230	-1	-1285	-3	1	37
Comal	-108545	-582	-32883	-73	-12309	-235	-1820	-4	0	0	-182156	-401	-39645	-190	-377357	-1483	404	15870
Gregg	0	0	-46335	-102	-11852	-226	-6291	-12	0	0	-64792	-143	-14101	-68	-143371	-550	153	5888
Guadalupe	0	0	0	0	0	0	-4808	-9	-98859	-7744	-163870	-361	-35665	-171	-303202	-8285	324	88648
Harrison	0	0	0	0	0	0	0	0	0	0	-10550	-23	-2296	-11	-12846	-34	14	366
Hays	-192000	-1029	-28996	-64	-53843	-1026	-3483	-7	-24688	-1934	-256531	-564	-55831	-267	-615372	-4892	658	52341
Nueces	-56170	-301	-7025	-16	0	0	-33366	-64	-68297	-5350	-367389	-808	-79959	-383	-612206	-6922	655	74069
Rusk	0	0	0	0	0	0	0	0	-35169	-2755	0	0	0	0	-35169	-2755	38	29479
San Patricio	0	0	-2242	-5	-7227	-138	0	0	-68403	-5358	-17407	-38	-3788	-18	-99067	-5558	106	59466
Smith	-22300	-120	0	0	-10551	-201	-3775	-7	-248079	-19434	-726075	-1597	-158023	-757	-1168802	-22116	1251	236636
Travis	-2005709	-10754	-689638	-1523	-128611	-2450	-649438	-1253	-520881	-40804	-576886	-1269	-125554	-601	-4696717	-58654	5025	627602
Upshur	0	0	0	0	0	0	0	0	0	0	-10198	-22	-2219	-11	-12417	-33	13	354
Victoria	-76911	-412	-28698	-63	0	0	0	0	0	0	-21275	-47	-4630	-22	-131513	-545	141	5829
Williamson	-427594	-2293	-211794	-468	-26798	-511	-39433	-76	-253038	-19822	-222157	-489	-48350	-232	-1229163	-23889	1315	255616
Wilson	0	0	0	0	0	0	0	0	-5275	-413	0		0	0	-5275	-413	6	4422

Table 23: Annual Electricity and Natural Gas Savings from New Commercial Construction

Note: A decrease in energy use is negative (i.e., savings); an increase in energy use is positive (i.e., more consumption)

			•															
Counties		ments	Heal	thcare	Loc	lging	Of	fice	Educ	ation	Re	tail	Food	Service	T	otal		D loss) for eGrid
of proof of the	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	MWh/yr	T herm/yr
Other ERCOT Counties																		
(square feet in thousands)	0									0	-13187	-29	2070		14057	-43	12	457
ANDERSON	0	0	(0 0	0	0	0	0	0	0		-29	-2870	-14		-43	17	457
ANDREWS					0					0							22	
ANGELINA	0	0	-2840				0	0	0	0	24204	-53	-5281	-25		-85		909
ARANSAS ARCHER	0	0	(0 0	0		0	0	0	0	-8000	-18	-1741	-8		-26	10	278
	0	0	(0	0		0	0	0	0	0		0	0	0
ATASCOSA	0	0	(0	0	0	0	0	0	0	-54506	-120	-11863	-57		-177	71	1891
AUSTIN	0	0	(0	0	0	0	0	0	0	0	0	0		0	0	0
BANDERA	0	0	(-			0	-8000	-18	-1741			-26	10	278
BAYLOR	0	0	(0	0		0	0	0	0	0	0	0	0		0	0	0
BEE	0	0	(0 0			0	0	0	0	0	0	0	0		0	0	0
BELL	-8206	-44	-31388				,	-18		-1752		-1102	-109061	-522		-3508	729	37538
BLANCO	0	0	(0	0	0	0	0	0	0	0		0	0	0
BORDEN	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0
BOSQUE	0	0	(0 0	0	0	0	0		0	0	0	0	0	0	0	0	0
BRAZOS	-99334	-533	-27651	-61	-30157	-575	-10807	-21	-194904	-15268	-36924	-81	-8036	-38	-407813	-16577	436	177373
BREWSTER	0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BRISCOE	0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BROOKS	0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BROWN	0	0	(0 0	0	0	0	0	0	0	-59605	-131	-12972	-62	-72578	-193	78	2068
BURLESON	0	0	(0	0	0	0	0	0	0	02		0	0	2000
BURNET	0	0	(0			0	-18638	-41	-4056	-19		-60	24	647
CALHOUN	0	0	-9566		0		0	0	0	0	-10038	-41	-4036	-19		-80	24	226
CALLAHAN	0	0	-9366	0 -21			0	0	0	0	0	0	0	0		-21	10	226
CALLAHAN CAMERON	-25951	-139	-7473				0			-6458	-312443	-687	-68000	-326		-7626	531	81602
			-7473		0													
CHEROKEE	0	0	(0 0						0	0	0	0	0		0	0	0
CHILDRESS	0	0	(0			0	0	0	0	0		0	0	0
CLAY	0	0	(0	0		0			0	0	0
COKE	0		(0			0	0		0			0	0	0
COLEMAN	0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COLORADO	0	0	(0		0	0	0	0	0	0	0	0		0	0	0
COMANCHE	0		(0			-270	-16791	-37	-3654			-324	26	3471
CONCHO	0	0	(0 0	0	0	0	0		0	0	0	0	0		0	0	0
COOKE	0	0	() 0	0	0	0	0	-3517	-276	0	0	0	0	-3517	-276	4	2948
CORYELL	0	0	(0 0	0	0	-1123	-2		-2504	-31209	-69	-6792	-33	-71093	-2608	76	27902
COTTLE	0	0	(0	0	0	0	0	0	0	0		0	0	0
CRANE	0	0	(0	0	0	0	0	0	0	0		0	0	0
CROCKETT	0	0	(0	0	0	0	0	0	0			0	0	0
CROSBY	0	0	(-	0		0	÷		0			0	0	0
							0	0	0	0	0		0			0	0	
CULBERSON	0	0	(0		0	0	0	0	0	0	0	0			0	0
DAWSON	0	0	(0	0	0	0			0	0	0
DE WITT	-9847	-53	(0	0	-62600	-4904	0		0			-4957	78	53037
DELTA	0	0	(0		0	0	0	0	0	0	0	0		0	0	0
DICKENS	0	0	(0	0		0			0	0	0
DIMMIT	0	0	(0 0	0	0	0	0		-1102	0	0	0	0		-1102	15	11791
DUVAL	0	0	(0 0	0	0	0	0	-22508	-1763	0	0	0	0		-1763	24	18866
EASTLAND	0	0	(0 0	0	0	0	0	0	0	-6593	-15	-1435	-7		-21	9	229
ECTOR	0	0	(0 0	-35151	-670	-4876	-9	-156113	-12229	-35956	-79	-7826	-37	-239922	-13025	257	139368
EDWARDS	0	0	() 0			0	0	0	0	-7297	-16	-1588	-8	-8885	-24	10	253
ERATH	0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FALLS	0	0	(0	0	0	0	0	0	0	0	0		0	0	0
FANNIN	0	0	(0	0	0	0	-13187	-29	-2870	-14		-194	26	2070
FAYETTE	0	0	(-151	0	0		0	-15187	-29	-2870	-14		-194	20	20/0
FISHER	0	0	(0	0	0		0	0	0	0	0		0	0	0
	0							0		0	0		0			0	0	0
FOARD							0				0		0			0	0	
FRANKLIN	0	0	(0	0		0	0	0	0	0		0	0	0
FREESTONE	0	0	(0	0		0	0	0	0	0		0	0	0
	0		(0	0		0	-5714	-13	-1244	-6		-19	7	198
GILLESPIE	0	0	(0	0		0	0	0	0	0		0	0	0
GLASSCOCK	0	0	(0	0	0	0	0	0	0	0		0	0	0
GOLIAD	0	0	(0			0			0		0
GONZALES	-8821	-47	(0	0	0	0	-4396	-10	-957	-5		-62	15	659
GRAYSON	-23941	-128	-44840		0		0	0	0	0	-18198	-40	-3961	-19		-286	97	3064
GRIMES	0	0	(-8988	-17	0	0	-7912	-17	-1722	-8		-43	20	460
HALL	0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U.A. ULTON	0	0	(0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HAMILTON	0			0 0			0	0	0	0	0	0	0			0	0	0
HAMILTON HARDEMAN	0	0	(0	÷		0	0		0	0	0
		0	(0 0	0	0												
HARDEMAN HASKELL	0	0	(0	0	0			.4.4		. 21	-24/07	. 65	26	605
HARDEMAN HASKELL HENDERSON	0 0 0	0	(0	0	0	0	0		0	-20044	-44	-4362	-21		-65	26	695
HARDEMAN HASKELL HENDERSON HIDALGO	0 0 -111150	0 0 -596	-24587	0 0	-35819	-682		-30	-105928	-8298	-686778	-1511	-149470	-716	-1129258	-11887	1208	127193
HARDEMAN HASKELL HENDERSON HIDALGO HILL	0 0 -111150 0	0 0 -596 0	(0 0 0 -54	-35819 0	0 -682 0		-30	-105928	-8298 0	-686778 -35165	-1511 -77	-149470 -7653	-716 -37	-1129258 -42819	-11887 -114	1208	127193 1220
HARDEMAN HASKELL HENDERSON HIDALGO HILL HOOD	0 0 -111150 0 0	0 -596 0 0	-24587	0 0 -54 0 0	0 -35819 0 0	0 -682 0 0	0	-30 0	-105928 0 -43961	-8298 0 -3444	-686778	-1511 -77 -290	-149470 -7653 -28700	-716 -37 -137	-1129258 -42819 -204531	-11887	1208	127193 1220 41423
HARDEMAN HASKELL HENDERSON HIDALGO HILL HOOD HOPKINS	0 0 -111150 0 0 0	0 -596 0 0	(-24587 ((((0 0 -54 0 0 0 0 0 0 0 0	0 -35819 0 0 0	0 -682 0 0 0	0 0 0	-30 0 0 0	-105928 0 -43961 0	-8298 0 -3444 0	-686778 -35165 -131870 0	-1511 -77 -290 0	-149470 -7653 -28700 0	-716 -37 -137 0	-1129258 -42819 -204531 0	-11887 -114 -3871 0	1208	127193 1220 41423 0
HARDEMAN HASKELL HENDERSON HIDALGO HILL HOOD HOPKINS HOUSTON	0 0 -111150 0 0 0 0 0	0 0 -596 0 0 0 0	-24587 () () () () () () ()	0 0 -54 0 0 0 0 0 0 0 0 0 0 0	-35819 0 0 0 0 0 0	0 -682 0 0 0 0 0	0 0 0	-30 0 0 0 0	-105928 0 -43961 0 0	-8298 0 -3444 0 0	-686778 -35165 -131870 0 -1319	-1511 -77 -290 0 -3	-149470 -7653 -28700 0 -287	-716 -37 -137 0 -1	-1129258 -42819 -204531 0 -1606	-11887 -114 -3871 0 -4	1208 46 219 0 2	127193 1220 41423 0 46
HARDEMAN HASKELL HENDERSON HIDALGO HILL HOOD HOPKINS HOUSTON HOWARD	0 0 -111150 0 0 0 0 0 0 0	0 0 -596 0 0 0 0 0 0	-24587 () () () () () () () () () () ()	0 0 0 1 -54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-35819 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0	0 0 0	-30 0 0 0 0 0 0	-105928 0 -43961 0	-8298 0 -3444 0	-686778 -35165 -131870 0	-1511 -77 -290 0 -3 -35	-149470 -7653 -28700 0	-716 -37 -137 0 -1 -17	-1129258 -42819 -204531 0 -1606 -44100	-11887 -114 -3871 0	1208	127193 1220 41423 0 46 21190
HARDEMAN HASKELL HENDERSON HIDALGO HILL HOOD HOPKINS HOUSTON HOWARD	0 0 -111150 0 0 0 0 0	0 0 -596 0 0 0 0	-24587 () () () () () () ()	0 0 0 1 -54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-35819 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0	0 0 0	-30 0 0 0 0	-105928 0 -43961 0 0	-8298 0 -3444 0 0	-686778 -35165 -131870 0 -1319 -16000 0	-1511 -77 -290 0 -3	-149470 -7653 -28700 0 -287	-716 -37 -137 0 -1	-1129258 -42819 -204531 0 -1606 -44100	-11887 -114 -3871 0 -4	1208 46 219 0 2	127193 1220 41423 0 46 21190 0
HARDEMAN HASKELL HENDERSON HIDALGO HIDL HOOD HOPKINS HOUSTON HOWARD HODSPETH	0 0 -111150 0 0 0 0 0 0 0	0 0 -596 0 0 0 0 0 0	-24587 () () () () () () () () () () ()	0 0 0 1 -54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-35819 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0	0 0 0	-30 0 0 0 0 0 0	-105928 0 -43961 0 0 -24618 0	-8298 0 -3444 0 0	-686778 -35165 -131870 0 -1319	-1511 -77 -290 0 -3 -35	-149470 -7653 -28700 0 -287 -3482	-716 -37 -137 0 -1 -17	-1129258 -42819 -204531 0 -1606 -44100 0	-11887 -114 -3871 0 -4	1208 46 219 0 2	127193 1220 41423 0 46 21190 0
HARDEMAN HASKELL HENDERSON HIDALGO HIDALGO HILL HOOD HOVSTON HOUSTON HOUSPETH HUDSPETH HUNT	0 0 -111150 0 0 0 0 0 0 0 0 0	0 -596 0 0 0 0 0 0 0	() -24587 () () () () () () () () () () () () ()	0 0 0 1 -54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -35819 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0 0 0 0	0 0 0	-30 0 0 0 0 0 0 0 0	-105928 0 -43961 0 0 -24618 0	-8298 0 -3444 0 0 -1929 0	-686778 -35165 -131870 0 -1319 -16000 0	-1511 -77 -290 0 -3 -35 0	-149470 -7653 -28700 0 -287 -3482 0	-716 -37 -137 0 -1 -17 0	-1129258 -42819 -204531 0 -1606 -44100 0 -48552	-11887 -114 -3871 0 -4 -1980 0	1208 46 219 0 2 47 0	127193 1220 41423 0 46 21190 0
HARDEMAN HASKELL HENDERSON HIDALGO HIDALGO HILL HOOD HOUSTON HOWARD HUDSPETH HUNT IRION	0 0 -111150 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 -596 0 0 0 0 0 0 0 0	() -24587 () () () () () () () () () () () () ()	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-35819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	-30 0 0 0 0 0 0 0 0 0 0 0 0 0	-105928 0 -43961 0 0 -24618 0 0 -24618 0 0 -2884	-8298 0 -3444 0 0 -1929 0 0	-686778 -35165 -131870 0 -1319 -16000 0	-1511 -77 -290 0 -3 -35 -35 0 -41	-149470 -7653 -28700 0 -287 -3482 0 -4056	-716 -37 -137 0 -1 -17 -17 0 -19	-1129258 -42819 -204531 0 -1606 -44100 0 -48552 -2884	-11887 -114 -3871 0 -4 -1980 0 -118	1208 46 219 0 2 47 0	127193 1220 41423 0 46 21190 0 1257
HARDEMAN HASKELL HENDERSON HILL HODALGO HODD HOPKINS HOUSTON HOWARD HUDSPETH HUDSPETH HUNT IRION JACK	0 0 -111150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -596 0 0 0 0 0 0 0 0 0 0 0 0 0	() -24587 () () () () () () () () () () () () ()	0 0 0 -54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -35819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-105928 0 -43961 0 0 -24618 0 0 -2864 0 0 -2884 0	-8298 0 -3444 0 0 -1929 0 0	-686778 -35165 -131870 0 -1319 -16000 0 -18638 0 0 0 0	-1511 -77 -290 0 -3 -35 -35 0 -41 0 0 0	-149470 -7653 -28700 0 -287 -3482 0 -4056 0 0 0	-716 -37 -137 0 -1 -1 -17 0 -19 0 0 0	-1129258 -42819 -204531 0 -1606 -44100 0 -48552 -2884 0	-11887 -114 -3871 0 -4 -1980 0 -118 -226 0	1208 46 219 0 2 47 0	127193 1220 41423 0 46 21190 0 1257 2417 0
HARDEMAN HASKELL HENDERSON HIDALGO HIDALGO HILL HOOD HOUSTON HOUSTON HOW ARD HOWARD HUDSPETH HUNT IRION JACK JACKSON	0 0 0 -111150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -596 0 0 0 0 0 0 0 0 0 0 0 0 0	() -24587 () () () () () () () () () () () () ()	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -35819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-30 -30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-105928 0 -43961 0 0 -24618 0 0 -2884 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-8298 0 -3444 0 0 -1929 0 0 -226 0 0 0 0	-686778 -35165 -131870 0 -1319 -16000 0 -18638 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1511 -77 -290 0 -3 -35 0 -35 0 -41 0 0 0 0 0 0	-149470 -7653 -28700 0 -287 -3482 -4056 0 0 0 0 0 0 0 0	-716 -37 -137 0 -1 -1 -17 -19 0 0 0 0 0 0 0	-1129258 -42819 -204531 0 -1606 -44100 0 -48552 -2884 0 0 0 0	-11887 -114 -3871 -3871 -3871 -3871 -3871 -00 -118 -226 0 0 0 0	1208 46 219 0 2 47 0	127193 1220 41423 0 46 21190 0 1257 2417 0 0 0 0 0 0 0 0 0 0 0 0 0
HARDEMAN HASKELL HENDERSON HILL HODALGO HOLL HODD HOPKINS HOUSTON HUDSYETH HUDSYETH RINT IRION JACK JACKSON EFF DAVIS	0 0 0 -111150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -596 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-35819 -35819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	-30 -30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-105928 0 -43961 0 -24618 0 0 -2884 0 0 0 0 0 0 0 0 0 0 0	-8298 0 -3444 0 0 -1929 0 0	-686778 -35165 -131870 0 -1319 -16000 0 -18638 0 0 0 0	-1511 -77 -290 0 -3 -3 -3 -3 -3 0 -41 0 0 0 0 0 0 0	-149470 -7653 -28700 0 -287 -3482 0 -4056 0 0 0	-716 -37 -137 0 -1 -1 -17 -19 0 0 0 0 0 0 0 0 0 0	-1129258 -42819 -204531 0 -1606 -44100 0 0 -48552 -2884 0 0 0 0 0 0 0 0	-11887 -114 -3871 0 -4 -1980 0 -118 -226 0 0 0 0 0	1208 46 219 0 2 47 0	127193 1220 41423 0 46 21190 0 1257 2417 0 0 0 0 0 0 0 0 0 0
HARDEMAN HASKELL HENDERSON HIDALGO HUDALGO HOPKINS HOUSTON HOWARD HUDSPETH HUNT RIRON JACKSON JEFF DAVIS JIM HOGG	0 0 0 -111150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -596 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-35819 -35819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-105928 0 -43961 0 0 -24618 0 0 -2884 0 0 0 0 0 0 0 0 0 0 0	8298 0 -3444 0 0 -1929 0 0 -226 0 0 0 0 0 0 0 0 0 0	-686778 -35165 -131870 0 -1319 -16000 0 -18638 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1511 -77 -290 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -0 0 -41 0 0 0 0 0 0 0 0 0	-149470 -7653 -28700 0 -287 -3482 0 -4056 0 0 0 0 0 0 0 0 0 0 0 0 0	-716 -37 -137 0 -1 -1 -1 -17 0 -19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1129258 -42819 -204531 00 -1606 -44100 0 -48552 -2884 00 0 0 0 0 0 0	-11887 -114 -3871 0 -4 -1980 0 -118 -226 0 0 0 0 0 0 0 0 0	1208 46 219 0 2 47 0	127193 1220 41423 0 46 21190 0 1257 2417 0 0 0 0 0 0 0 0 0 0 0 0
HARDEMAN HASKELL HENDERSON HILL HODALGO HOUTON HOUSTON HOUSTON HOUSTON HUDSYETH HUNT IRION JACK JACKSON EFF DAVIS JIM WGLLS	0 0 0 -111150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -596 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -35819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-105928 0 -43961 0 0 -24618 0 0 -2884 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8298 0 -3444 0 0 -1929 0 0 -2266 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-686778 -35165 -131870 0 -1319 -16000 0 -18638 0 0 -18638 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1511 -77 -290 0 -3 -35 -35 -0 -41 0 0 0 0 0 0 0 0 0 0 -4	-149470 -7653 -28700 0 -287 -3482 0 -4056 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-716 -37 -137 0 0 -11 -17 0 -19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1129258 -42819 -204531 0 0 -1606 -44100 0 0 -48552 -2884 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-11887 -114 -3871 0 0 -4 -1980 0 0 -118 -226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1208 46 219 0 2 47 0 52 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	127193 1220 41423 0 446 21190 0 0 1257 2417 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HARDEMAN HASKELL HENDERSON HIDALGO HUDALGO HOPKINS HOUSTON HOWARD HUDSPETH HUNT RIRON JACKSON JEFF DAVIS JIM HOGG	0 0 0 -111150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -596 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -35819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 -682 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-105928 0 -43961 0 0 -24618 0 0 -2884 0 0 -2884 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8298 0 -3444 0 0 -1929 0 0 -226 0 0 0 0 0 0 0 0 0 0	-686778 -35165 -131870 0 -1319 -16000 0 -18638 0 0 -18638 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1511 -77 -290 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -0 0 -41 0 0 0 0 0 0 0 0 0	-149470 -7653 -28700 0 -287 -3482 0 -4056 0 0 0 0 0 0 0 0 0 0 0 0 0	-716 -37 -137 0 0 -11 -17 0 -19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1129258 -42819 -204531 -204531 -00 -1606 -44100 0 -48552 -2884 0 0 0 0 0 0 0 0 0 0 0 0 -2462 -184120	-11887 -114 -3871 0 -4 -1980 0 -118 -226 0 0 0 0 0 0 0 0 0	1208 46 219 0 2 47 0	127193 1220 41423 0 46 21190 0 1257 2417 0 0 0 0 0 0 0 0 0 0 0

Table 23: Annual Electricity and Natural Gas Savings from New Commercial Construction (Continued)

Note: A decrease in energy use is negative (i.e., savings); an increase in energy use is positive (i.e., more consumption)

							-											
Counties	Apart kWh/yr	ments	Health		Lod			fice	Educ		Re		Food Ser		To	MBturker	Total*1.07 (T&	D loss) for eGrid Therm/yr
Other ERCOT Counties	KW n/yr	MBtu/yr	kWh/yr	MBtu/yr	ĸwn/yr	MBtu/yr	KW n/yr	MBtu/yr	ĸwn/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtuyr	kWh/yr	MBtu/yr	MWh/yr	I nerm/yr
(square feet in thousands)																		
KENDALL	0	0	-37367	-83	0	0	-10133	-20	-14419	-1130	-6154	-14	-1339	-6	-69412	-1252	74	13392
KENEDY	0	0	0	0	0				0	0	0	0	0	0	0	0	0	0
KENT	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
KERR	0	0	0	0					-17584	-1378	0	0	0	0	-17584	-1378	19	14739
KIMBLE	0	0	0	0	0		0		0	0	0	0	0	0	0	0	0	0
KING	0	0	0	0	0		0		0	0	0	0	0	0	0	0	0	0
KINNEY KLEBERG	-36927	-198	0	0	0				0	0	0	0	0	0	-36927		40	2119
KNOX	-30927	-198	0	0			0		0		0	0	0	0	-36927	-198	40	2119
LA SALLE	0	0	0	0	0		0		0		0	0	0	0	0		0	0
LAMAR	0	0	-5456	-12			0		0	0	0	0	0	0	-5456	-12	6	129
LAMPASAS	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
LAVACA	0	0	0	0	0	0	0	0	0	0	-16703	-37	-3635	-17	-20339	-54	22	579
LEE	0	0	0	0	0		0		0	0	0	0	0	0	0	0	0	0
LEON	0	0	0	0	0		0		-3271	-256	-16791	-37	-3654	-17	-23717	-311	25	3324
LIMESTONE	0	0	0	0	0		0		0	0	0	0	0	0	0	0	0	0
LIVE OAK	0	0	0	0	0		0	0	0	0	-5275	-12	-1148	-5	-6423	-17	7	183
LLANO	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
LOVING MADISON	0	0	0	0	0				-4994	-391	-9055	-20	-1971	-9	-16020	-421		4500
MADISON	0	0	0	0	0				-4994	-391	-9055	-20	-19/1	-17	-16020		22	4500
MARTIN	0	0	0	0			0		0	0	-10/91	-5/	-3034	-1/	-20446	-54	22	382
MAJON	0	0	0	0	-7755	-148	0		0	0	0	0	0	0	-7755	-148	8	1581
MAVERICK	0	0	0	0			0		0	0	-20660	-45	-4496	-22		-143	27	717
MCCULLOCH	0	0	0	0	0		0		0	0	0	0	0	0	25150	0	0	0
MCLENNAN	-161925	-868	-105000	-232	0	0	-8089	-16	-230565	-18062	-96792	-213	-21066	-101	-623437	-19491	667	208556
MCMULLEN	-1231	-7	0	0	0		0	0	0	0	0	0	0	0	-1231	-7	1	71
MEDINA	0	0	0	0			-112		0	0	-140661	-309	-30614	-147	-171387	-456	183	4882
MENARD	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
MIDLAND	-117941	-632	0	0			-6044	-12	-190860	-14951	-34198	-75	-7443	-36	-362640	-15824	388	169312
MILAM	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0
MILLS	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0
MITCHELL	0	0	0	0	0		0	-2	0	0	0	0	0	0	0	0	0	0
MONTAGUE MOTLEY	0	0	0	0	0		-786	-2	0	0	0	0	0	0	-786	-2	1	16
NACOGDOCHES	0	0	0	0	0		0		-774	-61	0	0	0	0	-774		0	649
NAVARRO	0	0	0	0	0	0	0		-774	-01	-6418	-14	-1397	-7	-7814	-01	8	223
NOLAN	0	0	-5530	-12		-101	0		-3517	-276	0410	0	0	0			15	4154
PALO PINTO	0	0	0	0	0	0	0	0	-34711	-2719	-8000	-18	-1741	-8	-44453	-2745	48	29373
PECOS	0	0	0	0	-10023	-191	0	0	0	0	-10286	-23	-2239	-11	-22547		24	2400
PRESIDIO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RAINS	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
REAGAN	0	0	0	0			0		0	0	0	0	0	0	0		0	0
REAL	0	0	0	0	0		0		0	0	0	0	0	0	0		0	0
RED RIVER	-23243	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0
REEVES	-23243	-125	0	0			0		0	0	-5890	-13	-1282	-6	-30416	-144	33	1538
REFUGIO ROBERT SON	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
RUNNELS	0	0	0	0	0		0		0	0	0	0	0	0	0	0	0	0
SAN SABA	0	0	0	0			0		0	0	0	0	0	0	0	0	0	0
SCHLEICHER	0	0	0	0	0		0		0	0	0	0	0	0	0	0	0	0
SCURRY	0	0	0	0	0		0	0	-26728	-2094	0	0	0	0	-26728	-2094	29	22404
SHACKELFORD	0	0	0	0	0		0		0	0	0	0	0	0	0			0
SOMERVELL	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
STARR	-10257	-55	0	0	0		0		0	0	0	0	0	0	-10257	-55	11	589
STEPHENS	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0
STERLING	0	0	0	0					0		0	0	0	0	0		0	0
STONEWALL	0	0	0	0			0					0	0	0	0		0	0
SUTTON	-5539	0	0	0	0		0		61246	0	-26462	0	-5759	0	-117505		0	0
TAYLOR TERRELL	-5539	-30	-28399	-63 0	0		0		-51346	-4022	-26462	-58	-5759	-28	-117505		126	44945
TERRELL THROCKMORTON	0	0	0	0			0	0	0	0	0	0	0	0	0		0	0
TITUS	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0
TOM GREEN	-43389	-233	-2840	-6	-9091	-173	-5100	-10	-563	-44	-39385	-87	-8572	-41	-108940	-594	117	6353
UPTON	0	0	-84448	-186	0		0	0	0	0	0	0	0	0	-84448	-186	90	1995
UVALDE	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
VAL VERDE	0	0	0	0	0	0	0	0	0	0	-19077	-42	-4152	-20	-23229	-62	25	662
VAN ZANDT	0	0	0	0	0		0		-5064	-397	-9319	-21	-2028	-10	-16411	-427	18	4568
WARD	0	0	0	0				0	0	0	-16791	-37	-3654	-17	-20446	-54	22	582
WASHINGTON	0	0	0	0					0	0	-4396	-10	-957	-5	-12093	-27	13	292
WEBB	-49256	-264	0	0				-5	-68297	-5350	-39825	-88	-8667	-41	-177242	-5916	190	63297
WHARTON	0	0	0	0					-2813	-220	-14594	-32	-3176	-15	-20583		22	2865
	-10052	-54	-5680	-13				0	0	0	0	0	0	0	-15732	-66	17	711
	0	0	0	0	0		0		0	0	0	0	0	0	0		0	0
WILBARGER		0	0	0	-10551	-201	0		-281	-22	0	0	0	0	-10832	-223	12	2387
WILBARGER WILLACY	0	0																
WILBARGER WILLACY WINKLER	0	0	0	0	0						0	-		0			0	40.60
WICHIT A WILBARGER WILLACY WINKLER YOUNG ZAPAT A	0	0	0	0	0	0	0	0	-4853	-380	0	0	0	0	-4853	-380	5	4068
WILBARGER WILLACY WINKLER	0				0	0	0	0	-4853		0	0	0	0		-380	5	4068

Table 23: Annual Electricity and Natural Gas Savings from New Commercial Construction (Continued)

Note: A decrease in energy use is negative (i.e., savings); an increase in energy use is positive (i.e., more consumption)

CM Zone	Total Electricity Savings by CM Zone (MWh) 2014-TRY 2008
Houston (H)	17,236
North (N)	11,794
West (W)	1,075
South (S)	12,694
Total	42,800

Table 24: 2014 Totalized Annual Electricity Savings by CM Zone from New Commercial Construction

Area	County	Н	NOx Reductions (lbs)	N	NOx Reductions (lbs)	w	NOx Reductions (lbs/year)	s	NOx Reductions (lbs)	Total Nox Reductions (lbs)	Total Nox Reductions (Tons)
	Brazoria	0.0562032	968.69	0.0000071	0.08	0.0000003	0.00	0.0005265	6.68	975.46	0.49
	Chambers	0.0204500	352.47	0.0000026	0.03	0.0000001	0.00	0.0001916	2.43	354.93	0.18
Houston- Galveston Area	Fort Bend	0.0313463	540.27	0.0000040	0.05	0.0000002	0.00	0.0002937	3.73	544.05	0.27
Galveston Area	Galveston	0.0226620	390.59	0.0000029	0.03	0.0000001	0.00	0.0002123	2.70	393.32	0.20
	Harris	0.1486911	2562.77	0.0000189	0.22	0.0000009	0.00	0.0013930	17.68	2580.68	1.29
	Collin	0.0012932	22.29	0.0079329	93.56	0.0003832	0.41	0.0000809	1.03	117.29	0.06
	Dallas	0.0024826	42.79	0.0152295	179.62	0.0007356	0.79	0.0001554	1.97	225.18	0.11
	Denton	0.0001267	2.18	0.0007770	9.16	0.0000375	0.04	0.0000079	0.10	11.49	0.01
	Tarrant	0.0004742	8.17	0.0029089	34.31	0.0001405	0.15	0.0000297	0.38	43.01	0.02
	Ellis	0.0029920	51.57	0.0183544	216.48	0.0008865	0.95	0.0001873	2.38	271.38	0.14
Dallas/ Fort Worth Area	Johnson	0.0007256	12.51	0.0044512	52.50	0.0002150	0.23	0.0000454	0.58	65.81	0.03
worth Area	Kaufman	0.0059718	102.93	0.0366343	432.08	0.0017695	1.90	0.0003738	4.74	541.66	0.27
	Parker	0.0000012	0.02	0.0000075	0.09	0.0000004	0.00	0.0000001	0.00	0.11	0.00
	Henderson	0.0006908	11.91	0.0042376	49.98	0.0002047	0.22	0.0000432	0.55	62.65	0.03
	Hood	0.0050771	87.51	0.0311454	367.34	0.0015044	1.62	0.0003178	4.03	460.50	0.23
	Hunt	0.0088463	152.47	0.0047066	55.51	0.0002273	0.24	0.0652823	828.72	1036.95	0.52
San Antonio	Bexar	0.0138906	239.41	0.0009368	11.05	0.0000452	0.05	0.1109355	1408.26	1658.77	0.83
Area	Guadalupe	0.0032029	55.20	0.0002160	2.55	0.0000104	0.01	0.0255795	324.72	382.48	0.19
	Bastrop	0.0032025	58.23	0.0002278	2.69	0.0000110	0.01	0.0269798	342.49	403.42	0.20
Austin Area	Hays	0.0008331	14.36	0.0000562	0.66	0.0000027	0.00	0.0066537	84.46	99.49	0.05
	Travis	0.0051785	89.25	0.0003493	4.12	0.0000169	0.02	0.0413577	525.01	618.40	0.31
Corpus Christi	Nueces	0.0128578	221.61	0.0008672	10.23	0.0000419	0.02	0.1026870	1303.55	1535.43	0.77
Area	San Patricio	0.00128578	26.02	0.0001018	1.20	0.0000419	0.05	0.0120591	1505.05	180.31	0.09
Victoria Area	Victoria	0.0021192	36.52	0.0001018	1.20	0.0000049	0.01	0.0120391	214.84	253.06	0.13
victoria Arca	Andrews	0.0000037	0.06	0.0000230	0.27	0.0039003	4.19	0.0000002	0.00	4.53	0.00
	-	0.0000037	38.27	0.0000230	160.65	0.0039003	0.71	0.000002	1.76	201.40	0.00
	Bosque Brazos	0.0022204	41.52	0.0130212	132.46	0.0005425	0.58	0.0001390	60.72	235.28	0.10
		0.0024089	16.31	0.0000638	0.75	0.00003423	0.00	0.0047829	95.97	113.04	0.12
	Calhoun										
	Cameron	0.0063536	109.51	0.0004285	5.05	0.0000207	0.02	0.0507425	644.14	758.73	0.38
	Cherokee	0.0027392	47.21	0.0168033	198.19	0.0008116	0.87	0.0001714	2.18	248.45	0.12
	Ector	0.0019215	33.12	0.0006604	7.79	0.0911346	98.00	0.0146527	186.01	324.92	0.16
	Fannin	0.0000041	0.07	0.0000249	0.29	0.0000012	0.00	0.0000003	0.00	0.37	0.00
	Fayette	0.0051867	89.40	0.0103217	121.74	0.0004986	0.54	0.0283993	360.51	572.18	0.29
	Freestone	0.0047643	82.12	0.0292268	344.71	0.0014117	1.52	0.0002982	3.79	432.13	0.22
	Hidalgo	0.0053716	92.58	0.0003623	4.27	0.0000175	0.02	0.0428994	544.58	641.45	0.32
	Howard	0.0002411	4.16	0.0007641	9.01	0.1283942	138.07	0.0009490	12.05	163.29	0.08
	Jack	0.0030783	53.06	0.0188839	222.72	0.0009121	0.98	0.0001927	2.45	279.21	0.14
	Lamar	0.0040001	68.94	0.0245388	289.42	0.0011853	1.27	0.0002504	3.18	362.82	0.18
Other ERCOT	Llano	0.0040314	69.48	0.0002719	3.21	0.0000131	0.01	0.0321966	408.72	481.42	0.24
counties	McLennan	0.0056576	97.51	0.0347066	409.35	0.0016764	1.80	0.0003541	4.49	513.16	0.26
	Milam	0.0012686	21.87	0.0000856	1.01	0.0000041	0.00	0.0101316	128.61	151.49	0.08
	Mitchell	0.0000311	0.54	0.0001910	2.25	0.0324260	34.87	0.0000019	0.02	37.68	0.02
	Nolan	0.0000293	0.50	0.0001795	2.12	0.0304745	32.77	0.0000018	0.02	35.42	0.02
	Palo Pinto	0.0036129	62.27	0.0221635	261.41	0.0010705	1.15	0.0002261	2.87	327.70	0.16
	Pecos	0.0000020	0.03	0.0000121	0.14	0.0020520	2.21	0.0000001	0.00	2.38	0.00
	Robertson	0.0039506	68.09	0.0055755	65.76	0.0002693	0.29	0.0246170	312.50	446.64	0.22
	Upton	0.0000025	0.04	0.0000156	0.18	0.0026494	2.85	0.0000002	0.00	3.08	0.00
	Ward	0.0001995	3.44	0.0012239	14.44	0.2078335	223.50	0.0000125	0.16	241.53	0.12
	Webb	0.0042017	72.42	0.0002834	3.34	0.0000137	0.01	0.0335565	425.98	501.76	0.25
	Wharton	0.0021095	36.36	0.0001423	1.68	0.0000069	0.01	0.0168474	213.87	251.91	0.13
	Wichita	0.0000121	0.21	0.0000743	0.88	0.0126190	13.57	0.000008	0.01	14.67	0.01
	Wilbarger	0.0179710	309.74	0.1102430	1300.25	0.0053249	5.73	0.0011247	14.28	1630.00	0.81
	Wise	0.0010202	17.58	0.0062583	73.81	0.0003023	0.33	0.0000638	0.81	92.53	0.05
	Young	0.0071054	122.47	0.0435880	514.10	0.0021054	2.26	0.0004447	5.65	644.47	0.32
	Total	0.4414501	7608.63	0.4812863	5676.50	0.5345786	574.87	0.6829349	8669.43	22529.44	11.26
Energy										ו	
Savings											
by PCA											
				11,794		1,075		12.694			

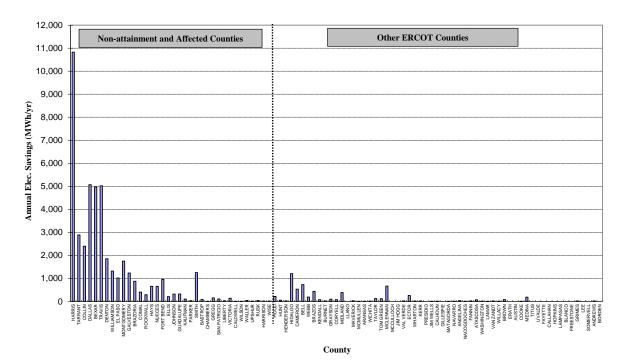

Table 25: 2014 Annual NOx Reductions from New Commercial Construction Using 2010 eGRID

Table 26: 2014 Annual Electricity and Natural Gas Savings and NOx Reductions from New Commercial Construction

		Electricity Sa Resultant NOx (Comme	Reductions	Total Natural Gas Resultant NOx (Comme	Reductions	Total Nox Reductions	
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual Nox Reductions (Tons)	
	HARRIS	10,824.73	1.29	1,743,631.19	8.02	9.3	
	TARRANT COLLIN	2,889.68 2,397.42	0.02	224,261.51 456,235.18	1.03	2.1	
	DALLAS	5,068.08	0.00	587,535.72	2.70	2.8	
	BEXAR	4,967.81	0.83	916,562.68	4.22	5.0	
	TRAVIS DENTON	5,025.49	0.31	627,601.69	2.89	3.2	
	WILLIAMSON	1,854.08 1,315.20	0.01	270,271.51 255,616.42	1.24	1.2	
	EL PASO	1,017.02		136,063.26	0.63	0.6	
	MONTGOMERY	1,749.87		223,703.41	1.03	1.0	
	GALVESTON BRAZORIA	1,234.61 877.49	0.20	43,985.44 118,880.06	0.20	0.4	
	COMAL	403.77	0.49	15,869.91	0.07	0.0	
	ROCKWALL	291.01		7,308.72	0.03	0.0	
	HAYS	658.45	0.05	52,340.95	0.24	0.2	
Non-	NUECES FORT BEND	655.06 960.19	0.77	74,068.86 260,490.67	0.34	1.1	
attainment	ELLIS	207.68	0.27	91,083.84	0.42	0.4	
and Affected Counties	JOHNSON	319.81	0.03	60,658.85	0.28	0.1	
ooundoo	GUADALUPE	324.43	0.19	88,647.84	0.41	0.6	
	KAUFMAN PARKER	104.00 31.45	0.27	2,769.08 818.91	0.01	0.2	
	SMITH	1,250.62	0.00	236,636.39	1.09	1.0	
	BASTROP	84.42	0.20	2,247.59	0.01	0.2	
	CHAMBERS	5.73	0.18	152.48	0.00	0.	
	GREGG SAN PATRICIO	153.41 106.00	0.09	5,887.98 59,465.71	0.03	0.0	
	LIBERTY	31.02	0.09	896.38	0.27	0.0	
	VICTORIA	140.72	0.13	5,828.54	0.03	0.	
	CALDWELL WILSON	1.37 5.64		36.60	0.00	0.0	
	WALLER	43.49		4,421.78 26,786.82	0.02	0.0	
	UPSHUR	13.29		353.76	0.00	0.0	
	RUSK	37.63	0.00	29,478.50	0.14	0.	
	HARRISON	13.74	0.05	365.96	0.00	0.0	
1	WISE HOOD	15.19 218.85	0.05	323.48 41,422.60	0.00	0.0	
	HUNT	51.95	0.52	1,257.39	0.01	0.	
	HENDERSON	26.12	0.03	695.32	0.00	0.0	
	HIDALGO CAMERON	1,208.31 531.04	0.32	127,192.96 81,601.51	0.59	0.9	
	BELL	729.27	0.38	37,538.38	0.38	0.	
	WEBB	189.65	0.25	63,296.58	0.29	0.	
	BRAZOS	436.36	0.12	177,373.41	0.82	0.9	
	KENDALL BURNET	74.27 24.28		13,391.52 646.53	0.06	0.0	
	GRAYSON	97.31		3,064.14	0.00	0.0	
	CORYELL	76.07		27,901.77	0.13	0.	
	MIDLAND	388.02	0.24	169,312.01	0.78	0.1	
	LLANO MAVERICK	0.00 26.92	0.24	0.00 716.67	0.00	0.0	
	MCMULLEN	1.32		70.62	0.00	0.0	
	ARANSAS	10.42		277.52	0.00	0.0	
	WICHITA	16.83 125.73	0.01	710.91 44,945.23	0.00	0.0	
	TAYLOR TOM GREEN	125.75		6,352.78	0.21	0.	
	MCLENNAN	667.08	0.26	208,556.22	0.96	1.1	
	MCCULLOCH	0.00		0.00	0.00	0.0	
	JIM HOGG	0.00		0.00 661.77	0.00	0.	
	VAL VERDE ECTOR	24.86 256.72	0.16	139,368.40	0.00	0.0	
	WHARTON	22.02	0.13	2,864.52	0.04	0.	
	KERR	18.82		14,739.25	0.07	0.0	
ther ERCOT	PRESIDIO IIM WELLS	0.00 2.63		0.00 70.14	0.00	0.0	
Counties	CALHOUN	10.24	0.06	225.98	0.00	0.0	
	GILLESPIE	0.00		0.00	0.00	0.	
	MATAGORDA	8.30		1,580.76 222.62	0.01	0.	
	NAVARRO ANGELINA	8.36 34.65		222.62 908.79	0.00	0.0	
	NACOGDOCHES	0.83		648.53	0.00	0.	
	FANNIN	25.65	0.00	2,070.47	0.01	0.	
	ATASCOSA WASHINGTON	71.01		1,890.78 291.58	0.01	0.0	
	LAMAR	5.84	0.18	128.88	0.00	0.	
	VAN ZANDT	17.56		4,568.17	0.02	0.	
	WILLACY	11.59		2,386.53	0.01	0.0	
	BROWN ERATH	77.66		2,067.66	0.01	0.0	
	AUSTIN	0.00		0.00	0.00	0.0	
	COOKE	3.76		2,947.85	0.01	0.0	
	MEDINA	183.38		4,881.76	0.02	0.0	
	TITUS UVALDE	0.00	0.00	0.00	0.00	0.0	
	UVALDE FAYETTE	0.00	0.29	0.00	0.00	0.0	
	CALLAHAN	0.00	0.29	0.00	0.00	0.	
	HOPKINS	0.00		0.00	0.00	0.0	
	LAMPASAS	0.00		0.00	0.00	0.0	
	BLANCO FREESTONE	0.00	0.22	0.00	0.00	0.	
	GRIMES	19.93	0.22	459.94	0.00	0.0	
	LEE	0.00		0.00	0.00	0.0	
	SOMERVELL	0.00	_	0.00	0.00	0.0	
	ANDREWS BORDEN	21.88	0.00	582.48	0.00	0.0	

Table 26: 2014 Annual Electricity and Natural Gas Savings and NOx Reductions from New Commercial Construction (Continued)

		Electricity Sa Resultant NOx (Comme	Reductions	Total Natural Gas Resultant NOx (Comme	Reductions	Total Nox Reductions		
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (The rm/County)	Annual Nox Reductions (Tons)	Annual Nox Reductions (Tons)		
	CHEROKEE	0.00	0.12	0.00	0.00	0.1		
	DIMMIT FALLS	15.05		11,791.40	0.05	0.0		
	COLORADO	0.00		0.00	0.00	0.0		
	FRIO MILAM	7.45	0.00	198.23 0.00	0.00	0.0		
	JACKSON ANDERSON	0.00		0.00	0.00	0.0		
	HILL	17.18 45.82		457.45 1,219.86	0.00	0.0		
	CULBERSON MASON	0.00		0.00	0.00	0.0		
	PECOS	24.13	0.00	2,399.97	0.00	0.0		
	RAINS LAVACA	0.00		0.00	0.00	0.0		
	PALO PINTO	47.56	0.16	29,372.80	0.14	0.3		
	KIMBLE MADISON	0.00		0.00 4,500.06	0.00	0.0		
	ARCHER	0.00		0.00	0.00	0.0		
	REFUGIO LIMESTONE	0.00	0.00	0.00	0.00	0.0		
	CLAY	0.00		0.00	0.00	0.0		
	BEE MARTIN	0.00 21.88		0.00 582.48	0.00	0.0		
	GONZALES	15.17		658.59	0.00	0.0		
	BURLESON KARNES	0.00 114.29		0.00 74,248.80	0.00	0.0		
	KLEBERG BREWSTER	39.51 0.00		2,118.60	0.01	0.0		
	WINKLER	0.00		0.00	0.00	0.0		
	FRANKLIN YOUNG	0.00 5.19	0.32	0.00 4,068.03	0.00	0.0		
	HOUSTON	1.72	0.32	45.74	0.00	0.0		
	SCURRY BOSQUE	28.60	0.10	22,403.66 0.00	0.10	0.10		
	COMANCHE	25.56	0.10	3,471.38	0.02	0.0		
	BRISCOE CONCHO	0.00		0.00	0.00	0.0		
	ZAVALA	0.00		0.00	0.00	0.0		
	NOLAN BROOKS	15.32	0.02	4,153.85	0.02	0.0		
	ROBERTSON	0.00	0.22	0.00	0.00	0.2		
	LIVE OAK HAMILTON	6.87		182.98	0.00	0.0		
	JONES	197.01		5,245.40	0.02	0.0		
	REAGAN WARD	0.00 21.88	0.12	0.00 582.48	0.00	0.0		
	RED RIVER	0.00		0.00	0.00	0.0		
	HASKELL HOWARD	0.00 47.19	0.08	0.00 21,189.99	0.00	0.0		
	SAN SABA JACK	0.00	0.14	0.00	0.00	0.0		
ther ERCOT Counties	STEPHENS	0.00	0.14	0.00	0.00	0.0		
oounneo	RUNNELS REEVES	0.00		0.00	0.00	0.0		
	DE WITT	77.52		53,036.69	0.24	0.2		
	CHILDRESS CROSBY	0.00		0.00	0.00	0.0		
	DAWSON	0.00		0.00	0.00	0.0		
	MITCHELL WILBARGER	0.00	0.02	0.00	0.00	0.0		
	COLEMAN	0.00	0.00	0.00	0.00	0.0		
	UPTON COKE	90.36	0.00	1,995.02 0.00	0.01	0.0		
	CROCKETT	0.00		0.00	0.00	0.0		
	HARDEMAN BANDERA	0.00 10.42		277.52	0.00	0.0		
	BAYLOR COTTLE	0.00		0.00	0.00	0.0		
	CRANE	0.00		0.00	0.00	0.0		
	DELTA DICKENS	0.00		0.00	0.00	0.0		
	DUVAL	24.08		18,866.24	0.09	0.0		
	EASTLAND EDWARDS	8.59		228.72 253.12	0.00	0.0		
	FISHER	0.00		0.00	0.00	0.0		
	FOARD GLASSCOCK	0.00		0.00	0.00	0.0		
	GOLIAD	0.00		0.00	0.00	0.0		
	HALL HUDSPETH	0.00		0.00	0.00	0.0		
	IRION IEFF DAVIS	3.09		2,417.24	0.01	0.0		
	KENEDY	0.00		0.00	0.00	0.0		
	KENT KING	0.00		0.00	0.00	0.0		
	KINNEY	0.00		0.00	0.00	0.0		
	KNOX LA SALLE	0.00		0.00	0.00	0.0		
	LEON	25.38		3,323.98	0.02	0.0		
	LOVING MENARD	0.00		0.00	0.00	0.0		
	MILLS	0.00		0.00	0.00	0.0		
	MONTAGUE MOTLEY	0.84		16.23	0.00	0.0		
	REAL	0.00		0.00	0.00	0.0		
	SCHLEICHER SHACKELFORD	0.00		0.00	0.00	0.0		
	STARR	10.98		588.50	0.00	0.0		
	STERLING STONEWALL	0.00		0.00	0.00	0.0		
	SUTTON	0.00		0.00	0.00	0.0		
	TERRELL THROCKMORTON	0.00		0.00	0.00	0.0		
	ZAPATA TOTAL	0.00	11.26	0.00	0.00 0.00 37.23	0.0		

Annual Elec. Savings w/ 7% T&D Loss (Commercial Buildings)

Annual Elec. Savings w/ 7% T&D Loss (Commercial Buildings)

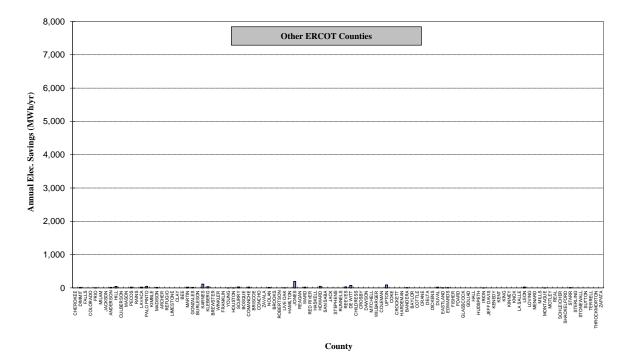
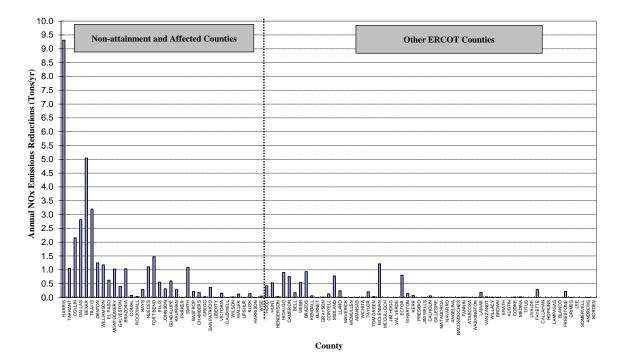
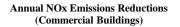




Figure 15: 2014 Annual Electricity Savings by County from New Commercial Construction

Annual NOx Emissions Reductions (Commercial Buildings)

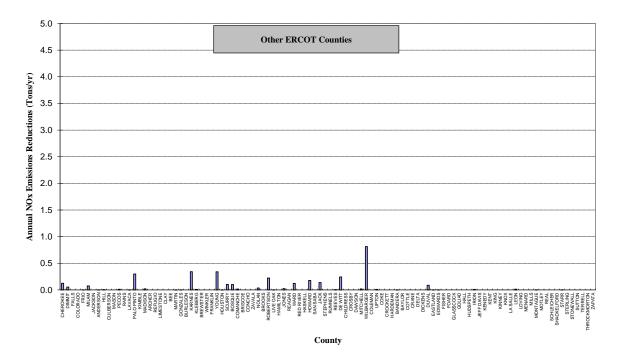


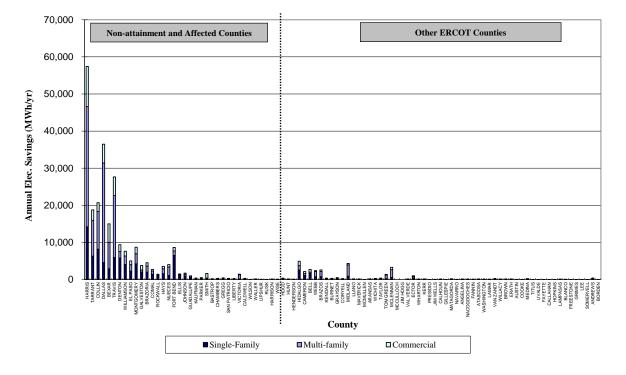
Figure 16: 2014 Annual NOx Reductions by County from New Commercial Construction

4.5 2014 Results for New Residential (Single-family and Multi-family) and Commercial Construction

Figure 17 shows the bar chart and Figure 18 shows the spatial distribution of the 2014 annual electricity savings, and Figure 19 shows the bar chart and Figure 20 shows the spatial distribution of the 2014 annual NOx reductions for new residential and commercial Construction, respectively. As shown in Table 27, the total annual electricity savings in 2014 resulted in 278,739.23 MWh/yr which includes 92,395.71 MWh/yr (i.e., 33.15 %) for single-family buildings, 134,379.34 MWh/yr (i.e., 48.21 %) for multi-family buildings, and 51,964.18 MWh/yr (i.e., 18.64 %) for new commercial buildings. In addition, the total annual natural gas savings from new residential and commercial Construction in 2014 resulted in 1,037,765.47 MMBtu³² (10,377,654.70 therms).

The total NOx reductions³³ from electricity and natural gas savings from new residential (single-family and multi-family) and commercial Construction in 2014 resulted in 108.71 tons NOx/year which represents 60.97 tons NOx/year from electricity savings and 47.74 tons NOx/year from natural gas savings.

³² 1 Therm = 0.10 MMBtu, source from www.eia.gov/tools/faqs/faq.cfm?id=45&t=8


³³ 0.092 lb-NOx/MMBtu of emission rate was used for the calculation.

		Electricity S Resultant NOx (Single Fami	Reductions	Electricity Sa Resultant NOx (Multifamily	Reductions	Electricity S Resultant NO (Commercial	Reductions	Total Electricit Resultant NOx F MF and Comme	teductions (SF,	Total Natural Gas Savin NOx Reduc (Single and Multi-Fa	tions	Total Natural Gas Savin NOx Reduc (SF, MF and Comme	tions	Total Nox Reductions
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual No Reductions (Tons)
	HARRIS TARRANT	14,194.37 6,295.60	2.29	32,398.59 9,576.79	3.44	10,824.73 2,889.68	1.29	57,417.69 18,762.07	7.02	287,417.28 177,937.55	1.32	2,031,048.47 402,199.06	9.34 1.85	16
	COLLIN	8,166.47	0.12	10,151.29	0.20	2,397.42	0.02	20,715.19	0.38	202,280.08	0.93	658,515.26	3.03	3
	DALLAS	4,553.12	0.22	26,846.02	0.39	5,068.08	0.11	36,467.22	0.72	287,776.81	1.32	875,312.53	4.03	4
	BEXAR TRAVIS	2,890.39 5,914.61	0.42	7,130.69	1.95	4,967.81 5,025.49	0.83	14,988.89 27,656.19	3.89 1.45	78,559.35 218,492,86	0.36	995,122.03 846.094.55	4.58 3.89	5
	DENTON	5,785.97	0.01	1,734.67	0.02	1,854.08	0.01	9,374.72	0.04	99,136.12	0.46	369,407.62	1.70	1
	WILLIAMSON	4,058.36		2,254.31		1,315.20	0.00	7,627.88	0.00	81,875.59	0.38	337,492.01	1.55	
	EL PASO MONTGOMERY	2,245.15 4,220.86		1,760.06 2,731.60		1,017.02	0.00	5,022.23 8,702.33	0.00	76,551.77 87,952.16	0.35	212,615.03 311,655.56	0.98	(
	GALVESTON	2,018.54	0.35	553.25	0.52	1,234.61	0.20	3,806.39	1.07	42,899.41	0.20	86,884.85	0.40	
	BRAZORIA	1,970.50	0.86	1,691.83	1.30	877.49	0.49	4,539.82	2.65	27,909.06	0.13	146,789.12	0.68	
	COMAL ROCKWALL	1,412.15 1,151.83		884.72		403.77 291.01	0.00	2,700.64	0.00	22,886.97 18,132.63	0.11	38,756.87 25,441.34	0.18	
	HAYS	1,566.15	0.07	1,310.66	0.12	658.45	0.05	3,535.26	0.23	36,691.45	0.17	89,032.40	0.41	
Non-	NUECES	1,068.28	1.03	2,292.59	1.80	655.06	0.77	4,015.93	3.60	15,830.23	0.07	89,899.09	0.41	
attainment	FORT BEND ELLIS	6,483.32 1,306.32	0.48	1,208.53	0.73	960.19 207.68	0.27	8,652.05 1,514.00	1.48	133,971.39 20,620.17	0.62	394,462.07 111,704.01	1.81 0.51	
d Affected	JOHNSON	923.72	0.07	495.87	0.11	319.81	0.03	1,739.40	0.21	19,024.08	0.09	79,682.93	0.37	
Counties	GUADALUPE	676.48	0.26	0.00	0.45	324.43	0.19	1,000.90	0.90	9,428.03	0.04	98,075.86	0.45	
	KAUFMAN PARKER	285.27 455.96	0.54	0.00	0.93	104.00 31.45	0.27	389.27 487.41	1.74	4,490.88 7,177.89	0.02	7,259.96 7,996.80	0.03	
	SMITH	359.93		25.89		1,250.62	0.00	1,636.44	0.00	8,636.33	0.04	245,272.72	1.13	
	BASTROP	154.28	0.27	0.00	0.47	84.42	0.20	238.69	0.95	5,009.56	0.02	7,257.16	0.03	
	CHAMBERS GREGG	286.95 187.54	0.31	0.00 123.32	0.47	5.73 153.41	0.18	292.68 464.27	0.97	3,980.35 4,425.06	0.02	4,132.83 10,313.04	0.02	
	SAN PATRICIO	199.77	0.12	13.49	0.21	106.00	0.09	319.26	0.42	2,918.69	0.01	62,384.40	0.29	
	LIBERTY	230.22		0.00		31.02	0.00	261.24	0.00	4,833.36	0.02	5,729.74	0.03	
	VICTORIA CALDWELL	133.16 276.89	0.17	1,176.70	0.30	140.72	0.13	1,450.58 278.26	0.59	2,806.63 3,770.11	0.01	8,635.17 3,806.71	0.04	-
	WILSON	30.03		0.00		5.64	0.00	35.67	0.00	418.48	0.02	4,840.25	0.02	
	WALLER	3.83		128.72		43.49	0.00	176.04	0.00	106.43	0.00	26,893.26	0.12	
	UPSHUR RUSK	12.93 2.37	0.00	20.73	0.00	13.29 37.63	0.00	46.95 40.00	0.00	677.15 66.25	0.00	1,030.90 29,544.75	0.00	
	HARRISON	49.91	0.00	45.71	0.00	13.74	0.00	109.36	0.00	1,189.62	0.00	1,555.57	0.01	-
	WISE	63.26	0.09	0.00	0.16	15.19	0.05	78.45	0.30	995.89	0.00	1,319.36	0.01	
HOOD HUNT HENDERS		139.45 82.28	0.46	10.66 8.03	0.79	218.85 51.95	0.23	368.96 142.26	1.48	2,296.79 1,381.39	0.01	43,719.39 2,638.78	0.20	
	HENDERSON	66.72	0.72	0.00	0.11	26.12	0.32	92.84	0.20	1,581.59	0.01	2,038.78	0.01	
	HIDALGO	2,556.97	0.43	1,174.13	0.75	1,208.31	0.32	4,939.41	1.50	27,165.41	0.12	154,358.37	0.71	
	CAMERON BELL	1,139.73	0.51	481.24 344.60	0.89	531.04 729.27	0.38	2,152.01 2,719.98	1.78	9,184.52 35,989.29	0.04	90,786.03 73,527.67	0.42	
	WEBB	734.80	0.34	1,473.81	0.59	129.27	0.00	2,719.98	1.18	8,722.04	0.17	72,018.61	0.34	
	BRAZOS	764.38	0.21	1,389.21	0.37	436.36	0.12	2,589.95	0.70	10,761.41	0.05	188,134.82	0.87	-
	KENDALL BURNET	300.73 280.06		0.00		74.27	0.00	375.00 304.34	0.00	4,670.83 3,783.29	0.02	18,062.36 4,429.82	0.08	
	GRAYSON	242.08		182.01		97.31	0.00	521.40	0.00	5,449.09	0.02	8,513.22	0.02	
	CORYELL	101.55		77.11		76.07	0.00	254.73	0.00	2,759.64	0.01	30,661.40	0.14	
	MIDLAND LLANO	871.95 208.54	0.32	3,074.13	0.56	388.02	0.00	4,334.11 208.54	0.00	51,745.62 3,351.96	0.24	221,057.63 3,351.96	1.02	-
	MAVERICK	53.92		50.84		26.92	0.00	131.67	0.00	628.53	0.00	1,345.20	0.01	
	MCMULLEN	0.00		0.00		1.32	0.00	1.32	0.00	0.00	0.00	70.62	0.00	
	ARANSAS WICHITA	154.04 103.14	0.01	0.00 154.40	0.02	10.42	0.00	164.47 274.38	0.00	1,555.70 4,109.02	0.01	1,833.22 4,819.93	0.01	
	TAYLOR	260.02	0.01	0.00	0.02	125.73	0.00	385.75	0.00	6,055.13	0.02	51,000.37	0.02	
	TOM GREEN	214.63		1,045.01		116.57	0.00	1,376.21	0.00	13,922.49	0.06	20,275.27	0.09	
	M CLENNAN M CCULLOCH	541.77 0.00	0.51	2,082.08	0.88	667.08	0.26	3,290.93 0.00	1.65	32,225.77	0.15	240,781.99 0.00	1.11 0.00	
	JIM HOGG	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	VAL VERDE	71.53		15.69		24.86	0.00	112.08	0.00	1,090.51	0.01	1,752.29	0.01	
	ECTOR WHARTON	408.88 73.52	0.24	354.71	0.40	256.72 22.02	0.16	1,020.30	0.80	13,136.42 1,450.01	0.06	152,504.82 4,314.53	0.70	
	KERR	67.11	0.17	62.07	0.30	18.82	0.13	95.55	0.39	1,624.11	0.01	4,314.33	0.02	
	PRESIDIO	8.44		0.00		0.00	0.00	8.44	0.00	176.32	0.00	176.32	0.00	
er ERCOT ounties	JIM WELLS CALHOUN	22.01 62.66	0.08	0.00 12.26	0.13	2.63	0.00	24.64 85.15	0.00	321.40 831.29	0.00	391.54 1,057.27	0.00	
	GILLESPIE	40.26	0.08	0.00	0.13	0.00	0.00	40.26	0.00	647.16	0.00	647.16	0.00	
	MATAGORDA NAVARRO	181.36		0.00		8.30	0.00	189.65	0.00	3,576.69	0.02	5,157.45	0.02	
	NAVARRO ANGELINA	20.56 60.73		0.00		8.36 34.65	0.00	28.92	0.00	459.80 1,697.47	0.00	682.43 2,606.26	0.00	
	NACOGDOCHES	25.24		58.97		0.83	0.00	85.04	0.00	724.37	0.00	1,372.90	0.01	
	FANNIN	11.93	0.00	53.53	0.00	25.65	0.00	91.11	0.00	658.14	0.00	2,728.61	0.01	
	ATASCOSA WASHINGTON	52.74 63.57		3.90		71.01	0.00	127.66 79.85	0.00	863.11 1,316.65	0.00	2,753.90 1,608.24	0.01	
	LAMAR	23.43	0.36	42.86	0.63	5.84	0.18	72.13	1.17	996.81	0.00	1,125.69	0.01	
	VAN ZANDT	10.74		207.43		17.56	0.00	235.74	0.00	1,848.33	0.01	6,416.50	0.03	
	WILLACY BROWN	87.28 64.13		0.00		11.59 77.66	0.00	98.87 156.25	0.00	928.91 1,412.16	0.00	3,315.43 3,479.82	0.02	
	ERATH	39.28		119.60		0.00	0.00	158.88	0.00	2,141.47	0.01	2,141.47	0.01	
	AUSTIN	19.21		5.02		0.00	0.00	24.22	0.00	264.14	0.00	264.14	0.00	
	COOKE MEDINA	29.80 22.96		0.00 47.08		3.76 183.38	0.00	33.56 253.43	0.00	439.32 600.68	0.00	3,387.17 5,482.44	0.02	
	TITUS	22.96	0.00	47.08	0.00	0.00	0.00	253.43	0.00	500.95	0.00	5,482.44	0.03	
	UVALDE	11.48		0.00		0.00	0.00	11.48	0.00	160.01	0.00	160.01	0.00	
	FAYETTE	4.60	0.43	0.00	0.75	0.00	0.29	4.60	1.47	95.13	0.00	95.13	0.00	
	CALLAHAN HOPKINS	4.97 9.55		0.00		0.00	0.00	4.97 9.55	0.00	97.23 150.32	0.00	97.23 150.32	0.00	
	LAMPASAS	138.57		0.00		0.00	0.00	138.57	0.00	0.00	0.00	3,098.69	0.01	
	BLANCO	3.22		76.99		0.00	0.00	80.21	0.00	611.95	0.00	611.95	0.00	
	FREESTONE GRIMES	6.26 11.49	0.43	0.00	0.74	0.00	0.22	6.26 31.41	1.39	139.94 237.82	0.00	139.94	0.00	
	LEE	3.10	0.00	0.00	0.00	0.00	0.00	31.41 3.10	0.00	49.45	0.00	49.45	0.00	
	SOMERVELL	21.45		0.00		0.00	0.00	21.45	0.00	338.65	0.00	338.65	0.00	
	ANDREWS BORDEN	50.40 15.71	0.00	287.14	0.01	21.88	0.00	359.42 15.71	0.01	4,111.62 1,130.12	0.02	4,694.10 1,130.12	0.02	

Table 27: 2014 Annual NOx Reductions from New Residential and Commercial Construction

		Electricity S Resultant NOx (Single Fami	Reductions	Electricity S Resultant NO2 (Multifamil)	x Reductions	Electricity S Resultant NO: (Commercial	Reductions	Total Electricit Resultant NOX I MF and Comme	Reductions (SF,	Total Natural Gas Savin NOx Reduc (Single and Multi-F	tions	Total Natural Gas Savin NOx Reduc (SF, MF and Comme	tions	Total Nox Reductions	
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual N Reduction (Tons)	
	CHEROKEE DIMMIT	4.73 3.94	0.25	0.00	0.43	0.00	0.12	4.73	0.80	132.50 39.83	0.00	132.50 11,831.23	0.00		
	FALLS COLORADO	9.83 8.00		0.00		0.00	0.00	9.83 8.00	0.00	219.91 109.62	0.00	219.91 109.62	0.00		
	FRIO	8.00	0.00	0.00	0.00	0.00	0.00	8.00	0.00	109.62	0.00	360.78	0.00		
	MILAM JACKSON	7.25	0.10	0.00	0.18	0.00	0.08	7.25	0.36	122.68 258.72	0.00	122.68 258.72	0.00		
	ANDERSON	2.37		0.00		17.18	0.00	19.55	0.00	66.25	0.00	523.70	0.00		
	HILL CULBERSON	8.94 0.74		0.00		45.82	0.00	54.76 0.74	0.00	199.92 21.17	0.00	1,419.78 21.17	0.01		
	MASON	4.13		0.00		0.00	0.00	4.13	0.00	66.38	0.00	66.38	0.00		
	PECOS RAINS	6.56 3.58	0.00	0.00	0.00	24.13	0.00	30.69 8.77	0.01	137.14 98.35	0.00	2,537.11 98.35	0.01		
	LAVACA	8.62		0.00		21.76	0.00	30.38	0.00	178.84	0.00	758.28	0.00		
	PALO PINTO KIMBLE	4.68	0.33	0.00	0.56	47.56	0.16	52.24	1.05	108.91	0.00	29,481.70 116.08	0.14		
	MADISON	3.06		0.00		17.14	0.00	20.20	0.00	63.42	0.00	4,563.48	0.02		
	ARCHER REFUGIO	9.67 4.90		0.00 28.02		0.00	0.00	9.67 32.92	0.00	216.56 100.96	0.00	216.56 100.96	0.00		
	LIMESTONE	3.58	0.00	0.00	0.00	0.00	0.00	3.58	0.00	79.97	0.00	79.97	0.00		
	CLAY BEE	5.37		0.00		0.00	0.00	5.37	0.00	120.31	0.00	120.31 123.29	0.00		
	MARTIN	2.85		0.00		21.88	0.00	24.73	0.00	66.31	0.00	648.79	0.00		
	GONZALES BURLESON	23.84 6.40		16.09		15.17	0.00	55.10 6.40	0.00	443.75 87.69	0.00	1,102.35 87.69	0.01		
	KARNES	54.42		12.82		114.29	0.00	181.53	0.00	864.18	0.00	75,112.97	0.35		
	KLEBERG BREWSTER	29.66 4.08		0.00		39.51 0.00	0.00	69.17 22.37	0.00	445.02 234.98	0.00	2,563.62 234.98	0.01		
	WINKLER	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	FRANKLIN YOUNG	1.19 30.87	0.64	0.00	1.11	0.00	0.00	1.19 41.62	0.00	18.79 775.83	0.00	18.79 4.843.86	0.00		
	HOUSTON	3.94	0.04	0.00		1.72	0.00	5.66	0.00	110.42	0.00	156.16	0.00		
	SCURRY BOSQUE	6.50 2.67	0.20	0.00	0.35	28.60	0.00	35.09	0.00	518.11 53.02	0.00	22,921.77 53.02	0.11		
	COMANCHE	2.67		0.00		25.56	0.00	28.24	0.00	53.02	0.00	3,524.40	0.02		
	BRISCOE CONCHO	8.83		0.00		0.00	0.00	8.83	0.00	270.66	0.00	270.66	0.00		
	ZAVALA	8.66		0.00		0.00	0.00	8.66	0.00	87.62	0.00	87.62	0.00		
	NOLAN BROOKS	0.00	0.03	0.00	0.05	15.32	0.02	15.32	0.10	0.00	0.00	4,153.85	0.02		
	ROBERTSON	39.06	0.33	0.00	0.57	0.00	0.22	39.06	1.12	808.59	0.00	808.59	0.00		
	LIVE OAK HAMILTON	10.16		0.00		6.87	0.00	17.03	0.00	148.34 39.98	0.00	331.32 39.98	0.00		
	JONES	0.94		0.00		197.01	0.00	197.94	0.00	21.78	0.00	5,267.18	0.02		
	REAGAN WARD	0.95	0.20	48.49	0.33	0.00	0.00	49.45 39.94	0.00	512.28 419.97	0.00	512.28	0.00		
	RED RIVER	6.94	0.20	0.00	0.55	0.00	0.00	6.94	0.00	182.16	0.00	182.16	0.00		
	HASKELL HOWARD	1.87 43.44	0.14	0.00	0.22	0.00 47.19	0.00	1.87	0.00	43.56 965.99	0.00	43.56 22,155.98	0.00		
	SAN SABA	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
her ERCOT	JACK STEPHENS	4.68	0.28	0.00	0.48	0.00	0.14	4.68	0.90	108.91	0.00	108.91	0.00		
Counties	RUNNELS	3.75		0.00		0.00	0.00	3.75	0.00	78.36	0.00	78.36	0.00		
	REEVES DE WITT	2.85		0.00		32.54 77.52	0.00	35.40 81.60	0.00	66.31 80.56	0.00	1,604.18 53,117.25	0.01		
	CHILDRESS	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	CROSBY DAWSON	4.14		0.00		0.00	0.00	4.14	0.00	297.40 817.72	0.00	297.40 817.72	0.00		
	MITCHELL	4.68	0.03	0.00	0.05	0.00	0.02	4.68	0.10	108.91	0.00	108.91	0.00		
	WILBARGER COLEMAN	2.22	1.62	0.00	2.81	0.00	0.81	2.22	5.24	52.99	0.00	52.99	0.00		
	UPTON	0.95	0.00	0.00	0.00	90.36	0.00	91.31	0.01	22.11	0.00	2,017.13	0.01		
	COKE CROCKETT	0.00 19.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 331.77	0.00	0.00 331.77	0.00		
	HARDEMAN	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	BANDERA BAYLOR	0.80		0.00		10.42	0.00	11.22	0.00	10.77	0.00	288.29 0.00	0.00		
	COTTLE	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	CRANE DELTA	1.00		0.00		0.00	0.00	1.00	0.00	20.11 33.76	0.00	20.11 33.76	0.00		
	DICKENS	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	DUVAL EASTLAND	0.00		0.00		24.08	0.00	24.08	0.00	0.00	0.00	18,866.24 228.72	0.09		
	EDWARDS	0.00		0.00		9.51	0.00	9.51	0.00	0.00	0.00	253.12	0.00		
	FISHER FOARD	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	GLASSCOCK	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	GOLIAD HALL	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	HUDSPETH	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	IRION JEFF DAVIS	0.00		0.00		3.09	0.00	3.09	0.00	0.00	0.00	2,417.24	0.01	_	
	KENEDY	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	KENT KING	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	KINNEY	0.88		0.00		0.00	0.00	0.88	0.00	12.31	0.00	12.31	0.00		
	KNOX LA SALLE	0.00		0.00 22.79		0.00	0.00	0.00 31.26	0.00	0.00 98.59	0.00	0.00 98.59	0.00		
	LEON	0.00		0.00		25.38	0.00	25.38	0.00	0.00	0.00	3,323.98	0.02		
	LOVING MENARD	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	MILLS	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	MONTAGUE MOTLEY	13.12		0.00		0.84	0.00	13.96	0.00	209.03	0.00	225.26 0.00	0.00	-	
	MOTLEY REAL	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	SCHLEICHER SHACKELFORD	0.94		0.00		0.00	0.00	0.94	0.00	19.59	0.00	19.59	0.00		
	SHACKELFORD STARR	0.00		0.00		0.00 10.98	0.00	0.00	0.00	0.00	0.00	0.00 588.50	0.00		
		0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	STERLING									-					
	STERLING STONEWALL SUTTON	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	STONEWALL	0.00		0.00											

Table 27: 2014 Annual NOx Reductions from New Residential and Commercial Construction (Continued)

Annual Elec. Savings w/ 7% T&D Loss (Single-Family, Multi-Family and Commercial Buildings)

Annual Elec. Savings w/ 7% T&D Loss (Single-Family, Multi-Family and Commercial Buildings)

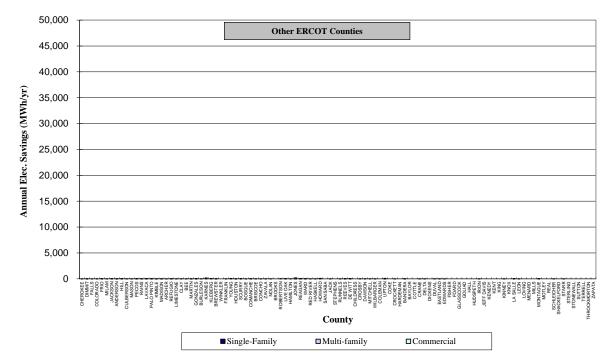


Figure 17: 2014 Annual Electricity Savings by County from New Residential and Commercial Construction

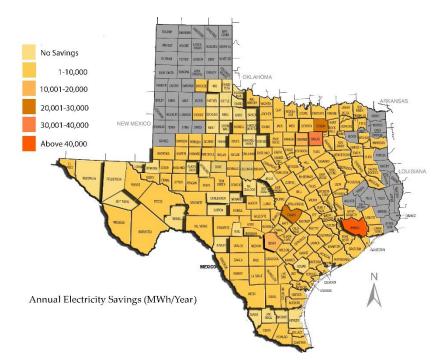
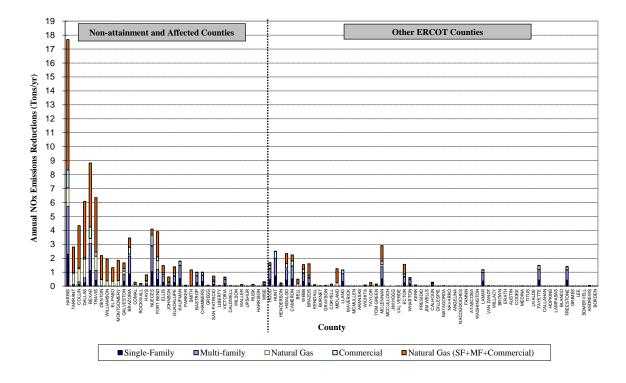



Figure 18: Map of 2014 Annual Electricity Savings by County from New Residential and Commercial Construction

Total Annual NOx Emissions Reductions (Single-Family, Multi-Family and Commercial Buildings)

Total Annual NOx Emissions Reductions (Single-Family, Multi-Family and Commercial Buildings)

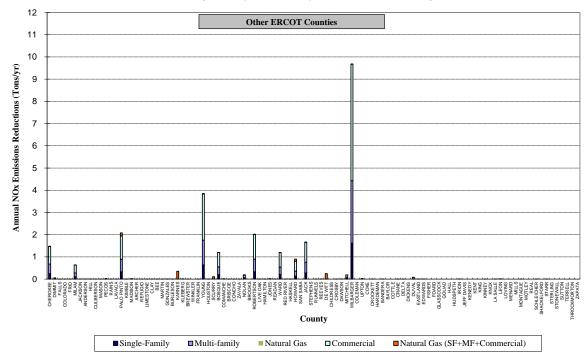


Figure 19: 2014 Annual NOx Reductions by County from New Residential and Commercial Construction

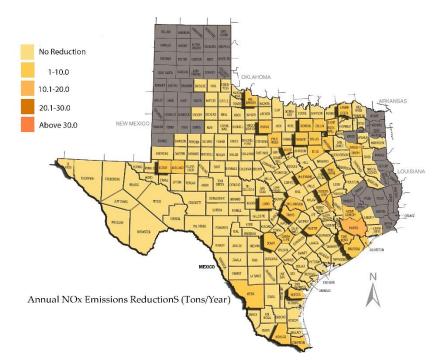


Figure 20: Map of 2014 Annual NOx Reductions by County from New Residential and Commercial Construction

5 Calculation of Integrated NOx Emissions Reductions from Multiple State Agencies Participating in the Texas Emissions Reduction Plan (TERP)

5.1 Background

In January 2005, the Laboratory was asked by the Texas Commission on Environmental Quality (TCEQ) to develop a method by which the NOx emissions reductions from the energy-efficiency programs from multiple Texas State Agencies working under Senate Bill 5 and Senate Bill 7 could be reported in a uniform format to allow the TCEQ to consider the combined savings for Texas' State Implementation Plan (SIP) planning purposes. This required that the analysis should include the integrated savings estimation from all projects projected through 2020 for both the annual and Ozone Season Day (OSD) NOx reductions. The NOx emissions reductions from all these programs were calculated using estimated emissions factors for 2010 from the US Environmental Protection Agency (US EPA) eGRID database, which had been specially prepared for this purpose. The different programs included in this 2014 integrated analysis are:

- ESL Single-family new construction
- ESL Multi-family new construction
- ESL Commercial new construction
- PUC Senate Bill 7 Program
- SECO Senate Bill 5 Program
- Electricity generated by wind farms in Texas (ERCOT)
- SEER 13 upgrades to Single-family and Multi-family residences

The Laboratory's single-family and multi-family programs include the energy savings attained by constructing new residences in Texas. The baseline to estimate energy savings uses the published data on residential construction characteristics by the 2008 National Association of Home Builders (NAHB 2008) based on the IECC 2006 building code (ICC 2006). Annual electricity savings (MWh) are obtained from the Laboratory's Annual Reports to the TCEQ (Haberl et al., 2002 - 2014).

The Laboratory's commercial program includes the energy savings attained by constructing new commercial buildings in Texas, including office, apartment, healthcare, education, retail, food and lodging as defined by Dodge building type (Dodge 2011). Energy savings were estimated from code compliant buildings (ASHRAE Standard 90.1-2007) against pre-code buildings (ASHRAE Standard 90.1-2004) using EUI in the USDOE report and constructed square footage in Dodge data (Dodge 2015).

The Public Utility Commission of Texas (PUC) Senate Bill 7 program includes the energy efficiency programs implemented by electric utilities under the Public Utility Regulatory Act §39.905. The PUC regulated energy efficiency program was adopted pursuant to 1999 legislation (SB 7) and subsequent legislation in 2001 (SB 5), 2007 (HB 3693), and 2011 (SB 1125). The energy efficiency measures include high efficiency HVAC equipment, variable speed drives, increased insulation levels, infiltration reduction, duct sealing, Energy Star Homes, etc. Annual electricity savings claimed by the utilities were reported for the different programs completed in the years 2001 through 2014.

The Texas State Energy Conservation Office (SECO) funds energy-efficiency programs that are directed towards school districts, government agencies, city and county governments, private industries and residential energy consumers. For the 2014 reporting year SECO submitted annual energy savings values for projects funded by SECO and by Energy Service projects.

The *Electric Reliability Council of Texas (ERCOT) electricity production from currently installed green power generation (wind)* in Texas is reported. Actual measured electricity productions for 2001 through 2014 were included. For projections to 2020, the annual growth factor was estimated using the last six years installed wind power capacity.

Finally, NOx emissions reductions from the installation of SEER 13 air conditioners in existing residences are also reported.

5.2 Description of the Analysis Method

Annual and Ozone Season Day (OSD) NOx emissions reductions were calculated for 2014 and integrated from 2009 to 2020 using several factors to discount the potential savings. These factors include an annual degradation factor, a transmission and distribution factor, a discount factor, and growth factors as shown in Table 28 and are described as follows:

Annual degradation factor: This factor was used to account for an assumed decrease in the performance of the measures installed as the equipment wears down and degrades. With the exception of electricity generated from wind, an annual degradation factor of 2% was used for ESL Single-family, Multi-family, and Commercial programs and an annual degradation factor of 5% was used for all other programs³⁴. The value of the 5% degradation factor was taken from a study by Kats et al. (1996).

Transmission and distribution loss: This factor adjusts the reported savings to account for the loss in energy resulting from the transmission and distribution of the power from the electricity producers to the electricity consumers. For this calculation, the energy savings reported at the consumer level are increased by 7% to give credit for the actual power produced that is lost in the transmission and distribution system on its way to the customer. In the case of electricity generated by wind, the T&D losses were assumed to cancel out since wind energy is displacing power produced by conventional power plants; therefore, there is no net increase or decrease in T&D losses.

Initial discount factor: This factor was used to discount the reported savings for any inaccuracies in the assumptions and methods employed in the calculation procedures. For the Laboratory's single, multi-family and commercial program, the discount factor was assumed to be 20%. For PUC's Senate Bill 7 program and electricity from wind, the discount factor was taken as 10%. For the savings in the SECO program, the discount factor was 60%. In addition, the discount factor for SEER 13 single-family and SEER 13 multi-family program was 20%.

Growth factor: The growth factors shown in Table 24 were used to account for several different factors. Growth factors for single-family (3.3%), multi-family residential (1.5%), and commercial (3.3%) construction are projections based on the average growth rate for these housing types from recent U.S. Census data for Texas. Growth factor for wind energy (4.8%) is a linear projection based on the installed wind power capacity for 2009 through 2014 from the Public Utility Commission of Texas. No growth was assumed for PUC programs, SECO, and SEER 13 entries.

Figure 21 shows the overall information flow that was used to calculate the NOx emissions savings from the annual and OSD electricity savings (MWh) from all programs. For the Laboratory's single-family and multi-family codeimplementation programs, the annual and OSD were calculated from DOE-2 hourly simulation models³⁵. The base case is taken as the average characteristics of single- and multi-family residences for Texas published by the National Association of Home Builders for 2008 (NAHB 2008). The annual electricity savings from PUC's energy efficiency programs were calculated using PUC approved demand savings calculations or tables or industry accepted measurement and verification methods (PUC 2015). The OSD consumption is the average daily consumption for the period between July 15 and September 15.

The SECO electricity savings were submitted as annual savings by project³⁶. A description of the measures completed for the project was also submitted for information purposes. The electricity production from wind farms in Texas was from the actual on-site metered data measured at 15-minute intervals.

³⁴ A degradation of 5% per year would accumulate as a 5%, 10%, 15%...etc, degradation in performance. Although the assumption of this high level of degradation may not actually occur, it was chosen as a conservative estimate. For wind energy, a degradation factor of 0% was used. The choice of a 0% degradation factor for wind is based on two year's of analysis of measured wind data from all Texas wind farms that shows no degradation, on average, for a two year period after the wind farms became operational.

³⁵ These values are based on a performance analysis as defined by Chapter 4 of IECC 2006. This analysis is discussed in the Laboratory's annual reports to the TCEQ.

³⁶ The reporting requirements to the SECO did not require energy savings by project type, although for selected sites, energy savings by project type was available.

Integration of the savings from the different programs into a uniform format allowed for creditable NOx emissions to be evaluated using different criteria as shown in Table 28. These include evaluation across programs, evaluation across individual counties by program, evaluation by SIP area, evaluation for all ERCOT counties except Houston/Galveston, and evaluation within a 200 km radius of Dallas/Ft.Worth.

5.3 Calculation Procedure

The electricity savings in this report was estimated based on the baseline year of 2008. In addition, the emissions estimation throughout this report was based on the 2010 eGrid database which is using the four different Congestion Management (CM) zones: Houston, North, West, and South. This report calculates the OSD emissions reductions by dividing the annual emissions reductions with 365 since the 2010 eGrid estimates the annual emissions only. However, the OSD emissions reductions from the Electricity Generated by Wind Farms were estimated by actual measured data.

ESL Single-family and Multi-family. The calculation of the annual electricity savings reported for the years 2002 through 2014 included the savings from code-compliant new housing in all 36 non-attainment and affected counties as reported in the Laboratory's annual report submitted by the Laboratory to the Texas Commission of Environmental Quality (TCEQ). From 2009 to 2014, based on year 2008, the annual electricity savings were calculated for new residential construction in all the counties in ERCOT region, which includes the 36 non-attainment and affected counties. These savings were then tabulated by county and program. Using the calculated values through 2014, savings were then projected to 2020 by incorporating the different adjustment factors mentioned above.

In these calculations, it was assumed that the same amount of electricity savings from the code-complaint construction would be achieved for each year after 2014 through 2020³⁷. The projected energy savings through 2020, according to county, were then divided into the CM zones in the 2010 eGRID. To determine which CM zone was to be used, or in counties with multiple CM zone, the allocation to each CM zone by county was obtained from CM zone's listing published in the Laboratory's 2010 annual report³⁸.

For the 2014 annual NOx emissions calculations, the US EPA's 2010 eGRID were used. An example of the eGRID spreadsheet is given in the Table 29. The total electricity savings for each CM zone were used to calculate the NOx emissions reductions for each of the different counties using the emissions factors contained in eGRID. Similar calculations were performed for each year for which the analysis was required.

ESL-Commercial Buildings. The annual electricity savings for 2004 through 2014 for commercial buildings were obtained from the annual reports for 2004 through 2014 submitted by the Laboratory to TCEQ³⁹. From 2009 to 2014, based on year 2008, the annual electricity savings were also calculated for new commercial construction by county. Using the calculated savings through 2014, savings were then projected to 2020 by incorporating the different adjustment factors mentioned above⁴⁰. In the projected annual electricity savings, it was assumed that the same 2014 amount of electricity savings would be achieved for each year through 2020. Similarly to the single family calculations, the projected energy saving numbers through 2020, by county, were allocated into the appropriate CM zones.

PUC-Senate Bill 7. For the PUC Senate Bill 7 program savings, the annual electricity savings for 2001 through 2014 were obtained from the Public Utility Commission of Texas. Using these values savings were projected through 2020 by incorporating the different adjustment factors mentioned above. Similar savings were assumed for each year after 2014 until 2020. The 2010 annual eGRID was also used to calculate the NOx emissions savings for the PUC-Senate Bill 7 program. The total electricity savings for each CM zone were used to calculate the NOx

³⁷ This would include the appropriate discount and degradation factors for each year.

³⁸ Haberl et al., 2010, pp. 265.

³⁹ These savings include new construction in office, education, retail, food, lodging and warehouse construction as defined by Dodge building type (Dodge 2011), using energy savings from the US DOE's report (USDOE 2011), and data from CBECS (1995 - 2003) and Dodge (2015). ⁴⁰ This also includes the appropriate discount and degradation factors for each year.

emissions reductions for each county using the emissions factors contained in the US EPA's eGRID spreadsheet. The integrated NOx emissions reductions for each county were then calculated.

SECO Savings. The annual electricity consumption reported by political subdivisions for 47 counties through 2014 were obtained from the State Energy Conservation Office (SECO). Using the reported consumption, the annual and OSD electricity savings resulted from energy conservation projects were then calculated. To achieve this, the annual energy use intensity (EUI) for each county was estimated and the county's energy savings for each year against the baseline year of 2008 were then calculated⁴¹. In addition, the savings through 2020 were projected using the different adjustment factors mentioned above. In a similar fashion to the previous programs, it was assumed that the same amount of electricity savings will be achieved for each year through 2020. The 2010 annual eGRID was also used to calculate the NOx emissions savings for the SECO program.

Electricity Generated by Wind Farms. The measured electricity production from all the wind farms in Texas for 2001 through 2014 was obtained from the Energy Reliability Council of Texas (ERCOT). To obtain the annual production, the 15-minute data were summed for the 12 months. Using the reported numbers for 2014, savings through 2020 were projected incorporating the different adjustment factors mentioned above. The 2010 annual eGRID was then used to calculate the NOx emissions reductions for the electricity generated by Texas' wind farms⁴². The total electricity savings for each CM zone were used to calculate the NOx emissions reductions for each of the different counties.

SEER 13 Single-Family and Multi-Family. In January of 2006, Federal regulations mandated that the minimum efficiency for residential air conditioners be increased to SEER 13 from the previous SEER 10. Although the electricity savings from new construction reflected this change in values, the annual and OSD electricity savings from the replacement of the air conditioning units by air conditioners with an efficiency of SEER 13 in existing residences needed to be calculated. In this analysis, it was assumed that an equal number of existing houses had their air conditioners replaced, as reported for 2006, by the air conditioner manufacturers. This replacement rate continued until all the existing air conditioner stock was replaced with SEER 13 air conditioners.

In the 2014 report to the TCEQ, the annual and OSD electricity savings for all the counties in ERCOT region as well as the 36 non-attainment and affected counties were calculated. Using the numbers for 2008, the savings after 2008 until 2020 were projected by incorporating the appropriate adjustment factors⁴³. The total electricity savings for each CM zone were used to calculate the NOx emissions reductions for each of the different county using the emissions factors contained in the 2010 eGRID. Integrated NOx emissions reductions for each county by SIP area were also calculated.

⁴¹ In the 2014 report, EUI values were used to calculate the electricity savings. This calculation method was also applied to savings estimation for the previous years from 2009 to 2013.

⁴² This credited the electricity generated by the wind farm to the utility that either owned the wind farm or was associated with the wind farm owner.

⁴³ Additional details about this calculation are contained in the Laboratory's 2008 Annual Report to the TCEQ, available at the Senate Bill 5 web site "http://esl.tamu.edu/".

5.4 Results

The total integrated annual and OSD electricity savings for all the different programs in the integrated format were calculated for 2009 through 2020 as shown in Table 30, using the adjustment factors shown in Table 28. Annual and OSD NOx emissions reductions from the electricity savings (presented in Table 30) for all the programs in the integrated format were shown in Table 31.

In 2014, the total integrated annual savings from all programs are 23,684,427 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 927,408 MWh/year (3.9% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program are 2,675,295 MWh/year (11.3%),
- Savings from SECO's Senate Bill 5 program are 936,047 MWh/year (4.0%),
- Electricity savings from green power purchases (wind) are 18,857,560 MWh/year (79.6%), and
- Savings from residential air conditioner retrofits⁴⁴ are 288,118 MWh/year (1.2%).

In 2014, the total integrated OSD savings from all programs are 57,751 MWh/day, which would be a 2,406 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 3,007 MWh/day (5.2%),
- Savings from the PUC's Senate Bill 7 programs are 7,330 MWh/day (12.7%),
- Savings from SECO's Senate Bill 5 program are 2,565 MWh/day (4.4%),
- Electricity savings from green power purchases (wind) are 42,806 MWh/day (74.1%), and
- Savings from residential air conditioner retrofits are 2,043 MWh/day (3.5%).

By 2020, the total integrated annual savings from all programs will be 34,278,170 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 2,294,744 MWh/year (6.7% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program will be 4,728,263 MWh/year (13.8%),
- Savings from SECO's Senate Bill 5 program will be 2,098,664 MWh/year (6.1%),
- Electricity savings from green power purchases (wind) will be 24,944,707 MWh/year (72.8%), and
- Savings from residential air conditioner retrofits will be 211,793 MWh/year (0.6%).

By 2020, the total integrated OSD savings from all programs will be 83,530 MWh/day, which would be a 3,480 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 6,700 MWh/day (8.0%),
- Savings from the PUC's Senate Bill 7 programs will be 12,954 MWh/day (15.5%),
- Savings from SECO's Senate Bill 5 program will be 5,750 MWh/day (6.9%),
- Electricity savings from green power purchases (wind) will be 56,624 MWh/day (67.8%), and
- Savings from residential air conditioner retrofits will be 1,502 MWh/day (1.8%).

In 2014 (Table 31), the total integrated annual NOx emissions reductions from all programs are 6,494 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 233 tons-NOx/year (3.6% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 669 tons-NOx/year (10.3%),
- NOx emissions reductions from SECO's Senate Bill 5 program are 241 tons-NOx/year (3.7%),
- NOx emissions reductions from green power purchases (wind) are 5,283 tons-NOx/year (81.4%), and
- NOx emissions reductions from residential air conditioner retrofits are 68 tons-NOx/year (1.0%).

⁴⁴ This assumes air conditioners in existing homes are replaced with the more efficient SEER 13 units, versus an average of SEER 11, which is slightly more efficient than the previous minimum standard of SEER 10.

In 2014, the total integrated OSD NOx emissions reductions from all programs are 15.70 tons-NOx/day. The integrated OSD NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 0.76 tons-NOx/day (4.8%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 1.83 tons-NOx/day (11.7%),
- NOx emissions reductions from SECO's Senate Bill 5 program are 0.66 tons-NOx/day (4.2%),
- NOx emissions reductions from green power purchases (wind) are 11.97 tons-NOx/day (76.3%), and
- NOx emissions reductions from residential air conditioner retrofits are 0.47 tons-NOx/day (3.0%).

By 2020, the total integrated annual NOx emissions reductions from all programs will be 9,332 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 578 tons-NOx/year (6.2% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 1,183 tons-NOx/year (12.7%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 533 tons-NOx/year (5.7%),
- NOx emissions reductions from green power purchases (wind) will be 6,989 tons-NOx/year (74.9%), and
- NOx emissions reductions from residential air conditioner retrofits will be 50 tons-NOx/year (0.5%).

By 2020, the total integrated OSD NOx emissions reductions from all programs will be 22.58 tons-NOx/day. The integrated OSD NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 1.69 tons-NOx/day (7.5%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 3.24 tons-NOx/day (14.4%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 1.46 tons-NOx/day (6.5%),
- NOx emissions reductions from green power purchases (wind) will be 15.84 tons-NOx/day (70.2%), and
- NOx emissions reductions from residential air conditioner retrofits will be 0.35 tons-NOx/day (1.5%).

Table 28: Final Adjustment Factors used for the Calculation of the Annual and OSD NOx Savings for the Different Programs

	ESL-Single Family ¹⁶	ESL ¹⁶ - Multifamily	ESL ¹⁶ - Commercial	PUC (SB7) ¹⁵	SECO ¹⁵	Wind-ERCOT ⁸	SEER13 Single Family	SEER13 Multi Family
Annual Degradation Factor ¹¹	2.0%	2.0%	2.0%	5.0%	5.0%	0.0%	5.0%	5.0%
T&D Loss ⁹	7.0%	7.0%	7.0%	7.0%	7.0%	0.0%	7.0%	7.0%
Initial Discount Factor	20.0%	20.0%	20.0%	10.0%	60.0%	10.0%	20.0%	20.0%
Growth Factor	3.3%	1.5%	3.3%	0.0%	0.0%	4.8%	N.A.	N.A.
Weather Normalized	Yes	Yes	Yes	No	No	No	Yes	Yes

Note: For Wind-ERCOT, the OSD energy consumption is the average daily consumption of the measured data in the months of July, August and September.

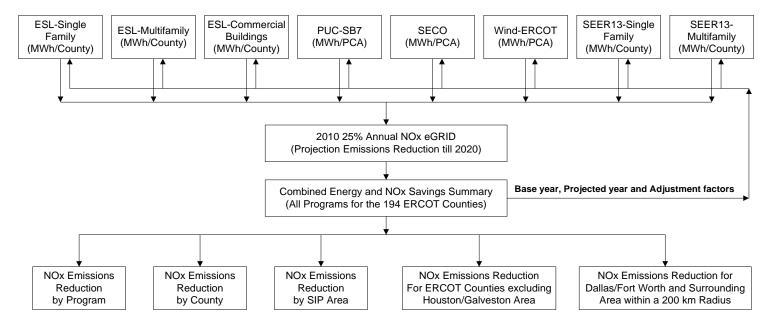


Figure 21: Process Flow Diagram of the NOx Emissions Reduction Calculations

•						VI Zones	s using 2		_	Total	Total
Area	County		4		N		w		S	Nox Reductions (lbs)	Nox Reduction (Tons)
	Brazoria	0.0562032	5863.1467	0.0000071	0.6535	0.0000003	0.0016	0.0005265	40.1622	5903.96	2
	Chambers	0.0204500	2133.3552	0.0000026	0.2378	0.0000001	0.0006	0.0001916	14.6133	2148.21	1
	Fort Bend	0.0313463	3270.0646	0.0000040	0.3645	0.0000002	0.0009	0.0002937	22.3997	3292.83	
Houston-	Galveston	0.0226620	2364.1080	0.0000029	0.2635	0.0000001	0.0006	0.0002123	16.1940	2380.57	
veston Area	Harris	0.1486911	15511.5349	0.0000189	1.7289	0.0000009	0.0042	0.0013930	106.2530	15619.52	
	Liberty	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Montgomery	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Waller	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
aumont/ Port	Hardin	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
Arthur Area	Jefferson	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Orange	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Collin	0.0012932	134.9040	0.0079329	727.0449	0.0003832	1.7539	0.0000809	6.1733	869.88	
	Dallas	0.0024826	258.9870	0.0152295	1395.7719	0.0007356	3.3672	0.0001554	11.8515	1669.98	
	Denton	0.0001267	13.2136	0.0007770	71.2128	0.0000375	0.1718	0.0000079	0.6047	85.20	
	Tarrant Ellis	0.0004742	49.4670	0.0029089	266.5950	0.0001405	0.6431	0.0000297	2.2637	318.97	
Dallas/Fort North Area	Johnson	0.0029920	312.1262 75.6949	0.0183544	407.9462	0.0008865	0.9841	0.0001873	14.2832 3.4639	2012.63 488.09	
ion na cu	Kaufman	0.0007238	622,9863	0.0366343	3357,4922	0.0002150	8.0997	0.0003738	28.5084	408.09	
	Parker	0.0000012	022.9003	0.0386343	0.6913	0.0000004	0.0017	0.0003738	28.5084	4017.09	
	Rockw all	0.0000012	0.1283	0.0000075	0.0913	0.0000004	0.0017	0.0000001	0.0009	0.83	
	Wise	0.0010202	106.4258	0.0062583	573.5658	0.0003023	1.3837	0.0000638	4.8701	686.25	
Paso Area	El Paso	0.0000000	0.0000	0.00002000	0.0000	0.00000000	0.0000	0.00000000	0.0000	0.00	
Traso Area	Bexar	0.0138906	1449.0751	0.0009368	85.8580	0.0000452	0.2071	0.1109355	8461.6472	9996.79	
an Antonio	Cornal	0.0000000	0.0000	0.0009368	0.0000	0.0000432	0.2071	0.0000000	0.0000	9996.79	
Area	Guadalupe	0.0032029	334.1271	0.0002160	19.7971	0.0000104	0.0000	0.0255795	1951.0826	2305.05	
	Wilson	0.0000000	0.0000	0.00002100	0.0000	0.00000000	0.0000	0.0000000	0.0000	0.00	
	Bastrop	0.0033782	352.4181	0.0002278	20.8809	0.0000110	0.0504	0.0269798	2057.8902	2431.24	
	Caldw ell	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
ustin Area	Hays	0.0008331	86.9124	0.0000562	5.1496	0.0000027	0.0124	0.0066537	507.5115	599.59	
	Travis	0.0051785	540.2275	0.0003493	32.0086	0.0000169	0.0772	0.0413577	3154.5738	3726.89	
	Williamson	0.0000000	0.0000	0.0000000	0.0000	0.00000000	0.0000	0.0000000	0.0000	0.00	
	Gregg	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Harrison	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
North East Texas Area	Rusk	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
exas Area	Smith	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Upshur	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
rpus Christi	Nueces	0.0128578	1341.3301	0.0008672	79.4741	0.0000419	0.1917	0.1026870	7832.4872	9253.48	
Area	San Patricio	0.0015100	157.5191	0.0001018	9.3330	0.0000049	0.0225	0.0120591	919.8084	1086.68	
toria Area	Victoria	0.0021192	221.0714	0.0001429	13.0985	0.0000069	0.0316	0.0169244	1290.9120	1525.11	
	Andrew s	0.0000037	0.3906	0.0000230	2.1051	0.0039003	17.8531	0.0000002	0.0179	20.37	
	Angelina	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Bosque	0.0022204	231.6358	0.0136212	1248.3667	0.0006579	3.0116	0.0001390	10.5999	1493.61	
	Brazos	0.0024089	251.2953	0.0112305	1029.2655	0.0005425	2.4830	0.0047829	364.8180	1647.86	
	Calhoun	0.0009466	98.7480	0.0000638	5.8508	0.0000031	0.0141	0.0075598	576.6235	681.24	
	Cameron	0.0063536	662.8140	0.0004285	39.2719	0.0000207	0.0947	0.0507425	3870.3988	4572.58	
	Cherokee	0.0027392	285.7501	0.0168033	1540.0077	0.0008116	3.7151	0.0001714	13.0762	1842.55	
	Coke	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Coleman	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Crockett	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Ector	0.0019215	200.4528	0.0006604	60.5209	0.0911346	417.1584	0.0146527	1117.6386	1795.77	
	Fannin	0.0000041	0.4230	0.0000249	2.2798	0.0000012	0.0055	0.0000003	0.0194	2.73	
	Fayette	0.0051867	541.0795	0.0103217	945.9712	0.0004986	2.2821	0.0283993	2166.1670	3655.50	
	Freestone	0.0047643	497.0183	0.0292268	2678.6063	0.0014117	6.4619	0.0002982	22.7440	3204.83	
	Frio	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Grimes	0.0000000	0.0000	0.0000000	0.0000		0.0000		0.0000	0.00	
	Hardeman	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Haskell	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Henderson	0.0006908	72.0621	0.0042376	388.3682	0.0002047	0.9369	0.0000432	3.2976	464.66	
	Hidalgo	0.0053716		0.0003623	33.2018 2854.4443	0.0000175	0.0801	0.0428994	3272.1668	3865.81 3415.21	
	Hood How and	0.0050771	529.6452 25.1535	0.0311454		0.0015044	6.8861 587 7096	0.0003178	24.2370	3415.21 755.27	
	How ard	0.0002411	25.1535 922.8543	0.0007641	70.0263	0.1283942 0.0002273	587.7096	0.0009490	72.3846 4979.4299	755.27 6334.68	
ther ERCOT	Hunt	0.0088463			431.3585	0.0002273		0.0652823			
counties	Jack Jones	0.0030783	321.1312	0.0188839	0.0000	0.0009121	4.1751	0.0001927	0.0000	2070.69	
	Jones Lamar	0.0000000	417.2969	0.0245388	2248.9595	0.0000000	5.4254	0.0000000	19.0959	2690.78	
	Lamar	0.0040001	0.0000	0.0245388	2248.9595	0.0000000	0.0000	0.0002504	0.0000	2690.78	
	Limestone	0.0000000	420.5627	0.0000000	24.9184	0.0000000	0.0000	0.0321966	2455.8099	2901.35	
	McLennan	0.0040314	420.3627	0.0347066	3180.8280	0.0000131	7.6735	0.0021966	2455.8099 27.0083	3805.72	
	Milam	0.0038576	132.3417	0.0000856	7.8413	0.0000041	0.0189	0.0101316	772.7884	912.99	
	Mitchell	0.0000311	3.2474	0.0001910	17.5012	0.0324260	148.4261	0.0000019	0.1486	169.32	
	Nolan	0.0000293	3.0519	0.0001795	16.4479	0.0304745	139.4934	0.0000018	0.1400	159.13	
	Palo Pinto	0.0036129	376.9036	0.0221635	2031.2661	0.0010705	4.9003	0.0002261	17.2474	2430.32	
	Pecos	0.0000020	0.2055	0.0000121	1.1075	0.0020520	9.3929	0.00002201	0.0094	10.72	
	Presidio	0.0000020	0.2000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Red River	0.0000000	0.0000	0.0000000	0.0000	0.00000000	0.0000	0.0000000	0.0000	0.00	
	Robertson	0.0039506	412.1259	0.0055755	510.9865	0.0002693	1.2327	0.0246170	1877.6671	2802.01	
	Taylor	0.0000000	0.0000	0.0000000	0.0000	0.00000000	0.0000	0.0000000	0.0000	0.00	
	Titus	0.0000000	0.0000	0.0000000	0.0000	0.00000000	0.0000	0.0000000	0.0000	0.00	
	Tom Green	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	
	Upton	0.0000000	0.2653	0.0000156	1.4300	0.0026494	12.1275	0.0000000	0.0000	13.83	
	Ward	0.0001995	20.8139	0.00012239	112.1737	0.2078335	951.3341	0.000002	0.9525	1085.27	
	Webb	0.0001995	438.3262	0.0012239	25.9709	0.2078335	0.0627	0.0335565	2559.5374	3023.90	
	Wharton	0.0021095	220.0655	0.0001423	13.0389	0.0000069	0.0315	0.0168474	1285.0380	1518.17	
	Wichita	0.0021095	1.2638	0.0001423	6.8108	0.0126190	57.7620	0.0000008	0.0578	65.89	
	Wilbarger	0.0179710	1874.7449	0.1102430	10103.6592	0.0053249	24.3742	0.00011247	85.7899	12088.57	
	Young	0.0071054	741.2391	0.0435880	3994.7982	0.0033243	9.6371	0.0004447	33.9197	4779.59	
	Total	0.4414501	46052.3029	0.4812863	44109.3980	0.5345786	2446.9721	0.6829349	52091.0965	144699.77	7
											· · · ·

Table 29: Example of NOx Emissions Reduction Calculations using 2010 eGRID

PROGRAM	ANNUA	L											
FROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family (MWh)	0	21,748	55,268	93,760	153,171	220,975	293,313	366,737	441,309	517,093	594,153	672,557	752,372
ESL-Multifamily (MWh)	0	50,218	94,867	167,566	262,939	357,717	463,922	569,704	675,096	780,131	884,845	989,268	1,093,435
ESL-Commercial (MWh)	0	0	25,750	54,550	87,230	126,228	170,173	214,773	260,065	306,088	352,880	400,483	448,937
PUC (SB7) (MWh)	0	538,841	976,984	1,437,883	1,831,318	2,267,414	2,675,295	3,062,781	3,430,894	3,780,601	4,112,822	4,428,433	4,728,263
SECO (MWh)	0	71,910	154,786	347,175	508,375	705,060	936,047	1,155,485	1,363,951	1,561,993	1,750,134	1,928,867	2,098,664
Wind-ERCOT (MWh)	0	3,273,150	8,135,429	10,995,427	13,049,580	15,723,534	18,857,560	19,757,605	20,700,609	21,688,621	22,723,790	23,808,366	24,944,707
SEER13-Single Family (MWh)	0	343,330	326,163	309,855	294,362	279,644	265,662	252,379	239,760	227,772	216,383	205,564	195,286
SEER13-Multifamily (MWh)	0	29,021	27,569	26,191	24,881	23,637	22,456	21,333	20,266	19,253	18,290	17,376	16,507
Total Annual (MWh)	0	4,328,218	9,796,817	13,432,406	16,211,857	19,704,209	23,684,427	25,400,797	27,131,950	28,881,552	30,653,297	32,450,913	34,278,170
PROCRAM	OZONE	SEASON I	DAY - OSD										
PROGRAM	0ZONE 2008	SEASON I 2009	DAY - OSD 2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
PROGRAM ESL-Single Family (MWh)				2011 468	2012 626	2013 808	2014	2015	2016 1,400	2017	2018	2019 2,022	2020
		2009	2010	-									
ESL-Single Family (MWh)		2009 124	2010 283	468	626	808	1,002	1,199	1,400	1,604	1,811	2,022	2,237
ESL-Single Family (MWh) ESL-Multifamily (MWh)		2009 124	2010 283 460	468 744	626 999	808 1,253	1,002 1,539	1,199	1,400 2,107	1,604 2,390	1,811 2,671	2,022 2,953	2,237 3,233
ESL-Single Family (MWh) ESL-Multifamily (MWh) ESL-Commercial (MWh)		2009 124 233 0	2010 283 460 71	468 744 149	626 999 239	808 1,253 346	1,002 1,539 466	1,199 1,823 588	1,400 2,107 713	1,604 2,390 839	1,811 2,671 967	2,022 2,953 1,097	2,237 3,233 1,230
ESL-Single Family (MWh) ESL-Multifamily (MWh) ESL-Commercial (MWh) PUC (SB7) (MWh)		2009 124 233 0 1,476	2010 283 460 71 2,677	468 744 149 3,939	626 999 239 5,017	808 1,253 346 6,212	1,002 1,539 466 7,330	1,199 1,823 588 8,391	1,400 2,107 713 9,400	1,604 2,390 839 10,358	1,811 2,671 967 11,268	2,022 2,953 1,097 12,133	2,237 3,233 1,230 12,954
ESL-Single Family (MWh) ESL-Multifamily (MWh) ESL-Commercial (MWh) PUC (SB7) (MWh) SECO (MWh)		2009 124 233 0 1,476 197	2010 283 460 71 2,677 424	468 744 149 3,939 951	626 999 239 5,017 1,393	808 1,253 346 6,212 1,932	1,002 1,539 466 7,330 2,565	1,199 1,823 588 8,391 3,166	1,400 2,107 713 9,400 3,737	1,604 2,390 839 10,358 4,279	1,811 2,671 967 11,268 4,795	2,022 2,953 1,097 12,133 5,285	2,237 3,233 1,230 12,954 5,750
ESL-Single Family (MWh) ESL-Multifamily (MWh) ESL-Commercial (MWh) PUC (SB7) (MWh) SECO (MWh) Wind-ERCOT (MWh)		2009 124 233 0 1,476 197 14,246	2010 283 460 71 2,677 424 23,054	468 744 149 3,939 951 27,654	626 999 239 5,017 1,393 33,273	808 1,253 346 6,212 1,932 32,560	1,002 1,539 466 7,330 2,565 42,806	1,199 1,823 588 8,391 3,166 44,849	1,400 2,107 713 9,400 3,737 46,990	1,604 2,390 839 10,358 4,279 49,233	1,811 2,671 967 11,268 4,795 51,582	2,022 2,953 1,097 12,133 5,285 54,044	2,237 3,233 1,230 12,954 5,750 56,624

Table 30: Annual and OSD Electricity Savings for the Different Programs (Base Year 2008)

Table 31: Annual and OSD NOx Emissions Reduction Values for the Different Programs (Base Year 2008)

PROGRAM	ANNUA	L (in tons l	NOx)										
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0	5	14	23	38	54	72	91	109	128	147	166	186
ESL-Multifamily	0	13	24	43	67	91	118	145	172	199	225	252	278
ESL-Commercial	0	0	6	14	22	32	43	54	66	77	89	101	114
PUC (SB7)	0	135	246	362	460	567	669	766	858	946	1,029	1,108	1,183
SECO	0	19	43	92	133	183	241	296	348	398	445	490	533
Wind-ERCOT	0	895	2,262	3,053	3,648	4,399	5,283	5,535	5,800	6,076	6,366	6,670	6,989
SEER13-Single Family	0	81	77	73	69	66	62	59	56	53	51	48	46
SEER13-Multifamily	0	7	6	6	6	6	5	5	5	5	4	4	4
Total Annual (Tons NOx)	0	1,154	2,677	3,664	4,443	5,397	6,494	6,951	7,413	7,882	8,357	8,840	9,332

PROGRAM	OZONE	SEASON I	DAY - OSD	(in tons NO	x/day)								
FROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0	0.03	0.07	0.11	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55
ESL-Multifamily	0	0.06	0.12	0.19	0.26	0.32	0.39	0.46	0.54	0.61	0.68	0.75	0.82
ESL-Commercial	0	0.00	0.02	0.04	0.06	0.09	0.12	0.15	0.18	0.21	0.24	0.28	0.31
PUC (SB7)	0	0.37	0.67	0.99	1.26	1.55	1.83	2.10	2.35	2.59	2.82	3.03	3.24
SECO	0	0.05	0.12	0.25	0.37	0.50	0.66	0.81	0.95	1.09	1.22	1.34	1.46
Wind-ERCOT	0	3.93	6.40	7.62	9.28	9.06	11.97	12.55	13.15	13.77	14.43	15.12	15.84
SEER13-Single Family	0	0.57	0.54	0.51	0.49	0.46	0.44	0.42	0.40	0.38	0.36	0.34	0.32
SEER13-Multifamily	0	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03
Total OSD (Tons NOx)	0	5.05	7.97	9.76	11.90	12.22	15.70	16.81	17.94	19.08	20.23	21.39	22.58

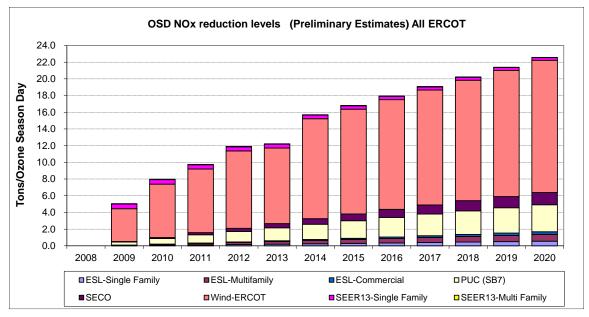


Figure 22: Integrated OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008)

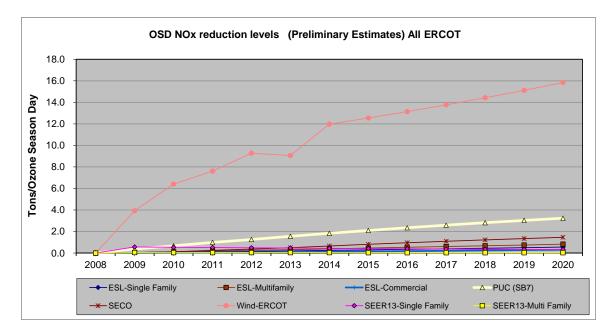


Figure 23: Integrated OSD Individual Programs NOx Emissions Reduction Projections through 2020 (Base Year 2008)

6 2013 Year Activities of Energy Systems Laboratory for Texas Emissions Reduction Plan

6.1 IC3 Texas Building Registry (TBR)

6.1.1 Background

In 2008, the 81^{st} Texas Legislature amended the Texas Administrative Code (TAC .§388.008, 2009) to develop a Registry of Above-Code homes. The Laboratory built the first version of the Registry in 2009. This preliminary version allowed The Laboratory to provide basic metrics on usage of the Laboratory's above code calculators, $IC3^{45}$ and TCV^{46} . By running reports against the calculator's databases, The Laboratory could determine calculator usage by month for Texas' Cities and Counties. These reports allowed a better understanding of how builders were adopting the calculators across the State so the Laboratory could improve the calculators. In 2014, the reports continued and numbers where gathered.

Figure 24 shows the Projects and Certificates issued each month from January 2014 to December 2014. A Project is a house plan, while Certificates are printed reports given to the building official - assuming that the house is at or above code. In 2014, some users entered a basic floor plan and re-cycled it to generate more certificates.

Figure 25 shows the cumulative Users and Certificates for 2014. The divergence between the two lines emphasizes the difference between the projects completed and certificates issued, showing that more projects were entered (and presumably did not pass) than certificates created.

Figure 26 shows that the largest adopter of the *IC3* software was the North Central Texas Council of Governments (NCTCOG) area, specifically, users building in Dallas, Collin, Denton, and Tarrant Counties.

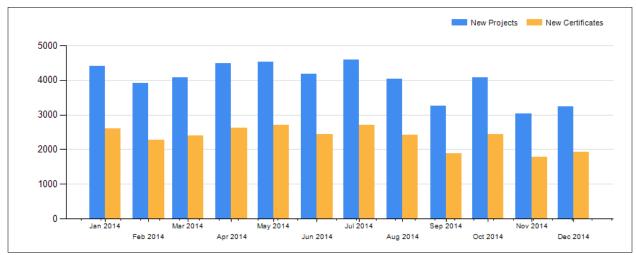


Figure 27 shows the certifications issued by city.

Figure 24: IC3 2014 Certificates and Projects

⁴⁵ International Code Compliance Calculator, a web based, above code calculator for single family, detached, new construction in Texas.

⁴⁶ Texas Climate Vision, a web based, above code calculator for single family, detached, new construction in Austin Energy's service area.

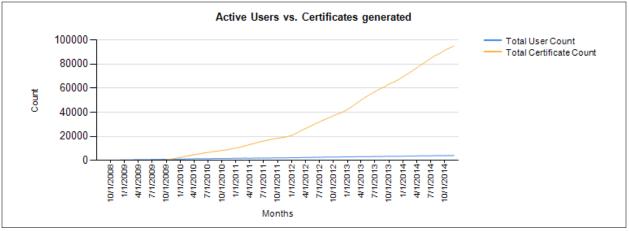


Figure 25: IC3 2014 Active Users and Certificates

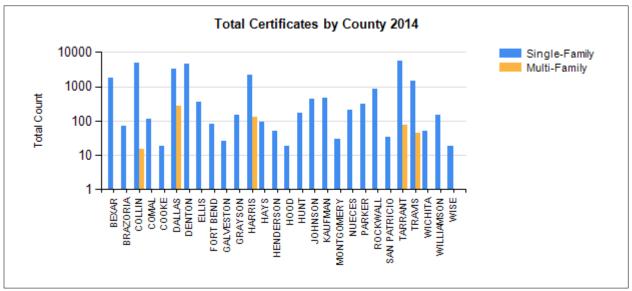


Figure 26: IC3 2014 Certificates - Counties with at least 10 Certificates

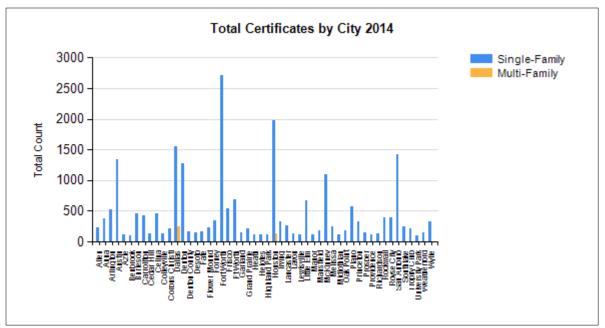


Figure 27: IC3 2014 Certificates - Cities with at least 200 Certificates

6.1.2 Texas Building Registry Current Version

As illustrated below and a "*Report on the Development of the Format for a Texas Residential Registry* (Gilman, et al., 2008), the underlying database was optimized for supporting the *IC3* and *TCV* calculators and therefore needed a transformation to allow for seamless reporting. Consequently, The Laboratory has been steadily adding reporting capability and has been making software changes to reflect the new reporting requirements and analysis capabilities.

The underlying technology of the *IC3* and *TCV* calculators is *Microsoft SQL Server 2008*. This product offers reporting capabilities through various tools.

Figure 28 shows the "layout" of the IC3 (v3.x) and TCV⁴⁷ (v1.1) databases. It gives a rough overview of the different tables (called "entities") found in the *IC3* database. The center entity is the Project, which is the center of the *IC3* software's abstraction of a house. The other tables include floors, walls, electrical, and systems.

 $^{^{47}}$ The *TCV* v1.1 database has different fields due to the built-in inspection module and the fact it was completed two years earlier than the described *IC3* v3.6.

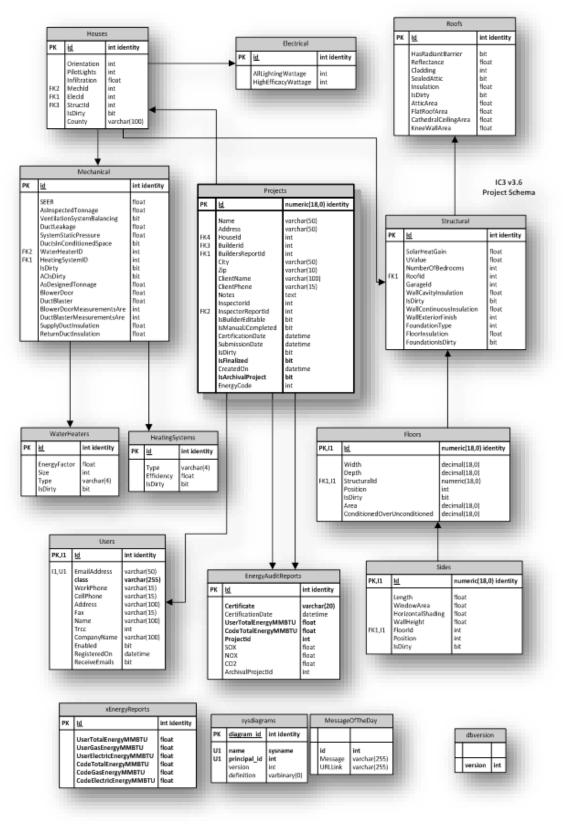


Figure 28: Database Schema

6.1.3 Usage Reports

3000

2000

1000

0

Count

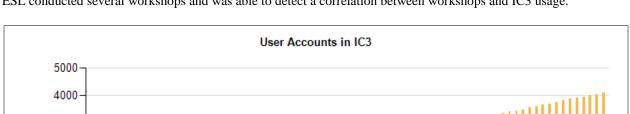


Figure 29 shows a steady growth from the start of record keeping (July 2009) until the end of 2014. During this year, ESL conducted several workshops and was able to detect a correlation between workshops and IC3 usage.

Figure 29: IC3 Usage Growth in 2014

1/1/2009

7/1/2009

1/1/2010

7/1/2010

Figure 30 shows the correlation between users and their successful projects (i.e. those that generate certificates). The graph shows that users were generating more certificates, and were doing so at a much faster rate than the rate of adding new users.

7/1/2011

Month Count of User Accounts Total User Count

Months

1/1/2011

1/1/2012

7/1/2012

1/1/2013

7/1/2013

1/1/2014

7/1/2014

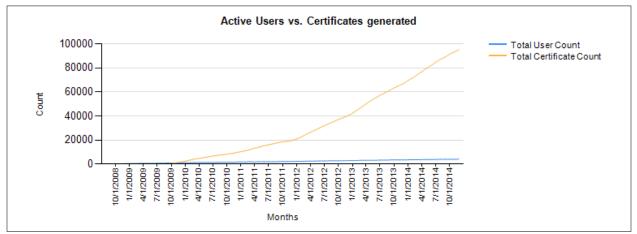


Figure 30: Users and Certificates 2014

Figure 31 through Figure 35 show where the usage was using Counties and Cities as the grouping entity. The North Central Texas Council of Governments (NCTCOG) led the way in usage during 2014. In the figures, the colors change to show the lowest counts in the dark green all the way to the highest counts in red.

Counties Generation	ng Singl	le-Fami	ly Hom	esIC3	Certific	ates in 2	2014						
													Total
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
ANDERSON	0	0	0	0	0	0	0	1	0	1	0	0	2
BANDERA	1	0	0	0	0	0	0	2	0	0	0	0	3
BEXAR	182	148	153	166	156	165	145	117	102	247	74	88	1743
BRAZORIA	0	0	0	0	0	0	0	10	24	27	5	3	69
BRAZOS	0	0	0	0	0	1	0	0	0	0	0	0	1
COLLIN	483	539	501	460	452	387	334	343	290	338	339	261	4727
COMAL	0	8	8	4	0	5	5	28	11	9	15	18	111
COOKE	2	2	5	3	0	1	3	0	0	3	0	0	19
DALLAS	420	282	261	342	318	264	346	276	191	243	177	188	3308
DENTON	355	343	337	338	494	375	498	446	232	381	246	402	4447
ELLIS	39	7	19	50	24	17	41	21	17	27	38	58	358
FORT BEND	4	7	11	4	5	9	9	11	3	12	5	2	82
GALVESTON	2	2	1	2	1	0	1	0	2	1	8	б	26
GRAY	0	0	0	0	2	1	0	0	0	0	0	0	3
GRAYSON	30	6	14	16	16	10	10	15	15	5	7	3	147
GUADALUPE	0	0	0	0	0	0	0	0	0	1	0	0	1
HARRIS	213	143	206	195	192	220	201	201	109	121	178	159	2138
HAYS	0	5	1	19	26	0	б	11	9	8	0	5	90
HENDERSON	5	8	6	2	5	5	4	2	3	5	3	1	49
HOOD	2	0	0	0	3	3	0	4	3	0	2	1	18
HOUSTON	0	0	0	0	0	0	0	0	0	1	2	0	3
HUNT	8	6	28	31	9	34	39	6	6	3	1	3	174
JACK	0	0	0	0	0	0	1	0	0	0	0	0	1
JEFFERSON	0	0	0	3	0	0	0	0	0	0	0	0	3
JOHNSON	35	42	46	37	32	46	31	28	30	24	19	64	434
KAUFMAN	47	25	33	40	74	44	47	34	37	26	30	24	461
KENDALL	0	0	0	0	0	0	0	0	0	0	0	6	6
LIBERTY	0	0	0	0	0	2	3	0	0	0	0	0	5
MATAGORDA	0	0	0	0	0	0	0	1	1	0	0	0	2
MCLENNAN	0	0	0	0	0	0	0	0	0	2	0	0	2

Figure 31: Counties Generating Single-Family HomesIC3 Certificates in 2014

MEDINA	0	0	0	0	0	1	0	0	0	3	0	3	7
MONTGOMERY	1	0	0	0	0	1	0	4	11	0	8	4	29
MOORE	0	0	0	0	1	0	0	0	0	0	0	0	1
NUECES	19	18	16	18	10	21	27	16	20	15	15	17	212
PALO PINTO	2	1	2	0	0	0	0	1	0	2	2	0	10
PARKER	33	23	22	23	17	28	25	21	35	28	37	28	320
RANDALL	0	0	0	0	1	0	0	0	2	0	0	0	3
ROCKWALL	109	68	92	103	90	70	59	49	44	66	35	48	833
SAN PATRICIO	1	0	7	2	0	0	2	4	2	5	5	5	33
SMITH	0	0	2	0	2	0	0	0	2	0	0	0	6
TARRANT	328	390	481	501	500	507	618	467	463	532	363	393	5543
TAYLOR	1	0	2	1	0	1	1	0	0	0	0	0	6
TOM GREEN	0	0	0	0	0	1	0	0	0	0	0	0	1
TRAVIS	71	120	87	185	176	135	149	138	105	151	58	63	1438
VAL VERDE	0	0	2	0	0	0	0	2	1	0	0	5	10
VAN ZANDT	0	1	0	0	0	0	0	0	0	0	0	0	1
WASHINGTON	0	0	0	0	0	0	0	0	1	0	0	0	1
WICHITA	17	5	0	1	7	2	1	0	5	8	1	4	51
WILLIAMSON	1	5	5	20	26	16	11	7	12	18	14	12	147
WILSON	0	0	0	0	0	0	0	0	0	0	4	0	4
WISE	1	4	1	3	1	0	3	0	1	2	2	1	19

Counties Generation	ating M	ulti-Fa	mily H	omes I	C3 Cert	tificates	s in 201	14					
													Total
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
COLLIN	0	10	0	0	0	2	0	0	0	0	3	0	15
DALLAS	115	14	0	12	10	0	7	65	12	0	33	б	274
ELLIS	0	0	0	0	1	0	0	0	0	0	0	0	1
HARRIS	2	3	16	0	12	29	2	0	1	66	1	0	132
PARKER	0	0	0	0	0	0	0	0	0	0	1	0	1
TARRANT	4	3	5	0	1	17	12	7	11	18	0	0	78
TRAVIS	4	3	2	3	10	1	6	1	0	9	4	2	45

Figure 32: Counties Generating Multi-Family Homes IC3 Certificates in 2014

													Total
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	0	0	0	0	0	0	0	1	0	1	0	0	
Houston	0	0	1	0	1	0	0	1	0	1	0	0	
San Antonio	1	0	0	1	0	0	2	0	0	0	0	0	
75230	0	0	0	1	0	0	0	0	0	0	0	0	
a	3	0	0	0	0	0	0	0	0	0	0	0	
Abilene	0	0	2	1	0	1	0	0	0	0	0	0	
Abilene	1	0	0	0	0	0	1	0	0	0	0	0	
Addison	4	2	1	0	0	0	0	0	0	0	0	0	
adf	0	0	0	0	0	0	0	0	1	0	0	0	
Aledo	3	15	5	8	5	3	2	1	0	2	18	6	6
Allen	22	16	23	25	33	26	24	16	8	8	7	16	22
Alvarado	3	6	4	7	10	1	2	5	0	0	0	0	3
Alvin	0	0	0	0	0	0	0	9	24	27	5	3	6
Anetta	0	0	0	0	0	0	0	0	0	2	0	0	
Anna	93	73	35	51	11	17	13	12	22	25	16	4	37
Annetta	0	0	0	0	0	0	0	0	0	0	2	0	
Argyle	5	2	0	6	2	3	0	3	4	3	4	5	3
Arlington	33	33	35	43	53	76	66	62	38	32	31	24	52
Athens	0	0	0	0	0	0	0	0	1	0	0	0	
Aubrey	1	7	0	10	22	7	3	1	0	1	5	1	5
Aurora	1	1	0	0	0	0	1	0	0	0	0	0	
Aurora	0	0	0	0	1	0	0	0	0	0	0	0	
Ausitn	0	0	0	0	0	0	0	2	0	0	0	0	
Austin	27	106	0	178	186	140	133	117	103	154	65	50	125
Austin	0	0	82	0	0	0	0	0	0	0	0	0	8
Austin Tx	0	0	0	0	0	0	0	0	0	0	0	2	
Austin Tx.	0	0	0	0	0	0	0	0	0	0	0	1	
Autin	1	4	0	0	0	0	0	0	0	0	0	0	
Azle	6	9	11	2	7	10	14	6	8	0	2	30	10
Azle	0	0	0	0	0	0	0	0	0	1	0	0	

Figure 33: Cities Generating Single-Family Homes IC3 Certificates in 2014

Azle/Reno	0	0	0	3	0	0	0	0	0	0	0	0	3
Balch Springs	0	0	0	0	1	0	1	0	0	0	0	0	2
Bartonville	2	0	1	2	0	0	0	1	0	1	0	0	7
Bay City	0	0	0	0	0	0	0	1	1	0	0	0	2
Baytown	0	0	2	0	0	0	0	0	0	0	0	0	2
Beaumont	0	0	0	3	0	0	0	0	0	0	0	0	3
Bedford	0	0	2	4	7	1	2	0	0	0	0	0	16
Bedford	0	0	0	0	0	0	0	0	0	3	0	0	3
Bee Cave	0	0	0	13	0	0	0	0	0	0	0	0	13
BELLAIR	0	0	0	0	0	0	1	0	0	0	0	0	1
Bellaire	2	0	0	1	1	0	0	0	0	0	0	3	7
Belverde	0	2	1	1	0	0	0	1	2	0	0	1	8
Benbrook	7	3	8	4	3	6	7	10	9	15	12	18	102
Benbrooks	1	0	3	0	0	0	0	1	0	0	0	0	5
Bilverde	0	0	0	0	0	0	0	0	0	0	0	1	1
Blue Ridge	0	0	0	0	0	0	0	0	0	0	1	0	1
Boeme	0	0	0	0	0	0	0	0	0	2	0	2	4
Boerne	9	1	2	4	1	9	5	0	1	4	0	0	36
Boerne	0	0	0	0	0	0	0	0	0	0	0	6	6
Brenham	0	0	0	0	0	0	0	0	1	0	0	0	1
Brookside Village	0	0	0	0	0	0	0	1	0	0	0	0	1
Bryan	0	0	0	0	0	1	0	0	0	0	0	0	1
Buda	0	0	0	1	0	0	0	0	0	0	0	0	1
Bulverde	0	6	0	1	0	4	6	15	1	0	0	0	33
Bulverde	0	0	2	0	0	0	0	0	0	3	4	8	17
Bunker Hill Village	0	0	0	0	4	3	0	0	0	0	0	0	7
Burelson	0	1	0	0	0	0	0	0	0	0	0	0	1
Burleson	41	41	53	37	28	47	40	31	36	0	0	64	418
Burleson	0	0	0	0	0	0	0	0	0	25	19	0	44
Burlesonb	0	0	0	1	0	0	0	0	0	0	0	0	1
Caddo Mills	1	0	0	0	0	0	0	0	0	0	0	0	1
Canyon	0	0	0	0	1	0	0	0	2	0	0	0	3

Carollton	0	0	1	0	0	0	0	0	0	0	0	0	1
Carrollton	0	0	63	15	79	36	18	49	19	22	13	32	346
Carrollton	41	32	0	0	0	0	0	0	0	0	0	0	73
Carrolton	1	4	2	4	3	6	2	1	3	2	3	1	32
Castroville	0	0	0	0	4	4	6	1	0	0	0	0	15
Castroville	0	0	0	0	0	0	0	0	0	4	1	3	8
Cedar Hiil	0	0	0	0	0	0	0	0	0	0	1	0	1
Cedar Hill	6	2	15	13	13	10	12	8	0	6	12	17	114
Cedar hill	0	0	0	0	0	0	0	0	7	0	0	0	7
Cedar Hill, TX	0	0	0	0	1	0	0	0	0	0	0	0	1
Celina	51	62	145	31	16	8	22	37	21	40	18	7	458
Chandler	0	4	0	0	0	0	0	1	2	5	0	0	12
Chapel Hill	0	1	1	0	2	0	0	0	0	0	0	0	4
Chesmar Homes	0	0	0	0	0	0	0	0	0	1	0	0	1
Cibolo	10	2	0	0	0	0	4	0	0	2	0	0	18
clarence	0	0	0	0	0	1	0	0	0	0	0	0	1
Clear Lake Shores	0	0	0	2	1	0	0	0	0	0	0	1	4
Cleburne	1	0	1	0	1	1	0	0	1	0	4	2	11
Colleyville	10	9	15	9	7	15	10	14	8	4	10	10	121
Combine	0	3	0	0	0	0	0	1	0	0	0	0	4
Conroe	0	2	0	0	0	1	0	6	12	0	8	4	33
Conroe	0	0	0	0	0	0	0	0	0	2	0	0	2
Converse	0	0	0	0	0	0	1	0	1	0	0	0	2
Copeville	0	0	0	13	1	0	2	4	7	4	0	0	31
Coppell	8	8	12	3	2	4	13	9	8	5	0	4	76
Copper Canyon	0	0	0	0	7	2	1	0	0	0	1	3	14
Corinth	0	1	3	3	1	3	1	10	1	4	5	2	34
Cornith	0	0	2	0	0	0	0	0	0	0	0	0	2
Corpus Christi	19	18	16	18	10	21	27	16	20	15	15	17	212
County	0	2	0	0	0	0	0	0	0	0	0	0	2
Crandall	3	4	3	2	5	1	3	2	3	8	4	4	42
Crandell Figure 33: Continu	0	0	2	0	0	0	0	0	0	0	0	0	2

Cresson	0	1	0	0	0	0	0	2	0	0	0	0	3
Cresson	0	0	1	0	0	0	0	0	0	0	0	0	1
Cro	0	0	0	1	0	0	0	0	0	0	0	0	1
Crosby	0	0	0	0	0	0	1	0	0	0	0	0	1
Cross Roads	16	2	7	20	4	1	2	3	5	1	0	1	62
Crossroads	2	2	7	0	0	1	0	20	16	2	1	1	52
Crowely	0	0	2	1	0	0	0	0	2	2	0	0	7
Crowley	15	23	10	11	0	12	0	0	1	0	0	0	72
Cumby	0	0	0	0	0	0	0	1	0	0	0	0	1
Dallas	174	169	154	176	147	126	146	117	98	87	71	80	1545
Dalworthington Gardens	0	0	0	0	0	0	0	0	3	0	0	0	3
Dayton	0	0	0	0	0	0	3	0	0	0	0	0	3
Dayton`	0	0	0	0	0	0	0	0	0	1	0	0	1
Decatur	0	0	0	1	0	0	0	0	0	0	0	0	1
Del Rio	0	0	2	0	0	0	0	2	1	0	0	5	10
Denon	0	0	0	0	2	3	0	0	0	0	0	0	5
Denton	82	55	42	59	129	104	188	167	46	202	53	143	1270
Denton County	0	52	26	37	3	12	9	7	0	5	2	5	158
Denton Master	0	0	0	0	0	0	0	0	0	0	0	4	4
		0	0	0	0	0	0	0	0	0	0	4	-
DeSoto	17	10	13	12	5	8	0 19	3	14		9	4	138
DeSoto Dish	17 0												138
		10	13	12	5	8	19	3		17	9	11	
Dish	0	10 0	13 0	12 0	5	8	19 0	3	14	17 0	9	11 0	1
Dish Double Oak	0 2	10 0 0	13 0 0	12 0 0	5 0 0	8 0 0	19 0 0	3 0 0	14 1 0	17 0 0	9 0 1	11 0 0	1
Dish Double Oak Driftwood	0 2 0	10 0 0 0	13 0 0 1	12 0 0 3	5 0 0 0	8 0 0 0	19 0 0 0	3 0 0 0	14 1 0 0	17 0 0 0	9 0 1 0	11 0 0 0	1 3 4
Dish Double Oak Driftwood Dumas	0 2 0 0	10 0 0 0	13 0 0 1 0	12 0 0 3 0	5 0 0 0	8 0 0 0 0	19 0 0 0	3 0 0 0 0	14 1 0 0 0	17 0 0 0	9 0 1 0 0	11 0 0 0	1 3 4 1
Dish Double Oak Driftwood Dumas Duncanville	0 2 0 0 3	10 0 0 0 0 2	13 0 0 1 0 1	12 0 0 3 0 0	5 0 0 0 1 0	8 0 0 0 0 1	19 0 0 0 0	3 0 0 0 0 0	14 1 0 0 0 0	17 0 0 0 0 0	9 0 1 0 0 0	11 0 0 0 0 0	1 3 4 1 8
Dish Double Oak Driftwood Dumas Duncanville Ennis	0 2 0 0 3 2	10 0 0 0 2 0	13 0 0 1 0 1 0	12 0 0 3 3 0 0 0 0	5 0 0 0 1 1 0 0	8 0 0 0 0 1 0	19 0 0 0 0 1 0	3 0 0 0 0 0 3	14 1 0 0 0 0 0 0	17 0 0 0 0 0 0 3	9 0 1 0 0 0 0 0	11 0 0 0 0 0 0	1 3 4 1 8 8 8
Dish Double Oak Driftwood Dumas Duncanville Ennis Ennis	0 2 0 0 3 2	10 0 0 0 2 0 0 0	13 0 0 1 0 1 0 1 0	12 0 0 3 3 0 0 0 0 0 0	5 0 0 0 1 0 0 0 0	8 0 0 0 0 1 1 0 0	19 0 0 0 0 1 1 0 0	3 0 0 0 0 0 3 3 0	14 1 0 0 0 0 0 0 0	17 0 0 0 0 0 0 3 3	9 0 1 0 0 0 0 0 0	111 00 00 00 00 00	1 3 4 1 8 8 8 1
Dish Double Oak Driftwood Dumas Duncanville Ennis Ennis Euless	0 2 0 3 2 0 1	10 0 0 0 0 2 2 0 0 0 4	13 0 0 1 0 1 0 1 3	12 0 0 3 3 0 0 0 0 0 0 2	5 0 0 0 1 1 0 0 0 0 0 6	8 0 0 0 0 1 0 0 0 3	19 0 0 0 0 1 0 0 19	3 0 0 0 0 0 0 3 3 0 5	14 1 0 0 0 0 0 0 0	17 0 0 0 0 0 0 3 0 0 6	9 0 1 0 0 0 0 0 0 2	111 00 00 00 00 00 00 4	1 3 4 1 8 8 8 1 63
Dish Double Oak Driftwood Dumas Duncanville Ennis Ennis Euless Fair Oak Ranch	0 2 0 3 2 0 1 1 0	10 0 0 0 2 2 0 0 4 0	13 0 0 1 0 1 0 1 3 0	12 0 0 3 3 0 0 0 0 0 2 0 0	5 0 0 0 1 1 0 0 0 0 6 0	8 0 0 0 0 1 0 0 3 0	19 0 0 0 0 1 1 0 0 19 0	3 0 0 0 0 0 3 3 0 5 0	14 1 0 0 0 0 0 0 0 8 8 1	17 0 0 0 0 0 0 3 0 0 6 0	9 0 1 0 0 0 0 0 2 0	11 0 0 0 0 0 0 0 0 0 4 0	1 3 4 1 8 8 1 63 1

Fair Oaks Ranch	0	0	3	2	0	0	2	0	0	0	0	3	10
Fairs Oaks Ranch	0	0	0	0	0	1	0	0	0	0	0	0	1
Fairview	1	0	0	5	1	3	0	0	2	1	0	1	14
Farmers Branch	0	1	0	3	3	2	5	0	0	4	4	3	25
Farmersville	0	1	1	0	0	5	0	0	3	1	0	0	11
Fate	50	16	27	25	16	4	4	4	6	5	0	0	157
Fate	0	0	0	0	0	0	0	0	0	0	4	3	7
Floresville	0	0	0	0	0	0	0	0	0	0	4	0	4
Flower Mound	23	0	5	26	49	12	9	10	21	18	6	37	216
Flower Mound	0	18	0	0	0	0	0	0	0	0	0	0	18
Flowermound	0	0	1	0	0	0	0	1	0	1	0	0	3
Flowermound TX	0	6	0	0	0	0	0	0	0	0	0	0	6
Forest Hill	0	0	0	0	0	0	0	4	0	0	1	0	5
Forney	39	14	26	33	62	43	39	22	28	2	16	9	333
Fort Worth	0	0	1	0	0	0	0	0	0	0	0	0	1
Fort Worth	181	188	272	285	257	211	281	211	238	241	187	168	2720
Fort Worth, TX	0	0	0	0	0	0	0	1	0	0	0	0	1
Fort Worth, Tx.	2	0	0	0	0	0	0	0	0	0	2	0	4
FORTH WORTH	0	1	0	0	0	2	0	4	0	0	0	0	7
Fortworth	1	0	5	0	1	11	0	0	0	52	2	0	72
Fprt Worth	0	0	0	0	0	0	0	1	0	0	0	0	1
Freeport	0	0	0	0	0	0	1	0	0	0	0	0	1
Frisco	39	54	41	30	32	30	62	48	47	55	57	39	534
Frot Worth	0	0	0	0	0	0	0	0	1	0	0	0	1
Frt Worth	0	0	0	0	0	0	1	0	0	0	0	0	1
Ft Worth	0	25	0	52	47	37	86	88	66	85	61	64	611
Ft Worth	27	0	45	0	0	0	0	0	0	0	0	0	72
FT WORTH, TX	0	0	0	0	0	0	0	0	2	1	0	0	3
Ft. Worth	3	7	6	4	0	0	4	1	0	2	2	0	29
ft.worth	0	0	0	0	0	0	4	0	0	0	0	0	4
Fulshear	0	0	0	0	0	0	0	2	0	0	0	0	2
Figure 33: Continu	1												

Gaineville10101210 <t< th=""><th>Gainesville</th><th>0</th><th>2</th><th>3</th><th>3</th><th>0</th><th>1</th><th>3</th><th>0</th><th>0</th><th>3</th><th>0</th><th>0</th><th>15</th></t<>	Gainesville	0	2	3	3	0	1	3	0	0	3	0	0	15
Garden Ridge000 <th< td=""><td>Gaineville</td><td>0</td><td>0</td><td>2</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>2</td></th<>	Gaineville	0	0	2	0	0	0	0	0	0	0	0	0	2
Garland 19 10 00 22 7 7 8 8 2 11 33 13 9 138 Garpevine 0	Galveston	2	2	1	0	0	0	2	0	0	0	0	1	8
GarpevineImage: state s	Garden Ridge	0	0	0	0	0	0	0	0	0	0	2	0	2
GeorgetownIIIOIOIOIOIOIOIOIOGlenn HeightsIIIOIOIOIOIOIOIOIOIOIOGodleyIOIOIOIOIOIOIOIOIOIOIOIOIOGordonIOIII </td <td>Garland</td> <td>19</td> <td>10</td> <td>0</td> <td>22</td> <td>7</td> <td>4</td> <td>8</td> <td>2</td> <td>11</td> <td>33</td> <td>13</td> <td>9</td> <td>138</td>	Garland	19	10	0	22	7	4	8	2	11	33	13	9	138
Glenn Heights 1 0 0 0 3 0 0 2 5 1 0 0 1 13 Godley 0	Garpevine	0	0	0	0	0	0	0	0	0	1	0	0	1
Godley 0 <td>Georgetown</td> <td>1</td> <td>0</td> <td>1</td>	Georgetown	1	0	0	0	0	0	0	0	0	0	0	0	1
Gordon212000001022010Gordonville000200000000007Gran Prairie00000000000001001Grand Pairie000000000000000100Grand Prairie00 <td>Glenn Heights</td> <td>1</td> <td>0</td> <td>0</td> <td>3</td> <td>0</td> <td>0</td> <td>2</td> <td>5</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>13</td>	Glenn Heights	1	0	0	3	0	0	2	5	1	0	0	1	13
Gordonville000	Godley	0	0	0	3	0	0	0	0	0	0	0	0	3
Gran Prairie00000000000Granbury2000 </td <td>Gordon</td> <td>2</td> <td>1</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>2</td> <td>2</td> <td>0</td> <td>10</td>	Gordon	2	1	2	0	0	0	0	1	0	2	2	0	10
Granbury200033023021Grand Pairie00010000000001Grand Praire00 </td <td>Gordonville</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>3</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>7</td>	Gordonville	0	0	2	0	0	0	0	3	0	0	2	0	7
Grand Pairie000 <th< td=""><td>Gran Prairie</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td></th<>	Gran Prairie	0	0	0	0	0	0	0	0	0	1	0	0	1
Grand Prairae000 <t< td=""><td>Granbury</td><td>2</td><td>0</td><td>0</td><td>0</td><td>3</td><td>3</td><td>0</td><td>2</td><td>3</td><td>0</td><td>2</td><td>1</td><td>16</td></t<>	Granbury	2	0	0	0	3	3	0	2	3	0	2	1	16
Grand Praire000 <th< td=""><td>Grand Pairie</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td></th<>	Grand Pairie	0	0	0	0	1	0	0	0	0	0	0	0	1
Grand Prairie 15 12 14 10 31 22 28 17 12 21 13 16 211 Grand Praire 0 0 0 0 2 0 1 0 0 0 0 3 Grand Yearie 0 0 0 0 0 0 0 0 0 0 0 3 Grand Yearie 0 0 0 0 0 0 0 0 0 0 0 0 0 3 Grand Yearie 0 <td< td=""><td>Grand Prairae</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td></td<>	Grand Prairae	0	0	1	0	0	0	0	0	0	0	0	0	1
Grand Prarie000020100000Grandview00000000000003Grapevine12171219283260485Greenville62996891301155Gun Barrel City140115331003122Gunter000041003240122Gunter19914201003240006Hatkberry19914201003240770Hatland10013000011210121013121313131313141011131314141014101410141416Hatkberry131413131513131414141414161414131313141414141414141513	Grand Praire	0	0	0	0	0	0	0	0	1	0	0	0	1
Grandview00<	Grand Prairie	15	12	14	10	31	22	28	17	12	21	13	16	211
GrapevineII<	Grand Prarie	0	0	0	0	2	0	1	0	0	0	0	0	3
Greenville629968913011Gun Barrel City14015331003122Gunter000410001006Hackberry1991420103240770Haltom City30037239511235Heartland501030030333311333Heath125511135819106814116Hedwig Village0010000000008105Helotes11241421814062428105Helotes000000800008Hickory Creek00374721455185	Grandview	0	0	0	0	0	3	0	0	0	0	0	0	3
Gun Barrel City 1 4 0 1 5 3 3 1 0 0 3 1 22 Gunter 0 0 0 0 0 3 1 0 0 3 1 22 Gunter 0 0 0 0 0 0 0 3 1 0 0 3 1 22 Gunter 0 0 0 0 0 0 0 0 1 0 0 6 Hackberry 19 9 1 4 20 1 0 3 2 4 0 70 Haltom City 3 0 0 0 0 3 72 3 9 5 1 1 2 35 Heartland 12 0 1 0 3 3 3 10 3 34 116 Heath 12 5 5 11 13 5 8 19 10 6 8 </td <td>Grapevine</td> <td>1</td> <td>2</td> <td>1</td> <td>7</td> <td>12</td> <td>19</td> <td>28</td> <td>3</td> <td>2</td> <td>6</td> <td>0</td> <td>4</td> <td>85</td>	Grapevine	1	2	1	7	12	19	28	3	2	6	0	4	85
Gunter 0 0 0 4 1 0 0 0 1 0 0 6 Hackberry 19 9 1 4 20 1 0 3 2 4 0 7 70 Haltom City 3 0 0 3 0 0 3 0 0 9 1 2 0 0 9 Haslet 1 0 1 3 7 2 3 9 5 1 1 2 35 Heartland 5 0 1 0 3 0 0 5 9 4 4 0 3 34 Heartland 12 5 5 11 13 5 8 19 10 6 8 14 116 Hedwig Village 0 0 1 0 0 0 0 0 0 0 1 16 16 16 16 16 16 16 16 16 16<	Greenville	6	2	9	9	6	8	9	1	3	0	1	1	55
Hackberry 19 9 1 4 20 1 0 3 2 4 0 7 70 Haltom City 3 0 0 3 0 0 0 0 1 2 0 0 9 Haslet 1 0 1 3 7 2 3 9 5 1 1 2 35 Heartland 5 0 1 0 3 0 0 5 9 4 4 0 3 34 Heartland 5 0 1 0 3 5 8 19 10 6 8 14 116 Heath 12 5 5 11 13 5 8 19 10 6 8 14 116 Hedwig Village 0 0 1 0 0 0 0 0 0 0 1 16 16 14 16 16 16 16 16 16 16 <t< td=""><td>Gun Barrel City</td><td>1</td><td>4</td><td>0</td><td>1</td><td>5</td><td>3</td><td>3</td><td>1</td><td>0</td><td>0</td><td>3</td><td>1</td><td>22</td></t<>	Gun Barrel City	1	4	0	1	5	3	3	1	0	0	3	1	22
Haltom City300300001200Haslet10137239511235Heartland50103059440334Heath125511135819106814116Hedwig Village001000000001Helotes11241421814062428105Hickory Creek003747214551856	Gunter	0	0	0	4	1	0	0	0	0	1	0	0	6
Haslet10137239511235Heartland50103059440334Heath125511135819106814116Hedwig Village0010000000001Helotes11241421814062428105Helotes00000080008Hickory Creek003747214551856	Hackberry	19	9	1	4	20	1	0	3	2	4	0	7	70
Heartland 5 0 1 0 3 0 5 9 4 4 0 3 34 Heath 12 5 5 11 13 5 8 19 10 6 8 14 116 Hedwig Village 0 0 11 10 0 0 0 0 0 0 116 Helotes 11 2 4 14 2 18 14 0 0 0 0 10 11 Helotes 11 2 4 14 2 18 14 0 6 24 2 8 105 Helotes 0 0 0 0 0 0 8 0 0 0 8 16 18 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 <td< td=""><td>Haltom City</td><td>3</td><td>0</td><td>0</td><td>3</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>2</td><td>0</td><td>0</td><td>9</td></td<>	Haltom City	3	0	0	3	0	0	0	0	1	2	0	0	9
Heath 12 5 5 11 13 5 8 19 10 6 8 14 116 Hedwig Village 0 0 11 0 0 0 0 0 0 0 11 116 Helotes 11 2 4 14 2 18 14 0 6 24 2 8 105 Helotes 0 0 0 0 0 0 0 0 0 0 8 105 Hickory Creek 0 0 3 7 4 7 2 1 4 5 5 18 56	Haslet	1	0	1	3	7	2	3	9	5	1	1	2	35
Image: Marking Village Image: Marking Image: Markinge <t< td=""><td>Heartland</td><td>5</td><td>0</td><td>1</td><td>0</td><td>3</td><td>0</td><td>5</td><td>9</td><td>4</td><td>4</td><td>0</td><td>3</td><td>34</td></t<>	Heartland	5	0	1	0	3	0	5	9	4	4	0	3	34
Helotes 11 2 4 14 2 18 14 0 6 24 2 8 105 Helotes 0 0 0 0 0 0 0 0 0 8 0 0 0 8 105 Helotes 0 0 0 0 0 0 0 0 0 8 0 0 0 8 Hickory Creek 0 0 3 7 4 7 2 1 4 5 5 18 56	Heath	12	5	5	11	13	5	8	19	10	6	8	14	116
Helotes 0 0 0 0 0 0 0 0 0 8 0 0 0 8 Hickory Creek 0 0 3 7 4 7 2 1 4 5 5 18 56	Hedwig Village	0	0	1	0	0	0	0	0	0	0	0	0	1
Hickory Creek 0 0 3 7 4 7 2 1 4 5 5 18 56	Helotes	11	2	4	14	2	18	14	0	6	24	2	8	105
	Helotes	0	0	0	0	0	0	0	8	0	0	0	0	8
Highland Park 0 3 6 8 9 17 17 3 5 15 0 7 90	Hickory Creek	0	0	3	7	4	7	2	1	4	5	5	18	56
	Highland Park	0	3	6	8	9	17	17	3	5	15	0	7	90

the second se		0	0	0	0	0	0	0	0	0	3	0	14
Highland Village	0	1	2	0	0	3	4	1	2	0	5	0	18
Houson	0	0	0	0	0	0	0	0	0	2	0	0	2
Houston	184	129	180	184	179	201	204	186	101	107	172	151	1978
Hudson Oaks	7	2	1	3	0	7	10	3	0	11	4	4	52
HUFFMAN	0	0	0	1	0	3	1	2	0	0	0	0	7
Humble	0	1	7	1	0	0	0	3	0	0	0	0	12
Humble T.X.	0	0	0	0	0	0	0	0	0	0	3	0	3
Hurst	3	0	0	0	0	1	0	1	3	0	0	0	8
Hutchins	0	0	0	1	0	0	0	0	0	0	0	0	1
Irving	45	14	14	39	0	0	40	32	0	34	19	21	258
Irving	0	0	0	0	32	31	0	0	11	0	0	0	74
Irving.	0	0	0	0	1	0	0	0	0	0	0	0	1
Itving	0	3	0	0	0	0	0	0	0	0	0	0	3
Jacksboro	0	0	0	0	0	0	1	0	0	0	0	0	1
Jamaica Beach	0	0	0	0	0	0	0	0	0	0	0	1	1
Josaphine	2	0	0	0	0	0	0	0	0	0	0	0	2
Josephine	1	3	1	1	0	0	0	0	0	0	64	1	71
Joshua	0	0	0	0	0	1	0	0	1	0	0	1	3
Justin	1	2	0	4	0	0	0	5	4	3	4	2	25
Katy	9	7	1	7	9	9	7	11	4	6	4	1	75
Kaufman	0	5	1	0	0	0	0	0	0	1	0	0	7
Keene	0	2	0	0	0	2	2	0	0	0	0	0	6
Keller	5	1	4	11	3	5	3	2	11	3	7	5	60
Kennedale	0	1	1	0	8	1	3	0	3	1	0	0	18
Kingwood	10	1	б	2	2	2	0	0	1	0	0	0	24
Krugerville	0	0	0	0	0	0	8	0	0	0	0	1	9
Krum	3	9	13	2	11	2	9	1	0	0	0	0	50
Kum	0	0	0	0	0	0	5	0	0	0	0	0	5
Kyle	0	5	0	12	24	0	6	11	9	8	0	5	80
La Porte	0	0	1	0	0	0	0	0	0	0	0	0	1
Lake Dallas	1	0	3	0	1	0	0	0	0	0	0	0	5

Lake Worth	0	1	5	0	4	0	0	0	0	0	0	1	11
Lakeside	2	0	0	0	0	0	0	0	0	0	0	0	2
Lakewood Village	0	2	0	0	0	0	0	1	0	4	1	0	8
Lancaster	51	13	2	26	33	5	48	40	7	5	23	2	255
Lantana	4	4	3	3	1	2	0	0	0	0	0	0	17
Laporte	0	0	0	0	0	0	0	0	0	0	0	2	2
Las Colinas	0	0	0	0	0	5	0	0	0	0	0	0	5
Lavon	19	15	13	30	13	14	8	1	9	6	1	7	136
League City	0	0	0	0	0	0	0	0	1	1	8	3	13
Leander	0	0	1	0	2	0	0	0	0	0	7	2	12
Lewisville	13	15	12	2	1	13	14	6	3	6	0	21	106
Liberty	0	0	0	0	0	2	0	0	0	0	0	0	2
Liberty Hill	0	0	0	0	0	0	0	0	0	1	0	0	1
Little Elm	0	60	55	0	63	52	69	42	0	33	64	80	518
Little Elm	49	0	0	52	0	0	0	0	42	0	0	0	143
Lucas	5	5	4	4	3	19	15	7	2	3	5	5	77
Lytle	0	0	2	0	0	0	0	0	0	0	0	0	2
Magnolia	1	0	0	0	0	0	0	0	0	0	0	0	1
Malakoff	4	0	6	1	0	2	1	0	0	0	0	0	14
Mannor	0	0	0	0	0	0	0	0	0	3	0	0	3
Manor	12	14	0	14	10	б	0	12	12	8	0	18	106
Mansfield	14	27	14	18	24	21	11	10	10	10	7	18	184
Mansfield, TX	0	0	0	0	0	0	0	0	0	1	0	0	1
Master Denton	0	0	0	0	0	0	0	0	0	0	0	6	6
Mc Kinney	4	32	0	0	0	0	0	10	0	1	0	4	51
McClendon Chisholom	0	0	0	0	0	0	0	0	0	0	0	1	1
McClendon Chislom	0	0	0	2	0	0	0	0	0	0	0	0	2
McKinney	99	144	129	92	76	89	53	51	100	70	88	99	1090
McKinney, Texas	0	0	0	0	2	0	0	0	0	0	0	0	2
McKinny Figure 33: Continu	0	0	0	0	0	0	0	0	1	0	0	0	1

Mclendon Chishlom	0	0	0	0	0	0	0	0	1	0	0	0	1
McLendon Chisholm	0	1	6	1	13	1	5	7	0	3	2	5	44
Mclendon- Chisholm	2	0	0	0	0	0	3	0	0	0	0	0	5
McLendon- Chishom	0	0	0	0	0	3	0	0	0	0	0	0	3
McLendon- Chisolm	0	0	0	0	0	10	0	0	0	0	0	0	10
Melissa	14	16	10	35	30	23	41	34	14	10	4	б	237
Mellisa	1	0	0	0	0	0	0	0	0	0	0	0	1
Mesquite	2	0	8	0	1	4	0	0	0	4	0	3	22
Mico	0	0	0	0	0	1	0	0	0	0	0	0	1
Midlothian	22	4	12	22	5	4	17	4	8	4	2	13	117
Millsap	0	0	0	0	0	0	0	0	0	0	1	0	1
Missouri City	1	0	0	0	0	0	0	0	0	0	0	2	3
Murphy	5	6	1	17	6	5	7	0	3	4	0	0	54
N. Richland Hills	1	0	0	0	0	0	0	0	0	0	0	0	1
Needville	2	0	0	0	0	0	0	0	0	0	3	0	5
New Braunfels	3	4	6	3	0	2	2	13	7	6	6	6	58
New Braunsfels	1	0	0	0	0	0	0	0	0	0	0	0	1
New Fairview	2	0	0	0	0	0	0	0	0	1	0	0	3
North Lake	0	0	0	0	0	1	0	1	0	0	0	1	3
North Richland Hills	6	12	3	7	9	5	13	3	11	9	3	1	82
Northlake	6	4	5	6	0	3	1	3	1	0	3	4	36
Oak Leaf	0	0	0	0	0	0	0	0	0	0	0	3	3
Oak Point	23	14	25	11	б	18	31	5	16	14	9	8	180
Ovilla	2	0	0	2	0	0	0	4	0	6	2	1	17
Pampa	0	0	0	0	2	1	0	0	0	0	0	0	3
Pantego	0	5	0	0	1	0	0	0	1	0	0	0	7
Parker	3	4	0	1	1	0	2	1	0	0	0	1	13
Pflugerville	1	0	0	0	0	0	0	0	0	0	0	0	1
Pilot Point	0	0	0	0	0	0	0	0	0	0	13	0	13
Pilot Point	0	0	0	0	0	0	0	0	0	0	0	1	1
Figure 33: Continu	1												

Pipe Creeek	0	0	0	0	0	0	0	2	0	0	0	0	2
Plano	58	59	39	62	30	68	51	48	35	63	24	34	571
Poetry	0	0	0	0	0	0	0	0	0	1	1	0	2
Ponder	0	0	0	6	0	0	0	0	0	0	0	0	6
Porsper	0	0	0	1	0	1	0	0	0	0	0	0	2
Portland	1	0	7	2	0	0	2	4	2	5	5	5	33
Post Oak Bend	0	0	0	0	0	0	0	0	0	3	7	0	10
Post Oak Bend City	0	0	0	0	0	0	0	0	0	0	0	5	5
Princeton	18	16	3	12	126	59	27	46	3	2	8	10	330
Prosper	23	11	22	14	10	12	25	15	1	б	0	4	143
Providence	11	10	12	10	7	16	13	11	7	7	5	7	116
Quinlan	0	2	0	0	0	0	0	0	1	1	0	1	5
Red Oak	1	1	5	8	15	12	8	4	6	13	2	11	86
Reno	0	0	0	0	0	0	0	1	0	1	0	0	2
Rhome	0	1	0	2	0	0	2	0	1	0	0	0	6
Richardson	10	10	12	14	13	11	6	28	3	7	3	7	124
Richmond	0	0	0	2	0	0	0	0	0	0	0	0	2
River Oaks	0	0	1	0	0	0	0	0	0	0	0	0	1
River Oaks	0	0	0	0	0	0	0	0	2	0	0	0	2
Roanoke	6	1	0	3	2	5	9	9	1	15	1	0	52
Rockwall	36	39	0	63	33	35	27	16	16	47	9	16	337
Rockwall	0	0	46	0	0	0	0	0	0	0	0	0	46
Roesenberg	0	0	0	0	0	0	0	0	0	0	1	0	1
ROSENBERG	0	0	1	0	0	0	0	0	0	0	0	0	1
Round Rock	0	0	3	0	0	0	0	0	0	0	0	0	3
Rowlett	0	6	2	2	1	4	2	1	0	1	1	3	23
Royce City	0	0	0	0	0	0	1	0	0	0	0	0	1
Royse city	24	0	54	28	79	40	73	26	0	9	0	17	350
Royse City	0	10	0	0	0	0	0	0	17	0	13	0	40
Runaway Bay	0	0	1	1	0	0	0	0	0	1	2	1	6
Sache	0	0	0	0	0	0	0	0	0	0	0	1	1
Sachse	3	3	1	2	1	4	2	9	3	9	5	3	45

Saginaw	1	7	13	6	8	11	4	7	0	5	0	10	72
San Antonio	2	3	4	0	2	0	2	2	0	1	1	0	17
San Antoni	0	0	0	0	0	0	0	0	0	0	0	1	1
San Antonio	140	0	0	139	134	0	103	93	87	204	67	67	1034
San Antonio	0	133	131	0	0	127	0	0	0	0	0	0	391
San Antonio,	1	0	0	0	1	0	0	0	0	0	0	0	2
Sanger	7	4	3	4	0	14	11	5	1	0	7	4	60
Savanna	0	0	0	0	0	0	0	0	2	0	0	0	2
Savannah	0	1	0	0	32	9	7	3	4	4	4	4	68
Schertz	3	2	7	0	1	2	3	0	4	0	4	5	31
Schertz	0	0	0	4	0	0	0	9	0	4	0	0	17
Seabrook	7	0	1	0	0	0	0	0	0	0	0	0	8
Seagoville	29	6	0	2	30	0	0	0	0	2	1	3	73
Seguin	2	0	0	0	3	0	0	0	0	0	0	0	5
Selma	0	1	0	0	1	0	0	0	0	5	0	0	7
Seogoville	0	1	0	0	0	0	0	0	0	0	0	0	1
Shady Shores	4	0	0	0	0	0	0	2	2	0	0	0	8
Shamrock Gardens, DeSoto	0	0	0	0	0	0	0	0	0	1	0	0	1
Sherman	16	3	10	10	13	5	5	11	8	4	5	2	92
South Lake	0	0	0	0	0	0	0	0	0	10	1	0	11
South Lake	0	4	0	0	0	0	0	0	0	0	0	0	4
Southlake	15	8	14	19	12	31	52	17	12	24	15	20	239
Spicewood	0	1	1	1	0	5	0	2	0	0	0	0	10
Spring	0	0	0	0	0	0	0	0	1	0	0	0	1
Spring Branch	0	0	0	0	1	0	0	0	0	0	0	0	1
Spring Valley	0	0	3	0	0	0	0	0	0	0	0	1	4
Springtown	0	0	0	0	0	4	0	0	0	0	0	0	4
St Paul	1	0	0	0	0	0	0	0	0	0	0	0	1
STAFFORD,TX	0	0	0	0	0	0	0	2	0	0	0	0	2
Sugar Land	0	5	10	2	5	9	9	9	3	12	1	0	65
Sugarland	1	2	0	0	0	0	0	0	0	0	0	0	3
Sunnyvaile	0	0	0	0	1	0	0	0	0	0	0	0	1

Sunnyvale	1	3	2	0	1	0	4	2	0	0	2	0	15
Sunnyvale	0	0	0	0	0	0	0	0	0	0	0	2	2
Sunnyvalle	0	0	0	0	1	0	0	0	0	0	0	0	1
Talty	0	0	0	0	0	0	0	0	0	2	1	0	3
Taylor	0	0	0	0	0	0	0	2	0	0	0	0	2
Terrell	0	1	0	5	3	0	0	0	2	5	1	3	20
Texas City	0	0	0	0	0	0	0	0	1	0	0	0	1
The Colony	0	0	5	1	1	6	1	1	9	0	0	1	25
Tioga	0	3	0	0	0	1	0	0	0	0	0	0	4
Tomball	0	0	0	0	0	0	0	0	2	1	1	1	5
Town of Hickory Creek	0	0	0	0	0	0	0	4	0	0	0	0	4
Trophy Club	17	22	18	24	14	19	17	48	7	б	11	6	209
Tyler	0	0	2	0	2	0	0	0	2	0	0	0	6
Univeristy Park	0	0	0	0	0	0	0	0	0	1	0	0	1
Univeristy Park	0	0	0	0	0	0	0	0	0	0	1	0	1
University Park	22	5	4	9	3	10	7	6	12	7	16	2	103
Universtiy Park	0	0	0	1	0	0	0	0	0	0	0	0	1
Unveristy Park	0	0	0	0	0	0	0	0	0	0	0	1	1
Unversity Park	0	0	0	0	0	0	0	0	0	0	1	0	1
Van Alstyne	14	1	3	2	2	3	5	1	7	0	0	1	39
Van Alystyne	0	0	0	0	0	1	0	0	0	0	0	0	1
Venus	1	8	4	1	3	6	1	0	2	0	0	0	26
Wakefield	0	0	0	0	0	0	0	0	0	1	0	0	1
Watauga	3	0	0	0	4	0	0	0	0	0	0	0	7
Waxachie	1	0	0	0	0	0	0	0	0	0	0	0	1
Waxahachie	10	2	2	13	2	1	13	1	1	0	22	20	87
Weaherford	0	0	0	0	0	4	2	0	0	0	0	0	6
Weatherfor	0	0	0	0	0	0	0	0	0	0	0	1	1
Weatherford	18	2	6	8	12	7	7	9	33	13	8	17	140
West	0	0	0	0	0	0	0	0	0	2	0	0	2
West Lake Hills	4	0	0	0	0	0	0	0	0	0	0	0	4
West University	0	0	0	0	0	1	0	0	0	0	0	0	1

West University Place	1	3	4	0	0	1	0	0	0	1	0	0	10
Westlake	0	1	2	4	0	7	2	2	3	4	1	0	26
Westlake	1	0	0	0	3	0	0	0	0	0	0	0	4
Wheatherford	0	0	0	0	0	0	0	0	0	0	3	0	3
White Settlement	0	0	0	0	0	0	2	0	0	0	0	0	2
Wichita Falls	17	3	0	1	7	2	1	0	5	6	1	4	47
Wichita Falls TX	0	1	0	0	0	0	0	0	0	0	0	0	1
Wichita Falls Tx.	0	0	0	0	0	0	0	0	0	2	0	0	2
Wichta Falls	0	1	0	0	0	0	0	0	0	0	0	0	1
Willow Park	4	3	0	1	0	0	0	4	2	0	0	0	14
Wills Point	0	1	0	0	0	0	0	0	0	0	0	0	1
Wilmer	0	0	0	0	2	6	0	3	7	0	1	0	19
Woodway	0	0	0	0	0	0	0	0	0	0	1	0	1
Wylie	24	23	20	40	14	17	6	15	15	51	65	27	317

Cities Generatir	ng Mult	i-Famil	y Hom	es IC3	Certif	icates in	n 2014						
													Total
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	0	1	0	0	0	0	0	0	0	0	0	0	1
Addison	0	0	0	0	0	0	0	0	0	0	0	2	2
Arlington	0	0	0	0	0	5	3	0	0	0	0	0	8
Austin	4	2	2	3	1	1	6	1	0	9	4	2	35
Benbrook	0	0	0	0	0	2	0	0	0	0	0	0	2
Cedar Hill	2	5	0	0	0	0	0	0	0	0	0	0	7
Dallas	101	3	0	6	10	0	4	65	12	0	33	4	238
fgf	0	0	0	0	9	0	0	0	0	0	0	0	9
Fort Worth	1	3	5	0	1	10	9	7	11	18	0	0	65
Frisco	0	0	0	0	0	0	0	0	0	0	4	0	4
Highland Park	12	6	0	0	0	0	0	0	0	0	0	0	18
Houston	2	3	16	0	12	29	2	0	1	66	1	0	132
Midlothian	0	0	0	0	1	0	0	0	0	0	0	0	1
Princeton	0	10	0	0	0	2	0	0	0	0	0	0	12
Southlake	3	0	0	0	0	0	0	0	0	0	0	0	3
University Park	0	0	0	6	0	0	3	0	0	0	0	0	9

Figure 34: Cities Generating Multi-Family Homes IC3 Certificates in 2014

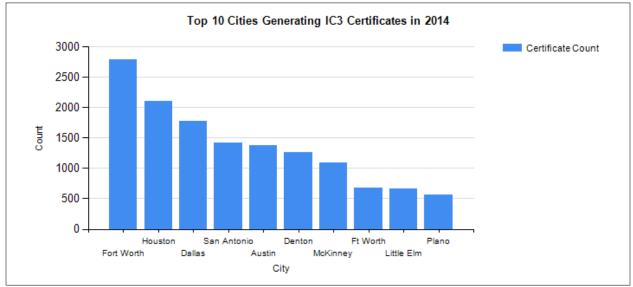


Figure 35: Top 10 Cities Generating Certificates in 2014

6.1.4 Parameter Reports

A unique and valuable use of the Registry is to look at building trends across the state. This report shows the yearly average wall cavity insulation distribution in Texas for 2014. In Figure 36 we see ranges, for Single-Familyhomes, of 13 to 16.55 with an average of 13.99. Last year's average was 13.95. The total count of Single-Family Homesis 18654, which is 985 more than last year. In Figure 37 we see ranges, for Multi-Family Homes , of 13.51 to 18.53 with an average of 17.07. Last years average was 15.10. The total count Multi-Family Homes is 313, which is 87 more than last year

Yearly Average Wall Cavity Insulation Distribution for 2014

Overall Data Statistics derived from a subset of Counties having house count > 10

	Total Count	Average Wall Cavity Insulation	Standard Deviation
Single Family	18654	13.99	2.17
Multi Family	313	17.07	3.33

County	Avg Wall Cavity	House Court
ounty		
/illiamson	16.55	
larris	16.52	
Fravis	15.06	
an patricio	15.00	27
lueces	15.00	193
Vichita	14.82	38
3exar	14.41	1264
)allas	14.30	2196
Comal	13.95	80
Collin	13.93	3500
Henderson	13.79	34
Galveston	13.75	16
Denton	13.51	2909
Cooke	13.46	13
Farrant	13.46	4106
Johnson	13.40	310
Wise	13.35	17
Rockwall	13.35	606
Brazoria	13.29	21
Fort bend	13.22	59
Ellis	13.20	282
Kaufman	13.13	364
Parker	13.11	220
Hunt	13.07	114
Hays	13.02	53
Montgomery	13.00	16
Grayson	13.00	116

Figure 36: Yearly Average Wall Cavity Insulation Distribution by County for Single-Family Homes in 2014

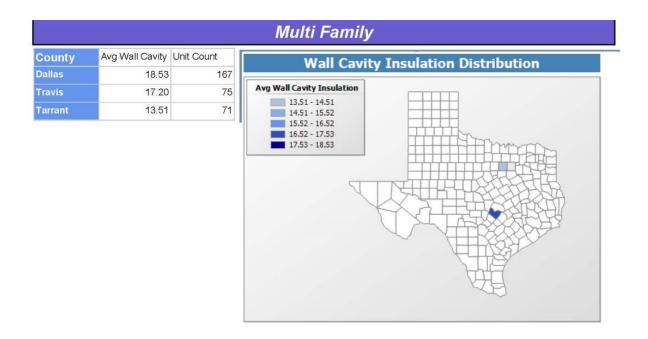
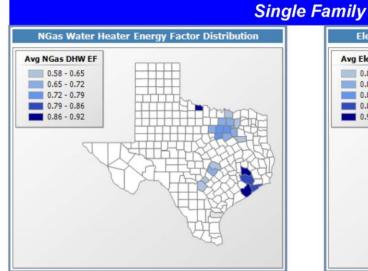
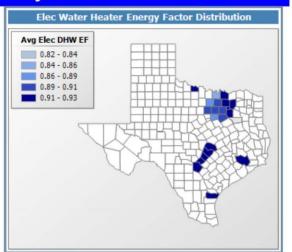



Figure 37: Yearly Average Wall Cavity Insulation Distribution by County for Multi-Family Homes in 2014


This report shows both natural gas and electric water heater efficiencies across Texas in 2014. In Figure 38 the ranges, for Single-Familyhomes, for natural gas are 0.58 to 0.92 with an average of 0.90. The ranges for electric are 0.82 to 0.93 with an average of 0.70. Last year's average for natural gas was 0.90 and electric was 0.68. In Figure 39, the ranges, for Multi-Family, for natural gas are 0.59 to 0.88 with an average of 0.75. The ranges for electric are 0.85 to 0.91 with an average of 0.86. Last year's average for natural gas was 0.74 and electric was 0.86.

Yearly Average Water Heater Energy Factor Distribution for 2014

		Overall Data Stat	istics derived from a s	ubset of Counties hav	ing house o	count > 10	
	Total Count	Average NGas EF	Standard Deviation		Total Count	Average Elec EF	Standard Deviation
Single Family	7035	0.90	0.05	Single Family	11628	0.70	0.13
Multi Family	251	0.75	0.16	Multi Family	62	0.86	0.11

Avg NGas WH EF House Count County Brazoria 0.92 21 Wichita 0.89 27 Montgomery 0.87 16 Galveston 0.83 15 Fort bend 0.82 59 0.81 1086 Dallas 0.75 1496 Johnson 0.75 57 0.72 1875 Ellis 0.69 64 0.68 586 Denton 0.67 1715 0.67 507 0.66 2452 0.65 185 Parker 0.65 49 0.64 41 Bexar 1085 0.64 0.63 63 0.61 11 0.60 56 Henderson 0.58 11 0.58 138

County	Avg Elec WH EF	House Count
Williamson	0.93	35
San patricio	0.93	27
Nueces	0.93	55
Wichita	0.93	11
Harris	0.93	78
Hays	0.93	49
Travis	0.93	258
Comal	0.92	39
Hunt	0.92	103
Kaufman	0.91	179
Bexar	0.91	179
Collin	0.91	1048
Grayson	0.91	53
Rockwall	0.91	99
Denton	0.91	1194
Parker	0.91	171
Ellis	0.90	218
Tarrant	0.90	2231
Dallas	0.89	700
Wise	0.88	15
Johnson	0.86	253
Cooke	0.86	12
Henderson	0.82	23

Figure 38: Yealry Average Water Heater Energy Factor Distribution for Single-Family Homes in 2014

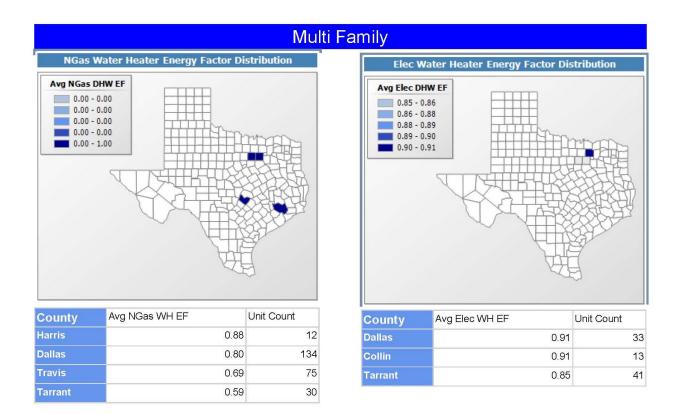


Figure 39: Yealry Average Water Heater Energy Factor Distribution for Multi-Family Homes in 2014

This report shows the average window to wall ratio across Texas in 2014.

The formula used is: 100 * <total window area sq. ft.> / <total wall area sq. ft.>

In Figure 40 we see ranges, for Single-Familyhomes, from 8.14 to 14.83 with an average of 11.89. Last year's average was 11.89. In. Figure 41 we see ranges, for Multi-Family Homes, from 12.72 to 30.46 with an average of 21.76. Last year's average was 18.06.

Average Window to Wall Area Ratio across Counties for 2014

Overall data Statistics derived from a subset of Counties having house count > 10

	Average	Standard Deviation	
Single Family	11.89	3.55	
Multi Family	21.76	15.29	

		S
County	Avg Window To Wall Area	House Count
Henderson	14.83	34
Bexar	13.93	1264
Galveston	13.34	16
Comal	13.23	80
Vise	13.09	17
Ellis	12.83	282
Fort bend	12.81	59
Dallas	12.76	2196
Rockwall	12.59	606
Denton	12.03	2909
Grayson	11.99	116
Williamson	11.86	91
Collin	11.62	3500
Tarrant	11.53	4106
San patricio	11.40	27
Johnson	11.37	310
Travis	11.20	845
Parker	11.16	220
Vueces	10.84	193
Kaufman	10.84	364
Harris	10.79	1164
Hays	10.69	53
Montgomery	9.97	16
Hunt	9.55	114
Cooke	9.35	13
Vichita	8.20	38
Brazoria	8.14	21

Figure 40: Average Window to Wall Ratio across Counties for Single-Family Homes in	n 20	14
--	------	----

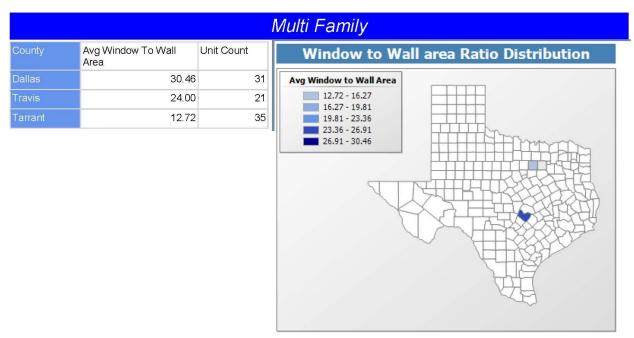


Figure 41: Average Window to Wall Ratio across Counties for Multi-Family Homes in 2014

This report shows the average A/C SEER across Texas in 2014. The efficiency (and sizing) of air conditioning is a vital component of energy efficiency in Texas. In Figure 42 we see ranges, for Single-Familyhomes, from 13.34 to 15.95 with and average of 14.70. Last year's average was 14.68. In Figure 43 we see ranges, for Multi-Family Homes , from 13.80 to 15.53 with an average of 14.42. Last year's average was 14.55.

Average A/C SEER across Counties for 2014

Overall data Statistics derived from a subset of Counties having house count > 10

	Average		Standa	rd Deviation								
Single Family		14.70		1.14								
Multi Family		14.42		1.22								
			Sii	ngle Family								
County	Avg SEER Value	House Co			. /	C S	C SEER	C SEER Dist	C SEER Distribu	C SEER Distribution	C SEER Distribution	C SEER Distribution
Brazoria	15.95		21		_		OBEER	C OLLIN DIDE	C OLER DISTING	C OLER DISTIBUTION	o oler bistribution	o occir biotribution
Fort bend	15.80		59	Avg A/C SEER Value 13.34 - 13.86	1							
Montgomery	15.63		16	13.86 - 14.38								
Bexar	15.40		1264	14.38 - 14.91 14.91 - 15.43			Ţ					
	15.38		38	15.43 - 15.95			H					
Harris	15.34		1164				H					
Galveston	15.25		16	5	T	T	TH	TREAT	TREAT	TREATING	TREATHER	TREATHER
Williamson	15.20		91		1	K	K	KX 31				
Henderson	15.18		34			1	17	VX				
San patricio	15.06		27				~	~		V HEX	KBXHH/	THE REAL
Nueces	15.02		193						L.	Y-H	Y HEAT	Y HEAT
Travis	14.95		845						7	VHI I	TH	TH.
Johnson	14.86		310								L.	10
Denton	14.73		2909									
Dallas	14.71		2196									
Comal	14.70		80									
Collin	14.63		3500									
Cooke	14.46		13									
Tarrant	14.44		4106									
Ellis	14.38		282									
Grayson	14.34		116									
Parker	14.29		220									
Rockwall	14.26		606									
Hunt	14.24		114									
Wise	14.13		17									
Kaufman	14.09		364									
Hays	13.34		53									

Figure 42: Average A/C SEER across Counties for Single-Family Homes in 2014

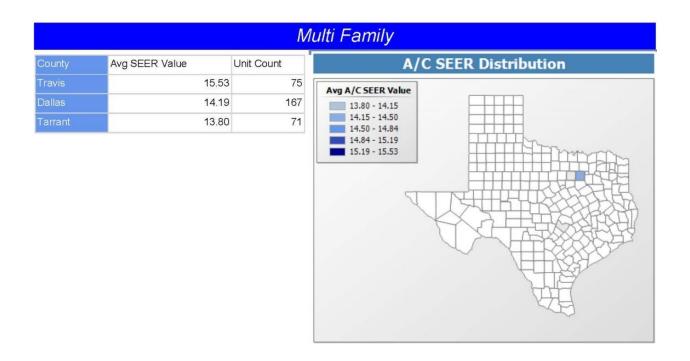


Figure 43 Average A/C SEER across Counties for Multi-Family Homes in 2014.

This report shows the average ceiling insulation across Texas in 2014. In Figure 44 we see ranges, for Single-Family Homes, from 30.00 to 38.63 with and average of 34.26. Last year's average was 34.18. In Figure 45 we see ranges, for Multi-Family Homes, from 33.50 to 38.71 with an average of 35.30. Last year's average was 35.02.

Average Ceiling Insulation across Counties for 2014

Overall data Statistics derived from a subset of Counties having house count > 10

	Average		Star	ndard Deviation				
Single Family		34.26		5.06				
Multi Family		35.30		5.80				
			S	Single Family	/			
County	Avg Ceiling Insulation	House Cou	nt	Ceilin	ıg In	sulati	on	D
Wichita	38.63		38	Avg Window to Wall				
Cooke	37.69		13	30.00 - 31.73	Alca	F	H	7
Rockwall	36.99	6	606	31.73 - 33.45				1
Travis	36.76	8	345	35.18 - 36.91		F	ΗÌ	
Williamson	36.68		91	36.91 - 38.63		H	Ħ	+
Fort bend	36.36		59			-	Ŧ	ť
Johnson	36.23	3	310	7	II	NH	Ŧ₽	1
Ellis	36.12	2	282		X	X	2 F	1
Parker	35.45	2	220		1	17	5	F
Collin	35.44	35	500			~		5
Henderson	35.30		34					
Bexar	35.19	12	264					
Grayson	35.16	1	16					
Denton	34.90	29	909					
Kaufman	34.75	3	864					
Comal	34.63		80					
Hunt	34.23	1	14					
Dallas	33.85	21	96					
Wise	33.29		17					
Tarrant	32.26	41	06					
Harris	31.86	11	64					
Hays	30.21		53					
Brazoria	30.00		21					
Galveston	30.00		16					
Montgomery	30.00		16					
Nueces	30.00		93					
San patricio	30.00		27					

Figure 44: Average Ceiling Insulation across Counties for Single-Family Homes in 2014

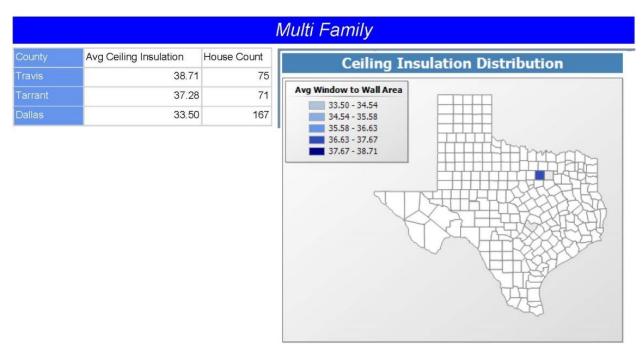


Figure 45: Average Ceiling Insulation across Counties for Multi-Family Homes in 2014

This report shows the average heating efficiency across Texas in 2014. Here we examine space heating efficiency in 2014 using both natural gas and heap pump heating. In Figure 46 we see ranges, for Single-Family Homes, for natural gas are from 0.80 to 0.88 with an average of 0.81. The ranges for heat pump are 8.00 to 9.60 with an average of 8.34. Last year's average for natural gas was 0.81 and heat pump was 8.39. In Figure 47 we see ranges, for Multi-Family Homes, for natural gas from 0.80 to 0.87 with an average of 0.83. The ranges for heat pump are 7.95 to 9.75 woth an average of 9.05. Last year's average for electric was 0.81 and heat pump was 8.47.

	Total Count	Average NGas Efficiency	Standard Deviation		Total Count	Average Heat Pump Efficiency	Standard Deviation
ingle Family	11322	0.81	0.04	Single Family	7313	8.34	0.49
Multi Family	204	0.83	0.05	Multi Family	109	9.05	1.23
			Sing	le Family			
NG	as Heating	Efficiency Distrib	ution	Heat F	Pump Heat	ing Efficiency Dist	ribution
Avg NGas Eff 0.80 - 0. 0.82 - 0. 0.83 - 0. 0.83 - 0. 0.85 - 0. 0.85 - 0. 0.87 - 0.	.82 .83 .85 .87			8.32 8.64 8.96	np Efficiency - 8.32 - 8.64 - 9.28 - 9.60		
ounty /ichita	Avg NGas	Heating Efficiency	House Count	County	Avg Heat F	Pump Heating	House Count
ohnson	-	0.84		Wichita	· ·	9.60	1
allas				Grayson		8.71	4
		0.82		Nueces		8.70	19
arrant		0.82		San patricio		8.70	2
arris		0.8		Cooke		8.56	
alveston		0.81		Denton		8.46	
arker	-	0.81		Dallas		8.45	
		0.81		Rockwall		8.42	
		0.81	558	Collin		8.40	100
avis				Hunt		0.20	
avis ollin		0.80	2440	Hunt Travis		8.38	10
avis ollin lis		0.80 0.80) 2440) 59	Travis		8.34	10 10 12
avis ollin lis		0.80	2440 59 1052	Travis Williamson		8.34 8.32	s 10 s 28 2
avis ollin lis exar		0.80 0.80 0.80 0.80	 2440 59 1052 510 	Travis		8.34	6 10 6 28 9 21
avis ollin lis exar ockwall		0.80 0.80 0.80	 2440 59 1052 510 	Travis Williamson Bexar Kaufman		8.34 8.32 8.30 8.24	10 28 2 2 2 2 2 2 2 2 2 2 2 1 8
ravis ollin lis exar ockwall rayson		0.80 0.80 0.80 0.80	 2440 59 1052 510 75 179 	Travis Williamson Bexar		8.34 8.32 8.30	10 10 10 10 10 10 10 10 10 10
ravis ollin lis exar ockwall rayson aufman		0.80 0.80 0.80 0.80 0.80	 2440 59 1052 510 75 179 	Travis Williamson Bexar Kaufman Tarrant		8.34 8.32 8.30 8.24 8.23	10 28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
avis ollin lis exar ockwall rayson aufman omal		0.80 0.80 0.80 0.80 0.80 0.80	 2440 59 1052 510 75 179 38 	Travis Williamson Bexar Kaufman Tarrant Parker		8.34 8.32 8.30 8.24 8.23 8.23 8.23	6 10 2 28 9 21 9 21 9 21 9 21 9 222 9 15 9 1
ravis ollin lis exar ockwall rayson aufman omal razoria		0.80 0.80 0.80 0.80 0.80 0.80 0.80	 2440 59 1052 510 75 179 38 21 	Travis Williamson Bexar Kaufman Tarrant Parker Wise		8.34 8.32 8.30 8.24 8.23 8.23 8.23 8.23 8.20	5 10 6 28 7 29 7 20 7 20
ravis ollin lis exar ockwall rayson aufman omal ornal ornal ontgomery		0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	2440 59 1052 510 75 179 38 21 16	Travis Williamson Bexar Kaufman Tarrant Parker Wise Harris		8.34 8.32 8.30 8.24 8.23 8.23 8.23 8.20 8.18	5 10 6 28 7 21 6 222 6 18 6 222 6 18 7 18 7 25
ravis ollin lis exar ockwall rayson aufman omal razoria ontgomery ooke		0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	2440 59 1052 510 75 179 38 211 16 221 231	Travis Williamson Bexar Kaufman Tarrant Parker Wise Harris Johnson		8.34 8.32 8.30 8.24 8.23 8.23 8.23 8.20 8.14 8.14	5 10 2 28 2 21 4 18 5 222 5 15 6 1 7 6 25 6 2 7 7 8 25 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1
ravis ollin llis exar ookwall rayson aufman omal oomal razoria iontgomery ooke		0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	2440 59 1052 510 75 179 38 21 16 2240	Travis Williamson Bexar Kaufman Tarrant Parker Wise Harris Johnson Henderson		8.34 8.32 8.30 8.24 8.23 8.23 8.23 8.20 8.18 8.14 8.14 8.10	10 28 2 4 21 4 21 5 222 5 15 7 5 25 2
ravis ollin llis exar ockwall rayson aufman omal omal omal ontgomery ooke ays		0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	2440 59 1052 510 75 179 38 211 16 221 421 131	Travis Williamson Bexar Kaufman Tarrant Parker Wise Harris Johnson Henderson Ellis		8.34 8.32 8.30 8.24 8.23 8.23 8.23 8.20 8.18 8.14 8.14 8.10 8.06	10 28 2 4 21 18 222 3 25 2 2 2 2 3 2 3 7 25 22 3 2 4 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 4
enton ravis ollin llis exar ockwall orayson aufman omal razoria lontgomery cooke ays ays unt /ise enderson		0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	2440 59 1052 510 75 179 38 21 16 221 130 231 232	Travis Williamson Bexar Kaufman Tarrant Parker Wise Harris Johnson Henderson Ellis Comal		8.34 8.32 8.30 8.24 8.23 8.23 8.23 8.20 8.14 8.14 8.10 8.06 8.06 8.06	10 28 21 21 222 23 25 25 222 23 24 25 25 222 23 24 25 25 26 27 28 29 21 22 23 24 25 25 26 27 28 29 21 21 22 23 24

Average Heating Efficiency across Counties for 2014

Figure 46: Average Heating Efficiency across Counties for Single-Family Homes in 2014

58

0.80

Fort bend

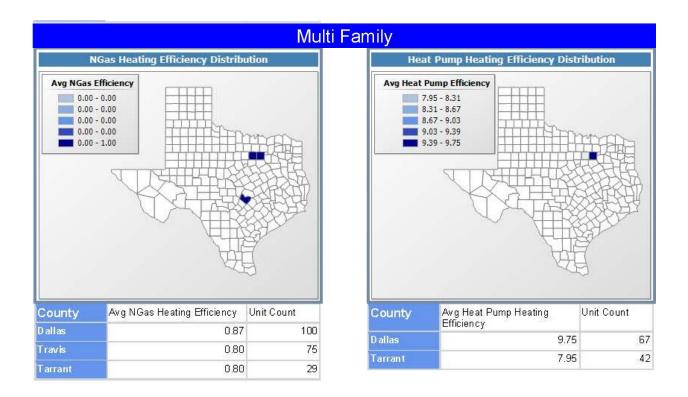


Figure 47: Average Heating Efficiency across Counties for Multi-Family Homes in 2014

This report shows the average SHGC across Texas in 2014. In Figure 48 we see ranges, for Single-Familyhomes, from 0.22 to 0.30 with an average of 0.26. Last year's average was 0.27. In Figure 49 we see ranges, for Multi-Family Homes, from 0.23 to 0.29 ewith an average of 0.25. Last year's average was 0.25.

Average SHGC across Counties for 2014

Overall data Statistics derived from a subset of Counties having house count > 10

	Average		Standa	ard Deviation	
Single Family		0.26		0.04	
Multi Family		0.25		0.04	
			Si	ngle Family	
County	Avg SHGC Value	House Co	ount		SHGC Distribution
Wise	0.30		17	Avg SHGC Value	
Cooke	0.29		13	0.22 - 0.24	
Wichita	0.28		38	0.24 - 0.25	
Brazoria	0.28		21	0.25 - 0.27	
Johnson	0.27		310	0.28 - 0.30	
Tarrant	0.27		4106		
Parker	0.27		220		J RHHHH
Harris	0.27		1164		
Montgomery	0.27		16		
Dallas	0.26		2196		
Rockwall	0.26		606		HING I
Hays	0.26		53		
Galveston	0.26		16		NE
Ellis	0.26		282		
Grayson	0.25		116		
Travis	0.25		845		
Denton	0.25		2909		
Kaufman	0.24		364		
Hunt	0.24		114		
Collin	0.24		3500		
Comal	0.24		80		
Henderson	0.23		34		
Bexar	0.23		1264		
Williamson	0.23		91		
San patricio	0.23		27		
Nueces	0.23		193		
Fort bend	0.22		59		

Figure 48: Average SHGC across Counties for Single-Family Homes in 2014

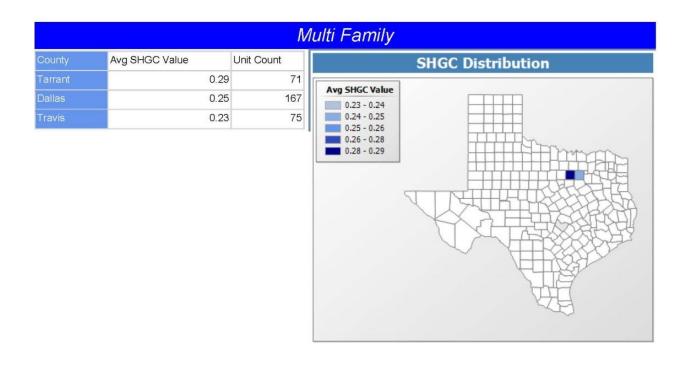


Figure 49: Average SHGC across Counties for Multi-Family Homes in 2014

Another way to evaluate high performing houses is how much air conditioning they have per sq. ft. of house. In Figure 50 we see ranges, for Single-Familyhomes, of 421 to 818 sq. ft. per ton with an average of 571 sq. ft. per ton. Last year's average was 565 sq. ft. per ton. In Figure 51 we see ranges, for Multi-Family Homes, of 725 to 1463 sq. ft. per ton with an average of 1096 sq. ft. per ton. Last year's average was 978 sq. ft. per ton. Thus, Texas is becoming more efficient.

Average HVAC across Counties for 2014

Overall data Statistics derived from a subset of Counties having house count > 10

	Average	ę	Standard Deviation	
Single Family		571.67	144.20	
Multi Family		1096.38	622.18	
			Single Family	
County	Avg Sqft Tonnage Value	House Coun	t Saft I	IVAC Tonnage Distribut
Hays	818.16	ę	53	TVAC TOILinge Discribu
San patricio	726.20	1	27 Avg Sqft HVAC Ton	
Nueces	717.89	19	421.52 - 50	
Williamson	709.02	Ş	580.17 - 65	
Comal	663.94	ξ	30 738.83 - 81	
Travis	643.18	84	45	
Galveston	612.56		16	
Ellis	604.42	28	32	/ // JAN HAR
Montgomery	600.89		16	
Wise	593.24		17	
Rockwall	590.34	60	06	/HTC
Dallas	586.34	219	96)-H-H-
Johnson	573.81	3.	10	VZE
Harris	572.05	110	64	
Wichita	571.79	:	38	
Bexar	569.11	120	64	
Henderson	567.59	:	34	
Denton	565.42	290	09	
Collin	564.27	350	00	
Kaufman	552.56	30	64	
Tarrant	548.69	410	06	
Grayson	537.17	1.	16	
Parker	529.48	22	20	
Cooke	527.04		13	
Hunt	500.62	1.	14	
Brazoria	499.47		21	
Fort bend	421.52	5	59	

Figure 50: Average HVAC Tonnage to Sq Ft across Counties for Single-Family Homes in 2014

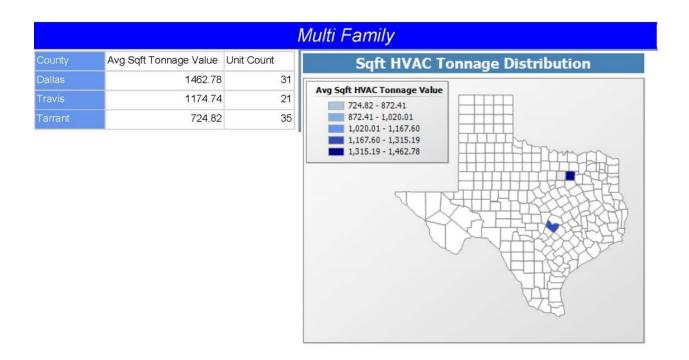


Figure 51: Average HVAC Tonnage to Sq Ft across Counties for Multi-Family Homes in 2014

This report shows the average U Factor acorss Texas is 2014. The U Factor applies to the heat transfer of a window caused by temperature, no direct solar radiation. In Figure 52 we see ranges, for Single-Familyhomes, from 0.28 to 0.50 with an average of 0.35. Last year's average was 0.36. In Figure 53 we see ranges, for Multi-Family Homes, from 0.30 to 0.37 with an average of 0.33. Last year's average was 0.36.

Average U Factor across Counties for 2014

Overall data Statistics derived from a subset of Counties having house count > 10

	Average		Standa	rd Deviation								
Single Family		0.35		0.06								
Multi Family		0.33		0.07								
			Sii	ngle Family	/							
County Avg U	Factor	House Co	ount		UI	Facto	Factor Dis	Factor Distrib	Factor Distribution	Factor Distribution	Factor Distribution	Factor Distribution
Hays	0.50		53	Avg U Factor]							
Cooke	0.48		13	0.28 - 0.33								
Wise	0.46		17	0.33 - 0.37								
Comal	0.42		80	0.42 - 0.46						HITT T		
Kaufman	0.38		364	0.46 - 0.50								
Ellis	0.37		282									
Tarrant	0.37		4106		J	T	NH	TEHHE	REHERICS	NAMERICA	TEHHHUSTER	THEFT
Bexar	0.36		1264		K	~	XX	XXH	人之中的	XXHHXX	XXHHXXK	
Rockwall	0.36		606		2							
Wichita	0.35		38			7		V H		~ (HTX8X		V HEXESS
Denton	0.35		2909					A	LT.	L'HEA	H Bar	CH CAL
Parker	0.35		220						VI VI	VIII	VIII	VIII
Johnson	0.35		310						~	12	12	1 A
Collin	0.34		3500									
Grayson	0.34		116									
Travis	0.34		845									
Dallas	0.34		2196									
Hunt	0.33		114									
Williamson	0.33		91									
Harris	0.33		1164									
Henderson	0.32		34									
Nueces	0.32		193									
San patricio	0.32		27									
Fort bend	0.30		59									
Galveston	0.30		16									
Montgomery	0.28		16									
Brazoria	0.28		21									

Figure 52: Average U Factor across Counties for Single-Family Homes in 2014

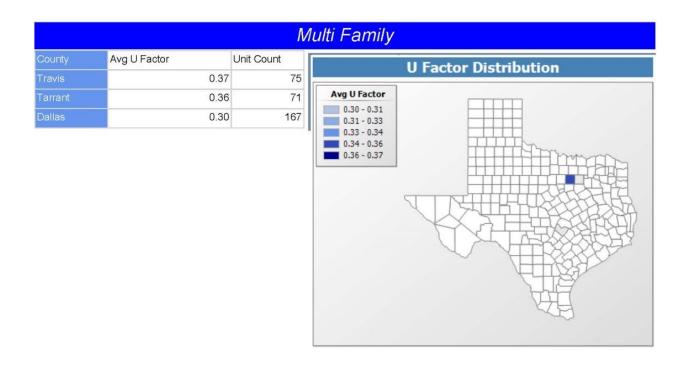


Figure 53: Average U Factor across Counties for Multi-Family Homes in 2014

6.2 IC3 Enhancements

IC3 is continuously being enhanced since 2009 released Version 3.5.2 to 2013 released Version 3.13.x. Numerous enhancements have been made and are detailed out in section 6.2.1.

6.2.1 History of IC3 Enhancements

Most of the enhancements that are being added to IC3 in the recent years are summarized next:

In Version 3.5.2 (November 2009)

- Three code choices: IECC 2009, IECC 2006 (with Houston Amendments) and IECC 2000/2001.
- Duct insulation values
- Improved input of overhang values to allow for just inches

In Version 3.6.1 (December 2009)

- Foundations
- Opt out of emails
- Copy a project
- Moved orientation from Floors tab to Project Information

In Version 3.6.2 (April 2010)

- Fixed defect in 2nd Floor, Back Window issue
- Reference A\C tonnage matches the proposed A\C tonnage.
- Updated model
- Updated illustrations

In Version 3.7.x (June 2010)

- Simple multi-family code compliance
- Updated model
 - a. Floor Insulation R-Value
 - b. Four foundation types
- Updated illustrations
- Updated manual

In Version 3.8.x (September 2010)

- Fixed default of Multi-family Units to be "Ducts in Conditioned Space" to YES
- Fixed wrong IECC code version on certificate
- Enhanced input screens by moving several fields from Units to Floor
- Plans

In Version 3.9.x (October 2010)

- Added slab insulation
- Updated the manual

In Version 3.10 (September 2011)

- Three IECC 2009 compliant reports (i.e. energy, inspection list, and certificate)
- Paging enhancements on "My Page" to help organize large quantities of projects.
- Multi-family usability increased with Plan/Unit information being displayed on pages.
- Elimination of flash animation (so we will become iPad compatible).
- Updated/expanded help text.
- Updated illustrations.

• Tweaked min/max values on duct insulation, water heaters.

In Version 3.11 (December 2011)

• Added support for IECC 2009 Austin Amendments

In version 3.12.x (January 2012)

- Deprecated 2000/2001 and 2006 Houston Code.
- Added a button to generate Energy Report w/ a signature line. The original energy report still exists
- Improvements in the algorithm
- Help images/ text updated
- Updated manual

In version 3.13.x (August 2013)

- Added Manual J.
- Added 2009 NCTCOG code. This is the 2012 IECC w/ NCTCOG amendments. It is slightly less stringent than the base 2012 code and is optimized for climate zone 3.

6.2.2 Changes in Single-Family Input File

There have been two major version changes according to the changes in the Single-Family Input file since the 2012 annual simulations. Table 32 presents the summarized description of the changes in Single-Family Input file since the 2012 annual simulation.

Table 32: Changes in Single-Family Input file

BDL Version	Description	Date Modified
4.01.08	BDL used for the 2012 annual report.	03/10/2011
4.01.09	Added sensible and latent components for equipment heat gain.	07/31/2013
4.01.10	Added special construction for knee wall. Corrected plywood layers for floor. Corrected construction for floor-over-ambient conditions. Added heat-pump water heater module. Corrected layers for cathedral ceiling.	08/27/2013 10/20/2013 12/11/2013
4.01.11	Added option to include attic volume in conditioned space in case of sealed attic. Added option for roof insulation to go over roof studs.	05/29/2014 04/09/2014

Added sensible and latent components for equipment heat gain

In order to incorporate the HERS Index calculations in IC3, it became necessary to elaborate the input for lighting, equipment and occupants⁴⁸. Equipment loads were now divided into sensible and latent components. Two new parameters were added in Version 4.01.09 to incorporate the sensible and latent components of the equipment load.

Added special construction for knee wall

In BDL Version 4.01.10 specifications were added to represent knee wall construction. Previous versions of the BDL did not have a separate entry for knee wall construction. Specifications for exterior wall construction was used to represent construction for knee walls.

Corrected plywood layers for floor

In BDL Version 4.01.10 specifications for floor construction was modified to better account for standard practice. Previous versions of the BDL had thinner layer of plywood specified. The current version specifies a more appropriate thickness of plywood used in the construction of floors, which include floors over basements and crawl spaces.

Corrected construction for floor over ambient

In BDL Version 4.01.10 specifications for floor-over-ambient construction was created. Previous versions of the BDL used specifications for ceiling insulation for floor-over-ambient conditions. The current version appropriately incorporates floor insulation in floor-over-ambient construction. The specification in the BDL limits the thickness of floor insulation to the thickness of floor studs input in the model.

Added heat-pump water heater module

In BDL Version 4.01.10 specifications for heat-pump water heaters were added. These specifications include the addition of the heat-pump option as an option available in the BDL to be modeled as a DHW type. When the heat-pump option is selected, several inputs are now modified by the software team. These includevalues for energy input ratio (DHW-EIR) and heat rate (DHW-HEAT-RATE). The equation for converting EF to COP is adopted from the specifications in EnergyGauge USA (Version 3.1.02).

⁴⁸ It should be noted that loads from occupants were included in the loads for equipment.

DHW-EIR = 1/COP = 0.781/(EF)

The heat rate values of 7,700 Btu/hr are adopted from EnergyGauge regardless of the size of the tank⁴⁹. In addition, the curves used for energy input ratio as a function of part load ratio are the same curves that are used for heat pump space heating obtained from Henderson et al. (2000)⁵⁰.

Corrected layers for cathedral ceiling

In BDL Version 4.01.10 specifications for cathedral ceiling were added to the BDL. The modification included providing a separate entry in the BDL for cathedral ceiling insulation that is restricted size of ceiling stud. Previous versions of the BDL used ceiling insulation for cathedral ceilings.

Added option to include attic volume in conditioned space in case of sealed attic

In BDL Version 4.01.11 modifications were made to include attic volume in conditioned space in the case of sealed attic was simulated. The modifications were made to 'ROOM' space conditions.

⁴⁹ Email correspondence with Jeff Myron, EnergyGauge Technical Support (10/18/2013).

⁵⁰ Henderson, H., D. Parker, Huang, Y. (2000). Improving DOE-2's RESYS Routine: User Defined Functions to Provide More Accurate Part Load Energy Use and Humidity Predictions. Presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA.

6.3 Laboratory's TERP Web Site "esl.tamu.edu/terp"

Since the fall of 2001, the Laboratory has maintained a TERP webpage, where information is provided to builders, code officials, the design community and homeowners about TERP. In 2010, the Laboratory redesigned its website to make navigation easier. On the navigation bar is a tab that links to the TERP homepage (Figure 54). The homepage contains the following items:

- Definition of the Texas Emissions Reduction Plan
- Texas Work
 - o TERP Objectives
 - o TERP Elements
 - ESL's TERP Responsibilities
 - The CATEE Conference
 - o Links to
 - Texas Legislative Testimony by the ESL
 - TERP Legislative History
- National Work
 - o National Center of Excellence on Displaced Emission Reductions (CEDER)
 - Links to
 - CEDER Program
 - EPA Recognizes ESL and Dallas Partners
- Latest articles and news on the right sidebar

The TERP tab also contains a dropdown menu which provides links to the following sections

- Code Compliance Calculator
 - o IC3
 - Help and Support contains IC3 Help Resources including
 - Supplemental Release Notes
 - What's New in this Version?
 - Manual
 - Detailed Release Notes for current release of IC3
 - Aggregate Reports from IC3 Location, parameters and maps.
 - Contact information
 - Workshops
 - FAQ
 - RESNET Certification Resources
 - o Report
 - News includes information about improvements and fixes to IC3 Workshops description of IC3 Workshops, including contact information
 - FAQs
 - IC3 Reports contains data from ESL's research and software projects
 - IC3 Registry House Parameters (updated monthly)
 - Envelope
 - Systems
 - o Mixed
 - Texas Building Registry Demographics
 - o Texas
 - Counties

- o Cities
- o TCV (Travis County & Austin)
- Weather Data
- \circ TCV
 - Help & Support contains TCV Help & Support and contact information
 - News includes TCV News including
 - What's New in Version 1.1
 - What is the Difference between TCV v1.1 and IC3 v3.x?
 - FAQs
- Other Legacy calculators
 - AIM Calculator
 - eCalc 1.x Calculator
- \circ Credits
- Letters and Reports
 - Legislative Documents
 - Builders Information
 - EPA/CEDER Work
 - Background
 - Reports provided to US EPA as part of CEDER Program
 - Reports listed by year from 2002-2015
- About
 - o Legislative Testimony
 - o Legislative Documents
 - o Legislative History
- TERP Data Sets
 - Weather Data
 - Texas Building Registry
 - IC3/TCV Usage Reports
 - IC3 House Construction Trends
- TERP Links
 - o eCalc Emissions & Energy Calculator
 - International Code Compliance Calculator (ICCC)
 - o Public Utility Commission of Texas (PUCT)
 - U.S. Department of Energy (DOE)
 - Texas State Conservation Office (SECO)
 - U.S. Environmental Protection Agency (EPA)
 - o International Code Council (ICC)
 - o American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE)
 - North Central Texas Council of Governments (NCTCOG)
 - o Alamo Area Council of Governments (AACOG)
 - o Circle of Ten
 - Texas Home Energy Rating Organization (TxHERO)
- Other Publications
 - o Builders Information
 - o Digital Library
 - \circ Presentations
 - Proceedings
 - Air Quality (CATEE)
 - Hot & Humid

- IBPSA
- ICEBO
- IETC
- Workshops
 - IC3
 - o IECC Residential
 - o IECC Commercial
 - o ASHRAE

	DRATORY ON
> TERP	
xas Emissions Reduction Plan e Energy Systems Laboratory has a group dedicated to building energy modeling, building energy efficiency, and issions reductions. The majority of this work is funded via the State of Texas as described below. However, some rk is conducted at a federal level.	Search Go
exas Work 2001, the 77th Legislature passed Senate Bill 5 (SB5) defining the Texas Emissions Reduction Plan (TERP).	Turbomachinery Laboraot 2015 TERP Reports 2014 TERP Reports
ERP Objectives	 2013 TERP Reports Michael Pate
Ensure that air in Texas meets the Federal Clean Air Act requirements (US EPA Page)	 Michael Pate
Reduce Nitrous Oxides (aka NOx) emissions in <u>non-attainment</u> and <u>near-non-attainment</u> counties through mandatory and voluntary programs, including the implementation of energy efficiency and renewable energy programs (EE/RE)	News
	Continuous Commissionir
ERP Elements	spotlight by TAMU
A diesel emissions reduction incentive program	Engineering
A motor vehicle purchase or lease incentive program	 Nov 2014 - Final
A new technology research and development program	recommendation to SECC
An energy efficiency grant program	including stringency anal & review of public comm
A statewide Texas Building Energy Performance Standard (TBEPS) which defines the building energy code for all residential and commercial buildings	regarding the 2015 IRC,
A goal of 5% per year reduction in electrical consumption for facilities of political subdivisions in <u>non-attainment</u> and <u>near-non-attainment</u> counties from 2002 through 2008	Chapter 11, and the 2013 IECC vs. the 2009 codes.
SL's TERP Responsibilities	(PDF)
 Assist communities to evaluate and quantify above code amendments to the International Residential Code (IRC) and the International Energy Conservation Code (IECC), which define the minimum energy efficiency standards for the State of Texas. 	
Train builders, code inspectors, code officials, manufacturers, homeowners and other interested groups on how to cost effectively implement the energy efficiency standards of the codes.	
Develop a self-certification form for builders outside of municipalities.	
 Evaluate Home Energy Rating Software (HERS) packages. The Laboratory will evaluate HERS offerings and assist in defining changes required for the State of Texas. 	
Report annually to the Texas Commission on Environmental Quality (TCEQ) the energy savings (and resultant emissions reduction) from implementation of building energy codes and to identify the municipalities and counties whose codes are more or less stringent than the un-amended code.	

Figure 54. TERP Home Page

Letters and Reports

Legislative Documents

Documents prepared by the Energy Systems Laboratory to fulfill TERP Legislative Objectives

Energy Systems Laboratory stringency review of the latest published editions of building energy codes in comparison to the Texas Building Energy Performance Standards (TBEPS), for consideration for adoption by the State Energy Conservation Office (SECO)

- Nov 2014 Final recommendation to SECO, including stringency analysis & review of public comments, regarding the 2015 IRC, Chapter 11, and the 2015 IECC vs. the 2009 codes.<u>Recommendation (PDF)</u>
- Aug 2014 Letter to SECO regarding the stringency of the 2015 IRC, Chapter 11, and the 2015 IECC vs. the 2009 codes. letter (PDF)
- Aug 2012 Final recommendation to SECO, including stringency analysis & review of public comments, regarding the 2012 IRC, Chapter 11, and the 2012 IECC vs. the 2009 codes. <u>recommendation (PDF)</u>
- Aug 2012 Detailed stringency analysis of suggested amendments to Chapter 11 of the 2012 IRC and the 2012 IECC that were submitted to SECO during March 30-April 30, 2012 comment period report (PDF)
- Dec 2011 A comparison of building energy code stringency: 2009 IECC vs. 2012 IECC for commercial construction in Texas. <u>report (PDF)</u> Revised July 2012
- Dec 2011 A comparison of building energy code stringency: 2009 IRC vs. 2012 IRC for single family residences in Texas. report (PDF) Revised August 2012
- Dec 2011 Letter to SECO regarding the stringency of the 2012 IRC, Chapter 11, and the 2012 IECC vs. the 2009 codes. letter (PDF)
- Oct 2011 Letter to DOE in response to Building Energy Codes Cost Analysis notice in Federal Register. letter (PDF)
- May 2011 General memo and information on 15% above-code energy efficiency measures for residential buildings in Texas, relevant to the 2009 codes. <u>Memo (PDF)</u>.
- Sep 2009 Final recommendation to SECO, including stringency analysis & review of public comments, regarding the 2009 IRC, Chapter 11, and the 2009 IECC vs. the 2000 codes + 2001 supplement. <u>recommendation (PDF)</u>
- Feb 2009 Letter to SECO regarding the stringency & review of public comments of ASHRAE Standard 90.1-2007 vs. the 2000 IECC + 2001 supplement. <u>letter (PDF)</u> to SECO.
- Feb 2009 Letter to SECO regarding the stringency of REScheck Code Compliance Software (v4.2.0) vs. the 2000 codes + 2001 supplement. <u>letter (PDF)</u> to SECO.
- Feb 2008 Final recommendation to SECO, including stringency analysis & review of public comments, regarding the 2006 IRC, Chapter 11, and the 2006 IECC vs. the 2000 IECC + 2001 supplement. recommendation (PDF) to SECO.
- Aug 2007 General memo and information on 15% above-code energy efficiency measures for residential buildings in Texas, relevant to the 2000 codes + 2001 supplement. memo (PDF).
- Aug 2007 - General memo and information on 15% above-code energy efficiency measures for commercial buildings in Texas relevant to the ASHRAE Standard 90.1-1999. <u>memo (PDF)</u>.

Figure 55: TERP -Letters and Reports

TERP Links

The Energy Systems Laboratory is honored to work with the following agencies, organizations and offices at the local, state, and national level. When you click on a link, a new window will open allowing you easy return to this site.

- eCalc Emissions & Energy Calculator
- International Code Compliance Calculator (ICCC)
- Public Utility Commission of Texas (PUC)
- <u>U.S. Department of Energy (DOE)</u>
- Texas State Energy Conservation Office (SECO)
- U.S. Environmental Protection Agency (EPA)
- International Code Council (ICC)
- American Society of Heating, Refrigeration and Air-Conditioning, Engineers (ASHRAE)
- North Central Texas Council of Governments (NCTCOG)
- Alamo Area Council of Governments (AACOG)
- Circle of Ten
- Texas Home Energy Rating Organization (HERO)

Figure 56: TERP Links

- Turbomachinery Laboraotry
- 2015 TERP Reports
- 2014 TERP Reports
- 2013 TERP Reports
- Michael Pate

💿 News

- Continuous Commissioning[®] spotlight by TAMU Engineering
- Nov 2014 Final recommendation to SECO, including stringency analysis & review of public comments, regarding the 2015 IRC,

Chapter 11, and the 2015 IECC vs. the 2009 codes. (PDF)

Datest Articles

- Turbomachinery Laboraotry
 2015 TERP Reports
 2014 TERP Reports
 2013 TERP Reports
- Michael Pate

👩 News

- Continuous Commissioning[®] spotlight by TAMU
- Engineering Nov 2014 - Final
- recommendation to SECO, including stringency analysis & review of public comments, regarding the 2015 IRC, Chapter 11, and the 2015

In addition, the Energy Systems Lab. (ESL) also hosted the Clear Air Through Energy Efficiency Conference (CATEE). The CATEE website and information are linked in the dropdown menu of the Conference tab in the ESL website.

CATEE 2	2015 Preliminary Program Coming Soon	Host
	CATEE 2014 Program	TEEF
Т	uesday, Nov. 18 – Pre-Conference Workshops	ENERGY SYSTEMS LABORATORY
8:00am – 12:00pm	International Energy Conservation Code® (IECC) 2012 & 2015-	TEXAS A&M ENGINEERING EXPERIMENT STATION
	What's the Difference? (.35 CEU/3.5 PDH)	Cold Snonoor
	 <u>Shirley Ellis, Codes Specialist, Energy Systems</u> 	Gold Sponsor
	<u>Laboratory</u>	
9:00am – 12:00pm	Continuous Commissioning® and Existing Buildings Tune-up (.25	Performance
	CEU/2.5 PDH)	Services
	 Joseph Martinez, PCC, Associate Director, Energy 	THE CYNTHIA AND
	<u>Systems Laboratory</u>	GEORGE MITCHELL
	<u>Carlos Yagua, P.E., Assistant Research Engineer, Energy</u>	FOUNDATION
	<u>Systems Laboratory</u>	
	 <u>Ahmet Ugursal, Ph.D., Engineering Research Associate</u>, 	Silver Sponsors
	<u>Energy Systems Laboratory</u>	
	 <u>Hiroko Masuda, Engineering Research Associate, Energy</u> 	CARLISLE
	<u>Systems Laboratory</u>	
12:00pm – 1:00pm	Lunch On Your Own	
1:00pm – 5:00pm	School Facilities Energy Management & Financing (.35 CEU/3.5	OF TEXAS
	PDH)	
	Moderator: <u>Collin Sandifer, Account Executive, Schneider Electric</u>	GDS Associates, Inc.
	<u>Sadie Bronk, Senior Program Manager, CLEAResult</u> Liff Window Director Department of Construction and	
	 Jeff Windsor, Director, Department of Construction and Energy, Spring ISD 	GDS Associates, Inc. ENGINEERS & CONSULTANTS
	Art Brickey, Senior Vice President, Friedman, Luzzatto &	
	• <u>Art Brickey, Senior vice President, Friedman, Luzzatio &</u> Co.	
	• David White, Regional Sales Manager, McKinstry	
	David White, Regional Date Manager, Metallolly	

Figure 57: CATEE Conference

- 6.4 Activities of Technical Transfer
- 6.4.1 Technical Assistance to the TCEQ

The Laboratory received dozens of calls per week from code officials, builders, home owners and municipal officials regarding the building code and emissions calculations. A complete file of these transactions is maintained at the Laboratory.

The Laboratory provides technical assistance to the TCEQ, the PUC, SECO and ERCOT, as well as Stakeholders participating in a number of conferences and presentations. In 2011, the Laboratory continued to work closely with the TCEQ to develop an integrated emissions calculation, which provided the TCEQ with a creditable NOx emissions reduction from energy efficiency and renewable energy (EE/RE) programs reported to the TCEQ in 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, and 2014 by the Laboratory, PUC, SECO, and Wind-ERCOT.

The Laboratory has also enhanced the previously developed emissions calculator by: expanding the capabilities to include all counties in ERCOT, including the collection and assembly of weather from 1999 to the present from 17 NOAA weather stations, and enhancing the underlying computer platform for the calculator.

The Laboratory has and will continue to provide leading edge technical assistance to counties and communities working toward obtaining full SIP credit for the energy efficiency and renewable energy projects that are lowering the emissions and improving the air for all Texans. The Laboratory will continue to provide superior technology to the State of Texas through efforts with the TCEQ and US EPA. The efforts taken by the Laboratory have produced significant success in bringing EE/RE closer to US EPA acceptance in the SIP.

6.4.2 Code Training

Section 388.009 of HB 3235 requires the Laboratory to develop and administer a state-wide training program for municipal building inspectors who seek to become code-certified inspectors. To accomplish this, the Laboratory originally developed the Energy Code Workshops which were based on the 2006 International Energy Conservation Code (IECC) as published by the International Code Council (ICC) for residential and commercial buildings, with amendments. Since then, the Laboratory has updated the workshops to the 2009 IECC, and developed 2012 code workshops.

In 2014, the Laboratory provided 2012 code trainings at the 14th Annual Building Professional Institute in Arlington, TX. The total number of workshops held by the Energy Systems Laboratory was two with 27 participants.

Table 33: List of all short	courses/workshops	conducted in 2014
Tueste bet Elist et all short	e o ar beb, n or nop b	• • • • • • • • • • • • • • • • • • •

Short Courses/Workshops									
Course Title	Description	Date	Location	Attendance					
2012 IECC Residential	Full Day training	5/19/2014	Arlington, TX (14 th Annual Building Professional Institute)	15					
2012 IECC Commercial	Full Day training	5/20/2014	Arlington, TX (14 th Annual Building Professional Institute)	12					

6.4.3 ASHRAE Standard 90.1 Standards Committee Activities

The following sections are the minutes and transactions of SSPC 90.1 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014 and the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014.

6.4.3.1 SSPC 90.1 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014

The following paragraphs track the changes and discussion in the ASHRAE 90.1 Standard at the ASHRAE winter conference in New York, New York in 2014.

ASHRAE SSPC 90.1 MEETING AGENDA

Annual Meeting, ASHRAE, New York, NY

January 18-20, 2014 Agenda 01/08/14

<u>Full Committee meetings are in the Hilton New York/Midtown Hotel – in the Murray East/West 2nd Floor</u> Notes:

- Full Committee meetings will start promptly at times noted.
- Subcommittee meeting rooms are at end of agenda
- All sessions are open to the public.
- The agenda order shown may not be followed

• Material for Project Committee members is posted on the Committee Only FTP site

- Introductions
 - Sign-in and Quorum Determination (Steve Ferguson)
 - Introductions of members and guests (Drake Erbe)
 - ASHRAE Code of Ethics (briefly referred to by Drake Erbe)

ASHRAE Code Of Ethics

(Approved by ASHRAE Board of Directors January 30, 2013)

1.140.001.1 As members of ASHRAE or participants in ASHRAE committees, we pledge to act with honesty, fairness, courtesy, competence, integrity and respect for others in our conduct.

A. Efforts of the Society, its members, and its bodies shall be directed at all times to enhancing the public health, safety and welfare.

B. Members and organized bodies of the Society shall be good stewards of the world's resources including energy, natural, human and financial resources.

C. Our products and services shall be offered only in areas where our competence and expertise can satisfy the public need.

D. We shall act with care and competence in all activities, using and developing up-to-date knowledge and skills. E. We shall avoid real or perceived conflicts of interest whenever possible, and disclose them to affected parties when they do exist.

F. The confidentiality of business affairs, proprietary information, intellectual property, procedures, and restricted Society discussions and materials shall be respected.

G. Each member is expected and encouraged to be committed to the code of ethics of his or her own professional or trade association in their nation and area of work.

H. Activities crossing national and cultural boundaries shall respect the ethical codes of the seat of the principal activity.

- Review Agenda (Erbe announced that there are very few changes from poste agenda. There will be an updated report on 90.1 progress indicators by PNNL)
- Announcements (Erbe)
 - Bias and Conflict Forms Update with any changes Send to ASHRAE HQ
 - Availability of Errata for Standard and User's Manual on public website (Ferguson) (Look on web site for this.)

• Results of Standards Committee Actions (Ferguson)

Update on Addenda: (Some addenda ready for publication. Look on ASHREA website.)

• Liaison Reports

Liaison	Report				
2. ASHRAE - Ferguson	Item was stolen in lobby. Watch your stuff.				
SPLS (Modera)	No one present to report				
IESNA (Harrold)	No one present to report				
1. CIS (VanGeem)	No one present to report				
INTERNATIONAL (Hoegling)	No one present to report				
3. TC 1.4 Control Applications (Young)	No report				
4. TC 4.5 Fenestration (Hogan)	Brief report				
5. TC 5.2 Duct Design (Craig Wray)	Substantive report				
6. TC 5.4 Industrial Process Air Cleaning	Looking for liaisons for these TC's.				
7. TC 5.7 Evap Clg, 5.8, Ind. Vent Systems. 9.2 Ind.					
Air Conditioning (???)					
TC 5.5 Air-to-air Energy Recovery (Dobbs)	No one present to report				
TC 6.1 Hydronic Systems (Towsley)	No one present to report				
8. TC 6.5 Radiant Heat & Cool (Watson)	Brief report				
9. TC 6.9 Thermal Storage (Paul McCracken)	Brief report				
TC 8.6 Cooling Towers (Lindahl)	No one present to report				
10. TC 7.6 Energy Utilization (Emerson)	See seminar 32 on air flow for data centers. Also				
	seminar 17 on IT equipment power.				
TC 9.9 Mission Critical Facilities (Pavlak)	No one present to report				

- Approval of Minutes
 - o April 2014, Webinar
- PowerPoint Presentation (available from presenter) on 90.1 use in BC and the City of Vancouver and Canadian Code-Mr. Greg McCall. In 2014, now using 90.1-2010. Incorporated NECB 2011 (National Energy Code for Buildings, developed by NRC Canada.) Similar structure as Standard 90.1; uses most of the same definitions for building types and conditions. Climate zone for Vancouver is different (4 vs. 5) between 90.1-2010 and NECB 2011. Code has envelope allowances for modelers, around 5%, but 1% for Vancouver. Energy modeling for 90.1-2010 is energy-cost based, but for NECB 2011 is energy-based. Target is 20% energy consumption below the 90.1-2007 version. Vancouver.ca/building-energy-requirements. Compliance forms appear to be different than 90.1 forms. ECB forms look to be about the same.
- PNNL-90.1 End Use Data- Reid Hart. (Progress Indicator Results (90.1-2013.) Email: Reid.Hart@PNNL.gov.
- Climate Zone Working Group Report Merle McBride (Report on Selection Criteria for rep. weather files. Evaluated CDD and HDD baselines & representative HVAC design criteria and dev. of Tables for 90.1-2013 weather files.) No Climate zone 0 in the U.S. 0A = Singapore Changi AP; 0B = Jeddah, SA; 1A = Honolulu Int'l AP; 1B = New Delhi, IN; 2 = Tucson, AZ; 3 = Atlanta, GA; 4A = Cincinnati, OH; 4B = Albuquerque, NM; 4C = Seattle, WA; 5A = Buffalo, NY; 5B = Denver AP, CO; 5C = Bariloche AP, Argentina; 6A = Bismarck, ND; 6B = Boseman-Yellowstone AP, MT; 7 = Fort McMurray, Alberta, CA; 8 = Yellowknife AP, Northwest Territories, and most of Alaska.
- Subcommittee Reports and Actions (Energy Savings proposals first.)

- Mechanical (Recommended acceptance of an internally generated proposal that DVR (dynamic ventilation reset) and ERV to be required for DDC systems. Committee vote to approve passed 34-0-1).
 - Motor text cleanup language
 - Update heat rejection equip min efficiency Table internally generated proposal
 - VRF part load efficiency internally generated proposal
 - Hauer CMP response and possible internally generated proposal
 - Bassam Sabeeh pipe insulation official interpretation response
- o Lighting
- o ECB
 - References to the opaque assemblies for the building envelope portion of the main table in Appendix G (Discussion focused on Table G3.1, Part b, re envelope opaque assemblies.)
 - updated section G3.1.1 related to the selection procedure for the baseline HVAC system
- Envelope
 - Proposal on Envelope Verification
- Format & Compliance
- Public time to address SSPC (30 minutes). Persons wishing to address the Project Committee should contact the Chair (Drake Erbe <u>drakeerbe@airxchange.com</u>) by 12 NOON June 25.

- Introductions
 - Sign-in and Quorum Determination (ASHRAE Staff)
 - Introductions of members and guests (Erbe)
- Announcements (Erbe)
 - Bias and Conflict Forms
- International Energy Standards (Hoegling) Presented the European activities in the ISO Standard for reporting building energy performance ratings. ISO/TC 163 & 205. Committee questioned about how the standards are enforced.
- Subcommittee Reports –Votes:
 - o No. 2 Envelope
 - metal building walls (Jones CMP 901-13-12-003-001): Motion explained about envelope verification. Proposed a change to require verification of the continuous air barrier. Proposed to be in accordance with ASTM E779-2010 or E1827-2011 by an independent third party. Addendum L for publication and public review, Roll call vote passed by 20-6-9. Will issue a continuation ballot.
 - o Lighting
 - First building type simplified approach proposal
 - Interior and exterior Exemption rework (remove, revise)

- Emergency lighting control language
- o No. 1 ECB
 - Addendum BM (Jason Glazer moved to approve addendum bm for publication and 3rd public review,) Modifies Appendix G Performance Rating Method. All the proposed changes were explained by Mike Rosenberg of PNNL. Look at section 4.2.1.1 (alternative compliance path) and all of section 4.2 on PCI calculation. For details, download addendum bm. Some updates are shown in Table G3.5.1 on performance ratings of HVAC equipment. Summary: Addendum bm offers a 3rd path for compliance with 90.1. Look at Table 4.2.1.1 on Building Performance Factors (BPF). Roll call vote: passed by 28-3-3.
 - Added motion on clarifying values in Appendix A, Opaque Assemblies tables. Roll call vote passed by 33-0-1.
- o Mechanical
 - Static pressure table revision (elimination of ducted return)
 - Ventilation Optimization internally generated proposal
 - ERV internally generated proposal
 - Humidification language internally generated proposal
 - Weather data for mechanical systems
 - Response to CMP for item 2 above
- Format & Compliance
- Continuous Maintenance Proposals Status updates Garrigus
- Interpretations Status updates Garrigus

End of Full Committee Meeting 12 NOON

- Introductions
 - Sign-in and Quorum Determination (Ferguson)
 - Introduction of members and guests (Erbe)
- Announcements (Erbe)
 - o Bias and Conflict Forms
- Future Meetings
 - Fall Interm Meeting 2014 Atlanta October XX-XX, 2014 at ASHRAE HQ
 - Meeting times
 - SSPC Full committee Friday 8 am- 12 NOON, Saturday 8 am- 12 NOON
 - ECB: <u>Thursday</u> 3-7 pm, <u>Friday 1</u>-9 pm
 - ENVELOPE: <u>Thursday</u> 8 am-9 pm, <u>Friday</u> 1-9 pm
 - FORMAT & COMPLIANCE: <u>Thursday</u> 3-7 pm, <u>Friday</u> 1-9 pm
 - LIGHTING: <u>Thursday</u> 8 am-9 pm, <u>Friday</u> 1-9 pm
 - MECHANICAL: <u>Thursday</u> 8 am-9 pm, <u>Friday 1</u>-9 pm
 - Winter 2015 Chicago
- PNNL 90.1-2010-Cost Effectiveness Analysis-Hart (Presentation by Reid Hart on cost effectiveness of 90.1-2010 vs. 90.1-2007.) 16 prototypes in 17 climate zones (great summary.) Houston is included. Full report is PNNL 22972, downloadable form web site.
- DOE RFI-Williams (see http://www.energycodes.gov/regulations)
- Subcommittee Votes
 - Envelope

- Addendum AB All metal building test reports and documentation related to addendum AB can be found in this folder on the committee only FTP site. (Steve Skalko presented and then moved that the SPCC approve for publication and public review of addendum ab on metal buildings, Table A2.3 Assembly U-factors for roofs, with knowledge of unresolved commenter/objector. Motion was passed contentiously by roll call vote 27-2-4.)
- . Jones CMP 901-13-12-003-002 Metal Roofs
- Lighting (Eric Richman reported no new proposals.) 0
- ECB (Jason Glazer presented one proposal related to procedures to be followed in section G3.1.1, 0 HVAC baseline system types.)
- Format & Compliance 0
- Mechanical 0
 - . Response to comments on Addendum I – elimination of computer room economizer table
 - Damper leakage
 - . Possible ISC for Addendum du
 - Compressor staging
- **AES WG-Burton**
- Brief overview of subcommittee plans
- Membership Approval Results
- Other Business
- MEETING ROOM SCHEDULE •
 - 0 All meetings are in the Hilton Hotel

SSPC 90.1 ENERGY EFF. DESIGN OF NEW BLDG.

- Saturday 8:00a-12p Murray East/West 2nd Floor 0
- Sunday 9:00a-12p Murray East/West 2nd Floor 0
- Murray East/West 2nd Floor Monday 8:00a-12p 0

FORMAT & COMPLIANCE SUBCOMMITTEE

- Holland 4th Floor • Friday 5:00-10:00p
- Saturday 1:00-5:00p Midtown 4th Floor 0
- Concourse D Concourse Level Sunday 4:00-7:00p 0

MECHANICAL SUBCOMMITTEE

- Friday 9:00a-10p Murray Hill East 2nd Floor
 - Murray Hill East 2nd Floor Saturday 1:00-7:00p
- Sunday 1:00-8:00p Gibson 2nd Floor 0

LIGHTING SUBCOMMITTEE

- 0 Friday 9:00a-10p
- Harlem 4th Floor Madison 2nd Floor
- 0 Saturday 1:00-7:00p Concourse C Concourse Level
- Sunday 1:00-8:00p 0
- **ECB SUBCOMMITTEE**

0

- 5:00-10:00p East Suite 4th Floor Friday 0
 - Saturday 1:00-5:00p Holland 2nd Floor
- Concourse D Concourse Level Sunday 1:00-4:00p 0
- **ENVELOPE SUBCOMMITTEE**

- o Friday 9:30a-7:30p Gibson 2nd Floor
- Saturday 1:00-7:30p Bryant 2nd Floor
- Sunday 1:00-7:30p Concourse G Concourse Level

• USERS MANUAL REVIEW GROUP

• Saturday 5:00p-6:00p Holland 2nd Floor

The following are presentations made at the 90.1 meeting from Seattle, Washington.

6.4.3.2 SSPC 90.1 at the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014

The following paragraphs track the changes and discussion in the ASHRAE 90.1 Standard at the ASHRAE summer conference in Seattle, Washington in 2014.

ASHRAE SSPC 90.1 MEETING AGENDA

Annual Meeting, ASHRAE, Seattle, WA

June 26-30, 2014 Agenda 06/14/14, subject to change

Full Committee meetings are in the Sheraton- in the Grand Ballroom A 2nd Floor

Notes:

- Full Committee meetings will start promptly at times noted.
- Subcommittee meeting rooms are at end of agenda
- All sessions are open to the public.
- The agenda order shown may not be followed
- Material for Project Committee members is posted on the Committee Only FTP site (\2014 meetings\2014 01 NYC SSPC)

- Introductions
 - Sign-in and Quorum Determination (Ferguson)
 - Introductions of members and guests (Erbe)
 - ASHRAE Code of Ethics

ASHRAE Code Of Ethics

(Approved by ASHRAE Board of Directors January 30, 2013)

1.140.001.1 As members of ASHRAE or participants in ASHRAE committees, we pledge to act with honesty, fairness, courtesy, competence, integrity and respect for others in our conduct.

A. Efforts of the Society, its members, and its bodies shall be directed at all times to enhancing the public health, safety and welfare.

B. Members and organized bodies of the Society shall be good stewards of the world's resources including energy, natural, human and financial resources.

C. Our products and services shall be offered only in areas where our competence and expertise can satisfy the public need.

D. We shall act with care and competence in all activities, using and developing up-to-date knowledge and skills.

E. We shall avoid real or perceived conflicts of interest whenever possible, and disclose them to affected parties when they do exist.

F. The confidentiality of business affairs, proprietary information, intellectual property, procedures, and restricted Society discussions and materials shall be respected.

G. Each member is expected and encouraged to be committed to the code of ethics of his or her own professional or trade association in their nation and area of work.

H. Activities crossing national and cultural boundaries shall respect the ethical codes of the seat of the principal activity.

- Review Agenda
 - Progress indicators report on Sunday
 - Advanced energy systems, energy targets and scalar report on Monday.
- Announcements (Drake Erbe)
 - o Bias and Conflict Forms Update with any changes Send to ASHRAE HQ
 - o Availability of Errata for Standard and User's Manual on public website (Ferguson)
 - Speaker (Bob xxx?) on CEC energy efficiency advancements and status. Adopted the ASHRAE Standard 180 for maintenance of buildings.
- Results of Standards Committee Actions (Ferguson)

- Update on Addenda
- Liaison Reports

Liaison	Report
ASHRAE - Ferguson	
SPLS (Modera)	
IESNA (Harrold)	
CIS (VanGeem)	
INTERNATIONAL (Hoegling)	
TC 1.4 Control Applications (Young)	
TC 4.5 Fenestration (Hogan)	
TC 5.4 Industrial Process Air Cleaning	
TC 5.7 Evap Clg, 5.8, Ind. Vent Systems. 9.2 Ind. Air	
Conditioning (???)	
TC 5.5 Air-to-air Energy Recovery (Dobbs)	
TC 6.1 Hydronic Systems (Towsley)	
TC 6.5 Radiant Heat & Cool (Watson)	
TC 6.9 Thermal Storage (McCracken)	
TC 8.6 Cooling Towers (Lindahl)	
TC 7.6 Energy Utilization (Emerson)	
TC 9.9 Mission Critical Facilities (Pavlak)	

- Approval of Minutes -
 - October 2013 Atlanta minutes available on secure 90.1 ftp site, please review prior to meeting.
 VOTE. Approved.
 - December 2013 Web Meetings minutes available on secure 90.1 ftp site, please review prior to meeting. VOTE. Approved.
 - 12/19/13
 - 12/17/13
- Advanced Energy Standard Working Group (Drake Erbe),

Presentation by Merle McBride on the "SSPC 90.1-2016 Determination and Application of Dual Scalar Ratios". Made a motion to approve the new values used to derive the SRs assuming after tax

considerations:

New graphs based on LCC as a function of first costs and annual value of fuel savings.

For envelope, Scalar Ratio (SR) = (Delta First Cost) / (annual savings in energy cost + maintenance cost).

Different SR values result for heating and cooling systems. SR also depends on the component's economic life.

Discount rate = 9.34%, loan int rate =7%, fed tax = 0%, state tax = 0%, fuel escalation based on Table 6 and Figure 12. Years 1-30, use the NIST value plus the rate of inflation at 2.38%. SR values are tabulated as a function of economic life.

Some serious objections were raised as to how the discount rate was derived, with a request to delay the vote in order to allow for added investigations of the factors used.

The motion passed on voice vote.

• Subcommittee Reports and Actions – (PC votes and SC items for consideration.)

• Mechanical:

Motions:

- Motion 5: Hotel guest room controls w/ ventilation shutoff and vacancy setback. Section 6.4.3.3.5.1. Roll call vote: passed 34-0-1.
- Motion 6: Addendum xx to 90.1-2013, Editorial change to Fan Power requirement in section 6.5.3.1-2. Roll call vote passed 34-0-1.
- o Envelope
- o Lighting

Motions:

- Lighting controls in section 9.4.1.5 lighting controls during construction. Motion failed 7-21-8, based on security and fife safety issues.
- Second motion passed.
- ECB: Discuss addendum bm later.
- Format & Compliance
- User's Manual Lane,

Meeting later today at 5 p.m. Contractor will be there to report on second draft.

• Public time to address SSPC (30 minutes). Persons wishing to address the Project Committee should contact the Chair (Drake Erbe – <u>drakeerbe@airxchange.com</u>) by 12 NOON January 14th.

Full Committee Sunday, January 19, 20149 am to 12 NOON

- Introductions
 - o Sign-in and Quorum Determination (ASHRAE Staff)
 - Introductions of members and guests (Drake Erbe)
- Announcements (Erbe)
 - Bias and Conflict Forms
- Subcommittee Reports Votes:
 - Envelope
 - Interpretation requests and responses: Request submitted as to whether greenhouse on roof would be covered by Standard 90.1. ESC considers the greenhouse as a commercial process and thus must comply with Standard per Section 2.3c and is ventilated. This is similar to a ventilated attic, so the envelope requirement must meet the conditions for that type space.
 - Proposed addendum H to Fan Power in section C3.5.8 HVAC Systems. Motion 10 to approve. Roll call vote passed 24-0-7.
 - Lighting, Eric Richman reported on some ongoing work in changes to lighting controls. No proposals at this time
 - ECB. Jason Glazer had no action items.
 - o Mechanical. Ned Heminger (spelling corrected on 1/20/2014) had no action items today, but

talked briefly about computer room requirements, which will be put forth later.

- Format & Compliance: Busy agenda on interpretations on the work plan, proposed a new way of reporting.
- Continuous Maintenance Proposals Status updates Subcommittee chairs
- Interpretations Status updates Lane/Subcommittee Chairs
 - Official: No substantive information presented. Unofficial: No substantive information presented.
- 90.1-2013 Progress Indicator (Bing Liu) Presented the PNNL report on the 90.1-2013 Energy Cost Savings.
 90.1-2004 still the baseline. There are 110 addenda published in 90.1-2013, 58 have energy impact. The PI analysis work captured 33 addenda, 25 not captured. She gave reasons why not used in the analyses. Target savings = 50% in regulated energy and 40% in whole building energy use. Current result is at 37.7% for regulated loads. (The full PDF file of Bing's PowerPoint presentation is attached.)

The 90.1 AES WG in working on modifying the prototype assumptions. Also, there are simulation improvements -- updated to Energy Plus v8.0 (from 6.0) and updated weather database to TMY3 (from TM2). Work plan Discussion – Energy Targets (Erbe)

This working group developing a path toward setting Energy Targets for buildings by approximately 2016. Some freewheeling discussion ensued from the SSPC members. Consensus seems to be to put forth a detailed work plan. Some felt that this is important, while others were skeptical about setting energy targets or goals.

End of Full Committee Meeting 12 NOON

- Introductions
 - Sign-in and Quorum Determination (Ferguson)
 - Introduction of members and guests (Erbe)
- Announcements (Erbe)
 - o Bias and Conflict Forms
 - Meeting began with a PPT presentation on upcoming FEMP Training (Federal Energy Management Program), Begins in March on the Fundamentals of Life-Cycle Costing for Energy Conservation. Location not certain. FEMP is an approved CEU provider.
 - Martha VanGeem reported on a Sunday evening (7-10 p.m.) meeting on IECC and CIS matters. Not sure what CIS is.
 - Steve Comstock reported on approx. 55 proposals that were considered by the board that were either approved or declined. No details on the contents of and proposals.
 - Drake Erbe reported on the membership of the WG on the Advanced Energy Standards (AES). The 10 members were thanked for their efforts, as some were rolling off the committee.
- Future Meetings
 - Spring 2014 Atlanta April 16-18, 2014 at ASHRAE HQ. Questioned whether this meeting was needed. Decided instead that the SSPC could meet a day (Thursday) at the Seattle meeting. However, the chair announced that the SSPC would still need to have a web meeting prior to the Seattle meeting. A date for this was discussed and tentatively set on a Wednesday afternoon from 1 to 4 p.m. EST.
 - Meeting times: (these would have been meeting times in Atlanta if interim mtg would take place)
 - ECB: <u>Thursday</u> 3-7 pm, <u>Friday 1</u>-9 pm
 - ENVELOPE: <u>Thursday</u> 8 am-9 pm, <u>Friday</u> 1-9 pm
 - FORMAT & COMPLIANCE: <u>Thursday</u> 3-7 pm, <u>Friday</u> 1-9 pm
 - LIGHTING: <u>Thursday</u> 8 am-9 pm, <u>Friday</u> 1-9 pm

• MECHANICAL: <u>Thursday</u> 8 am-9 pm, <u>Friday</u> 1-9 pm

- o Summer 2014 Seattle
- International Energy Standards (Hoegling)
- Subcommittee Votes
 - Lighting: No action items to vote on.
 - o ECB

Jason Glazer discussed an interpretation request about defining U-factors for below grade conditions as they relate to baseline building in the ECB. Comments that Appendix G does not apply well to buildings with large amounts of the façade below grade. Clarification is that "using 90.1-2007, the requester would need to apply the definitions of above-grade and below grade walls to the proposed design and select the appropriate baseline U-values from Table 5.1.1-5.1.8." Committee approved this response by hand vote 32-0-0.

- Format & Compliance: No action requests to vote on. Subcommittee Chair made a brief statement on current work.
- o Mechanical
 - MSC 03, Motion 11 passed 32-0-0
 - MSC 04, Motion 5 to reconsider a change to Addendum D in 90,1-2013. Roll call vote passed 30-0-3.
 - Another proposed change to Section 6.4.3.3.5 (automatic controls of HVAC systems in Hotel/Motel guest rooms). Hand vote to modify, passed 29-0-2.
 - MSC 05, proposed addendum AQ to include computer rooms in Section 6.5.1, Economizers. Removed separate table for computer rooms, so now the table would apply to all building types, rather than have special conditions for computer rooms. Roll call vote passed 31-0-2. So, "one size fits all" results.
- o Envelope

Break in the agenda at 9:00 a.m.:

Invited speaker made a 20-minute presentation on the international energy code process in Europe (code name prEN15603.) Working toward EU energy codes to be an ISO Standard by 2016. Talked about energy calculation methods, measured energy ratings, contributions from renewable energy. This standard would not be a prescriptive standard but rather would specify calculation procedures for different building types. Goal is to develop an Energy Performance (EP) target with units of kWh/sq.m. Standard is alleged to be taking steps toward NZEB. Includes an effort toward requiring energy labeling of building products. A technical report outlining the standard is TR15615. Speaker explained the various technical committees that are conducting numerous work tasks to develop the standard. Expect to have all the work tasks completed by the end of 2015. The SSPC chair emphasized the importance of the 90.1 SSPC keeping in touch with the EU efforts, mainly because they are progressive and the North America could be left behind.

Committee had additional comments on this for another 10 minutes.

Work Plan for 9.1-2016 – FINAL VOTE

Very important discussion on the 90.1-2016 work plan after the break:

Proposed that the energy savings goal be based on WHOLE BUILDING energy vs. regulated loads with a target of 40%. One member proposed a more realistic savings goal of 35% rather than 40%. After numerous other members of the SSPC presented extensive discussions, Committee voted to settle on the statement of 35-40% in the published information.

Following the vote on the savings issue, the committee briefly discussed the scalar ratios that were presented on Saturday by Merle McBride, and then voted to approve the entire work plan (including the new scalar ratios). Vote was for approval 31-0-1.

- Brief overview of subcommittee plans
- Other Business

Recognition of Steve Skalko's contributions to the committee and to ASHRAE. Steve was awarded a large Goodbye greeting card plus a Sushi tray engraved with the ASHRAE logo.

MEETING ROOM SCHEDULE

All meetings are in the Sheraton Hotel 0

SSPC 90.1 ENERGY EFF. DESIGN OF NEW BLDG.

- Saturday 8:00a-12p Grand Ballroom A 2nd Floor 0
- Sunday 9:00a-12p Grand Ballroom A 2nd Floor 0
- Monday 8:00a-12p Grand Ballroom A 2nd Floor 0

FORMAT & COMPLIANCE SUBCOMMITTEE

- Ballard 3rd Floor Friday **6**:00-10:00p 0
- DashPoint (4-Pike St. Tower) Saturday 1:00-5:00p 0
- Sunday 4:00-7:00p Eagle Boardroom 1st Floor 0

MECHANICAL SUBCOMMITTEE

0	Thursday 2:00-8:00p	Ravenna A/B 3rd Floor
0	Friday 9:00a-10p	Willow A 2nd Floor
0	Saturday 1:00-7:00p	Grand Ballroom A 2nd Floor

- Saturday 1:00-7:00p Grand Ballroom A 2nd Floor
- Sunday 1:00-8:00p Aspen 2nd Floor 0

LIGHTING SUBCOMMITTEE

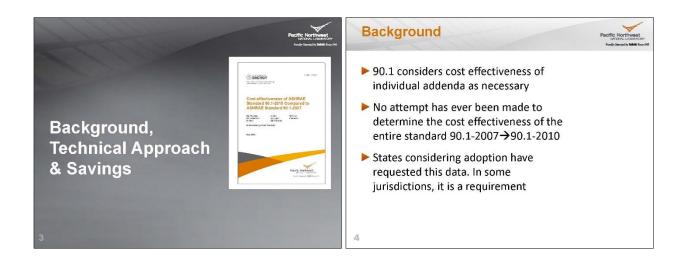
- Leschi 3rd Floor Friday 9:00a-10p 0 0
 - Saturday 1:00-7:00p Juniper 2nd Floor
- 0 Sunday 1:00-7:00p Ballard 3rd Floor

ECB SUBCOMMITTEE

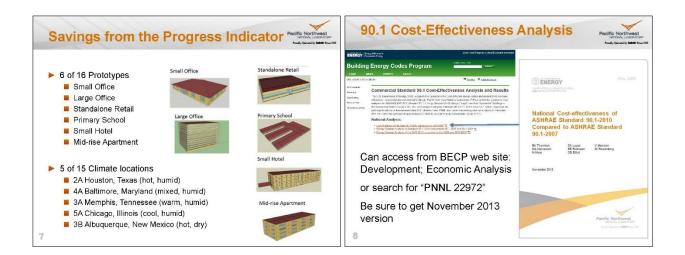
0

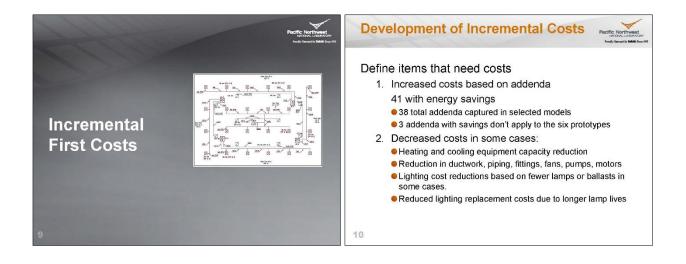
0

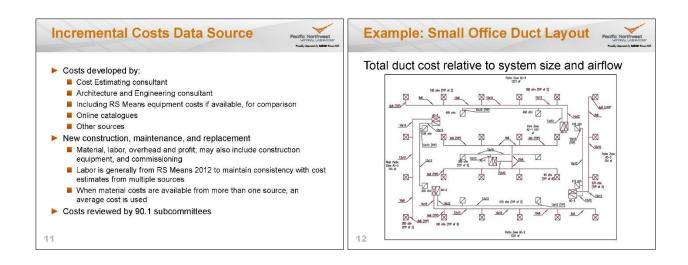
0

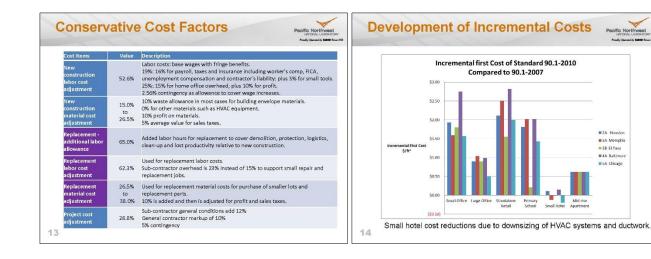

- Friday 5:00-10:00p 0
 - Saturday 1:00-5:00p
 - Everett 3rd Floor Eagle Boardroom 1st Floor 1:00-4:00p
- Sunday **ENVELOPE SUBCOMMITTEE**
 - \circ Friday 9:00a-10:00p
 - Cedar 2nd Floor Ravenna A/B 3rd Floor Saturday 1:00-7:00p Cedar 2nd Floor

Greenwood 3rd Floor

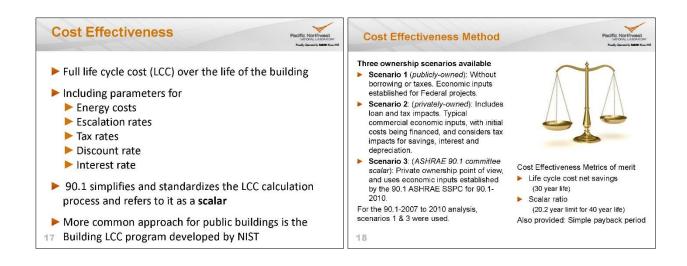

Sunday 1:00-8:00p 0

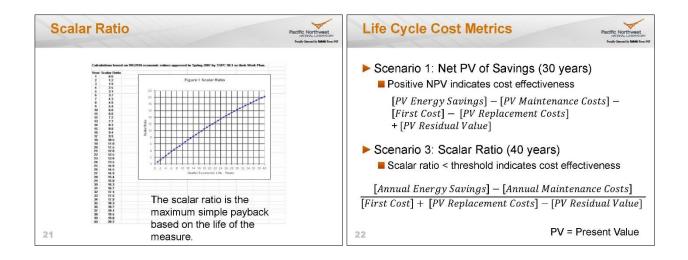

6.4.3.3 Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007 These slides are from the SSPC 90.1 at the ASHRAE Summer Conference in Seattle, Washington meeting.


Pacific Montester Britan Landon Tradi quality Mathematica	Overview	Pacific Northwest NATORAL DESCRIDER Insult Openal by Ballet Size 395
Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007	 ▶ Background Technical Approach & Savings ▶ Energy Savings from 90.1-2007 → 90.1-2010 ▶ Incremental First Costs ▶ Cost Effectiveness Methods & Metrics ▶ Results & Next steps 	
Reid Hart, PE		
ASHRAE SSPC 90.1 June, 2014 PNNL-SA-103563	2	

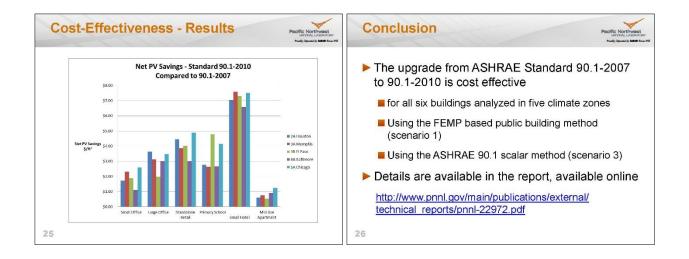


What is Needed to Determine Cost Effectiveness	Technical Approach
1. Energy cost savings from 90.1-2007 → 90.1-2010	 Savings PNNL standard Progress Indicator methodology uses 16 prototype buildings and 17 climate locations.
2. Incremental construction first costs, maintenance costs, and	Current simplified approach looks at a limited number of prototypes and climate locations
replacement costs	Energy Cost savings based on 2010 Progress indicator analysis
3. Cost-effectiveness metrics and method	► Incremental first costs developed for changes from 90.1 2007 → 2010
	Several cost effectiveness metrics applied
5	6

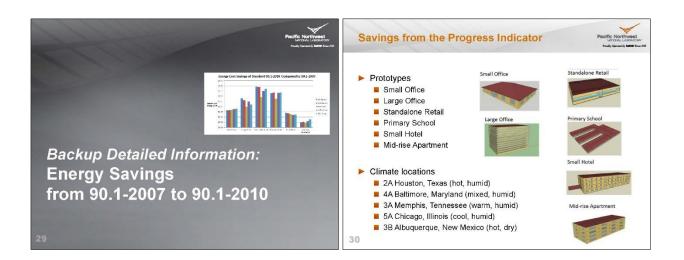




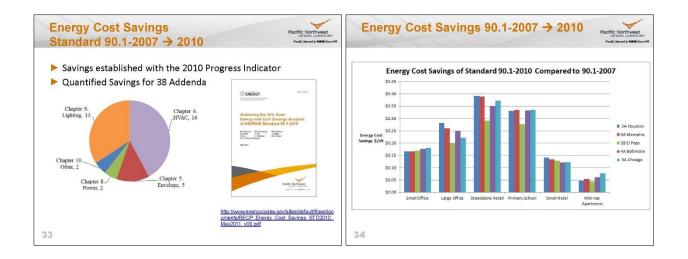
			Incremental	Cost for 90.1-	2010 vs. 2007			
	Building	ZA	3A	3B	4A	5A		A
Prototype	First Cost		Memphis		Baltimore	Chicago	And a second	
					\$/ft²	\$/ft²	Contraction of the local distance in the	
Small Office	\$125	\$1.93	\$1.59	\$1.80	\$2.75	\$1.57	the second s	
Small Office	\$125	1.55%	1.27%	1.44%	2.20%	1.25%		
Large Office	\$158	\$0.90	\$1.04	\$0.90	\$0.99	\$0.50	Cost Effectiveness	
Large Office	2129	0.57%	0.66%	0.57%	0.62%	0.31%	COSt Encourteness	
Standalone Retail	\$87	\$2.11	\$2.51	\$1.55	\$2.82	\$2.00	Methods & Metrics	A A A A A A A A A A A A A A A A A A A
stanuaione netaii	207	2.43%	2.89%	1.78%	3.24%	2.30%	INIELIIUUS & INIELIIUS	
Primary School	\$132	\$1.81	\$2.02	\$0.21	\$2.02	\$1.43	the second second second second second	
Primary school	\$152	1.37%	1.53%	0.16%	1.53%	1.09%	and the second	
Small Hotel	\$106	\$0.11	-\$0.12	-\$0.02	\$0.15	-\$0.20		
Small Hoter	\$106	0.11%	-0.11%	-0.01%	0.14%	-0.19%	the second s	
		\$0.62	\$0.62	\$0.62	\$0.62	\$0.62	the second s	
Aid-rise Apartment	\$111	0.56%	0.56%	0.56%	0.56%	0.56%	and the second	



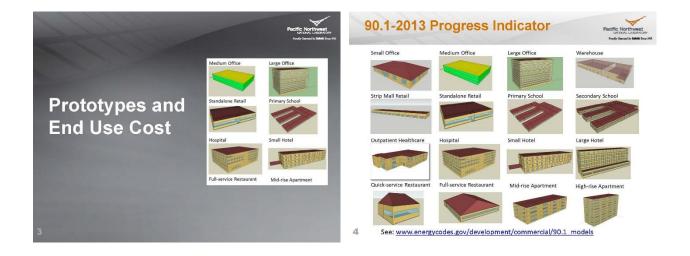
Economic Parameter		Commercial State Cost-Effectiveness Scenario 1 without Loans or Taxes			
	Value	Source	Input Economic Variables	Heating	Cooling
ominal Discount Rate ¹	3.9%	Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2011, NIST annual update – (2011, Rushing et al.).	Economic Life - Years	40	40
eal Discount Rate ²	3.0%	Calculated from nominal discount rate and inflation.		2.7	
nflation ³	0.9%	Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2011, NIST annual update (2011, Rushing et al.)	Fuel Escalation Rate - %	3.7	3.7
lectricity and Gas Price	\$0.0939/kWh, \$1.22/therm	SSPC-90.1 (Based on EIA national average)	Discount Rate - %	7.0	7.0
	Uniform present value factors Electricity:	Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2011, NIST annual update – (2011, Rushing et al.).	Loan Interest Rate - % Federal Tax Rate - %	7.0	7.0 34.0
nergy Price Escalation	18.88 Natural Gas:	The NIST uniform present value factors are multiplied by the first year annual energy cost to determine the present value of 30 years of energy costs and are based on a series of different annual escalation rates for 30 years.	State Tax Rate - %	5.0	5.0
	20.90	are based on a series of different annual escalation rates for 30 years.	Heating – Natural Gas Price, \$/therm	1.22	
nply higher expectations of inflation.		account expectations about the impact of inflation on future values. Higher nominal rates	Cooling - Electricity Price \$/kWh		0.1032
zero, real and nominal discount rates	are the same. Inflation is co	se defined in today's dolars in the calculations. This is not a quoted interest rate. If inflation aptured in the process of using constant dollar costs and the modified discount rate. costs other than energy. This is applied to replacement and maintenance costs through the	Scalar Ratio Limit	20.2	20.2



	Pacific NextInneed with the second s	C	ost Effe	ctive	ness R	tesult	S		Cific Northwest
			Prototype		ZA Houston			4A Baltimore	5A Chicago
	Net PV Savings - Standard 90.1-2010			Total	s9,500	\$12,700	\$10,400	\$6,100	\$14,300
	Compared to 90.1-2007		Small Office	\$/ft ²	\$1.73	\$2.31	\$1.89	\$1.11	\$2.60
	2000			Total	\$1,810,000	\$1,560,000	\$990,000	\$1,500,000	\$1,730,000
	100 Internet in the second		Large Office	S/ft ²	\$3,63	\$3.13	\$1.99	\$3.01	\$3.47
	3530			Total	\$110,000	\$95,600	\$99,200	\$74,000	\$121,000
Results &	Service procession and a service of the service of		Standalone Retail	\$/ft ²	\$4.46	\$3.87	\$4.02	\$3.00	\$4.90
	3920		Primary School	Total	\$205,000	\$195,000	\$354,000	\$197,000	\$307,000
Naut stars	5127		Primary School	\$/ft ²	\$2.77	\$2.64	\$4.79		
Next steps			Small Hotel	Total	\$304,450	\$328,000	\$316,000	\$284,700	
	2000 Marcella Carella Annual and Annual Annual		Sinan noter	\$/ft ²	\$7.05	\$7.59	\$7.31	\$6.59	\$7.52
	BODI SALARS CARDIN AND AND AND AND AND AND AND AND AND AN		Mid-rise Apt	Total	\$20,400	\$25,500	\$18,300	\$30,800	\$41,800
			marine spa	\$/ft ²	\$0.60	\$0.76	\$0.54	\$0.91	\$1.24
					Scalar Ratio (Lir				
			Small Office		9.7	6.5	8.7	14.1	5.9
			Large Office		4.8	5.8	7.2	5.9	3.1
			Standalone Retail		6.6	8.2	5.2	10.1	6.0
			Primary School		8.9	9.6	0.7	9.8	6.4
			Small Hotel		-23.4	-24.8	-24.8	-27.3	-27.9
		24	Mid-rise Apt		9.0	7.8	9.6	7.0	5.6


November 2015

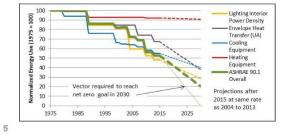
limate	Zones and	Locations	Pactfic Northwest Not (wards base to not
Climate Zone	Climate Zone Type	Representative City	2010/2013 14 20 14 2013 2013 2014 2015 2015 2015 2015 2015 2015 2015 2015
1A	Very Hot - Humid	Miami FL	Discusses process process pages pages pages process pr
1B	Very Hot - Dry	Riyadh, Saudi Arabia	Control
(2A)	Hot - Humid	Houston, TX	Exemptions 1 49% (1 49))))))))))))))))))))))))))))))))))))
2B	Hot - Dry	PhoenixAZ	10/2014 0.0155 (10/2014) 0.0155 (10/2014
C JA)	Warm - Humid	Memphis, TN	Petramentación ILANS JUZZE ULANS JUZZE ULANS JUZZE JULANS JUZZE ULANS ULANS ULANS ULANS JUZZE JUZZE
38	Warm - Dry	El Paso, TX	Settinge BLOYS (2129) 0.27%
3C	Warm - Marine	San Francisco, CA	Hardhouze 0.6465 0.000 2.3505 2.2986 0.465 0.000 0.4305 0.4305 0.4405 0.4406 0.4000 0.4465 0.4685 0.4685 0.4655 0.4255 0.
(4A)	Mixed - Humid	Baltimore, MD	casing growth and the starts (2014) 10045 10105 102
48	Mixed - Dry	Albuquerque NM	3000 (CER 100 CEP 210 CEP 120 CEP 200
4C	Mixed - Marine	Salem OR	Selected prototypes and climate zones give coverage of
(SA)	Cool - Humid	Chicago IL	prototype US construction weighting
5B	Cool - Dry	Boise ID	
5C	Cool - Marine	Vancouver, BC	79% of US construction in climate zones covered
6A	Cool - Humid	Burlington VT	38% of US construction in prototypes covered
6B	Cool - Dry	Helena MT	30% of US construction matches climate zone/prototype combination
7	Very Cold	Duluth, MN	Solver use of the second se
8	Subarctic	Fairbanks, AK	



			c	imate Locatior	×	
rototype		2A Houston	3A Memphis	3B El Paso	4A Baltimore	5A Chicago
	Savings	\$914	\$919	\$929	\$973	\$993
ffice	Savings/ft ²	\$0.17	\$0.17	\$0.17	\$0.18	\$0.18
ffice	Savings	\$140,209	\$129,662	\$99,546	\$124,939	\$110,379
	Savings/ft ²	\$0.28	\$0.26	\$0.20	\$0.25	\$0.22
one Retail	Savings	\$9,674	\$9,605	\$7,193	\$8,671	\$9,176
onervetan	Savings/ft ²	\$0.39	\$0.39	\$0.29	\$0.35	\$0.37
School	Savings	\$24,431	\$24,754	\$20,485	\$24,580	\$24,810
	Savings/ft ²	\$0.33	\$0.33	\$0.28	\$0.33	\$0.34
otel	Savings	\$6,075	\$5,773	\$5,514	\$5,209	\$5,320
otei	Savings/ft ²	\$0.14	\$0.13	\$0.13	\$0.12	\$0.12
e Apartment	Savings	\$1,608	\$1,845	\$1,498	\$2,069	\$2,593
e Apartment	Savings/ft ²	\$0.05	\$0.05	\$0.04	\$0.06	\$0.08

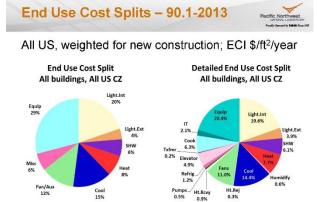
1 2 -		INSTICUAL LAS				
Prototype	Value	2A Houston	3A Memphis	3B El Paso	4A Baltimore	5A Chicago
Small Office	First Cost	\$10,624	\$8,749	\$9,923	\$15,112	\$8,621
Sinan Griter	\$/ft ²	\$1.93	\$1.59	\$1.80	\$2.75	\$1.57
Large Office	First Cost	\$446,971	\$517,591	\$451,173	\$491,567	\$248,0
Large Office	\$/ft ²	\$0.90	\$1.04	\$0.90	\$0.99	\$0.50
Standalone Retail	First Cost	\$52,140	\$62,041	\$38,255	\$69,601	\$49,33
Standalone Retail	\$/ft ²	\$2.11	\$2.51	\$1.55	\$2.82	\$2.00
Primary School	First Cost	\$134,160	\$149,396	\$15,611	\$149,768	\$106,11
Primary School	\$/ft ²	\$1.81	\$2.02	\$0.21	\$2.02	\$1.43
Small Hotel	First Cost	\$4,922	-\$5,113	-\$681	\$6,571	-\$8,76
Small Hotel	\$/ft ²	\$0.11	-\$0.12	-\$0.02	\$0.15	-\$0.20
Mid-rise Apartment	First Cost	\$20,858	\$20,858	\$20,858	\$20,858	\$20,85
who have Aparentent	\$/ft2	\$0.62	\$0.62	\$0.62	\$0.62	\$0.62

6.4.3.4 End Use Opportunity Analysis from Progress Indicator Results for ASHRAE Standard 90.1-2013. These slides are from the SSPC 90.1 at the ASHRAE Summer Conference in Seattle, Washington meeting.


 Prototypes and End Use Cost Energy Cost by End Use and Building Energy Cost Savings Climate Impact Heat Maps Potential Scores & Resources 	Pacific Notification	Outline	Pacific Northwest MERCIAL DASORADAY Insub Consul & Bilder Stor #0
Reid Hart, PE Pacific Northwest National Labs Codes Team Pacific Northwest National Labs Codes Team Pacific Northwest National Labs Codes Team	from Progress Indicator Results	 Energy Cost by End Use and Building Energy Cost Savings Climate Impact 	
ASHRAE SSPC 90.1 June, 2014 PNNL-SA-103561			

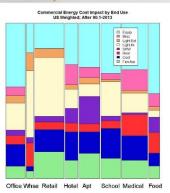
6

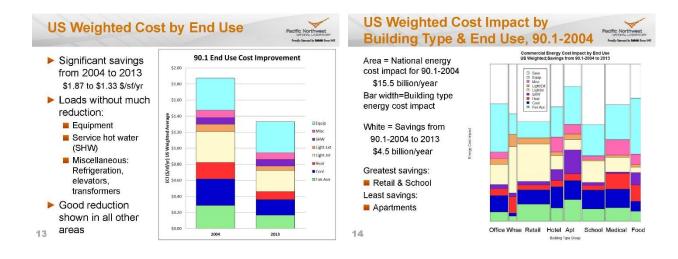
- Heating & cooling equipment efficiency
- Envelope UA
- Lighting Power Density



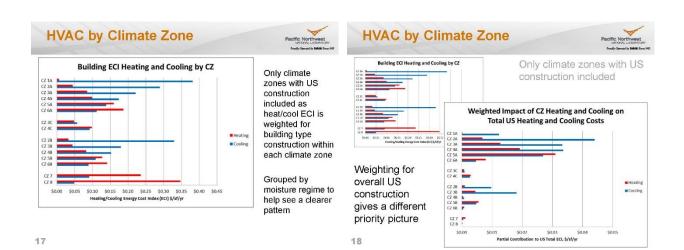
Pacific Northwest Mitoral LABORATORY Insde General by Baltie Sino 200

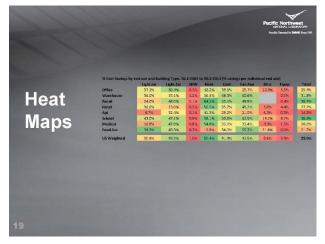
Further breakdown for Misc. & Equipment


Simple Breakdown	Detailed Breakdown	End Use Description
Light.int	Light.int	Interior Lighting
Light.ext	Light.ext	Exterior Lighting
SHW	SHW	Service Hot Water
10.00	Heat	Space Heating
Heat	Humidify	Humidification (Dehumidification in Heat and Cool)
	Cool	Mechanical Cooling (including unitary heat rejection)
Cool	Ht.Rej	Heat rejection, cooling towers (unitary is in cool)
	Fans	HVAC supply, return and exhaust fans
Fan.Aux	Ht.Rcvy	Heat recovery fan and wheel energy
	Pumps	Hydronic pumping, including SHW recirculation
	Refrig	Refrigeration equipment and kitchen refrigerators and freezers
Misc	Elevator	Elevators
	Txfmr	In-building transformers
	Cook	Cooking
Equip	IT	Computer room IT equipment and telephone equipment
	Equip	Other plug loads and equipment incl. non-kitchen refrigerators


US Weighted Cost Impact by Building Type & End Use, 90.1-2013


Area = National new building energy cost \$11 billion per year Bar width=Building type ECI impact Large areas: • Retail Lighting • Apt SHW • Med & Food Svc heating • Warehouse heating





9

ECI, Energy Cost Index, 90.1-2013

- "Heat map" shows higher remaining ECI darker red
- Weighted within each building type for CZ construction

Weighted average US building \$1.330/ft²/year

	Light.Int	Light.Ext	SHW	Heat	Cool	Fan.Aux	Misc	Equip	Total
Office	\$0.203	\$0.055	\$0.043	\$0.066	\$0.164	\$0.093	\$0.065	\$0.479	\$1.167
Warehouse	\$0.170	\$0.045	\$0.014	\$0.060	\$0.012	\$0.019		\$0.075	\$0.395
Retail	50.482	\$0.076	\$0.047	\$0.063	\$0.184	\$0.219		S0.209	\$1.281
Hotel	\$0.215	\$0.052	\$0.166	\$0.099	\$0.322	\$0.205	\$0.229	\$0.463	\$1.750
Apt	\$0.092	\$0.046	\$0.207	\$0.058	\$0.163	\$0.189	\$0.081	\$0.329	\$1.165
School	\$0.259	\$0.016	\$0.037	\$0.056	\$0.225	\$0.151	\$0.046	\$0.376	\$1.166
Medical	\$0.381	\$0.054	\$0.037	\$0.404	\$0.476	\$0.352	\$0.398	\$0.897	\$3.000
Food.Svc	\$0.371	\$0.175	\$0.806	\$1.078	\$0.668	\$0.656	\$0.690	\$3.679	58.124
US Weighted	\$0.263	\$0.052	\$0.082	\$0.103	\$0.193	\$0.166	\$0.085	S0.386	\$1.330

20

National Energy Cost Impact

- The national energy cost impact for each building type and end use is the contribution to US new building energy cost remaining after 90.1-2013
- Deeper red is higher impact

	Light.Int	Light.Ext	SHW	Heat	Cool	Fan.Aux	Misc	Equip	Total
Office	\$252M	\$69M	\$53M	\$81M	\$202M	\$115M	\$80M	\$593M	\$1,446M
Warehouse	\$235M	\$63M	\$19M	\$83M	\$16M	\$26M		\$104M	\$546M
Retail	\$834M	\$132M	\$82M	\$109M	\$318M	\$380M		\$361M	\$2,216M
Hotel	\$118M	\$29M	\$91M	\$55M	\$177M	\$113M	\$126M	\$255M	\$965M
Apt	\$124M	\$62M	\$279M	\$78M	\$219M	\$254M	\$109M	\$443M	\$1,568M
School	\$329M	\$21M	\$46M	\$71M	\$286M	\$192M	\$58M	\$477M	\$1,480M
Medical	\$246M	\$35M	\$24M	\$261M	\$308M	\$228M	\$257M	\$580M	\$1,939M
Food.Svc	\$38M	\$18M	\$83M	\$111M	\$69M	\$68M	\$71M	\$379M	\$837M
US Weighted	\$2.177M	\$428M	\$678M	\$848M	\$1.596M	\$1.375M	\$702M	\$3.192M	\$10.997M

21

- The percentage ECI reduction from 2004 to 2013
 Darker green is higher savings
 - Darker red is lesser savings

% Cost Savings by end use and Building Type, 90.1-2004 to 90.1-2013 (% savings per individual end use)

	Light.int	Light.Ext	SHW	Heat	Cool	Fan.Aux	Misc	Equip	Total
Office	37.1%	50.4%	0.3%	42.2%	39.5%	25.7%	10.0%	5.5%	25.4%
Warehouse	36.0%	33.1%	3.2%	36.4%	46.3%	50.6%		2.0%	31.8%
Retail	24.0%	48.0%	5.1%	64.2%	50.1%	49.9%		0.4%	36.7%
Hotel	36.6%	25.0%	0.3%	56.5%	35.7%	45.2%	5.8%	4.4%	27.2%
Apt	6.7%	32.4%	0.1%	41.3%	29.2%	21.0%	6.3%	0.3%	14.2%
School	43.0%	47.1%	0.9%	58.1%	50.0%	52.5%	19.2%	9.7%	38.5%
Medical	16.8%	47.0%	0.8%	54.8%	33.1%	33.4%	3.3%	1.5%	26.0%
Food.Svc	59.5%	43.3%	0.7%	15.9%	34.5%	55.7%	21.6%	0.0%	21.7%
US Waightad	20.0%	43 394	1 094	50.4%	41 494	43 594	9.6%	2 484	70.0%

22

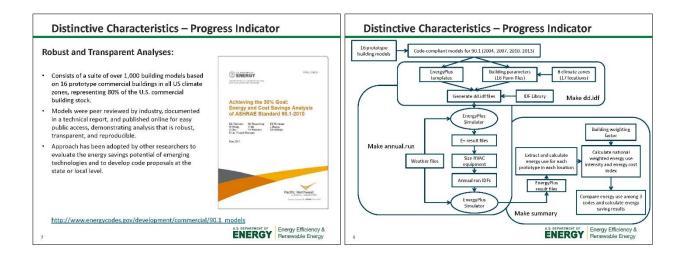
Focus Potential Score

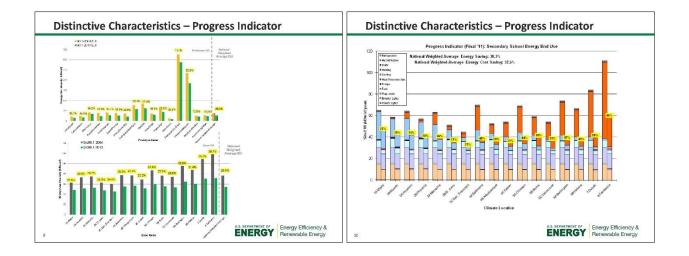
- To help focus where to look, a 'potential score'
 - 6 points for low savings from 90.1-2004 to 2013
 - 3 points for high individual average building type ECI
 3 points for high nationally weighted ECI

3 points for high nationally weighted ECT

Potential	Light.Int	Light.Ext	SHW	Heat	Cool	Fan.Aux	Misc	Equip
Office	5.9	3.5	6.4	4.1	5.3	5.4	6.1	10.8
Warehouse	5.7	4.4	6.0	4.4	3.2	3.1		6.7
Retail	10.5	4.0	6.3	2.8	5.2	5.6		8.6
Hotel	5.5	4.9	7.3	3.3	6.4	4.9	7.5	9.5
Apt	6.6	4.5	8.3	4.1	6.0	6.8	6.5	9.6
School	6.1	3.2	6.3	3.0	5.3	4.4	5.3	9.5
Medical	8.2	3.5	6.3	6.0	8.0	6.9	9.2	11.0
Food.Svc	4.7	4.5	9.3	8.4	7.1	5.8	7.9	10.4
US Weighted	7.1	4.0	6.7	3.8	5.3	5.2	4.1	9.2

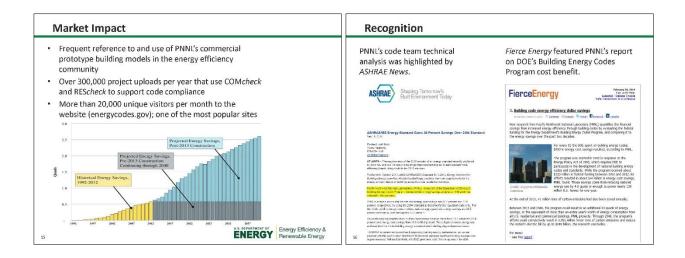
24





6.4.3.5 Building Energy Codes Program Overview. These slides are from the SSPC 90.1 at the ASHRAE Summer Conference in Seattle, Washington meeting.

PNNL's Technical Support PNNL's Approach Adoption **Deliver Impact** Development Compliance - Developing tasks to directly support DOE's codes program mission Standard 90.1 Collaboration with Guidance to states - Delivering impact for DOE and the country stakeholders International Energy Compliance software Conservation Code (IECC) State technical tools & resources Demonstrate Technical Leadership assistance Help Desk - Looking at challenges that go beyond the current scope of work in Analysis supporting State-level energy & Online and in-person order to break down barriers to further success for DOE DOE code proposals and Determinations cost analysis trainings - Understanding the challenges, analyzing various facets, and providing Code impacts analysis meaningful and relevant solutions - Maintaining necessary personnel and expertise to support DOE's needs **Disciplined Product Delivery** - Planning staff and resources at a detailed level ECC - Developing Product Delivery Plans for each deliverable to align with expectations - Ensuring that the products have high technical quality 0 Blane. ENERGY Energy Efficiency & Renewable Energy


Key Issues Currently Being Addressed	Distinctive Characteristics	,	
 Development: Exploring the performance-based metrics to unlock the additional energy savings beyond current and traditional approaches. Determining energy savings impact of the latest model codes in a timely fashion and understanding further potential savings. Adoption: Completed a comprehensive and first-of-its-kind cost-effectiveness analysis of ASHRAE Standard 90.1-2010 to bolster and accelerate commercial energy code adoption. Demonstrating to states and local jurisdictions the benefits of adopting the latest model codes. Compliance: Developing a tool to assist utilities in quantifying potential energy savings through code compliance. Publishing guidance, tools, and resources and providing ongoing technical assistance to states. 	 PNNL developed an innovative building energy simulation platform called the <i>Progress Indicator</i>: To quantitatively measure progress in Standard 90.1 during the 3-year code development cycle To conduct energy analysis for substantive code change proposals supported by DOE and 90.1 committee members To conduct analysis that supports DOE's Determination 	ra GTGE i po dal Tacal i po	Large Office Verture Verture Primey School Grandary School Kondary School Small Hord Small Hord Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture Verture </th

Distinctive Characteristics (continued)	Distinctive Characteristics (continued)
<text><text><list-item><list-item><list-item></list-item></list-item></list-item></text></text>	<text><list-item><list-item></list-item></list-item></text>

 Strong Record of PNNL's Technical Leadership: In-depth knowledge in buildings and code development process that leads to the success in advancing the code development Led and supported 35 of 110 addenda to Standard 90.1-2013 Developed language and supporting analysis for 60 proposals to the 2015 IECC with over 85% approval rate Published 4 journal articles and 5 technical reports 4 conference papers to be published at the ACEEE Summer Study and ASHRAE/IBPSA Energy Modeling Conference Deliver High Quality and Impactful Products: Completed 49 deliverables since FY13 All deliverables completed on time, within budget 		 Provide resources, tools, and methodology to unlock savings from code compliance: Developed a model to quantify DOE Codes Program impact and published code benefit assessment report (<u>http://linvuf.com/m5vaddf</u>) Developed compliance methodology and assisted DOE in issuing the Request for Information in the <i>Federal Register</i> Developed and released a new Utility Savings Calculator Tool that quantifies savings from improved code compliance for use by utility programs 	
	Energy Efficiency & Renewable Energy	14	Energy Efficiency & Renewable Energy

Recognition (continued)	Integration and Collaboration
I want to thank you and your staff for an excellent source document ¹ . This is most helpful in moving our rulemaking in New York State. - Joseph Hill, Assistant Director for Energy Services New York State Department of State	 Participate in the national codes and standards development processes to ensure the model codes provide the most energy efficient and cost-effective benefits to the consumer.
The assistance you and PNNL have provided for our work in Nebraska has been invaluable. As part of the team that is investigating the scale and source of demand savings available through increased code compliance, I appreciate the resources, experience and insights PNNL has brought to the table. They have been of great benefit to both the working group and the entire Nebraska Energy Code Compliance Collaborative.	 Collaborate through the National Energy Codes Collaborative, including NASEO, REEOs and BCAP. Actively engage stakeholders through workshops and webinars to get immediate market feedback.
- Chris Burgess, Technical Manager for Codes Compliance Midwest Energy Efficiency Alliance	Collaborate with the Commercial and Residential Building Integration Programs to carry the ready-for-the-mainstream technologies to code process.
te 1: PNNL's report on 90.1-2010 Cost-Effectiveness Analysis	
ENERGY Renewable Energy	18

	objective infor				Residential	Codes Cost-Effe	ctiveness Ana	lysis	
	al guidance to s			780812220	Alabama	Alaska	Arizona	Arkansas	
accelerate adoption and increase code compliance.			Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New York	Colorado	Connecticut	Delaware	District of Columbia		
	odes Cost-Effective	1.228		it um inform skinger	Georgia	Hawaii	Idaho	Indiana	
Alabama	Georgia	New Jersey	Texas	Annority indian wage values	lowa	Kansas	Kentucky	Louisiana	ENERGY (Section res) - And and the section of
rkansas	lowa	New York	Utah	November 2013	Maine	Massachusetts	Michigan	Minnesota	
olorado	Kentucky	North Carolina	Virginia		Mississippi	Missouri	Montana	Nebraska	New Yor Energy
Connecticut	Massachusetts	Oklahoma	Wisconsin		Nevada	New Hampshire	New Jersey	New Mexico	and Cost Savings
elaware	Montana	Rhode Island		Pacific Mathweet	New York	North Dakota	Ohio	Oklahoma	for New Single- and
С	Nebraska	South Carolina		And in the second second second	Pennsylvania	Rhode Island	South Carolina	South Dakota	Multifernity
ttp://www.ener	gycodes.gov/devel	opment/commercia	Il/cost effectiveness		Tennessee	Texas	Utah	Vermont	2012 IECC m Compared to
					Virginia	West Virginia	Wisconsin	Wyoming	In 1009 IECC

Next Steps and Future Plans	
Development Roadmap to explore the next generation of codes and standards Release 90.1-2013 prototype building models and supporting documentation Technical support for the development of Standard 90.1-2016 and 2018 IECC 	
Adoption Consumer benefits analysis of adoption of the 90.1-2013 standard State technical assistance Technical analyses to support the publication of DOE Determinations on the latest model codes (90.1-2013 and 2015 IECC)	REFERENCE SLIDES
Compliance • Streamline compliance process by leveraging REScheck/COMcheck software • Develop Codes training curriculum for 90.1-2013 and 2015 IECC • Support DOE compliance efforts and associated technical analysis • Implement 90.1-2013 and 2015 IECC in REScheck & COMcheck • Continue technical assistance to code officials and designers	
21 La SEMATHERITOR Energy Efficiency & Renewable Energy 222	2 Energy Efficiency & Energy Efficiency & Renewable Energy

Project	Budget						Project Plan and	Sch	edu	ıle								
-	get: see table be :: \$1.65M (Octob	er 2013 thr	ough March 20 t History	14)			Project Schodule	(act brei)	Active 7 Milesto Milesto	ted Work Fask für prop os/Deliverat ne/Deliverat (2013	xe (Odgo Xe (Actua B	ally Paro	02 (Jan-Mart 0) 03 (Jan-Mart 0) 03 (Jan-Mart 0)	10	tật (Ster Davi)	02 (Jan-Mart	P2015 (m;-m) (0	04 (Jai Srp)
	'2013 past)		2014 rrent)		(2015 anned)		Past Work 50.1-2013 Erenzy Sari ng Impact Ana yais	â	8	8	3	11	3	3	8	22	8	04
DOE \$4.8M	Cost-share \$0	DOE \$4.0M	Cost-share \$0	DOE TBD	Cost-share \$0		50.1-2010 Cost-Elflect veness Analysis						1					1
Ş4.0IVI	ŞŪ	\$4.0IVI	ŞU	TDD	ο¢		2015 FEE Code Charge Proposa's DOL Codes Program Benefit Assessment	-	-		•	•		-	-	+	-	+
							Current/Future Work Update Building Breasy Codes Cast-Affret venuss											¢.
							Methodology Revise: Compliance Wethodology	-	+		_	-				+		+
							50.1-2013 Cost-Ellectiveness Analysis											
			u	S. DEPARTMENT OF	Energy Efficiency &		RESuheuk New Version Release											\perp
				ENERGY	Renewable Energy	24	COM://eck.lsaw.Version.Belease											

6.4.4 ASHRAE Standard 90.2 Standards Committee Activities

The following sections are the minutes and transactions of SSPC 90.2 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014 and the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014.

6.4.4.1 SSPC 90.2 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014 The following paragraphs track the changes and discussion in the ASHRAE 90.2 Standard at the ASHRAE winter conference in New York, New York in 2014.

ASHRAE SSPC 90.2 Winter Meeting Draft Agenda New York, NY All meetings to be held at the New York Hilton Midtown 1335 Avenue of the Americas Main Committee Meetings Monday, 1/20/14, 2:15 p.m. – 6:15 p.m., Gramercy West, 2nd Floor (Hilton) Tuesday, 1/21/14, 1:00 p.m. – 5:00 p.m., New York, 4th Floor (Hilton)

Subcommittee

Envelope – Monday, 1/20/14, 6:30 p.m. – 9:15 p.m., Gramercy West, 2nd Floor (Hilton)
Envelope – Tuesday, 1/21/14, 8:00 a.m. – 12 NOON, New York, 4th Floor (Hilton)
Lighting – Monday, 1/20/14, 6:30 p. m. – 9:15 p.m., Harlem, 4th Floor (Hilton)
Lighting – Tuesday, 1/21/14, 8:00 a.m. – 12 NOON, Concourse B, Concourse Level (Hilton)
Mechanical – Monday, 1/20/14, 6:30 p.m. – 9:15 p.m., Hudson, 4th Floor (Hilton)
Mechanical – Tuesday, 1/21/14, 8:00 a.m. – 12 NOON, Concourse H. Concourse Level (Hilton)

Monday, January 20, 2:15- 6:15 p.m.

- Call to Order
- Welcome and Introductions

• Sign-in and Quorum Determination (28 PCVM which requires 15 members for a quorum.)

No.	Member	Position	6/30	Guests	Affiliation	6/30
1	Phillip Fairey	CHAIR		Aaron Stotko	Uponor	
2	Theresa Weston	VICE CHAIR		Andrew Moore	Mitsubishi Electric	
3	Paul Cabot	PRI ORG/AGA		Aniruddh Roy	AHRI	
3A	Jim Ranfone	ALT ORG/AGA		Ben Edwards	Mathis Consulting	
4	Kym Carey	PCVM		Bill Healy	NIST	
5	Roy Crawford	PCVM		Billy Hinton	NC Dept. of Insurance	
6	Craig Drumheller	PRI ORG/NAHB		Brian Lieburn	DOW Chemical	
6A	Don Surrena	ALT ORG/NAHB		Bridget Herring	Mathis Consulting	
7	Isaac Elnecave	PCVM		Bruce Layman		
8	Merle McBride	PCVM		Cathy Chappell	HGM	
9	Deborah Frankhouser	PRI ORG/IALD		Dave Ware	CEC	
10	Jeff Inks	PRI ORG/WDMA		Eric Makela	PNNL	
11	Jim Larsen	PCVM		Florian Antrelles	Franhofer	
12	Chris Mathis	PCVM		Harrison Skye	NIST	
13	Tom Meyer	PCVM		Jennifer Hatfield	APSP	
14	Harry Misuriello	PCVM		Jeremy Williams	DOE	
15	Ron Nickson	PCVM		Jim Crawford		
16	Jerry Phelan	PCVM		Jim Gelvin	PMI	
17	Steve Rosenstock	PRI ORG/EEI		Joe Hayden	Pella	
17A	Chuck Foster	ALT ORG/EEI		Jonathan Lemmond		
18	Larry Ross	PCVM		JR Babineau	JM	
19	Loren Ross	PRI ORG AWC		Julie Ferguson	ADI	
19A	Jim Bowman	ALT ORG/ AWC		Kristen Schafer	Schaefer Engr	
20	Bill Roy	PCVM		Michael Rosenberg	PNNL	

21	Amy Schmidt	PCVM	Michael Woodford	AHRI
22	Wayne Stoppelmoor	PCVM	Nancy McNabb	NIST
23	Steve Szoke	PRI ORG/PCA	Neil Leslie	GTI
24	Martha Van Geem	PCVM	Olga Livingston	PNNL
25	Richard Watson	PCVM	Patricia Rowley	GTI
			Patrick Crowley	SJC
	Allan Fraser	Consultant	Rahul Athalye	PNNL
	Mark Lessans	Consultant	Randal Higa	Southern CA Edison
	Max Sherman	Consultant	Roger LeBrun	Velux
	Jerry White	Consultant	Ron Burton	BOMA
	Johnathan Humble	Consultant	Ron Miller	
	Mark Modera	SPLS Liaison	Roseby Bean	SSPC 55
	Keith Emerson	TC 7.6 Liaison	Sean McDonald	PNNL
	Steve Ferguson	Staff Liaison	Shirley Ellis	ESL-TAMU
	Rita Harrold	IES Staff Liaison	Som Shrestra	ORNL
			Stephanie Reiniche	ASHRAE MOS
			Steve Skalko	
			Supriya Goel	PNNL
			Tania Ulah	NIST
			Tom Ponder	Certainteed

- Note taker
- Review Agenda
- Announcements
 - Bias and Conflict of Interest Forms Update with any changes Send to ASHRAE HQ
 - Information Item Residential Ad Hoc
 - SPC 189.2 meeting first meeting (Saturday 1-2 PM)
- Membership
 - New members effective February 1, 2014
 - Michael Jouaneh, Lutron Electronic Co. (Lighting subcommittee)
 - Michael Lubliner, Washington State University (Envelope Subcommittee)
 - Sanjeev Hingorani, Lennox Industries (Mechanical Subcommittee)
- Approval of minutes: Webinar October 28, 2013
- Report on Updated Work Plan (Theresa Weston/ Mark Modera)
- Presentation and discussion on Rule Set Options (Chris Mathis)
- Presentation on Comparative Analysis Adjustment Factors (Theresa Weston)
- Determination of "Performance Method" (McBride/PF)
 - Energy Use/Cost Intensity Method
 - Dual simulation method
- Invited presentation of EUI method (David Goldstein)

Tuesday, July 1, 1:00 – 5:00 pm

- Unfinished business from Monday
- Subcommittee Reports and Discussion
 - Envelope subcommittee (Merle McBride)
 - Lighting subcommittee (Wayen Stoppelmoor)
 - Mechanical subcommittee (Roy Crawford)
- New Business
- Develop Schedule for Webinars
- Next meeting: Seattle, WA June 30 July 1, 2014
- Adjourn

6.4.4.2 SSPC 90.2 at the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014

The following paragraphs track the changes and discussion in the ASHRAE 90.2 Standard at the ASHRAE summer conference in Seattle, Washington in 2014.

ASHRAE SSPC 90.2 Annual Meeting Draft Agenda

Seattle, WA All meetings to be held at the Sheraton 1400 Sixth Avenue Main Committee Meetings Monday, 6/30/14, 2:15 p.m. – 6:15 p.m., Metropolitan Ballroom A (3, Sheraton) Tuesday, 7/1/14, 1:00 p.m. – 5:00 p.m., Aspen (2, Sheraton)

Subcommittee

Envelope – Monday, 6/30/14, 2:15 p.m. – 6:15 p.m., Metropolitan Ballroom A (3, Sheraton) Envelope – Tuesday, 7/1/14, 1:00 p.m. – 5:00 p.m., Aspen (2, Sheraton)
Lighting – Monday, 6/30/14, 2:15 p.m. – 6:15 p.m., Metropolitan Ballroom A (3, Sheraton) Lighting – Tuesday, 7/1/14, 1:00 p.m. – 5:00 p.m., Aspen (2, Sheraton)
Mechanical – Monday, 6/30/14, 2:15 p.m. – 6:15 p.m., Metropolitan Ballroom A (3, Sheraton) Mechanical – Tuesday, 7/1/14, 1:00 p.m. – 5:00 p.m., Aspen (2, Sheraton)

Monday, June 30, 2:15-6:15 p.m.

- Call to Order
- Welcome and Introductions
- Sign-in and Quorum Determination (28 PCVM which requires 15 members for a quorum.)

No.	Member	Position	6/30	Guests	Affiliation	6/30
1	Phillip Fairey	CHAIR		Aaron Stotko	Uponor	
2	Theresa Weston	VICE CHAIR		Andrew Moore	Mitsubishi Electric	
3	Paul Cabot	PRI ORG/AGA		Aniruddh Roy	AHRI	
3A	Jim Ranfone	ALT ORG/AGA		Ben Edwards	Mathis Consulting	
4	Kym Carey	PCVM		Bill Healy	NIST	
5	Roy Crawford	PCVM		Billy Hinton	NC Dept. of Insurance	
6	Craig Drumheller	PRI ORG/NAHB		Brian Lieburn	DOW Chemical	
6A	Don Surrena	ALT ORG/NAHB		Bridget Herring	Mathis Consulting	
7	Isaac Elnecave	PCVM		Bruce Layman		
8	Merle McBride	PCVM		Cathy Chappell	HGM	
9	Deborah Frankhouser	PRI ORG/IALD		Dave Ware	CEC	
10	Jeff Inks	PRI ORG/WDMA		Eric Makela	PNNL	
11	Jim Larsen	PCVM		Florian Antrelles	Franhofer	
12	Chris Mathis	PCVM		Harrison Skye	NIST	
13	Tom Meyer	PCVM		Jennifer Hatfield	APSP	
14	Harry Misuriello	PCVM		Jeremy Williams	DOE	
15	Ron Nickson	PCVM		Jim Crawford		
16	Jerry Phelan	PCVM		Jim Gelvin	PMI	
17	Steve Rosenstock	PRI ORG/EEI		Joe Hayden	Pella	
17A	Chuck Foster	ALT ORG/EEI		Jonathan Lemmond		
18	Larry Ross	PCVM		JR Babineau	JM	
19	Loren Ross	PRI ORG AWC		Julie Ferguson	ADI	
19A	Jim Bowman	ALT ORG/ AWC		Kristen Schafer	Schaefer Engr	
20	Bill Roy	PCVM		Michael Rosenberg	PNNL	
21	Amy Schmidt	PCVM		Michael Woodford	AHRI	
22	Wayne Stoppelmoor	PCVM		Nancy McNabb	NIST	
23	Steve Szoke	PRI ORG/PCA		Neil Leslie	GTI	
24	Martha Van Geem	PCVM		Olga Livingston	PNNL	
25	Richard Watson	PCVM		Patricia Rowley	GTI	

26	Michael Jouaneh	PCVM	Patrick Crowley	SJC
27	Michael Lubliner	PCVM	Rahul Athalye	PNNL
28	Sanjeev Hingorani	PCVM	Randal Higa	Southern CA Edison
			Roger LeBrun	Velux
	Allan Fraser	Consultant	Ron Burton	BOMA
	Mark Lessans	Consultant	Ron Miller	
	Max Sherman	Consultant	Roseby Bean	SSPC 55
	Jerry White	Consultant	Sean McDonald	PNNL
	Johnathan Humble	Consultant	Shirley Ellis	ESL-TAMU
	Mark Modera	SPLS Liaison	Som Shrestra	ORNL
	Keith Emerson	TC 7.6 Liaison	Stephanie Reiniche	ASHRAE MOS
	Steve Ferguson	Staff Liaison	Steve Skalko	
	Rita Harrold	IES Staff Liaison	Supriya Goel	PNNL
			Tania Ulah	NIST
			Tom Ponder	Certainteed
			David Goldstein	NRDC
			David Shepherd	PCA

- Note taker
- Review Agenda
- Announcements
 - o Bias and Conflict of Interest Forms Update with any changes Send to ASHRAE HQ
- Membership
 - New members effective July 3, 2014:

Harry Misuriello: primary organizational member for ACEEE in general interest category with mechanical subcommittee assignment

David Shepherd: alternate organizational for PCA in industry category with envelope subcommittee assignment

David Goldstein: PCVM in general interest category with lighting subcommittee assignment

- Approval of Minutes
 - Webinar March 19, 2014
 - o Webinar May 21, 2014
- Presidential Ad Hoc on Residential Construction Market Final Report (Max Sherman)
- Discussion of 90.2 goals with respect to Ad Hoc report findings
 - Rigorous performance compliance standard (current 90.2 objective)
 - Collaborative partners (RESNET, ACCA, ICC)
 - Zero energy advanced energy design guide
 - o Multifamily and 90.1, 62.2/62.1 coordination/collaboration
 - Discussion of concepts for moving forward
 - Collaborative partners
 - Modeling & simulation rule set
 - Home size adjustment
 - Sub-committee charge (performance verification, etc.)

Tuesday, July 1, 1:00 – 5:00 pm

- Subcommittee Reports and Discussion
 - Envelope subcommittee (Merle McBride)
 - Lighting subcommittee (Wayne Stoppelmoor)
 - Mechanical subcommittee (Roy Crawford)
- New Business
- Develop Schedule for Webinars
- Next Meeting:
- Adjourn

6.4.5 ASHRAE Standard 189.1 Standards Committee Activities

The following sections are the minutes and transactions of SSPC 189.1 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014 and the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014.

6.4.5.1 SSPC 189.1 at the ASHRAE Winter Conference in New York, New York, January 18-20, 2014

The following paragraphs track the changes and discussion in the ASHRAE 189.1 Standard at the ASHRAE winter conference in New York, New York in 2014.

ASHRAE/USGBC/IES SSPC 189.1, Standard for High-Performance Green Buildings Except Low-Rise Residential Buildings Annual Meeting, New York

January 18-20, 2014 Meeting Minutes

(Draft)

These draft minutes must be approved by this committee to be the official approved record

Tuesday, January 21, 2014:

	Voting_Members		Non-Voting Members	
1	Persily, Andrew, Chair	Y	Arunachlam, Senthil	
2	Heinisch, Richard, Vice Chair	Y	Bertuch, Charles	Y
3	Schoen, Larry, Vice Chair	Y	Boldt, Jeff	Y
4	Alevantis, Leon		Cline, Daryn	Y
5	Bowman, Jim	Y	Conrad, Ernest (BOMA-Alt)	Y
6	Burgett, Lee	Y	Gallo, Francis	
7	Burton, Ron (BOMA)	Y	Haglid, Klas	
8	Contoyannis, Dimitri	Y	Johnson, Greg	Y
9	Crawley, Dru		Koeller, John	
10	Cross, John	Y	Meyer, Tom	
11	Dolin, Jennifer	Y	Molnar-Port, Darren	
12	Eley, Charles (AIA)	Y	Paliaga, Gwelen	
13	Floyd, Anthony		Polukoshko, Lori	Y
14	Gitlin, Susan	Y	Riddle, Joseph	
15	Gress, Gregg	Y	Schmeida, Michael	Y
16	Horn, Donald	Y	Seyffer, Charles	Y
17	Hubbard, Roy	Y	Sovocool, Kent	
18	Josh Jacobs	Y	Stanke, Dennis	
19	Jouaneh, Michael		Sullens, Wesley	Y
20	Lawrence, Tom	Y	Swatkowski, Len	
21	Leslie, Neil	Y	Whittet, Dan	
22	Lord, Richard	Y		
23	McBride, Merle	Y		
24	McClendon, Jim		Consultants	
25	McGuire, Molly		Mathis, Chris	
26	McHugh, Jonathan	Y	Rhode, Jane	
27	Pape, Thomas		Hsieh, Chris	Y
28	Rainey, Teresa	Y		
29	Rosenstock, Steve	Y		

30	Ross-Bain, Jeff		Liaisons	
31	Setty, Boggarm	Y	Harrold, Rita SPLS, IES	Y
32	Stoppelmoor, Wayne	Y	Owens, Brendan USGBC	
33	Taber, Christian		Kohout, Frank SSPC 154	
34	VanGeem, Martha	Y	Etheredge, Bert ASHRAE	Y
35	Viola, David			
36	Williams, David			
37	Zhang, Jian	Y		

Guests	Guests	
Schwartz, Jerry	Case, Michael	
Rose, Loren	Mukhopadhyay, Jaya	
Frisino, Angela	Braun, Marc	
Higa, Randall	Thorp, Ellen	
Hayden, Joe	Delmonaco, James	
Cavazos, Josue	Wagner, Greg	
Culp, Tom	Nelson, Ron	
Galvin, James	Potter, Gary	
Caremer, Thom	Fang, Xia	
Volkman, Paul	Welford, Bede	
Rockwell, Kurmit		
Tucker, Doug		
McNabb, Nancy		

	Voting Members		Non-Voting Members	
1	Persily, Andrew, Chair	Y	Arunachlam, Senthil	
2	Heinisch, Richard, Vice Chair	Y	Bertuch, Charles	Y
3	Schoen, Larry, Vice Chair	Y	Boldt, Jeff	Y
4	Alevantis, Leon		Cline, Daryn	Y
5	Bowman, Jim	Y	Conrad, Ernest (BOMA-Alt)	Y
6	Burgett, Lee	Y	Gallo, Francis	Y
7	Burton, Ron (BOMA)	Y	Haglid, Klas	
8	Contoyannis, Dimitri		Johnson, Greg	Y
9	Crawley, Dru	Y	Koeller, John	
10	Cross, John	Y	Meyer, Tom	
11	Dolin, Jennifer	Y	Molnar-Port, Darren	
12	Eley, Charles (AIA)	Y	Paliaga, Gwelen	
13	Floyd, Anthony		Polukoshko, Lori	Y
14	Gitlin, Susan	Y	Riddle, Joseph	
15	Gress, Gregg	Y	Schmeida, Michael	Y
16	Horn, Donald	Y	Seyffer, Charles	Y
17	Hubbard, Roy	Y	Sovocool, Kent	
18	Josh Jacobs	Y	Stanke, Dennis	Y
19	Jouaneh, Michael		Sullens, Wesley	Y
20	Lawrence, Tom	Y	Swatkowski, Len	
21	Leslie, Neil	Y	Whittet, Dan	
22	Lord, Richard	Y		
23	McBride, Merle	Y		
24	McClendon, Jim		Consultants	
25	McGuire, Molly		Mathis, Chris	Y
26	McHugh, Jonathan	Y	Rhode, Jane	
27	Pape, Thomas		Hsieh, Chris	Y
28	Rainey, Teresa	Y		
29	Rosenstock, Steve	Y		
30	Ross-Bain, Jeff		Liaisons	
31	Setty, Boggarm	Y	Harrold, Rita SPLS, IES	Y
32	Stoppelmoor, Wayne	Y	Owens, Brendan USGBC	
33	Taber, Christian		Kohout, Frank SSPC 154	
34	VanGeem, Martha	Y	Etheredge, Bert ASHRAE	Y
35	Viola, David			
36	Williams, David			
37	Zhang, Jian	Y		

Wednesday, January 22, 2014:

Guests	Guests	
Novosel, Davor	Roy, Aniruddh	
Foster, Chuck	Humble, Jonathan	
Hassan, Samer	Hayden, Joe	
Culp, Tom	Cavazos, Josue	
Zaremba, Thom	Craig, Tyler	
DeMarco, Pete	Hast, Reid	
McNabb, Nancy	Trant, Troy	
Papageorge, Andrea		

List of Motions

Note: All vote counts are listed as [*For* – *Against* – *Abstain*]

1/21/2014 (7:30am – 9:30am Eastern)

Motion 1 was made by Ron Burton and seconded by Lee Burgett to approve the minutes from the 12/19/2013 and January 7, 2014 SSPC meeting. The motion passes by hand vote (23-0-1) with the Chair abstaining.

Motion 2 was made by Susan Gitlin and seconded by Josh Jacobs to recommend the waste management language be submitted for a code change proposal to the IgCC. The motion passes by hand vote (23-0-2) with the Chair and Lee Burgett abstaining.

Motion 3 was made by Wayne Stoppelmoor and seconded by Bogi Setty to recommend the vertical fenestration language be submitted for a code change proposal to the IgCC. The motion passes by hand vote (23-0-2) with the Chair and Richard Heinisch abstaining.

Motion 4 was made by Richard Heinisch and seconded by Ron Burton to recommend the approval of the response to the comment made on addendum ao as shown on 1/21/2014. The motion was approved by hand vote (25-0-1), with the Chair abstaining.

Motion 5 was made by Richard Heinisch and seconded by Josh Jacobs to recommend WG08DA23-Moisture Control (addendum bx) for publication public review as shown and modified on 1/21/2014. The motion stands by roll call vote (22-0 -1), with the Chair abstaining, pending outcome of a continuation letter ballot.

1/22/2014 (8:00am-12:00pm Eastern)

Motion 6 was made by Jenn Dolin and seconded by Tom Lawrence to recommend the approval of the response to the comment made on addendum ad as shown on 1/22/2014. The motion was approved by hand vote (23-0-1), with the Chair abstaining.

Motion 1 postponed from 1/7/2014 was made by Anthony Floyd and seconded by David Williams to recommend for publication public review of an ISC to addendum aj as shown on 1/22/2014. The motion stands by roll call vote (22-0 -2), with the Chair abstaining, pending outcome of a continuation letter ballot.

Motion 7 was made by Susan Gitlin and seconded by Larry Schoen to recommend the approval of the responses to the comments made on addendum aj as shown on 1/22/2014. The motion was approved by hand vote (23-0-1), with the Chair abstaining.

Motion 8 was made by Larry Schoen and seconded by Richard Heinisch to modify motion 7 by deleting Section 8.3.1.5.2 from addendum by. The motion was approved by hand vote (22-0-2) with the Chair and Jian Zhang abstaining.

Motion 8.5 was made by Larry Schoen and seconded by Richard Heinisch to modify motion 8 by deleting Section 8.3.1.5.2 from addendum by. The motion was approved by hand vote (22-0-2) with the Chair and Jian Zhang abstaining.

Motion 9 was made by Tom Lawrence and seconded by Jenn Dolin to recommend WG10DA15-Vehicle Emission (addendum bz) for publication public review as shown and modified on 1/21/2014. The motion stands by roll call vote (21-0-2), with the Chair abstaining, pending outcome of a continuation letter ballot.

Motion 10 was made by Jon McHugh and seconded by Jim Bowman to recommend an ISC to addendum an for publication public review as shown and modified on 1/21/2014. The motion stands by roll call vote (23-0-2), with the Chair abstaining, pending outcome of a continuation letter ballot.

Motion 11 was made by Steve Rosenstock and seconded by Jian Zhang to recommend the approval of the responses to the comments made on addendum an as shown on 1/22/2014. The motion was approved by hand vote (23-0-1), with the Chair abstaining.

Motion 12 was made by Martha VanGeem and seconded by Merle McBride to recommend the modifications to WG7DA40 (addendum bw) for publication public review as shown and modified on 1/22/2014. The motion stands by roll call vote (23-0-1), with the Chair abstaining, pending outcome of a continuation letter ballot.

Motion 13 was made by Jon McHugh and seconded by Ron Burton to recommend the modifications to WG7DA44 (addendum bq) for publication public review as shown and modified on 1/22/2014. The motion stands by roll call vote (23-0-1), with the Chair abstaining, pending outcome of a continuation letter ballot. **Motion 14** was made by Martha VanGeem and seconded by Merle McBride to recommend the approval of the responses to the comments made on addendum "as" as shown on 1/22/2014. The motion was approved by hand

vote (23-0-3), with the Chair, Lee Burgett and Jian Zhang abstaining. **Motion 15** was made by Martha VanGeem and seconded by Ron Burton to recommend addendum am be

discontinued. The motion stands by roll call vote (21-1-3), with the Chair abstaining, pending outcome of a continuation letter ballot.

Motion 16 was made by Martha VanGeem and seconded by Roy Hubbard to recommend the response, "accept", to CMP 13-12-0002/001, Jonathan Humble (Cool Roof Rating Council reference) as shown on 1/22/2014. The motion was approved by hand vote (22-0-1) with the Chair abstaining.

Motion 17 was made by Martha VanGeem and seconded by Merle McBride to recommend the response, "accept", to CMP 13-12-0006/001, Michael Ivanovich (7.4.3.5 fan efficiency requirements) as shown on 1/22/2014. The motion was approved by hand vote (22-0-1) with the Chair abstaining.

1/21/2014 (7:30 a.m. to 9:30 a.m. Eastern time)

- Call to order
- Logistics Staff
 - o Bias/conflict announcement
 - Voting members (Alevantis, Bowman, Burgett, Burton, Contoyannis, Crawley, Cross, Dolin, Eley, Floyd, Gitlin, Gress, Heinisch, Horn, Hubbard, Jacobs, Jouaneh, Lawrence, Leslie, Lord, McBride, McClendon, McGuire, McHugh, Pape, Persily, Rainey, Rosenstock, Ross-Bain, Schoen, Setty, Stoppelmoor, Taber, VanGeem, Viola, Williams, Zhang)
 - Guest Introductions
- Review Agenda
- Review of Action Items Persily
- Chair's Report Persily
 - It was announced that ASHRAE publications will be using 189.1-2014 to test some new ideas, but no more specifics were given.
 - The Chair announced that the SSPC will be reconsidering addenda that previously received "no" votes for publication/public review in order to comply with ANSI regulations.
 - If WG leaders are concerned about or receive complaints about the SSPC violating ANSI procedures please contact Andy Persily. The Chair wants WGs to concentrate on technical content and not get sidetracked by procedural tangents.
- Approval of Meeting Minutes
 - Meeting minutes from December 19, 2013 and January 7, 2014.
 - **Motion 1** was made by Ron Burton and seconded by Lee Burgett to approve the minutes from the 12/19/2013 and January 7, 2014 SSPC meeting. The motion passes by hand vote (23-0-1) with the Chair abstaining.
- User's Manual Ad Hoc Burgett
 - 90.1 User's Manual is close to being completed. SSPC 189.1 should use this as a resource in the development of its User's Manual.
 - It was noted that WGs should start preparing language for the User's Manual. The members of 90.1 are finding out that doing this is much easier than marking up language provided by the contractor.
- Membership update Persily
 - Larry Schoen has agreed to lead the Adhoc group.
 - Membership recommendations are due to the ASHRAE Standards Committee by May 9, 2014.
- **RFI** status
 - None pending
- CMP status

- o 13-12-0007/001, Ed Light (remove IAQ testing), assigned to WG8
- o 13-12-0006/001, Michael Ivanovich (7.4.3.5 fan efficiency requirements), assigned to WG7
- o 13-12-0005/001, Merle McBride (envelope tables), assigned to WG7
- o 13-12-0002/001, Jonathan Humble (Cool Roof Rating Council reference), assigned to WG7
- o 14-12-0001/001, Jerry Schwartz (renewable energy biomass), assigned to WG7

• Addenda Status Update

- Staff preparing galleys for publication approval: m, o, af, ag, ah, ap, at, av
- PC voted for PPR: w-ISC, al-ISC, bg, bk, bl, bm
- Public Review scheduled to start January 3, 2014: ae-ISC, ax, ay, bb, bc, bd, be, bf, bg, bh, bi, bj,
- o Outstanding PR comments: p, v, ad, ai, aj, am, an, ao, aj, aq, as, aw
- PC vote for PPR approved: aw-ISC, bn, bo, bp, br, bs, bt, bu, bv, bw
- PC vote for PPR pending: bq

• Approval of IgCC Proposals

- o Waste Management
 - The waste management proposal, developed by Wes Sullens, would revise sections 406 and 503 in the IgCC
 - Brief overview was provided by Wes Sullens.
 - Motion 2 was made by Susan Gitlin and seconded by Josh Jacobs to recommend the
 waste management language be submitted for a code change proposal to the IgCC. The
 motion passes by hand vote (23-0-2) with the Chair and Lee Burgett abstaining.
- Vertical Fenestration
 - The vertical fenestration proposal would revise section 605 of the IgCC.
 - Brief overview was provided by Tom Culp
 - Motion 3 was made by Wayne Stoppelmoor and seconded by Bogi Setty to recommend the vertical fenestration language be submitted for a code change proposal to the IgCC. The motion passes by hand vote (23-0-2) with the Chair and Richard Heinisch abstaining.
 - There was an editorial revision made.

Presentation on DOD Criteria on High Performance and Sustainable Buildings

- George Lea, U.S. Army Corps of Engineers
 - 89.1 was considered for adoption for all army new construction; however there were some conflicts that needed to be addressed. This presentation is to inform the committee of what the DOD criteria that were adopted.

• Addenda for PPR discussion/approval (non-contentious)

- WG 5
 - Addendum ad-ISC
 - Susan Gitlin gave an overview
 - Opinions expressed during discussion
 - How can the gravel between the pavers be cleaned?
 - This proposal will need some additional work
- WG8
 - Response to comment made on addendum ao
 - Brief overview was provided by Richard Heinisch.
 - Motion 4 was made by Richard Heinisch and seconded by Ron Burton to recommend the approval of the response to the comment made on addendum ao as shown on 1/21/2014. The motion was approved by hand vote (25-0-1), with the Chair abstaining.
 - WG08DA23
 - Brief overview was provided by Richard Heinisch and Michael Schmeida.

 Motion 5 was made by Richard Heinisch and seconded by Josh Jacobs to recommend WG08DA23-Moisture Control (addendum bx) for publication public review as shown and modified on 1/21/2014. The motion stands by roll call vote (22-0 -1), with the Chair abstaining, pending outcome of a continuation letter ballot.

• Action Items

o January 21-22, 2014

AI 1: Call for members to be sent out by ASHRAE staff. - Complete

AI 2: Bert Etheredge and Andy Persily to determine the best time to reschedule the April 29th meeting

o January 7, 2014

AI 1: Committee to provide Anthony Floyd, David Williams, and Susan Gitlin suggestions on the definition of low emission, hybrid and electric vehicles prior to January 11th. – **Complete** AI 2: Committee to provide suggestions to Jeff Ross-Bain on WG10DA15 by January 11th. – **Complete**

AI 3: Chair to transmit official committee responses on p and ai to commenters. - Complete

1/22/2014 (8:00 a.m. to 12 NOON Eastern Time)

- Call to order
- Logistics Staff
 - Bias/conflict/sign-in
 - Bias/conflict announcement
 - Voting members (Alevantis, Bowman, Burgett, Burton, Contoyannis, Crawley, Cross, Dolin, Eley, Floyd, Gitlin, Gress, Heinisch, Horn, Hubbard, Jacobs, Jouaneh, Lawrence, Leslie, Lord, McBride, McClendon, McGuire, McHugh, Pape, Persily, Rainey, Rosenstock, Ross-Bain, Schoen, Setty, Stoppelmoor, Taber, VanGeem, Viola, Williams, Zhang)
 - Guest Introductions
- New Business
 - Working Group Reports
 - WG 5
 - Addendum ad comments
 - Brief Overview provided by Susan Gitlin
 - The comment was to revise the language in Section 10, such that all the maintenance for material be moved to Section 5
 - **Motion 6** was made by Jenn Dolin and seconded by Tom Lawrence to recommend the approval of the response to the comment made on addendum ad as shown on 1/22/2014. The motion was approved by hand vote (23-0-1), with the Chair abstaining.
 - Addendum aj-ISC, postponed motion from 1/7/14 web meeting
 - o Brief overview provided by Susan Gitlin and Jenn Dolin
 - Motion 1 postponed from 1/7/2014 was made by Anthony Floyd and seconded by David Williams to recommend for publication public review of an ISC to addendum aj as shown on 1/22/2014. The motion stands by roll call vote (22-0 -2), with the Chair abstaining, pending outcome of a continuation letter ballot.
 - Opinions expressed during discussion

- Does a Smartway vehicle get a window decal or sticker? It could but EPA does not currently provide stickers
- This is a list of US vehicles only but it is very comprehensive.
- What is the earliest model covered by the database? 2002 maybe the earliest models covered.
- The Smartway website has a list organized by model.
- The intent was not to push for exclusive/elite vehicles but try to push a more inclusive list of low emission vehicles.
- The list is updated annually.
- Responses to comments made on addendum aj
 - **Motion 7** was made by Susan Gitlin and seconded by Larry Schoen to recommend the approval of the responses to the comments made on addendum aj as shown on 1/22/2014. The motion was approved by hand vote (23-0-1), with the Chair abstaining.
- WG 8
 - WG08DA26
 - o Brief overview provided by Richard Heinisch
 - Motion 8 was made by Gregg Gress and seconded by Richard Heinisch to recommend WG08DA26-Building Pressure (addendum by) for publication public review as shown and modified on 1/21/2014. The motion stands by roll call vote (22-0 -3), with the Chair abstaining, pending outcome of a continuation letter ballot.
 - Opinions expressed during discussion
 - These requirements could be a little onerous.
 - Standard 90.1 handles this issue very well and should be referenced.
 - The damper leakage rates in Standard 90.1 are low enough.
 - A public review will help determine if the leakage rates are in fact too low.
 - AMCA is a trade association that makes leakage recommendation. These levels could be referenced as a possible tradeoff
 - An exemption for damper leakage should be added.
 - An exception could be added in Section 7 to exempt the Standard 90.1 reference that requires all dampers for economizers be motorized.
 - Gravity dampers will not open up at far as motorized dampers resulting in air drag.
 - Is it cost effective for a 3 ton unit or if there are multiple units on a roof top? This addendum would require that all of them have motorized dampers.
 - Motion 8.5 was made by Larry Schoen and seconded by Richard Heinisch to modify motion 8 by deleting Section 8.3.1.5.2 from addendum by. The motion

was approved by hand vote (22-0-2) with the Chair and Jian Zhang abstaining.

- WG 10
 - WG10DA15 (Vehicle emissions)
 - o Pollution Mitigation discussion
 - What issue does addendum resolve that addendum bz didn't? This proposal addresses a different issue of indoor pollution.
 - This language is meant to prevent someone from parking a generator or concrete truck next to the intake of a neighboring retail building that is already occupied.
 - This language is unenforceable. There are areas where a street out front of the site would fall under this requirement. How can you restrict street traffic?
 - This requirement falls only within the project site.
 - This may also create a situation where neighboring buildings may extort favors etc. from the construction site. This language limits the location of the exhaust of the equipment and not the equipment itself, so a builder could pipe the exhaust without having to move the equipment.
 - This never came out of WG 10 with a large consensus.
 - Brief overview provided by Tom Lawrence
 - Motion 9 was made by Tom Lawrence and seconded by Jenn Dolin to recommend WG10DA15-Vehicle Emission (addendum bz) for publication public review as shown and modified on 1/21/2014. The motion stands by roll call vote (21-0-2), with the Chair abstaining, pending outcome of a continuation letter ballot.
 - Opinions expressed during discussion
 - The working group voted 8-0-1 for the language shown.
 - This is the first iteration of this addendum that has requirements that are enforceable.
 - The signage requirement is too loose.
 - States already have law limiting idling. This language was meant to compliment the laws already on the books.
 - This language is much easier to comply with than what was included in the previous draft.
 - This requirement is pointed toward the project owner.

BREAK FOLLOWED BY COMMITTEE PHOTO

- $\circ \quad \text{Report from wood ad hoc} \\$
 - Brief report provided by Neil Leslie
- WG 7
 - CMP 13-12-0006/001, Michael Ivanovich (7.4.3.5 fan efficiency requirements)
 - Brief overview provided by Martha VanGeem
 - Motion 17 was made by Martha VanGeem and seconded by Merle McBride to recommend the response, "accept", to CMP 13-12-0006/001, Michael Ivanovich (7.4.3.5 fan efficiency requirements) as shown on 1/22/2014. The motion was approved by hand vote (22-0-1) with the Chair abstaining.
 - CMP 13-12-0002/001, Jonathan Humble (Cool Roof Rating Council reference)
 - Brief overview provided by Martha VanGeem

- Motion 16 was made by Martha VanGeem and seconded by Roy Hubbard to recommend the response, "accept", to CMP 13-12-0002/001, Jonathan Humble (Cool Roof Rating Council reference) as shown on 1/22/2014. The motion was approved by hand vote (22-0-1) with the Chair abstaining.
- Addendum as responses
 - Brief overview was provided by Martha VanGeem.
 - The WG was almost unanimous
 - Motion 14 was made by Martha VanGeem and seconded by Merle McBride to recommend the approval of the responses to the comments made on addendum "as" as shown on 1/22/2014. The motion was approved by hand vote (23-0-3), with the Chair, Lee Burgett and Jian Zhang abstaining.
 - Opinions expressed during discussion
 - AHRI feels that the standard will violate Federal Preemption if adopted as a minimum code.
- Addendum am update
 - Brief overview was by Martha VanGeem
 - Motion 15 was made by Martha VanGeem and seconded by Ron Burton to recommend addendum am be discontinued. The motion stands by roll call vote (21-1-3), with the Chair abstaining, pending outcome of a continuation letter ballot.
- Addenda bq corrections
 - Brief overview was provided by Dick Lord and Martha VanGeem.
 - Motion 13 was made by Jon McHugh and seconded by Ron Burton to recommend the modifications to WG7DA44 (addendum bq) for publication public review as shown and modified on 1/22/2014. The motion stands by roll call vote (23-0-1), with the Chair abstaining, pending outcome of a continuation letter ballot.
 - \circ These corrections make the table much more useable.
- Addenda bw corrections
 - Brief overview was provided by Martha VanGeem.
 - Motion 12 was made by Martha VanGeem and seconded by Merle McBride to recommend the modifications to WG7DA40 (addendum bw) for publication public review as shown and modified on 1/22/2014. The motion stands by roll call vote (23-0-1), with the Chair abstaining, pending outcome of a continuation letter ballot.
- WG 7.5
 - Addendum an responses
 - Brief overview was provided by Charles Eley.
 - Motion 11 was made by Steve Rosenstock and seconded by Jian Zhang to recommend the approval of the responses to the comments made on addendum an as shown on 1/22/2014. The motion was approved by hand vote (23-0-1), with the Chair abstaining.
 - Addendum an-ISC
 - Brief overview was provided by Charles Eley.
 - We received a significant number of comments during the public review.

- This ISC will delete Wood and Wood Waste, and Biomass from the table. These two fuels would now fall under the requirement for other fuels as specified in the table
- The wood industry supported these changes. The addendum also received unanimous support.
- Motion 10 was made by Jon McHugh and seconded by Jim Bowman to recommend an ISC to addendum an for publication public review as shown and modified on 1/21/2014. The motion stands by roll call vote (23-0-2), with the Chair abstaining, pending outcome of a continuation letter ballot.
 - Opinions expressed during discussion
 - The wood industry does not like the current numbers and is willing work with the committee going forward.
 - This is an unusually complex issue with talks continuing with not only the wood industry but also others that have interest.

- Unfinished Business
- Next Meeting
 - Currently scheduled web meetings:

January 28, February 25, March 25, April 29 and May 27

• Adjournment

6.4.5.2 SSPC 189.1 at the ASHRAE Summer Conference in Seattle, Washington, June 26-30, 2014

The following paragraphs track the changes and discussion in the ASHRAE 189.1 Standard at the ASHRAE summer conference in Seattle, Washington in 2014.

ASHRAE/USGBC/IES SSPC 189.1, Standard for High-Performance Green Buildings Except Low-Rise Residential Buildings Annual Meeting, Seattle July 1& 2, 2014 Meeting Minutes (Draft) be must be approved by this committee to be the officia

These draft minutes must be approved by this committee to be the official approved record

Tuesday, July 1, 2014:

	Voting Members		Non-Voting Members	
1	Persily, Andrew, Chair	Y	Arunachlam, Senthil	
2	Heinisch, Richard, Vice Chair		Bertuch, Charles	
3	Schoen, Larry, Vice Chair	Y	Boldt, Jeff	
4	Alevantis, Leon		Cline, Daryn	Y
5	Bowman, Jim	Y	Conrad, Ernest (BOMA-Alt)	Y
6	Burgett, Lee		Gallo, Francis	Y
7	Burton, Ron (BOMA)	Y	Haglid, Klas	
8	Contoyannis, Dimitri		Johnson, Greg	Y
9	Crawley, Dru	Y	Koeller, John	
10	Cross, John	Y	Meyer, Tom	
11	Dolin, Jennifer	Y	Molnar-Port, Darren	
12	Eley, Charles (AIA)	Y	Paliaga, Gwelen	Y
13	Floyd, Anthony	Y	Polukoshko, Lori	Y
14	Gitlin, Susan	Y	Riddle, Joseph	
15	Gress, Gregg	Y	Schmeida, Michael	Y
16	Horn, Donald	Y	Seyffer, Charles	
17	Hubbard, Roy	Y	Sovocool, Kent	
18	Josh Jacobs	Y	Stanke, Dennis	Y
19	Jouaneh, Michael	Y	Sullens, Wesley	Y
20	Lawrence, Tom	Y	Swatkowski, Len	
21	Leslie, Neil	Y	Whittet, Dan	
22	Lord, Richard	Y		
23	McBride, Merle	Y		
24	McClendon, Jim		Consultants	
25	McGuire, Molly	Y	Mathis, Chris	
26	McHugh, Jonathan	Y	Rhode, Jane	
27	Pape, Thomas		Hsieh, Chris	Y
28	Rainey, Teresa	Y		
29	Rosenstock, Steve	Y		
30	Ross-Bain, Jeff		Liaisons	
31	Setty, Boggarm	Y	Harrold, Rita SPLS, IES	
32	Stoppelmoor, Wayne		Owens, Brendan USGBC	
33	Taber, Christian	Y	Kohout, Frank SSPC 154	
34	VanGeem, Martha	Y	Etheredge, Bert ASHRAE	Y

35	Williams, David	Y	
36	Zhang, Jian	Y	

Guests	Guests	
Braun, Marc	Roy, Aniruddh	
Shephard, David	Oyer, Brandon	
Culp, Tom	West, Scott	
Hart, Reid	Mason, Stephany	
Humble, Jonathan	Tucker, Doug	
LeBrun, Roger	Coufrey, John	
Higa, Randall	Tyler, Craig	
Papageorge, Andrea	Stroud, Tom	
Mecham, Brent	Johnson, Jay	
Wiggins, Stephen		

Wednesday, July 2, 201	4:	
------------------------	----	--

	Voting Members		Non-Voting Members	
1	Persily, Andrew, Chair	Y	Arunachlam, Senthil	
2	Heinisch, Richard, Vice Chair		Bertuch, Charles	
3	Schoen, Larry, Vice Chair	Y	Boldt, Jeff	
4	Alevantis, Leon		Cline, Daryn	
5	Bowman, Jim	Y	Conrad, Ernest (BOMA-Alt)	Y
6	Burgett, Lee	Y	Gallo, Francis	
7	Burton, Ron (BOMA)	Y	Haglid, Klas	
8	Contoyannis, Dimitri	Y	Johnson, Greg	Y
9	Crawley, Dru	Y	Koeller, John	
10	Cross, John	Y	Meyer, Tom	
11	Dolin, Jennifer	Y	Molnar-Port, Darren	
12	Eley, Charles (AIA)	Y	Paliaga, Gwelen	
13	Floyd, Anthony	Y	Polukoshko, Lori	
14	Gitlin, Susan	Y	Riddle, Joseph	
15	Gress, Gregg	Y	Schmeida, Michael	
16	Horn, Donald	Y	Seyffer, Charles	Y
17	Hubbard, Roy	Y	Sovocool, Kent	
18	Josh Jacobs	Y	Stanke, Dennis	Y
19	Jouaneh, Michael	Y	Sullens, Wesley	Y
20	Lawrence, Tom	Y	Swatkowski, Len	
21	Leslie, Neil	Y	Whittet, Dan	
22	Lord, Richard	Y		
23	McBride, Merle	Y		
24	McClendon, Jim		Consultants	
25	McGuire, Molly	Y	Mathis, Chris	Y
26	McHugh, Jonathan	Y	Rhode, Jane	
27	Pape, Thomas		Hsieh, Chris	Y
28	Rainey, Teresa	Y		
29	Rosenstock, Steve	Y		
30	Ross-Bain, Jeff	Y	Liaisons	
31	Setty, Boggarm	Y	Harrold, Rita SPLS, IES	
32	Stoppelmoor, Wayne	Y	Owens, Brendan USGBC	Y
33	Taber, Christian	Y	Kohout, Frank SSPC 154	
34	VanGeem, Martha	Y	Etheredge, Bert ASHRAE	Y
35	Viola, David			
36	Williams, David	Y		
37	Zhang, Jian	Y		

Guests	Guests
Humble, Jonathan	Pang, Xiufenlt (XP)
Zhang, Jensen	Mecham, Brent
Johnson, Jay	Tucker, Doug
Roy, Aniruddh	Petrillo-Groh, Laura
Phelan, Jerry	Amrane, Karim
Tyler, Craig	Balaras, Costas
West, Scott	Fallahi, Ali
Shepherd, David	

List of Motions

Note: All vote counts are listed as [For – Against – Abstain] 7/1/2014 (7:30am – 9:30am Pacific)

Motion 1 was made by Jenn Dolin and seconded by Boggi Setty to recommend the approval of the minutes from the meeting on 4/22/2014. The motion passes by hand vote (21-0-1) with the Chair abstaining. Motion 2 was made by Martha VanGeem and seconded by Dru Crawley to recommend the approval of informative Appendix X for inclusion in the 2014 version of the standard. The motion passes by hand vote (22-0-2) with the chair abstaining.

Motion 3 was made by Martha VanGeem and seconded by Steve Rosenstock to recommend addendum by for publication with knowledge of objectors (voters). The motion stands by roll call vote (22-1-1) with chair abstaining, pending the outcome of a continuation letter ballot.

Motion 4 was made by Josh Jacobs and seconded by Jenn Dolin to recommend the approval of the proposal for development of the 189.1User's Manual. The motion passes by hand vote (23-0-1) with the Chair abstaining. (Molly McGuire and Martha VanGeem excused themselves from the discussion and voting, as they are included as subcontractors under the proposal.)

7/2/2014 (8:00am-12 NOON Pacific)

Motion 5 was made by Josh Jacobs and seconded by John Cross to recommend approval of comments on the ASHRAE proposal on waste and construction management for the IgCC. The motion passes by hand vote (25-0-2) with Roy Hubbard and Gregg Gress abstaining.

Motion 6 was made by Martha VanGeem and seconded by Ron Burton to recommend approving the committee response to the McBride CMP. The motion passes by hand vote (26-0-2) with chair abstaining.

Motion 7 was made by Anthony Floyd and seconded by Susan Gitlin to recommend the approval of addendum bg for publication with knowledge of objectors. The motion stands by roll call vote (22-4-5) with chair abstaining, pending the outcome of a continuation letter ballot

7/1/2014 (7:30 a.m. to 9:30 a.m.)

- Call to order
- Logistics Staff
 - Bias/conflict announcement
 - Voting members (Alevantis, Bowman, Burgett, Burton, Contoyannis, Crawley, Cross, Dolin, Eley, Floyd, Gitlin, Gress, Heinisch, Horn, Hubbard, Jacobs, Jouaneh, Lawrence, Leslie, Lord, McBride, McClendon, McGuire, McHugh, Pape, Persily, Rainey, Rosenstock, Ross-Bain, Schoen, Setty, Stoppelmoor, Taber, VanGeem, Williams, Zhang)
 - Guest Introductions
- Review agenda Persily
- Review of Action Items Persily
- Chair's Report
 - Planning charge to WGs
 - The working groups should continue focusing on getting things done for the 2014 version, but should begin thinking about what's next and setting some priorities.
 - Addendum ce was approved by standards committee for publication public review.
 - Standards committee approved all of the addenda submitted to them with recommendations for publication at their meeting in Seattle.
 - Consolidation of 189.1 and IgCC
 - There has been no formal decision on the MOU.
- Approval of Meeting Minutes
 - \circ PC meeting of 4/22/14

• Motion 1 was made by Jenn Dolin and seconded by Boggi Setty to recommend the approval of the minutes from the meeting on 4/22/2014. The motion passes by hand vote (21-0-1) with the Chair abstaining.

• User's Manual update – Burgett

- Vote to accept proposal
- Brief overview provided by Andy Persily
 - There was only one proposal submitted to the RFP issued by ASHRAE.
- Motion 4 was made by Josh Jacobs and seconded by Jenn Dolin to recommend the approval of the proposal for development of the 189.1User's Manual. The motion passes by hand vote (23-0-1) with the Chair abstaining. (Molly McGuire and Martha VanGeem excused themselves from the discussion and voting, as they are included as subcontractors under the proposal.)
 - Opinions expressed during discussion
 - The committee received copies of this proposal prior to this meeting.
 - The group that provided the proposal intends to subcontract with two committee members that are very knowledgeable and will be very helpful in developing the final product
 - The committee will be very involved with the development of the user's manual.
- Assignment of addenda "experts"
 - There should be a WG member assigned as a resource on each addendum that will be published in the new version of the standard, which should help provide quick responses to questions or problems that arise. These individuals may be asked to help develop language for the User's Manual.

• Membership update - Schoen

 Standards committee approved the membership recommendations made by the chair for the 2014-2015 Society year.

• RFI status

- None pending
- CMP status
 - 0 14-12-00002/001, Wagdy Anis, (Commissioning Reference) assigned to WG 10
 - 14-12-0001/001, Jerry Schwartz (renewable energy as biomass), assigned to WG7
 - 0 13-12-0005/001, Merle McBride (Envelope Tables), assigned to WG 7

• Addenda Status Update

- Approved by BOD: b, m, o, r, u, z, af, ag and ah
- BOD approval votes scheduled for Seattle: v, w, ad, ae, al, an, ao, ap, aq, as, at, au, av, aw, bb, bc, bd, bf, bh, bi, bj, bk, bm, bo, bp, bq, br, bs, bt, bu, bw, bz and cb
- PC publication votes scheduled for 6/24/14: ai, aj, ax, ay, bx and cd
- PC publication votes scheduled for Seattle: bg and bv
- BOD approval votes scheduled for 8/4/14: ai, aj, ax, ay, bg, bv, bx and cd
- Awaiting replies to PC responses to comments: bg and by
- Outstanding PR comments: p, be, and by
- Addendum bl was previously pulled back from inclusion in the 2014 version.

• Working Group Reports: Plans for Seattle meetings

- WG 5
 - Primary business will be discussion addendum bg and determining whether or not the main committee will be considering it for publication tomorrow
- $\circ \quad WG \ 7$
 - SSPC vote on Informative Appendix X
 - Brief overview was provided by Martha VanGeem

- Tom Culp checked the figures.
- This document was distributed to the committee for review prior to this meeting.
- Motion 2 was made by Martha VanGeem and seconded by Dru Crawley to recommend the approval of informative Appendix X for inclusion in the 2014 version of the standard. The motion passes by hand vote (22-0-2) with the chair abstaining.
 - Opinions expressed during discussion
 - BOMA expressed their concern with this table. It follows from addendum al, which they did not support because they felt the stringency was too high.
- Publication of addendum by with knowledge of objectors
 - Brief overview was provided by Martha VanGeem
 - This had been distributed to the committee for review prior to this meeting.
 - Motion 3 was made by Martha VanGeem and seconded by Steve Rosenstock to recommend addendum by for publication with knowledge of objectors (voters). The motion stands by roll call vote (22-1-1) with chair abstaining, pending the outcome of a continuation letter ballot.
 - Opinions expressed during discussion
 - Doug Tucker, the sole public review commenter, was present but provided no input.

- WG 9
 - The Working Group will be discussing a potential comment on an ASHRAE proposal to the IgCC.

• New MTG Multidisciplinary Task Group (Bob Baker)

- The Chair is currently seeking individuals interested in participating.
- Looking for deficiencies in data used in utility and state rebate programs, particularly in California.
- The group would serve as a technical conduit for regulatory agencies helping to clarify incentive based efficiency scores.
- It is unclear how long the MTG will be needed.
- The primary reason for this MTG is to provide input to State and regulatory groups when the need arises.
- SSPC Meeting Times
 - Is there any way the face to face meeting schedule could be revised?
 - One suggestion is to do away with the full meeting on Tuesday.
 - When the merger with IgCC happens the Tuesday meeting will become even more important.
 - Another suggestion was to start the meeting later on Tuesday and shorten the WG meeting. The Chair will be discussing these options with the WG leaders.

7/2/2014 (8:00 a.m. to 12 NOON) Metropolitan Ballroom B (3, Sheraton)

- Call to order
- Logistics Staff
 - Bias/conflict/sign-in
 - Bias/conflict announcement
 - Voting members (Alevantis, Bowman, Burgett, Burton, Contoyannis, Crawley, Cross, Dolin, Eley, Floyd, Gitlin, Gress, Heinisch, Horn, Hubbard, Jacobs, Jouaneh, Lawrence, Leslie, Lord, McBride, McClendon, McGuire, McHugh, Pape, Persily, Rainey, Rosenstock, Ross-Bain, Schoen, Setty, Stoppelmoor, Taber, VanGeem, Williams, Zhang)

• Guest Introductions

• Votes on comments on ASHRAE proposal to IgCC

- o Building Site Waste Management and Construction Waste Management
- Brief overview was provided by Don Horn
- **Motion 5** was made by Josh Jacobs and seconded by John Cross to recommend the approval of comments on the ASHRAE proposal on waste and construction management for the IgCC. The motion passes by hand vote (25-0-2) with Roy Hubbard and Gregg Gress abstaining.
 - Opinions expressed during discussion
 - The material destination is noted on the waste management plan required by the standard.

• Working Group Report

- WG 5
 - Publication of addendum bg with knowledge of objectors
 - Brief overview was provided by Anthony Floyd and Susan Gitlin
 - There are several unresolved commenters.
 - Motion 7 was made by Anthony Floyd and seconded by Susan Gitlin to recommend the approval of addendum bg for publication with knowledge of objectors. The motion stands by roll call vote (22-4-5) with chair abstaining, pending the outcome of a continuation letter ballot.
 - o Opinions expressed during discussion
 - The FAA states that airport landscape design should be left to experts aware of safety issues rather than rely on the requirements of this standard. The scope of the standard states that this standard shall not circumvent life safety issues.
 - There are several different plant species that fall under the requirements of this standard and still meet airport safety issues. The requirement's main focus is to promote the use of native species of plants.
 - If there is a conflict, would the FAA rules take precedence? I believe the FAA rules would trump requirements that we have
 - There could be an exception for airports included in the standard later on. Losing the broader benefits of this addendum based on this point is not the desire of the Working Group
 - It was stated that the FAA will defer to local codes for private airports.
 - Greg Johnson: Addendum bq violates the scope of the standard in that it relates to items other than new systems. The provisions in 5.5.5 (b) require that landscape be improved outside of the disturbed area required by construction of the project site.
 - This proposal is strongly supported by Working Groups 5 and 6.

• WG 7

- Response to McBride CMP
 - Brief overview was provided by Martha VanGeem

- **Motion 6** was made by Martha VanGeem and seconded by Ron Burton to recommend approving the committee response to the McBride CMP. The motion passes by hand vote (26-0-2) with chair abstaining.
- WG 6
 - Anthony Floyd, filling in for the chair of WG 6, gave a brief update on the goals for the 2018 version.
- WG 8
 - Working Group 8 is currently working on the responses to comments made on by (envelope pressure) and a potential ISC.
 - Working Group 8 is currently working on the responses to comments made on be (unvented combustion) and a potential ISC.
- WG 9
 - The working group assigned User Manual responsibilities to group members.
- WG 10
 - Gerald Kettler (Chair of ASHRAE Standard 202-2013) gave a presentation on commissioning during the meeting yesterday.
 - Standard 202 is different from ASHRAE Guideline 0 in that it is an actual standard.

Direction of 2017 Workplan and Direction Forward

- Below are some bullet points from the discussion:
 - There was concern over the integration of the IgCC and 189.1.
 - Integrative design should be included as a requirement in the standard.
 - The electronic document should include live links to the referenced document/provision.
 - Improve indoor air quality by ventilation of specific equipment such as copiers.
 - Improve lighting quality.
 - Include daylighting redirecting systems.
 - Introduce compliance worksheets.
 - Maintain balance between usability, simplicity and performance.
 - Include more on water quality
 - Marketing and education for code/building officials.
 - Resilient envelope vs efficient envelope.
 - Increasing water efficiency.
 - Increasing consistency between industry terminologies.
 - Realistic approach to product transparency and LCA.
 - Access to ASHRAE standards should be provided to members of standard writing bodies.
 - Apply content of 189.1 to existing buildings.
 - Prioritize measured performance.
 - Come up with a simple tool for modeling small building with smaller budgets
 - Move the standard away from the prescriptive compliance method and more towards performance.
 - Electronic standard that has interactive capabilities.
 - Constantly update standard with published addenda.
 - Use ASHRAE's bEQ as a way of compliance within 189.1.
 - Adding cost justification to discussions.
 - Including Climate Zone 0 in the requirements of the standard.
- Unfinished Business
- New Business
 - Integration of IgCC, USGBC and SSPC 189.1

- Roster changes
 - Thank you to outgoing members
 - Welcome to New Members
- Future Meetings
- Scheduled web meetings:
 - July 22, August 26, September 23, October 28
- Adjournment (11:17 am)

6.4.6 Other Meetings

6.4.6.1 North Central Texas Council Government (NCTCG) Meetings from 2014.

The following pages are meeting notes, agendas, and summaries from the NCTCG meetings from 2014.

North Central Texas Council of Governments

Regional Codes Coordinating Committee Tuesday, January, 28, 2014 9:30 AM, Regional Forum Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: David Kerr, City of Plano

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- Action Item- Service award presentation to Debbie Carlin and Ernesto Lopez. The RCCC Chair, David Kerr comment on the years of service the RCCC has received from both Debbie and Ernesto followed with the presentation of awards.
- Discussion- Development of a survey for code adoption in the region. The benefits and use of a well-developed survey. One of the details that could be included in such a survey would be one that would also include some big issues facing the code world such as the debate over the 3 year vs. 6 year adoption cycle.

INFORMATION ITEMS

Solar Ready Challenge II Project

NCTCOG is one of the nine regional councils working with National Association of Regional Councils on the U.S. Department of Energy's Rooftop Solar Challenge II award. This project is intended to promote solar best management practices and implement more streamlined and standardized solar processes.

The final results of the project will yield a reduction in solar market barriers, fewer soft costs, and a more streamlined and standardized process for multiple solar energy implementation options.

COG staff will report ongoing activity in regards to developing proven engagement and implementation of tested best management practices, training curricula and adoption strategies.

NCTCOG Strategic Planning

NCTCOG would like to announce that the agency's strategic planning activities are underway, with plans to distribute a survey in the near future that will seek input on the services, deliverables and outcomes that communities receive from NCTCOG, as well as what new or revised activities you would like to see NCTCOG pursue over the next 3-5 years.

- 2015 ICC Codes
 Discuss the date and location of the code adoption process from ICC.
- Building Professional Institute (BPI)
 Encourage all cities to attend the 2014 BPI for CE credit.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- 3. Roundtable Topics/Other Business. RCCC members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next RCCC Meeting. The next RCCC meeting will be tentatively scheduled at the meeting on January 28, 2014.

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Summary

Regional Codes Coordinating Committee Tuesday, January 28, 2014 9:30 AM, Regional Forum Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: David Kerr, City of Plano

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

2. Service Award Presentation to Debra Carlin and Ernesto Lopez. David Kerr, Chair of the Regional Codes Coordinating Committee (RCCC), will comment on the years of service the RCCC has received from both Debra Carlin and Ernesto Lopez, followed with the presentation of awards.

Ms. Carlin and Mr. Lopez were not able to attend the meeting. NCTCOG staff will reschedule the awards presentation.

3. Development of a Survey for Code Adoption in the Region. The RCCC will discuss the benefits and use of a well-developed survey. One of the details that could be included in such a survey would be one that would also include some big issues facing the code world such as the debate over the three year versus six year adoption cycle.

After some discussion regarding this issue, it was determined that a subcommittee will be created to formulate questions for the survey. Several entities offered databases that could be used to construct the survey. It was suggested that students compile the data. If any RCCC member wishes to volunteer, they were directed to contact David Kerr or Paul Ward.

INFORMATION ITEMS

4. Solar Ready Challenge II Project. The NCTCOG is one of the nine regional councils working with National Association of Regional Councils on the U.S. Department of Energy's Rooftop Solar Challenge II award. This project is intended to promote solar best management practices and implement more streamlined and standardized solar processes. The NCTCOG staff will report ongoing activity in regards to developing proven

engagement and implementation of tested best management practices, training curricula and adoption strategies.

The US Department of Energy has identified Texas as one of the ideal states for incorporating the use of solar energy and wants to promote it in this area. With that goal in mind, a stakeholders meeting was held in December 2013 to ascertain information such as best management practices and any obstacles or barriers that might need to be overcome regarding the use of solar energy. A much larger meeting will be held in early February 2014 where the topics will include technology status, cost ratios, available rebates, and notification for emergency responders. Although other types of alternative energy were discussed at the initial meeting, the focus was on solar. Paul Ward said as an attendee of the December meeting, his feeling was that one of the goals was to streamline and standardize the solar installation process. Uniformity will be sought in the processes for permitting, submittal checklists, plan review, and inspection. Changes may be necessary to the electrical and fire codes. The Electrical Advisory Board will be involved.

5. NCTCOG Strategic Planning. The NCTCOG would like to announce that the Agency's strategic planning activities are underway, with plans to distribute a survey in the near future that will seek input on the services, deliverables, and outcomes that communities receive from the NCTCOG, as well as what new or revised activities you would like to see the NCTCOG pursue over the next three to five years.

NCTCOG is currently updating its strategic plan. The Environment and Development (ED) Department is using a survey seeking input with regards to the services they currently offer, and are soliciting any suggestions for future endeavors. ED welcomes any and all comments at any time from our members, not just during strategic planning activities. Feedback received by ED will be shared with other NCTCOG departments.

Bahmin Yasdani asked since energy codes have had a direct energy savings on buildings and power plants, can NCTCOG devise a method to measure how many dollars have actually been saved due to new and improved codes?

The 2013 Municipal Fee Survey is available in the NCTCOG Public Affairs Department.

6. 2015 International Codes Council (ICC) Codes. The RCCC will discuss the date and location of the ICC code adoption process.

The 2015 codes should be available in May.

Paul Ward, Chair of the Electrical Advisory Board (EAB), updated the RCCC on EAB activities. The EAB met on December 12, 2013, to begin the review of the 2014 National Electrical Code (NEC). Jerry Daniel, a guest presenter from the Texas Department of Licensing and Regulation, reviewed issues in Texas such as non-licensed workers, not using the correct equipment, and solar panel installation problems. Review of the 2014 NEC is well underway. The EAB has broken the codes in to segments and assigned working groups to review specific portions. The next EAB meeting is scheduled on February 25, 2014.

Ed Dryden, Chair of the Energy and Green Advisory Board (EGAB), gave a status report on EGAB activities. The advisory board, in an information gathering phase, has had presenters at their last three meetings which included the City of Dallas, Texas Society of Architects, and the Dallas Builders Association. There is an interest in developing a concept for NCTCOG to facilitate a third party program to assist member cities with the implementation of code adoption. The next EGAB meeting is on January 31, 2014.

The RCCC thanked Ed Dryden for his willingness to serve as Chair of the Energy and Green Advisory Board which is a new addition.

7. Building Professional Institute (BPI). The NCTCOG encourages all cities to attend the 2014 BPI for CE credit.

The 2014 BPI event will be held at UTA from May 20-24, 2014, at Nedderman Hall. To learn more, visit <u>http://civileng.uta.edu/BPISite/Files/Doc/21stbpi.pdf</u>.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

8. Future Agenda Items.

The RCCC was encouraged to send any suggestions for future agenda items to David Kerr or Sandra Barba.

9. Roundtable Topics/Other Business. The RCCC members and NCTCOG staff may share additional items of interest as time allows.

Jack Thompson made a motion to approve the RCCC June 19, 2013 draft meeting summary. Selso Mata seconded the motion. The RCCC was unanimous in its approval.

The Texas A&M AgriLife Extension and the UTA will host "<u>Understanding the WaterSense</u> <u>Labeled Home</u>" on March 26, 2014, from 8 a.m. to 5 p.m.

- Schedule for the Next RCCC Meeting. The next RCCC meeting is tentatively scheduled for April 22, 2014, at 9:30 a.m., in the William J. Pitstick Executive Board Room, NCTCOG Offices, CPII, 616 Six Flags Drive, Arlington, Texas 76011.
- 11. Adjournment.

The meeting adjourned at 10:40 a.m.

MEMBER SIGN IN SHEET

Regional Codes Coordinating Committee 9:30 a.m., Tuesday, January 28, 2014 Regional Forum Room

NAME	SIGNATURE	ORGANIZATION
Judy Armstrong	1	Ellis County
Larry Bartlett	ZButto	Associated General Contractors
Jack Baxley		Associated General Contractors
Warren Bonisch	00 0	Society of Fire Protection Engineers
Steve Covington	Alles Atty	City of Frisco
Jack Craycroft		American Institute of Architects, East
Phil Crone	Druid Lehde (For)	Home Builders Association of Great Dalla
Ed Dryden	allan	City of Dallas
Tommy Ford		Home Builders Association of Great Dalla
Teresa Foster		Building Owners and Managers Association - Dallas
Danny Hartz	Karp.	Town of Flower Mound
Gary Jones		Associated General Contractors
David Kerr	Dallen	City of Plano
Selso Mata	Present	City of Plano
Gary Miller	Davy milly	City of Irving
Bob Morgan		City of Fort Worth
Ted Padgett, Jr.	Jet Canger Bissi	City of Dallas
Carroll Pruitt		American Institute of Architects, West
Evan Roberts	abbo 88	City of Fort Worth
Cliff Schaefer	Consent	City of Granbury
Keith Smith	9 Shut	City of Mesquite
Jack Thompson	(Chin	City of DeSoto
Gilbert Urvina		City of Frisco
Paul D. Ward	Fail Was	City of Southlake
Scott Williams		City of Grapevine
Richard Wright		City of Mansfield
Bahman Yazdani	1371-	Texas A&M Energy Systems Laboratory
- W , *	/ \ "	· · · · ·

,

Energy and Green Advisory Board Friday, January 31, 2014 9:30 AM, Regional Forum Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

 DISCUSSION: Recommended regional amendments to the 2012 Edition of the International Green Construction Code.

INFORMATION ITEMS

NCTCOG Strategic Planning

As a reminder, please accept and complete the NCTCOG Strategic Planning survey. NCTCOG values your input on the services, deliverables and outcomes that your community receives from our agency. NCTCOG is also interested in what new or revised activities you would like to see NCTCOG pursue over the next 3-5 years.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- 3. Roundtable Topics/Other Business. EGAB members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next EGAB Meeting. The next EGAB meeting will be tentatively scheduled at the meeting on January 31, 2014.

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

SUMMARY

Energy and Green Advisory Board Friday, January 31, 2014 9:30 AM, Regional Forum Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- DISCUSSION: Recommended regional amendments to the 2012 Edition of the International Green Construction Code.
 - Ed Dryden, the EGAB Chair, proposed the group first state the goal of the advisory board in regards to NCTCOG's charge to the Energy and Green Advisory Board.
 - Various board members expressed their concern about the Energy Codes portion of the IgCC as well as the time span of finishing the 2012 IgCC and the fast approaching release of the 2015 IgCC.
 - The board decided that the IgCC should be referred to as an "Overlay" and a "Starting Point."
 - Concern was expressed about the term "Maintenance" in Chapter 1
 Scope and Administration, 101.3. The group as a whole decided to come back to revisit this issue at a later time.
 - The following question was posed and discussed: "Where does the State currently stand in regards to the 2012 Codes?"

INFORMATION ITEMS

NCTCOG Strategic Planning

As a reminder, please accept and complete the NCTCOG Strategic Planning survey. NCTCOG values your input on the services, deliverables and outcomes that your community receives from our agency. NCTCOG is also interested in what new or revised activities you would like to see NCTCOG pursue over the next 3-5 years.

 COG staff offered the board another opportunity to receive the NCTCOG Strategic Planning survey for completion and submittal.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
 - Presentation and discussion of IgCC Section 303 "Whole Building Life Cycle Assessment" by Shirley Ellis, Presenter, Energy Systems Laboratory, Texas A&M
 - Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code, Specifically Chapter 3

- 3. Roundtable Topics/Other Business. EGAB members and NCTCOG staff may share additional items of interest as time allows.
 - COG staff shared information about the upcoming "Solar Ready Kick-Off" meeting to occur on March 6, 2014 and committed to send an email-blast about the upcoming event.
 - Ed Dryden asked COG staff to send an email-blast about the upcoming EPA "Water Sense" and "Agri Life" Builder Symposium to the EGAB.
- Schedule for the Next EGAB Meeting. The next EGAB meeting will be tentatively scheduled at the meeting on February 28, 2014.

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board

Friday, January 31, 2014 9:30 a.m., Regional Forum Room

MEMBER SIGN-IN SHEET

NAME	ŞIĞNATURE	AGENCY
Mike Arellano	Mulfille	City of Coppell
Jack Baxley		TEXO
Warren Bonisch		Schirmer Engineering Corporation
Steve Covington		City of Frisco
Phil Crone		Greater Dallas HBA
Ed Dryden	anna -	City of Dallas
Larry Ewing	• •	City of Mesquite
Stan Folsom	W-9	Systemhause
Mike Gaiter	l	City of Garland
Daniel García		City of Carrollton
Kurt Hansen		City of Denton
Danny Hartz	41 - Inc	Town of Flower Mound
Gerald Kettler		Air Engineering and Testing, Inc.
Doug Lewin	·····	SPEER
Cyndi Lewis	Inali deus	City of University Park
C. T. Loyd	CTTyl	TxHERO
Traci Nielsen	main pielsen	City of Southlake
Carroll Pruitt		Pruitt Consulting
Rick Ripley		City of Arlington
Evan Roberts	En C Oulu	City of Fort Worth
Little David Sessions	Career	City of Dallas
Robert Smouse	, , , , , , , , , , , , , , , , , , , ,	City of Plano
Clint Sparks		City of Irving
Jack Thompson		City of DeSoto
Jason Vandever	15-la	City of Granbury
Bahman Yazdani	Kof:	Energy Systems Labs

Energy and Green Advisory Board February 28, 2014 9:30 AM, Metroplex Conference Room NCTCOG Offices 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden City of Dallas

1. Welcome and Introductions.

Ed Dryden welcomed everyone to the meeting. Thirteen board members were present.

DISCUSSION / PRESENTATION / ACTION ITEMS

PRESENTATION and DISCUSSION of IgCC Section 303 Whole Building Life Cycle . Assessment; Shirley Ellis, Presenter, Energy Systems Laboratory, Texas A&M

Shirley discussed IgCC Section 303 Whole Building Life Cycle Assessment with the advisory board.

DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code, Specifically Chapter 3

A motion was passed to delete the entire Section 303 Whole Building Life Cycle Assessment.

1st Motion: Jack Baxley 2nd Motion: C.T. Loyd

DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code

Various members felt that it would be best that some sections should perhaps wait until the 2015 Edition is published.

The board continued to discuss Section 302.1.1 zEPI in relation to Energy Codes.

INFORMATION ITEMS

- Solar Ready II Project Kick-Off •
 - As a reminder, COG staff sent a "Mark Your Calendar" email blast asking you to save the date of March 6, 2014 to attend the "Solar Ready II Kick-Off" event. This event will begin at 1:30 p.m. in the Transportation Council Room.

COG staff reminded the board about the upcoming Solar Ready II Kick-Off Meeting.

Energy and Green Advisory Board February 28, 2014 9:30 AM, Metroplex Conference Room NCTCOG Offices 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden City of Dallas

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- **PRESENTATION and DISCUSSION** of IgCC Section 303 Whole Building Life Cycle Assessment; Shirley Ellis, Presenter, Energy Systems Laboratory, Texas A&M
- DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code, Specifically Chapter 3
- DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition
 of the International Green Construction Code

INFORMATION ITEMS

Solar Ready II Project Kick-Off
 As a reminder, COG staff sent a "Mark Your Calendar" email blast asking you to save
 the date of March 6, 2014 to attend the "Solar Ready II Kick-Off" event. This event will
 begin at 1:30 p.m. in the Transportation Council Room.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- **3. Roundtable Topics/Other Business.** Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The next Energy and Green Advisory Board meeting will be tentatively scheduled at the meeting on February 28, 2014.

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

SUMMARY

Energy and Green Advisory Board February 28, 2014 9:30 AM, Metroplex Conference Room NCTCOG Offices 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden City of Dallas

1. Welcome and Introductions.

Ed Dryden welcomed everyone to the meeting. Thirteen board members were present.

DISCUSSION / PRESENTATION / ACTION ITEMS

 PRESENTATION and DISCUSSION of IgCC Section 303 Whole Building Life Cycle Assessment; Shirley Ellis, Presenter, Energy Systems Laboratory, Texas A&M

Shirley discussed IgCC Section 303 Whole Building Life Cycle Assessment with the advisory board.

• **DISCUSSION:** Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code, Specifically Chapter 3

A motion was passed to delete the entire Section 303 Whole Building Life Cycle Assessment.

1st Motion: Jack Baxley 2nd Motion: C.T. Loyd

DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition
 of the International Green Construction Code

Various members felt that it would be best that some sections should perhaps wait until the 2015 Edition is published.

The board continued to discuss Section 302.1.1 zEPI in relation to Energy Codes.

INFORMATION ITEMS

• Solar Ready II Project Kick-Off

As a reminder, COG staff sent a "*Mark Your Calendar*" email blast asking you to save the date of March 6, 2014 to attend the "Solar Ready II Kick-Off" event. This event will begin at 1:30 p.m. in the Transportation Council Room.

COG staff reminded the board about the upcoming Solar Ready II Kick-Off Meeting.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

2. Future Agenda Items.

Continuation of discussion about zEPI and Chapter 6. Sections 302,608, 609, 610, and 611.

- 3. **Roundtable Topics/Other Business.** Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The next Energy and Green Advisory Board meeting will be tentatively scheduled at the meeting on February 28, 2014.

COG staff shared a six month Energy and Green Advisory Board schedule of upcoming meeting dates.

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Liz Zecckine by phone at (817) 695-2931 or by email at ezecckine@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board March 24, 2014 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden City of Dallas

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code
 - o Continue discussion about zEPI and Chapter 6. Sections 602,608, 609, 610, and 611.

INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items. Tentative: A representative from BPI
- **3. Roundtable Topics/Other Business.** Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The Energy and Green Advisory Board meeting(s) have been scheduled as follows:

Energy and Green Advisory Board Tentative Meeting Dates For the Next Six Months		
Monday, March 24, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, April 24, 2014 @ 9:30 am	Tejas Conference Room (CPIII)	
Thursday, May 29, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, June 26, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, July 24, 2014 @ 9:30 am	Regional Forum Room (CPII)	
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

SUMMARY

Energy and Green Advisory Board March 24, 2014 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden City of Dallas

1. Welcome and Introductions.

Ed Dryden welcomed everyone to the meeting. Fourteen members were present.

DISCUSSION / PRESENTATION / ACTION ITEMS

- DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code
 - o Continue discussion about zEPI and Chapter 6. Sections 602,608, 609, 610, and 611.

Chris Herbert of SPEER led the discussion about zEPI.

INFORMATION ITEMS

The Energy and Green Advisory Board will continue discussion of recommended regional amendments to the 2012 Edition of the International Green Construction Code-Chapter 4 "Site Development and Land Use."

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items. Tentative: A representative from BPI
 - A suggestion was made that a representative from IgCC could come to discuss Green Codes,
- 3. Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The Energy and Green Advisory Board meeting(s) have been scheduled as follows:

Energy and Green Advisory Board Tentative Meeting Dates For the Next Six Months		
Monday, March 24, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, April 24, 2014 @ 9:30 am	Tejas Conference Room (CPIII)	
Thursday, May 29, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, June 26, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, July 24, 2014 @ 9:30 am	Regional Forum Room (CPII)	
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Regional Codes Coordinating Committee Tuesday, April, 22, 2014 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: David Kerr, City of Plano Vice Chair: Paul Ward, City of Southlake

1. Welcome and Introductions.

DISCUSSION/PRESENTATION/ACTION ITEMS

- Service Award Presentation for Debbie Carlin. The Regional Codes Coordinating Committee (RCCC) Chair, David Kerr will comment on the years of service the RCCC has received from Debbie followed with the presentation of awards.
- 3. Approval will be sought for Appointment of Advisory Board Members. Paul Ward, Chair of the Electrical Advisory Board (EAB), and Ed Dryden, Chair of the Energy and Green Advisory Board, will both seek appointments of advisory board members for approval.
- Approval will be sought for the National Electric Code (NEC) 2014 Recommended Regional Amendments. The EAB will present the NEC 2014 Local Recommended Regional Amendments for approval.
- 5. Continuation of Discussion about Development of a Survey for Code Adoption in the Region. The RCCC will discuss the benefits and use of a well-developed survey. One of the details that could be included in such a survey would be one that would also include some big issues facing the code world such as the debate over the three year versus six year adoption cycle.

INFORMATION ITEMS

- 6. WaterSense New Homes Specification Program. The North Central Texas Council of Governments (NCTCOG) staff will share information about a program that is scheduled for presentation at the next RCCC meeting titled, "WaterSense New Homes Specification Program". The program was designed in partnership between the Texas A&M AgriLife Research and Extension Center-Dallas, and the Environmental Protection Agency, Region 6. The WaterSense program was designed to promote the building of water-efficient homes in North Texas and compliment other green building programs.
- 7. Building Professional Institute (BPI). All cities are encourage to attend the 2014 BPI to be held in Arlington, TX, May 19-23. CE credit will be available.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 8. Future Agenda Items.
- 9. Roundtable Topics/Other Business. The RCCC members and the NCTCOG staff may share additional items of interest as time allows.
- 10. Schedule for the Next RCCC Meeting. The next RCCC meeting will be tentatively scheduled at the meeting on April 22, 2014, with consideration of holding the next RCCC meeting late July, or anytime during the month of August.

If you have any questions regarding the meeting or agenda items, please contact Sandra Barba by phone at (817) 608-2368, or by email at sbarba@nctcog.org

Thank you

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Liz Zecckine by phone at (817) 695-9231 or by email at ezecckine@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board April 24, 2014 9:30 AM, Tejas Conference Room NCTCOG Offices, CPIII 600 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden City of Dallas

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code
 - o Begin discussion of Chapter 4 "Site Development and Land Use."

INFORMATION ITEMS

 Recent approval of new Energy and Green Advisory Board members at the RCCC meeting held on April 22, 2014.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

2. Future Agenda Items.

- **3.** Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The Energy and Green Advisory Board meeting(s) have been scheduled as follows:

Energy and Green Advisory Board Tentative Meeting Dates For the Next Six Months		
Monday, March 24, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, April 24, 2014 @ 9:30 am	Tejas Conference Room (CPIII)	
Thursday, May 29, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, June 26, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, July 24, 2014 @ 9:30 am	Regional Forum Room (CPII)	
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board Thursday, April 24, 2014 9:30 AM, Tejas Conference Room NCTCOG Offices, CPIII 600 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden City of Dallas

1. Welcome and Introductions.

Ed Dryden, EGAB Chair welcomed everyone to the meeting. Thirteen members were present. New appointees Rick Ripley, Linda Brown and David Lehde recognized. Chair noted that EGAB did not have a vice chair. The EGAB unanimously voted for Evan Roberts of Fort Worth to be the EGAB Vice-Chair. Name will be submitted to RCCC for formal appointment.

DISCUSSION / PRESENTATION / ACTION ITEMS

- DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the
 International Green Construction Code
 - Carryover Discussion of Chapter 1

Section 101.3 – all exceptions- add commentary to point out:

ICC-700 must be used

As published code applies to commercial only

AHJs should consider other pathways to compliance to provide for more than one compliance approach

Continue New Construction vs. Remodel as scoping provision at a later date

o Begin discussion of Chapter 4 "Site Development and Land Use."

Section 401.2-Consensus made to delete this section and add cautionary commentary. Sections 402.1 thru 402.9 - Consensus made to add cautionary commentary. Section 403 - Consensus made to add cautionary commentary. Section 404 - Consensus made to add cautionary commentary. Section 405 - Consensus made to add cautionary commentary.

INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- **3.** Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The Energy and Green Advisory Board meeting(s) have been scheduled as follows:

Energy and Green Advisory Board Ter	ntative Meeting Dates For the Next Six Months
Thursday, April 24, 2014 @ 9:30 am	Tejas Conference Room (CPIII)
Thursday, May 29, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)
Thursday, June 26, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)
Thursday, July 24, 2014 @ 9:30 am	Regional Forum Room (CPII)
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

43

Energy and Green Advisory Board Thursday, May 29, 2014 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden City of Dallas

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- UPDATE: Zaida Basora will provide an update of the IgCC Committee Action Hearings to took place April 27 May 4, 2014 in Memphis
- DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code
 - Continue discussion of Chapter 4 "Site Development and Land Use" then onward to Chapter 5 "Material Resource Conservation and Efficiency."

INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
 - Invitation to Roundtable Discussion with Lunch: Immediately following the June 26, 2014 EGAB meeting, Chris Herbert, SPEER representative, would like to facilitate a roundtable to discuss energy code compliance; how to encourage better practices; training needs, best forum for providing this support to building professionals; code enforcement personnel; and other associated businesses or trades.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The Energy and Green Advisory Board meeting(s) have been scheduled as follows:

Energy and Green Advisory Board Tentative Meeting Dates For the Next Six Months		
Thursday, May 29, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, June 26, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, July 24, 2014 @ 9:30 am	Regional Forum Room (CPII)	
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

SUMMARY

Energy and Green Advisory Board

Thursday, May 29, 2014 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

City of Dallas Chair: Ed Dryden

1. Welcome and Introductions.

Ed Dryden, EGAB Chair welcomed everyone to the meeting. Seventeen EGAB members were present and five guests.

DISCUSSION / PRESENTATION / ACTION ITEMS

UPDATE: Zaida Basora will provide an update of the IgCC Committee Action Hearings to ¢ took place April 27 - May 4, 2014 in Memphis

Zaida Basora, FAIA, Assistant Director, City of Dallas Public Works Department gave a brief overview of the IgCC Committee Action Hearings that were conducted in Memphis, TN from April 27-May 4, 2014.

DISCUSSION: Continuation of recommended regional amendments to the 2012 Edition of the International Green Construction Code.

Continue discussion of Chapter 4 "Site Development and Land Use" then onward to Chapter 5 "Material Resource Conservation and Efficiency."

Ed Dryden shared the draft 2012 IgCC Position Statement with EGAB members and guests, then proceeded with continued discussion of the following:

Chapter 4- Site Development and Land Use

- o Section 406: Building Site Waste Management- Perhaps consider lowering landclearing debris and excavated soils from 75% to 50%.
 - 406.1 Building site waste management plan. Concerns were expressed in regard to items #3 and #6. Steve Covington, Frisco BO, will research Ó "invasive plant species" for additional discussion. There was a suggestion to delete #6. No decision was made.
 - Section 407: Transportation Impact 0
 - Following some discussion the board voted to delete Section 407.2 through 407.4 in entirety. 407.1 remains as written - noted that the accessible route 0 provided will satisfy this section.

Zaida Basora suggested that the EGAB should consider a <u>task force</u> to develop tools to assist in the implementation of the IgCC

For example, the task force could review and/or develop:

- templates for site and waste management plans that contractors would have to submit (the city has one that we could refine through this task force)
- sample green specifications to include with plans for: waste management, site waste management, material selection, heat island mitigation, etc.
- templates for the materials selection section like a matrix listing all materials with unit cost and providing the attributes to choose and calculate the 55% (or 75% if new threshold is kept for the 2015 code)
- · sample logs and receipts for disposal of materials
- · sample checklists of requirements
- e etc.

INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- 3. Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
 - Invitation to Roundtable Discussion with Lunch: Immediately following the June 26, 2014 EGAB meeting, Chris Herbert, SPEER representative, would like to facilitate a roundtable to discuss energy code compliance; how to encourage better practices; training needs, best forum for providing this support to building professionals; code enforcement personnel; and other associated businesses or trades.

Chris Herbert extended an invitation to all attendees to attend a roundtable discussion with lunch immediately following the next EGAB meeting on June 26, 2014.

4. Schedule for the Next Energy and Green Advisory Board Meeting. The Energy and Green Advisory Board meeting(s) have been scheduled as follows:

Thursday, May 29, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)
Thursday, June 26, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)
Thursday, July 24, 2014 @ 9:30 am	Regional Forum Room (CPII)
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)

The next EGAB meeting will be Thursday, June 26, 2014 at 9:30 am in the William J. Pitstick Executive Board Room (CPII).

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board

Thursday, May 29, 2014 9:30 AM William J. Pitstick Executive Board Room

MEMBER SIGN-IN SHEET

NAME SIGNATURE		AGENCY	
Mike Arellano	Mithhow	City of Coppell	
Jack Baxley	Qudu Mar	ТЕХО	
Linda Brown	April R-	American Institute of Architects	
Steve Covington	Ster Congre	City of Frisco	
Ed Dryden	aller -	City of Dallas	
Larry Ewing		City of Mesquite	
Stan Folsom		Systemhause	
Mike Gaiter		City of Garland	
Danlel Garcia	Nalls	City of Carrollton	
Kurt Hansen	Hant Alam	City of Denton	
Danny Hartz	Jelip 201	Town of Flower Mound	
Gerald Kettler	Jan a Satt	Air Engineering and Testing, Inc.	
Doug Lehde	Dund Silver	HBA of Greater Dallas	
Doug Lewin	Chris Herbert	SPEER	
Cyndi Lewis	V	City of University Park	
C. T. Loyd	Pril	TxHERO	
Traci Nielsen		City of Southlake	
Carroll Pruitt	Curchet	Pruitt Consulting	
Rick Ripley	Rike Qint 1	City of Arlington	
Evan Roberts	Per o'des	City of Fort Worth	
Robert Smouse		City of Plano	
Clint Sparks		City of Irving	
Jack Thompson		City of DeSoto	
Jason Vandever	fre	City of Granbury	
Bahman Yazdani	16-AA	Energy Systems Labs	

Regional Codes Coordinating Committee Tuesday, June 3, 2014 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: David Kerr, City of Plano Vice-Chair: Paul Ward, City of Southlake

1. Welcome and Introductions.

ACTION/DISCUSSION/PRESENTATION ITEMS

- Summary of the April 22, 2014 Meeting. The <u>April 22, 2014</u> draft meeting summary is available online for your review and consideration.
- 3. WaterSense" Presentation by the Environmental Protection Agency (EPA), Region 6. Julie Hankinson, Environmental Scientist with the Water Quality Section of the EPA, Region 6, will provide a "WaterSense" presentation. This EPA partnership seeks to protect the future of our water supply by offering a simple way to use less water with waterefficient products, new homes, and services.

The WaterSense program was designed to promote the building of water-efficient homes in North Texas and compliment other green building programs. "WaterSense offers people a simple way to make product choices that use less water with no sacrifice to quality or product performance."

- Approval sought for National Electric Code (NEC) 2014 Recommended Regional Amendments. The Electrical Advisory Board will present the NEC 2014 Local Recommended Regional Amendments for approval.
- Approval will be sought for Appointment of Advisory Board Member. Ed Dryden, Chair of the Energy and Green Advisory Board (EGAB) will seek appointment of an advisory board member for the vacant EGAB Vice-Chair seat.
- Regional Codes Coordinating Committee "Operating Procedures." The Regional Codes Coordinating Committee (RCCC) will review the procedures for the appointment/re-appointment process, membership, and meeting attendance.

 Committee Re-Appointments. In July, NCTCOG staff will be seeking the FY2014-2015 RCCC member appointments/re-appointments. Currently there are 15 members due for reappointment of two year terms and officer's re-appointment of annual terms.

INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 8. Future Agenda Items.
- Roundtable Topics/Other Business. RCCC members and NCTCOG staff may share additional items of interest as time allows.
- Schedule for the Next RCCC Meeting. The next RCCC meeting is tentatively scheduled for July 3, 2014.
- 11. Adjournment.

If you have any questions regarding the meeting or agenda items, please contact Sandra Barba by phone at (817) 608-2368, or by email at sbarba@nctcog.org.

Thank you.

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Liz Zecckine by phone at (817) 695-2931 or by email at ezecckine@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

SUMMARY

Regional Codes Coordinating Committee

Tuesday, June 3, 2014 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: David Kerr, City of Plano Vice-Chair: Paul Ward, City of Southlake

1. Welcome and Introductions.

David Kerr, Regional Codes Coordinating Committee Chair welcomed everyone to the meeting. Nineteen members were present with six guests.

ACTION/DISCUSSION/PRESENTATION ITEMS

2. Summary of the April 22, 2014 Meeting. The <u>April 22, 2014</u> draft meeting summary is available online for your review and consideration.

Steve Covington made a motion to approve the April 22, 2014 RCCC meeting summary. Gilbert Urvina seconded the motion. The RCCC was unanimous in its approval.

3. "WaterSense" Presentation by the Environmental Protection Agency (EPA), Region 6. Julie Hankinson, Environmental Scientist with the Water Quality Section of the EPA, Region 6, will provide a "WaterSense" presentation. This EPA partnership seeks to protect the future of our water supply by offering a simple way to use less water with waterefficient products, new homes, and services.

The WaterSense program was designed to promote the building of water-efficient homes in North Texas and compliment other green building programs. "WaterSense offers people a simple way to make product choices that use less water with no sacrifice to quality or product performance."

Julie Hankinson, Environmental Scientist with the Water Quality Section of the EPA, Region 6 gave a brief overview of the WaterSense Labeled New Home, "WaterSense New Homes 101." NCTCOG staff has posted this presentation on the following NCTCOG website: <u>http://www.nctcog.org/envir/committees/rccc/index.asp</u>

 Approval sought for National Electric Code (NEC) 2014 Recommended Regional Amendments. The Electrical Advisory Board will present the NEC 2014 Local Recommended Regional Amendments for approval.

Paul Ward, Chair of the Electrical Advisory Board presented the NEC 2014 Local Recommended Regional Amendments to the RCCC for approval. Concerns were made about ***** Article 90.4 (B) Supervision of Work** by various RCCC members, yet resolved with the addition of text (see highlighted text below) then approved.

Bahman Yazdani made a motion to approve revised *****Article 90.4 (B) Supervision of Work.** Cliff Schaefer seconded the motion. Motion carried with one opposition. The RCCC was unanimous in its approval to recommend the 2014 NEC Local Recommended Regional Amendments to the Executive Board.

***Article 90.4 Enforcement: Create a new (B) and add the following language:

(A) Enforcement. Existing language to remain

(B) Supervision of Work. In the actual work of installing, maintaining, altering or repairing any electrical conductors or equipment for which requires a permit, apprentice electricians require on-site supervision (as defined by Texas Administrative Code, Title 16, Chapter 73, Subsection 73.10) by a qualified licensee of a proper grade classification of electrical license when electrical work is being performed.

Informational Note: As defined by the State of Texas in Title 8, Occupational Code Chapter 1305 administered by the Texas Department of Licensing and Regulation for proper grade classifications of electrical license.

(REASON FOR CHANGE: To provide consistent licensing requirements for supervision of apprentice electricians in the North Central Texas region, which is currently the accepted practice in the region.)

 Approval will be sought for Appointment of Advisory Board Member. Ed Dryden, Chair of the Energy and Green Advisory Board (EGAB) will seek appointment of an advisory board member for the vacant EGAB Vice-Chair seat.

Ed Dryden, Chair of the Energy and Green Advisory Board sought approval for appointing Evan Roberts, Building Codes Administrator, City of Fort Worth to the vacant EGAB Vice-Chair seat. All RCCC Members in favor.

 Regional Codes Coordinating Committee "Operating Procedures." The Regional Codes Coordinating Committee (RCCC) will review the procedures for the appointment/re-appointment process, membership, and meeting attendance.

NCTCOG staff reported that the RCCC BY-LAWS "Meeting Attendance" was discussed with the Chair of the EAB and EGAB advisory board due to the lack of quorum at recent meetings. Both Chairs, agreed to allow NCTCOG staff to send an email to the EAB and EGAB members addressing the need for meeting attendance in order to allow voting to occur and keep items on schedule.

 Committee Re-Appointments. In July, NCTCOG staff will be seeking the FY2014-2015 RCCC member appointments/re-appointments. Currently there are 15 members due for reappointment of two year terms and officer's re-appointment of annual terms.

David Kerr announced that NCTCOG staff will be addressing the Committee Re-Appointments in July.

INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 8. Future Agenda Items.
- Roundtable Topics/Other Business. RCCC members and NCTCOG staff may share additional items of interest as time allows.

Tommy Ford announced the Texas Builders Foundation, Fall 2014 Scholarship availability. More information can be found at the following website: <u>http://www.texasbuildersfoundation.org/who-we-are.html</u>

 Schedule for the Next RCCC Meeting. The next RCCC meeting is tentatively scheduled for July 3, 2014.

The decision was made to have the next RCCC meeting on August 19, 2014 at NCTCOG offices at 9:30 AM in the William J. Pitstick Executive Board Room.

11. Adjournment.

If you have any questions regarding the meeting or agenda items, please contact Sandra Barba by phone at (817) 608-2368, or by email at sbarba@nctcog.org.

Thank you.

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Liz Zecckine by phone at (817) 695-2931 or by email at ezecckine@notcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

- FE1		A. K.		
	TR			
III	计翻		÷.	
Yed			-	

Regional Codes Coordinating Committee 9:30 a.m., Tuesday, June 3, 2014 William J. Pitstick Executive Board Room

MEMBER SIGN IN SHEET ORGANIZATION NAME SIGNATURE **Judy Armstrong** Ellis County Larry Bartlett **Associated General Contractors Jack Baxley Associated General Contractors** Warren Bonisch **Society of Fire Protection Engineers Steve Covington City of Frisco** Jack Craycroft American Institute of Architects, East COX. **Phil Crone** Home Builders Association of Great Dallas Ed Dryden City of Dallas **Tommy Ford** Home Builders Association of Great Dallas **Building Owners and Managers Teresa Foster Association - Dallas** Allison Gray **City of Fort Worth Danny Hartz Town of Flower Mound Gary Jones Associated General Contractors** Q. Yen **David Kerr** On-City of Plano Selso Mata **City of Plano Gary Miller City of Irving Bob Morgan City of Fort Worth** Ted Padgett, Jr. **City of Dallas Carroll Pruitt** American Institute of Architects, West 5 **Rick Ripley City of Arlington Cliff Schaefer** City of Granbury Keith Smith **City of Mesquite Jack Thompson** City of DeSoto **Gilbert Urvina City of Frisco** Paul D. Ward City of Southlake Scott Williams **City of Grapevine Richard Wright City of Mansfield** Bahman Yazdani **Texas A&M Energy Systems Laboratory**

Energy and Green Advisory Board Thursday, June 26, 2014 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden Name: City of Dallas

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- Discussion: Continuation of recommended regional amendments of the 2012 Edition of the International Green Construction Code (IgCC).
 - o Continuation of IgCC Chapter 4 beginning with Section 406.

INFORMATION ITEMS

 Invasive Plant Species Information: Discussion of Invasive Plant Species was discussed at the last EGAB meeting during review of IgCC Chapter 4, Section 406. EGAB member Steve Covington, Chief Building Official for the City of Frisco will share information with the board regarding Invasive Plant Species. <u>http://www.texasinvasives.org/i101/ecoalert.php</u>

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The next Energy and Green Advisory Board meeting (s) have been scheduled as follows:

Energy and Green Advisory Board Tentative Meeting Dates For the Next Six Months		
Thursday, June 26, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	
Thursday, July 24, 2014 @ 9:30 am	Regional Forum Room (CPII)	
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)	

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

SUMMARY

Energy and Green Advisory Board Thursday, June 26, 2014

9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden Name: City of Dallas

1. Welcome and Introductions.

Ed Dryden, EGAB Chair welcomed everyone to the meeting. Nineteen EGAB members were in attendance and five guests.

DISCUSSION / PRESENTATION / ACTION ITEMS

Discussion: Continuation of recommended regional amendments of the 2012 Edition of the International Green Construction Code (IgCC). o Continuation of IgCC Chapter 4 beginning with Section 406.

Section 406

(1st paragraph) Divert less than 50% rather than 75% 1st Motion: Linda Brown / 2nd Motion: Gerald Ketter

Section 406.1

Delete #3 and keep #6 1st Motion: David Lehde / 2nd Motion: Stan Folsom

Section 408 Unanimous vote to keep.

Section 409

Complex section and decision was made to table this section for now and include the City of Dallas language as an alternate for consideration.

Chapter 5 Material Resources Conservation Efficiency

Section 502,1 Section 502.1.2 Section 504 Section 505.1- Deleted exception #2

 $\begin{array}{l} \textbf{Section 505.2} \\ \textbf{Motion to reduce to 30\% of total building materials.} \\ \textbf{1}^{st} \textbf{Motion: Stan Folsom / 2^{nd} Motion: Jack Baxley} \end{array}$

Section 505.2.5 Section 506 Unanimous vote to keep.

Section 507 Table until Chapter 9.

INFORMATION ITEMS

 Invasive Plant Species Information: Discussion of Invasive Plant Species was discussed at the last EGAB meeting during review of IgCC Chapter 4, Section 406.
 EGAB member Steve Covington, Chief Building Official for the City of Frisco will share information with the board regarding Invasive Plant Species. <u>http://www.texasinvasives.org/i101/ecoalert.php</u>

Shirley Ellis of Energy Systems Lab shared the following AgriLife Extension website information about Texas Invasive Plant Species; <u>http://wildlife.tamu.edu/know-your-plants/</u>Also, <u>TexasInvasives.org</u>

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- 3. Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.

Shirley Ellis and Bahman Yazdani shared information about IECC 2015/ Residential Green Builders / ICC 700

4. Schedule for the Next Energy and Green Advisory Board Meeting. The next Energy and Green Advisory Board meeting (s) have been scheduled as follows:

Energy and Green Advisory Board Ter	tative Meeting Dates For the Next Six Months
Thursday, June 26, 2014 @ 9:30 am	William J. Pitstick-Executive Board-Room (CPII)
Thursday, July 24, 2014 @ 9:30 am	Regional Forum Room (CPII)
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)

The next EGAB meeting has changed and will be conducted on <u>Monday, July 21, 2014</u> at 9:30 am in the Metroplex Conference Room, NCTCOG Offices (CPII).

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board Monday, July 21, 2014 9:30 AM, Metroplex Conference Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden Name: City of Dallas

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- **Discussion:** Continuation of recommended regional amendments of the 2012 Edition of the International Green Construction Code (IgCC).
 - o IgCC Chapter 6

INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- Schedule for the Next Energy and Green Advisory Board Meeting. The next Energy and Green Advisory Board meeting (s) have been scheduled as follows:

Energy and Green Advisory Board Ter	tative Meeting Dates For the Next Six Months
Monday, July 21, 2014 @ 9:30 am	Metroplex Conference Room (CPII)
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)

The Energy and Green Advisory Board will need to choose a replacement date for the August EGAB meeting.

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 606-2368 or by email at sharba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

SUMMARY

Energy and Green Advisory Board

Monday, July 21, 2014 9:30 AM, Metroplex Conference Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas Vice Chair: Evan Roberts, City of Fort Worth

1. Welcome and Introductions.

DISCUSSION / PRESENTATION / ACTION ITEMS

- Discussion: Ed Dryden to review and discuss 2012 IgCC Regional Discussion Draft.
 - o 2012 IgCC Regional Discussion Draft.

Ed Dryden presented the draft discussion document he has compiled with the advisory board members. This document includes suggested elements and reason statements the advisory board has discussed thus far related to the IgCC.

- Discussion: Continuation of recommended regional amendments of the 2012 Edition of the International Green Construction Code (IgCC).
 - o IgCC Chapter 6

Gerald Kettler, Managing Principal, Air Engineering and Testing, Inc. presented information the City of Dallas considered amending to the IgCC Chapter 6 before choosing not to adopt the chapter. Mr. Kettler and others shared several aspects of the chapter that weighted heavily in the City of Dallas' decision not to move forward with this Chapter at this time.

The group decided to review Mr. Kettler's notes in detail along with the original Chapter 6, prior to the next EGAG meeting. A discussion will be made at the next EGAB meeting on how to move forward in regards to Chapter 6.

INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

2. Future Agenda Items.

 Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.

Shirley Ellis, Energy Code Specialist, Energy Systems Laboratory, shared information regarding the upcoming CATEE 2014 Conference to be held at the Sheraton Dallas Hotel in Dallas, TX. The CATEE 2014 Conference will be hosted by Texas A&M University System, Energy Systems Laboratory on November 18-20, 2014.

Mr. Kettler shared information about the Dallas 2030 District "Existing Building Commissioning Summit" to be held in Dallas, TX at the Centre for Building Performance on September 19, 2014. This summit involves the Building Commissioning Association, USGBC of North Texas, and SPEER.

4. Schedule for the Next Energy and Green Advisory Board Meeting. The next Energy and Green Advisory Board meeting (s) have been scheduled as follows:

Energy and Green Advisory Board Ter	tative Meeting Dates For the Next Six Months
Monday, July 21, 2014 @ 9:30 am	Metroplex Conference Room (CPII)
Thursday, August 28, 2014 @ 9:30 am	William J. Pitstick Executive Board Room (CPII)

The Energy and Green Advisory Board will need to choose a replacement date for the August EGAB meeting.

The next Energy and Green Advisory Board meeting (s) have been scheduled as follows:

Energy and Green Advisory E	Board Meeting Dates and Locations
Thursday, August 21, 2014 @ 1:00 pm	William J. Pitstick Executive Board Room (CPII)
Thursday, September 18, 2014 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)
Thursday, October 16, 2014 @ 9:00 am	Metroplex Conference Room (CPII)

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sharba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Regional Codes Coordinating Committee Tuesday, August 12, 2014 9:30 AM, Regional Forum Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: David Kerr, City of Plano Vice-Chair: Paul Ward, City of Southlake

1. Welcome and Introductions.

ACTION/DISCUSSION/PRESENTATION ITEMS

- 2. Summary of the June 3, 2014 Meeting. The June 3, 2014 draft meeting summary is available online for your review and consideration.
- 3. Timelines for Advisory Boards. Proposed number of meetings, completion date(s) and recommended adoption date for the 2015 I-Codes.
- Development of a Survey Questionnaire for Code Adoption (for use within the region). Discuss benefits and use of a well-developed survey and receive input on the survey questionnaire.
- Approval sought for National Electric Code (NEC) 2014 Recommended Regional Amendments. The Electrical Advisory Board will present the NEC 2014 Local Recommended Regional Amendments for approval with recommendations on revisions of Article 90.4 (B) Supervision of Work.
- Approval sought for Appointment of Advisory Board Members. Ed Dryden, Chair of the Energy and Green Advisory Board, will seek approval of advisory board member(s) appointments.

INFORMATION ITEMS

 Regional Codes Coordinating Committee Reappointments. Of the 28 members of the RCCC, 15 are scheduled for reappointment to the RCCC for a two-year term beginning October 1, 2014. The reappointment acceptance form was due to NCTCOG on August 6, 2014.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 8. Future Agenda Items.
- 9. Roundtable Topics/Other Business. RCCC members and NCTCOG staff may share additional items of interest as time allows.
- 10. Schedule for the Next RCCC Meeting. The next RCCC meeting will be scheduled at the meeting on August 12, 2014.
- 11. Adjournment.

If you have any questions regarding the meeting or agenda items, please contact Sandra Barba by phone at (817) 608-2368, or by email at sbarba@nctcog.org.

If you plan to atlend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Liz Zecckine by phone at (817) 695-2931 or by email at ezecckine@nclcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board Thursday, August 21, 2014 1:00 PM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas Vice Chair: Evan Roberts, City of Fort Worth

1. Welcome and Introductions.

DISCUSSION

Continuation of recommended regional amendments of the 2012 Edition of the International Green Construction Code (IgCC).

 IgCC Chapter 6 (References will be made to documents sent to the advisory board members following the July 21, 2014 meeting.)

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- **3.** Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.
- 4. Schedule for the Next Energy and Green Advisory Board Meeting. The next Energy and Green Advisory Board meeting(s) have been scheduled as follows:

Energy and Green Advisory Board I	Meeting Dates For the Next Three Months
Thursday, August 21, 2014 @ 1:00 pm	William J. Pitstick Executive Board Room (CPII)
Thursday, September 18, 2014 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)
Thursday, October 16, 2014 @ 9:00 am	Metroplex Conference Room (CPII)

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board

Thursday, August 21, 2014 1:00 PM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas Vice Chair: Evan Roberts, City of Fort Worth

1. Welcome and Introductions.

DISCUSSION

Continuation of recommended regional amendments of the 2012 Edition of the International Green Construction Code (IgCC).

 IgCC Chapter 6 (References will be made to documents sent to the advisory board members following the July 21, 2014 meeting.)

EGAB discussed their thoughts about the City of Dallas choosing to delete IgCC Chapter 6 then, reviewed the "IgCC Chapter 6 Recommendations" presented by Gerald Kettler, and acted on each section as follows (Note: not yet voted on as a recommended amendment package to Chapter 6):

1. 603.1.1- Add an exception for existing buildings; and, re-visit Chapter 2 to review Existing Building definition

Motion: Carroll Pruitt 2nd: Gerald Kettler No opposition.

- 2. 603.3.2 and 603.3.3 no action, leave as is.
- 603.6 Make this a jurisdictional option by adding to Table 302.1.
 1st Motion: Carroll Pruitt 2nd: Motion: Linda Brown No opposition.
- 4. 605.1.1 delete in its entirety.
- 605.1.1.1 Renumber and make this a jurisdictional option by adding to Table 302.1. Motion: CT Loyd 2nd: Bahman Yazdani No opposition.

- 6. 605.1.2.2 no.action, leave as is.
- 7, 605.2 no action, leave as is.
- 8. 606.3.1 no action, leave as is.
- 9. 607.2.2 no action, leave as is.
- 10. 607.5 Delete in its entirety.

Motion: Carroll Pruitt 2nd: Gerald Kettler No opposition.

11. Amend 608.4.1 and 608.4.2 to read as follows:

608.4.1 Exterior light reduction. Exterior lighting shall be controlled by a time switch and <u>that may be</u> configured so that the total exterior lighting power is automatically reduced by not less than 30 percent within 2 hours after facility operations conclude.

608.4.2 Exterior lighting and signage shutoff. The lighting of building facades, signage, and landscape features shall be controlled by a time switch control that may be configured so that the lighting automatically shuts off from within 1 hour after facility operations conclude until within 1 hour before facility operations begin or as established by the jurisdiction. Where facility operations are continuous, decorative lighting of building facades and landscape features shall automatically shut off from midnight until 6:00 a.m.

Motion: Stan Folsom 2nd: Bahman Yazdani No opposition.

12. 608.8.1.2 and 608.8.1.3 - delete in its entirety

Motion: Gerald Kettler 2nd: Carroll Pruitt No opposition.

13. 610 - Make this a jurisdictional option by adding to Table 302.1.

Motion: Carroll Pruitt 2nd: Gerald Kettler No opposition.

14. 611 Systems Commissioning and Completion to be reviewed at next meeting.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 2. Future Agenda Items.
- Roundtable Topics/Other Business. Energy and Green Advisory Board members and NCTCOG staff may share additional items of interest as time allows.

Christine Herbert, Managing Director of **The South-central Partnership for Energy** Efficiency as a Resource (SPEER), announced the unveiling of the Texas Energy Code Compliance Collaborative (TECCC) 2014 Energy Code Adoption Report. The TECCC is an industry stakeholder group that was established in 2011 with the purpose of supporting

improved compliance with the state energy code, and to measure improvement on an annual basis, per the American Recovery and Reinvestment Act.

In this report (*link to report provided below*), SPEER identifies state law, current practices and barriers to compliance, and lists the 217 Largest Cities in Texas with their current residential energy code.

4. Schedule for the Next Energy and Green Advisory Board Meeting. The next Energy and Green Advisory Board meeting(s) have been scheduled as follows:

Energy and Green Advisory Board I	Meeting Dates For the Next Three Months
Thursday, August 21, 2014 @ 1:00 pm	William J. Pitstick Executive Board Room (CPII)
Thursday, September 18, 2014 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)
Thursday, October 16, 2014 @ 9:00 am	Metroplex Conference Room (CPII)

If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nclcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

AGENDA

Energy and Green Advisory Board Thursday, September 18, 2014 9:00 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas Vice Chair: Evan Roberts, City of Fort Worth

1. Welcome and Introductions.

DISCUSSION

- 2. Continuation of Recommended Regional Amendments of the 2012 Edition of the International Green Construction Code (IgCC).
 - IgCC Chapter 6: (References will be made to the "IgCC Chapter 6 Recommendations" document shared with Energy and Green Advisory Board (EGAB) members by Gerald Kettler at the August 21, 2014 meeting.)

Section 611

"SYSTEMS COMMISSIONING AND COMPLETION"

EGAB members have agreed to read this section and discuss it at the September 18, 2014 EGAB meeting.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 3. Future Agenda Items.
- 4. Roundtable Topics/Other Business. EGAB members and NCTCOG staff may share additional items of interest as time allows.

SUMMARY

Energy and Green Advisory Board

Thursday, September 18, 2014 9:00 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas Vice Chair: Evan Roberts, City of Fort Worth

1. Welcome and Introductions.

DISCUSSION

- 2. Continuation of Recommended Regional Amendments of the 2012 Edition of the International Green Construction Code (IgCC).
 - IgCC Chapter 6: (References will be made to the "IgCC Chapter 6 Recommendations" document shared with Energy and Green Advisory Board (EGAB) members by Gerald Kettler at the August 21, 2014 meeting.)

EGAB members voted to offer Chapter 6 as a jurisdictional option, 1^{et} Motion: Carroll Pruit 2^{od} Motion: Linda Brown No Opposition

EGAB members voted to accept amendments made to Chapter 6. 1st Motion: Carroll Pruitt 2nd Motion: Cindy Lewis No Opposition

Summary: Chapter 6 is amended and will be a jurisdictional option.

EGAB discussed "Section 611 "SYSTEMS COMMISSIONING AND COMPLETION." EGAB members have agreed to view this section as it correlates to other chapters and code editions which address similar information at the October 16, 2014 EGAB meeting.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- 3. Future Agenda Items.
- 4. Roundtable Topics/Other Business. EGAB members and NCTCOG staff may share additional items of interest as time allows.

Mr. Kettler shared information about Existing Building Commissioning Summit to take place in Dallas, TX on September 19, 2014. The topic: Existing Building Commissioning: Tuning Up a Building.

 Schedule for the Next EGAB Meeting. The next Energy and Green Advisory Board meetings have been scheduled as follows:

Energy and Green Advisory Board Meeting Dates For the Next Three Months	
Thursday, September 18, 2014 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)
Thursday, October 16, 2014 @ 9:00 am	Metroplex Conference Room (CPII)

6. Adjournment.

If you have any questions regarding the meeting or agenda items, please contact Sandra Barba at (817) 608-2368 or sbarba@nctcog.org.

Thank you.

If you plan to altend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

Energy and Green Advisory Board Thursday, October 16, 2014 9:00 AM, Metroplex Conference Room (CPII) NCTCOG Offices 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas Vice Chair: Evan Roberts, City of Fort Worth

1. Welcome and Introductions.

DISCUSSION

Continuation of Recommended Regional Amendments of the 2012 Edition of the International Green Construction Code (IgCC).

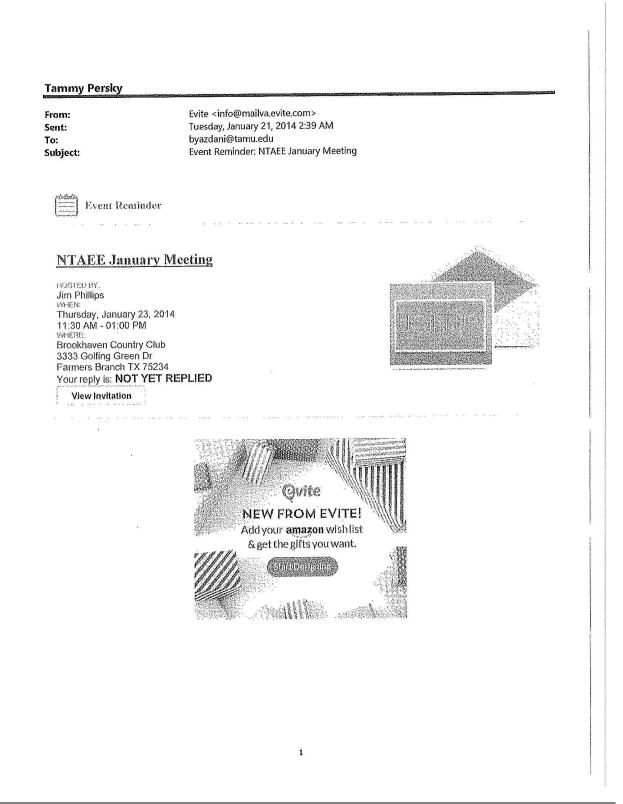
 IgCC Chapter 6: (References will be made to the "IgCC Chapter 6 Section 611 "Systems Commissioning and Completion" and Recommendations shared by committee member Gerald Kettler. The advisory board will view a side by side format submitted by committee member Linda Brown.

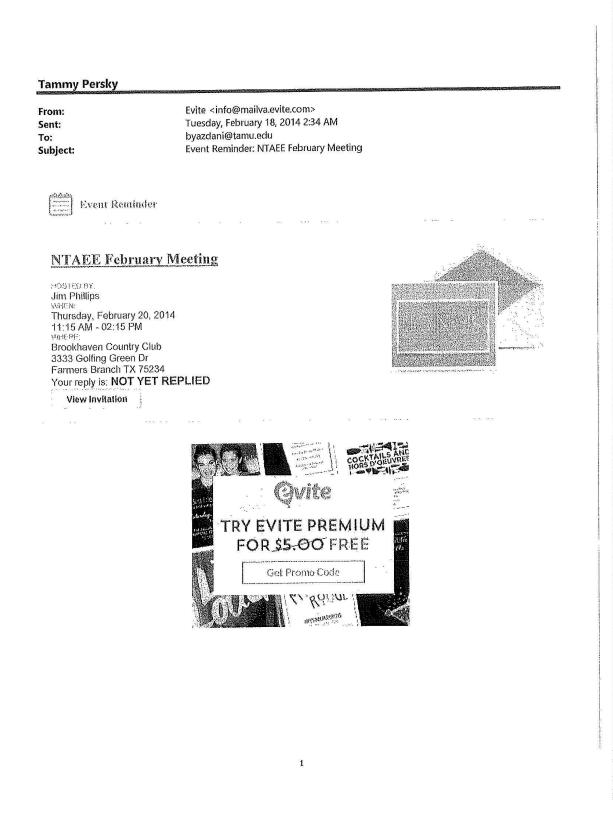
OTHER BUSINESS AND ROUNDTABLE DISCUSSION

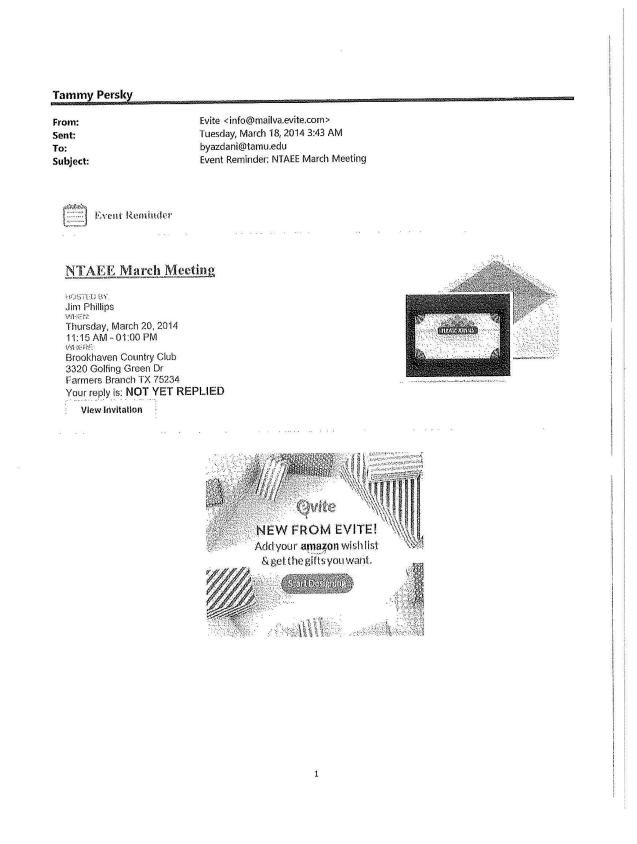
- 2. Future Agenda Items. EGAB Members and NCTCOG staff may suggest future agenda items.
- 3. Roundtable Topics/Other Business. EGAB members and NCTCOG staff may share additional items of interest as time allows.
- Schedule for the Next EGAB Meeting. The next EGAB meeting has been scheduled as follows:

Energy and Green Advisory Board Meeting Dates	
Thursday, October 16, 2014 @ 9:00 am	Metroplex Conference Room (CPII)
Thursday, January 15, 2015 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)
Thursday, February 19, 2015 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)
Thursday, March 19, 2015 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)
Thursday, April 16, 2015 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)
Thursday, May 28, 2015 @ 9:00 am	William J. Pitstick Executive Board Room (CPII)

5. Adjournment.


If you have any questions regarding the meeting or agenda items, please contact Sandra Barba at (817) 608-2368 or <u>sbarba@nctcoq.org</u>.


Thank you.


If you plan to attend this public meeting and you have a disability that requires special arrangements at the meeting, please contact Sandra Barba by phone at (817) 608-2368 or by email at sbarba@nctcog.org, 72 hours in advance of the meeting. Reasonable accommodations will be made to assist your needs.

6.4.6.2 North Texas Assciation of Energy Engineers (NTAEE).

The following pages are meeting notes, agendas, and summaries from the NTAEE meetings from 2014.

myersky@uhv.eo jmorton@unt.eo juan.ontiveros@ dagoberto.rodri clint.thomas@u

Subject:

To:

Mark.Berdoll@twc.state.tx.us; Art.Hinojosa@tyc.state.tx.us; farshad.shahsavary@tfc.state.tx.us; mmchang@Central.UH.EDU; myancey@Central.UH.EDU; pbrokhin@central.uh.edu; SAKapileshwari@Central.UH.EDU; myerskj@uhv.edu; alan.stucky@untsystem.edu; charles.jackson@unt.edu; jmorton@unt.edu; steve.mathis@unt.edu; sbarrett@hsc.unt.edu; patty@uta.edu; juan.ontiveros@austin.utexas.edu; patrick.mazur@austin.utexas.edu; dagoberto.rodriguez@utsa.edu; cclark@uttyler.edu; Rich_Legler@uttyler.edu; clint.thomas@utsouthwestern.edu; cbrady@utsystem.edu; Dcolvin@utsystem.edu; Dhollingsworth@utsystem.edu; dpowell@utsystem.edu; rstarkey@utsystem.edu; scollins@utsystem.edu; darrell@iwfa.com; mhodgson@consol.ws March SAEAG Meeting

State Agency Energy Advisory Group

Wednesday, March 19, 2014 9;00 a.m. – 11:45 a.m. LBJ Office Building 111 E. 17th Street Corner of 17th and Brazos Room 212B Austin, Texas 78711

AGENDA

9:00 a.m. - 10:00 a.m. Case Update from OAG (not open to public)

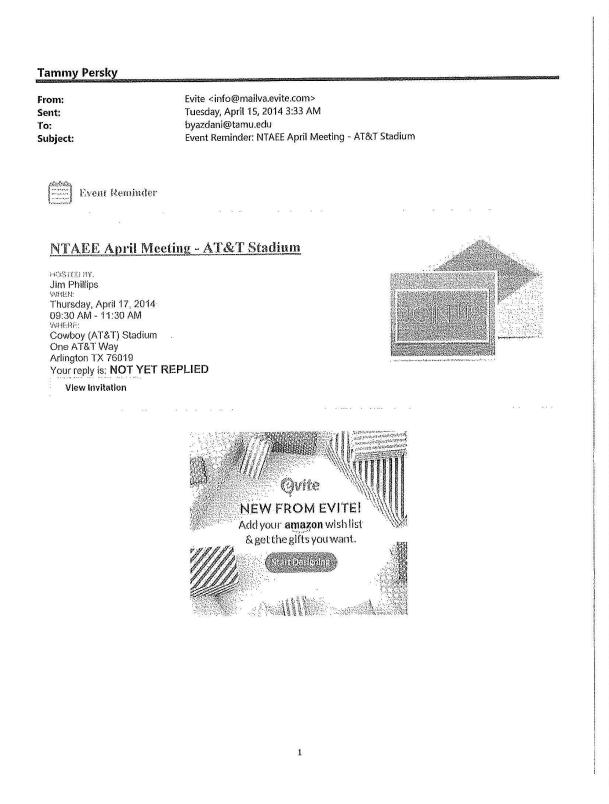
10:00 a.m. - 10:15 a.m. BREAK

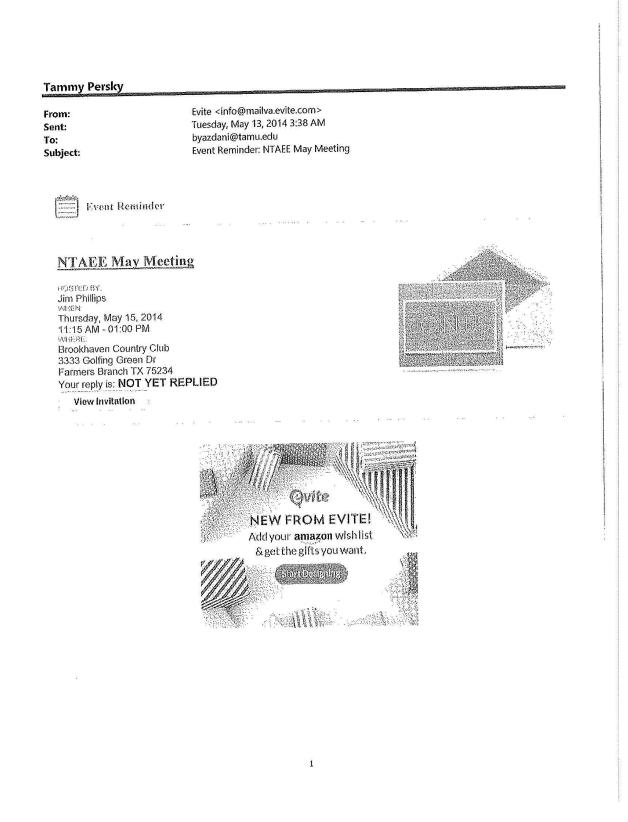
10:15 a.m. - 10:30 a.m. SB700 (83R) Reporting Template Update for State Agencies and Institutions of Higher Education

10:30 a.m. - 11:00 a.m. Darrell Smith (International Window Film Association (<u>www.iwfa.com</u>). Overview of window film, impact on buildings, housing and schools, and analysis tools

11:00 a.m. - 11:15 a.m. General discussion of current and upcoming issues and events

Parking is approved for Parking Garage B. (see enclosed map).


区


CapitolComplex...

If you will be attending remotely, the participation process has been updated. Register to attend the SAEAG meeting at the following hyperlink.

2

https://www1.gotomeeting.com/register/413318977

Tammy Persky


From: Sent: To: Subject: Evite <info@mailva.evite.com> Tuesday, June 17, 2014 3:44 AM byazdani@tamu.edu Event Reminder: NTAEE June Meeting

Event Reminder

NTAEE June Meeting

HOSTED 0Y. Jim Phillips WHEN Thursday, June 19, 2014 11:30 AM - 01:00 PM WHERE Brookhaven Country Club 3333 Golfing Green Dr Farmers Branch TX 75234 Your reply is: MAYBE

View Invitation

1

November 2015

Tammy	Persky

From: Sent: To: Subject: Jim Phillips <info@mailva.evite.com> Tuesday, July 01, 2014 7:09 PM byazdani@tamu.edu Evite Invitation: NTAEE July Meeting

Jim Phillips invited you to

NTAEE July Meeting

Thursday, July 17, 2014 11:30 AM - 01:00 PM

WHERE: Brookhaven Country Club 3333 Golfing Green Dr Farmers Branch TX 75234

WEL YOU ATTEND?

VIEW THIS INVITATION

Is this email going to your junk/bulk folder? Add in<u>fo@mailva.evite.com</u> to your address book to ensure that you receive all future Evite invitations in your inbox.

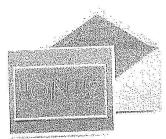
NUMBER CONTRACTOR & CONTRACT CONTRACTOR CONTRACTOR

Don't want to receive any Evite emails from this person? Block this host,

If you no longer wish to receive notifications from Evite for this event only, update your notification settings.

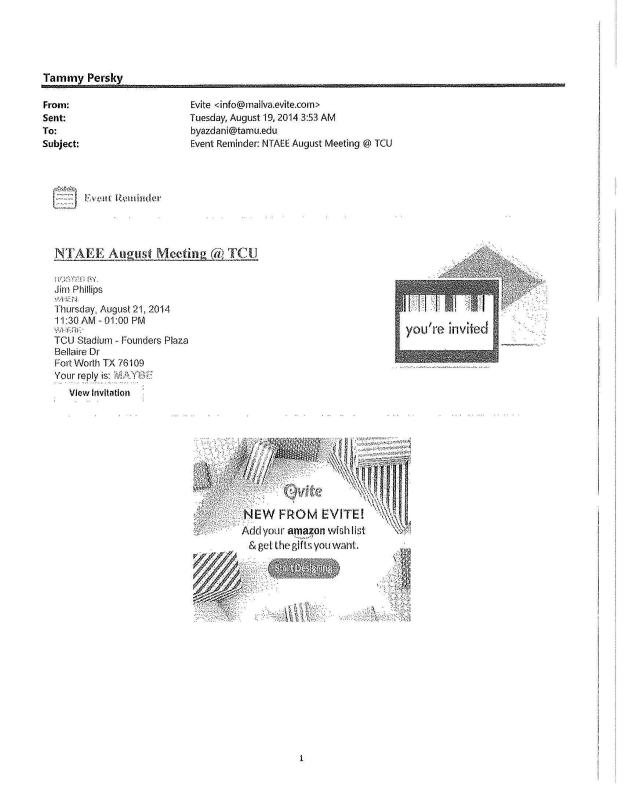
í

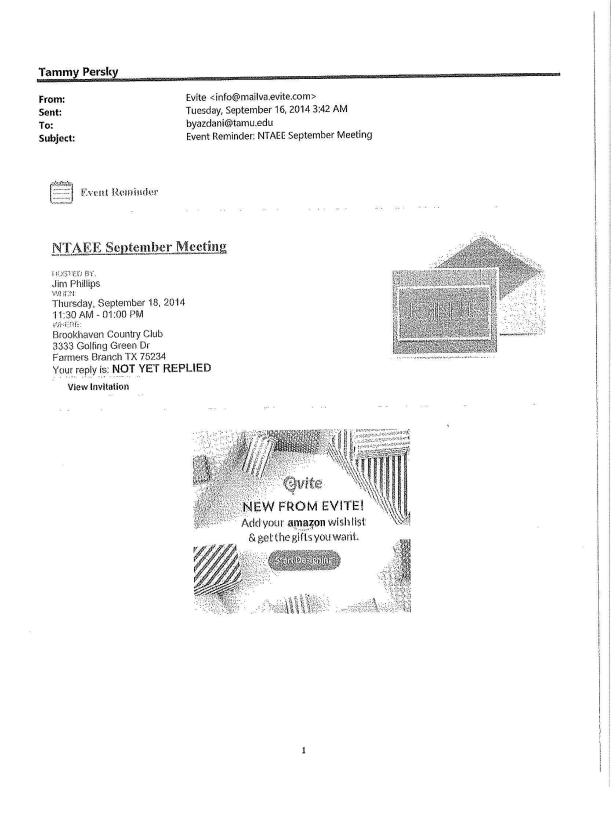
Note: Replies to this enail will go directly to the person who sent this mossage, not to Evite.


Tammy Persky

From: Sent: To: Subject: Evite <info@mailva.evite.com> Tuesday, July 15, 2014 3:33 AM byazdani@tamu.edu Event Reminder: NTAEE July Meeting

Event Reminder


NTAEE July Meeting


HOSTED BY. Jim Phillips WHEN Thursday, July 17, 2014 11:30 AM - 01:00 PM WHENE Brookhaven Country Club 3333 Golfing Green Dr Farmers Branch TX 75234 Your reply is: YES View Invitation

1

Tammy Persky Evite <info@mailva.evite.com> From: Tuesday, October 14, 2014 3:33 AM Sent: byazdani@tamu.edu To: Event Reminder: 2014 NTAEE Energy Conference Subject: **Event Reminder** 2014 NTAEE Energy Conference HOSTED BY. Dietmar Zeidler WHEN Thursday, October 16, 2014 09:00 AM - 03:00 PM you're invited WHERE. Univ. of North Texas Coliseum 600 Ave D Denton TX 76201 Your reply is: MAYBE View Invitation Gvite **NEW FROM EVITE!** Add your amazon wish list & get the gifts you want. Sandbastening 1

Tammy Persky

From: Sent: To: Subject: Evite <info@mailva.evite.com> Tuesday, November 18, 2014 2:46 AM byazdani@tamu.edu Event Reminder: NTAEE November Meeting

Event Reminder

NTAEE November Meeting

HOGHED BY. Jim Phillips WIJEN Thursday, November 20, 2014 11:30 AM - 01:00 PM WHERE Brookhaven Country Club 3333 Golfing Green Dr Farmers Branch TX 75234 Your reply is: NOT YET REPLIED View Invitation

1

6.4.6.3 State Agency Energy Advisory Group (SAEAG)

The following pages are meeting notes, agendas, and summaries from the SAEAG meetings from 2014.

Teasury Develop		
Tammy Persky Subject: Location:	State Agency Energy Advisory Group Meeting - Presentation Update LBJ Office Building, 111 E. 17th Street, Room 212B, Austin, Texas 78711	
Start: End: Show Time As:	Wed 1/15/2014 9:00 AM Wed 1/15/2014 12:00 PM Tentative	
Recurrence:	(none)	
Organizer:	Eddy Trevino	
Organizer: Eddy Trevino State Agency Energy Advisory Group Wednesday, January 15, 2014 9:00 a.m 11:45 a.m. LBJ Office Building 111 E. 17th Street Corner of 17th and Brazos Room 212B Austin, Texas 78711 [X] AGENDA 9:00 a.m 10:00 a.m. 9:00 a.m 10:15 a.m. BREAK 10:15 a.m 11:00 a.m. BREAK 10:15 a.m 11:00 a.m. SBTOM (83R) Reporting Template Update for State Agencies and Institutions of Higher Education 11:00 a.m 11:30 a.m. Best Practices in Reroofing - Guest speaker: Edis T. Oliver, Wiss, Janney, Elstner Associates, Inc. 11:30 a.m 11:45 a.m. General discussion of current and upcoming issues and events Parking is approved for Parking Garage B. (see enclosed map).		
If you will be attending remotely, the participation process has been updated. Register to attend the SAEAG meeting at the following hyperlink. Wed, Jan 15, 2014 9:00 AM - 12:00 PM CST <https: 398379905="" register="" www1.gotomeeting.com=""></https:>		
1		

SAEAG MEETING

State Agency Energy Advisory Group

Wednesday, February 19, 2014 9:00 a.m. – 11:30 a.m. Office of the Attorney General William Clements Building NW Corner of 15th and Lavaca 12th Floor Large Conference Room by Receptionist Area Austin, Texas 78701

AGENDA

Note: This Agenda contains updated information for those not attending in person

9:00 a.m. – 10:00 a.m.	Update from the Office of Attorney General ("OAG")
10:00 a.m. – 10:15 a.m.	BREAK
10:15 a.m. – 11:00 a.m.	Guest speaker: Mr. Erik Norwood of Curb, Inc., who will discuss various metering options that can assist in energy efficiency. This presentation will include a real-time demonstration of remote metering capabilities.
11:00 a.m. – 11:15 a.m.	State Energy Conservation Office ("SECO") Report
11:15 a.m. – 11:30 a.m.	General discussion of current and upcoming issues and events

FOR THOSE UNABLE TO ATTEND IN PERSON:

The first hour of the meeting (OAG Update) may be accessed via teleconference:

Call-in Number: 888-391-2102 Passcode: 7253903#

The speaker portion, beginning at 10:15, may also be accessed on-line by following this link: <u>https://www1.gotomeeting.com/register/404897616</u>. To see the real-time demonstration of remote metering, you will need to do so on-line.

If you are attending in person, be sure to bring a picture I.D. to gain entry to the Clements Building.*

You may pre-register to obtain unescorted clearance (you will still need to bring a picture I.D.) to our floor by emailing or calling before our meeting is scheduled nancy.villarreal@texasattorneygeneral.gov [512-475-4164]

SAEAG MEETING

State Agency Energy Advisory Group

Wednesday, April 16, 2014 9:00 a.m. – 11:30 a.m. Office of the Attorney General William Clements Building NW Corner of 15th and Lavaca 12th Floor Large Conference Room by Receptionist Area Austin, Texas 78701

AGENDA

9:00 a.m. – 10:00 a.m.	Case Update from OAG
10:00 a.m. – 10:15 a.m.	BREAK
10:15 a.m. – 11:00 a.m.	Guest speaker: John Barton, Texas Public Finance Authority, who will speak about "Master Lease Purchase Program."
11:00 a.m. – 11:15 a.m.	SECO Report
11:15 a.m. – 11:30 a.m.	General discussion of current and upcoming issues and events

If you are going to join the meeting via telephone conference please call 1-888-391-2102 and during the message punch in 7253903#.

If you are attending in person, be sure to bring a picture I.D. to gain entry to the Clements Building.

You may pre-register to obtain unescorted clearance (you will still need to bring a picture I.D.) to our floor by emailing or calling before our meeting is scheduled <u>nancy.villarreal@texasattorneygeneral.gov</u> [512-475-4164]

Tammy Persky

Subject:	SAEAG Meeting
Location:	LBJ Office Building
Start:	Wed 5/21/2014 9:00 AM
End:	Wed 5/21/2014 12:00 PM
Show Time As:	Tentative
Recurrence:	(none)
Organizer:	Alison Nathan

Organizer:

SAEAG MEETING

Wednesday, May 21, 2014 9:00 a.m. - 11:45 a.m.

Agenda

9:00 a.m. - 9:45 a.m. Case Update from OAG (not open to public) 9:45 a.m. - 10:30 a.m. Kudret Utebay, ENERGY STAR Portfolio Manager reporting for SB700 10:30 a.m. - 10:45 a.m. BREAK 10:45 a.m. – 11:45 a.m. Paul Bundshuh, Ideal Power

Attending in Person

LBJ Office Building 111 E. 17th Street, Room 212B Austin, Texas 78711 Please be sure to "Accept" this invitation or RSVP to my email if you are able to attend. We will need to give prior notice of all attendees to security at the front desk. Parking-TBD. An email regarding parking arrangements will be sent to all who "accept".

Attending by Phone/Online

Please register to attend the webinar at: https://www1.gotomeeting.com/register/172158089

1

SAEAG MEETING

State Agency Energy Advisory Group

Wednesday, June 18, 2014 9:00 a.m. – 11:30 a.m. Office of the Attorney General William Clements Building NW Corner of 15th and Lavaca 12th Floor Large Conference Room by Receptionist Area Austin, Texas 78701

REVISED AGENDA

9:00 a.m. – 9:45 a.m.	Case Update from OAG
9:45 a.m. – 10:00 a.m.	SECO Report
10:00 a.m. – 10:15 a.m.	BREAK
10:15 a.m. – 11:00 a.m.	Guest speaker: Tom "Smitty" Smith, Texas director of Public Citizen, and a representative from the Association of Electric Companies of Texas will talk about the challenges and opportunities that may be anticipated from the coming changes to air quality and CO_2 standards.
11:00 a.m. – 11:15 a.m.	Special report on the Energy Future Holdings bankruptcy from Assistant Attorney General Hal Morris, Managing Attorney of the OAG Bankruptcy Regulatory Section. Hal is the lead attorney for the PUC in the EFH bankruptcy proceeding, and will report on the status of TXU Energy contracts and answer any questions about what to expect.
11:15 a.m. – 11:30 a.m.	General discussion of current and upcoming issues and events

If you are going to join the meeting via telephone conference please call 1-888-391-2102 and during the message punch in 7253903#.

If you are attending in person, be sure to bring a picture I.D. to gain entry to the Clements Building.

You may pre-register to obtain unescorted clearance (you will still need to bring a picture I.D.) to our floor by emailing or calling before our meeting is scheduled <u>nancy.villarreal@texasattornevgeneral.gov</u> [512-475-4164]

Tammy Persky

SAEAG MEETING Subject: LBJ Office Building, 111 E. 17th Street, Room 305, Austin, Texas 78711 Location: Wed 7/16/2014 9:00 AM Start: Wed 7/16/2014 11:30 AM End: Tentative Show Time As: (none) **Recurrence:** Eddy Trevino **Organizer:** SAEAG MEETING AGENDA

Wednesday, July 16, 2014 9:00 a.m. - 11:45 a.m. LBJ Office Building 111 E. 17th Street, Room 305 Austin, Texas 78711

Agenda

9:00 a.m. - 10:00 a.m. Case Update from OAG (not open to public) 10:00 a.m. - 10:15 a.m. BREAK 10:15 a.m. - 10:45 a.m. SECO Energy and Water Conservation Design Standards and Major Renovation Projects Update 10:45 a.m. - 11:15 a.m. ENERGY STAR Portfolio Manager reporting for SB700 update 11:15 a.m. - 11:30 a.m. General Discussion

Webinar

https://www1.gotomeeting.com/register/418611088

Parking TBD

SAEAG MEETING

State Agency Energy Advisory Group

Wednesday, August 20, 2014 9:00 a.m. – 11:30 a.m. Office of the Attorney General William Clements Building NW Corner of 15th and Lavaca 12th Floor Large Conference Room by Receptionist Area Austin, Texas 78701

AGENDA

9:00 a.m. – 10:00 a.m.	Case Update from OAG
10:00 a.m. – 10:15 a.m.	BREAK
10:15 a.m. – 11:00 a.m.	Guest speaker: Chrissy Mann, Public Utility Commission, will discuss the Transition of Water Utility Regulatory oversight from TCEQ to the Public Utility Commission
11:00 a.m. – 11:15 a.m.	SECO Report
11:15 a.m. – 11:30 a.m.	General discussion of current and upcoming issues and events

If you are going to join the meeting via telephone conference please call 1-888-391-2102 and during the message punch in 7253903#.

If you are attending in person, be sure to bring a picture I.D. to gain entry to the Clements Building.

You may pre-register to obtain unescorted clearance (you will still need to bring a picture I.D.) to our floor by emailing or calling before our meeting is scheduled <u>nancy.villarreal@texasattorneygeneral.gov</u> [512-475-4164] or <u>susan.kelley@texasattorneygeneral.gov</u> [512-475-4173]

SAEAG MEETING AGENDA

Wednesday, September 17, 2014 9:30 a.m. – 11:45 a.m. Philips Gardco Lighting 1611 Clovis Barker Road San Marcos, TX 78666

Agenda

(No legal review this month) 9:30- SB700 Update 10:00- SAEAG planning for 2015 10:15- Break 10:30- Philips Technical Update 11:00- Philips Facility Tour

Webinar

https://www1.gotomeeting.com/register/418611088

*

SAEAG MEETING

State Agency Energy Advisory Group

Wednesday, October 15, 2014 9:00 a.m. – 11:30 a.m. Office of the Attorney General William Clements Building NW Corner of 15th and Lavaca 12th Floor Large Conference Room by Receptionist Area Austin, Texas 78701

Dear SAEAG attendees: Please note the change in our schedule for next week's meeting- our speaker will be presented first, at 9:00, so he can make the Texas Facilities Commission meeting. The legal update will be after the coffee break.

AGENDA

9:00 a.m. – 9:45 a.m.	Guest speaker: Farshad Shahsavary, Texas Facilities Commission, will discuss the Energy Efficiency and Sustainability Status at Texas Facilities Commission (TFC).
9:45 a.m. – 10:10 a.m.	BREAK
10:00 a.m. – 11:00 a.m.	Case Update from OAG
11:00 a.m. – 11:15 a.m.	SECO Report
11:15 a.m. – 11:30 a.m.	General discussion of current and upcoming issues and events

If you are going to join the meeting via telephone conference please call 1-888-391-2102 and during the message punch in 7253903#.

If you are attending in person, be sure to bring a picture I.D. to gain entry to the Clements Building.

You may pre-register to obtain unescorted clearance (you will still need to bring a picture I.D.) to our floor by emailing or calling before our meeting is scheduled <u>nancy.villarreal@texasattorneygeneral.gov</u> [512-475-4164] or <u>susan.kelley@texasattorneygeneral.gov</u> [512-475-4173]

SAEAG MEETING AGENDA

Wednesday, November 12, 2014 9:00 a.m. – 11:30 a.m. LBJ Office Building 111 E. 17th Street, Room 212B Austin, Texas 78711

Agenda

9:00 a.m. – 10:00 a.m.	Case Update from OAG (not open to public)
10:00 a.m. – 10:15 a.m.	BREAK *
10:15 a.m. – 11:00 a.m.	Guide to Texas Energy-Related Legislative Information – Dub Taylor
	(Director, SECO) and Eddy Trevino (Program Manager, SECO)
11:00 a.m. – 11:15 a.m.	ENERGY STAR Portfolio Manager Recap for SB700
11:15 a.m. – 11:30 a.m.	General Discussion

6.4.6.4 The South-central Partnership for Energy Efficiency as a Resource (SPEER) Meetings from 2014. The following pages are meeting notes, agendas, and summaries from the SPEER meetings from 2014.

Second Annual Summit Schedule SPEER	Page 1 of 2
SPEERMAILIAGA The South-central Partnership for Energy Efficiency as a Resource Home About Energy Upgrade SPEER Summit SPEER Initiatives News	
Second Annual Summit Schedule	
Monday, February 10, 2014 4:30 pm - Registration	Search
5:30 pm - Welcome Reception - Sponsored by:	SIGN UP FOR UPDATES
Tuesday, February 11, 2014	Get updates about training events and other news.
8:30 am - Annual Member Meeting (Members Only). 9:30 am - Breakfast and Registration 10:00 am - Welcome by SPEER Chairman of the Board Steve Saunders 10:15 am - 2013 Highlights by SPEER Executive Director Doug Lewin 10:30 am - Keynote Speaker - Sam Rashkin of the Department of Energy's Building Technologies Office	Email address: Join You may unsubscribe at any time.
11:30 am - Lunch and Networking Break - Sponsored by:	TWITTER
1:00 pm - Plenary Panel • Net Zero Homes - Chris Little	RT @DowChemical: The average #home has over a half mile of gaps and cracks. See where you might be losing #energy
Combined Heat & Power / Distributed Generation - Christine Brinker, U.S. DOE Southwest CHP Technical Assistance Partnership City Initiatives for Energy Efficiency - <u>Cliff Majersik, Institute for Market Transformation</u>	ow.ly/fekVp 1 day ago DOE issues #energyelliciency standard to make our External Power Supplies (adapters/bricks) use less energy. bit/b//MTkJb1 1 day ago
1:45 pm - Individual Working Sessions on the above topics 3:00 pm - Break 3:30 pm - Plenary Panel	Check out "Commercial PACE: Raising Confidence in Savings to Ramp Investment & Demand- Statting in 30 minutes! commercialpace.eventbrite.com/?alf=estw
 Building Energy Codes – Jay Murdoch, Owens Corning 2030 Districts & Net Zero Buildings and the Role of Water Efficiency – Vincent Martinez, Architecture 2030 and <u>Paul Faeth, CNA</u> 	S days ago SPEER #energyeffkciency Summit starts in 2 weeks. Join @hal_harvey @energy's Sam Rashkin and hundreds more in Austin! eepartnership.org/summit2014
Air Emissions Policy Driving Additional Efficiency – <u>Ken Colburn, Regulatory Assistance Project</u> 4:15 pm – Individual Working Sessions on the above topics	1 week ago #FF to SPEER Summit sponsors @dowbuilding @BASF @austinenergy @carlisletNAC @MitsubishitIVAC @AmChemistry @accausa goo.gl/u0ZIEY 1 week ago
5:30 pm - Reception - Sponsored by:	Follow @eepartnership
<u>Wednesday, February 12, 2014</u>	n de V
8:30 am - Keynole Speaker Hal Harvey of Energy Innovation: Policy and Technology, LLC.	Follow
http://eepartnership.org/summit-schedule/	2/5/2014

Second Annual Summit Schedule | SPEER

Page 2 of 2

9:30 am - Break

10:00 am - Plenary Panel

- + Energy Efficiency as a Resource Robert King, Senior Advisor to SPEER
- Multifamily Steve Saunders, US-Ecologic & TexEnergy Solutions
- Performance Contracting Dub Taylor, Texas State Energy Conservation Office

10:45 am - Individual Working Sessions on the above topics

12:00 pm - Lunch and Networking Break

1:00 pm - Plenary Panel

- · Valuing Energy Efficiency: Green MLS / Appraisals Laura Stukel, CNT Energy
- Consumers and the Smart Grid Annie Haas, Smart Grid Consumer Collaborative and <u>Barry Haaser, Open</u>
 <u>ADR Alliance</u>

Building Investor Confidence - <u>Matt Golden, Investor Confidence Project</u>

1:45 pm - Individual Working Sessions on the above topics

3:00 - 4:00 pm - Wrap-up

Register today!

-

Return to Summit main page

Return to Summit Working Session Lopics

*Please note all times and presenters are subject to change without notice.

Share this: Twitter Facebook

Like this: 🛧 Like

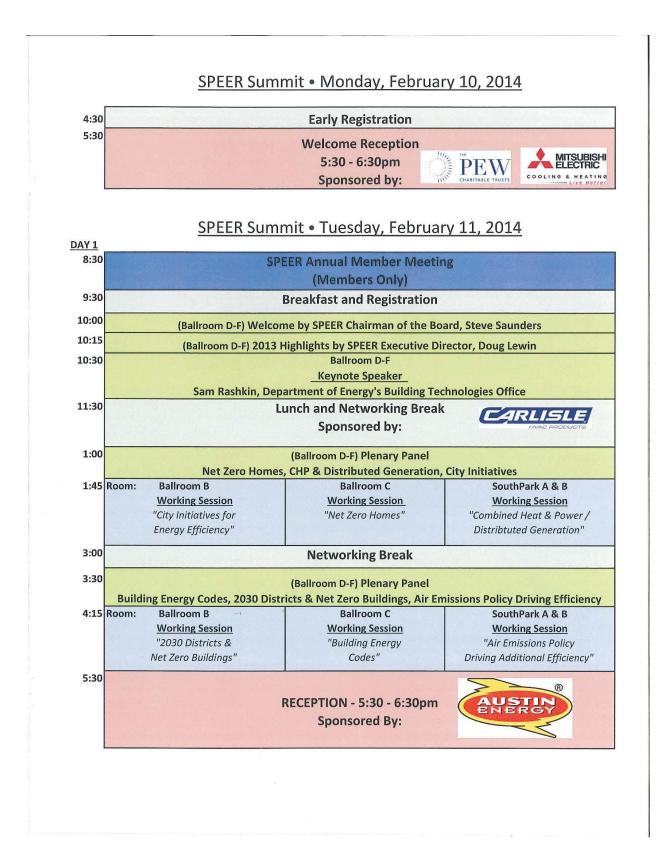
Be the first to like this.

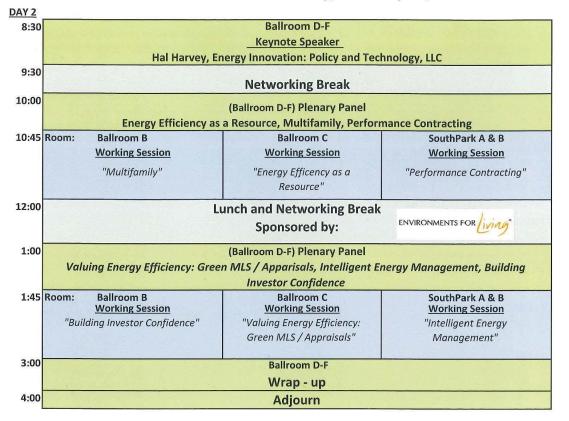
http://eepartnership.org/summit-schedule/

2/5/2014

Follow

"SPEER is a partnership of energy efficiency industry stakeholders committed to the accelerated adoption of advanced building systems and energy efficiency products and services in the South-central US."




with us for our Second Summit. Last year, many of the initiatives identified grew into full fledged efforts and have begun to have an impact on the region. As one example, our keynote speaker last year Ed Mazria encouraged us to pursue 2030 districts in the region and there are now two "emerging districts" in Texas. Similar efforts will emerge from this year's Summit and we hope you'll not only network and listen, but participate and stay involved to see these initiatives through, with us.

Thank you for attending and collaborating with us to move efficiency forward in Texas and Oklahoma.

Sincerely,

Doug Lewin Executive Director

SPEER Summit • Wednesday, February 12, 2014

Sam Rashkin, Chief Architect for the Department of Energy's Buildings Technologies Office

Rashkin's primary role is leading deployment of

successful research for new and existing high performance homes. In his prior position, he managed the growth of Energy Star for Homes from its inception in 1996 to more than 8,500 builder partners, over one million labeled homes, and over 25 percent market penetration nationwide. Mr. Rashkin has recently been recognized for his contributions to sustainable housing with the 2012 Hanley Award and authored a new book titled "Retooling the U.S. Housing Industry: How It Got Here, Why It's Broken, and How to Fix It". Hal Harvey, CEO of Energy Innovation: Policy and Technology, LLC

Harvey founded the ClimateWorks Foundation, a network of 13 regional foundations and expert teams that promote policies to reduce the threat of climate change. He is also the founder and

and former President of the Energy Foundation, a joint initiative of six large U.S. Foundations. Harvey is currently a Senior Fellow for Energy and the Environment at the Paulson Institute located at the University of Chicago. Mr. Harvey has served on energy panels appointed by Presidents Bush (41) and Clinton, has published two books and dozens of articles on energy and national security issues. He is President of the Board of Directors of the New-Land Foundation, and Chairman of the Board of MB Financial Corporation, a \$10 billion Chicago bank holding company. Earlier in his career, he designed and built solar homes. Few have done as much or had as big an impact in the clean energy world as Harvey.

SPEER Second Annual Summit Summit Working Sessions

<u>Net Zero Homes</u> Plenary Presenter: Chris Little

Recent years have seen the development of numerous net zero energy homes and buildings, and even adoption of net zero capable code requirements. As more are built, costs go down and experience and knowledge about methods and materials increase, making more net zero construction possible. What is needed for the industry to embrace net zero, or for customers to begin to demand it? This session will be led by Chris Little and Richard Morgan of Austin Energy Green Building Program.

Combined Heat and Power/Distributed Generation Plenary Presenter: Christine Brinker, Director, U.S. DOE Southwest CHP Technical Assistance Partnership

Our region is a leader in installed Combined Heat and Power (CHP). The U.S. Department of Energy has been given a goal of increasing by nearly 50% the capacity of CHP, District Energy Systems with CHP, and Waste Heat to Power projects in the U.S. SPEER plays an active role in supporting that effort in Texas and Oklahoma through the U.S. DOE's Southwest CHP Technical Assistance Partnership (CHP TAP), part of a national network of such partnerships. Newly adopted state legislation opens up new opportunities for CHP in Texas, and ERCOT rules support other forms of distributed generation as well. Oklahoma is updating their CHP/DG Interconnection rules, although its overall environment for CHP is much less welcoming. This SPEER working meeting is designed to bring together experts and stakeholders in the region to discuss how to strengthen collaboration and identify new opportunities and resources. The session will be hosted by the U.S. DOE Southwest CHP TAP and will be led by Christine Brinker, Director of the Southwest CHP TAP, along with Paul Cauduro of the Texas CHP Initiative (TXCHPI).

City Initiatives for Energy Efficiency

Plenary Presenter: Cliff Majersik, Institute for Market Transformation

Texas and Oklahoma cities have adopted many advanced initiatives to increase the efficiency of their buildings, their local businesses, and their citizens' homes. Through coordination of these initiatives, and the sharing of expertise within the region, SPEER hopes to encourage even more. Participants in this session will discuss city initiatives such as Better Buildings Challenges, PACE Districts, Building Codes, energy efficiency in municipal buildings, Building Operator Certification, as well as rating and disclosure policies. The session will be led by representatives of the State Energy Conservation Office and Doug Lewin of SPEER.

Building Energy Codes

Plenary Presenter: Jay Murdoch, Owens Corning

Energy codes have pushed the building industry to improve building practices, providing very high levels of efficiency in the built environment. But compliance varies as it is implemented at the local level and often takes a back-seat to other priorities in building departments. There is an additional challenge to document and capture the massive energy savings from code compliance in home rule environments, such as in Texas and Oklahoma. He will touch on SPEER's work facilitating the Texas Energy Code Compliance Collaborative (TECCC). This breakout session will then be led by Jay Murdoch and Chris Herbert of SPEER.

2030 Districts and Net Zero Buildings and the Role of Water Efficiency Plenary Presenter: Vincent Martinez, Architecture 2030 and Paul Faeth, CNA

This session will focus on establishing and successfully implementing a 2030 district in Dallas, and spreading that success to other cities in the region. Six US cities have embraced the ambitious 2030 challenge to reduce energy and water usage by more than 50% in existing buildings, and to achieve net zero energy for all new construction. Known as 2030

Districts, these privately organized efforts are setting a standard for what is possible. SPEER is encouraging communities in this region to consider establishing 2030 districts, and seeking funding to support these important efforts, so we will discuss the goals, design, and next steps for developing the first one here. This session will be led by Vincent Martinez of Architecture 2030, Jerry Kettler of Facility Performance Associates, Heather Holdridge of Lake Flato and Paul Faeth, Director of Energy, Water and Climate at CNA.

<u>Air Emissions Policy Driving Additional Efficiency</u> Plenary Presenter: Ken Colburn, Regulatory Assistance Project

Energy efficiency can help reduce emissions of all air pollutants, alleviating air quality compliance issues facing the region. In fact, many states, local governments, and utilities are exploring how to get environmental credit for their efficiency efforts. As carbon emission regulations under the Clean Air Act (section 111(d)) are adopted and enforced, and as many areas strive for attainment with ozone, NOx, SO2, and PM standards, energy efficiency efforts may be among the most cost-effective methods for Texas and Oklahoma to comply. This session will explore the opportunity to address forthcoming environmental regulations through additional investment in energy efficiency, state/local support initiatives, and/or utility incentive programs. This session will be led by David Claridge of Texas A&M Energy Systems Lab and Kate Zerrenner, Environmental Defense Fund.

Energy Efficiency as a Resource Plenary Presenter: Bob King, Senior Advisor to SPEER

Oklahoma has increased funding for energy efficiency programs while Texas' efficiency acquisition programs are stagnant or in decline. In the last American Council for an Energy Efficient Economy (ACEEE) scorecard, Texas got zero points for its efficiency goal, and has slid from 11th place among the states to 33rd. Despite legislative and regulatory measures adopted to increase efficiency in Texas, incentive program funding is declining, incentive levels have been reduced, and more and more customers are being allowed to opt out altogether. Meanwhile, Oklahoma rose from 47th to 37th over the same period, improving but leaving room for improvement. Interestingly, Texas leaders express real concerns about the ERCOT market's ability to meet peak loads reliably, and are considering significant changes to this electric market. Oklahoma, which has experienced record peaks in recent years, will also be experiencing some significant changes in the SPP market design next year. This session will explore what should be done to expand the acquisition of cost-effective efficiency measures in Oklahoma and Texas. We will discuss whether the most effective route toward this end would be expansion of utility incentive programs, inclusion of energy efficiency in the electric market designs of ERCOT and SPP, a combination of both, or a purely public sector approach. The session will be led by Colin Meehan of Comverge and Bob King of SPEER.

Multifamily

Plenary Presenter: Steve Saunders, US Eco Logic and TexEnergy Solutions

One of the most difficult areas in which to sell energy efficiency retrofits is the multifamily sector. This particular segment of the built environment faces many unique barriers, such as the split benefits of owners and renters, lack of sufficient data to support financing, and return on investment for owners. This session will examine incentive programs which are successfully retrofitting multifamily buildings, and explore the potential for a SPEER initiative to better document multifamily savings and encourage private sector financing of energy efficiency. This breakout session will be led by SPEER Chairman, Steve Saunders of Tex Energy Solutions and US EcoLogic, David Wolpa of Energy Savvy and Fred Yebra of Austin Energy.

Performance Contracting Plenary Presenter: Eddy Trevino, Texas State Energy Conservation Office (SECO)

This session will be focused on developing strategies to increase the use of performance contracting in Texas and Oklahoma, and to stimulate more energy efficiency activity among governmental entities. Performance contracting is mostly used in the public sector, where identifying money to invest in energy efficiency—even when it pays for itself—

may require legislative appropriations, were this creative financing mechanism not available. The practice has evolved over the years and SPEER is working with the states of Texas and Oklahoma to reinvigorate efforts to achieve greater efficiency, and reduce revenue requirements for hard-pressed governmental entities, by using this approach. The session will be lead by Eddy Trevino, Project Manager at Texas SECO.

Valuing Energy Efficiency: Green MLS and Appraisal Issues Plenary Presenter: Laura Stukel, CNT Energy

Often, when homeowners make improvements to an existing house, the most important aspects of home performance – including safety, comfort, energy efficiency, durability, and environmental impact – are invisible during key steps of any home sale or refinance transaction. One result is that energy efficiency investments are overlooked or inaccurately valued at the time of a home sale. The practice of having clear documentation of home energy upgrades supports improved marketing of these high-performance homes in a Multiple Listing Services (MLS). This in turn, creates more access to the "comps" or comparable properties appraisers need for their opinion of value on these homes. This session will focus on how to bring the practice to our region that link these key tasks and actors and begins to reflect the real value of high performance homes. This session will be led by Laura Stukel of CNT Energy, Beth Johnson of Keller Williams Realty and CT Loyd of Texas Home Energy Rating Organization.

Consumers and the Smart Grid

Plenary Presenter: Annie Haas, Smart Grid Consumer Collaborative and Barry Haaser, Open ADR Alliance

Texas has deployed smart meters to nearly every customer in the competitive regions of the state, covering nearly 80% of the state's consumption. Yet the promise of the smart grid and smart energy technology is far from fully realized. Oklahoma too has begun to adopt smart grid technologies. There is push-back against the smart meters from small but vocal minority, however, which has led the smart grid news for too long. SPEER can team with the Smart Grid Consumer Collaborative to help educate leaders and consumers about the potential benefits of smart energy management, and the role of technology to further energy efficiency efforts. In addition, widespread adoption of innovative services will require a plug-and-play environment. SPEER wants to help application developers use the smart grid as a platform for innovation, while encouraging reliance on evolving standards and accelerating the advent of interoperability. This session will be used to discuss how we can all work together to help launch these initiatives and facilitate private sector innovation. The session will be led by Kenneth Van Meter of Intelligent Energy Systems.

Building Investor Confidence

Plenary Presenter: Matt Golden, Investor Confidence Project

One of the biggest barriers to efficiency of all kinds is the upfront capital it requires. How can the energy efficiency industry improve access to capital? SPEER has become a regional ally for the Investor Confidence Project (ICP), an Environmental Defense Fund project. Developing and adopting common, acceptable standards for predicting, monitoring, and verifying energy efficiency costs and savings will provide the underpinning of success for PACE, performance contracting, WHEEL, on bill repayment or financing, and other mechanisms of project finance. The goal of this workshop will be to help deepen the collaboration between this important national effort and our regional efforts to improve access to financing for energy efficiency. This session will be led by Matt Golden of the Investor Confidence Project and Matt Worth of Noesis Energy.

6.4.6.5 Other

The following pages are meeting notes, agendas, and summaries from the multiple meetings from 2014.

		Home Programs & Offices Consumer Information				
	x Blos	an a				
uilding l	Energy Codes Program					
IOME NE						
E » EERE » BTO » BE	CP » Sãe Map	Printable Version				
VELOPMENT	BECP Stakeholder Meeting					
OPTION MPLIANCE	The U.S. Department of Energy will hold a public meeting to present and receive comments on overall progra future residential code development activities.	am direction and in anticipation of its				
GULATIONS	Date & Time: Thursday, April 24, 2014 (8:00 a.m. to 3:30 p.m.) Location: DoubleTree Hotel – Crystal City, 300 Army Navy Drive, Arlington, Virginia					
	Participation To participate in the meeting, please submit an official request to <u>BuildingEnergyCodes@ee.doe.gov</u> organizational filiation. <i>Note that space is limited and advanced registration is required</i> . Requests will received.					
	Public Comments Comments from the public will be accepted at the meeting. Additionally, following the meeting, a docket will 1 comment on topics discussed at the meeting. Official comments following the meeting must be submitted by may submit comments by following the instructions outlined in the official meeting. Notice published in the	May 30, 2014. Interested parties				
	Agenda DOE will present an overview of current program activities and organization in support of its mission to achie energy codes. In addition, DOE seeks stakeholder input in anticipation of future residential code developmer					
	8:00 a.m. – 12:00 p.m. Morning Session: General Program Input					
	Welcome & Opening Remarks Introductions Statutory Basis for DOE Activities Overview of Current Program Activities Overview of Current Program Activities Discussion of Key Topics REScheck & COMcheck Compliance Software Policy Compliance Funding Opportunity Announcement (FOA) Foderal Advisory Committee (FACA) Building Energy Codes Summit Participant Feedback Closing Remarks					
	1:00 p.m. – 3:30 p.m. Afternoon Session: Residential Code Development					
	Energy Code Formats and Compliance Paths DOE Role in Residential Code Development Complete Control and ACCO					
	Energy Efficiency in the 2018 IECC DOE will solicit discussion and feedback surrounding information presented. A public <u>docket</u> is also availa the meeting along with all associated public comments. The <i>Regulations.gov</i> website contains instructions of					
	docket, including public comments received. Additional information and materials will be added as they are made available.					
		ĸ				
	Contacts Web Sto Foldes U.S. Department of Energy USA gov Last Updated Friday, April 11, 2014 - 6:54am					

2014 GROUP C COMMITTEE ACTION HEARING SCHEDULE April 27 - May 3, 2014

Memphis Cook Convention Center, Memphis, TN

Hearings will start at 1:00 pm on Sunday, April 27th. Prior to the hearings the Building Official, Fire Service, PMG Official and Sustainability Membership Councils will be holding meetings during the Saturday/Sunday morning time period. Be sure to consult the Membership Councils webpage for details as they become available.

The code change volume is such that a single track will be utilized. The IgCC – General hearing will start at 1:00 pm on Sunday, April 27th. The IgCC – Energy/Water hearing will start no earlier than 1:00 pm on Wednesday, April 30th, as indicated on the schedule. The schedule anticipates that the hearings will finish by 2:00 pm on Saturday, May 3rd

Sunday April 27	Monday April 28	Tuesday April 29	Wednesday April 30	Thursday May 1	Friday May 2	Saturday May 3
Start 1 pm Start 8 am Start 8 am IgCC - General IgCC - General IgCC - General		Start 8 am	Start 8 am	Start 8 am	Start 8 am	Start 8 am
		lgCC – General IgCC – Energy/Water (Start no earlier than 1 pm)	lgCC – Energy/Water	lgCC – Energy/Water	lgCC – Energy/Water	
End 7 pm	End 7 pm	End 7 pm	End 7 pm	End 7 pm	End 7 pm	Finish 2 pm

Notes:

IgCC General: Chapters 1, 3 - 5, 8 - Appendices. Be sure to consult the hearing order for code changes to be heard by the IgCC - Energy/Water code committee. 1.

IgCC- Energy/Water: Chapters 6 & 7. Be sure to consult the hearing order for code changes to be heard by the IgCC - General code committee. 2.

Consult the hearing order to determine which committee will consider code changes to the definitions in Chapter 2. З.

4.

Hearing times may be modified at the discretion of the Chairman. Breaks will be announced. A lunch break is planned. A dinner break is not planned. The hearings are scheduled 5.

to adjourn at the dinner break and resume the next day, unless necessary to complete the agenda. Due to uncertainties in hearing progress, the start time indicated as "start no earlier than 1 pm" is conservatively 6. estimated and is not intended to be scheduled hearing progress target.

2014 GROUP C COMMITTEE ACTION HEARING SCHEDULE April 27 - May 3, 2014

Memphis Cook Convention Center, Memphis, TN

Hearings will start at 1:00 pm on Sunday, April 27th. Prior to the hearings the Building Official, Fire Service, PMG Official and Sustainability Membership Councils will be holding meetings during the Saturday/Sunday morning time period. Be sure to consult the Membership Councils webpage for details as they become available.

The code change volume is such that a single track will be utilized. The IgCC – General hearing will start at 1:00 pm on Sunday, April 27th.The IgCC – Energy/Water hearing will start no earlier than 1:00 pm on Wednesday, April 30th, as indicated on the schedule. The schedule anticipates that the hearings will finish by 2:00 pm on Saturday, May 3rd.

Sunday April 27	Monday April 28	Tuesday April 29	Wednesday April 30	Thursday May 1	Friday May 2	Saturday May 3
Start 1 pm	Start 8 am	Start 8 am	Start 8 am	Start 8 am	Start 8 am	Start 8 am
IgCC - General	lgCC - General	IgCC - General	lgCC – General			
			IgCC – Energy/Water (Start no earlier than 1 pm)	IgCC – Energy/Water	lgCC – Energy/Water	lgCC – Energy/Water
End 7 pm	End 7 pm	End 7 pm	End 7 pm	End 7 pm	End 7 pm	Finish 2 pm

Notes:

IgCC General: Chapters 1, 3 - 5, 8 - Appendices. Be sure to consult the hearing order for code changes to be 1. heard by the IgCC - Energy/Water code committee.

IgCC- Energy/Water: Chapters 6 & 7. Be sure to consult the hearing order for code changes to be heard by the IgCC – General code committee. IgCC – General code committee. Consult the hearing order to determine which committee will consider code changes to the definitions in Chapter 2. 2.

3.

Hearing times may be modified at the discretion of the Chairman.

Breaks will be announced. A lunch break is planned. A dinner break is not planned. The hearings are scheduled 5.

to adjourn at the dinner break and resume the next day, unless necessary to complete the agenda. Due to uncertainties in hearing progress, the start time indicated as "start no earlier than 1 pm" is conservatively 6.

estimated and is not intended to be scheduled hearing progress target.

Did not attend Sunday or Monday Sessions Balurday Session was cancelled

Guidance for the interview

Energy Efficiency in Buildings Laboratory (EEB Lab.)

Interviews on October 8, 2014

Venue: Thompson & Knight LLP, Three Allen Center, 333 Clay Street, Suite 3300 Houston, Texas 77002-4499

The 2 pager of the EEB Laboratory is available here.

1. Objectives of the EEB Laboratory

- Understand the "state of play" of energy efficiency in buildings in the Houston market –
 what are the drivers and barriers, from the viewpoint of practitioners in the building market
- Generate insights on how barriers can be overcome, in the form of awareness raising / business case, market incentives, regulatory approaches, etc.
- Encourage building sector stakeholders to drive change within their own operational scope as well as through collaboration along the value chain.
 - Deliverable

An action plan for the Houston market for energy efficient properties that motivated local partners will commit to implement.

2. Process of the EEB Lab.

- Oct.8 A panel of experts¹ will interview approx. 40 building market stakeholders.
- <u>Oct. 9</u> The panel of experts will interpret and consolidate the interviews; they will also facilitate dialogue across a series of roundtables (see below Interview discussion themes) to analyze the perceived and known barriers for creating energy efficiency marketplaces around central themes that have been developed by the EEB2.0 project.
- Oct. 10 Plenary session will conclude the Lab. with the feedback on the actions, commitments and next steps defined during the lab.

Interview discussion themes (also topics for Roundtables on October 9)

Increasing Value to Stakeholders through Energy Efficiency

The benefits of EEB investments for each category of building market stakeholders can be substantiated. This roundtable will seek to understand how to develop, communicate and reach a comprehensive value proposition that provides a proportional benefit to all stakeholders.

September 24, 2014

eeb-lab-interview-preparation-sept.24.docx

page 1 of 2

¹ WBCSD EEB members (UTC, Schneider Electric, AGC, Lafarge, Siemens) and local partners (architend, ALC, C40, CenterPoint, City of Houston, EDF, Gensler, HARC, Hines, IMT, Keeping PACE, NRG, Rice University, Shell, SPEER, Thompson and Knight LLP, ULI Houston, US BCSD, USGBC)

Agenda December 8, 2014 Bastrop Convention Center, Bastrop, TX

Registration/Continental Breakfast8:00–8:30 a.m.
Introduction8:30–8:35 a.m.
Brian Christian, Director, Environmental Assistance Division, Texas Commission on Environmental Quality (TCEQ)
Welcome and Opening Remarks8:35–9:30 a.m.
• The Honorable Kirk Watson, Texas Senate, District 14
Bryan W. Shaw, Ph.D., P.E., TCEQ Chairman
Toby Baker, TCEQ Commissioner
Zak Covar, TCEQ Commissioner
Open House Exhibits9:30–10:00 a.m.
Keynote Speakers10:00–11:30 a.m.
Texas Water Update: Drought, Water Conservation, and State's Role
• L'Oreal Stepney, P.E., Deputy Director, TCEQ Office of Water
 Ramiro Garcia, Deputy Director, TCEQ Office of Compliance and Enforcement
Central Texas Air Quality Update
Steve Hagle, Deputy Director, TCEQ Office of Air
Open House Exhibits
Exhibitors: TCEQ Office of Water, Air, Waste, Small Business & Local Government Assistance, and Take Care of Texas, Railroad Commission, Texas Parks & Wildlife, Guadalupe-Blanco River Authority, Plum Creek Conservation District, Capital Area Council of Government, Texas AgriLife Extension, Texas Department of Agriculture, Texas Water Development Board, U.S. Geological Survey, Groundwater Protection Committee

Note: Subject-matter experts will staff exhibits and can answer specific technical questions related to keynote speeches as well as other regulatory issues.

2015 UPDATE

Consensus Committee and Task Groups Meeting Agenda

National Green Building Standard™

June 9-10, 2014

National Housing Center | 1201 15th Street, NW | Washington, DC 20005 | 202-266-8200

Purpose: Orient all participants on the 2015 National Green Building Standard update process, initiate Task Group review of the proposed changes, and discuss options for direction on several key areas of the Standard

Monday, June 9

Home Innovation

GENERAL SESSION (8:30 am-12:00 pm)

- 1.0 Welcome
- 2.0 Introductions
- 3.0 Approve Agenda
- 4.0 Overview and Orientation

. .

- a. Background on the National Green Building Standard (NGBS)
- b. ANSI Standard Development Process
- c. Consensus Committee Charge
- d. Development Schedule
- e. Proposed Changes
- f. Experience with Implementation of the NGBS
- g. Task Groups
- 5.0 Questions and Discussion

LUNCH (12:00 pm-1:00 pm) - provided (for CC and TG members)

TASK GROUP SESSIONS (1:00 pm-5:00 pm)

Tuesday, June 10

GENERAL SESSION (8:00 am-10:00 am) TASK GROUP SESSIONS (10:00 am-11:30 am) LUNCH BREAK (11:30 am-1:00 pm) – off site WORKING LUNCH for TG Chairs and Alternates - Provided TASK GROUP SESSIONS (1:00 pm-3:00 pm)

April 18, 2014

Proposed DFW SIP Revisions for the 2008 Eight-Hour Ozone NAAQS

12/10/2014

On <u>December 10, 2014</u>, the commission approved proposal of revisions to the Texas SIP for the Dallas-Fort Worth (DFW) nonattainment area for the 2008 eight-hour ozone national ambient air quality standard (NAAQS): the DFW Attainment Demonstration (AD) SIP Revision for the 2008 Eight-Hour Ozone NAAQS (Non-Rule Project No. 2013-015-SIP-NR) and the DFW Reasonable Further Progress (RFP) SIP Revision for the 2008 Eight-Hour Ozone NAAQS (Non-Rule Project No. 2013-014-SIP-NR). The proposed AD SIP revision would incorporate proposed revisions to 30 Texas Administrative Code Chapters 101, 115, and 117.

Proposed Attainment Demonstration SIP Revision

TEXAS COMMISSION

ON ENVIRONMENTAL QUALITY

Proposed Reasonable Further Progress SIP Revision

Two public hearings will be held on these proposed SIP revisions: in Arlington on January 15, 2015 at 6:30 p.m. in the City of Arlington Council Chamber at the Arlington Municipal Building located at 101 W. Abram Street; and in Austin on January 22, 2015 at 10:00 a.m. in Building E, Room 201S, at the commission's central office located at 12100 Park 35 Circle. The public comment period is from December 26, 2014 through January 30, 2015.

For additional information, please visit the <u>Dallas-Fort Worth: Latest Ozone</u> Planning <u>Activities</u> Web page.

You are subscribed to SIP Hot Topics (State Implementation Plan) for the Texas Commission on Environmental Quality. This information has recently been updated, and is <u>now available</u>.

AGENDA

MEETING DATE:

TIME:

Thursday, December 18, 2014 Meeting starts at 6:30 please try to arrive early so we can start on time.

LOCATION:

Rudy's Country Store & Bar-B-Q, 2510 Circle Rd, Waco

1. CALL TO ORDER

A. Bobby Horner, Chapter President Prayer / Pledge

2. New Members ?

3. GUEST SPEAKER:

Barry Lightfoot - Robinson Code Officer speaking on "Sovereign Citizen" with Tracy Lankford and Bob Cervenka

4. APPROVE / DISAPPROVE MINUTES:

5. TREASURERS REPORT:

6. OLD BUSINESS:

- A. By-Law updates
- B. Region 10 membership
- C. Annual Banquet Update
- D. Member of the Year
- 7. NEW BUSINESS:
 - A. Election of new officers
 - B. Future Scholarship Plans
 - C. Electrical Class in Killeen
 - D. Any other topic as needed
- 8. ADJOURN

PLEASE CHECK OUT OUR WEB SITE AT www.bluebonneticc.com FOR MEETING DATES/ EVENTS / TRAINING

1

From:	Sandra Barba <sbarba@nctcog.org></sbarba@nctcog.org>
Sent:	Tuesday, February 04, 2014 5:27 PM
To:	byazdani@tamu.edu
Subject:	Invitation to Solar Ready II Kick-Off and Registration for "Solar 101" Webinar
Importance:	High

!!! MARK YOUR CALENDAR **!!!**

The Solar Ready II Kick-Off meeting is scheduled for:

- On: Thursday, March 6, 2014
- At: 1:30 p.m.-4:00 p.m.
- In: Transportation Council Room NCTCOG Offices, CPII 616 Six Flags Drive
 - Arlington, Texas 76011

Local Government officials, planners, utility representatives, solar industry experts, and interested parties, please join NCTCOG to kick-off the Solar Ready II project for the DFW region. Topics to be discussed include:

- Establishing solar obstacles and goals in the DFW Region;
- Prioritizing areas of focus; and
- Implementing strategies to streamline solar implementation.

If you would like more information about this project, please visit the following website for details and updates: www.nctcog.org/solar. In addition, a "Solar 101" webinar will also be hosted on Tuesday, February 18th, at 2 p.m. This webinar will provide an introduction to available solar options, as well as details on understanding the technology and design considerations. It may be beneficial to see this information before the March 6th Kick-Off meeting. To register for this webinar, please click here. Due to reservation limitations, if more than one person from your office is planning to attend, please view the webinar together.

An agenda will be provided as the kick-off meeting date draws closer. We hope your schedule will allow you to attend.

1

Sincerely,

Saudra Barba

Environment and Development Planner III North Central Texas Council of Governments T 817.608.2368

Texas Energy Manager Association

Brazos Valley Chapter Agenda TAMU Energy System Lab Office Building 402 Harvey Mitchell Pkwy S, College Station, TX August 14, 2014

- 1) Call to order
- 2) Chapter business
 - a. Election of Chapter Vice President
 - b. Membership Committee update
 - c. Future meeting locations
- 3) Chillers presentation by Scott Steffen with Hunton Trane
- 4) Networking
- 5) Closing Remarks
- 6) Adjourn

2014 ECCC NYS Training for Code Officials Preliminary Meeting March 19, 2014 RIT Inn and Conference Center Attendees: Liza Bowles, Margo Thompson, Jim Burton, Scott Copp, Shirley Ellis

Time: Wednesday, March 19: X pm -5 pm

Review course topics, number of sessions to be delivered, targeted audience size
 a. 226 sessions: 210 standard sessions (15-40 attendees), 16 large sessions (> 40 attendees)

II. Discuss approaches to marketing and successfully delivering 226 sessions in three-year timeframe

III. Discuss roles of Newport, TY Lin, and ICC in curriculum development, review, scheduling, and delivery

IV. Discuss process of internal team review of curriculum and review and approval by NYSERDA and DOS

V. Action plan for preliminary activities, marketing strategies, templates, flyers

VI. Update, if any, on NYS Energy Code rule-making and adoption schedule

22 Jay Street Schenectady, New York 12305 (518) 377-9410

Azenda

Feasibility Chapter of the Technology Innovation Guide SME's Meeting Wednesday March 19, 2014

Evening introductory discussion available for any attendees already in town

Thursday March 20, 2014 8:00 AM – 2:00 PM

Location: RIT Inn and Conference Center 5257 W Henrietta Rd, West Henrietta, NY 14586

Objectives:

- > Identify essential content for the Feasibility section of the Guide
- > Discuss and identify the best structure/format for the Guide
- > Identify available resources for end users

8-8:15	Welcome and Introductions		
8:15-8:30	The Guide - Overview		
8:30-9:30	Identify Important Feasibility Content		
9:30-9:45	Break		
9:45-10:45	Content (continue discussion)- Elements of Feasbility		
10:45-11:30	Exercises-		
	 Triggers for Guide Use 		
	 Discussion of Building Owner/Manager 		
	Perspective		
11:30-12:30	Break for Lunch		
12:30-1:45	Revisit Tech Guide Layout		
1:45-2:00	Wrap-up		

6.4.7 Published Papers, Theses, etc.

6.4.7.1 Theses and Dissertations.

The following theses and dissertations were published in 2014 incorporating work related to the Texas Emissions Reduction Plan (TERP).

Jong-hyo Choi, "Analysis of the Impact if Using Improved Multi-layer Window Models for Code-Compliant Residential Building Energy Simulation in Texas,"M. S., Department of Architecture, December 2014.

In most urban areas of United States, newly constructed buildings have to comply with building codes from the International Code Council (ICC) or from the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). Windows are a crucial building component that affects a building's heating and cooling energy. Currently, there are two window modeling methods, the Transmittance, Absorbance and Reflectance (TAR) method, and the Multi-Laver Window (MLW) method. MLW method is more accurate than the TAR method, because it includes improved equations that better represent the actual window properties. However, at present both building codes (i.e., ICC or ASHRAE) do not use the MLW method to model the windows in a building. Therefore, there is a need to analyze annual building energy simulation results differences between the two different window modeling methods applied building model, in order for code officials to better determine the impact of the code change. This study analyzed both window modeling methods with the International Energy Conservation Code (IECC) 2009 and the IECC 2012 conditions for climate zones in Texas. The results show that there are significant differences in annual building energy end-use, heating and cooling energy use, and peak heating and cooling loads for identical code-compliant houses using the two different window models. In addition, such differences become larger as the building energy code improves, from the IECC 2009 to the IECC 2012. Suggestions for future work are also included for other climate zones, different building footprints, and other various building operating schedules.

Link: http://oaktrust.library.tamu.edu/handle/1969.1/153805

Kee Han Kim, "Development of an Improved Methodology for Analyzing Existing Single-FamilyResidential Energy Use," Department of Architecture, August 2014.

The purpose of this study was to develop an improved methodology for analyzing the energy use from existing single-family. The overall goal of this work is to make home energy audits more effective by providing homeowners and energy auditors with an improved and reliable tool to identify overconsumption in a residence by showing where the energy is inefficiently being used in the residence when compared to buildings of similar size in similar climates. Such a tool can be used by auditors to quickly assess the problems in the building, determine accurately what needs to be fixed and to provide useful guidance before arriving on-site. In order to accomplish this, an improved methodology for an easy-to-use, semi-automatic calibrated simulation that can determine potential energy conservation measures for Single-Familyresidences was developed and tested. As a first step, an easy-to-use simulation which can be used by homeowners who are not familiar with residential building energy analysis was developed. Users of this easy-to-use simulation are only required to input basic information of their houses such as construction year, size and location of the house, with the other inputs for building energy simulation being filled-in automatically using a newly established statistical house information database for Texas. Next, the easy-to-use simulation is calibrated using the semiautomatic calibrated simulation methodology that matches the simulated and actual utility electricity and natural gas use of the house. In order to develop this methodology, a sensitivity analysis was performed using a three-parameter change-point regression model that regresses the energy use against ambient temperature. The analysis showed the most significant simulation parameters that affect residential energy use that are decomposed into the baseload, the change-point temperature, and the cooling or heating slope. These parameters were used to calibrate each part of the building energy use against the actual monthly electricity and natural gas use. In the next step, the calibrated simulation parameters were compared with similar input parameters of a standard house that is compliant with the

2009 IECC to determine the differences in the parameters and give guidance about what characteristics of the house were below the energy efficient characteristics of the 2009 IECC-compliant house. Using this comparison, the less energy-efficient parameters of the house were determined as potential energy conservation measures for a future retrofit, and finally, the most cost effective measures were determined through a simple pay-back cost analysis. In order to verify the methodology, the both methods were tested on actual residence and the results were compared to determine if both procedures identified the same potential energy conservation measures. Once the procedure was demonstrated on the first case-study house, two additional houses were also tested to verify how well the procedure worked. The comparisons showed that the easy-to-use and the actual simulations resulted in the same potential energy conservation measures with the similar pay-back period, and thus was verified that the easy-to-use simulation can be used for a home energy audit procedure with reliability.

Link: http://oaktrust.library.tamu.edu/handle/1969.1/153252

Sung Lok Do, "Development and Application of a Ground-Coupled Heat Pump Simulation Model for Residential Code-Compliant Simulation in Texas," Department of Architecture, May 2014.

The intent of this study was to improve residential energy efficiency in Texas by developing an improved tool for home builders and code officers to use for evaluating their designs. It was achieved by developing a new ground-coupled heat pump (GCHP) model for residential systems to be used with the DOE-2.1e simulation program. To accomplish this, this study investigated closed-loop ground heat exchanger (GHX) models, including horizontal, surface water, and vertical GHX models. This study selected a case-study house in Texas which has a custom-built GHX using a combination of a horizontal GHX and a surface water GHX. This study developed a custom-built GHX model for the case-study house to calculate the entering water temperatures (EWTs). The custom-built GHX model was then validated using the measured EWT data from the case-study house. The results showed the monthly average EWTs differences between the measured and calculated EWTs were observed to be about 2.2 F during the heating season and about 3.2 F during the cooling season. Therefore, this study concluded the slightly over-estimated EWTs were acceptable considering the other uncertainties of the field conditions. In addition, a vertical GHX DOE-2.1e model was developed by using the DOE-2.1e FUNCTION command. The g-function values approximated in this study was used for the vertical GHX DOE-2.1e model. To develop a new DOE-2.1e GCHP simulation model, this study then incorporated the vertical GHX DOE-2.1e input FUNCTION within an air-source heat pump (ASHP) simulation module by modifying existing DOE-2 calculation algorithms. To evaluate the new DOE-2.1e GCHP model, this study also developed simplified residential ASHP/GCHP base-case models for Houston and Dallas, using DOE-2.1e, eQUEST, IC3, REM/Rate, and EnergyGauge. The DOE-2.1e simulation results were then compared against the other programs to verify the accuracy of the new DOE-2.1e GCHP model. The comparison showed good agreement in the total site energy use within 3.3 MMBtu/yr (5.3%) differences. In addition, the simulation results showed the GCHP system benefits: for the total site energy savings, 9.7% in Houston and 13.1% in Dallas, and for the heating plus cooling energy savings, 27.3% in Houston and 35.3% in Dallas

Link: http://oaktrust.library.tamu.edu/handle/1969.1/152691

Amy Kim, "A Comparative Analysis of Predicting Energy Savings From Energy Service Projects," Department of Civil Engineering, May 2014.

Implementation of energy service projects continue to increase as building owners are faced with higher utility bills, rigorous environmental regulations, and shrinking capital allocation for such projects. Different techniques and guidelines are available to select and quantify energy service projects. These methods range from various Technical reference manuals (TRMs) developed by state agencies in conjunction with energy consultants to standard protocols developed by energy professional organizations. All of these methods require gathering or estimating representative input

variables, with various approaches to data collection that vary from stipulation to measurement-based values. The methods to quantify the savings range widely from engineering algorithms to as-built calibrated whole-building energy simulation models. In this study, a comparison is made between the engineering algorithms supported by many TRMs and a more accurate as-built calibrated wholebuilding energy simulation model. The methods to performing the comparison included identifying industry methods through literature reviews, expert interviews, a desk audit of a typical utility assessment report, and constructing an as-built calibrated whole-building energy simulation model of a well-instrumented, large office building near the Texas A&M University campus. Lighting and lighting control energy conservation measures (ECMs) were selected to demonstrate the methodology. As part of the process of constructing the simulation model, a data collection protocol was also created. The data collection protocol included gathering building and site specific information including subhourly measured energy consumption data and measured climatic data for the baseline year. The study results showed that the industry methods of quantifying the total energy savings for lighting and lighting control ECMs were consistently under-reporting the savings as compared to the calibrated asbuilt whole-building energy simulation model. In particular, the breakdown of savings was inconsistent between the various industry methods that are currently in use. The differences were perceived to be location specific and weather driven and also included agreements with the local utility companies to quantify the demand savings. Finally, the study results also indicated that the current industry methods could be significantly improved by measuring the occupancy schedule and indoor temperature.

Link: http://oaktrust.library.tamu.edu/handle/1969.1/152649

6.4.7.2 Published Papers

The following papers were published in 2014 incorporating work related to the Texas Emissions Reduction Plan (TERP).

Baltazar, J.C.; Mao, C.; Haberl, J. S., June 2014 "Verification of Energy Savings from the Implementation of the Residential Building Codes in Texas", ASHRAE Conference paper, Seattle..

The International Energy Conservation Code (IECC) was adopted in 2001 by the State of Texas to help reduce annual heating and cooling loads in residential buildings. After 2006, the Texas Legislature required that the IECC 2006 be adopted and requested our Laboratory to track the annual energy savings and NOx emission reductions from the implementation of the Texas Building Energy Performance Standards (TBEPS). This paper discusses the verification of the energy savings from the implementation of the IECC 2000/2001 and IECC 2006 building codes in Texas using a utility bill analysis methodology. In the methodology, a sample of analyzed houses was carefully selected and separated into three groups of Single-Familyresidential houses that were constructed by the same builder, with very similar construction types. Each group was built in different period to account for the impact of the different adopted codes. This study shows that the electricity savings from the application of the 2000/2001 IECC and the 2006 IECC are approximately 20% and 19%, respectively when compared to houses built to prior standards.

Link: http://www.techstreet.com/ashrae/products/1879336#jumps

Kim, J. B.; Jeong, W.; Clayton, M., Haberl, J. S.; Yan, W., 2015. "Developing a Physical BIM Library for Building Thermal Energy Simulation," Automation in Construction, Elsevier. Volume 50.

Insufficient interoperability resulting from complex data exchange between architectural design and building energy simulation prevents the efficient use of energy performance analyses in the early design stage. This paper presents the development of a Modelica library for Building Information

Modeling (BIM)-based building energy simulation (ModelicaBIM library) using an Object-Oriented Physical Modeling (OOPM) approach and Modelica, an equation-based OOPM language. By using the ModelicaBIM library, our project investigates system interfaces between BIM and energy simulation, which can perform semi-automatic translation from the building models in BIM to building energy modeling (BEM) using a BIM's authoring tool's Application Programming Interface (API). The ModelicaBIM library consists of OOPM-based BIM classes and OOPM-based BIM structure. OOPMbased BIM classes represent building component information. OOPM-based BIM structure consists of test case models that demonstrate (i) how building information in BIM can be transformed to OOPM and (ii) how design operations in BIM, such as changing a building geometry and editing building components, can be translated into BEM. A case study for simulation result comparisons has been conducted using (i) OOPM-based BIM models in the ModelicaBIM library and (ii) LBNL Modelica Buildings library (a Modelica-based building thermal simulation library developed by Lawrence Berkeley National Laboratory). Our implementation shows that the ModelicaBIM library enables (i) objects in BIM to be translated into the OOPM-based energy models and (ii) existing OOPM library to be utilized as a simulation solver for BIM-based energy simulation.

Link:

http://www.researchgate.net/publication/268883461 Developing a physical BIM library for buildin g thermal energy simulation

Kota, S., Haberl, J. S., Clayton, M.; Yan, W., 2014. "Building Information Modeling (BIM)-Based Daylighting Simulation and Analysis," Energy and Buildings, Elsevier. Volume 81.

Daylighting is an important aspect in designing high performance buildings. Many simulation tools have been developed to study the daylighting performance of buildings. These tools primarily use CAD environments for creating architectural models, which are then converted into daylighting models to run on the daylighting simulation engines. Once the architect defines the architectural model in CAD, a simulation expert creates the simulation input file to perform daylighting analysis. Each tool has its own rules that the architect and the engineer have to follow to prepare the simulation input files, and the complexity depends on the tools. Currently, Building Information Modeling (BIM) is widely used in the AECO industries and BIM models are used as a means of exchanging data among different professionals involved in the design and construction of buildings. The present paper discusses the use of BIM for building performance simulations and mainly focuses on how daylighting analysis can be incorporated into a BIM environment, and what challenges and benefits exist in the process of integrating BIM with daylighting simulation tools. The paper presents the development and validation of a prototype to integrate the BIM tool, Revit with the daylighting simulation tools, Radiance and DAYSIM.

Link: http://www.sciencedirect.com/science/article/pii/S0378778814005258

Jeong, W.; Kim, J. B.; Claytin, M. J.; Haberl, J. S.; Yan, W., 2014. "Translating Building Information Modeling to Building Energy Modeling Using Model View Definition," The Scientific World Journal, Vol 2014, Article ID 638276.

This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

Link: http://www.hindawi.com/journals/tswj/2014/638276/

Kim, H.; Haberl, J. S., 2014. "Development and Application of Weather-normalized Monthly Building Water Use Model," Energy and Buildings, Elsevier. Volume 69.

This study proposes a new monthly whole-building water use regression model for weather-normalized water performance evaluation: a combination three-parameter multi-variable regression (3-P MVR) cooling model using outdoor temperature in a change-point model and precipitation amount/occurrence as an additional independent variable. To select appropriate weather variables influencing a building's water use, previous studies on the water use models at the municipal level were reviewed. The selected weather variables were then tested using the multi-year monthly water use data collected from the two separate water meters (i.e., the main building meter for indoor water use; and sprinkler meter for landscape water use) of the case-study office building in central TX. The proposed water use model is based on twelve monthly, building-level water use data, which should be available for most buildings that are supplied water from a municipal provider. This model allows a year-to-year, weather-normalized comparison for self-referencing as well as savings calculations from various water conservation measures. This new method will reduce uncertainty about reported water savings from water conservation measures applied and improve the credibility of water conservation programs

Link: http://www.sciencedirect.com/science/article/pii/S0378778813006907?np=y

Mukhopadhyay, J., Haberl. 2014. "Reducing Energy Consumption in Grocery Stores" Energy Efficiency Measures for Grocery Stores", *ASHRAE Transactions-Research*, Vol. 120, Pt. 1 (January).

According to the Commercial Building Energy Consumption Survey (CBECS) data, the energy use intensity (EUI) for a typical grocery store is approximately 179 kBtu/[ft.sup.2] (564.6 kWh/[m.sup.2]) per year, which is almost double than that of a typical office building (US EIA 2012). These numbers indicate that energy consumption in grocery stores needs to be further researched for potential areas where it can be reduced.

A survey of literature for efficiency measures to reduce energy (or energy efficiency measures [EEMs]) in grocery stores concluded that the current measures for reducing energy consumption in a conventional grocery store focus on reducing energy consumption in individual building components in the refrigeration system, the lighting system, the HVAC system, and the building envelope system. Whole-building energy consumption reduction and the potential interaction of these building components in terms of energy consumption and energy savings in grocery stores was not appropriately addressed. The literature review identified only one study that provides an analysis on the whole-building energy consumption in the grocery store. The study performed at the National Renewable Energy Laboratory (NREL) described 50% whole-building energy savings in a grocery store prototype across the eight major climate zones in the United States (Leach et al. 2009). The NREL study utilized a simulation model of a grocery store compiled using specifications in the ASHRAE Standard 90.1-2004 (ASHRAE

2004a). The NREL study however, did not address several issues. First, the report did not provide the user with sufficient documented evidence regarding the calibration of the simulation model used for the analysis. Second, several potential technologies, such as alternative HVAC systems, solar thermal technologies, advanced humidity control, strategies to use waste heat from equipment, tri-generation technologies, multiple compressor types, and under-case HVAC return air systems were omitted due to modeling constraints and a lack of reliable input data.

Link: http://www.thefreelibrary.com/

6.5 Solar Test Bench

This section introduces the activities that were carried out to STB during the calendar year of 2014, and the activities summary is listed as follow:

- Regular maintenance
- Weekly report.
- Multy-Pyranometer Array Research

6.5.1 Solar Test Bench Setup

The whole STB setup has been detail described in the annual report for calendar year 2010. Thus, no more description about the setup is stated here, but the table for the sensor summary (see Table 34) is updated due to sensor changes. This table gives the sensor name, make, model and serial number along with the multiplier, offset and unit.

Index Number	Sensor Name	Make	Model	Serial Number	Multiplier	Offset	Unit
					0.18	-40	°F
1	TOA/RH[1]	Vaisala	HMP45A	D2430006	0.10	NA	%
					0.18	-40	° F
2	TOA/RH[2]	Vaisala	HMP155A	G3220004	0.10	NA	%
					1.79	0.629	MPH
3	WS/WD[1]	Met One	034B	H4735	712	NA	Degree
					1.79	0.629	MPH
4	WS/WD[2]	Met One	034B	M5048	712	NA	Degree
5	LICOR[3]	Licor	Li-cor	PY15L25	75.59	NA	W/m ²
6	LICOR[4]	Licor	Li-cor	PY49745	75.03	NA	W/m ²
7	LICOR[5]	Licor	Li-cor	PY 74409	200	NA	W/m ²
8	LICOR[6]	Licor	Li-cor	PY 74438	200	NA	W/m ²
9	LICOR[7]	Licor	Li-cor	PY 74439	200	NA	W/m ²
10	LICOR[8]	Licor	Li-cor	PY 474450	200	NA	W/m ²
11	PSP[1]	Eppley	PSP	13673F3	125.63	NA	W/m ²
12	PSP[2]	Eppley	PSP	16881F3	103.09	NA	W/m ²
13	PSP[3]	Eppley	PSP	35417F3	112.74	NA	W/m ²
14	NIP[1]	Eppley	NIP	14851E6	118.06	NA	W/m ²
15	NIP[2]	Eppley	NIP	16620E6	117.79	NA	W/m ²
16	BW[1]	Eppley	8-48	20226	96.99	NA	W/m ²
17	BW[2]	Eppley	8-48	33886	98.62	NA	W/m ²

Table 34. List of the sensors updated to the end of 2014

6.5.2 2014 STB Activities

6.5.2.1 Regular Maintenance

Every two weeks, the desiccants for PSPs, B&Ws and the junction boxes were replaced, and the used desiccants were recycled. The alignment for the solar tracker and the covers for the B&Ws were checked, and the occurred problems were fixed by restarting the solar tracker and manually adjusting the devices. The sensor wiring connections were checked and fixed, if some sensor readings were wrong.

6.5.2.2 Weekly Report

The data logger downloaded data were checked every week, and the STB data was compared with NOAA data in STB weekly report.

6.5.2.3 Multi-Pyranometer Array

The Multi-Pynanometer Array (MPA) was installed on the STB in 2012, which consisted of 4 LI-COR sensors: one mounded in a horizontal plane, and three others tilted 40 degrees and distributed in azimuth angles of -60, 0, 60 degrees – toward southeast, south and southwest. And a shadow band is applied as an artificial horizon to block the reflected sunlight coming from the ground. The location, sensors and devices for MPA are shown in Figure 58.

Figure 58: (a) MPA located on STB; (b) MPA sensors positons.

Based on the measured data from MPA experiment rig, some research about using MPA to estimate normal incident solar radiation has been conducted. The research paper "Improved Methodology to Measure Normal Incident Solar Radiation with a Multi-Pyranometer Array" was presented in 2013 ISES Solar World Congress, Cancun, Mexico, and was published on Energy Procedia.

6.5.3 Future work Plan

6.5.3.1 Camera Installation

The solar tracker may stop sometimes due to different reasons, and covers may not perfectly shade the B&Ws as well. It is useful to have a camera to monitor the sensors and devices on the Solar Test Bench. The camera not only needs to be installed close enough for clear observation, but also avoids shading on bench as much as possible.

6.5.3.2 Wire Protection in Mechanical Room

In the mechanical room, some wires were outside the junction boxes. It is necessary to install conduits for wire protection and rearrange the wires.

6.5.4 Acknowledgements

This task could not be completed without the help of many students/staffs among another Mr. Sukjoon Oh, Mr. Minjae Shin, Ms. Chunliu Mao, Mr. Yifu Sun, Dr. Sunglok Do, from ESL, TAMU. Also the advice of Mr. Tom Kirk from EPPLEY Inc. was well appreciated.

References

ASHRAE, 1993. ANSI/ASHRAE Standard 136-1993 (RA 2006) - A Method of Determining Air Change Rates in Detached Dwellings. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.

ASHRAE 90.1 1989 Energy Standard for Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc., Atlanta, GA.

ASHRAE 90.1 1999 Energy Standard for Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc., Atlanta, GA.

ASHRAE 2004. "Advanced Energy Design Guide for Small Office Buildings," American Society of Heating, Refrigeration and Air-conditioning Engineers, Atlanta, GA.

ASHRAE, 2010. ANSI/ASHRAE/IESNA Standard 90.1-2010, Energy Standards for Building Except Low-Rise Residential Buildings. American Society of Heating and Refrigerating and Air-conditioning Engineers, Inc., Atlanta, GA.

ASHRAE Standards Addenda, 2008, available at: http://www.ashrae.org/technology/page/132

CBECS 1995, 1999, 2003. USDOE Commercial Building Energy Characteristics Survey. U.S.D.O.E. Energy Information Agency Report.

Choi, J., "Analysis of the Impact if Using Improved Multi-layer Window Models for Code-Compliant Residential Building Energy Simulation in Texas,"M. S., Department of Architecture, December 2014.

Do, S. L., "Development and Application of a Ground-Coupled Heat Pump Simulation Model for Residential Code-Compliant Simulation in Texas," Department of Architecture, May 2014.

Dodge. 2011. MarkeTrack: McGraw-Hill Construction Analytics. McGraw-Hill Construction Information Group, 148 Princeton-Hightstown Rd., Hightstown, N.J. <u>http://dodge.construction.com</u>.

DODGE. 2015. Dodge Data & Analytics construction starts information, Texas at county level by select project types 2014A. New York, NY: Dodge Data& Analytics.

Haberl, J., Culp, C., Yazdani, B., Fitzpatrick, and Turner, D., 2002, "Texas's senate Bill 5 Legislation for Reducing Pollution in Non-attainment and Affected Areas," Annual Report to the Texas Natural Resource Conservation Commission, July, Energy Systems Laboratory Report ESL-TR-02/07-01.

Haberl, J., Culp, C., Yazdani, B., Fitzpatrick, T., Bryant, J., Turner, D., 2003, "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)," Volume II – Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2002 to August 2003, Energy Systems Laboratory Report ESL-TR-03/12-04.

Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmed, M., Liu, B., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., Turner, D. 2004. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II – Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2003 to August 2004, Energy Systems Laboratory Report ESL-TR-04/12-04.

Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmed, M., Liu, B., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., and Turner, D. 2006. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II – Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2004 to December 2005, Energy Systems Laboratory, Report ESL-TR-06-06-08.

ICC. 2009. 2009 International Energy Conservation Code. Country Club Hills, IL: International Code Council, Inc.

ICC. 2012. 2012 International Energy Conservation Code. Country Club Hills, IL: International Code Council, Inc.

Kats, G.H. et al. 1996. "Energy Efficiency as a Commodity," ACEEE Summer Study on Energy Efficiency in Buildings.

Kim, K. H., "Development of an Improved Methodology for Analyzing Existing Single-FamilyResidential Energy Use," Department of Architecture, August 2014.

LBL. 1993. DOE-2 BDL Summary Version 2.1E. LBL Report No. 349346. Berkley, CA: Lawrence Berkeley Laboratory.

Lim, A., "A Comparative Analysis of Predicting Energy Savings From Energy Service Projects," Department of Civil Engineering, May 2014.

Means, R. 2006. "Building Construction Cost Data" R.S. Means, Kingston, Massachusetts.

NAECA. 2006. National Appliance Energy Conservation Act.

NAHB. 2008. The Builders Practices Survey Reports. National Association of Home Builders. Upper Marlboro, MD: NAHB Research Center.

NREL. 2001. Building America house performance analysis procedures. (NREL/TP-550-27754) Golden, CO: National Renewable Energy Laboratory. p. 34.

Public Utility Commission of Texas, PUC, 2009, available at: http://www.puc.state.tx.us/

Real Estate Center (REC). 2014. Building permits Texas. recenter.tamu.edu/data/bp/bps/st48.asp

USDOE. 2011. Building energy standards program determination regarding energy efficiency improvements in the energy standard for buildings, except low-rise residential buildings, ANSI/ASHRAE/IESNA Standard 90.1–2007. *Federal Register* 76(139):43287-43298.

Texas State Energy Conservation Office (SECO), 2009, available at: http://www.seco.cpa.state.tx.us/

Bibliography

ACEEE. 2004. The Most Energy-Efficient Appliances. Washington, DC: American Council for An Energy Efficient Economy.

Ahmed, M., Gilman, D., Mukhopadhyay, J., Haberl, J., Culp, C. 2005a. "Development of a Web-based Emissions Reduction Calculator for Code-compliant Single-Familyand Multi-family Construction," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

Ahmed, M., Gilman, D., Kim, S., Haberl, J., Culp, C. 2005b. "Development of a Web-based Emissions Reduction Calculator for Code-compliant Commercial Construction," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

ARI 2001. Unpublished ARI Internal Report by Karim Amrane, Ph.D., Air Conditioning and Refrigeration Institute, Arlington, VA (July).

ASHRAE Task Group on Energy Requirements. 1975. Procedures for determining heating and cooling loads for computerized energy calculations; algorithms for building heat transfer subroutines. Atlanta: American Society of Heating Refrigeration and Air-Conditioning Engineers, Inc.

ASHRAE 1989. Energy Efficient Design of New Buildings Except Low-rise Residential Buildings. ASHRAE Standard 90.1-1989.

ASHRAE 2004. ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standards for Buildings Except Low-Rise Residential Buildings. American Society of Heating and Refrigerating and Air-conditioning Engineers, Inc., Atlanta, GA.

ASHRAE 2007. ANSI/ASHRAE/IESNA Standard 90.1-2007, Energy Standards for Building Except Low-Rise Residential Buildings. American Society of Heating and Refrigerating and Air-conditioning Engineers, Inc., Atlanta, GA.

Baltazar-Cervantes, J.C., Liu, Z., Gilman, D., Haberl, J., Culp, C. 2005a. "Development of a Web-based Emissions Reduction Calculator for Retrofits to Municipal Water Supply and WasteWater Facilities," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

Baltazar-Cervantes, J.C., Gilman, D., Haberl, J., Culp, C. 2005b. "Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

Bankrate. 2005. Federal Discount Rate. Bankrate, Inc. Retrieved June 23, 2005, from: www.bankrate.com.

Cho, S., Mukhopadhyay, J., Culp, C., Haberl, J. S., Yazdani, B., 2007. "Recommendations for 15% Above-Code Energy-Efficiency Measures for Commercial Office Buildings," *Energy Systems Laboratory Report No. ESL-TR-07-09-01*, Texas A&M University.

Cho, Soolyeon. Methodology to Develop and Test an Easy-to-Use Procedure for the Preliminary Selection of High-Performance Systems for Office Buildings in Hot and Humid Climates. Diss. Texas A&M University, 2008.

Dodge. 2005. MarkeTrack: McGraw-Hill Construction Analytics. McGraw-Hill Construction Information Group, 148 Princeton-Hightstown Rd., Hightstown, N.J. http://dodge.construction.com

Erbs, D., Klein, G., Duffie, S. 1982. "Estimation of the diffuse fraction for hourly, daily and monthly-average global radiation," *Solar Energy*, Vol. 28, pp. 293-301.

Haberl, J.S. 1993. "Economic Calculations for ASHRAE Handbook," Energy Systems Laboratory Report, No. ESL-TR-93-04-07 (April).

Haberl, J., Cho, S. 2004a. "Literature Review of Uncertainty of Analysis Methods: F-Chart Program," Energy Systems Laboratory Report, No. ESL-TR-04-08-04 (October).

Haberl, J., Cho, S. 2004b. "Literature Review of Uncertainty of Analysis Methods: PV F-Chart Program," Energy Systems Laboratory Report, No. ESL-TR-04-10-02 (October).

Haberl, J., Cho, S. 2004c. "Literature Review of Uncertainty of Analysis Methods: ASHRAE Inverse Model Toolkit (IMT)," Energy Systems Laboratory Report, No. ESL-TR-04-10-03 (October).

Haberl, J., Cho, S. 2004d. "Literature Review of Uncertainty of Analysis Methods: Cool Roofs," Energy Systems Laboratory Report, No. ESL-TR-04-10-04 (October).

Haberl, J., Cho, S. 2004e. "Literature Review of Uncertainty of Analysis Methods: DOE-2 Program," Energy Systems Laboratory Report, No. ESL-TR-04-11-01 (November).

Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmad, M., Liu, B., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., Turner, D. 2004a. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reductions Plan (TERP)," Vol. III – Appendix, Annual Report to the Texas Commission on Environmental Quality, September 2003 to August 2004, Energy Systems Laboratory Report No. ESL-TR-04-12-05 (December).

Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmad, M., Liu, B., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., Turner, D. 2004b. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reductions Plan (TERP)," Vol. II – Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2003 to August 2004, Energy Systems Laboratory Report No. ESL-TR-04-12-04 (December).

Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmad, M., Liu, B., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., Turner, D. 2004c. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reductions Plan (TERP)," Vol. I – Summary Report, Annual Report to the Texas Commission on Environmental Quality, September 2003 to August 2004, Energy Systems Laboratory Report No. ESL-TR-04-12-01 (December).

Haberl, J., Culp, C., Yazdani, B., Fitzpatrick, T., Bryant, J., and Turner, D. 2003. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reductions Plan (TERP). Volume II - Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2002 to August 2003," Energy Systems Laboratory Report ESL-TR-03-12-04.

Haberl, J., Im, P., Culp, C. 2004. "NOx Emissions Reductions From Implementation of the 2000 IECC/IRC Conservation Code to Residential Construction in Texas," *Proceedings of the 14th Symposium on Improving Building Systems in Hot and Humid Climates*, Texas A&M University, Richardson, Texas, accepted for publication (February), pp. 139-150.

Haberl, J., Im, P., Culp, C., Yazdani, B., Fitzpatrick, T., Bryant, J., Turner, D. 2005. "A Simulation Methodology to Estimate NOx Emissions Reductions From the Implementation of the 2000 IECC/IRC Conservation Code in Texas," *IBPSA Newsletter*, Vol. 15, No. 2, pp. 39-48 (October).

ICC. 1999. 2000 International Energy Conservation Code. Falls Church, VA: International Code Council, Inc.

ICC. 2001. 2001 Supplement to the International Energy Conservation Code. Falls Church, VA: International Code Council, Inc.

IESNA. 2000. The IES Lighting Handbook, Reference and Application, 9th Edition. New York: Illuminating Engineering Society of North America.

Inflationdata. 2005. Current Inflation Rate. Financial Trend Forecaster®. Retrieved June 23, 2005, from: inflationdata.com/inflation.

Im, P. 2003. "A Methodology to Evaluate Energy Savings and NOx Emissions Reduction from the Adoption of the 2000 IECC to New Residences in Non-attainment and Affected Counties in Texas," *Master's Thesis*, Department of Architecture, Texas A&M University (December).

Im, Piljae. Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates. Diss. Texas A&M University, 2009.

Kissock, K., Haberl, J.S., Claridge, D.E. 2002. "Development of a Toolkit for Calculating Linear, Change-point Linear and Multiple-Linear Inverse Building Energy Analysis Models," Final Report for ASHRAE Research Project, No. 1050-RP.

Klein, S.A., Beckman, W.A. 1985. "PV F-Chart User's Manual: DOS Version," F-Chart Software, 4406 Fox Bluff Road, Middleton, Wisc. 53562, www.fchart.com.

Klein, S.A., Beckman, W.A. 1993. "F-Chart Solar Energy System Analysis: Version 6.17W," F-Chart Software, 4406 Fox Bluff Road, Middleton, Wisc. 53562, www.fchart.com.

Kootin-Sanwu, V. 2004. "Development of Energy Efficient Housing for Low-Income Families," *Ph.D. Dissertation*, Department of Architecture, Texas A&M University (May).

LBNL. 1981. "DOE-2 Reference Manual Version 2.1A. LBL-8706 Rev. 1," Lawrence Berkeley National Laboratory, Berkeley, CA, and Los Alamos Scientific Laboratory, Santa Fe, NM.

Malhotra, M. 2005. An Analysis of Maximum Residential Energy-Efficiency in Hot and Humid Climates. MS Thesis, College Station, TX: Texas A&M University.

Malhotra, M. and J. Haberl. 2006. An Analysis of Maximum Residential Energy Efficiency in Hot and Humid Climates. Proceedings of the Fifteenth Symposium on Improving Building Systems in Hot and Humid Climates. Orlando, FL.

Malhotra, M., J. Mukhopadhyay, B. Liu, J. Haberl, C. Culp, B. Yazdani. 2007. Recommendations for 15% Above-Code Energy Efficiency Measures for Single-FamilyResidences. Energy Systems Laboratory Report No. ESL-TR-07-09-01.

Mukhopadhyay, J. 2005. "Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates," *Master's Thesis*, Department of Architecture, Texas A&M University.

Liu, Z., Gilman, D., Haberl, J., Culp, C. 2005a. "Development of a Web-based Emissions Reduction Calculator for Street Light and Traffic Light Retrofits," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

Liu, Z., Baltazar-Cervantes, J.C., Gilman, D., Haberl, J., Culp, C. 2005b. "Development of a Web-based Emissions Reduction Calculator for Green Power Purchases from Texas Wind Energy Providers," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

LBNL 1995. Residential Sector End-use Forecasting With EPRI REEPS 2.1: Summary Input Assumptions and Results, J. Koomey, R. Brown, R. Richey, F. Johnson, A. Sanstad, and L. Shown, Lawrence Berkeley National Laboratory Report No. LBL-34044-UC-1600 (December).

LBNL 2000. "DOE-2.1e, ver. 107," Documentation Update Package #2, Simulation Research Group, Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, CA (March).

Malhotra, M. 2005. "An Analysis of Maximum Residential Energy Efficiency in Hot and Humid Climates," *M.S. Thesis,* Department of Architecture, Texas A&M University.

Malhotra, M. and Haberl, J. 2006. "An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates," Conference Paper for Presentation at SimBuild 2006, Second National Conference of IBPSA-USA. Cambridge, MA (in preparation).

NAHB 2000. Builder Practices Survey Reports, National Association of Home Builders, Research Center, Upper Marlboro, Maryland (September).

NREL. 1995. User's Manual for TMY2's (Typical Meteorogical Years). NREL/SP-463-7668, and TMY2s, Typical Meteorological Years Derived from the 1961-1990. National Solar Radiation Data Base, June 1995 [CD-ROM]. Golden, Colorado: National Renewable Energy Laboratory.

NOAA 1993. Automated Surface Observing System Guide for Pilots, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, National Weather Service (April).

NREL 1995. User's Manual for TMY2s (Typical Meteorological Years), NREL/SP-463-7668, National Renewable Energy Laboratory (June).

Ottinger, R.L., Wooley, D.R., Robinson, N.A., Hodas, D.R., and Babb, S.E. 1991. *Environmental Costs of Electricity*. Oceana Publications, Inc., New York, N.Y.

Parker, D.S., Dunlop, J.P., Barkaszi, S.F., Sherwin, J.R., Anello, M.T., and Sonne, J.K. 2000. "Towards Zero Energy Demand: Evaluation of Super-Efficient Building Technology with Photovoltaic Power for New Residential Housing," *Proceedings of the 2000 ACEEE Summer Study of Energy Efficiency in Buildings*, 1.207-1.223.

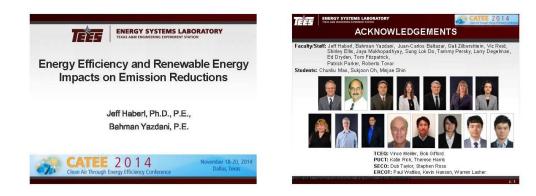
RECenter 2005. Texas Real Estate Research Center, College of Business, Texas A&M University, College Station, Texas. URL: recenter.tamu.edu.

Reilly, M., Winkelmann, D., Arasteh, D., and Caroll, W. 1992. "Modeling windows in DOE-2.1e. Proceedings of Thermal Performance of the Exterior Envelopes of Buildings VI," American Society of Heating Refrigeration and Air-Conditioning Engineers, 1992.

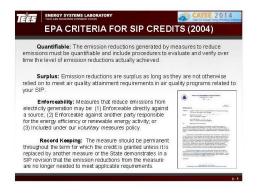
Song, S. 2006. "Development of New Methodologies for Evaluating the Energy Performance of New Commercial Buildings," Texas A&M University, in preparation, (August).

U.S. Census 1999. County Population Estimates for July 1, 1999 and Population Change for July 1, 1998 to July 1, 1999, CO-99-1, U.S. Department of Commerce, March 9, 1999, URL: www.census.org.

November 2015


USCB. 2002. Square Footage by Household and Unit Size, Income, and Costs—Occupied Units. American Housing Survey for the United States: 2001, p. 84. U.S. Census Bureau, Current Housing Reports, Series H150/01. Washington, DC: U.S. Government Printing Office.

USDOE 2004. Building Energy Standards Program: Determination Regarding Energy Efficiency Improvements in the Energy Standard for Buildings, Except Low-Rise Residential Buildings, ASHRAE/IESNA Standard 90.1-1999. Docket No. (Docket No. EE-DET-02-001). Washington, D.C. http://www.energycodes.gov/implement/pdfs/FR_com_notice.pdf.


Appendix: Presentations to Various Entities at Conferences and Workshops in 2014

The Energy Systems Laboratory made presentations at several conferences and workshops about ways to save energy, and the appendix shows the presentation slides.

"Energy Efficiency and Renewable Energy Impacts on Emissions Reductions," presented by Jeff Haberl.

p. 8

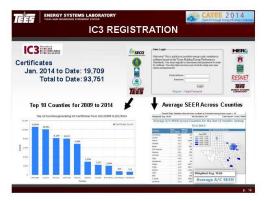
TERAS AAM ENGINE	YSTEMS LABORATORY	
	C3v. 3.13.1	
96 - 19 (*** 192		

ENERGY SYSTEMS LABORATORY TRANS AND INDUSTRIES LABORATORY SAVINGS FROM CODE COMPLIAN		
IC3V. 3.13.	1	

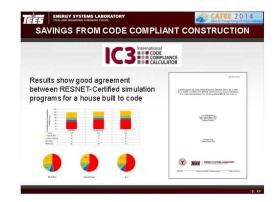
Floors/BedRooms/Foundation

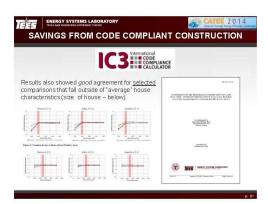
Energy Code/Site Address/Project Details

IC3v. 3.13.1	IC3

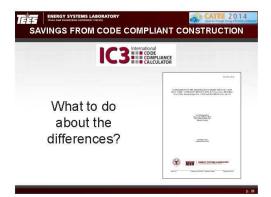


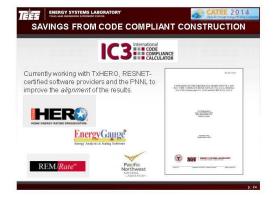
31185-20	IC3v. 3.13.1	
	anga hana kuan inga hana kuan inga hana kuan	
-	loge feet their	

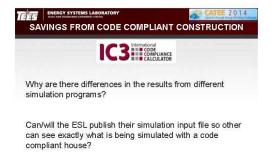


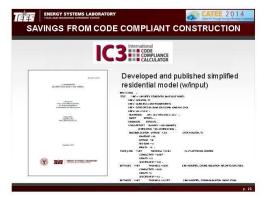


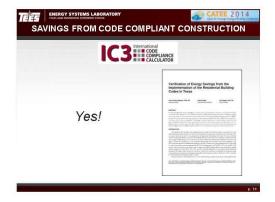
Can/will the ESL publish their simulation input file so other can see exactly what is being simulated with a code compliant house?



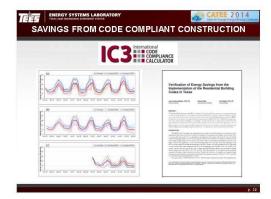






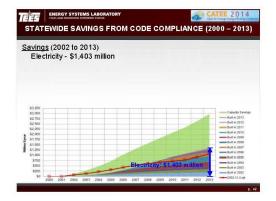


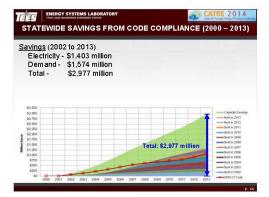
TEAS AME INSPIREMES LABORATORY	CATEE 2.014 Cash & Transfer
SAVINGS FROM CODE CO	
IC3	International CODE COMPLIANCE COMPLIANCE CALCULATOR
A VANNAR BU RESIDENTIAL AND A VAL MOREA	
4 Bojansia Tanar Vana Ma Fragmana Tan Kaning Antonio Tanara ang ang ang ang ang ang ang	
innig jan dia kengkan tau kati tahung 1910. PEL	Yes!
A	
TRUE PROVIDENCE	

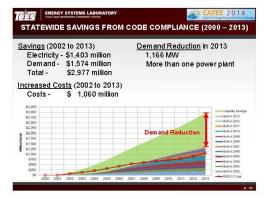


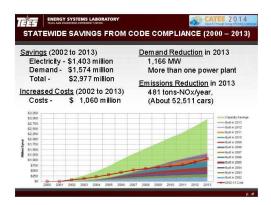


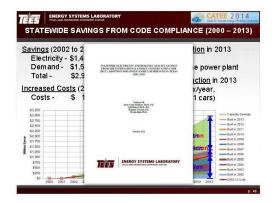
SAVINGS FROM CODE COMPLI	ANT CONSTRUCTION
	LIANCE
The Laboratory has analyzed actual utility bills from 2003 – 2009 in College Station for the same builder in the same subdivision using the Princeton Scorekeeping method and a three parameter analysis*.	Verification of Dorary Savings from the experimentation of the Readering Dorary Savings from the Readering Dorar Savings (Savings Savings Savi
*Results published in the 2014 ASHRAE Transactions	

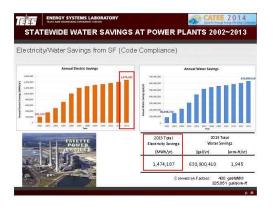




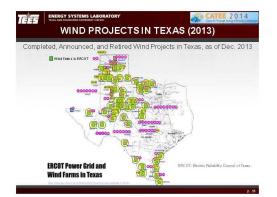




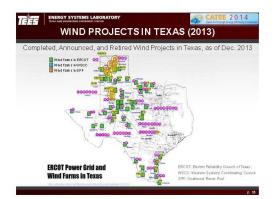


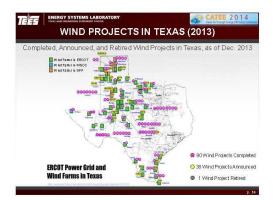


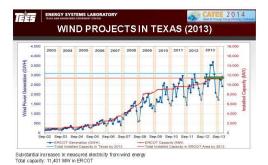


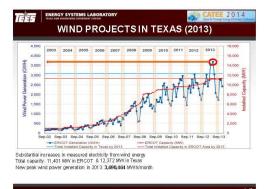


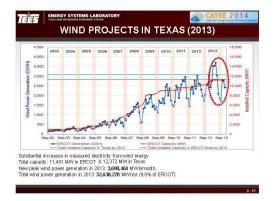


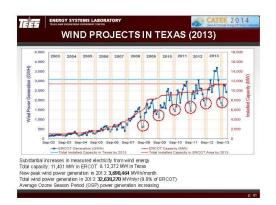


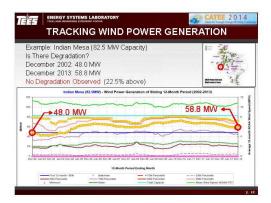


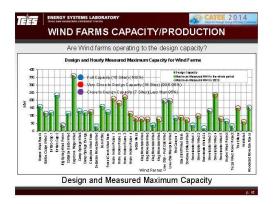


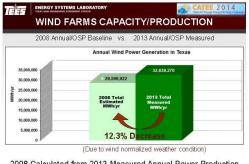


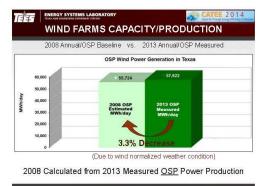


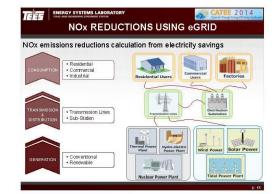


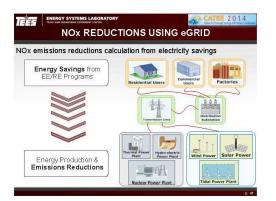


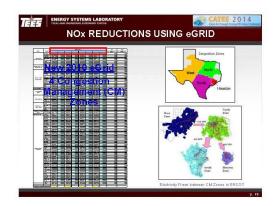

Substantial increases in measured electricity from wind energy Total capacity: 11,401 MW in ERCOT & 12,372 MW in Texas

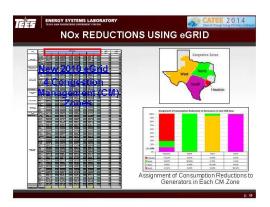


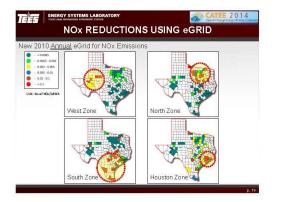


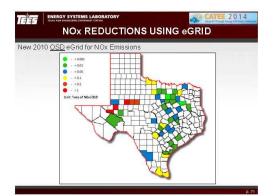


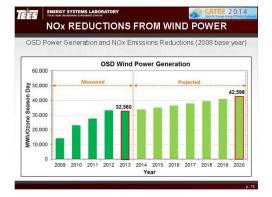


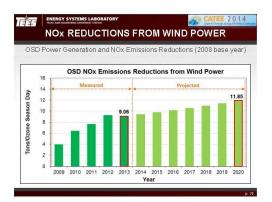


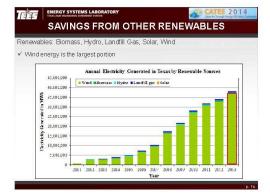

2008 Calculated from 2013 Measured Annual Power Production

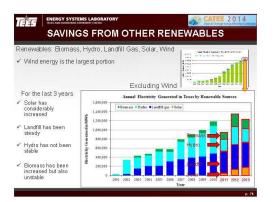


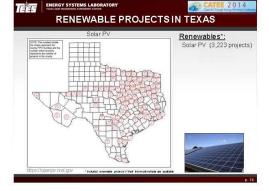


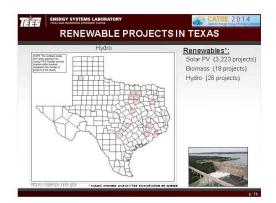


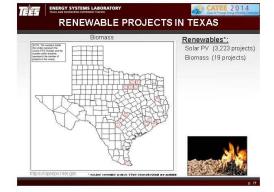


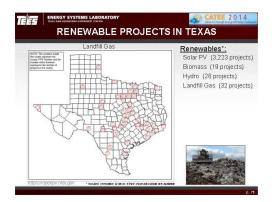


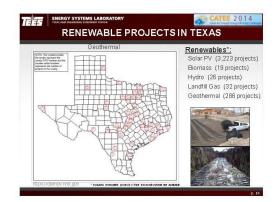


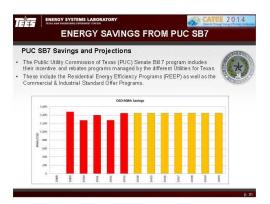


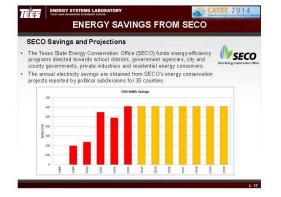

November 2015

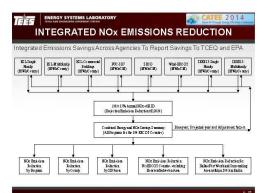


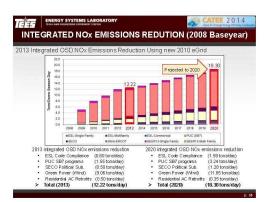


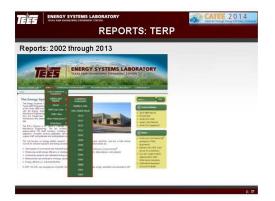




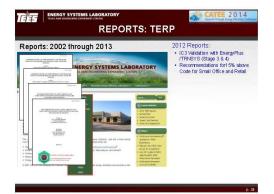


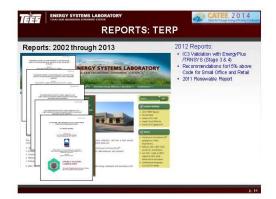


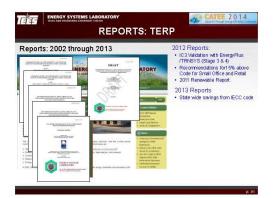


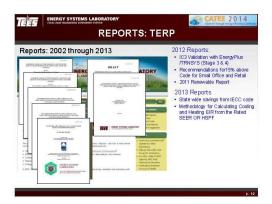


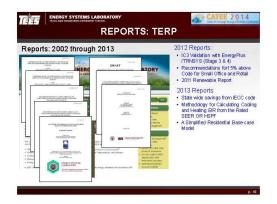
itegrated Emissions Savi	ngs Across Ager	icies lo Repi	ort Savings		an an Anna Anna Anna
tate agencies included:	a Ex-manuny Ted	Ango Ango Quantumo Qu		AND CAG	de la Malatan
PIIC	1 1			- I Linear	† (* ***C
SECO					
ERCOT/Wind			i .		
SEER 13 Single/Multifamily			diago, dista		
otal savings across agencies		1	no Reducion al 1.2020)	Tax way, Transad you	e and a discourse forces
nnual emissions reductions:			IN SECOT Course		
By program	<u> </u>	-	+	ł	_
By county					
By SIP area	Enusons Alle Enusons	HDs Smarms	NO: Sussee Be	Alle Mile	Energe alumn fe
	ndarion Redarion Trayan by County	Reducer by SPAces	To ERCOT Carnes Reservices out		Fox: Firsh and Sax and a content a 230 km Radius

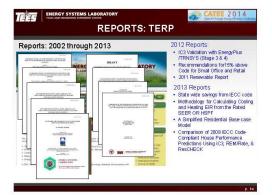

p. 84

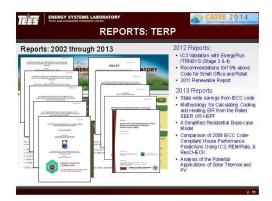


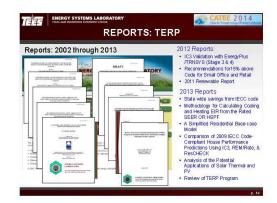


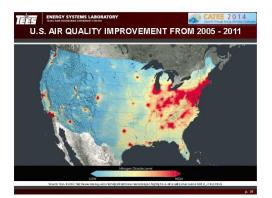


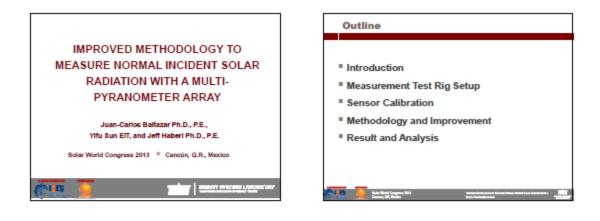


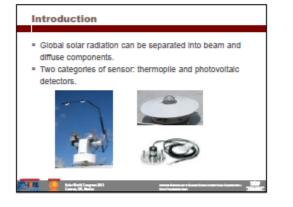


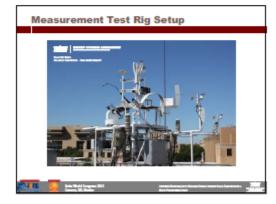


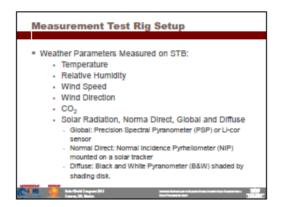


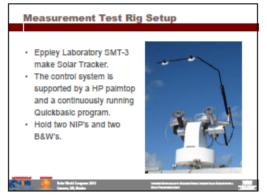


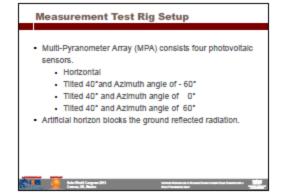


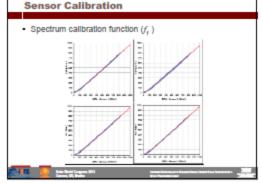


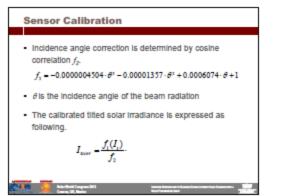




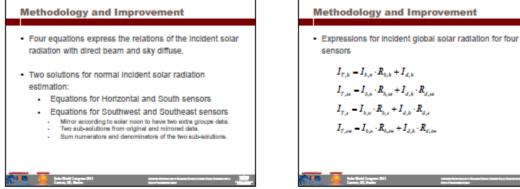


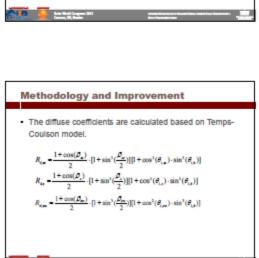


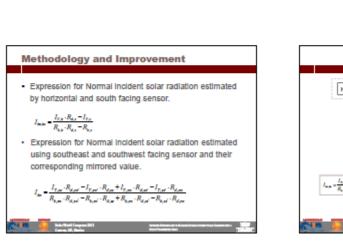




Sensor Calibration Sensor Calibration Spectrum calibration · Locate the MPA four sensors horizontal. or (With the · Select clear-sky days within a selected period. · Compare their values with spectral PSP measured data · Find a correlation function, fr (four parameter change-***** point model). in the second se Ē 118 G Martini Cogenitii






Methodology and Improvement

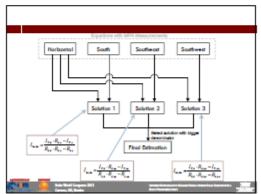
Incident solar radiation calculation:

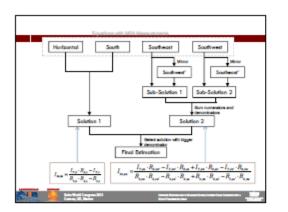
- · Total Incident solar radiation includes three components: direct beam, sky diffuse and reflection from ground.
- · Artificial horizon eliminates reflection portion.
- · Temps-Coulson model is used for sky diffuse estimation.
- · Beam component corresponds to incidence angle.

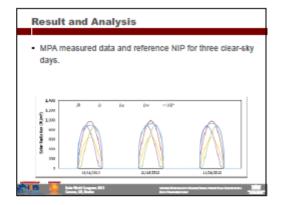
Methodology and Improvement

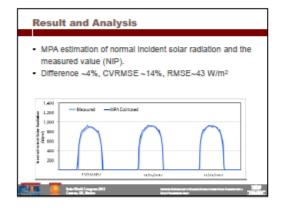
 $\cos(\theta_{a}) = \cos(\phi)\cos(\delta)\cos(\omega) + \sin(\phi)\sin(\delta)$

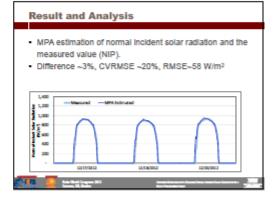
 $R_{h,t} = \cos(\theta_{t,t})$

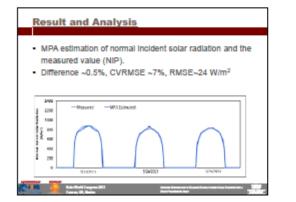

determined as following.

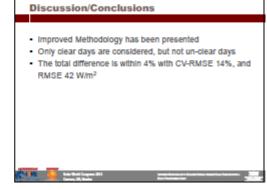

· The beam coefficients for each of the surface are

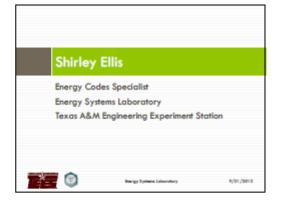

calculated, λ indicates any surface in the MPA

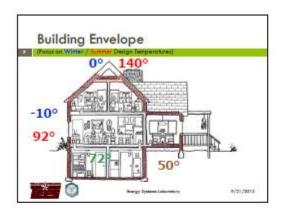

· Incidence angles in horizontal and other surfaces are

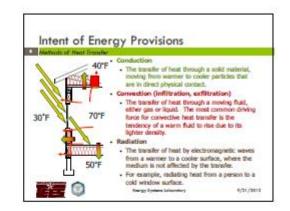

$$\begin{split} \cos(\theta_{i,t}) &= \sin(\delta) \sin(\theta) \cos(\theta_{\lambda}) - \sin(\delta) \cos(\theta) \sin(\theta_{\lambda}) \cos(\tau_{\lambda}) \\ &+ \cos(\delta) \cos(\theta) \cos(\theta_{\lambda}) \cos(\sigma) \\ &+ \cos(\delta) \sin(\theta) \sin(\theta_{\lambda}) \cos(\tau_{\lambda}) \cos(\sigma) \\ &+ \cos(\delta) \sin(\theta_{\lambda}) \sin(\tau_{\lambda}) \sin(\sigma) \end{split}$$

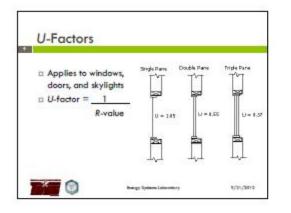


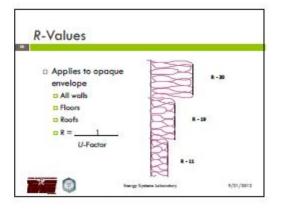


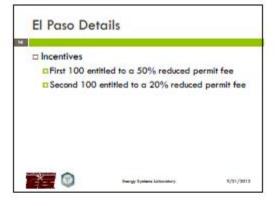


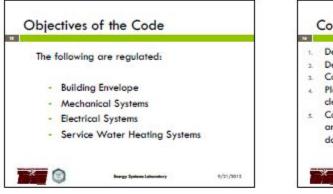


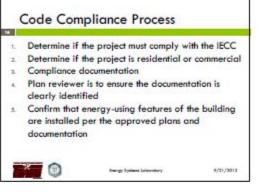


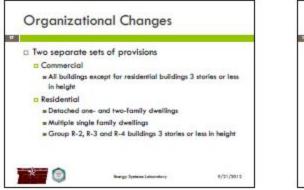

Agenda		
 Introduction/G El Paso adopti 2012 IECC - S Organization Commercial Residential 	on Significant Changes	
9	Steergy Systems Laboratory	9/31/2013

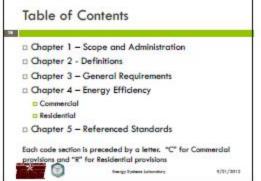


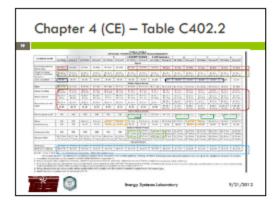


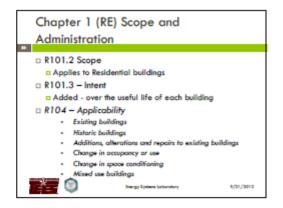


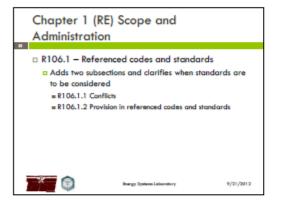


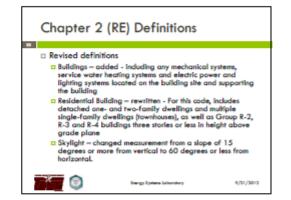


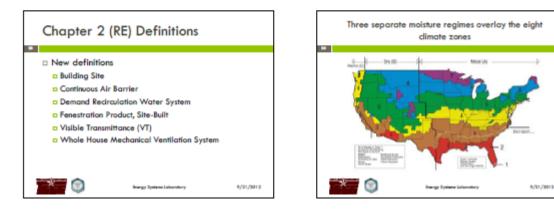


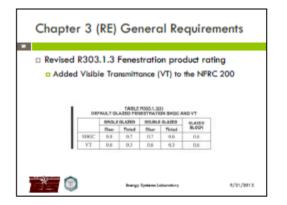


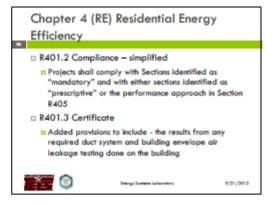


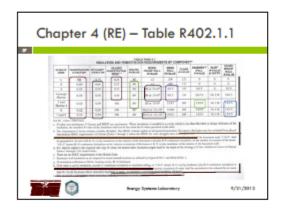




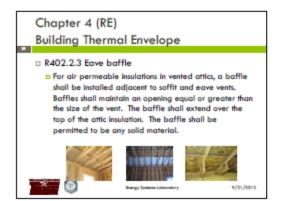


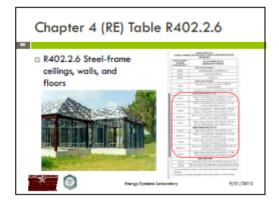


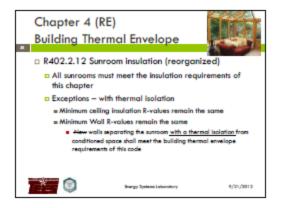


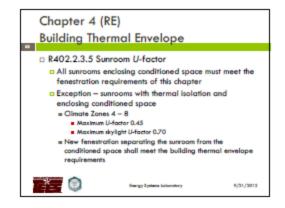


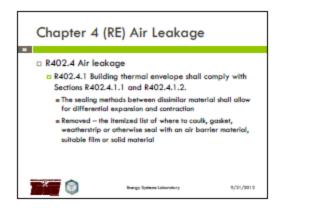


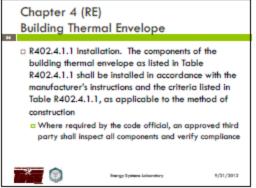


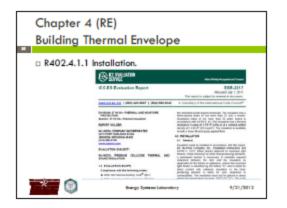


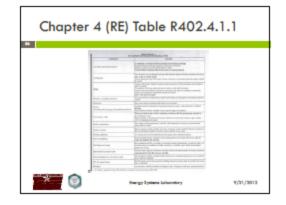


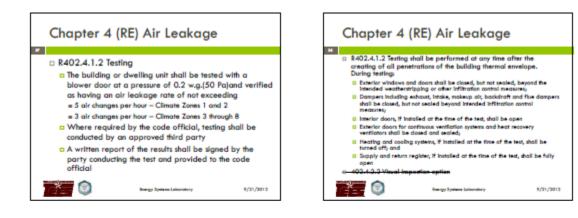


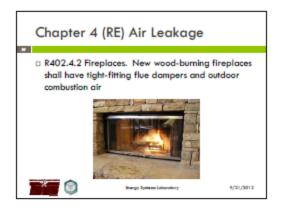


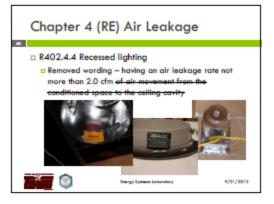


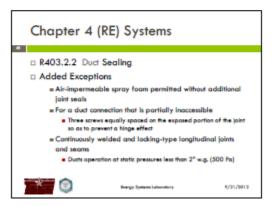


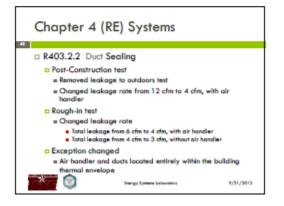


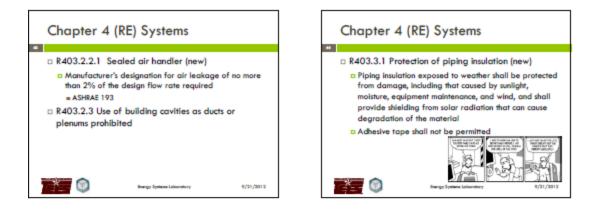


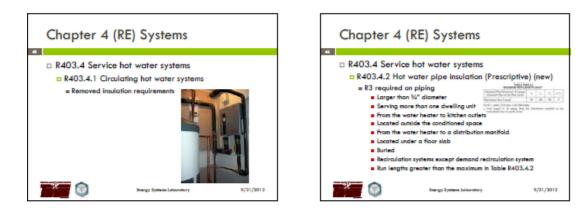


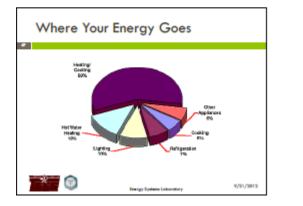


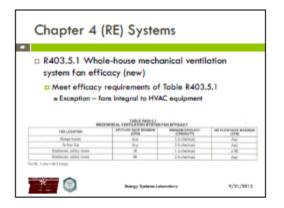


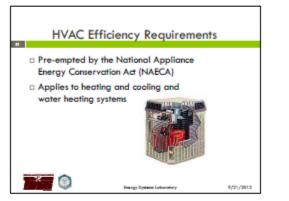


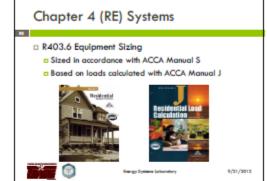


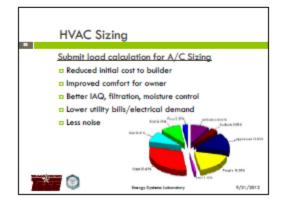


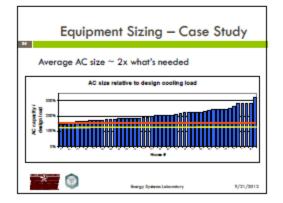


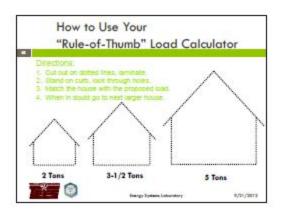


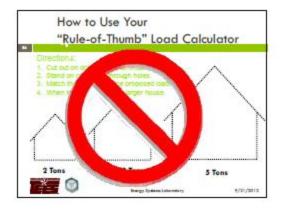


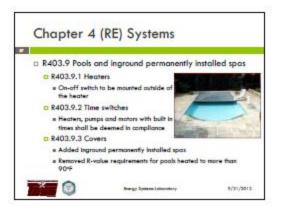


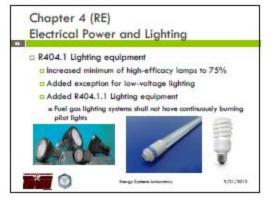


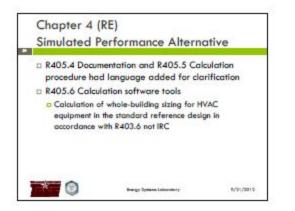


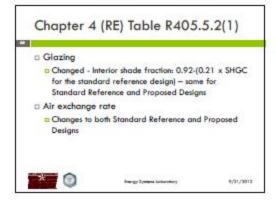


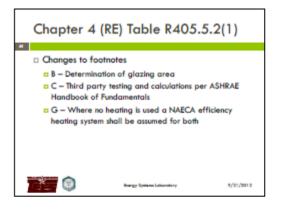


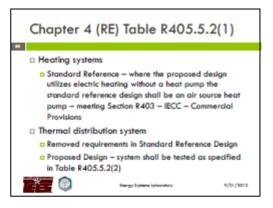












Chapter 5 (R	RE) Referenced Sto	andards
No changes		
	Beargy Systems Laboratory	9/31/3013

2009 IECC® Commercial Provisions

Based on the 2009 International Energy Conservation Code

Energy Systems Laboratory

Shirley Ellis Codes Specialist shirleyellis@tamu.edu

Energy Systems Laboratory Texas A&M Engineering Experiment Station Texas A&M University System

Energy Systems Laborator

Seminar Goal

The goal of this seminar is for participants to apply the 2009 IECC to increase the efficient use of energy in the construction of new buildings and alterations to existing buildings. "Building Professional Institute" is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Energy Systems Labora

8

Seminar Objectives

Upon completion of this seminar, participants will be better able to:

- Locate general topics in the 2009 IECC.
- Locate applicable tables in the 2009 IECC for specific situations.
- Apply code requirements to real-world situations.
- Explain the intent behind a code requirement.

Seminar Objectives (cont.)

Upon completion of this seminar, participants will be better able to:

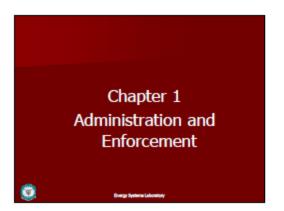
- Identify borderline scenarios as compliant or noncompliant
- Identify essential code compliant for designing energy-efficient building thermal envelopes, energy-efficient mechanical design principles and electrical power and lightning systems.

Deg

IECC General Organization	
Chapter 1 – Administration and Enforceme Chapter 2 – Definitions Chapter 3 – Design Conditions Chapter 4 – Residential Energy Efficiency Chapter 5 – Commercial Energy Efficiency Chapter 6 – Referenced Standards	int
👰 Berg Sphere Lakonsky	

Objectives of the Code

The following are regulated:


- Building Envelope
- Mechanical Systems
- Electrical Systems
- Service Water Heating Systems

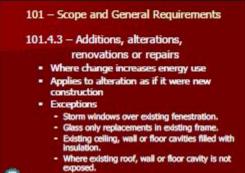
Code Compliance Process

- 1. Determine if the project must comply with the IECC
- 2. Determine if the project is residential or commercial
- 3. Compliance documentation
- Plan reviewer is to ensure the documentation is clearly identified.
- Confirm that energy-using features of the building are installed per the approved plans and documentation

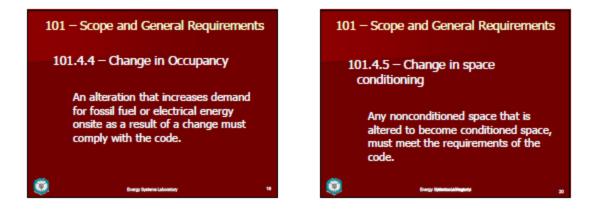
Energy Systems Labo

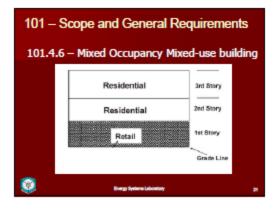
101 – Scope and General Requirements

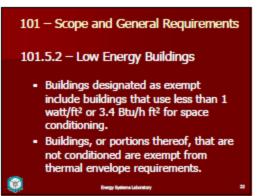
101.2 – Scope


The provisions apply to several different project types:

- Newly conditioned space
- New construction in existing buildings
- Additions, alterations and repairs to existing buildings
- Mixed use buildings
- Change in occupancy



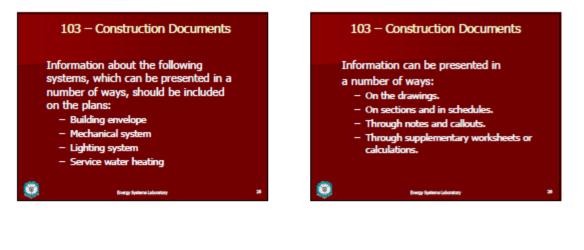


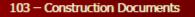


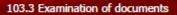
Every System Labor

102 Alternative Materials – Methods of Construction Design or Insulating Systems

102.1.1 – Above code program


- Authority to approve "above code" program is vested in the code official.
- Language does not guarantee alternative programs exceed the performance required by IECC
- Burden of proof to establish equivalency is on the applicant.


Energy System


103 – Construction Documents 103.2 – Information on Construction Documents

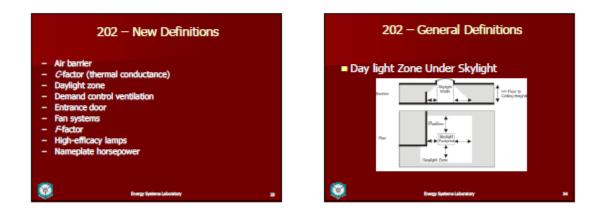
- Level of efficiency used to demonstrate compliance with the code must be clearly identified
- Complete set of building plans with efficiency requirements clearly labeled

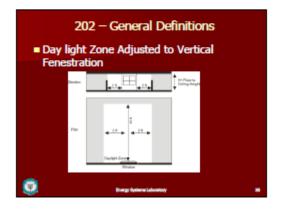
November 2015

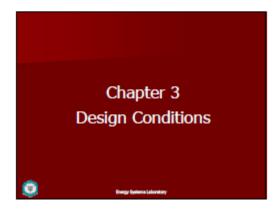
 This section of the code covers the examination of documents and the various types of approvals that the code official will deal with on both new and existing buildings.

104 - Inspections

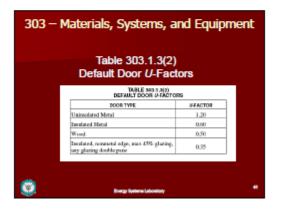
The code states:

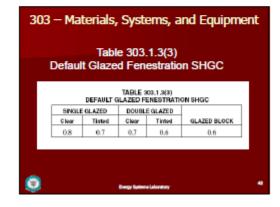

- All construction is subject to inspection.
- Construction shall not be concealed without inspection approval.
- A final inspection is required before occupancy.
- A building shall be reinspected when determined necessary by the code official.

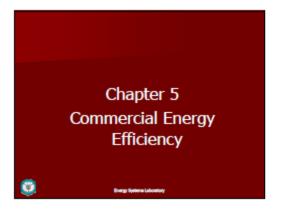

106 – Referenced Standards 106.2 – Conflicting requirements Code takes precedence when the requirements of the standard conflict with the requirements of the code


106 – Referenced Standards 106.2 – Other laws The provisions of this code shall not be deemed to nullify any provisions of local, state, or federal law.

November 2015







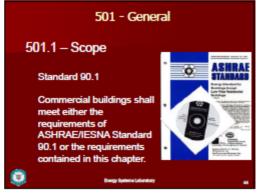
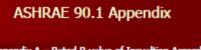


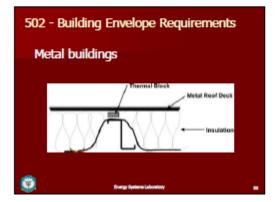
TABLE 303.1.2(1) DEFAULT GLAZED FENESTRATION @FACTOR FRAME TYPE PANE PANE Single Dos FRAME TYPE 200 L
FRAME TYPE PANE PANE Single Do
Metal with Thermal Break 1.30 0.65 1.90 1.
Nonsetal or Metal Clad 0.95 0.55 1.75 1/
Glazed Block 0.90
03500 2000



ASHRAE 90.1 General Organization
Section 1 – Purpose
Section 2 – Definitions
Section 3 – Design Conditions
Section 4 – Residential Energy Efficiency
Section 5 – Commercial Energy Efficiency
Section 6 – Referenced Standards
Section 7 – Service Water Heating
Section 8 – Power
Section 9 – Lighting
Section 10 – Other Equipment
🚓 Section 11 – Energy Cost Budget Method
💱 Energy Systems Laboratory 🏘


	U-, C-, and F-factor determinations	7
	Appendix B – Building Envelope Climate Criteria	
	Appendix C - Building Envelope Trade Off Option	
	Appendix D – Climatic data	
	Appendix E – Informative References	
	Appendix F – Addenda Description Information	
	Appendix G – Performance Rating Method	
Y	Energy Systems Laboratory	

502 - Building Envelope Requirements


The building envelope requirements focus on three types of provisions:

- Building envelope insulation and glazing

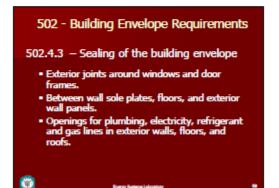
			8.5	part the	1.040	-	1999	212		Local Inte	URACIO:					
							acari	-		÷.						
1.0012.2016	-	(mg/l)	-	time t	-	(map it	-	ing t	-	ing it	-	(mg/k	-	ing t	10.000	(ma)
	_	_		_	_	_	-			_	_	_	_		_	_
And the second s	1.000	1/10.548	++++	1100	1.000	1,000	10.00	14.08	1.118	1.008	110.04		1.4.09	1.009	1,000	110.00
Reschaling:	6.6460	58.00	114.88	1408	6.668	6.689	548	114.88	1.448	6.646	Coore	ven	1110	6.088	6.6469	548
too and the	0.0404	09407	19.62	1402	1.142	0.0407	110.67	116.62	0.0007	0.680	010427	116.62	1000	1110	01607	110.6
							846, Au	- 1-00				_				
No.	0.1476	04.01	04.09	1442	8410	$U \mapsto U H$	114.04	14.00	114.84	24.00	1.000	114.875	1445	0.445	0.6651	1.44
March 199	1.040	110.00	14.00	2406	1.1494	0.00	114.00	11.08	14.94	1-000	tione	11.00	1440	1147	treet	114.85
No artises of	1.112	5.5.58	100.00	10.004	1.10%	1.18%	times	10.04	1104	1.108	1.000	sam	11100	1.10%	5.1092	1.008
Notifiant adults	1.100	1.0.00	10.00	1110	1.100	1.148	100	11.04	1.104	1.189	5.000	104.003	14.05	1.185	5.005	
	_	_	_	_	_		an he			_	_		_	_	_	_
hits and safe	61.00	64.98	51.18	5118	1110	61.00	\$1.88	51.03	1189	6.4400	6.0.02	10.00	11.04	11.00	64.00	1.1.1
-	_	_	_		_		The		_	_	_	-	_	_	_	_
Nav	1412	194.52	1410	1400	1-0.07	1.400	14.87	1418	1-10%	1-1004	100.04	9415	1408	1-185	14042	144.00
hadrany	14.00	14.92	14.07	14/37	-		144.07	14.65	1445	1-4821	1440	194.63	1448	1-140	0.4407	1/46-8
	_	_	_	_	_		10.00	_	_	-	_	_	_	_	_	_
Tablead date	1478	0.1792	\$117.8	107.0	1478	1475	\$475	10.54	147.8	14.54	0.4740	10.15	\$11.5.5	11150	1458	10.76
Read data	1.4.050	1.140	1-01	1.008	rate	1.150	-	10.84	11080	1.1840	1.1.000	1000	1048	1.048	1.188	1140
. Westweit die er	place had	r grad. N	in pair	-	and the Fr	6-1-1-pt	search to	a stranger of	and all the second	- the t	6 hapiti		t carde	-		

							mark	-		inen .						
COMPANY AND	41.000	fing 8	11.000	time b	11.000	time 8	Ad units	tiona 8	Ail other	time #	th star	inst.	10.00	time #	10.00	diam if
								-								
dana ikuk	8.04	8.00	8.054	1.24	8.0%	* 24	8.04	8-2m	0.04	8.041	0.04	8-241	8.04	* 24	8.04	# Chi
ACCESSION.	8.00		127	12	101		8-81-1 8-1-1		8-11+ 8-11		1000		111	1.0	100	10
and and other			and the		and an		daries.		4.10	-		-				
							Mades Alle	en londe								
March 1	18	8.8.74	811.14	81.001	81.64	8.5.54	8.8.8.5	4.0.00	8.11.61	8.014	8.11.10	4.0004	8.15.50	4.000	8.00	8.010
formation screen		***				**			8-114	8-2+ 8-544	81114	1.54	8-114 8-1141	8.04	8114	100
No. of South Street	8.11		0.11	12	100	115	****	15	8-12- 8-12-0	1.12	1111	104	8.754	272	201	222
Taxal Insent and	8.0		8.01		8.01		8.15	817	8-121	8.11-	8.121	8.17	8.01	12	8.01	1.0.1
							Walts Rel	arian.								
1. 1	-	-			-	1.0	-	8.14	-	6.144	a.7%		****			
							10									
these sectors	18	- 10	811.50	88.64	\$10.50	8.8.54	8.054	4.000	8.04	4.1114	8.15.5	4.104	8.00	8.0.14	8.04	
And a Country New York Country	10	-				*.=		$\mathbf{a} \mapsto$		**			**		0.10^{-1}	1.15
							-	-								
Colored sales	10	-	18	-	18	18	- 10	22	10	20	200	22	24	22	25	12
The sector state	1.16	8.10.1s 11.1s		11.6	1.1111	52	11111	127	1111	100	1,114	8.1111 (0.11)	121	8.3×1+ 21.1	8.3.1-	100
Brank Aven																
	6.00	1.4.11	1.49	1.44	1.00	1.45	1	1.10	1.18	0.478	1	0.150	10.000	0.150	11.000	8.40
to taging												0.150				

	80	200150	BLOPE PE	CONSIGNATE PE	NEXTERATION			
CUMMIN TOWN	÷.	- x		and the second	AND BRIDE A			
Vertical Report Deliver off Ta man	to amount	desc-grad	with .					
8-dector								
Franing meterials other these	and with	or without	rantal spin	forward or club	8 iuj			
U-factor	8.30	4.13	9.55	0.48	0.18	9.35	6.05	6.35
Mod Daming with or without	depend b	resk						
Canada wallinkeelinna D'Jacke	10	0.70	-9.89	0.58	9.0	9.42	040	6.40
Estimate door Ordanter	8.20	1.00	4.90	0.10	0.10	0.88	680	6.80
All other U.Sactor*	1.29	-0.15	935	0.55	0.55	9.55	6.15	6.2
NHCC of Dismetiges								
100C PF-0.25	0.25	0.25	0.25	0.49	0.0	0.49	0.45	6.45
100C-8.2J < MP-0.5	0.22	-0.33	-0.29	58	38	58.	58.	NR
NICC PEURS	0.40	0.40	0.40	58.	58	148	58.	NR
Skolights (35) marinessi-								
E-faitor	0.28	4.15	645	0.68	0.50	0.68	0.00	0.50
58600	6.18	4.01	0.08	0.48	9.00	0.48	100	146

502 - Building Envelope Requirements

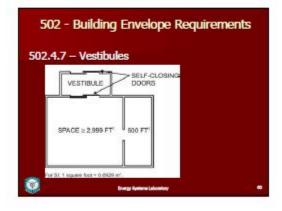
Skylights


 A skylight U-factor is based on the interior surface area of the entire skylight assembly, including glazing, sash, curbing and other framing elements.

Drage System

502 - Building Envelope Requirements

502.4 – Air Leakage (mandatory)
502.4.1 – Window and door assemblies
502.4.2 – Curtain wall, storefront glazing, and commercial entrance doors



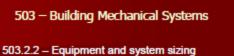
502 - Building Envelope Requirements

- Openings in the attic floor (such as where ceiling panels meet interior and exterior walls and masonry fireplaces).
- Service and access doors or hatches.
- All similar openings in the building envelope.

Sealing the building envelope reduces air infiltration in the building.

503 - Building Mechanical Systems

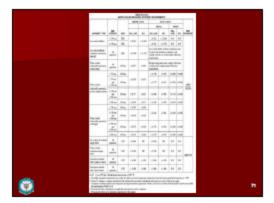
Seven key elements to ensure HVAC system design is efficient:

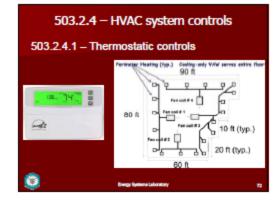

- Equipment efficiency
- Proper equipment sizing and selection
- Distribution losses
- Transmission losses
- Controls
- Free-cooling
- Heat recovery

۰.

503 - Building Mechanical Systems

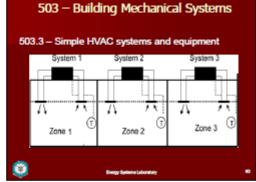
- 503.2.1 Calculation of heating and cooling loads
 - Designers must perform heating and cooling load calculations before sizing and selecting HVAC
 - HVAC systems must be sized based on the heating and cooling loads calculated in Section 503.2.1.
- When the cooling load is predominant the system must be sized to not exceed that load.

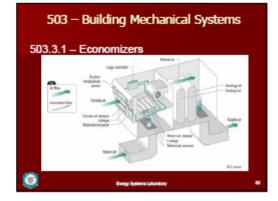


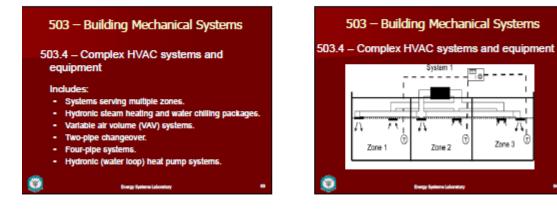

"Shall not exceed the loads calculated."

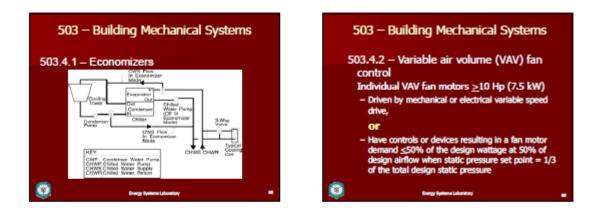
Damps for

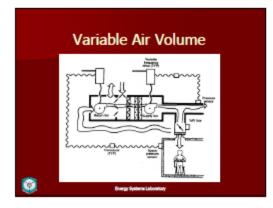
- Standby equipment to have controls and devices to operate automatically when primary equipment is not operating.
- Multiple units with combined capacities that exceed design load shall have controls to sequence operation.

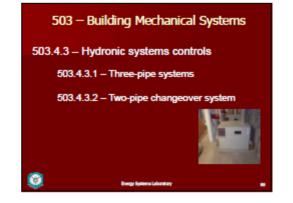


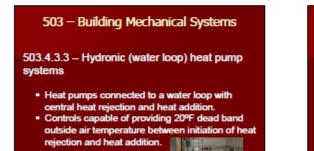


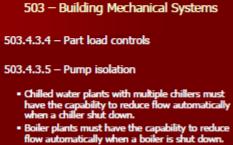


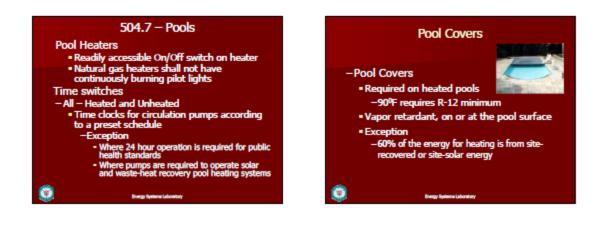


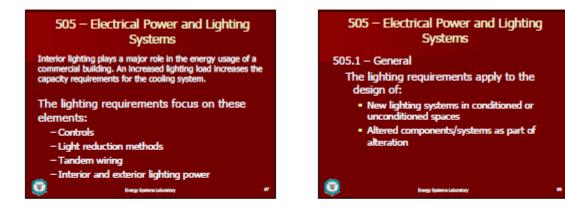







I




Energy Systems Laborator



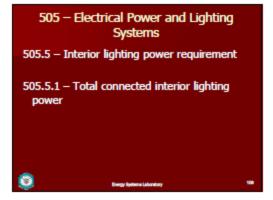
505 – Electrical Power and Lighting Systems

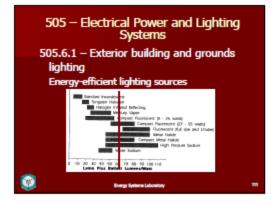
505.2.2.1 – Light reduction controls Light reduction controls differ from switching controls in that instead of turning the lights off after a period of inactivity, these controls lower the light output, and therefore the energy consumed, when areas are unoccupied or when there is suitable light supplied from another source such as windows or skylights.

These controls can be either "dimming" or "switching" depending on the light source you are controlling and the area being controlled.

505 - Electrical Power and Lighting Systems

- 505.2.2.2.1 Occupant override If an automatic time switch control is installed, it must have an occupant override, be readily accessible, and have the following:
 - Be in view of the lights.
 - Manually operated.
 Two-hour override limit.


 - Controls area less than 5,000 square feet. Holiday scheduling feature.
 - Energy Systems



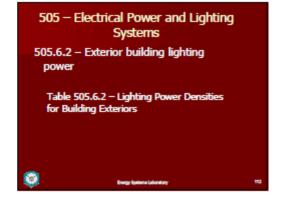
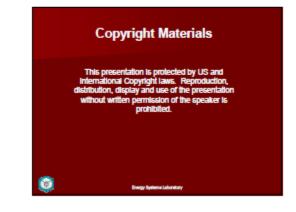
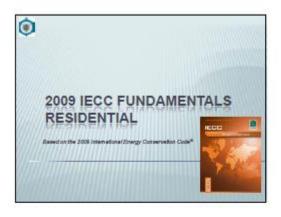


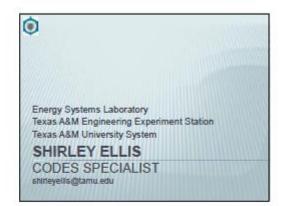
TABLE NO. 1 BETERODUCEDENT PORTO	ALC: CREWE AN	TABLE 109.3.2 - sentiment witched Lighting Power ALLOWANCES							
Building how 1 per	(10.00)	Local Processing of							
Ammunity Paulin									
Constantion County	1.2	Building Aren Type"	(967)						
Cost Bone	1.2	Transportation	1.0						
Distance from Lemman Lemma	1.0		1.0						
Daning California/Fast Food	1.4	Washine	0.8						
Frining Family	1.6	Webshop	14						
Considered and	1.0								
Energine Corners	1.0	For St. 1 for + XHI mm. I wat process							
Cymmetran	1.1	 In case where to the general balling wears ones type are found. The more specific balls 							
Pitraitheast of Ende	1.0	 Where lighting againment is guarified to be 							
Disastad	1.2	many handled in additions a slighting againment	er specified his general lights						
Finel	1.0	and know its had no decision of our particular diffusion							
LOWY	1.3	Ephting, the smither of the actual waitage of ages disably for consciousing, or additional	the top him propagation of the states						
Manufacture, Testing	1.5	their washed to added to the intention lighting of	baires shall be abled to the intenior lighting you as descended in an order.						
Moell	1.0	with this lose term.							
Munice Photosy Theory	1.2	Calculate the additional lighting prevariant help							
Muchail and a	-4.7	Internet Second Lybridg Town Alternative U.MWD ² 1 + (Ketal Lybrid 2) (1076/1071 + 100							
Mouran	1.1	Assol (2.3 % W/)							
Other	1.0	where.							
Publing timoge	-	Retail Arm 1 - The Brocass field prob	cross famil advant Asso.						
Presidentially	1.0	14.4							
Portuning and Theater	1.6	Satal Arm 2 - The Bronaurand Forther	sale of telacites, specially per-						
Policy/Fee Station	1.0								
Post Office	1.1	Hatai Assa) - The forman and the he metry and attends	advertised and a looking on						
Pullgrove Belling	1.2		and all solar solar						
Ac sal-	1.8	Retail Arm 6 - The floor area wed for 6	e start proto-synta						
Indexed/United states	1.2								
Nports motos	1.1	Exception: Other mexthandline only in Informationeer, I included above, provide							
Town Rd.	1.1	ing the need he will streng believe per	sectioned on visual many line						
(conduced)		content, or other cutting implay in ap-	evenity its asthesity have						

505 – Electrical Power and Lighting Systems
Additional Lighting Power Allowances
 Table 505.5.2, Note b – Merchandise Display Merchandise Display - (Note b)
The additional lighting allowance for merchandise display lighting applies to: • Retail sales
(C)

TABLE MALL						
without the	portaciones sources					
Tradable Karlaws I giving Proce Toronto's in storward policy area. contrary, and output and one may the matter of	halday provid, builing newson and rais, ratepas and					
Successfi holding & sat						
Andrea Com anni Metro	and when					
Building Constants						
Telespress ben it for and	https://www.toc					
Walkings if the black is point give acts of special bone see.	1.78.87					
haires	LINE .					
Aniting Encourse and Edu						
Macrolas	20 waterlands love of increasing					
Ober toos	27 Autorities book increase					
transpose autotracturage						
Complex (her maning it evaluated and evaluated)	1.249					
Oppling Rate:						
Over new including which size (see	10144					
that hampens which address address in proceed when the	of a with these face					
Annual St. Survey in place of the second second in the State ones beinds fraction on free an odd size of some labeling. The Schwarz annual of the V addition before a strengt in the size of	in division acts office is an division division					
Bridley lands	117 Will the sole discussed with conduct a 511 Watching the Incode linearized with a self-straight					
Automotivities and sight-dependence	When a prelimiter pla H water producted 478 presents					
Streams of picture inputts on a capabilities	2.970 stancessing over a ministration of the second state of the s					
London new Information Inc. advices and decompany according	1798 of account an investment area to include a metamotic of Personal and in the Industry Architecture					
On the spin manufacture of their function mattern	ethorization produces a la constante participation de la constante					
fielding and (Solorie total communi-	Retrieved per and unity					
In R. Sheer, Wed and Jose on spacetime "WithRight"						


506 - Total Building Performance


506.4 - Documentation

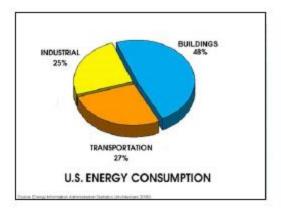

The documentation that is required to support the analysis must provide the following information:

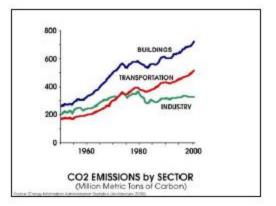
- aiysis must provide the following information: Annual energy use and cost. List of building features. Output files showing energy use totals. Energy use by source and end use. Total hours that the space conditioning loads were not met.
- Software error messages or warnings. Written explanations of any error messages or warnings,

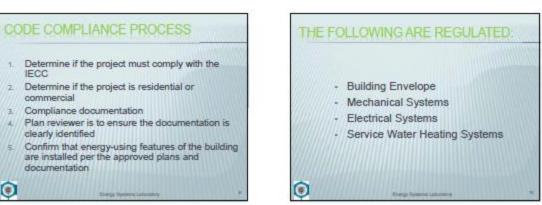


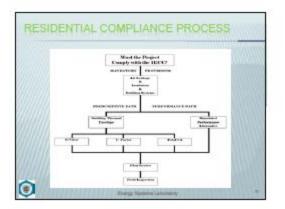
Building Professional Institute" is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content. that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

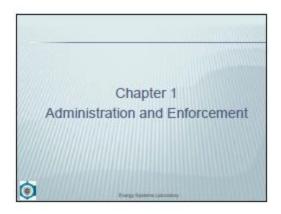


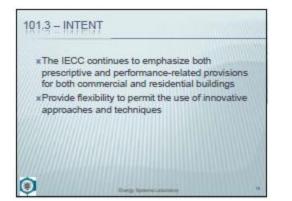

OBJECTIVES


Upon completion of this seminar, participants will be able to:

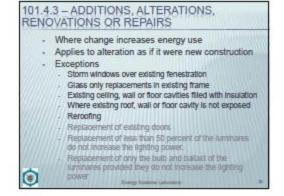

- Locate general topics in the 2009 IECC
- Locate applicable tables in the 2009 IECC for specific situations
- Apply code requirements to real-world situations
- Explain the Intent behind a code requirement
- Identify borderline scenarios as compliant or noncompliant
- Identify essential code compliant for designing energy-efficient building thermal envelopes, energy-efficient mechanical design principles and electrical lighting systems In residential construction.
- \bigcirc

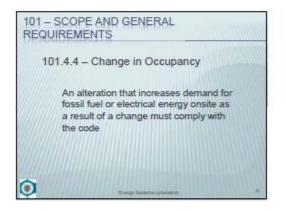
- * Recognized as the national model energy code of choice for U.S. cities, counties and states that adopt codes
- * Cited throughout Federal law for national private and public housing initiatives
- Serves as the basis for federal tax credits for energy efficient homes, energy efficiency standards for federal residential buildings and manufactured housing

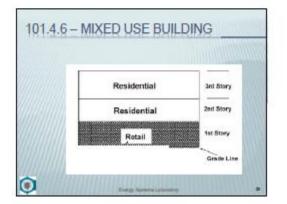


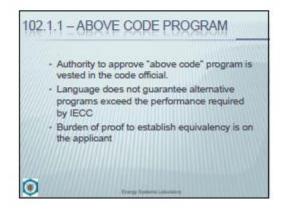



RGANIZATI	
Chapter 1 -	Administration and Enforcemen
Chapter 2 –	Definitions
Chapter 3 –	Design Conditions
Chapter 4 –	Residential Energy Efficiency
Chapter 5 -	Commercial Energy Efficiency
Chapter 6-	Referenced Standards
	Dana Sanan Jaharan



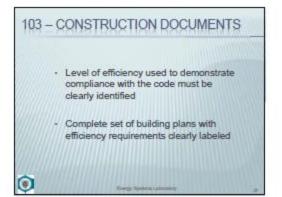


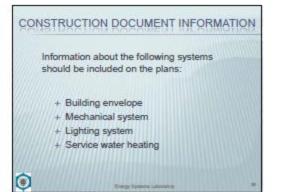


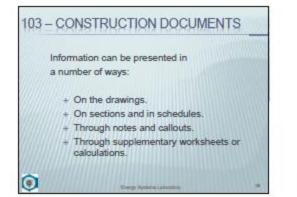


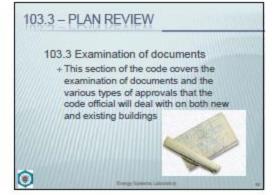
101.5.2 - LOW ENERGY BUILDINGS

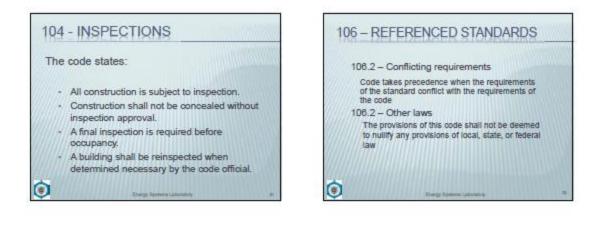
Buildings that are exempt from the building envelope provisions are:

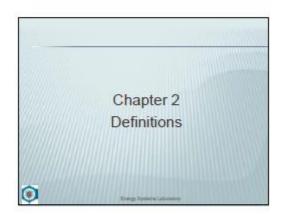

- Buildings with a peak design rate of energy use less than 3.4 Btu/h ft² or 1 watt/ft² of floor area for space conditioning purposes
- Those that do not contain conditioned space

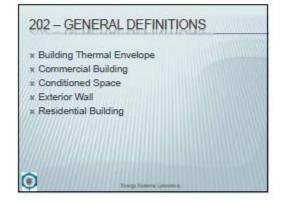

0

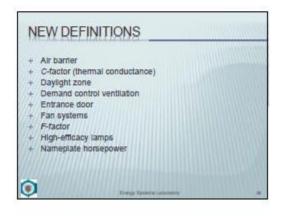

MATERIALS, SYSTEMS AND EQUIPMENT

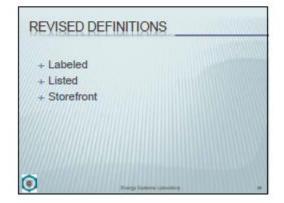

Section 102 is now found in Section 303 -Materials, Systems and Equipment

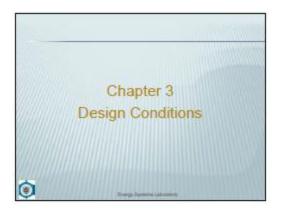

Provisions applicable to the identification, installation and use of energy efficient materials, systems and equipment are moved from Section 102 to Section 303. These are general technical requirements, not administrative requirements.

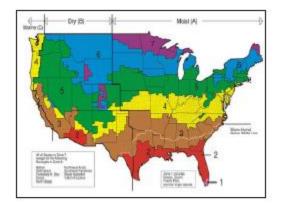


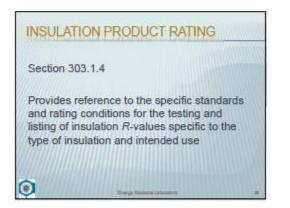


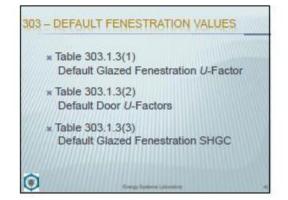


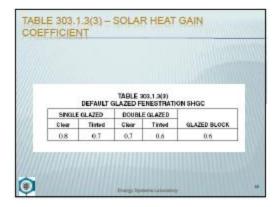


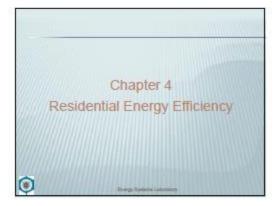


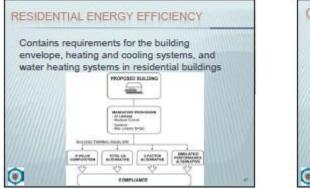












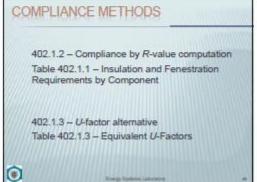
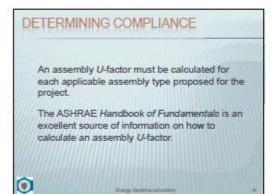
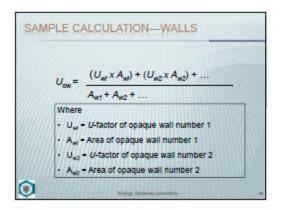

DEFAULT GLAD	ABLE 102 ID FEINES	1.3(1) TRATION (HACTO	2
FRAME TYPE	PANE	PANE	Sincle	Double
Meui	1.20	0.89	2.00	1.30
Metal with Thermal Broad	1	0.65	1.90	1.10
Nonesetal or Metal Clad	0.35	0.55	1.75	1.05
Glared Block		0.	50	

	TABLE 303.1.3(2) DEFAULT DOOR U-FACTOR	5
	DOOR THPE	U-FACTOR
Uak	solated Metal.	1.20
Inst	lated Metal	0.60
Wee	ત	0.50
	lated, nonmetal edge, max 45% glazing, glazing double pane	0.35



CLIMATE COM	Hancomartical artistical	87108* 2480108	OLANDO	PELRO	WEOD PART WILL PORTE	RANK WIGL WYNLEY	PU208	WHAL PYNAR	51.40 ¹⁰ (51.60.00 (6.00.000)	鐵橋
1	24	1111	4.8		- 10	-34	- 10			- W.,
1	11.651	- RT.	4.81		- 18	-01	18	-		
1	-0.464	End.	8.30		- 10	28	16	311/		311
A story: Marine	6.0	100	186		17	308		10.01	18,219	180
2 mil	8.99	10	16		24100	1917	39	1010	18,210	(83)
-6	1.11	100	18	-11	Ser int	1579	3.96	10(2)	18.40	10011
74028	1.19	0.00	NR			1921	1.34	inw.	18.411	10033
The large of the l	en missionen, 174a sull'he soniked mit missi 27 hariet ink missi 27 hariet ink missi 27 hariet ink missi 28 hariet ink missi 2	da serie da se	Inse Brooke is a singler. The 1040 Bring conflict state provides as the bar	illing to the C subsets at a second the S a December	rich deletantes B gebornes al plane calificationes en R constant raffición e ca statutos el la	unden 21 kommen for 21 kommen for 21 kommen for 21 kommen for 20	and the second s	in takantan ortifa di takantalagi yan anatalangi a tha	lancest an inclusion of inclusion of the	n Thore
teati de S-dail Recegto S Tance are	er ablecke de reag Sechandel (AB), un ERCE-requirem real insulation à s									

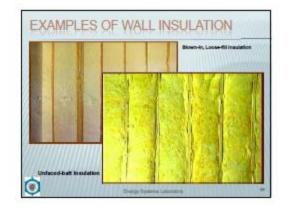
CLINE	PENENTIATION A-THE-TEST	SPLEF SR(1)1	TELHG HALTER	HARE WILL STREAM	MARTINAL DIACTOP	1,001 1-94/108	BALL BALL JANTER	IRANU SIACE NAU LANCIDE
- i	130	6.79	6.835	600	8.00	0.356	1.395	8.477
1	6.61	1.8	1.05	0.083	1.98	0.954	139	8.477
1	6.50	1.8	8485	6081	8.941	0.947	0.001	4236
4 mieji Mache	6.05	8.00	1.01	300	1.10	9,947	0.05	1.00
Sant Marian 4	6.0	1.00	1.00	6097	1.002	0.05	6.05	4.85
	6.0	1.0	1431	10.0	1.000	0.00	6.09	1.83
Taids	6.11	8.80	101	107	1051	0.528	6.0%	1.80

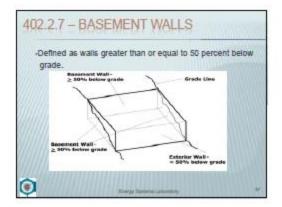


CALCULATING ASSEMBLY U-FACTORS

- * The calculation must include the effects of framing
- * An R-value must be determined for each different
- material in the assembly
- * The R-values are then totaled to determine the total R-value through each thermal path of the assembly
- The total R-values are then converted to U-factors by taking the reciprocal of the R-value
- An area-weighted average U-factor is calculated for the wall system that takes into account the effects of framing

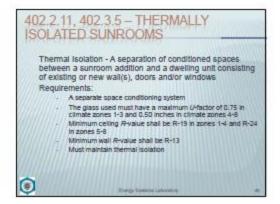
O

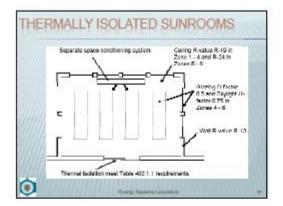

 \odot

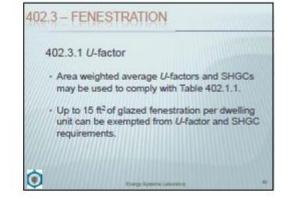


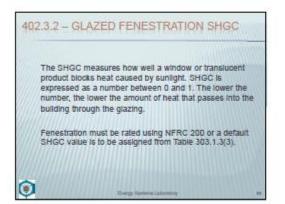
402.1.4 - TOTAL UA ALTERNATIVE

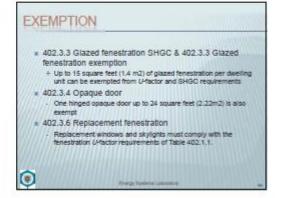
- The building envelope design is permitted to deviate from *R*-values or *U*factors in Tables 402.1.1 or 402.1.3, respectively, provided the total thermal transmittance (*UA*) is the same or less as the very same building envelope geometry designed to code

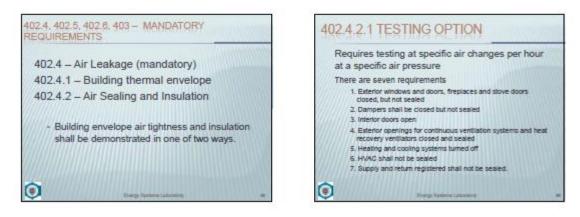


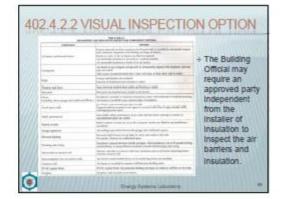


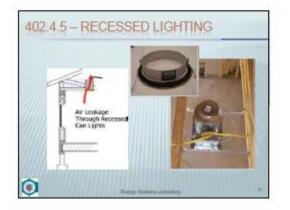


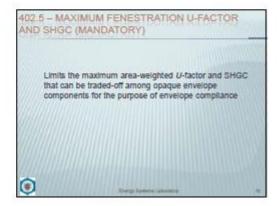


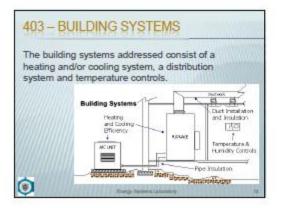


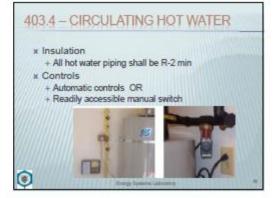


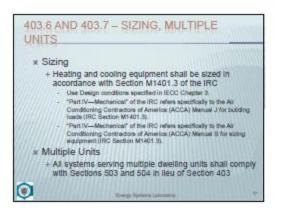


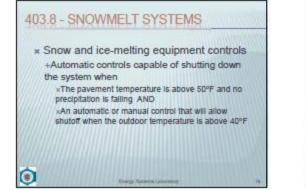


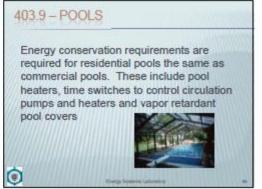


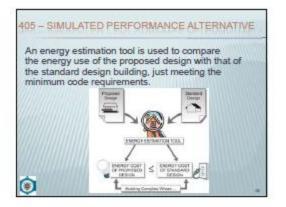


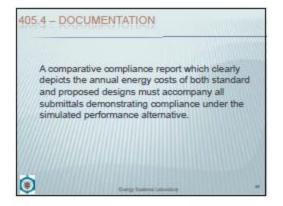


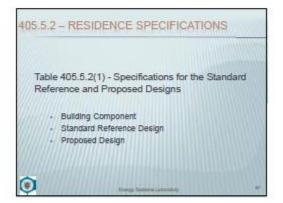


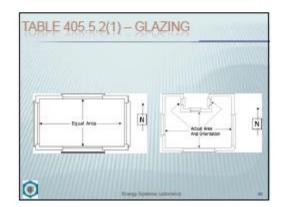


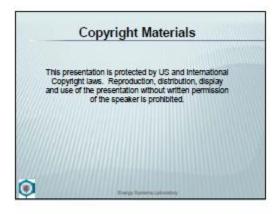





403.9.2 TIME SWITCHES.


 Time switches to automatically turn off and on heaters and pumps according to a preset schedule shall be installed on swimming pool heaters and pumps. The two exceptions address public heatth standards and circumstances where the pumps serve pools with solar-waste-heat recovery heating systems.




ACCRUMANCE.	Canada and an and a second	MANAGE AND
	Type and the Report of Loss Advances of the State of the State of the International State of the International State of the Advances of th	
	The second point Interview of the second Taken from The Tot of Landau second American Second Second	1000
the state of the s	The states	Tomat and the second se
(Singe	Trans and the second	Conternal Representation
***	Con-relation days is not being the second se	Toropad Toropad Toropad
18th	Day taxing part of the Schule of	ing Report
Posti di	They are expressed induce values provad here pair and an expressed instances of	avered .
-	No. 817 Disease National State (State State Stat	Auge and Auge and Auge and
	Nation - S Reproduces to decrepted proposition for M and contractor B (R a) is contractor and B (R a) is contractor and the second pro-	
tang"	Harmon with distant in earlier ingen Harmon KAA 19 H Harmon KAA 19 H Harmon KAA 19 H Harmon KAA 19 H Harmon Harmon KAA 19 H HARMON KAA 19 H HARMO	
n yn	Net	topoped .
Name of Street Street	line .	a comment.

	POTOTA A REAL PROPERTY AND A REAL PROPERTY.	and the second se	
[Contract of Contract of Contract	Contrady come	
		Normalisme products to the event of the second sec	
_	and a provide set of a set of the	Control and Annual	
	$\label{eq:constraints} \begin{split} & \left\{ \begin{array}{llllllllllllllllllllllllllllllllllll$		
100.0	The Carl Decision of	100 - C 100 100 - 100 - 100 -	
		The second	
		annen Annen	
	Loted		
1000	The second secon	Automatic Contraction of Contractio	
1227	Science .	Section 1 in color Sec	
-	A second second balance is a second s		
	Nur-Maril - Alto Assesse street, 44.	and the second se	

Proposed Design		
Proposed Design		
		Constant of the second
DEFAIL TON INCOMES UNTIL ALC: YOU ARE THE PERSON	the pre-series of the pre-	0
BUTGLOWING CONTRACTOR AD COMPANY	DEREMINATION	interconcretent*
Surfiture to text compared to be set of the second states	-	0.05
Australia device releases y no an email of the and an constituteness spectra	688	1
The deal" resident		-
		g-+ (2008)

Juan-Carlos Baltazar, PhD PE Chunliu Mao and Jeff S. Haberd PhD PE Energy Systems Laboratory The Texas A&M University System <u>icbaltazar@tamu.edu</u>

Conference Paper Session 20 - New Professional Skills, **Codes and Ethics**

Verification of the Energy Savings from the Implementation of the Residential Building Codes in Texas

2014 ASHR AE Annual Conference Seattle

Learning Objectives Describe how the Water Efficiency sections of ASHRAE Standard 189.1 and the IGCC impact the design of evaporative cooling towers. Understand the importance of cycles of concentration and its control as the single best method to conserve water.

- Become familiar with the Codes of Ethics published by ASHRAE and state engineering license boards. Give real-world examples of conflicts of interest and reasons why engineers must avoid them.
- Know a methodology that help to verify residential energy savings from the implementation of energy codes. Learn how to apply inverse methodologies to characterize the residential energy use.

E is a RegisteredProvider with The American Inst of this concerns will be recented to 6.958 BT Lec

Outline/Agenda

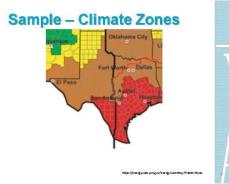
- Background
- Methodology -Sample of houses
 - Climate Zones
 - -Energy Modeling · Data Driven Techniques
- Results
- Summary

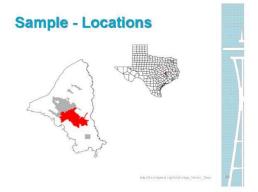
Background

- · Texas Emission Reduction Program -NOx
 - Verify the savings that are obtained by the application of residential energy codes.

Methodology - Sample

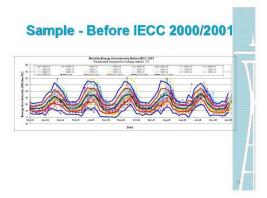

- Three groups of at least two dozens of houses built
 - -Before 2000/2001
 - -Before 2006 /After 2000/2001
 - After 2006

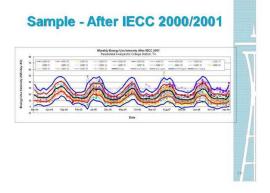


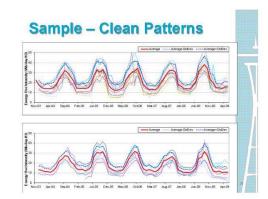

- Three groups of residential houses located in the same city in nearby neighborhoods; each one corresponding to a period when the codes were adopted in the city
- · Houses were built by the same builder to reduce the impact of different construction practices, and to maintain same quality in the material selection

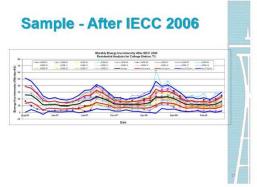
Sample - Main Characteristics

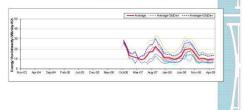
- Each group originally include at least twenty-four houses
- At least one coincident year (12 monthly utility bills) of energy data for each house in each group
- All houses used electricity for the airconditioning and natural gas for heating and domestic hot water (DHW)

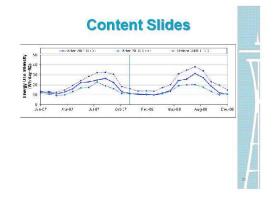

Sample - Locations

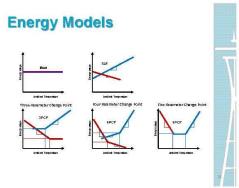










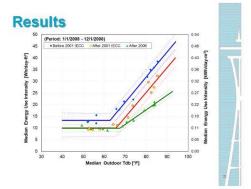


Content Slides

Residential Energy Modeling

Variable-based Degree-day Model

Normalized Annual Consumption (NAC)


$NAC = 365\alpha + \beta H_o(\tau) + \varepsilon_I$

where, $H_o(\tau)$ are the degree-days for the average weather data period at base temperature τ ,

 α and β are the base-level and the cooling (or heating) slope parameters; and ε_i is the random error term.

Residential Energy Modeling

		2001 (ECC			2006 IECC		
	CZ 2	CZ 3	CZ 4	CZ2	CZ 3	CZ 4	
	Harris	Tarrant	Potter	Harris	Tarrant	Potter	
Ceiling Insulation (hr-sq.ft- *F/Bbu)	R-30		Pr 38	R-2	7.84	R-32.51	
Wall Insulation (hr-sq.ft- °F/Btu)	R-	11	R-12/3125 c.i	R-11.8			
Slab Perimeter Insulation	None		P-6	No	ne	R-10	
U-Factor of Glazing (Btu/hr-s.q.ft-*F)	0.47		0.41	0.75	0.65	0.40	
Solar Heat Gain Coefficient (SHGC)	0.40		80.0	0.40			
HVAC System Efficiency	(a) Electric/Gas House: SEER 10 AC, 0.78 AFUE furnace			(a) Electric/Gas House: SEER 13 AC, 0.78 APUE fumace			
nvac, system emolency	(b) Heat Pump House: SEER 10 AC, 68 HSPF heat pur			(b) Heat Pump House: SEER 13 AC, 7.7 HSPF heat pump			
DHW Heater Energy Factor	(b) heat purp Hussel 0.864			(a) Electric/Ga 0.594 (b) Heat Pum 0.904			
Duct Distribution System Efficiency (DSE)		0.80	1	0.88			
Infiltration Rate (SO)		SLA= 0.0005	7	SLMr 0.00036		ŝ.	

	rat	terns	
	Before IECC 2000/2001	After IECC 2000/2001	After IECC 2006
a	14.0456	10.8119	10.3621
в	0.9835	0.9717	0.5612
Tep	62.4644	66.2052	66.8500
R ²	0.9667	0.9703	0.9839
AdjR ²	0.9633	0.9673	0.9823
RMSE	1.7633	1.422.4	0.5602
CV-RMSE	7.7%	8.2%	4.0%

Results – Energy Normalized

Results – Variable Base Degree-day

	Before IE CC 2000/2001		After IE CC 2000/2001		After IE CC 2006		
	Estimates	Std. Errors	Estimates	Std. Errors	Esti mates	Std. Errors	
Reference Temperature	63.1600	4.0600	66.4500	3.7200	65.5500	7.3900	
Cooling Slope	0.0010	0.0002	0.0010	0.0002	0.0005	0.0002	
Base Level	0.0128	0.0017	0.0098	0.0013	0.0100	0.0013	
NAC	8.3312	0.2347	6.3282	0.2180	5.0873	0.2042	
R-Square	0.9522		0.9430		0.8289		
Cooling Part of NAC	3.6653	0.5589	2.7618	0.4290	1.4463	0.4467	
Numbers of Obs.	12		12		12		

Results

	Before IECC 2000/2001	After IECC 2000/2001	Savings	After IECC 2006	Savings
NAC	7.958	6.383	1,575	5.172	1.211
Std Error	± 0.110	± 0.036	± 0.116	± 0.036	± 0.051
% Savings			19.8%		19.0%

Summary

- A procedure to verify the energy savings of groups of residential houses in Texas through three-parameter, linear regression change point models, variable based degree-day analysis, and sliding NAC analysis.
- The three-parameter, change point regression model yielded a 23.9% and 15.1 % energy savings after implementation of IECC 2000/2001 and IECC 2006, respectively.

Summary

- The variable based degree-day analysis provided a similar match, and showed that the IECC building codes helped residential houses achieve 24% and 19.6% energy savings due to the adoption of IECC 2000/2001 and IECC 2006, respectively.
- By minimizing the impacts of equipment degradation and operation changes, a sliding NAC analysis stated a 19.8% and 19% energy savings achieved by the implementation of IECC building codes.

Questions?

Juan-Carlos Baltazar PhD, PE, BEMPASHARE Member ASHRAE juan-carlosbaltazar@tees.tamus.edu

Acknowledgements

 The authors want to thank Mr. Brian Henry of City of College Station Utilities for providing the residential utility bills that are used for the analysis in this paper