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ABSTRACT

A new homogeneous climate division monthly precipitation dataset [based on full network estimated

precipitation (FNEP)] was created as an alternative to the National Climatic Data Center (NCDC) climate

division dataset. These alternative climate division monthly precipitation values were estimated using an

equal-weighted average of Cooperative Observer Program stations that contained serially complete time

series. Missing station observations were estimated by a procedure that was optimized through testing on U.S.

Historical Climate Network stations. Inhomogeneities in the NCDC dataset arise from two principal causes.

The pre-1931 estimation of NCDC climate division monthly precipitation from statewide averages led to

a significant time series discontinuity in several climate divisions. From 1931 to the present, NCDC climate

division averages have been calculated from a subset of available station data within each climate division,

and temporal changes in the location of available stations have caused artificial changes in the time series. The

FNEP climate division dataset is recommended over the NCDC dataset for studies involving climate trends or

long-term climate variability. According to the FNEP data, the 1895–2009 linear precipitation trend is positive

across most of the United States, and trends exceed 10% per century across the southern plains and the Corn

Belt. Remaining inhomogeneities from changes in gauge technology and station location may be responsible

for an artificial trend of 1%–3% per century.

1. Introduction

The National Climatic Data Center (NCDC) sub-

divides each of the 48 conterminous states in the United

States into climate divisions, regions considered to contain

a relatively homogeneous climate within their boundaries

(Guttman and Quayle 1996). Monthly values of temper-

ature, precipitation, and derived climate products are

calculated for each climate division for the period 1895–

present. NCDC climate division average precipitation

(CDP) values are calculated on a monthly basis, with each

climate division containing a record dating back to 1895.

Prior to 1931, these monthly values were estimated from

statewide values using a linear regression equation

(Guttman and Quayle 1996). From 1931 to the present,

climate division values represent an equal-weighted av-

erage of those stations reporting both temperature and

precipitation within a given climate division’s boundary

(Guttman and Quayle 1996).

Apparently because of their spatial completeness,

geographic resolution, and ease of use, climate division

data have become popular for a wide variety of appli-

cations. Monthly climate division precipitation data

are widely used in long-term analyses of precipitation

(e.g., Karl and Knight 1998; Kunkel et al. 1999; Leathers

et al. 2000; McCabe et al. 2004; Goodrich and Ellis

2006; Easterling et al. 2007; Kurtzman and Scanlon

2007; Grantz et al. 2007; Grundstein 2008; Seager et al.

2009). Additionally, drought indicators such as the

Palmer drought severity index (PDSI) use historical

climate division data to make real-time assessments.

The PDSI and other drought indicators are sensitive to

changes in the mean and variance of historical climate

division data and rely on accurate historical data to

correctly diagnose drought. But there are recognized

fundamental flaws that make the climate division data

unreliable for these purposes.

A major weakness of the currently available climate

division dataset is that the network of stations used to

calculate climate division values is not constant over
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time (Guttman and Quayle 1996). This can be especially

troublesome in the western United States, where station

elevations within a single climate division can vary by

1000 m or more and the land area encompassed by cli-

mate divisions can be tens of thousands of square kilo-

meters (Sheppard et al. 2002). Climatological average

values of annual precipitation at different stations within

a climate division can easily vary by a factor of 5 or more.

In climate divisions with spatially inhomogeneous pre-

cipitation climates, changes in the configuration of sta-

tions can cause spurious long-term precipitation trends

and spurious short-term precipitation variations (Keim

et al. 2005; Allard et al. 2008).

Because climate division data are so widely used in

precipitation analyses despite these shortcomings, there

is a clear scientific need to quantify the errors introduced

by climate division inhomogeneities and to develop

a climate division precipitation dataset not subject to

these spurious biases. Here we focus on precipitation

because the impacts of spatial variations of precipitation

are relatively large and station temperature records may

themselves possess important inhomogeneities (Pielke

et al. 2007). Application of station-based homogeneity

corrections (Menne et al. 2009) to Cooperative Ob-

server Program (COOP) stations will enable a similar

analysis to be performed for temperature.

One solution for creating an alternative climate di-

vision dataset is to compute climate division averages

with a fixed network of serially complete stations from

1895 to the present. Keim et al. (2005) and Allard et al.

(2008) used U.S. Historical Climate Network (USHCN)

stations with continuous records in constructing alter-

native climate division time series for New England and

the southeastern United States, respectively. However,

there are only 1221 stations in the USHCN version-2

dataset across the 344 U.S. climate divisions (Menne

et al. 2009), and only 27 are truly serially complete, the

other 1194 having one or more estimated monthly values

that fill data gaps. The USHCN is a subset of long-term

stations in the National Oceanic and Atmospheric Ad-

ministration’s (NOAA) COOP network, which contains

more than 24 000 stations.

Because a USHCN-only climate division dataset would

exclude so many other COOP observations, this study

adopts an alternative approach that uses as many COOP

observations as possible. Estimates based on neighboring

stations are used to extend the record of each viable

COOP station to fill the complete period 1895–present.

This study creates an improved NCDC climate division

dataset by estimating missing monthly precipitation

values at COOP stations. The end result is a fixed net-

work of COOP stations in each climate division, whose

observed or estimated values may then be used to compute

temporally homogeneous climate division averages of

precipitation.

Several procedures for interpolating the missing data

were explored, each using data available at nearby sta-

tions. After the optimal interpolation procedure was fi-

nalized following testing on USHCN stations, estimates

for missing data were computed and merged with the

real values at each COOP station. The alternative cli-

mate division dataset was created from 1895 to 2009

using the merged time series at each COOP station.

Section 2 explains the datasets used and created, section

3 describes the testing done to create the optimal in-

terpolation scheme, section 4 compares long-term trends

in the NCDC climate division dataset with those in our

alternative dataset, section 5 considers the reduction in

variance associated with the homogenization technique,

and section 6 summarizes the results.

2. Data and terminology

The COOP and USHCN precipitation data were

obtained from NCDC. The data provided by NCDC have

passed automated quality control processing and are

deemed suitable for this study. COOP stations that double

as USHCN stations use data from the USHCN version-2

(USHCN-v2) dataset, which has undergone additional,

extensive quality control and has estimated missing values

using the Fill Missing Original Data in the Network

(FILNET) adjustment procedure (Menne et al. 2009).

Of the 24 335 COOP stations, roughly 2% included

duplicate data reported under more than one station

identifier. To avoid double weighting, the COOP data

from NCDC were screened and stations with multiple

COOP identification numbers were combined into one

station record. Other COOP stations, mostly those whose

period of record ended prior to 1965, were associated with

an incorrect climate division number, probably because of

changes in climate division boundaries over time. Stations

were reassigned to their proper climate divisions based on

visual inspection of mapped station locations relative to

climate division boundaries.

Very few COOP stations are complete over the period

1895–2009. The key step in this analysis is to fill in the

gaps and artificially extend the record of COOP stations

to span the entire period.

An interpolation procedure (to be described below) re-

places the missing monthly values in each COOP station

time series with estimated values. The resulting dataset,

consisting of observed values where available and estimated

values where necessary, will be called the ‘‘merged’’ COOP

dataset. The station for which an estimated value is needed

will be called the ‘‘target’’ station, and other nearby stations

used to estimate the value will be called ‘‘neighbors.’’
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The existing climate division precipitation dataset

from NCDC will be called CDP data. ‘‘Homogenized’’

climate division precipitation data can take many forms,

depending on the intended use of the data. For example,

the Parameter-Elevation Regressions on Independent

Slopes Model (PRISM) dataset (Daly et al. 2002) con-

sists of spatially interpolated data that may be homoge-

neous with respect to the climatological mean, depending

on the accuracy of the interpolation, and can be aggregated

into climate division data that represent reasonable esti-

mates of the true mean within a climate division. However,

as the number of stations within a climate division changes,

the expected variance of a climate division time series

would change as well, and for some applications it may be

appropriate to adjust the time series to homogenize the

variance as well.

For comparison and integration with current and fu-

ture CDP data, it may be useful to create a homogenized

dataset using estimates only at present-day station lo-

cations. However, such an approach neglects actual data

from past stations that could be used to provide a more

accurate value for the historic climate division values.

Here, we choose to use all available actual data at

COOP stations that have enough data to satisfy a mini-

mum data criterion that will be discussed in section 3.

The resulting climate division precipitation values

[full network estimated precipitation (FNEP)] will have

the following characteristics: (i) values computed using all

available COOP data within a climate division, including

USHCN stations; (ii) expected (mean) values that are

homogeneous through time; (iii) expected values that are

specific to the station location distribution and therefore

do not necessarily represent an accurate estimate of the

true spatial mean precipitation; (iv) variance that is in-

homogeneous through time depending on the proportion

of actual versus estimated data values.

3. Testing and selection of estimation procedures

a. Normalization

In general, an estimated precipitation value is expressed

as a weighted average of neighboring observations. This

study tests some simple interpolation procedures that

calculate the weights directly from the geographical or

statistical properties of the target and neighbor stations.

The simplest possible approach is to apply equal weights

to some number of neighbor stations. However, the cli-

matological precipitation normal at neighboring stations

can be different than at a target station, so using raw pre-

cipitation values in the estimation procedure is not ap-

propriate. Departures from normal precipitation tend to

exhibit greater spatial coherence than normals themselves

(Jones and Hulme 1996), so we estimate the departure

from normal at target stations using a weighted average

of the departures from normal at neighboring stations.

Departures from normal may be expressed as a dif-

ference (observed minus normal) or as a ratio (observed

divided by normal). Ratios are more commonly used

for precipitation, and are recommended by New et al.

(1999), Peterson et al. (1998), and Alexandersson (1986).

We shall refer to observed precipitation divided by the

corresponding normal precipitation as normalized pre-

cipitation and identify the weights as the coefficients

applied to the normalized precipitation values. So, for

example, the normal ratio (NR) method (Paulhus and

Kohler 1952) uses an unweighted average of the nor-

malized precipitation at three neighbor stations:

PTk

N(PT)
5�

3

i51

�
Pik

N(Pi)

�
, (1)

where Pik is the observed precipitation at the ith neighbor

station during month k, N(Pi) is the normal value of

precipitation during that month at station i, and the

subscript T refers to the target station. More generally,

PTk 5

�
n

i51

�
wi

NiT(PT)

NiT (Pi)
Pik

�

�
n

i51
wi

, (2)

with wI 5 1 (hence the name ‘‘normal ratio’’) and the

number of stations n 5 3. Equation (2) has been written

to allow the definition of normal precipitation NiT(P) to

depend on the particular combination of target and

neighbor station, as explained below.

Most studies use normals computed from a reference

interval (usually 30 years) during which a large fraction

of stations reported. However, there is no common

30-year period of overlap for all COOP stations. Be-

cause of inconsistencies in the data availability at COOP

stations, we calculate normals using only the period of

data overlap between a neighbor station and the target

station. Thus the calculated normal at the target station

depends upon the period of overlap with the neighbor

station, and the target normal must be included within

the summation bracket as in (2).

b. Weighting methods

Three simple methods for assigning weights for (2)

were tested. The Young (1992) method is usually called

the modified normal ratio (MNR) method, and assigns
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weights according to the square of the t statistic used to

estimate the significance of the correlation coefficient:

wi 5
r2

Ti(m 2 2)

1 2 r2
Ti

, (3)

where rTi is the correlation coefficient between the

precipitation values at target station T and neighbor

station i for a given month of the year and m is the

number of overlapping data values. The MNR method

has been used to infer both daily and monthly precip-

itation (Eischeid et al. 2000; Mosmann et al. 2004;

Suhaila et al. 2008; Kumar and Duffy 2009).

Several studies weight neighbor stations using an in-

verse distance weighting (IDW) scheme (New et al.

1999; Di Luzio et al. 2008; Serbin and Kucharik 2009)

that is based purely on the geographical distance RTi

between the target station and the neighbor station:

wi 5
1

RTi

. (4)

Sun and Peterson (2005) found an interpolation weight-

ing scheme called inverse weighting of the squared dif-

ference (IWSD) to outperform IDW-based interpolation.

The IWSD interpolation method is a completely data-

driven scheme that assigns higher weights to neighbor

stations that minimize the differences in the overlapping

monthly precipitation data:

wi 5
m

�
m

j51

�
Pij

NiT (Pi)
2

PTj

NiT(PT)

�2 . (5)

c. Other considerations

Three weighting techniques (MNR, IDW, and IWSD)

were tested for their relative performance when esti-

mating missing values. To produce quality estimations,

stations considered as neighbor stations must have a

sufficient amount of overlapping data with the target

station. However, providing too strict a limit on the

amount of overlapping data can unnecessarily eliminate

useful observations. The most critical aspect of esti-

mating a missing monthly precipitation value is choosing

which neighboring station values will be used to calcu-

late the estimate (Eischeid et al. 1995). Since the first

estimation procedures for missing precipitation values

were proposed (Paulhus and Kohler 1952), it has been

common to limit neighboring stations to those in close

proximity.

Hulme and New (1997) suggest that rigorous limita-

tion of stations based on data availability produces

better estimates in areas with a dense network of sta-

tions, but reduces the quality of estimates where spatial

overage is poor. Cressman (1959) and Peterson and

Easterling (1994) included only neighboring stations

within a prespecified radius of the target station, while

New et al. (1999) and Eischeid et al. (2000) limited

neighboring stations to a prespecified number of stations

closest to the target station. In our estimation procedure,

stations most highly correlated to the target station were

chosen as neighbor stations from among a set of candi-

date neighbor stations.

Note that the set of candidate neighbor stations will in

general change from month to month and year to year.

To be a candidate neighbor, a station must report a pre-

cipitation value for the month to be estimated as well as

for a sufficient period of overlap with data reported by the

target station.

d. Method selection

An interpolation method was chosen based upon the

results of a pair of data withholding experiments using

the complete USHCN-v2 dataset. The end result of each

individual test was a serially complete time series of esti-

mated values at each USHCN station that were compared

to the observed values for the period 1971–2000, and the

procedure was repeated for the period 1901–30. The root-

mean-square (RMS) difference between the estimated

and observed values, averaged across all months at all

USHCN stations, provided a single comprehensive metric

that measures the performance of the estimation pro-

cedure itself.

This test was applied to the following permutations of

estimation procedure: weighting method 5 fMNR,

IDW, IWSDg, minimum overlap 5 f5, 10, 15, 20 yearsg,
candidate neighbors 5 f5, 10, 15, 20, 25 stationsg, and

neighbors 5 f2, 4, 6, 8, 10, 13, 16, 19, 22, 25 stationsg
(limited to be less than or equal to the number of can-

didate neighbors), for a total of 372 permutations for

each of 12 months and each of the 1218 USHCN sta-

tions.

The overall RMS errors were lower for the 1901–30

period for the two data-driven weighting methods

(IWSD, MNR) when averaged among all the possible

permutations, despite the greater availability of nearby

stations for the 1971–2000 period. Because the earlier

stations tended to have a longer period of record, this

suggests that the benefit of a longer calibration period

outweighs the benefit of better data proximity when

calibration information is used for weighting.

We combine the results of the 1901–30 testing and the

1971–2000 testing to choose a method that is effective

over the entire time series, 1895–present. The IDW

weighting method performed better overall for each of
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the four choices of minimum overlap (Table 1), with the

best performance at a minimum of 10 years of overlap.

The differences in RMSE between the different overlap

criteria within each weighting method in Table 1 were

much smaller than the reported errors. This suggests

that differences in the period of record among stations

used in the FNEP dataset is not of great concern as long

as each station satisfies a minimum data requirement.

This minimum overlap period effectively restricts the

eligible COOP data to data from stations with at least

10 years of observations from a given month. Out of the

24 335 stations in the COOP network, 12 705 stations met

the minimum data requirement for monthly precipitation

observations and were used in the FNEP dataset.

Proceeding with weighting method 5 IDW and min-

imum overlap 5 10 years, the overall performance of

each combination of number of candidate neighbors and

number of actual neighbors was evaluated (Table 2).

The neighbors chosen were those among the candidate

neighbors whose data for a given month were most cor-

related to data at a given target station. The best overall

performance was achieved using 13 neighboring stations

from 20 candidate neighbors.

In summary, the optimal estimation procedure was

found to be weighting method 5 fIDWg, minimum over-

lap 5 f10 yearsg, candidate neighbors 5 f20 stationsg, and

neighbors with best correlation 5 f13 stationsg. This pro-

cedure was used to create the FNEP dataset.

e. Validation of estimation procedure

The estimation of missing data at COOP stations in-

cluded in the FNEP dataset calculations was validated

using annual precipitation. A year of data was withheld

from a COOP station, and the monthly data values were

estimated using the optimal estimation procedure de-

scribed above and summed to produce an annual esti-

mate that was then compared to the observed value.

Overall, the average normalized error for estimated

annual precipitation data was 9.3%. Only 1 in 12 COOP

stations had an average error greater than 15% (Table 3)

and only 294 of the 12 307 stations (2.31%) with at least

10 years of observational data for each calendar month

had an average error more than 20%. In arid areas,

where annual precipitation totals are relatively small,

a minor variation in absolute error can sometimes rep-

resent a relatively large percentage of the total pre-

cipitation. When the normalized station errors were

averaged for climate divisions, the largest average errors

were found in climate divisions that rank among the

driest 10% of all climate divisions (Table 4).

f. Representativeness of climate division values

The optimal interpolation procedure was used in an-

other type of test that successively withheld the entire

period of record of a single USHCN station within each

climate division from both the estimation of missing

data and the computation of climate division values. A

good correlation between the climate division monthly

precipitation values and the independent USHCN ob-

servations within the climate division implies that the

climate division values properly represent the temporal

precipitation variability within the climate division. For

comparison, CDP values were recomputed using the

standard post-1930 NCDC method but withholding

single USHCN stations.

The FNEP method had a higher overall correlation

for each period examined (Table 5) when averaged among

the 337 USHCN stations (1 in each climate division, if

TABLE 1. Average RMSE (mm) of monthly precipitation based

on the minimum years of overlap data for the IDW, IWSD, and

MNR weighting methods.

Weighting

scheme

Min years of data overlap

5 10 15 20

IDW 20.0 20.0 20.1 20.1

IWSD 20.4 20.2 20.2 20.2

MNR 20.3 20.2 20.2 20.3

TABLE 2. Average monthly precipitation RMSE (mm) using the

IDW weighting method for tested values of number of actual

neighbors and number of candidate neighbor stations. The lowest

value is in boldface.

No. of actual

neighbors

No. of candidate neighbors

5 10 15 20 25

2 21.9 22.3 22.5 22.7 22.7

4 20.0 20.2 20.3 20.4 20.6

6 19.5 19.6 19.7 19.8

8 19.3 19.3 19.4 19.5

10 19.3 19.2 19.3 19.3

13 19.2 19.2 19.2

16 19.3 19.3

19 19.4 19.3

22 19.5

25 19.7

TABLE 3. Mean absolute normalized errors (annual precipita-

tion) for COOP stations included in the FNEP dataset, grouped by

magnitude of error.

Annual precipitation

avg error (%)

Percentage of COOP

stations (%)

,10 67.2

10–15 24.4

15–20 6.1

20–25 1.4

.25 1.0
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available) used in this test. The performance of the

standard CDP method was particularly poor for 30-year

periods that included data prior to 1931. According to

this test, the FNEP climate division data are more rep-

resentative of actual precipitation within the climate

divisions than is the standard CDP data since 1931.

Assuming that pre-1931 CDP data are no more accu-

rate than post-1931 CDP data, we conclude that the

FNEP climate division data are generally more repre-

sentative than the standard CDP data throughout the

period of record.

4. Long-term trends

a. Comparison of long-term trends

The FNEP (Fig. 1a) and CDP (Fig. 1b) ordinary least

squares linear trends of annual precipitation for all 344

U.S. climate divisions were calculated for the period

1895–present. The trends are expressed as a percentage

change per century relative to the 1895–2009 mean pre-

cipitation. In most climate divisions, the sign of the FNEP

precipitation trend is the same as the sign of the CDP

trend, but there are a few notable differences. The FNEP

long-term trends exhibit more spatial consistency, with

mostly positive trends outside of the southern Appala-

chian Mountains and northern Rocky Mountains. The

CDP long-term trends are more erratic and have a wider

range. The differences between the two trends are in

many cases as large as or larger than the trends them-

selves. Figure 1c displays the FNEP trend minus the CDP

trend for all 344 climate divisions.

There are two primary causes for major discrepancies

between the FNEP and CDP long-term linear trends.

Climate division data prior to 1931 are prone to biases

that are the by-product of being computed from im-

perfect linear regressions of statewide averages. Over

the entire period, the climate division averages are sus-

ceptible to biases caused by changes in the COOP

stations used to calculate the equal-weighted monthly

averages.

b. CDP biases caused by computation from statewide
averages (1895–1930)

Differences between CDP and FNEP should be

characterized by abrupt changepoints associated with

changes in station distribution or methodology. Station

distribution changes could take place any time during

the period of record, but there was only one change in

the methodology: the shift from linear regression of

statewide averages to direct climate division averages

beginning in 1931 (Guttman and Quayle 1996). A ten-

dency for changepoints to occur at or about 1931 would

imply that the change in methodology caused an abrupt

artificial change in mean precipitation in the CDP data,

which in turn would affect calculations of long-term

precipitation trends.

Possible changepoints may be identified using the

cumulative sum (CUSUM) method, also known as ad-

justed partial sums or cumulative deviations from the

mean (Buishand 1982). Figure 2 shows the most prom-

inent changepoints in the difference between CDP and

FNEP annual precipitation for each of the 344 climate

divisions. By far the most common changepoint year is

TABLE 4. Annual precipitation normalized errors for COOP stations in the FNEP dataset, averaged over the entire climate division.

Climate division

1971–2000 climate division normals Avg station

estimation error (%)Dryness rank (out of 344) Annual precipitation (mm)

AZ 5—southwest 1 113.3 24.23

NV 3—south-central 3 189.2 20.91

NV 4—extreme southern 2 137.9 20.42

CO 5—Rio Grande drainage 29 313.9 19.89

TX 5—trans-Pecos 30 317.0 17.84

NM 5—central valley 13 243.8 17.02

NV 1—northwestern 5 212.6 16.75

AZ 1—northeast 8 228.3 16.62

CA 7—southeast desert basins 12 243.3 16.57

NM 7—southern desert 34 342.6 16.56

TABLE 5. Comparisons of the average correlation between cli-

mate division precipitation time series and withheld USHCN sta-

tion data using the post-1930 CDP scheme and the FNEP scheme.

Period CDP FNEP

1901–30 0.795 0.823

1911–40 0.800 0.822

1921–50 0.810 0.823

1931–60 0.816 0.825

1941–70 0.820 0.825

1951–80 0.824 0.827

1961–90 0.823 0.826

1971–2000 0.820 0.824

1895–present 0.807 0.821
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1930, with 16% of the climate divisions exhibiting their

largest apparent shift in the mean difference between

that year and the next. Most of those changepoints are

significant at the 99% level. An additional 6% of the

climate divisions have their largest changepoint between

1929 and 1930, which is essentially indistinguishable

from a 1930–31 change because of noise in the precipita-

tion differences. The climate divisions having change-

points in these years are scattered throughout the United

States (Fig. 1b), with clusters in South Dakota, the eastern

Gulf Coast states, and the Northeast. While a few of these

changepoints may have been due to changes in station

availability, it seems clear from Fig. 2 that most are at-

tributable to the 1931 change in the CDP calculation

method.

For example, CDP precipitation in Maine climate

division 2 (ME-2) was regularly overestimated relative

to the FNEP data prior to 1931, though the year-to-year

variations in the FNEP and CDP time series were very

similar (Fig. 3). From 1931 to the present, there are no

systematic differences in the climate division averages.

Because of the positive pre-1931 bias in the ME-2 CDP

estimates, the 1895–present linear CDP trend is negative

(23.2 mm decade21, or 23% century21), whereas the

long-term FNEP trend is positive (10.9 mm decade21, or

10% century21). Similarly, the pre-1931 CDP data in

South Dakota climate division 3 (SD-3) has a system-

atic negative bias relative to the FNEP data (Fig. 4),

leading to an inflated 1895–present linear CDP trend

(12.4 mm decade21, or 24% century21). The more

modest positive FNEP trend (0.7 mm decade21, or 1%

century21) is probably more representative of actual

changes in the SD-3 climate.

The clustering of 1930–31 changepoints in certain re-

gions (Fig. 1b; e.g., Pennsylvania and South Dakota) is

likely due to inaccuracies in the pre-1931 statewide re-

gression equations. The regression equations that de-

termined pre-1931 CDP data were based on a finite

FIG. 1. Linear trends of annual precipitation from the 1895–2009

period for (a) the FNEP dataset, (b) the CDP dataset, and (c) the

1895–2009 FNEP trend minus the 1895–2009 CDP trend, all de-

noted as percentage change per century. Climate divisions with

significant ( p , 0.01) changepoints in either 1930 or 1931 are

marked in (b).

FIG. 2. Number of climate divisions with most prominent change-

point in a given year (white) and those that were statistically signifi-

cant at p , 0.05 (gray) and p , 0.01 (black).
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training period. If statewide precipitation during this

period was uncharacteristic of the normal precipitation

climate, the result would be a set of inaccurate re-

gression equations across the state. Additional errors in

the pre-1931 CDP could result from inhomogeneities in

the stations used to calculate the statewide averages.

c. CDP biases caused by changes in station
configuration (1931–present)

CDP biases not associated with 1930 changepoints can

be largely attributed to changes in the temporal config-

uration of stations, which are used to calculate CDP

monthly values. Such artificial biases are especially

likely in climate divisions with an inhomogeneous pre-

cipitation climate, where a shift in the spatial distribu-

tion of stations can change the normal value of a climate

division average. The FNEP method addresses this issue

by maintaining a constant network of stations in each

climate division through the entire period of record.

At any given time, the expected CDP precipitation

can be expressed as an equal-weighted average of the

expected precipitation at the available stations within

the climate division. Investigation of temporal changes

in expected CDP precipitation will use the 1971–2000

PRISM normal annual precipitation as the expected

precipitation at each station. Each COOP station used in

the CDP dataset was assigned the 1971–2000 PRISM

normal of the PRISM grid point closest to the location of

the station. This method of assigning mean precipitation

to each COOP station allows for an unbiased analysis of

temporal changes of expected precipitation within cli-

mate divisions (Figs. 5 and 6).

Located in the Edwards Plateau of Texas, TX-6 has

a large east–west precipitation gradient. The 1971–2000

normal annual precipitation in the eastern Edwards

Plateau is as much as 900 mm yr21, whereas the normal

in areas of the western Edwards Plateau is as little as

300 mm yr21 (Daly et al. 2002). During the first half of

the twentieth century, most COOP stations within TX-6

were located in the eastern half of the climate division.

By 1970, they were much more evenly distributed. This

overall westward shift of stations lowered the expected

TX-6 annual precipitation (Fig. 5) by more than 90 mm

from 1931 to the present and would produce an artifi-

cial linear trend in normal precipitation of about 212

to 214 mm decade21. Largely because of the decrease

in expected precipitation with time in TX-6, the CDP

long-term trend is negative (26.2 mm decade21, or

210% century21) and roughly equal in magnitude to

the positive TX-6 FNEP trend (17.6 mm decade21, or

112% century21 (Fig. 5).

Arizona climate division 1 (AZ-1) is much smaller

than TX-6 in geographical area but has a precipitation

climate that depends greatly on elevation. The mean

elevation of stations within the climate division is closely

related to the expected climate division mean annual

precipitation (Fig. 6, bottom). Among the 18 COOP

stations in AZ-1 with at least 10 years of annual pre-

cipitation observations, the two climatologically wet-

test stations have the highest elevation, while the driest

station has the lowest elevation. This is likely the

principal cause for the negative CDP long-term trend

(Fig. 6), as even the decade-scale variations in the CDP

2 FNEP difference track the PRISM normals closely.

While the CDP trend is negative (25.3 mm decade21,

or 222% century21), the FNEP long-term trend in

AZ-1 is slightly positive (12.1 mm decade21, or 110%

century21).

Figure 6 also includes a plot of the PRISM annual

precipitation data (Daly et al. 2002) averaged across

climate division AZ-1. PRISM climate division data are

a true spatial average of the gridded values within a cli-

mate division rather than the average precipitation at

observing station locations, so there is in general an

offset between the PRISM averages and FNEP. Because

PRISM is a spatial analysis that attempts to take into

account systematic variations associated with elevation

and other geographic factors, it should not be very

sensitive to station location changes as long as elevation

FIG. 3. Time series of the FNEP annual precipitation (blue,

solid), the CDP annual precipitation (red, dashed), and the CDP

annual precipitation minus the FNEP annual precipitation (black,

solid) in ME-2. Also shown are the 1895–present least squares

linear trend lines.

FIG. 4. As in Fig. 3, but for SD-3.
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dependencies and other factors are handled properly.

As with FNEP, the absolute accuracy of the estimates

should decrease with loss of stations, as more distant

stations are used to estimate particular local values. The

strong agreement between the linear trends in FNEP

and PRISM, as shown in Fig. 6, implies that both PRISM

and FNEP are largely free of biases due to changes in

station distribution in AZ-1.

Throughout the western United States (not shown),

the PRISM and FNEP trends are, in general, in good

agreement in comparison with the CDP trends. Since

they use independent techniques to deal with station

inhomogeneities, each validates the other.

d. Discussion of long-term trends

Having determined that the FNEP long-term trends

are more reliable than the CDP trends, we now examine

them in greater detail. The 1895–present linear trends in

FNEP annual precipitation are mostly positive (Fig. 1a),

with large areas of precipitation increase greater than

10% century21 across the southern plains and the Corn

Belt. Areas with a small drying trend include the southern

Appalachians and parts of the Northwest. Using only

long-term stations, Pryor et al. (2009) found a similar

pattern of long-term precipitation changes, except in the

Northwest where few long-term stations were available.

The spatial average of the linear precipitation trend is

6.4% century21, and the linear trend of the spatial aver-

age of precipitation is 6.8% century21. The correspond-

ing values for CDP are 4.8% and 6.2% century21.

As noted earlier, the CDP trends (Fig. 1b) exhibit less

spatial consistency, but there are also large regional

differences between CDP and FNEP. Most notably, the

CDP trends are negative throughout the northern and

central Rocky Mountains and most of California, while

the FNEP trends show a slight precipitation increase in

the central Rocky Mountains and a general increase

over most of California. One possible explanation of the

CDP discrepancy would be a spread of farmers and thus

COOP volunteers into drier parts of the southwestern

United States as irrigation water became more plentiful

in this region. While CDP has its most negative Pacific

coast trend in southern California, FNEP is negative

only along the Oregon and Washington coasts.

The overall precipitation increase in FNEP is consis-

tent with the Intergovernmental Panel on Climate

Change (IPCC) conclusion that precipitation on land

north of 308N has generally increased (Trenberth et al.

2007). The IPCC report relied upon the Global His-

torical Climate Network (Peterson and Vose 1997)

version-2 monthly precipitation dataset (GHCN-v2),

with gridded data available at 58 3 58 resolution. The

gridded GHCN-v2 data are derived from nearly 2200

stations in the contiguous United States, including all

1221 stations in USHCN-v2, and stations in Canada

and Mexico.

Figure 7 shows the least squares linear trends in the

GHCN-v2 gridded data, computed from 1900 to the

present. The long-term trends in FNEP and GHCN-v2

show good agreement in the eastern two-thirds of the

United States. Both datasets indicate a small decrease

per century in annual precipitation in the Appalachian

Mountains, with mostly increasing trends in other areas

east of the Continental Divide. Increases in annual

FIG. 5. Time series of the FNEP annual precipitation (blue,

solid), the CDP annual precipitation (red, dashed), and the CDP

annual precipitation minus the FNEP annual precipitation (black,

thin, solid) in TX-6. Also shown are the 1895–present least squares

linear trend lines, the expected CDP annual precipitation (black,

dashed), and the mean longitude of available stations (black, thick,

solid).

FIG. 6. Time series of the FNEP annual precipitation (blue,

solid), the CDP annual precipitation (red, dashed), the PRISM

annual precipitation (green, solid), and the CDP annual pre-

cipitation minus the FNEP annual precipitation (black, thin, solid)

in AZ-1. Also shown are the 1895–present least squares linear

trend lines, the expected CDP annual precipitation (black,

dashed), and the mean elevation (m) of available stations (black,

thick, solid).
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precipitation of 10%–20% century21 were observed in

both datasets in the Corn Belt, the Northeast, and the

southern plains.

Disagreements between the FNEP and GHCN-v2

long-term trends are more prevalent in the western United

States, particularly in the desert southwest. GHCN-v2

indicates a greater than 10% decrease in annual pre-

cipitation per century in extreme southern California

and southwestern Arizona while FNEP indicates an in-

creasing trend in this region. The GHCN-v2 linear

trends in the Rocky Mountain region are systematically

less than most of the corresponding FNEP climate di-

vision trends. The GHCN-v2 long-term trends in the

southwest United States and Rocky Mountain region

are more similar to the CDP than the FNEP climate

division trends.

At this point, the FNEP and GHCN-v2 trends should

be viewed as alternative reconstructions of century-scale

precipitation variability. They address network changes

in different ways, and they utilize different portions of

the dataset: GHCN-v2 uses long-duration, generally

high-quality stations while FNEP uses all available

COOP stations. GHCN-v2 should be more subject to

sampling errors because of the smaller number of sta-

tions, while FNEP may be more subject to station data

quality issues. Further investigation is needed to explore

the relative merits of the two approaches for long-term

trend analysis.

e. Shorter-term modes of climate variability

The long-term trends emphasize differences between

CDP and FNEP. Correlations or composites of climate

division data relative to modes of climate variability

such as El Niño–Southern Oscillation are often used as

seasonal forecasting tools. To determine whether ho-

mogenization would affect the calculation of the climate

response to a natural mode of climate variability, FNEP

and CDP October–March precipitation were regressed

against July–November Southern Oscillation index (SOI)

values (Australian Government Bureau of Meteorology

2010). A strong correlation between these two variables

was found by Redmond and Koch (1991).

Among those climate divisions with a statistically

significant correlation between FNEP or CDP precip-

itation and SOI values, the correlation tended to be

larger for FNEP. The average magnitude of the corre-

lation difference was small, however: about 0.005. So

while the differences are slight, the FNEP data contain

a clearer spatial signal of climate variability than does

the CDP data.

5. Climate variance and drought assessment

The use of climate division data for drought moni-

toring and assessment is widespread (see, e.g., Svoboda

et al. 2002). Not only are historical changes of drought

intensity of interest (e.g., Easterling et al. 2007), but

many drought indices such as the standardized pre-

cipitation index (McKee et al. 1993) require a reliable

historical record of drought severity. This, in turn, re-

quires that the historical dataset not be subject to in-

homogeneities that cause changes in the variance of

accumulated precipitation. If historical variance is arti-

ficially low, for example, a current drought will seem

artificially extreme.

Climate division data are likely to suffer from such

an inhomogeneity. A variance discontinuity is to be

expected in the CDP records at the 1931 changepoint in

methodology, but before and after that date, changes in

the number of stations will have affected the variance.

The more stations being used to construct the average

precipitation value for a climate division, the smaller

the expected variance, as random differences caused

by small-scale precipitation events are averaged out. To

our knowledge, existing drought monitoring techniques

that use climate division data do not correct for these

inhomogeneities.

Although the FNEP dataset maintains a uniform

number of stations, the missing station data are esti-

mated from a weighted average of 13 neighbors. This

will cause the estimated data to tend to have smaller

variance than actual station data. Many of the stations

going into the weighted averages are actually outside the

climate division of the target station, so the averaging

involves a larger area than just the climate division. As

a result, FNEP data should have smaller variance early

in the period of record when precipitation monitoring

FIG. 7. Linear trends of annual precipitation from 1900 to 2009

for the GHCN-v2 58 3 58 gridded dataset, expressed as percentage

change per century.
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stations were relatively sparse, and larger variance since

1948 when the COOP network attained its modern

density.

A sense of the time dependence of the smoothing may

be obtained from a calculation of the average fraction of

the FNEP climate division average arising from data

outside the climate division (Fig. 8). For example, if a

climate division has nine reporting stations and one

missing station, and the estimation of the missing pre-

cipitation value weights observations within and outside

of the climate division equally, 0.1 3 0.5 5 0.05 of the

FNEP average is created from observations outside the

climate division, and the fraction of the FNEP climate

division average obtained from observations within the

climate division is 0.95. The smaller this fraction, the

greater is the effective smoothing.

An estimate of the resulting variance inhomogeneity

may be made by comparing pre-1931 and post-1947

precipitation variance with a control dataset assumed to

have little or no variance inhomogeneity: the USHCN-v2

precipitation observations. To measure overall changes in

variance, the variances within each climate division were

divided by the average post-1947 variance of USHCN-v2

stations within the same climate division. The results are

shown in Table 6.

Both climate division datasets, being averages of sta-

tion precipitation, have smaller variance than the

USHCN-v2 station data. During 1948–2009, the CDP

and FNEP variances are similar, with FNEP being

slightly smaller because it includes additional estimated

values not present in CDP. Both CDP and FNEP have

smaller variances in the earlier (1895–1930) period, with

the change in variance exceeding that of the USHCN-v2

data. The artificial decline is largest for CDP, implying

that the FNEP dataset is more suitable for drought

monitoring and assessment than the CDP data. Because

the FNEP variance change is 17% and the USHCN-v2

variance change is 11%, we conclude that FNEP in-

cludes an artificial 6% suppression of variance in the

1895–1930 period.

The overall differences between the CDP and FNEP

precipitation values are also dependent upon the extent

to which FNEP utilizes stations within the same cli-

mate division. The normalized mean absolute differ-

ences between CDP and FNEP annual precipitation

values, also shown in Fig. 8, indicate that the agreement

between the two datasets is largest when the greatest

fraction of in-division data are used in FNEP. The agree-

ment between CDP and FNEP is considerably worse prior

to 1931 for reasons discussed earlier.

6. Summary

The FNEP climate division precipitation dataset has

been constructed to utilize data from as many COOP

stations as possible and to avoid inhomogeneities asso-

ciated with changes in the network configuration of sta-

tions within a climate division. The FNEP data are more

representative of observed station precipitation within

a climate division than the existing NCDC climate di-

vision precipitation data, according to data-withholding

experiments. The FNEP data are also consistent with

the interannual variability and long-term trends pro-

duced from the PRISM technique, which, like FNEP,

should be relatively insensitive to changes in station

configuration.

The long-term precipitation trends computed using

FNEP have major differences with the CDP trends in

many parts of the United States. Many of these differ-

ences are caused by inhomogeneities introduced into the

CDP data because the algorithm for computing pre-1931

CDP data differs from the post-1931 algorithm. Other

differences are consistent with known changes in the

station configuration and expected changes in climate

division–averaged normal precipitation that would re-

sult from those changes.

FIG. 8. Fraction of FNEP climate division annual average ob-

tained from observations within the climate division (thick line).

Normalized mean absolute difference between CDP and FNEP

annual precipitation, averaged across all climate divisions (thin line).

TABLE 6. Average normalized variance of annual precipitation

for the periods indicated. Variance is normalized within a climate

division by the average 1948–2009 annual precipitation variance of

all USHCN-v2 stations in the climate division. The ratio is com-

puted as the 1895–1930 variance divided by the 1948–2009

USHCN-v2 variance.

Period USHCN-v2 CDP FNEP

1895–1930 0.89 0.59 0.61

1948–2009 1 0.74 0.73

Ratio 0.89 0.80 0.83
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We recommend that the FNEP data be used in place

of the CDP data for studies involving long-term trends.

(The FNEP dataset is available online at http://atmo.

tamu.edu/osc/fnep.) The FNEP data are slightly better

than CDP for diagnosing precipitation responses to large-

scale modes of climate variability. Because artificial changes

of variance are smaller with the FNEP data than the CDP,

the FNEP data are also better suited for diagnosing and

assessing drought intensity. Differences between FNEP and

CDP data are especially large prior to 1931.

The FNEP trends are generally consistent with the

coarser-gridded trends in the GHCN-v2 dataset, but

some important differences exist, primarily in the south-

western United States. The FNEP data indicate an

overall increase in conterminous U.S. precipitation of

6%–7% century21. More rapid increases, exceeding 10%

century21, are found in much of the south-central United

States, the Corn Belt, parts of the Northeast, and parts

of the Intermountain West. Slight decreasing trends are

found primarily in the southern Appalachians and Pied-

mont, parts of Montana and Wyoming, and coastal areas

of the Pacific Northwest.

It should be kept in mind that these trends are of

observed precipitation; changes in techniques for mea-

suring precipitation may introduce an artificial aspect to

these trends (Karl et al. 1993). In particular, trends may

be least trustworthy in colder parts of the United States

because of difficulties in measuring snowfall in cold,

windy conditions. According to Metcalfe et al. (1997),

network-wide upgrades in the Canadian measurement

network produced a 15% increase in measured precipita-

tion due to decreased evaporation and wetting losses, so

inhomogeneities caused by gauge replacement can be

important. Over the United States, Groisman and East-

erling (1994) found that, within a subset of USHCN sta-

tions considered to have the most homogeneous data, the

linear increase of precipitation in the conterminous United

States from 1891 to 1990 was 4% century21. The FNEP

average trend over almost the same period (1895–1990)

was 5.2% century21, implying a possible FNEP trend bias

of 1.2%, but the Groisman and Easterling (1994) stations

were located predominantly in areas with relatively large

trends according to the FNEP data, so the trend bias may

be larger. Karl et al. (1993) note that most stations in the

COOP network have not undergone major siting or pre-

cipitation gauge inhomogeneities, and that the artificial

trend due to inhomogeneities at primary weather stations

is likely to be negative. We therefore estimate the overall

FNEP trend bias due to station inhomogeneities to be on

the order of 1%–3%.
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