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ABSTRACT

Motion planning for constrained systems is a version of the motion planning

problem in which the motion of a robot is limited by constraints. For example, one

can require that a humanoid robot such as a PR2 remain upright by constraining its

torso to be above its base or require that an object such as a bucket of water remain

upright by constraining the vertices of the object to be parallel to the robot’s base.

Grasping can be modeled by requiring that the end effectors of the robot be located at

specified handle positions. Constraints might require that the robot remain in contact

with a surface, or that certain joints of the robot remain in contact with each other

(e.g., closed chains). Such problems are particularly difficult because the constraints

form a manifold in C-space, and planning must be restricted to this manifold. High

degree of freedom motion planning and motion planning for constrained systems has

applications in parallel robotics, grasping and manipulation, computational biology

and molecular simulations, and animation.

In this work, we introduce a new concept, reachable volumes, that are a geometric

representation of the regions the joints and end effectors of a robot can reach, and

use it to define a new planning space, called RV-space, where all points automati-

cally satisfy a problem’s constraints. Visualizations of reachable volumes can enable

operators to see the regions of workspace that different parts of the robot can reach.

Samples and paths generated in RV-space naturally conform to constraints, making

planning for constrained systems no more difficult than planning for unconstrained

systems. Consequently, constrained motion planning problems that were previously

difficult or unsolvable become manageable and in many cases trivial.

We provide tools and techniques to extend the state of the art sampling based
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motion planning algorithms to RV-space. We define a reachable volume sampler, a

reachable volume local planner and a reachable volume distance metric. We showcase

the effectiveness of RV-space by applying these tools to motion planning problems for

robots with constraints on the end effectors and/or internal joints of the robot. We

show that RV-based planners are more efficient than existing methods, particularly

for higher dimensional problems, solving problems with 1000+ degrees of freedom

for multi-loop, and tree-like linkages.

iii



DEDICATION

To my family who have helped and supported me through my academic career.

iv



ACKNOWLEDGEMENTS

This dissertation and the work presented in it would not have been possible

without the help and support of my family, friends and coworkers.

To my advisor Dr. Nancy Amato, I would like to thank you for your advise and

assistance throughout my graduate career. You stood by me even through times of

great frustration and I thank you for your patience and support. Your contribution

to this work and to my academic success cannot be understated.

To my committee, Dr. Ergun Akleman, Dr. John Keyser and Dr. Dezhen Song,

thank-you for the time you put into working with me. Your input, guidance and

feedback were an important factor in my success as a student.

To Dr. Dylan Shell I thank you for filling in during my prelim. As with my

committee members, your input and guidance were an important part of my success.

To Dr. Shawna Thomas, thank-you for all of the help and guidance, you were an

important contributor to this work.

To my friends in the International Christian Fellowship, you were a continual

source of peace, comfort and happiness during my time in Texas. Friday nights with

you gave me something to look forward to each week. I will never forget you.

To my family including my dad Paul McMahon and his wife Daria. I am glad that

I have had many opportunities to spend time with you over the past ten years. Our

recent trips to Arizona and Gettysburg were both very memorable. I look forward

to spending more time with you now that I am done with my dissertation.

To my mother Lorry McMahon and my sister Kara, even though I have not seen

you in the last couple of years you are still in my thoughts.

To my cat Dusty, I would like to thank you for your constant affection and

v



friendship. I wish that you had lived to see this day. I am grateful that I had the

opportunity to see you one last time before you passed away.

To my extend family including my late grandparents and all of my aunts and

uncles, I thank you to the contributions you have made to my life.

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. RELATED WORK    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Adaptations of PRM and RRT Methods . . . . . . . . . . . . . . . . 7
2.1.1 Kinematics-based Samplers . . . . . . . . . . . . . . . . . . . 8
2.1.2 Optimization Methods . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Enforcing Constraints During Sampling . . . . . . . . . . . . . 10

2.2 Reachable Workspace and Reachable Distance . . . . . . . . . . . . . 10

3. PROBLEM FORMULATION: CONSTRAINED MOTION PLANNING
WITH LINKAGES   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Robot Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Configurations and C-space . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Constrained Motion Planning with Linkages . . . . . . . . . . . . . . 15
3.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. REACHABLE VOLUMES   . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1 Reachable Volume Space . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Relationship Between Reachable Volumes and Minkowski Sums 20
4.1.3 Reachable Volume Visualization . . . . . . . . . . . . . . . . . 23

4.2 Reachable Volumes for Complex Linkages . . . . . . . . . . . . . . . . 26
4.2.1 Reachable Volumes of Tree-like Linkages . . . . . . . . . . . . 26

vii



4.2.2 Reachable Volumes of Closed Chains . . . . . . . . . . . . . . 27
4.2.3 Complexity of Reachable Volumes in Problems Without Con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Reachable Volumes for Constrained Systems . . . . . . . . . . . . . . 32

4.3.1 Complexity of Reachable Volumes in Problems with Constraints 34
4.4 Computing the Reachable Volumes of All Joints . . . . . . . . . . . . 35

5. SAMPLING BASED MOTION PLANNING WITH REACHABLE VOL-
UMES   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Sampling with Reachable Volumes . . . . . . . . . . . . . . . . . . . . 39
5.1.1 Generating Configurations for Chains . . . . . . . . . . . . . . 39
5.1.2 Generating Configurations for Complex Linkages . . . . . . . 43
5.1.3 Sampling in the Intersection of Reachable Volumes . . . . . . 46
5.1.4 Generating Configurations for Constrained Systems . . . . . . 47

5.2 Stepping in Reachable Volume Space . . . . . . . . . . . . . . . . . . 51
5.3 Reachable Volume Local Planner . . . . . . . . . . . . . . . . . . . . 56
5.4 Reachable Volume Distance Metric . . . . . . . . . . . . . . . . . . . 57

6. REACHABLE VOLUME PRM . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Coverage and Sample Distribution . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Coverage of Reachable Volume Samples . . . . . . . . . . . . . 60
6.2.2 Distribution of Reachable Volume Samples . . . . . . . . . . . 61

6.3 Probabilistic Completeness . . . . . . . . . . . . . . . . . . . . . . . . 63

7. REACHABLE VOLUME RRT (RVRRT)  . . . . . . . . . . . . . . . . . . 65

8. EVALUATION OF REACHABLE VOLUMES  . . . . . . . . . . . . . . . 67

8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.1.2 Problems Studied . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 Evaluation of Reachable Volume Sampling . . . . . . . . . . . . . . . 71
8.2.1 For Chains and Tree-like Robots . . . . . . . . . . . . . . . . . 73
8.2.2 For Closed Chains . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.3 For Constrained Systems . . . . . . . . . . . . . . . . . . . . . 75
8.2.4 Coverage and Sample Distribution . . . . . . . . . . . . . . . . 76

8.3 Reachable Volume Local Planner and Distance Metric in Practice     . 79
8.3.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.4 Evaluation of Reachable Volumes for PRM Construction . . . . . . . 82
8.4.1 Scalability of Reachable Volume PRMs . . . . . . . . . . . . . 83

viii



8.5 Evaluation of Reachable Volumes for RRT Construction  . . . . . . . 85
8.5.1 RV-Expand Parameter Study . . . . . . . . . . . . . . . . . . 86
8.5.2 RVRRT in Practice    . . . . . . . . . . . . . . . . . . . . . . . 89

9. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



LIST OF FIGURES

FIGURE Page

3.1 Examples of linkage systems. . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 (a) Planar joints are 1D articulated joints whose motion is confined to
a plane. They are represented by a single joint angle coordinate, θ. (b)
Spherical joints are represented by an inclination, θ, and a rotation,
φ. Here, the angles for the first joint are θ1 and φ1, the angles for the
second joint are θ2 and φ2, and the angles for the third joint are θ3 and
φ3. (c) Prismatic joints are 1D linear sliding joints. They are defined
by a distance parameter, d which is between a specified minimum and
maximum value (dmin and dmax). . . . . . . . . . . . . . . . . . . . . 14

3.3 A chain linkage with constraints. Here, constraints are applied to the
end effector and one of the internal joints of the chain as shown by
the gray shaded regions. . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 (a) The reachable volume (gray region) of a 2 link chain robot, l1 and
l2 (black). l1 rotates about the point in the center while l2 rotates
about the endpoint of l1. (b) If the end effector (black) can reach a
point, then it can reach all other points that are the same distance
from the base (gray circle). . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Computing joint angles: (a) We first compute the joint’s articulated
angle θ using the law of cosines. (b) The rotational angle ϕ0 of the
first joint is calculated by computing a vector v that is perpendicular
to l0 and l1 and then computing the angle between this vector and the
upward direction. (c) For all other joints ji, we compute a vector v
that is perpendicular to li and li+1 and a vector v′ that is perpendicular
to li and li−1. ϕi is the angle between v and v′. . . . . . . . . . . . . 21

4.3 The reachable volume of a chain that is composed of two smaller
chains C1 (black) and C2 (gray) is the Minkowski sum of the reachable
volumes of C1 and C2. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

x



4.4 A cross section of the reachable volumes of a chain linkage (red) with
3 spherical joints, 4 links of equal length and no constraints. The first
joint can reach any point along the inner sphere (pink), the second
joint can reach any point inside the second sphere (yellow), the third
joint can reach any point inside the third sphere (light green), and the
end effector can reach any point inside the outermost sphere (dark
green). An example configuration is shown in red. . . . . . . . . . . 25

4.5 A cross section of the reachable volume of the end effector of a chain
with 1 long link and 3 smaller links. The length of the three smaller
links is less than the length of the first long link. The end effector can
reach any point between the inner and outer spheres, but it cannot
reach the region inside the inner sphere. An example configuration is
shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 A cross section of the reachable volumes of a 4 link closed chain with
spherical joints. The first and third joints can reach any point along
the inner sphere (green) while the second joint can reach any point
inside the outermost sphere (blue). Example configurations are shown
in red and yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 The reachable volumes of a 4 link chain with spherical joints of length
9 where the end effector is constrained to a point 8 units away from
the base. The first joint must be located in the left-most shell-like
region (blue), the second joint must be located in the middle region
(pink), and the third joint must be located in the right-most shell-like
region (red). An example configuration is shown in red. . . . . . . . 28

4.8 (a) The reachable volumes of a 16 dof fixed-base grasper with spheri-
cal joints is affected by constraints placed either on the end effectors
or on the base. The reachable volume of the base (teal) given con-
straints on the end effectors to grasp a cubic object (blue and green).
(b) The reachable volume of the end effectors (blueish green) when
the base is constrained to a specific point Note that in (b) the end ef-
fector reachable volumes are identical so only one is shown. Example
configurations are shown in red. . . . . . . . . . . . . . . . . . . . . 29

xi



4.9 The reachable volume of a WAM robot [27] grasping a spherical object.
In order to reach the object, the elbow joint must be located in the
purple region (right), the second arm joint must be located in the light
blue region(center) and the wrist of the grasper must be located in the
green region(left). The reachable volumes of the knuckle joints and
the object being grasped are not visible because they are contained in
the reachable volume of the wrist. This robot has 15 dofs and includes
both spherical and planar joints. An example configuration is shown
in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.10 For a tree robot with 3 end effectors (E1, E2 and E3) (a) we compute
the reachable volumes of each end effector by computing the reachable
volumes of the chain connecting it to the origin joint (b–d) resulting
in the reachable volume of the end effectors of the linkage (e). . . . . 31

4.11 Generating a closed chain configuration: (a) Two open chains connect
joint j to root. (b) Reachable volume of j is intersection of reachable
volumes of open chains. . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.12 (a) CRVi is the constrained reachable volume of {l1, . . . , li}. (b)
The region that is reachable by the endpoint of link li+1 is CRVi

⊕

ReachableVolume(li+1). (c) The constrained reachable volume of the
chain {l1, . . . , li+1} is therefore (CRVi

⊕

ReachableVolume(li+1)) ∩Si+1.
33

5.1 Generating a configuration for a chain robot: (a) Compute the reach-
able volume of the chain. (b) Set the position of the end effector of
the chain to be a point from this volume. (c) Bisect the chain and
compute intersection of the reachable volumes of the two pieces. (d)
Set the midpoint of the bisected chain to be a point from the inter-
section of these reachable volumes. (e,f) Continue until all joints are
placed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 We generate a configuration for a tree-like robot by applying our
method to each of the branches (black, dark gray, light gray). . . . . 44

5.3 Generating a closed chain configuration: (a) Break the closed chain
into two open chains. (b) Compute the reachable volumes of the
two chains (striped regions). (c) Randomly select a point from the
intersection of their reachable volumes and use Algorithm 3 to sample
the positions of the internal joints. . . . . . . . . . . . . . . . . . . . 46

xii



5.4 Reachable Volume Stepping: We step one joint j by a distance of δ
then update the j’s descendants to be in their reachable volumes given
j’s new position. The gray regions are the reachable volumes of the
third and fifth joints after j is stepped. These joints are repositioned
to be in their reachable volumes (d) resulting in a configuration in
which all joints are in their reachable volumes (e). . . . . . . . . . . 52

5.5 The reachable volume local planner uses reachable volume stepping to
move the joints of a linkage from their positions in one configuration
(black) to their positions in a second (gray). . . . . . . . . . . . . . . 57

5.6 The reachable volume distance between two samples (black and gray)
is the sum of the distances between the joints of the configurations
in reachable volume space. Here the reachable volume distance is
d1 + d2 + d3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 The probability distribution of the first joint sampled (a) is uniform
of the reachable volume of that joint (RVJ1). The probability distri-
bution of the second joint sampled (b) is uniform over the reachable
volume of that joint (RVJ2) given the position of the first joint sam-
pled. The probability distribution of the ith joint sampled, Ji is the
reachable volume of Ji (RVJi) given the position of all joints that were
sampled prior to Ji. Note that black circles correspond to the root
and to joints that have already been sampled. . . . . . . . . . . . . . 62

6.2 Sampling joints uniformly over a (2D) reachable volume (a) will result
in a sample set that is skewed towards the upper portion of the feasible
distance range (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.1 Environments studied. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Experimental results for chains and tree-like robots in various envi-
ronments for 2000 samples. Stars indicate methods unable to generate
samples in the allotted time. Note that (b) uses a log scale. . . . . . 92

8.3 Reachable volume performance for closed chains in the following envi-
ronments for 2000 samples: free, tunnel, rods, wheeled grasper (Wh-
gr), and the loop-tree robot (Lp-tr). Uniform sampling and I-CD are
infeasible for these robots. Note that (b) uses a log scale. . . . . . . 92

8.4 Experimental results for 2000 samples in various constrained systems.
Stars indicate methods unable to generate samples in the allotted time
or were not applicable. Note that (b) uses a log scale. . . . . . . . . 93

xiii



8.5 Robots used in joint distance study. . . . . . . . . . . . . . . . . . . 93

8.6 Distance between pairs of joints for 100 reachable volume/uniform
samples of a 4 link open chain with links of length .25. Horizontal
lines indicate the maximum distance between each joint pair. . . . . 94

8.7 Distance between pairs of joints for 100 reachable volume/uniform
samples of a 4 link open chain where the first, second and fourth links
have a length of .25, and the third link has a length of 1. Horizontal
lines indicate the maximum and minimum distance between each joint
pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.8 Distance between pairs of joints for 100 reachable volume/uniform
samples of a 5 link closed chain with links of length .25. Horizontal
lines indicate the maximum distance between each joint pair. . . . . 96

8.9 Distance between pairs of joints for 100 reachable volume/uniform
samples of a 4, .25 unit link open chain with its end effector constrained
to be .75 units from its base. Horizontal lines indicate the maximum
and maximum distance between each joint pair. . . . . . . . . . . . . 97

8.10 (a) Collision detection calls, (b) number of edges, and (c) connection
time for roadmaps constructed using reachable volume local planning
with scaled Euclidean (rv-se), reachable volume local planning with
reachable volume distance (rv-rv), and straight line local planning
with scaled Euclidean distance (sl-se) when applicable (* denotes when
sl-se is not applicable). . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.11 Edge difference between reachable volumes local planning (RVLP) and
straight line (sl) using scaled Euclidean distance. . . . . . . . . . . . 99

8.12 Edge difference between reachable volume distance (RVDM) and scaled
Euclidean (se) using the reachable volume local planner. . . . . . . . 100

8.13 Experimental results for chains and tree-like robots in various envi-
ronments for 2000 samples. Stars indicate methods unable to generate
samples in the allotted time. . . . . . . . . . . . . . . . . . . . . . . 101

8.14 Local planner success and size of largest connected component for 22
and 70 dof chains in the walls environment. . . . . . . . . . . . . . . 102

8.15 Local planner success and size of largest connected component for 70
dof chain in the tunnel environment. . . . . . . . . . . . . . . . . . . 102

xiv



8.16 Evaluation of how local planner success and size of the largest CC
scales with roadmap size in walls (a,b) and tunnel (c,d) environments
with robots ranging from 22-dof to 1034-dof. . . . . . . . . . . . . . 103

8.17 Sample images of the connected components for the 70-dof chain in
the walls environment with 3500 samples. Notice that the reachable
volume sampler(top) connects 2 of the chambers while the uniform
sampler(bottom) does not. . . . . . . . . . . . . . . . . . . . . . . . 104

8.18 Sample images of the connected components for the 70-dof chain in
the tunnel environment with 3500 reachable volume samples. Notice
that this roadmap includes connected components in the tunnel region
of the environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.19 (a) Number of nodes and (b) running time required for RVRRT vari-
ants (see Table 8.3) in the l-tun, walls, and rods environments. *s
indicates that a method was unable to find a solution. . . . . . . . . 105

8.20 (a) Number of nodes, (b) collision detection calls and (c) running time
required for RRT, DDRRT and 3 RVRRT variations in environments
without constraints. *s indicates that a method was not able to find
a solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.21 (a) Number of nodes, (b) collision detection calls and (c) running time
required for RRT, DDRRT and 3 RVRRT variations in environments
with constraints. *s indicates that a method was not able to find a
solution or could not be applied to the problem. . . . . . . . . . . . 107

xv



LIST OF TABLES

TABLE Page

2.1 Comparison of method capabilities. . . . . . . . . . . . . . . . . . . . 12

8.1 Combinations of environments and robots used in our experiments. . 69

8.2 Combinations of local planner and distance metric run for each envi-
ronment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3 RVRRT variations from different policy combinations. . . . . . . . . . 87

8.4 Best δ, s, and srot values for selected methods. . . . . . . . . . . . . . 88

xvi



1. INTRODUCTION

Constrained motion planning places constraints on the motion of an object (robot)

and has applications in parallel robotics [32], grasping and manipulation [34], com-

putational biology and molecular simulations [5], and animation [20]. Constraints

can be used to model a wide variety of constrained systems. For example, one can

require that a humanoid robot such as a PR2 [7] remain upright by constraining its

torso to be above its base or require that an object such as a bucket of water remain

upright by constraining the vertices of the object to be parallel to the robot’s base.

Grasping can be modeled by requiring that the end effectors of the robot be located

at specified handle positions. Constraints might also require that the robot remain in

contact with a surface, or that certain joints of the robot remain in contact with each

other (e.g., closed chains). Such constraints could be used in industrial automation

to constrain a tool mounted on a robot to a surface or a seam (for example, we could

constrain a welder mounted on a robot to a seam that needs to be welded). They

could also be used to simulate contacts or binding in protein folding simulations.

Constraint satisfaction is a challenging problems and planning under constraints

is particularly difficult because constraints must be satisfied over entire paths. Plan-

ning under constraints is especially difficult for problems where the constraints form

a manifold in C-space, and planning must be restricted to this manifold (e.g., closed

chains).

Sampling-based motion planning methods such as the graph-based PRM [21]

and the tree-based RRT [23] are state of the art solutions to traditional motion

planning problems. Unfortunately, because these methods rely on random sampling

they cannot be applied to problems where constraints form manifolds because the

1



probability of generating samples on a manifold is zero [25]. PRMs also rely on a

local planner to connect samples and existing local planners are not able to generate

paths on manifolds. Similarly, traditional RRTs cannot be applied because there

is now way to expand the tree while ensuring that new nodes occur on constraint

manifolds. Previous methods have developed specialized samplers that generate

samples satisfying constraints [10, 15, 40] that can be used in combination with

existing PRM-based and RRT-based methods to solve problems with constraints.

However these methods are either unable to handle high degree of freedom (dof)

systems or are unsuited for systems with spherical or prismatic joints or systems

that combine different types of joints.

In this research, we propose a new concept, reachable volumes, that are a geo-

metric representation of the regions the joints and end effectors of a robot can reach,

and use it to define a new planning space, called RV-space, where all points auto-

matically satisfy a problem’s constraints. Samples and paths generated in RV-space

naturally conform to constraints, making planning for constrained systems no more

difficult than planning for unconstrained systems. Consequently, constrained motion

planning problems that were previously difficult or unsolvable become manageable

and in some cases trivial.

We define the reachable volume of a joint/end effector to be the volume of RV-

space it can reach while satisfying a problem’s constraints. Reachable volumes gener-

alize the concept of reachable distances [40] so that they can be applied to linkages,

closed chains and tree-like robots with prismatic and spherical as well as planar

joints. Visualizations of reachable volumes have application in robot design where

they allow designers to determine if a robot can reach the areas it needs to perform

the required tasks. They also have application in robot control where they allow an

operator to determine what he can reach from a specified position, which can help
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him to decide where he should position the robot.

We introduce tools and techniques to extend the state of the art sampling based

motion planning algorithms to RV-space. We propose a reachable volume sampler,

a reachable volume local planner, a reachable volume expansion function, and a

reachable volume distance metric. Reachable volume sampling generates samples

by iteratively sampling the joints of a robot in their reachable volumes, resulting in

samples that are guaranteed to satisfy a problem’s constraints. RV-based planners

can solve problems with constraints applied to any combination of joints/end effec-

tors, while most other methods (e.g. [43, 40, 10]) assume a single constraint, usually

on one of the end effectors. The reachable volume local planner and distance metric

can be be used to generate constraint satisfying local paths, even in problems such

as closed chains where the constraints form a manifold. As part of the reachable

volume local planner, we present a novel method for stepping reachable volume sam-

ples to generate samples that are close to the original while ensuring they satisfy the

problem’s constraints.

We show that the geometric complexity of reachable volumes is O(1) in un-

constrained problems as well as for many constrained problems. This allows us to

generate samples in linear time with respect to the number of bodies in the robot,

which is the best possible complexity for a sampler. In problems with more complex

constraints, we present an O(|L|2 |S| C(S)) method for generating samples, where

S is the set of constraints, C(S) is the complexity of the constraints, and |L| is the

number of bodies in the robot. We also show that the reachable volumes of all of the

joints/end effectors in a robot can be computed in O(|J |*diameter(R)) time, where

|J | is the number of joints in the robot and diameter(R) is the diameter of the robot.

This is superior to O(|J |2) time that would be required to compute these reach-

able volumes separately. Finally, we show that roadmaps generated using reachable

3



volume sampling are probabilistically complete.

We present extensive experimental validation of sampling based motion planning

with reachable volumes. Our results show that reachable volume sampling produces

more valid samples than existing methods, that reachable volume samples are easier

to connect than other samples, and that reachable volume sampling is more efficient

at solving high dimensional problems than existing methods. They confirm that

its running time is linear with respect to the number of bodies in the robot. We

show that the reachable volume local planner can produce constraint satisfying local

paths with little overhead compared to the commonly used straight line local planner,

which cannot find constraint satisfying paths.

The main contributions of this work include:

• The reachable volumes concept, which denotes the volume of space that the

joints and end effectors can reach while satisfying the problem constraints, and

a new planning space called RV-space where all points automatically satisfy

the constraints.

• Tools needed for sampling based motion planning in RV-space including a

reachable volume sampler, a reachable volume local planner, and a reachable

volume distance metric.

• Empirical evaluation of reachable volumes over a wide variety of systems in-

cluding chains, closed chains and tree-like robots with as many as 1034 dof.

This dissertation includes work from the paper “Sampling-Based Motion Plan-

ning with Reachable Volumes: Theoretical Foundations” published in the 2014 IEEE

Int. Conf. Robot. Autom. (ICRA) [30] which introduced the concept of reachable

volumes and presented tools and methods for applying them to sampling based mo-

tion planning. It also incorporates work from the paper “Sampling Based Motion
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Planning with Reachable Volumes: Application to Manipulators and Closed Chain

Systems” published in the 2014 IEEE/RSJ Int. Conf. Intel. Rob. Syst. (IROS) [29]

in which we showed reachable volumes could be applied to motion planning for prob-

lems such as manipulators and systems of closed chains. Finally, it includes work

from the paper “Reachable Volume RRT”published in the 2015 IEEE Int. Conf.

Robot. Autom. (ICRA) [31] in which we presented a reachable volume local planner,

distance metric and RRT. This dissertation provides a more complete and mature

handling of reachable volumes and includes additional motion planning primitives,

a novel method for simultaneously computing the reachable volumes of all the joints

and end effectors, a description of how to transform reachable volume configurations

into C-space configurations, and an evaluation of how the reachable volume sampler

scales with roadmap size.

The dissertation is organized in the following manner. In Chapter 2 we give an

overview of related work and in Chapter 3 we define the set of problems that our

work addresses. In Chapter 4 we introduce the concept of reachable volumes and

show how to compute them. In Chapter 5 we present primitive operations including a

reachable volume sampler, a reachable volume local planner, and a reachable volume

distance metric. In Chapter 6 we present a reachable volume planner that uses

these operations. In Chapter 8 we evaluate sampling based motion planning with

reachable volumes.
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2. RELATED WORK ∗

In this chapter we give an overview of previous methods that are applicable to

motion planning systems with constraints. Many early motion planning methods

were able to handle problems with spatial constraints by explicitly computing the

set of configurations that satisfy the constraints [36, 22]. Unfortunately, their running

time is exponential with respect to the number of dof which makes them unsuitable

for problems with more than 4 or 5 dimensions.

Sampling-based motion planning includes graph-based methods (e.g. Probabilis-

tic Roadmaps (PRMs) [21]) and tree-based methods (e.g. Rapidly-Exploring Ran-

dom Trees (RRTs) [24]). While PRMs and RRTs have been applied to a wide variety

of problems, they both have been shown to be poorly suited for problems with spatial

constraints [25]. The issue is that the probability of randomly sampling a configura-

tion that satisfies the constraints could be very small and in some cases approaches

zero.

Table 2.1 summarizes the capabilities of the various sampling-based methods.

Reachable volume sampling is unique in that it is shown to be applicable to problems

with internal joint constraints and problems with constraints on multiple joints,

whereas most of the existing methods are limited to end effector constraints. None

have been explicitly shown to be applicable to such problems. Reachable volumes

are also capable of handling high dof problems, closed chains and tree-like robots.

Unlike other methods, reachable volumes can also handle problems with prismatic

and spherical joints and combinations of different types of joints while many existing

∗Reprinted with permission from “Sampling based motion planning with reachable volumes:
Theoretical foundations” by Troy McMahon, Shawna Thomas, and Nancy M. Amato, 2014. Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), pages 6514-6521, Copyright 2014 by IEEE.
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methods are limited to problems with planar articulated joints. Reachable volumes

also has an advantage over RRT-based methods in that it is applicable to multi-query

problems. A detailed comparison of these methods follows.

2.1 Adaptations of PRM and RRT Methods

PRMs and RRTs have been adapted for use in spatially constrained systems.

Gradient decent methods push randomly generated configurations onto a constraint

surface [25, 45]. These methods are capable of solving problems with single-loop, ar-

ticulated joint, closed chains. PRM-MC combines a PRM and Monte Carlo methods

to generate samples that satisfy closure constraints [13]. This method can efficiently

generate samples for large (100 link) single-loop closed chains. In [41, 33], Trinkle

and Milgram develop a method that uses C-space analysis for path planning while

ignoring self collisions. They show results for a set of planar parallel star-shaped ma-

nipulators. Alternative Task-space and Configuration-space Exploration (ATACE)

for path planning with constrained manipulators uses a randomized gradient decent

method for constrained manipulators [46]. They present results for a 9 dof manipula-

tor robot with a set of end effector constraints. In [49] Zhang et al. present a Monte

Carlo method for generating closed chain samples. This method uses analytical in-

verse kinematics to ensure that the sub-loops of closed chain robots are sampled in

an unbiased manner and is shown to be applicable to 2D chains, closed chains and

protein molecules with over 200 degrees of freedom.

There have been a number RRT based methods proposed for solving problems

with constraints. DDRRT [47, 48] reduces the domain for generating samples in

highly constrained regions to reduce sampling in directions where no progress is

being made. This method has been shown to be applicable to highly constrained

problems and to be capable of solving problems with as many as 18 dofs. Atlas-RRT
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[19] simultaneously builds an RRT and constructs an atlas, the set of charts which

locally parametrizes constraint manifolds. The atlas is used to generate samples

along the constraint manifolds, which are added to the RRT, while the RRT is

used to guide the direction which the atlas is expanded. Tangent Bundle RRTs [38]

construct an RRT along a set of tangent bundles which approximate a problem’s

constraint manifolds. It then projects the nodes along the solution path onto the

manifold so that the solutions are confined to the manifold. This method is shown to

be able to solve problems with closed chains and chains with end effector constraints

that have as many as 14 dofs. Unfortunately, it would be difficult to adapt these

methods to work in a PRM framework. These methods use samples in the RRT to

construct an approximation of the constraint manifolds in the environment. These

approximations are only accurate near existing samples, which means they can only

be used to generate samples that are near to existing samples. This makes them

ideal for constructing RRTs but unsuited for constructing PRMs where nodes need

to be generated throughout the environment.

2.1.1 Kinematics-based Samplers

An alternative approach is to use inverse kinematics to produce constraint-satisfying

samples. Kinematics-based PRM utilizes a two step process [10]. First it uses a com-

bination of kinematics and random sampling to generate a roadmap with constraint-

satisfying samples and connections that are free of internal collisions. Then it pop-

ulates the environment with copies of this roadmap, keeping portions that do not

collide with obstacles, and connects similar configurations from the different copies

of the roadmap using a rigid body local planner. Cortés et. al. developed a sampling

method for closed chain linkages with kinematic constraints [4, 5]. This method is

shown to be faster than previous kinematics-based sampling methods. Kinematics-
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based methods have been extended to large linkages [44] and multiple loops [3].

Inverse kinematic methods for 3D, 5D, and 6D end effector constraints are shown

to efficiently generate samples for chains with as many as 1000 links [15, 14]. They

also present the concept of deformation space (D-space) which finds the valid internal

motions of a robot, ignoring rigid body motion. D-space is analogous to C-space,

however it only includes the internal dof of a robot.

It has been shown that for any planar polygonal loop there exist two special

configurations such that any connectable pair of configurations can be connected

by a sequence of straight line paths through them [11, 12]. This method has been

extended to produce paths guaranteed to be self-collision free [17]. They show that

any two convex configurations of a closed chain can be connected by a path comprised

of two straight line segments consisting only of convex configurations.

While inverse kinematics-based methods have had a great deal of success, they

also have a number of major limitations. Most of these methods assume a planar

robot with 1D planar joints. None of these methods can handle problems with

prismatic joints or combinations of different joint types. In addition, these methods

are only applicable to end effector constraints; they cannot handle problems with

constraints on internal joints or constraints on multiple joints.

2.1.2 Optimization Methods

Another approach is to iteratively optimize samples or paths until they satisfy a

problems constraints. Cyclic coordinate decent (CCD) [43] moves the end effector

of a robot to a specified end effector position by iteratively cycling through the

robot’s coordinates and adjusting them so that the end effector converges to the goal

position. CCD can also be used to generate closed chain samples or samples which

satisfy a specified end effector constraint for chains with as many as 7 dof.

9



CHOMP[50] uses gradient based techniques to improve paths by optimizing a

function which balances obstacle avoidance and path smoothness. This method can

be used to generate paths which satisfy hard constraints and optimize adherence to

soft constraints.

2.1.3 Enforcing Constraints During Sampling

Another approach is to explicitly enforce constraints while sampling. Han et. al. solve

closed chain problems by transforming them into a system of linear inequalities [11].

Extensions are capable of solving closed chain problems with multiple loops [16]. This

method is able to handle problems with thousands of links or thousands of loops.

Constrained dynamics enforce constraints such as joint connectivity, spatial relation-

ships, and obstacle avoidance for manipulators up to 6 dof [8]. Other planners require

the end effector to traverse a predefined trajectory by generating samples that satisfy

the end effector constraints given by the trajectory [35, 34]. Han et. al. develop a

method for generating samples with self-contact [18], i.e., configurations occurring on

the border of C-free and the regions of C-obstacle that denote self-collisions. While

this method uses revolute joints, it requires that loops are planar.

The reachability grid is a voxel-based representation that consists of a grid of

workspace in which each grid cell is denoted by the minimum time required to reach

that cell [2]. They show that it is possible to produce accurate reachability grids

in real time and that the errors in their estimates are almost always biased towards

optimistic ones.

2.2 Reachable Workspace and Reachable Distance

Reachable workspace [6] is the volume of workspace that can be reached by the

center point of the end effector of a fixed base manipulator. It differs from reachable

volumes in that it is only defined for serial linkages and it does not take into con-
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sideration a problem’s constraints. Moreover, reachable workspace is only defined

for end effectors so it cannot be used to generate samples in the same manner as

reachable volumes.

The reachable distance of an articulated linkage is the range of distances that its

end effector can reach with respect to its base [40]. Reachable distance is computed

by recursively computing the reachable distances of subsets of the linkage. This

method efficiently produces samples for linkages, single and multiple loop closed

chains, and constrained motion planning problems such as writing an on object’s

surface. We extend this method to handle other joint types including spherical and

prismatic joints by computing the volume that an end effector (and its subsets) can

reach instead of the range it can reach. Reachable volumes generalizes the concept

of reachable distances for non-planar robots that include 2D spherical joints.
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Method Constraint High dof Closed Tree-like Joint Multi-Query
Types Robots Chains Robots Types Problems

Basic
PRM [21]

None Yes No Yes Planar,
Spherical,
Prismatic

Yes

Inverse
Kinemat-
ics [10]

End Effec-
tor

Yes Yes Yes Planar Yes

Constrained
Dynamics
[8]

End Effec-
tor

Yes Yes No Planar Yes

I-CD None Yes No Yes Planar,
Spherical,
Prismatic

Yes

DDRRT
[47, 48],

Only End
Effector
Shown

Not
shown

Yes Not
shown

Only Pla-
nar

No

Atlas RRT
[19],

Only End
Effector
Shown

Not
shown

Yes Not
shown

Only Pla-
nar

No

Tangent
Bundle
RRT [38]

Only End
Effector
Shown

Not
shown

Yes Not
shown

Only Pla-
nar

No

CCD [43] End Effec-
tor

No Yes No Planar,
Spherical

Yes

CHOMP
[50]

Hard and
Soft

Yes Not
Shown

Yes Planar,
Spherical,
Prismatic,
Combina-
tions

No

Reachable
Distances
[40]

End Effec-
tor

Yes Yes Not
shown

Planar,
Prismatic

Yes

Reachable
Volumes
(this
paper)

End Ef-
fector,
Internal
Joints,
Multiple
Joints

Yes Yes Yes Planar,
Spher-
ical,
Pris-
matic,
Combi-
nations

Yes

Table 2.1: Comparison of method capabilities.
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3. PROBLEM FORMULATION: CONSTRAINED MOTION PLANNING

WITH LINKAGES∗

In this chapter we describe the types of linkage systems studied in this work and

define the motion planning problem with linkages.

3.1 Robot Types

We study linkage systems with planar, spherical, and prismatic joints and com-

binations thereof. These systems consist of a set of links connected to each other by

joints. These links can form a chain, in which every joint connects only two links

(Figure 3.1(a)), or a tree, in which some of the joints will connect more than just two

links (Figure 3.1(b)). Closed chain robots are a generalization of linkages in which

chains of links may form one or many loops (Figure 3.1(c,d)).

(a) Chain (b) Tree-like robot (c) Closed chain (d) Multiple loop
closed chain

Figure 3.1: Examples of linkage systems.

Robot links are assumed to be rigid bodies connected at the ends by joints.

These joints may be planar, spherical or prismatic. Planar joints are 1 dof articu-

lated joints. They are represented by a single value denoting the angle of the joint

∗Reprinted with permission from “Sampling based motion planning with reachable volumes:
Theoretical foundations” by Troy McMahon, Shawna Thomas, and Nancy M. Amato, 2014. Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), pages 6514-6521, Copyright 2014 by IEEE.
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(b) Spherical joint

maxd

mind
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Ji−1

d

(c) Prismatic
joint

Figure 3.2: (a) Planar joints are 1D articulated joints whose motion is confined to
a plane. They are represented by a single joint angle coordinate, θ. (b) Spherical
joints are represented by an inclination, θ, and a rotation, φ. Here, the angles for the
first joint are θ1 and φ1, the angles for the second joint are θ2 and φ2, and the angles
for the third joint are θ3 and φ3. (c) Prismatic joints are 1D linear sliding joints.
They are defined by a distance parameter, d which is between a specified minimum
and maximum value (dmin and dmax).

(see Figure 3.2(a)). Linkages connected by adjacent planar joints are coplanar and

for chains comprised of only planar joints the entire chain will be coplanar. Spherical

joints are 2 dof joints in which any possible angle between adjacent links is valid.

They are represented using polar coordinates with an inclination θ and a rotation

φ (see Figure 3.2(b)). Prismatic joints are 1 dof linear sliding joints that are repre-

sented by a single value d denoting the length by which the joint is extended (see

Figure 3.2(c)).

3.2 Configurations and C-space

A configuration is a representation of the position, orientation and deformation

of a robot that consists of a numeric value for each translational, rotational and

joint-angle dof of the robot. Valid configurations must satisfy problem or applica-

tion specific validity constraints. In most applications configurations are considered
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valid if they do not collide with any obstacles in the environment, however in some

applications such as protein folding and deformable objects validity is determined by

a configuration’s physical feasibility. For the sake of simplicity we will use the terms

valid and collision free interchangeably.

The set of all possible configurations of a robot, valid or not, forms the robot’s

configuration space (of C-space) [28]. While it is not feasible in general to explicitly

compute which portions of C-space are valid and which portions are not [36], it is ef-

ficient to determine whether or not a single configuration is valid, e.g., by performing

a collision detection test in the robot’s workspace.

3.3 Constrained Motion Planning with Linkages

The objective of the motion planning problem is to locate a valid set of motions

(or path) between a start and a goal configuration. For linkage robots, paths consist

of deformations or changes in the relative position of the links due to altering the

angles of the joints for planar and spherical joints or due to changes in the length of

the link for prismatic joints. For free base linkages, paths also include translational

and rotational motions. A path is valid if none of the links collide with each other

(self-collision) or with any obstacles present in the environment. Closed chains also

require that the chain remain closed throughout the motion of a path in order for it

to be valid.

A constrained motion planning problem is defined as a motion planning problem

in which a set of constraints S are applied to some or all of the joints of the robot. As

an example, a problem could require that one of the end effectors maintains contact

with a surface, or that two of the joints maintain contact with each other so that

they form a closed chain. Solutions to constrained motion planning problems must

satisfy the constraints in S along with any other validity conditions associated with
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Figure 3.3: A chain linkage with constraints. Here, constraints are applied to the
end effector and one of the internal joints of the chain as shown by the gray shaded
regions.

the problem.

3.4 Constraints

We define a constraint Sj to be a subset of space in which joint j must be

located (see Figure 3.3). In much of the previous work, constraints were assumed

to be placed only on the end effectors of a linkage. Our work is unique in that

we allow constraints to be placed on any of the joints or indeed, any point on the

robot. Multiple constraints can be applied to the same joint by constructing a

single constraint which is their intersection. For example, to apply the constraints

Sj1, . . . , sjk to the joint j, you would apply the constraint Sj = sj1 ∩ · · · ∩ sjk. This

allows application of both position and workspace constraints to the same joint, as

well as to create complex constraints that are the intersection of many constraints.

Joint position constraints can be used to model a wide variety of constrained

systems. For example, one can require that a humanoid robot such as a PR2 [7]

remain upright by constraining its torso to be above its base or require that an

object such as a bucket of water remain upright by constraining the vertices of the

object to be parallel to the robot’s base. Grasping can be modeled by requiring that

the end effectors of the robot be located at specified handle positions.
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4. REACHABLE VOLUMES∗

In this chapter we first define the concept of reachable volumes for unconstrained

systems. We then extend this definition to incorporate constraints.

The reachable volume of a joint or end effector is the region of space that it can

reach and the reachable volume of a chain is the region of space that its end effector

can reach. Below, we show that the reachable volume of a chain is equal to the

Minkowski sum of the reachable volumes of the links in the chain. This allows us to

develop a recursive method for computing the reachable volume of each of the joints

in the robot. We show how this approach applies not only to chain linkages, but also

to more complex linkages such as trees and closed chains.

4.1 Definitions

We first define a reachable volume space and formally define the concept of reach-

able volumes. We then show how reachable volumes can be computed and provide

visual examples of reachable volumes for a variety of systems.

4.1.1 Reachable Volume Space

The reachable volume space (RV-space) of a linkage is a 3 dimensional space in

which the origin is located at one of the joints or end effectors of the robot (referred

to as the root). Points in RV-space represent possible locations of the joints and

end effectors in the chain with respect to the root. RV-space does not include any

obstacles and can be used to generate sample configurations that are later tested for

validity using a validity checker (e.g. [9]).

∗Reprinted with permission from “Sampling based motion planning with reachable volumes:
Theoretical foundations” by Troy McMahon, Shawna Thomas, and Nancy M. Amato, 2014. Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), pages 6514-6521, Copyright 2014 by IEEE.
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We define the reachable volume of a joint or end effector, j, to be the set of points

P ∈ RV-space for which there exists a constraint satisfying configuration in which j

is located at P . We also define the reachable volume of a chain to be the reachable

volume of its end effector (see Figure 4.1(a)).

First note that if the end effector can be positioned at one point that is r away

from the origin, then it can reach all other points of distance r from the origin by

rotating the the robot about the origin (see Figure 4.1(b)). For chains with a single

link of length l where the adjacent joint is not prismatic, the reachable set is the

set of points that are a distance l from the origin. Thus, the reachable set can be

represented by the radii rmin = rmax = l. If the link has an adjacent prismatic

joint that ranges between dmin and dmax, then the reachable set is the set of points

represented by the radii rmin = l + dmin and rmax = l + dmax. Based on this, we

observe the following:

Observation 1. If a point of distance r from the origin is reachable, then all points

that are a distance of r from the origin must be reachable.

Because our definition of RV-space allows the base of a robot to rotate freely

about the origin, this observation holds for chains that include planar, spherical, and

prismatic joints.

Observation 2. If a chain can reach a point that is r1 from the base point and a

point that is r2 from the base point, where r1 ≤ r2, then it can reach all points that

are a distance of r from the base, where r1 ≤ r ≤ r2.

Both observations hold for chains with planar, spherical, and prismatic joints,

however they do not hold for chains with constraints. This is addressed below in

Section 4.3.
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Figure 4.1: (a) The reachable volume (gray region) of a 2 link chain robot, l1 and l2
(black). l1 rotates about the point in the center while l2 rotates about the endpoint
of l1. (b) If the end effector (black) can reach a point, then it can reach all other
points that are the same distance from the base (gray circle).

Based on these observations, there must exist a minimum radius (rmin) and max-

imum radius (rmax) such that the reachable volume of a chain is the set of points p

whose distance from the origin O is between rmin and rmax.

RV(Chain) = {p | rmin ≤ distance(p, O) ≤ rmax}

A RV-space configuration consists of a position in RV-space for each of the joints

and end effectors. A configuration in RV-space is composed of a position for each

joint and end effector in the robot. In a RV-space configuration, the position of a

joint or end effector in RV-space is equal to the difference between the position of

that joint or end effector in workspace and the position of the root in workspace. A

RV-space configuration captures the relative position of the joints and end effectors.

A configuration in RV-space can be transformed into a C-space configuration

by computing the joint dof and randomly sampling any translations and rotational

coordinates of the entire robot. Each joint type (spherical, planar, and prismatic)

19



can be handled in the following way:

• Spherical joints: The articulated angle θ can be computed by applying the law

of cosines to the triangle formed by the two links that meet at the joint. If

(ji−1, ji) and (ji, ji+1) are the links that meet at the joint ji (Figure 4.2(a)),

then the articulated angle for the joint would be acos(|
−−→
j1, j2|

2 + |
−−→
j2, j3|

2 −

|
−−→
j1, j3|

2/2|
−−→
j1, j2||

−−→
j2, j3|).

For the rotational angle ϕ, the first rotational angle ϕ0 is calculated by com-

puting a vector v that is perpendicular to l0 and l1, and then computing the

angle between this vector and the upward direction (see Figure 4.2(b)). For all

other joints ji, we compute a vector v that is perpendicular to li and li+1 and

a vector v′ that is perpendicular to li and li−1. ϕi is the angle between v and

v′ (see Figure 4.2(c)). Computing each θ and ϕ value can be done in constant

time which means that a joint position configuration can be converted to a

joint angle configuration in linear time with respect to the dof of the linkage.

• Planar joints: The position of adjacent joints must be coplanar. Thus, planar

joints are a subset of spherical joints where ϕ is always 0. Its single dof θ can

be computed in the same way as θ is computed for spherical joints.

• Prismatic joints: The distance parameter d can be found by simply computing

the distance between the joint and its predecessor.

4.1.2 Relationship Between Reachable Volumes and Minkowski Sums

There have been a number of previous applications of Minkowski sums to motion

planning. For example, the M-Sum Planner [26] is a hybrid motion planning method

that first generates random samples for the angular coordinates of the environment,

denoted as C-slices because they represent a slice of C-space in which the angular
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Figure 4.2: Computing joint angles: (a) We first compute the joint’s articulated angle
θ using the law of cosines. (b) The rotational angle ϕ0 of the first joint is calculated
by computing a vector v that is perpendicular to l0 and l1 and then computing
the angle between this vector and the upward direction. (c) For all other joints ji,
we compute a vector v that is perpendicular to li and li+1 and a vector v′ that is
perpendicular to li and li−1. ϕi is the angle between v and v′.

coordinates are fixed. For each C-slice, they compute the Minkowski sum of the robot

and the obstacles in the environment. They then sample along the boundary of the

Minkowski sum and connect samples. Finally, they sort the C-slices and connect the

nodes in nearby C-slices to form a roadmap. This method generates samples faster

than biased samplers and nearly as fast as uniform sampling, solving a set of sample

environments faster.

We show that if you attach the base of a chain to the end effector of a second

chain, then the reachable volume of the resulting chain is equal to the Minkowski

sum of the reachable volumes of the original chains. We also show that the reachable

volume of a chain is equivalent to the Minkowski sums of the reachable volumes of

the links in that chain.

Lemma 1. If a chain C can be subdivided into two subchains C1 and C2, then the

reachable volume of C is equal to the Minkowski Sum of of the reachable volumes of

C1 and C2.
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Proof. First, observe that a point in the reachable volume can be seen as an offset

that is achievable by the chain. For example, if the point (x,y,z) is in the reachable

set, then the corresponding chain can reach a point that is (x,y,z) from the base of

the chain (see Figure 4.3). This is a result of defining the origin to be the first point

of the chain.

If C1 can reach the point (x1,y1,z1) and C2 can reach the point (x2,y2,z2), then

we attach a configuration of C2 that reaches (x2,y2,z2) to the end of a configu-

ration of C1 that reaches (x1,y1,z1) to obtain a configuration of C that reaches

point (x1+x2,y1+y2,z1+z2). Consequently, if the point (x1,y1,z1) is in the reach-

able set of C1 and the point (x2,y2,z2) is in the reachable set of C2, then the point

(x1+x2,y1+y2,z1+z2) must be in the reachable set of C.

Observe that if C can reach a point (x, y, z), then we can take a configuration

of C that reaches (x, y, z) and split it into configurations of C1 and C2 in which the

points that C1 and C2 reach (in their respective RV-spaces) sum to (x, y, z). We can

therefore conclude that in order for a point (x, y, z) to be in C, there must exist a

point (x1, y1, z1) in the reachable set of C1 and a point (x2, y2, z2) in the reachable

set C2 such that x1 + x2 = x, y1 + y2 = y and z1 + z2 = z.

The reachable set of C is therefore the following:

Reachable(C) = {(x1 + x2, y1 + y2, z1 + z2) | (x1, y1, z1)

∈ Reachable(C1)and(x2, y2, z2) ∈ Reachable(C2)}

This is equivalent to the Minkowski sum of the reachable volumes of C1 and C2:

Reachable(C) = Reachable(C1)
⊕

Reachable(C2)
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C
C

1
2

Figure 4.3: The reachable volume of a chain that is composed of two smaller chains
C1 (black) and C2 (gray) is the Minkowski sum of the reachable volumes of C1 and
C2.

Corollary 1. The reachable volume of a chain is the Minkowski sum of the reachable

volumes of the links in the chain.

Reachable(C) = Reachable(l1)
⊕

Reachable(l2)
⊕

· · ·
⊕

Reachable(lN)

Corollary 1 implies that the reachable volume of a chain can be computed by

calculating the Minkowski sum of the reachable volumes of the links in the chain.

This computation is shown in Algorithm 1. The reachable volume of a chain is a

sphere that is centered at the origin and has a radius equal to the length of the chain.

The reachable volume of a chain is therefore the Minkowski sum of a set of spheres

which can easily be computed (see Section 4.2.3). Note that Minkowski sums are

commutative [37], which implies that the order in which the links occur in a chain

has no impact on the reachable volume of the chain.

4.1.3 Reachable Volume Visualization

We next show a set of examples that illustrate the nature of reachable volumes

and demonstrate their capabilities. These include simplistic examples designed to
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Algorithm 1 Compute Reachable Volume

Input: A chain C
Output: The reachable volume of C
1: if C only has 1 link then

2: return reachable volume of link
3: Let j be an arbitrary internal joint from C
4: Let Cl be the portion of C to the left of j
5: Let Cr be the portion of C to the right of j
6: RVl =ReachableVolume(Cl)
7: RVr =ReachableVolume(Cr)
8: return RVl

⊕

RVr

show what reachable volumes will look like for different types of problems as well

some complicated examples that show that they are applicable to a wide variety

of interesting and useful problems. The reachable volumes for these examples were

computed using the method presented in Chapter 4.4 and displayed using the Vizmo

visualization tool [42].

Figure 4.4 shows the reachable volumes for each link in a simple 4 link chain

where each link is the same length and no constraints are present. Each joint in the

chain has its own reachable volume sphere. This changes when we change the length

of the links in the chain. In Figure 4.5, we increase the length of one of the links to

be longer than the combined length of the other links. The reachable volume of the

end effector of this chain is the region between the inner and outer spheres.

The structure of the reachable volume space changes again when a chain is con-

strained to form a single loop. Figure 4.6 shows the reachable volume of our original

4-link chain with its end effector constrained to be the same point as the base. The

first and third joints can reach any point along the inner sphere (green) while the

second joint can reach any point inside of the outermost sphere (blue).

Figure 4.7 shows the effect of constraining the end effector of the chain. Here
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the end effector of the chain is constrained to be a point 8 units away from the base

(with the total length of the chain being 9 units). To reach this constraint, the first

joint must be located on the left-most shell-like region (blue), the second joint must

be located within the center region (pink), and the third joint must be located along

the right shell-like region (red).

Figure 4.4: A cross section of the reachable volumes of a chain linkage (red) with 3
spherical joints, 4 links of equal length and no constraints. The first joint can reach
any point along the inner sphere (pink), the second joint can reach any point inside
the second sphere (yellow), the third joint can reach any point inside the third sphere
(light green), and the end effector can reach any point inside the outermost sphere
(dark green). An example configuration is shown in red.

Figures 4.8(a) and 4.8(a) show reachable volumes of a 16 dof fixed-base grasper

with spherical joints in an environment with a set of cubic objects. Figure 4.8(a)

shows the reachable volume of the base when the end effectors are constrained to

spherical regions on either side of the object, while Figure 4.8(b) shows the reachable

volumes of the end effectors when the base is constrained. Note that when the base

is constrained in such a way, the end effectors each have the same reachable volume

so only one is shown.

Figure 4.9 displays the reachable volume of a WAM robot [27] with 15 dof and

25



Figure 4.5: A cross section of the reachable volume of the end effector of a chain
with 1 long link and 3 smaller links. The length of the three smaller links is less than
the length of the first long link. The end effector can reach any point between the
inner and outer spheres, but it cannot reach the region inside the inner sphere. An
example configuration is shown in red.

a combination of spherical and planar joints whose end effectors are constrained

to grasp a spherical object. To reach the object, the elbow joint must occupy the

rightmost region, the second arm joint must be located in the middle region, and

the wrist must be within the left region. The reachable volumes of the knuckles are

inside this reachable volume.

4.2 Reachable Volumes for Complex Linkages

We next discuss how to compute reachable volumes for complex linkages such

as tree-like robots and closed chains. We compute the reachable volumes of these

robots by decomposing them into chains, computing the reachable volumes of the

chains, and then merging them to form the reachable volume of the robot.

4.2.1 Reachable Volumes of Tree-like Linkages

As with chains, we define the RV-space of a tree-like robot to be a space where

the origin is fixed at one of the joints (as described in Section 4.1.1). We then define

the reachable volume of each of the tree’s end effectors to be the set of points in
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Figure 4.6: A cross section of the reachable volumes of a 4 link closed chain with
spherical joints. The first and third joints can reach any point along the inner sphere
(green) while the second joint can reach any point inside the outermost sphere (blue).
Example configurations are shown in red and yellow.

RV-space that the end effector can reach. Observe that the reachable volume of

an end effector in a tree-like linkage is the same as the reachable volume of the

chain of links that connects the end effector to the joint located at the origin. The

reachable volume of this chain can be computed using the method described in

Sections 4.1.1 and 4.1.2. Hence, to compute the reachable volume of a tree-like

robot, we can compute the reachable volumes of each of the end effectors of the

linkage by computing the reachable volume of the chain that connects it to the joint

at the origin (see Figure 4.10).

4.2.2 Reachable Volumes of Closed Chains

As with other robots, we define the RV-space of a closed chain to be a space

where the origin is fixed at one of the joints. We define the reachable volume of

a joint to be the region of RV-space that it can reach. In a single loop closed

27



Figure 4.7: The reachable volumes of a 4 link chain with spherical joints of length
9 where the end effector is constrained to a point 8 units away from the base. The
first joint must be located in the left-most shell-like region (blue), the second joint
must be located in the middle region (pink), and the third joint must be located in
the right-most shell-like region (red). An example configuration is shown in red.

chain, each joint is connected to the root by two chains (Figure 4.11(a)) and the

reachable volume of the joint is equal to the intersection of the reachable volume

of the chains (Figure 4.11(b)). For multi-loop closed chains we can compute the

reachable volume of a joint by computing the intersection of the reachable volumes

of the chains connecting it to the root.

4.2.3 Complexity of Reachable Volumes in Problems Without Constraints

In this section we study the complexity of reachable volumes. We show that

reachable volumes have an O(1) complexity in problems without constraints. We

show that this enables us to compute the Minkowski sums of two reachable volumes,

which combined with the methods presented in Section 5.1 allows us to generate

samples in linear time with respect to the number of joints in the robot.

We first observe that the reachable volume of a chain can be represented by a

maximum value which represents the farthest distance from the origin that the chain

can reach and a minimum distance which represents the closet point to the origin that

the end effector can reach (0 if it can reach the origin). For single link chains, both
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(a) Reachable volume of base given end effector
constraints

(b) Reachable volume of end effectors given base
constraints

Figure 4.8: (a) The reachable volumes of a 16 dof fixed-base grasper with spherical
joints is affected by constraints placed either on the end effectors or on the base.
The reachable volume of the base (teal) given constraints on the end effectors to
grasp a cubic object (blue and green). (b) The reachable volume of the end effectors
(blueish green) when the base is constrained to a specific point Note that in (b)
the end effector reachable volumes are identical so only one is shown. Example
configurations are shown in red.
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Figure 4.9: The reachable volume of a WAM robot [27] grasping a spherical object.
In order to reach the object, the elbow joint must be located in the purple region
(right), the second arm joint must be located in the light blue region(center) and the
wrist of the grasper must be located in the green region(left). The reachable volumes
of the knuckle joints and the object being grasped are not visible because they are
contained in the reachable volume of the wrist. This robot has 15 dofs and includes
both spherical and planar joints. An example configuration is shown in gray.

the minimum and maximum values are equal to the length of the chain. Using this

representation, the reachable volume of a chain is the set of points whose distance

from the origin is between these minimum and maximum values.

We next observe that for spherical, planar and (non-offset) prismatic joints, the

reachable volume is the set of points between a specified minimum and maximum

distance from the origin. These reachable volumes can be represented in constant

space by storing the minimum and maximum distances. Consider a reachable volume

R1 that is represented by the min value R1min and the max value R1max and a

second reachable volume R2 that is represented by the minimum value R2min and

the maximum value R2max. The Minkowski sum of R1 and R2 can be represented by

the the minimum value (R1
⊕

R2)min and the maximum value (R1
⊕

R2)max which

are computed as follows:
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Figure 4.10: For a tree robot with 3 end effectors (E1, E2 and E3) (a) we compute
the reachable volumes of each end effector by computing the reachable volumes of
the chain connecting it to the origin joint (b–d) resulting in the reachable volume of
the end effectors of the linkage (e).

(R1
⊕

R2)min =







max(R1min −R2max, 0) if R1min > R2min

max(R2min −R1max, 0) otherwise

(R1
⊕

R2)max = R1min +R2min

We observe that the Minkowski sum of R1 and R2 is also a reachable volume

represented by a minimum and a maximum value. Inductively, we can conclude

that the Minkowski sums of the reachable volumes of planar, prismatic and spherical
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j

(a)

root

RV(j)

(b)

Figure 4.11: Generating a closed chain configuration: (a) Two open chains connect
joint j to root. (b) Reachable volume of j is intersection of reachable volumes of
open chains.

joints will always be regions within a specified minimum and maximum distance

from the origin. We also observe that the Minkowski sum of R1 and R2 can be

computed in constant time regardless of how many joints and links are in the chains

that correspond to R1 and R2.

4.3 Reachable Volumes for Constrained Systems

Here we define reachable volumes for linkages with constraints placed on the

positions of its joints and show how to compute them. We define the constrained

reachable volume of a chain to be the portion of reachable volume space that the

end effector can reach without violating the constraints.

Consider a chain C that is comprised of the links Lc = {l1, l2, . . . , ln}, joints

Jc = {j0, j1, . . . , jm}, and RV-space constraints Sc = {S0, S2, . . . , Sm} placed on its

joint positions. As a base case, the constrained reachable volume of the chain l1 is

Reachable(l1) ∩ S1. Note that if S1 is null, then the constrained reachable volume
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Figure 4.12: (a) CRVi is the constrained reachable volume of {l1, . . . , li}. (b) The re-
gion that is reachable by the endpoint of link li+1 is CRVi

⊕

ReachableVolume(li+1).
(c) The constrained reachable volume of the chain {l1, . . . , li+1} is therefore (CRVi

⊕

ReachableVolume(li+1)) ∩Si+1.

is the empty set. In this case, no configuration will satisfy the constraint. Now we

make the inductive assumption that the constrained reachable volume of the linkage

{l1, . . . , li} is CRVi (see Figure 4.12(a)). In the linkage {l1, . . . , li+1}, the base of link

li+1 coincides with the end of link li, and CRVi is the set of possible locations of

this endpoint. The set of points the endpoint of li+1 can reach is therefore CRVi

⊕

Reachable(li+1) (see Figure 4.12(b)), and the set of points that this endpoint can

reach while satisfying the constraint Si+1 is (CRVi

⊕

Reachable(li+1)) ∩Si+1 (see

Figure 4.12(c)). By induction, the constrained reachable volume of the chain C

must be:

RV (Lc, Sc) =











RV (l1) ∩ S1 |Lc| = 1

(RV (Lc − l|Lc|, Sc − S|Sc|)
⊕

RV (l|Lc|)) ∩ S|Lc| otherwise

As with other reachable volumes, the constrained reachable volume does not take into

consideration obstacles and it does not exclude configurations with self-collisions.
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4.3.1 Complexity of Reachable Volumes in Problems with Constraints

For constrained problems, the complexity of computing Minkowski sums depends

on the geometry of the constraints. To compute reachable volumes exactly we must

be able to compute Minkowski sums and intersections on the geometry. For problems

where these computations are not feasible, we compute the reachable volume of

the chain without constraints (using the method presented in Chapter 4), then we

separately compute the Minkowski sum of each constraint and the reachable volume

of the portion of the chain after the joint where the constraint is applied.

RV (C, J, S) = RV0,|J | ∩ (S1

⊕

RV|J |−1,|J |) ∩ . . .

∩(S1

⊕

RV|J |−1,|J |)

where RV0,|J | is the reachable volume of the chain and RVj,|J | is the reachable volume

of the portion of the chain after joint j (without constraints).

The result is a set of objects whose intersection is the reachable volume of the

chain. Minkowski sum operations are commutative, so we can compute RVj,|J | first.

Because RVj,|J | is the reachable volume of a chain, its reachable volume is defined by 2

concentric spheres and can be computed as described in the previous paragraph. The

Minkowski sum of Sj and RVj,|J | is the Minkowski sum of Sj and the area between

concentric circles, which can be computed in time proportional to the complexity of

Sj . Computing reachable volumes using this method requires time of O(|J | |S| C(S))

time and O(|S| C(S)) space where |J | is the number of joints, |S| is the number of

constraints and C(S) is the complexity of the constraints. Samples can therefore be

generated in O(|J |2 |S| C(S)) time (recall that the complexity of reachable volume

sampling is linear in the complexity of the reachable volumes).
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4.4 Computing the Reachable Volumes of All Joints

In Section 4.1.2 we presented a method for computing the reachable volume of a

single joint (Algorithm 1). This is ideal for an application such as sampling where

you only need to know the reachable volume of a single joint at any given time

(i.e., the joint you are are sampling). However for applications such as robot design,

control and modeling, you may need to know the reachable volume of all of the joints

in the robot. You could apply the method presented in Section 4.1.2 to every joint in

the robot, but that would be very inefficient. In this section we present an efficient

method for computing the reachable volume of all of the joints in the robot. We show

that the running time of this method is O(|J |*diameter(R)) where |J | is the number

of joints in the robot and diameter(R) is the diameter of the robot. In comparison,

computing the reachable volume of each joint separately results in a slower running

time of O(|J |2).

Algorithm 2 is a dynamic programming method that initializes the reachable

volume of each joint to be the constraints for that joint. It then iteratively updates

the reachable volume of each joint to be the intersection of its reachable volume and

the set of points it can occupy given the reachable volume of its neighbors. Note

that the set of points a joint can occupy given the reachable volume of its neighbors

is equal to the Minkowski sum of the reachable volume of the neighbor and the

reachable volume of the link connecting the joint to the neighbor (see Section 4). If

the reachable volumes of all joints are not changed over an iteration, the algorithm

stops.

In order to prove the correctness of Algorithm 2, we present the following lemmas:

Lemma 2. For all j ∈ J , the reachable volume of j will always be a subset of RVj

during all iterations of Algorithm 2.
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Algorithm 2 Computing the reachable set of all joints in the robot

Input: A robot R that contains no cycles
Output: The reachable set of all joints in R
1: RV0 = (0, 0, 0)
2: for all vj ∈ R\ root do
3: RVj,0 = Sj

4: Changed = true, i = 0
5: while Changed do

6: Changed = false
7: for all vj ∈ R\ root do
8: RVj,i+1 =

⋂

j′∈Neighbors(j)

RVj′,i

⊕

RV (link(j, j′)) ∩ Sj

9: if RVj,i 6= RVj,i+1 then

10: Changed=true
11: i++
12: return RVi

Proof. We show this using induction. As a base case, RV0,0 is initialized to (0,0,0)

because the root is at the origin in RV-space, while the reachable set RVj,0 for all

other joints j is initialized to the joint’s constraints Sj. Because a joint cannot be

located outside of its constraint, the reachable set of j must be in RVj,0.

Assume that for all j the reachable volumes of j are a subset of RVj,i. During

iteration i+ 1 this algorithm sets

RVj,i+1 =
⋂

j′∈Neighbors(j)

RVj′,i

⊕

RV (link(j, j′)) ∩ Sj for all joints j.

By our inductive assumption, RVj′,i must include the reachable set of j′ for all j′ ∈

Neighbors(j).

⋂

j′∈Neighbors(j)

RVj′,i

⊕

RV (link(j, j′)) ∩ Sj

must therefore include the reachable set of j. By induction, RVj,i must always include

the reachable set of j.
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Lemma 3. Let R′
j,i ⊆ R be the subset of R that is within i hops of j. After the ith

iteration, RVj,i will be a subset of the reachable volume of vertex j in R′
j,i.

Proof. We show this using induction. As a base case, RVj,0 is set to Sj which is the

reachable volume of j in R′
j,0 and consists only of the vertex j.

Assume that for all j ∈ J , RVj,i is a subset of the reachable volume of j in R′
j,i.

During iteration i+ 1, Algorithm 2 sets

RVj,i+1 =
⋂

j′∈Neighbors(j)

RVj′,i

⊕

RV (link(j, j′)) ∩ Sj

for all j ∈ J . We first note that the graph R′
j,i+1 must be a tree (because it is a con-

nected subset of R which had no cycles). As a convention, we define j to be the root of

R′
j,i+1. Let j

′ be an arbitrary neighbor of j in R′
j,i+1. j

′ and all of its descendants are

in Rj′,i, so by our inductive assumption RVj,i must be a subset of the region reachable

by j′ under the constraints of j′ and its descendants in R′
j,i+1. RVj′,i

⊕

RV (link(j, j′))

must therefore be a subset of the region that j′ can reach while satisfying the con-

straints of j′ and its descendants.
⋂

j′∈Neighbors(j)

RVj′,i

⊕

RV (link(j, j′)) ∩ Sj must

therefore be a subset of the region that j can occupy while satisfying its own con-

straint and the constraints of all other joints in R′
j,i+1.

Corollary 2. After at most diameter(R)+1 iterations, Algorithm 2 will return the

reachable volume of all vertices.

Proof. First we observe that the reachable volume of a joint j cannot contain any

points that are not in Sj, otherwise the constraint Sj would be violated. We also

observe that if two joints j and j′ are connected by an edge e(j, j′), then every

point p in the reachable volume of j must be length(e) away from a point in the

reachable volume of j′, otherwise it would be impossible to place j at p without
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placing j′ outside of this reachable volume. From these observations we conclude

that if at i, RVi is equal to the reachable volumes of R, then for all j ∈ J , RVi,j =
⋂

j′∈Neighbors(j)

RVj′,i

⊕

RV (link(j, j′)) ∩ Sj . This means that RVi,j = RVi+1,j for all

j and that the algorithm will return RVi+1 (which is equal to RVi) on the next

iteration.

For all j ∈ J , R′
j,diameter(R) = R, so by Lemma 2 RVj,diameter(R) must be a subset

of the reachable volume of j in R. In Lemma 2 we showed that for all i the reachable

volume of j will be a subset of RVj,i, which means that RVv,diameter(R) must be

equivalent to the reachable volume of j. Because RVdiameter(R) contains the reachable

volume of all the joints in R, we know that Algorithm 2 will return this reachable

volume on the next iteration. Now consider the case where Algorithm 2 returns on

some arbitrary i ≤ diameter(R)+1. In order for it to return, RVi−1 must be equal to

RVi. If this algorithm were to continue running, then inductively all RVi′>i must be

equal to RVi. RVi must therefore be equal to RVdiameter(i)+1, which is the reachable

volumes of R.
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5. SAMPLING BASED MOTION PLANNING WITH REACHABLE

VOLUMES∗

In this chapter we show how sampling based motion planning can be used with

reachable volumes. We first present reachable volume versions of the primitives such

as sampling, local planning and distance computation required by sampling based

motion planning. We then show how they can be used in planning.

5.1 Sampling with Reachable Volumes

We describe how reachable volumes can be used to compute configurations for

chains, tree-like robots, and closed chains without joint constraints. We then describe

how reachable volumes can be used to generate samples for chains, tree-like robots,

and closed chains with constraints.

5.1.1 Generating Configurations for Chains

To generate samples of a chain robot without constraints, we first compute the

reachable volume of the end effector of the chain (Algorithm 1). Here we select

the midpoint joint as the splitting joint on line 3. For problems requiring multiple

samples, this computation can be performed once as a prepossessing step. We then

recursively position the internal joints of the chain by selecting a joint from the

chain, “breaking” the chain at this joint, and computing the reachable volumes of

both pieces of the chain (see Figure 5.1). We then translate the reachable volume

of the second chain so that the base of the second chain is located at the origin and

compute the intersection of these reachable volumes. This intersection is the region

∗Reprinted with permission from “Sampling based motion planning with reachable volumes:
Theoretical foundations” by Troy McMahon, Shawna Thomas, and Nancy M. Amato, 2014. Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), pages 6514-6521, Copyright 2014 by IEEE.
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of second chain’s RV-space that can contain the selected joint. We then randomly

select a position for the joint from this intersection. This process is described in

Algorithms 3 and 4. We convert this sampled point to a point in the RV-space of

the robot by adding the position of the base of the left chain. Finally, we recurse on

the subchains formed by breaking the chain at the newly sampled joint.

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Generating a configuration for a chain robot: (a) Compute the reachable
volume of the chain. (b) Set the position of the end effector of the chain to be
a point from this volume. (c) Bisect the chain and compute intersection of the
reachable volumes of the two pieces. (d) Set the midpoint of the bisected chain to
be a point from the intersection of these reachable volumes. (e,f) Continue until all
joints are placed.

For planar and prismatic joints, we parse the planar/prismatic joints first. This

ensures that subchains containing planar and prismatic joints will be sampled after

any adjacent spherical joints. Subchains containing planar and prismatic joints must

be coplanar, so after we sample the first joint of a subchain we constrain all other
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Algorithm 3 Generating configurations for chains

Input: A chain C
Output: A randomly sampled configuration of C by setting values for its dof
1: Compute the reachable volume RVC of C
2: Set the end effector of C to a be random point from RVC

3: SampleInternal(C)

4: Convert Sample to C-Space Sample
5: Randomly sample translational and rotational coordinates

Algorithm 4 SampleInternal

Input: A chain C whose end effectors have already been sampled/set
Output: A randomly sampled configuration of C in RV-space by setting values for

its dof
1: if C only has 1 link then

2: return

3: Let j be the joint at the midpoint of C
4: Let Cl be the portion of C to the left of j
5: Let Cr be the portion of C to the right of j
6: RVl = reachable volume of Cl

7: RVr = reachable volume of Cr

8: The position of j = random point from RVl ∩ (RVr+baser−basel) + position of
the base of Cl in RV-space of the robot

9: SampleInternal(Cl)

10: SampleInternal(Cr)

points to be in the plane defined by this point and the endpoints of the subchain.

The sample space of the joints of the subchain is therefore the intersection between

this plane and the joints reachable volume.

We next show that the running time of the reachable volume sampler is linear

for problems without constraints.

Proof. The sampler first computes the reachable volume of the chain by recursively

breaking the chain. At the bottom level of this recursion, the sampler computes and

returns the reachable volume of a single link which can be done in constant time and is
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done once per link. It then computes the Minkowski sums of these reachable volumes,

performing a total of O(|L|) Minkowski sum operation (where (|L|) is the number of

links in the robot). In Section 4.2.3 we show that the complexity of computing the

Minkowski sums of two reachable volumes is proportional to the complexity of the

reachable volumes and that this complexity is O(1) in problems without constraints.

The cost of this step is therefore O(|L|).

Once the reachable volume is computed, the algorithm samples each joint in the

order that they were subdivided when computing the reachable volume of the chain.

Consider an internal joint j that breaks the chain jl through jr. When computing the

reachable volume of the chain in the first step of Algorithm 4, we recursively compute

the reachable volumes of the chain jl through j (which we will denote as RVjl,j) and

j through jr (RVj,jr). We next recall that reachable volumes are symmetric which

means that the reachable volume of the chain jr through j (RVjr,j) is equal to RVj,jr .

Algorithm 4 samples j by placing j in the intersection of RVjl,j and RVjr,j. Because

RVjl,j and RVjr,j were computed while computing the reachable volume of the chain,

we don’t need to compute them during sampling. We only need to translate RVjl,j by

jl and translate RVjr,j by jr, which is done by defining the bases of RVjl,j and RVjr,j

to be at jl and jr (which can be done in constant time). Joint j is then sampled by

selecting a position from the intersection of RVjl,j and RVjr ,j as described in Section

5.1.3.

Samples are generated by computing a bounding box or patch around the inter-

section of RVjl,j and RVjr,j (which can be done in constant time), and then repeatedly

generating samples and testing if they are in RVjl,j and RVjr,j. Testing if a point is

in a reachable volume is equivalent to testing if the distance between the point and

the base of the chain (i.e., jl or jr) is between the minimum and maximum values

for that chain (as described in Section 5.1.3), which can be done in constant time.
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Because we limit the total number of attempts to be a predefined constant, the total

time to sample a joint’s position (or return failure) is O(1). The total time to sample

all the internal joints in the chain is therefore O(|L|). In the final step, we convert

the sample to a joint angle sample which can be done in O(|L|) time as described in

Section 5.1.1. The total running time of the reachable volume sampler for problems

without constraints is therefore linear with respect to the number of links in the

robot.

5.1.2 Generating Configurations for Complex Linkages

We next discuss how to generate samples for complex linkages such as trees and

closed chains. For such linkages we decompose the robot into chains and sample the

end effectors of these chains. We then sample the internal joints of these chains in

the same manner that we sample the internal joints of open chains.

Generating configurations for tree-like robots: To generate configurations

for linkages with branches, we partition the linkage into a set of disjoint chains (see

Algorithm 5 and Figure 5.2) which is done by dividing the tree at any joint with

more than two neighbors. The order in which we partition the robot should not have

any effect on the computation time or the probability distribution of the sample,

so we select the order in which the tree is partitioned at random. We then use

use Algorithm 3 to generate a reachable volume configuration for each chain. We

translate each reachable volume configuration into the RV-space of the root of the

robot which is done by translating the configuration of each chain by the position

of the first joint in the chain in the RV-space of the root of the robot. We then

convert this into a C-space configuration and randomly sample any rotational and

translational coordinates.

Algorithm 3 samples each branch in linear time with respect to the size of the
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Algorithm 5 Generating configurations for tree-like robots

Input: A tree-like robot T
Output: A randomly sampled configuration of T
1: Decompose T into chains
2: Generate configurations for each of these chains using Algorithm 3
3: Concatenate these configurations to form a configuration of T

branch, so the total time to sample all branches is linear in the number of links in

the robot. Translating each chain requires us to translate each of the joints in the

chain and can be done in linear time with respect to the size of the chain so that the

total time required to translate all the chains is linear in the number of joints (or

links) in the robot. Converting the sample to a C-space sample can also be done in

linear time (as described in Section 4.1.1) so the time required to generate samples

for tree-like robots (without constraints) is also O(|L|).

Figure 5.2: We generate a configuration for a tree-like robot by applying our method
to each of the branches (black, dark gray, light gray).

Generating configurations for closed chains: To compute configurations for

closed chains, we decompose the closed chain into two open chains. We observe that

if the two open chains are in configurations that share the same endpoints, then they

can be combined to form a configuration of the closed chain. We now note that in

RV-space both chains are rooted at the origin (we assume that the same endpoint
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is rooted for both chains). In order for both chains to reach the same endpoint in

workspace, they must reach the same point in RV-space (see Chapter 4). The set of

possible positions for the end effectors of the two chains is therefore the intersection

of the reachable volumes of the two chains. We can therefore select a point from this

intersection to be the endpoint of the two chains (see Algorithm 6 and Figure 5.3)

and then sample the other points of the chains as described in Section 5.1.1. As with

chains and tree-like robots, this method yields an RV-space configuration that can

be transformed to a C-space configuration by setting the translational and rotational

coordinates of the robot.

The reachable volume of each branch is found by computing the Minkowski sums

of the links in the branch which can be done in linear time for problems without

constraints (see Section 4.2.3). A sample is then generated in the intersection of

these reachable volumes, which can be done in constant time using the methods

from Section 5.1.3. Each branch can then be sampled in linear time (as described

in Section 5.1.1) so the time required to generate samples for closed chains is also

O(|L|) in problems without constraints.

Algorithm 6 Generating configurations for single loop closed chains

Input: A single loop closed chain C
Output: A randomly sampled configuration of C
1: Let root be an arbitrary joint from C
2: Let j be another arbitrary joint from C such that j 6= root
3: Let C1 and C2 be the chains formed by breaking the closed chain at j and root
4: Compute ReachableVolumes(C1) and ReachableVolume(C2) using Algorithm 1
5: Place j in ReachableVolume(C1) ∩ ReachableVolume(C2)
6: SampleInternal(C1)
7: SampleInternal(C2)
8: Convert sample to a C-Space sample
9: Randomly sample translational and rotational coordinates
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(a) (b) (c)

Figure 5.3: Generating a closed chain configuration: (a) Break the closed chain
into two open chains. (b) Compute the reachable volumes of the two chains (striped
regions). (c) Randomly select a point from the intersection of their reachable volumes
and use Algorithm 3 to sample the positions of the internal joints.

5.1.3 Sampling in the Intersection of Reachable Volumes

We present a set of methods for computing samples in reachable volumes and dis-

cuss when each method is applicable. These methods can be used by the algorithms

in Sections 5.1 when sampling joint positions.

The intersection method is applicable to reachable volumes that are the intersec-

tion of spheres. This method selects a random point along the circle formed by this

intersection. This method is useful for sampling joints where two or more neighbors

have already been sampled.

The bounding patch method is applicable to reachable volumes that are the in-

tersection of a sphere-like reachable volume and a set of other reachable volumes.

This method constructs a patch on the surface of the sphere that encompasses the

intersection with the other reachable volumes. It then samples on this patch until it

finds a joint that is in all of the other reachable volumes. This method is useful for

joints where one neighbor has already been sampled.

The bounding cube method constructs an axis allied bounding box around the

reachable volume and then samples within this bounding box until it finds a sample
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that is in all of the reachable volumes. This method is used to sample joints where

no neighbors have already been sampled.

The brute force method randomly selects points from an arbitrary reachable vol-

ume until it locates a point this is in all of the reachable volumes. This method can

be applied to situations in which none of the other methods is applicable.

Observation 3. Each of these methods is complete in that they sample over a joint’s

entire reachable volume. Consequently, they can be used by the reachable volume

samplers to provide probabilistically complete sampling. Additionally, the complexity

of these methods is linear with respect to the number of reachable volumes involved.

5.1.4 Generating Configurations for Constrained Systems

We next develop a sampler that is optimal for problems with internal joint con-

straints as well as for tree-like graspers with constraints on their end effectors. It

would be possible to compute samples for constrained problems in the same manner

as unconstrained problems, however our proof for the linear time complexity (Sec-

tion 5.1.1) does not hold for problems with constraints. This proof relies on the

ability to reuse the reachable volumes RVjl,j and RVjr,j that were computed while

computing the reachable volume of the linkage during the sampling step. Unfortu-

nately, reachable volumes for problems with constraints are not symmetric. This

means that one cannot use the reachable volume RVjr,j that is computed during the

initial step of the algorithm to obtain the reachable volume RVj,jr that is needed

during sampling. In order to use the methods described in Sections 5.1.1 and 5.1.2

for constrained problems, it would be necessary to compute RVj,jr during each level

of sampling. This computation requires O(|L|) Minkowski sum operations and will

result in a running time that is O(|L|log(|L|)) in the complexity of these operations.

Algorithm 7 shows how to use reachable volumes to compute samples for prob-
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lems with constraints. It first sets the position of the root of the robot to be (0,0,0)

which is its location in RV-space by definition. It then selects an end effector j and

calls the function ComputePartialRV (Algorithm 8) to set RVj to be the reachable

volume of j ∈ J in the subset of the robot comprised of the children of j in the

traversal. It then calls the function ComputeSampleHelper (Algorithm 9) that per-

forms a second depth first traversal of this tree. During this traversal, the position

of every joint j is set to be a random point in the intersection of RVj and Pjprv

⊕

ReachableVolume(edge(j,parent(j)), which is the volume of space that j can oc-

cupy given the placement of its parent in the traversal. The reachable volumes are

computed as follows:

• If parent(j) is a spherical joint, then ReachableVolume(edge(j,parent(j)) is a

sphere centered at j with a radius equal to the the length of edge(j,parent(j).

• If parent(j) is a planar joint, then ReachableVolume(edge(j,parent(j)) is a cir-

cle in the plane of the joint with a radius equal to the the length of edge(j,parent(j)).

• If parent(j) is a prismatic joint, then ReachableVolume(edge(j,parent(j)) is

the line segment defined by the points dmin and dmax (see Section 3.1).

After all of the joints have been sampled, Algorithm 7 transforms the resulting RV-

space sample into a joint angle configuration (as discussed in Section 4.1.1) and

randomly samples the position and orientation of the robot to form a C-space sample.

The resulting C-space sample can be used by sampling-based motion planners like

PRMs.

These algorithms perform two depth first traversals of the robot. During the

first traversal we compute the partial reachable volume of each joint from the partial

reachable volumes of its children in the traversal which requires one Minkowski sum
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Algorithm 7 Compute sample for chains or tree-like robot which satisfies constraints
S
Input: A robot R = (J, E) that contains no cycles, root = an end effector of R, a

set of constraints S on J
Output: A reachable volume configuration P that satisfies S
1: Proot = (0,0,0)
2: Let j be an arbitrary end effector that 6= root
3: RVj = ComputePartialRV(j, ∅,array(|J |))
4: Let Pj be a random point from RVj

5: RV Sample = ComputeSampleHelper(j, ∅, Pj , RVj)
6: c = CSpaceSample(RandomPosition, RandomOrientation,

JointAngles(RV Sample))
7: return c

Algorithm 8 ComputePartialRV

Input: A robot R = (J, E), a set of constraints S on J , and the subset P of J that
have been assigned positions

Output: The reachable volume RVj of j in the robot R\ branch(jprv) under the
constraints S and the partial positioning P

1: ComputePartialRV(j, jprv, RV )
2: if j ∈ P then

3: return Position(j)
4: RVj = Sj

5: for all j′ ∈ Neighbors(j) \jprv do

6: RVj′ = ComputePartialRV(j′, j, RV )
7: RVj = RVj ∩RVj′

8: return RV

operation and one intersection operation for each link in the robot. During the

second traversal we sample each of the joints of the robot, compute the reachable

volume of the link connecting the joint to its parent, translate that reachable volume

by the position of the parent, compute the intersection of this reachable volume and

the partial reachable volume of the joint (computed in the first traversal), and set

the position of the joint to be a random point from this intersection. This method
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Algorithm 9 ComputeSampleHelper

Input: Joints j and jprv, a set of partial positions P , and a reachable volume RV
Output: An updated set of partial positions P including j
1: if j ∈ P then

2: return P
3: else

4: if RVj ∩ (Pjprv

⊕

ReachableVolume(edge(j, jprv))) = ∅ then

5: return Fail
6: Pj = random point from RVj ∩ (Pjprv

⊕

ReachableVolume(edge(j, jprv)))
7: for all j′ ∈ Neighbors(j) \ jprv do

8: ComputeSampleHelper(j′, j, P, RV )
9: return P

preforms O(|L|log(|L|)) Minkowski sum operations and O(|L|log(|L|)) intersection

operations, so its running time isO(|L|log(|L|)) in the complexity of these operations.

We next discuss how to use reachable volumes to generate samples for closed

chain robots with constraints(Algorithm 10).

A single loop closed chain robot is any robot of genus 2. We first define the

root of this robot to be one of the joints along the closed chain of the robot (such

that if the root were removed the robot would contain no cycles). We then select

one of the root’s neighbors j that is also located on the closed chain. Because

the root is at the origin, edge(root, j) imposes the constraint that j be the length

of edge(root, j)) away from the origin. We can therefore remove edge(root, j) and

replace it with a constraint that j be within ReachableVolume(edge(root, j)) of the

origin which is done by setting Sj to be Sj∩ ReachableVolume(edge(root, j)). Recall

that if there is no constraint on j, then Sj is the entire workspace. Once the edge

has been removed, the robot is a tree rooted at root. We then sample each of the

branches of this tree in the same manner that we generate samples for a tree-like

robot in Algorithm 7. We convert this sample to a joint angle configuration and

randomly sample the translational and rotational coordinates of the robot. This
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algorithm performs two depth first traversals on each branch of the robot. As with

Algorithm 7, this method preforms O(|L|log(|L|)) Minkowski sum operations and

O(|L|log(|L|)) intersection operations, so its running time is also O(|L|log(|L|)) in

the complexity of these operations.

Algorithm 10 Compute sample for closed chain robots which satisfies constraints
S
Input: A robot R = (J, E) that contains a single closed chain, root = a joint on the

closed chain in R, and a set of constraints S on J .
Output: A configuration that satisfies S
1: Proot = (0,0,0)
2: Let j be an arbitrary joint from Neighbors(root)
3: Sj = Sj∩ ReachableVolume(edge(root, j))
4: Remove edge(root, j) from R
5: for all j′ ∈ Neighbors(root) \j do

6: Let j be an end effector from the branch composed of j′ and its descendants
7: RVj=ComputePartialRV(j, root, array(|J |))
8: Let Pj be a random point from RVj

9: RV Sample = ComputeSampleHelper(j, ∅, P, RV )
10: c = CSpaceSample(RandomPosition, RandomOrientation,

JointAngles(RV Sample))
11: return c

5.2 Stepping in Reachable Volume Space

We define a method for stepping reachable volume samples to produce samples

that are similar to the original (Figure 5.4 and Algorithms 11, 12). This stepping

function will serve as a primitive operation for a reachable volume local planner

(Section 5.3) and a reachable volume RRT [31]. This method starts with an initial

configuration q, a specified joint j, and a target position v. It perturbs q by moving

j by δ in the direction of v (Figures 5.4(b) and 5.4(c)). It then updates the position

of j and its descendants to ensure that all joints are in the reachable volume of
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their parents which will ensure that the joint positions defined the new sample q′

correspond to a constraint-satisfying configuration (Figures 5.4(d) and 5.4(e)).

j

(a)

j
δ

(b)

j
δ

(c)

j

δ

(d)

j

(e)

Figure 5.4: Reachable Volume Stepping: We step one joint j by a distance of δ then
update the j’s descendants to be in their reachable volumes given j’s new position.
The gray regions are the reachable volumes of the third and fifth joints after j is
stepped. These joints are repositioned to be in their reachable volumes (d) resulting
in a configuration in which all joints are in their reachable volumes (e).

We observe the following about perturbing a joint:

Observation 4. If we perturb a joint j in such a way that it is still in the inter-

section of the reachable volumes of its parents, then only j’s descendants need to be

repositioned.

Observation 5. If we reposition a joint j and one of j’s children is still in the

intersection of the reachable volumes of both its parents, then all of the descendants

of this child must also be in the intersection of the reachable volumes of their parents,

and we do not need to reposition the child or its descendants.

Observation 6. If the original sample satisfied all joint position constraints in the
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environment, then the final configuration must also satisfy all joint position con-

straints.

Proof. Every joint in the new sample is located in the reachable volume of that joint

which is a subset of any constraints on the position of the joint.

Algorithm 11 Reachable Volume Stepping

Function: RV-Step(q, j, ptarget, δ)
Input: A cfg q, a joint j and a target position ptarget, a stepping parameter δ
Output: A cfg in which the joint j has been perturbed by δ in the direction of ptarget
1: let pinit = position of j in q
2: pnew=pinit+(ptarget-p)*δ
3: if pnew ∈ RV(j.LeftParent) ∩ RV(j.RightParent)
4: qnew=copy(q)
5: Set position of joint j to be pnew in qnew
6: Reposition(qnew,j.LeftChild)
7: Reposition(qnew,j.RightChild)
8: return qnew
9: return NULL

Based on Observation 1, we know that, with the exception of the children of j,

all of the joints must still be located in the reachable volumes of their parents. We

therefore only need to check if the descendants of j are still within the reachable vol-

ume of their parents. To do this we recursively test the descendants of j (Algorithm

12). If a joint is no longer in the reachable volume of its parents, we reposition it

and recurse on its children. If we encounter a joint that is still in the intersection of

the reachable volume of its parents, then we can stop by Observation 2.

To reposition a joint, we move it to a position that is in the intersection of the

reachable volumes of the joint’s parents and near the original position of the joint.

When repositioning a joint we know that all previously repositioned joints were
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Algorithm 12 Method for repositioning descendants

Function: Reposition(q,j)
Input: A cfg q and a joint j
Output: A cfg with all j′ ∈ j ∩ descendants(j) in the intersection of the reachable

volume of their parents
1: if j ∈ RV(j.LeftParent) ∩ RV(j.RightParent)
2: return q
3: Adjust position of j in q to be within RV(j.LeftParent) ∩ RV(j.RightParent)
4: if j.LeftChild 6= NULL
5: Reposition(q,j.LeftChild)
6: if j.RightChild 6= NULL
7: Reposition(q,j.RightChild)
8: return q

placed in their reachable volumes, so there must exist a sample for the positioning.

The reachable volume of a joint being repositioned will therefore never be empty and

there will always be a valid repositioning. The result of repositioning is a reachable

volume configuration in which all of the joints are located in the intersection of

the reachable volumes of their parents. Such a configuration must correspond to a

feasible positioning of the joints in the linkage.

By applying reachable volume stepping to an initial RV-space sample, we can

create a new sample that is near the original. These samples can be generated

randomly by selecting a random target point or they can be generated in a specific

direction by selecting a target in that direction. There are also a number of ways to

select what joint to perturb.

One of the advantages of reachable volumes is that they may be computed in

any order. We observe that reachable volume stepping only effects the joint being

perturbed and its children, meaning that the ordering will determine which nodes are

affected by a stepping operation. The following are some possible orderings which

we will explore in our experiments:
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• Linear, end effector first: construct the reachable volumes linearly with

the end effector as the top. This limits the effects of stepping to the joints

between the perturbed joint and the root. This ordering gives preference to

end effectors, and would be useful for fixed base graspers and manipulators

where the motion of end effectors is generally most significant.

• Linear, root first: construct the reachable volumes linearly with the root

at the top. This limits the effects to joints between the perturbed joint and

the end effectors. This method steps a robots internal joints starting at the

root, and would be useful for stepping closed chains, or graspers with tight end

effector constraints.

• Binary: compute the reachable volumes in a binary manner (as described in

[30]). This localizes the effect of stepping to the children of the perturbed

joint. This method produces the shortest, most direct overall paths and would

be useful for navigating tight regions where longer paths have more chance of

causing collisions.

• Based on structure of robot: compute the reachable volumes so that related

parts of the robot are in the same branch of the reachable volume tree. For

example, a grasper robot could be partitioned so that the fingers are in separate

branches of the tree. Consequently, perturbing a joint in one of the fingers

will only effect joints in that finger. This method would be best for physical

simulations (e.g. protein folding) where the importance of joints is determined

by the physical structure of the robot.
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5.3 Reachable Volume Local Planner

We define a reachable volume local planner based on reachable volume stepping.

As we will see in Chapter 8, this planner can be used by PRMs to find local paths

that satisfy a problem’s constraints.

The reachable volume local planner (Algorithm 13) connects two configurations,

c1 and c2, by using reachable volume stepping to move each joint to its position in

the second configuration. To accomplish this, it performs a traversal of the joints in

the reachable volume data structure (see Section 5.2). During each iteration of the

traversal, it uses reachable volume stepping to move the joint from its position in c1

to its position in c2.

Algorithm 13 Reachable Volume Local Planner

Input: Cfgs c1 and c2, a step size δ
Output: Boolean value indicating if a path was found
1: queue.push back(jroot)
2: while j=queue.pop front() do
3: c′=c1
4: while position of j in c′ 6= position of j in c2 do

5: ptarget=position of joint j in c2
6: c′ = RV-Step(c1, j, ptarget, δ)
7: if c′==NULL OR invalid(c′) then
8: return false
9: queue.push back(children(j))
10: success = RigidBodyLocalPlanner(c′,c2)
11: return success

Figure 5.5 is an example of the reachable volume local planner (with a binary

reachable volume ordering) being applied to a 5 link chain. The local planner first

steps the end effector of the robot from its position in c1 to its position in c2 (5.5(a)).

It then steps the third joint (5.5(b)), then the fourth joint (5.5(c)) to their positions
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in c2. This results in the configuration c2 (5.5(d)). Note that we are always stepping

parents in the reachable volume data structure before their children to ensure that

stepping a node will not change the position of any nodes that have already been

stepped.

(a) (b) (c) (d)

Figure 5.5: The reachable volume local planner uses reachable volume stepping to
move the joints of a linkage from their positions in one configuration (black) to their
positions in a second (gray).

The sequence of steps covered by the local planner forms a path from c1 to c2.

We can test the validity of this path by checking the validity at each step in the

same manner as with other local planners. If the robot is free-based, then we can

use reachable volume sampling to generate paths between the internal configurations

of c1 and c2 and apply a rigid body local planner to the translational and rotational

coordinates. In most cases, we interleave the reachable volume local planner with the

rigid body local planner so that we perform part of the rigid body transformation,

apply the reachable volume sampler to the internal configuration, and perform the

rest of the rigid body transformation. This is analogous to the rotate-at-S local

planner [1].

5.4 Reachable Volume Distance Metric

We define a reachable volume distance metric that measures the distance tra-

versed during reachable volume stepping. The reachable volume expand function
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and local planner construct paths by moving each of the joints from its position in

the first configuration to its position in the second configuration, so a good approx-

imation would be the sum of the distances between the joints in reachable volume

space (Figure 5.6). For free-base systems, a distance metric must also take into ac-

count the translational and rotational distance between configurations. This can be

accomplished by adding the translational and rotational distance to the reachable

volume distance (with a scaling factor, s):

Dtran+rv(c1, c2) = s ∗ Euclidean(Basec1, Basec2))

+(1− s) ∗
∑

j∈J

Euclidean(jc1, jc2)

where jc1 and jc2 are the position of j in c1 and c2 in RV-space, Basec1 and Basec2

are the position and orientations of the base in c1 and c2, and s is a scaling factor.

d2d1 d3

Figure 5.6: The reachable volume distance between two samples (black and gray) is
the sum of the distances between the joints of the configurations in reachable volume
space. Here the reachable volume distance is d1 + d2 + d3.
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6. REACHABLE VOLUME PRM

In this chapter we describe a reachable volume PRM that uses reachable volume

sampling in combination with the reachable volume local planner and distance metric.

We then evaluate the coverage and distribution of reachable volume samples, and

show that the reachable volume PRM is probabilistically complete.

6.1 Method Overview

The reachable volume PRM uses the reachable volume sampler, local planner

and distance metric in the PRM framework presented in [21]. The reachable volume

PRM (Algorithm 14) constructs a roadmap (N ,E) by iteratively generating samples,

c, using reachable volume sampling. If c is valid, the method adds it to the roadmap,

and then attempts to connect it to the k closest nodes n ∈ N using the reachable

volume local planner. If a connection is found, then it adds an edge from n to c to

the roadmap.

Algorithm 14 Reachable Volume PRM

Input: A motion planning problem, an integer k
Output: A roadmap (N ,E)
1: N = ∅
2: E = ∅
3: loop

4: c = Reachable Volume Sample
5: if valid(c) then
6: N = N ∪ c
7: Nc = k closest neighbors to c by reachable volume distance
8: for all n ∈ Nc do

9: if Reachable volume local planner finds path from c to n then

10: E = E ∪ edge(c, n)
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6.2 Coverage and Sample Distribution

Coverage describes a method’s ability to generate samples over a problem’s sample

space. Methods that are capable of generating samples in a region of sample space

are said to cover that region, while methods that are capable of generating samples

over the entire sample space are said to cover the sample space. If a method does

not cover sample space, then it will be unable to solve problems that require samples

from regions it doesn’t cover, no mater how many samples are generated. Coverage is

therefore a necessary condition for probabilistic completeness of any motion planning

sampler.

Sample distribution describes how densely or sparsely regions of sample space are

sampled which is determined by the probability distribution of the sampling method.

Methods with a skewed probability distribution will over-sample some regions of

sample space while producing few samples in other regions. If a critical region (e.g.,

a narrow passage) lies in the region that is poorly covered, then a method will require

a large number of iterations to generate enough samples in the region to solve it. Such

a method would not be able to solve the problem efficiently. It is therefore important

that a sampling method has a sufficient probability of generating samples over a

problem’s entire samples space, and especially important that it generates samples

in the critical regions of an environment. Unlike most methods which sample in C-

space, reachable volume sampling samples in RV-space. We will therefore evaluate

the coverage and sample distribution in RV-space as well as in C-space.

6.2.1 Coverage of Reachable Volume Samples

We first observe that coverage of RV-space is equivalent to coverage of C-space for

fixed base robots. For free base robots, coverage of RV-space is equivalent to coverage

over the internal dofs. Consequently, if a method disjointly covers both RV-space
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and the external (translational/rotational) dofs, then it covers C-space. Reachable

volume sampling samples a problem’s external dofs using uniform sampling which

covers the external degrees of freedom with a uniform sample distribution. Con-

sequently RV-space coverage implies C-space coverage in both free and fixed base

problems. We can therefore evaluate the coverage of reachable volume sampling in

RV-space with the knowledge that our analysis also holds to coverage in C-space.

6.2.2 Distribution of Reachable Volume Samples

C-space and RV-space sample distributions are not equivalent. C-space samples

consist of a parameter for each dof and their distribution is the distribution of these

parameters. For internal dofs, this is the distribution of the angles of the joints.

RV-space configurations consist of the position of each of the joints of the robot

in RV-space. The distribution of RV-space samples is therefore the distribution of

these joint positions. We can approximate this distribution as the distribution of the

distances between the pairs of joints in RV-space.

Unlike sampling in joint space where each dof is independent of each other, sam-

pling one reachable volume affects the available range of the other unsampled reach-

able volumes, by design. The distribution of reachable volume samples is therefore

dependent on the order in which the joints of the robot are sampled. The sample

distribution of the first joint of the robot is uniform across the reachable volume

of that sample and the reachable volume of each subsequent joint is uniform across

its reachable volume given the position of all of the joints that have already been

sampled (see Figure 6.1).

In Section 5.2 we proposed an end effector first ordering and a root first ordering.

We discuss the distribution resulting from each ordering in turn.

Recall that an end effector first ordering performs a depth first traversal of the
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Figure 6.1: The probability distribution of the first joint sampled (a) is uniform of
the reachable volume of that joint (RVJ1). The probability distribution of the second
joint sampled (b) is uniform over the reachable volume of that joint (RVJ2) given
the position of the first joint sampled. The probability distribution of the ith joint
sampled, Ji is the reachable volume of Ji (RVJi) given the position of all joints that
were sampled prior to Ji. Note that black circles correspond to the root and to joints
that have already been sampled.

joints of the robot sampling each joint on the return of this traversal. As such it

samples an end effector of the robot first and samples joints only after all of their

descendants have been sampled. In unconstrained problems, the volume of reachable

volumes is either quadratic (2D workspace) or cubic (3D workspace) with respect to

distance from the root (see Figure 6.2). The number of samples within a distance d

of the root root is proportional to the volume of a circle/sphere of radius d over the

volume of whole circle/sphere. The probability density of samples will therefore be

skewed towards the larger portion of the feasible distance range. (see Figure 6.2).

Consequently, the end effector first method will tend produce elongated samples in

which the distances between joints and the root are skewed toward the upper portion

of their feasible range and distances from joints to their end effector is skewed towards

the lower portion of their distance range.

Also recall that a root first ordering performs a pre-order traversal of the robot

starting at the root. This method samples each joint then recurses on each of its

unsampled neighbors. As such it always samples a joint prior to sampling its children

and consequently samples joints that are closer to the root before those that are
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Figure 6.2: Sampling joints uniformly over a (2D) reachable volume (a) will result in
a sample set that is skewed towards the upper portion of the feasible distance range
(b).

further from the root. For unconstrained robots them method will produce a similar

sample distribution to uniform sampling.

6.3 Probabilistic Completeness

In this section we discuss the sampling distribution of the reachable volume sam-

pler and show that it is probabilistically complete.

Lemma 4. Joints are sampled uniformly in their reachable volume given the position

of the joints that are already placed.

Proof. The joint sampling methods presented in Section 5.1.3 uniformly sample a

domain that contains the reachable volume until they find a sample in the reachable

volume resulting in a distribution that is uniform in the reachable volume.

Lemma 5. Reachable volume sampling is probabilistically complete.

Proof. The samplers iterate through a robot’s joints and sample them in their reach-

able volume (the region they can reach given the position of the joints already sam-

pled). The joint sampling methods sample over the entire reachable volume of a
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joint so we can inductively conclude that all possibly reachable volume space config-

urations can be sampled. There is a one to one correspondence between reachable

volume samples and joint angle settings. Consequently the reachable volume sam-

pler is complete over the range of joint angle coordinates. Our method uses the

probabilistically complete reachable volume sampler to sample any joint angle coor-

dinates and a uniform sampler (which is also probabilistically complete) to sample

any translational and rotational coordinates resulting in a probabilistically complete

sampler.
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7. REACHABLE VOLUME RRT (RVRRT)∗

We introduce an RRT expansion strategy called RV-Expand (Algorithm 15) that

uses reachable volume stepping to generate RRT nodes. This strategy takes as input

a random sample, qran, and its nearest neighbor in the graph, qnear. It then steps

one of the joints in qnear by a distance δ in the direction of the position of the joint in

qran to form a candidate sample, qnew. Because RV-space encodes the relative joint

positions of the robot, stepping a reachable volume sample will change the relative

position of the joints and thus alter the internal coordinates of the robot. For free-

base robots we also step the translational and rotational coordinates in the direction

of qran.

Algorithm 15 RV-Expand

Function: RV-Expand(qran, qnear, δ, s)
Input: A cfg qran, its nearest neighbor qnear, a stepping parameter δ and a distance

metric scaling factor s
Output: A new cfg to be added to the RRT
1: if free base then

2: δtran= δ ∗ s∗ Distance(qran,qnear)
Distancetran+rv(qran,qnear)

3: δ =δ - δtran
4: Select a joint j to perturb
5: qnew = RV-Step(qnear,j,position of j in qran, δ)
6: if free base then

7: Step rotational and translational dofs by δtran in direction of qran
8: return qnew

We make no assumptions about how qran is generated (e.g., by uniform sampling

∗Reprinted with permission from “Reachable volume RRT.” by Troy McMahon, Shawna
Thomas, and Nancy M. Amato, 2015. Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
2977-2984, Copyright 2015 by IEEE.
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as in [24] or by reachable volume sampling [30]). Here, we use reachable volume

sampling [30].

RV-Expand may select a joint to perturb (line 4 of Algorithm 15) in a variety of

ways:

• Random: select a joint at random. This is advantageous because it requires

no overhead and it ensures that all joints have a chance of being selected.

• Most Distant: to select the joint that is furthest from its counterpart in the

random sample, qran.

• Probabilistic: assign each joint a selection probability. A joint’s selection

probability could be proportional to the distance between it and its counterpart

in qran.
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8. EVALUATION OF REACHABLE VOLUMES∗

In this chapter we evaluate the reachable volume framework on a set of uncon-

strained and constrained problems. Our experimental results are organized in the

following manner. In Section 8.1 we discuss our experimental setup and introduce

the environments used. In Section 8.2 we evaluate reachable volume sampling, in

Section 8.3 we evaluate the reachable volume local planner and distance metric, and

in Section 8.4 we evaluate the quality of roadmaps produced using reachable volume

techniques.

8.1 Experimental Setup

We first give a description of our experimental methodology and an overview of

the environments used in our experiments.

8.1.1 Methodology

When designing our experiment set we took into consideration the experiment

sets in papers that address similar problems (particularly [47, 48, 19, 38]. The

experiment set in [47, 48] includes a set of closed chains with as many as 20 dofs and

an environment with a bolt on a chain. The experiment set in [19] includes a point

on a torus environment, an environment with a 5 link arm, and an environment with

a planar manipulator with 2 arms holding an object (similar to our wheeled grasper).

The experiments in [38] consist of a rigid body environment, a 7-dof arm robot, and

a 12 dof closed chain environment which is similar to our wheeled grasper.

We include linkages and closed chains that are similar to the linkage and closed

∗Reprinted with permission from “Sampling based motion planning with reachable volumes:
Application to manipulators and closed chain systems.” by Troy McMahon, Shawna Thomas, and
Nancy M. Amato, 2014. Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), pages 3705-3712,
Copyright 2014 by IEEE.
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chain problems in these papers (the only difference being that we use spherical joints

while they use articulated joints). We also include much higher dof versions of the

closed chain and linkage environments (we include problems with as many as 262

dofs while they only study problems with 20 dofs). Our experiment set also includes

linkages and closed chains in environments with narrow passages (the tunnel and

walls environments) while these other papers run there experiments either in totally

free environments or cluttered environments where there is a large amount of free

space between obstacles.

We implemented all planners using the C++ motion planning library developed

by the Parasol Lab at Texas A&M University, which uses the graph from the STAPL

Parallel C++ library [39]. All computation was performed on Brazos, a major com-

puting cluster at Texas A&MUniversity. The processing nodes consisted of quad-core

Intel Xeon processors running at 2.5 Ghz, with 15 GB of RAM. All experiments had

a maximum time allocation of 20 hours. Results are averaged over 10 runs.

8.1.2 Problems Studied

We ran experiments using chains, tree-like graspers and closed chain robots in the

following environments. The combinations of environments and robots we used are

listed in Table 8.1.

Walls: The walls environment (Figure 8.1(a)) is a commonly used benchmark.

It is a 19x4x4 unit3 environment consisting of 3 chambers separated by 2 walls. Both

walls have 1x1 openings allowing the robot to travel between the chambers. We run

experiments with free flying chain linkages of varying dof (22–262) and single loop

closed chains of (22dof–72dof). All chains have a total length of 2 units long and

consist of links 0.02x0.02 units in width.
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Environment Robot Type Dof
Walls Chain 22,70,134,262,518,1034
Tunnel Chain 22,70,134,262
Grid Chain 32
Grid Tree-like Robot 32,64

WAM clutter (W-CL) Tree-like robot 15
Free Closed Chain 22,70,262
Walls Closed Chain 22,70,262
Tunnel Closed Chain 22,70,262
Rods Closed Chain 22, 70

Wheeled grasper (Wh-gr) Closed Chain 19, 67
Loop-tree (Lp-tr) Multi-loop Closed Chain 160

Cord Constrained Chain 16,64
Bug-trap cleaner (bt) Constrained Chain 16
Fixed base grasper (gr) Constrained Tree-like Robot 32,64

WAM Bars (w-b) Constrained Tree-like Robot 15, 22
Constrained closed chain (cc) Constrained Closed Chain 22,70

Wheeled grasper with bucket (wb) Constrained Closed Chain 22

Table 8.1: Combinations of environments and robots used in our experiments.

Tunnel: The tunnel environment (Figure 8.1(b)) is another commonly used

benchmark. It is 39x10x1 unit3 and consists of 2 chambers connected by a long

narrow tunnel 1x1 units wide. Free flying chain linkages of varying dof (22–262) are

all 1 unit long and consist of links 0.01x0.01 units in width. Single loop closed chains

of varying numbers of links (9–37) have a total length of 1 unit.

Grid: Grid (Figure 8.1(c)) is a 14x14x14 unit3 environment containing a set of

1x1x1 cube obstacles arranged in a grid separated by 2 units of free space. Two types

of robots are investigated: a 16 joint (32 dof) fixed-based chain and two fixed-based

tree-like robots comprising of an arm and a grasper formed by 2 subchains where

one has 8 links in the arm and 4 links in each grasper yielding 32 dof and the other

has 16 links in the arm and 8 links in each grasper yielding 64 dof.

WAM clutter: The WAM clutter(W-CL) environment(Figure 8.1(d)) consists

of a Barrett WAM robotic arm surrounded by a clutter of obstacles. The WAM arm

consists of a 6-dof arm with three graspers attached to it (total 15 dofs). This robot
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is interesting in that it includes both planar and spherical joints, demonstrating that

our method is applicable to robots that include different types of joints.

Free: We run closed chain experiments of varying dof (22–262) in a free environ-

ment.

Rods: The rods environment (Figure 8.1(e)) consists of 4 rods. Closed chains

may enclose the rods and move onto different rods through breaks in them. In this

environment we used 22 and 70 dof single loop closed chain.

Loop-tree robot: The loop-tree (Lp-tr) robot (Figure 8.1(f)) consists of an 8-

link central loop with 4 8-link branches attached to it. At the end of each branch

another 8-link loop is attached giving this robot a total of 5 loops and 160 dof.

Experiments are run in a completely free environment.

Wheeled grasper: We study a wheeled robot with 2 graspers attached to it

(Figure 8.1(g)). The graspers have spherical joints and need to transport an object

under a low hanging environment, thus forming a closed chain. We study a 19 and

a 67 dof robot.

Robot with cord: The robot with cord environment (Figure 8.1(h)) consists

of a chain robot with a cord attached to one of its joints. The robot’s motion is

constrained by the length of the cord so that the distance between the joint and the

base of the cord cannot exceed the length of the cord (light gray region). This is a

scenario you would encounter in an industrial setting where a robot is operating a

tool that uses an external power supply. We use two variations of this environment,

one in which the robot consisted of 9 links (16 dof) with the cord attached to the 6th

joint (cord-16) and another in which the robot consisted of 32 links (64 dof) with

the cord attached to the 21st joint (cord-64). This environment demonstrates that

our method can handle constraints on internal joints.
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Fixed base grasper: The fixed base grasper environment (Figure 8.1(i)) consists

of a fixed base tree-like robot whose end effectors are constrained to be grasping

one of the obstacles in the environment (green region). We include results for a

64-dof variations of this environment (gr-32) and a 64-dof variation (gr-64). This

environment demonstrates that our method can be applied to grasping problems.

Constrained closed chain: The constrained closed chain environment (Fig-

ure 8.1(j)) consists of a 22-dof closed chain (cc-22) or a 70-dof closed chain (cc-70).

Constraints are applied to 3 of the chain’s joints so that these joints must always be

withing a small distance of each other.

Wheeled grasper with bucket: The grasper with bucket (Figure 8.1(k)) is

a variation of the wheeled grasper environment in which the grasper is carrying a

bucked that must remain level with the ground. We include results for a 22-dof

variation of this environment (wb-22).

Bug-trap cleaner: The bug-trap cleaner (bt) environment (Figure 8.1(l)) is a

variation of the bug-trap benchmark in which a 16-dof fixed base robotic arm must

clean out the bug-trap. The base of the arm is located outside of the bug-trap while

the end effector of the arm is constrained to be inside.

WAM bars: The WAM bars (w-b) environment (Figure 8.1(m)) consists of a

Barrett WAM robotic arm which consists of a 6-dof arm with three graspers attached

to it (total 15 dofs). The graspers are constrained to be grasping an object that is

separated from the robot by a set of bars. The robot must reach through the bars

in order to grasp the object.

8.2 Evaluation of Reachable Volume Sampling

In this section we evaluate the reachable volume sampler in a set of constrained

and unconstrained problems. We study the time required to generate valid samples
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as well as thy proportion of samples which are valid. Our results show that reachable

volume samples are less likely to contain self-collisions and that reachable volume

sampling requires less time to generate samples in high dof problems.

We compare reachable volume sampling (Section 5.1) to uniform sampling [21]

and an incremental sampling method, I-CD, which incrementally tests links along

the chain starting at the base for collision before sampling the next link. I-CD

detects invalid links as soon as they are sampled eliminating the need to sample the

rest of the chain when collisions are found (see Algorithm 16). For closed chains

we also compare to a CCD [43] sampler which uses CCD to produce closed chain

configurations. In problems with constraints we compare to CCD as well as to a

uniform sampler that filters out samples that do not satisfy a problem’s constraints.

Algorithm 16 Incremental CD sampling method

1: Randomly sample translational/rotational coordinates
2: Test base for collision
3: For each joint, j
4: Sample joint angles for j
5: For each child link of j
6: Test link for collision with links that have already been sampled
7: Test link for collision with obstacles in environment

Uniform and I-CD sampling can be applied to chains and tree-like robots, however

neither method can generate samples that satisfy closure constraints associated with

closed-chains. CCD can be applied to single loop closed chains and problems where

constraints are placed on a single end effector, however it cannot handle multi-loop

robots, constraints on internal joints or constraints on multiple joints/end effectors.

Unfortunately, there has been very little work in motion planning for linkages and

closed chains with spherical joints. All of the other methods presented in our related
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work are only applicable to robots with single dof joint angles. Aside from uni-

form sampling, CCD and I-CD sampling, we are not aware of any existing sampling

methods for linkages with spherical joints.

8.2.1 For Chains and Tree-like Robots

In this section we evaluate the performance of reachable volume sampling for

chains and tree-like robots. Our results show that reachable volumes requires less

time to generate samples than other methods, particularly in high dof problems.

Figure 8.2 compares the performance of each reachable volume, uniform and in-

cremental CD check sampling in generating 2000 samples for various environments

with chains and tree-like robots. Stars indicate methods that were unable to gen-

erate 2000 samples in the allotted 20 hours (e.g., uniform sampling for the tunnel

environment with more than 70 dof or for the walls environment with more than 134

dof).

The sampler success rate (Figure 8.2(a)) is the proportion of samples that are

valid (e.g., collision free). This indicates how efficient a method is at generating valid

samples which can be used for roadmap construction. In lower dimensional prob-

lems, uniform sampling and I-CD have higher success rates than reachable volume

sampling. This is because the the distribution of reachable volume samples results

in more collisions with obstacles (i.e. external collisions). However, as the dof of the

problem increases, reachable volume sampling outperforms the other methods and

in some cases is the only method able to generate roadmaps in the allotted time.

Interestingly, the success rate of reachable volume sampling does not significantly

decrease with problem dimension.

Figure 8.2(b) provides the time required for each method to generate 2000 valid

samples. We see that reachable volume sampling is slower than the others in lower
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dimensional problems such as the 22 dof chains. This is a result of the overhead

associated with computing reachable volumes, and the lower sampler success rate

in these problems. In higher dimensional problems, the time is considerably better

because reachable volume samples are less compact and thus less likely to have self-

collisions which become more problematic as the robot complexity increases. In the

highest dimensional problems shown, only reachable volume sampling was able to

complete within the allotted time (20 hours).

8.2.2 For Closed Chains

We next evaluate reachable volume sampling for closed chains. Our results

demonstrate that reachable volume sampling requires less time to generate sam-

ples than other methods, especially in higher dof problems. They also show that

reachable volumes is able to generate samples in many environments where other

methods fail.

Figure 8.3 gives the performance of reachable volume sampling for robots con-

taining closed chains. Again, 2000 valid, constraint-satisfying samples are created

for each problem. Neither uniform sampling or I-CD are able to generate constraint-

satisfying samples for any of the robots in the time allotted. Only reachable volume

sampling can handle systems with spherical joints.

As expected, the sampler success rate decreases as problem complexity increases

(Figure 8.3(a)), yet reachable volume sampling is still able to generate valid, constraint-

satisfying samples for single loops up to 262 dof and complex robots like the loop-tree

with 160 dof. This trend is echoed in the increasing time required to generate such

samples (Figure 8.3(b)).

In comparison to CCD sampling, reachable volume sampling consistently pro-

duced samples that were more likely to be successful and required considerably less
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time to generate successful samples. In the rods and 134/262 dof free environments,

the CCD sampler did not finish in the allotted time of 20 hours while the reachable

volume sampler successfully generated samples.Moreover reachable volume sampling

can be applied to problems such as the loop-tree robot where CCD sampling is not

applicable.

8.2.3 For Constrained Systems

We next evaluate reachable volume sampling on a set of constrained systems.

Again, we show that reachable volume sampling requires less time to generate samples

than other methods, and that reachable volume sampling is able to generate samples

in environments where other methods fail.

Figure 8.4 gives the performance of reachable volume sampling for constrained

systems. Again, 2000 valid, constraint-satisfying samples are created for each prob-

lem. Reachable volume sampling is the only method able to generate samples for

every problem in the allotted time, and in those problems where other methods do

generate samples reachable volume sampling almost always requires less time.

Our results show that reachable volume samples are more likely to be valid than

samples produced by other methods (Figure 8.4(a)). They also show that reachable

volume sampling is able to produce samples in difficult environments where other

methods fail.

Our timing results (Figure 8.4(b)) show the running time of reachable volume

sampling is less than uniform sampling with filtering and significantly less than CCD.

This is because uniform sampling with filtering generates many samples which must

be discarded because they do not satisfy constraints, and CCD requires significant

time to step samples towards constraints. In comparison, reachable volumes always

generates samples that satisfy constraints without the need for any expensive step-
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ping operations. The sole exception to this trend is the bug-trap environment where

uniform sampling with filtering has a lower running time, however the benefits in

terms of connectivity and local planner success still make reachable volume sampling

preferable in this environment.

In the grid and WAM environments both Uniform with filtering and CCD fail to

generate samples. This is interesting because it demonstrates one of the shortcom-

ings of these methods. The grid and WAM environments both consists of tree-like

graspers with constraints applied to their end effectors. While a method like CCD

can converge to an end effector constraint, neither CCD or Uniform with filtering

can endure that the base of the fingers of the grasper is in a position where the other

graspers can reach their associated constraints. In these problems you need a more

powerful method like reachable volumes which can position the base of the graspers

in a position where all of the end effectors can reach their constraints. The CCD

method also fails in the higher dof c-64 and cc22/70 environments.

8.2.4 Coverage and Sample Distribution

We next study the distribution of reachable volume samples in order to show that

reachable volume sampling produces good coverage. Our results demonstrate that

reachable volume sampling produces similar and in many cases better coverage than

existing methods such as uniform sampling and CCD [43].

Reachable volume sampling samples positional and rotational coordinates in the

same manner as uniform, resulting in a similar sample distribution to uniform in

these dimensions. We therefore focus on the distribution of the internal portion of

samples. We evaluate internal configurations by evaluating the distances between

pairs of joints within the samples and we study sample distribution by studying the

distribution of these distances.
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We studied coverage and sample distribution in 4 different environments; a 4 link

open chain, a 4 link open chain with links of unequal length, a 5 link closed chain

and a 4 link chain with an end effector constraint (see Figure 8.5). We studied the

coverage and distribution of two variations of reachable volume sampling, one with

an end effector first ordering and one with a root first ordering (see Section 6.2.1). In

the open chain environments we compared to uniform sampling while in the closed

chain and constrained environment we compared to CCD.

To evaluate coverage and sample distribution we generate 100 samples using each

method. For each sample we then computed and plotted the Euclidean distance

between each pair of non-adjacent joints (Figures 8.6, 8.7, 8.8 and 8.9). Studying

the range of distances and comparing them to the feasible range of distances for each

robot will indicate how well each method covers the robot’s sample space. Ideally

a method should produce samples over the entire range of feasible distances for all

pairs of joints. Studying the distribution of these ranges will indicate if the samples

are evenly distributed. Ideally the distances between each pair of joints should be

distributed uniformly over the range of feasible distances.

Figure 8.6 shows a scatter plot of the distances separating all pairs of non-adjacent

joints in a 4 link open chain consisting of .25 unit links connected by spherical joints

(see Figure 8.5(a)). We first observe that reachable volumes with an end effector

ordering covers the same range of distances as uniform sampling. The distribution of

these distances is more uniform and consistent than Uniform sampling. This is espe-

cially noticeable in the distances between joints 0 and 4 (denoted as (0,4) in Figure

8.6, where reachable volume sampling with end effector first gives better coverage

over the larger distance ranges (.6 to 1). Overall, these results are consistent with the

expected probability distribution of an end effector first ordering, which we describe

in Section 6.2. These results indicate that an end effector first ordering produces
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better coverage over the regions of sample space which correspond to elongated or

fully extended samples, which would be beneficial in problems where the robot needs

to reach an object that is just inside its range.

Reachable volume sampling with root first also produces a similar distribution to

uniform with the exception of (0,4). For (0,4) it gets similar or better coverage over

the middle of the distance range (.2 to .8) but worse coverage outside of this range.

Figure 8.7 is a plot of the distances for a 4 link open chain (Figure 8.5(b)) in

which the first, second and fourth links are .25 units long, and the third link is 1 unit

long. Overall both reachable volumes methods give better coverage than uniform.

Reachable volumes with end effector first gives substantially better coverage in the

lower distance ranges, as can be seen in the distances between (J0,J3), (J0,J4) and

(J1,J4). Reachable volumes with root first gives better coverage of the upper distance

ranges of (J0,J4) but worse coverage of the upper range of (J1,J4). Outside of this

its coverage is similar to that of uniform sampling.

Figure 8.8 is a plot of distances for a single loop closed chain comprised of five

.25 unit links connected by spherical joints (Figure 8.5(c)). We observe that both

reachable volumes methods give better coverage of the lower distance ranges than

CCD. This is particularly noticeable for the (J0,J3) and (J1,J4) ranges with end

effector first and the (J0,J2) and (J1,J4) ranges with root first. These results show

that reachable volume sampling gives better coverage over the regions of sample

space that correspond to highly deformed samples (where nonadjacent joints of the

closed chain are close together).

We also observed the CCD produces samples that are outside of the feasible

distance ranges. Recall that CCD generates samples by generating a random sample,

then stepping it towards a problem’s constraints until the sample is within a small

value, ǫ of the constraint. For closed chains such as the one we are studying CCD
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first samples the chain as an open chain then steps the end effector of the chain

towards its root until the distance is less then ǫ. Consequently, CCD samples will

not be fully closed and some of the samples will contain joints which are outside of

the feasible range dictated by the closure constraint. Moreover, the running time of

CCD increases drastically as epsilon approaches 0, making it unfeasible to generate

samples that are more exact then those shown (with an ǫ value of .015). In contrast,

reachable volume sampling can efficiently generate samples that exactly satisfy a

problem’s constraints (as shown by the analysis of the running times of reachable

volume and CCD sampling presented in Section 8.2).

Figure 8.9 is a plot of distances for a chain of four .25 unit links whose end

effector is constrained to a point that is .75 from the root of the chain (Figure

8.5(d)). We observe that both reachable volumes methods produced distributions

that were similar to that of CCD. The only exception was the (J0,J2) distance of

root first which did not cover the lower portion of the distance range as well as CCD.

As in the closed chain experiments, CCD produced a small number of samples that

were slightly outside of their feasible range.

8.3 Reachable Volume Local Planner and Distance Metric in Practice†

In this section we evaluate the reachable volume local planner and distance met-

rics. We first study the performance of these methods in a set of sample environments.

We then compare the connections produced by the reachable volume local planner

to those produced by straight line, and the connections produced using the reachable

volume distance metric to those produced using scaled Euclidean.

†Reprinted with permission from “Reachable volume RRT.” by Troy McMahon, Shawna
Thomas, and Nancy M. Amato, 2015. Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
2977-2984, Copyright 2015 by IEEE.
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8.3.1 Performance

The primary advantage of the reachable volume local planner is that it generates

paths that satisfy the problem’s constraints while other methods such as straight

line do not. We compare the reachable volume local planner and distance metric

to straight line local planning and scaled Euclidean distance in the context of PRM

construction. We use the walls environment as a case study and look at a 22 dof

linkage (no constraints) and a 70 dof closed chain (has constraints). We attempt

k-closest connection for 2000 samples with k = 8 using the following combinations:

reachable volume local planning with scaled Euclidean distance (rv-se), reachable

volume local planning with reachable volume distance (rv-rv), and straight line local

planning with scaled Euclidean distance (sl-se).

Figure 8.10 summarizes the results. For the unconstrained problem (w-22), rv-se

and sl-se produce a similar number of edges using a similar amount of time. The

reachable volume distance metric (rv-rv) does not perform as well here. For the

constrained problem (w-cc), only rv-se and rv-rv are applicable as straight line local

planning does not enforce the closure constraints. As in w-22, rv-se requires less time

and produces more edges than rv-rv.

8.3.2 Connectivity

In this section we study the connections produced by the reachable volume local

planner and distance metric. We show that the reachable volume local planner can

successfully connect many node pairs that straight line cannot. We also show that the

candidate neighbors found by the reachable volume distance metric are significantly

different than those found by scaled Euclidean, resulting in significant differences in

roadmap connectivity.

We ran experiments in the walls environment (Figure 8.1(a)) which we ran in
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Straight Line RVLP
Scaled Euclidean w-22, t-22 w-22, t-22, w-cc

RVDM N/A w-22, w-cc

Table 8.2: Combinations of local planner and distance metric run for each environ-
ment

combination with a 22 dof chain (w-22) and a 22 dof closed chain (w-cc), and the

tunnel environment (Figure 8.1(b)) which we ran in combination with a 22 dof chain

(t-22). In each of these problems we generated 2000 reachable volume samples. We

then connected these nodes to their 8 nearest neighbors using different combinations

of local planners and distance metrics, resulting in roadmaps with the same nodes but

different edges. The combinations of methods and environments used are presented

in Table 8.2. Note that we did not run experiments using the reachable volume local

planner in combination with straight line because the reachable volume distance

metric was designed explicitly for use with the reachable volume local planner, and

would likely not produce good results when combined with straight line. Also note

that we did not run experiments using straight line for closed chains because straight

line can’t generate paths that maintain closure constraints, making it unsuited for

closed chains.

Reachable Volume Local Planner: We first compare the edges in roadmaps

generated using the reachable volume local planner (RVLP) to those in equivalent

roadmaps generated using straight line (sl). Figure 8.11 shows the number of edges

present in both roadmaps along with the number of edges that are unique to each

roadmap. These results show that both methods make a significant number of con-

nections which the other method misses. These results indicate that it might be

beneficial to use reachable volume local planing in combination with straight line

when straight line is applicable.
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Reachable Volume Distance Metric: We next compare roadmaps generated

using reachable volume distance metric (RVDM) to those generated using scaled

Euclidean (se). Our results (Figure 8.12) show there is a significant difference in the

edges which indicates that neighbors being selected by reachable volume distance

metric and significantly different from those selected by scaled Euclidean. Based on

these results it might be beneficial to use a hybrid distance metric which combines

reachable volume distance metric and scaled Euclidean.

8.4 Evaluation of Reachable Volumes for PRM Construction

In this section we study how reachable volumes can be applied to roadmap con-

struction. We show that reachable volumes produce better connected roadmaps

than existing methods and that they are capable of solving many difficult high dof

problems which existing methods cannot.

To evaluate our method we construct roadmaps in various environments. Roadmaps

are constructed using k-closest neighbor selection for identifying node pairs to con-

nect with k = 8 under scaled Euclidean distance unless otherwise stated. Collision

detection is performed using RAPID [9] and local planning is done using a binary

straight line local planner [21].

We evaluate the roadmap quality produced by each method along with their

associated cost. To evaluate roadmap quality, we study the sampler success rate, the

local planner success rate, the size of the largest connected component (CC), and

the number of connected components in the roadmap.

Figure 8.13(a) shows the percentage of local planner calls that are successful. This

directly determines the number of edges that can be added to the roadmap which in

turn impacts how well connected it is. The local planner success rate for reachable

volume sampling is consistently higher than the other methods which indicates that
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reachable volume sampling produces samples that are easier to connect. This is be-

cause the joint orientations of reachable volume samples are more uniform meaning

that connecting them is less likely to result in self-collision. The performance differ-

ence in local planner success rate becomes more significant with increasing problem

dimensionality. This trend is especially noticeable for tree-like robots where the local

planner can fail because of collisions between the branches of the robot.

The size of a roadmap’s largest connected component (CC) indicates how well

connected it is. It also directly affects the number of different queries the roadmap

can solve. Thus, roadmaps with larger percentages of samples in the largest CC

are more desirable. Figure 8.13(b) displays that roadmaps using reachable volume

sampling produce a greater percentage of samples in the largest CC than the other

methods. This suggests that reachable volume sampling is doing a better job of

finding connections between various areas of C-free, such as between the different

chambers in the walls environment. This trend is particularly noticeable with the 70

dof chains and the tree-like robots.

The size of the largest CC, the number of connected components (Figures 8.13(c))

tells us how good the methods are at producing connected roadmaps. Our results

show that reachable volume sampling produces roadmaps with far fewer connected

components than the Uniform or I-CD sampling. As with the local planner success,

this indicates that reachable volume samples are easier to connect than samples

produced by the other methods.

8.4.1 Scalability of Reachable Volume PRMs

We next studied how the performance of reachable volume sampling scales with

roadmap size. We studied the local planner success and largest cc of roadmaps gen-

erated using the reachable volume sampler across a variety of n values. These results
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show that reachable volume sampling can produce better connected roadmaps with

fewer nodes than existing methods and that reachable volume sampling can generate

samples and produce connected roadmaps in higher dof problems than existing meth-

ods. They also demonstrate that reachable volume sampling can make connections

through difficult narrow passages with fewer nodes and less execution time.

In the 22-dof walls environment (Figure 8.14(a,b)), the local planner success of

both methods is significant, however the local planner success with reachable vol-

ume samples is consistently higher than with uniform sampling. The largest CC size

for the 2 sampling methods is similar across the range of n values we studied, and

generally increases with n, indicating that adding more nodes is improving the con-

nectivity for both methods. In the walls environment, the largest chamber contains

40% of the environment’s free space and the other chambers contain 30%. Conse-

quently, a largest cc size that is larger than .4 implies that a method has connected 2

of the chambers and a largest cc size that is greater that .7 implies that a method has

connected all three chambers. Both methods produce roadmaps where the largest cc

size is significantly larger than .4, which indicates that both methods are producing

connections between chambers in the environment.

In the 70-dof walls environment (Figure 8.14(c,d)), the Reachable volume sam-

pler consistently produced roadmaps with a considerably higher local planner success

rate then uniform sampling, even for large n values. It also consistently produced

roadmaps that are more connected than uniform sampling, resulting in larger largest

CCs. The largest cc size of the reachable volumes roadmaps increased significantly

over the range of n values that we studied. For the larger values in this range, the

largest cc size is significantly larger than .4, which indicates that it is consistently

making connections between the chambers of the environment (as shown in Fig-

ure 8.17). In comparison, the largest cc of the uniform roadmaps remained at .3 over
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the entire range of n values we studied

In the 70-dof tunnel environment (Figure 8.15), the reachable volumes sampler

also results in a higher local planner success than uniform sampling across the entire

range of n values we studied. The largest CC size of the reachable volumes roadmap

is significantly larger than uniform sampling over the entire range of n values we

studied. In the tunnel environment, 1/4 of the free volume is located in each of the

free regions and 1/2 of the free spaces is located in the tunnel region. The largest CC

size of the reachable volumes roadmaps is significantly larger that .25, which indicates

that it is making connections into the tunnel (as demonstrated in Figure 8.18). The

largest CC size of the uniform roadmaps is never larger than .25, which indicates

that these components are confined to the free regions of the environments.

In higher dof environments such as the walls environment with 262-dof, 518-

dof and 1034-dof chains, and the tunnel environment with the 262-dof chain (Fig-

ures 8.16) demonstrate that the reachable volume sampler can be applied to high

dof motion planning problems. In these environments the reachable volume sampler

successfully generates samples and produces roadmaps with a local planner success

that is comparable to the lower dof problems. The largest CC size shows that these

roadmaps are well connected and in the case of the Walls environment, that they

include connections between the chambers in the environment. Uniform sampling

almost always generated samples with self-collisions and was not able to generate

even 100 free samples before running out of time.

8.5 Evaluation of Reachable Volumes for RRT Construction‡

‡Reprinted with permission from “Reachable volume RRT.” by Troy McMahon, Shawna
Thomas, and Nancy M. Amato, 2015. Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
2977-2984, Copyright 2015 by IEEE.
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In this section we study how reachable volumes can be applied to RRT construc-

tion. We first evaluate the range of parameter settings to determine which settings

produce good results. We then demonstrate that RVRRTs are capable of solving

problems more efficiently then existing methods and of solving problems existing

methods cannot.

8.5.1 RV-Expand Parameter Study

We first evaluate the range of parameter settings for RV-Expand to determine

which produce good results. RV-Expand takes the following parameters:

• Order of Reachable Volume Computation: The possible orderings are

End Effector First, Root First, and Binary. The effects of the ordering

are discussed in Section 5.2.

• Repositioning Policy: This policy determines how joints that are no longer

in their reachable volumes are repositioned (line 5 of Algorithm 12). We con-

sider two policies: select a Random point in the new reachable volume and

select the point in the new reachable volume that is Closest to the original

position of the joint.

• Joint Selection Policy: This policy determines how to select the perturbed

joint (line 4 of Algorithm 15). We study two policies: select a Random joint

and select the joint that is Most Distant from its qran counterpart.

• δ: The step size used when generating qnew. To facilitate comparison across

different environments, δ is normalized by the environment diameter.

• Scaling Factors: s indicates the relative weighting of reachable volume dis-

tance and rigid body distance while srot indicates the relative weighting of the

translational and rotational coordinates (see Section 5.4).
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We first evaluate the different combinations of reachable volume computation

order, joint selection policies, and repositioning policies, see Table 8.3. We run each

combination across a variety of δ, s and srot values and select the settings which

solve a problem with the fewest number of nodes. We will study these parameters

in detail next.

Method Computation Order Repositioning Joint Selection
RVRRT-1 EndEffectorFirst Closest Closest
RVRRT-2 EndEffectorFirst Closest Random
RVRRT-3 EndEffectorFirst Closest MostDistant
RVRRT-4 EndEffectorFirst Random Closest
RVRRT-5 EndEffectorFirst Random Random
RVRRT-6 EndEffectorFirst Random MostDistant
RVRRT-7 RootFirst Closest Closest
RVRRT-8 RootFirst Closest Random
RVRRT-9 RootFirst Closest MostDistant
RVRRT-10 RootFirst Random Closest
RVRRT-11 RootFirst Random Random
RVRRT-12 RootFirst Random MostDistant
RVRRT-13 Binary Closest Closest
RVRRT-14 Binary Closest Random
RVRRT-15 Binary Closest MostDistant
RVRRT-16 Binary Random Closest
RVRRT-17 Binary Random Random
RVRRT-18 Binary Random MostDistant

Table 8.3: RVRRT variations from different policy combinations.

Figure 8.19 shows the number of nodes and running time required for each com-

bination to solve l-tunnel (l-tun), 70-dof walls (w-70), and rods. Overall, methods

with root-first or binary reachable volume computation orders outperformed meth-

ods with end effector first. Methods with random joint selection tended to do better
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than methods with closest or most distant joint selection. Methods with random

repositioning also did better than closest repositioning.

We next observe that methods 11, 12, and 14 (RVRRT-11, RVRRT-12 and

RVRRT-14) gave the best results. RVRRT-11 solves all environments, requires the

least running time to solve rods, and performs well in other environments. RVRRT-

14 also solves all environments, gives the best performance for l-tun, and was one of

the most efficient methods in walls. RVRRT-12 gives the best performance in walls

and the second best performance in l-tun, although it does not solve rods.

We also ran experiments using δ values ranging from .001 to 10, s values ranging

from .025 to .075, and srot values ranging from .025 to .975. Table 8.4 shows the

best δ, s, and srot values for the selected methods in each environment. The best

δ values were similar when the methods were applied to the same environment but

varied greatly across environments. The best s value was consistently around .9, and

the best srot value was always between .075 and .25. In our remaining experiments

we use a s = .9 and a srot = .1, and tune δ to the environment.

Method Environment δ s srot
RVRRT-11 l-tun 12.5 0.9 0.1

walls-70 5 0.9 0.1
rods 0.788 0.925 0.075

RVRRT-12 l-tun 20 0.9 0.2333
walls-70 7 0.9 0.75
rods - - -

RVRRT-14 l-tun 15.875 0.9 0.2
walls-70 6.4 0.9 0.75
rods 0.6295 0.925 0.1625

Table 8.4: Best δ, s, and srot values for selected methods.
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8.5.2 RVRRT in Practice§

Here we compare the RVRRT variations selected in Section 8.5.1 to the RRT [24]

and DDRRT [47, 48] methods. As in the previous section, we study the number

of nodes and the running time required to solve a problem. Our results (Figures

8.20 and 8.21) demonstrate that RVRRTs are capable of solving problems more

efficiently then existing methods and of solving problems existing methods cannot in

both unconstrained and constrained systems.

We first observe that RVRRT variations are able to solve all of the problems that

RRTs and DDRRTs could solve. Furthermore, RVRRT consistently required fewer

nodes to solve these problems than RRT or DDRRT (Figures 8.20(a) and 8.21(a)).

In some cases, such as st-22 and m-22, the RVRRT variations require substantially

fewer nodes. This is important because roadmaps with fewer nodes require less

memory and are cheaper to query. We next observe that the RVRRT variations are

more efficient than RRT and DDRRT in that they require fewer collision detection

calls (Figures 8.20(b) and 8.21(b)). The running time of RVRRT is generally higher

than RRT in low dof problems but comparable to RRT and DDRRT in higher dof

problems (Figures 8.20(c) and 8.21(c)). Finally, we observe that RVRRTs are able

to solve many difficult problems, such as the l-tun, r-70, and r-cc, that RRTs and

DDRRTs are not able to. RVRRTs are also the only methods that were able to solve

the high dof w-134 and st-134 environments.

There are a number of explanations for why RVRRTs outperform RRTs and

DDRRTs. One reason is that reachable volume stepping tends to move the joints of

the robot in the same direction in workspace. This allows RVRRTs to expand more

§Reprinted with permission from “Reachable volume RRT.” by Troy McMahon, Shawna
Thomas, and Nancy M. Amato, 2015. Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
2977-2984, Copyright 2015 by IEEE.
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rapidly into more distant regions of the workspace. Another reason is that RVRRTs

tend to produce nodes where the orientation of the joints is more uniform. This

trend was observed in [29] and was shown to produce samples that were less likely

to be invalid due to self-collision. A third reason is that a problem’s constraints

are incorporated into reachable volumes, so new nodes will always conform to them.

A fourth reason comes from using reachable volume sampling, which generates qran

samples over the constraint satisfying subset of C-space. The growth of the RVRRT

will therefore be biased towards the unexplored regions of the constraint-satisfying

subset of C-space.
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(a) Walls

(b) Tunnel

(c) Grid
(d) WAM clutter

(e) Rods

(f) Loop-tree (g) Wheeled grasper

(h) Robot with cord
(i) Fixed base grasper

(j) Constrained closed chain

(k) Wheeled grasper with bucket
(l) Bug-trap cleaner (m) WAM bars

Figure 8.1: Environments studied.
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Figure 8.2: Experimental results for chains and tree-like robots in various environ-
ments for 2000 samples. Stars indicate methods unable to generate samples in the
allotted time. Note that (b) uses a log scale.
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Figure 8.3: Reachable volume performance for closed chains in the following envi-
ronments for 2000 samples: free, tunnel, rods, wheeled grasper (Wh-gr), and the
loop-tree robot (Lp-tr). Uniform sampling and I-CD are infeasible for these robots.
Note that (b) uses a log scale.
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Figure 8.4: Experimental results for 2000 samples in various constrained systems.
Stars indicate methods unable to generate samples in the allotted time or were not
applicable. Note that (b) uses a log scale.
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Figure 8.6: Distance between pairs of joints for 100 reachable volume/uniform sam-
ples of a 4 link open chain with links of length .25. Horizontal lines indicate the
maximum distance between each joint pair.
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ples of a 5 link closed chain with links of length .25. Horizontal lines indicate the
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Figure 8.9: Distance between pairs of joints for 100 reachable volume/uniform sam-
ples of a 4, .25 unit link open chain with its end effector constrained to be .75
units from its base. Horizontal lines indicate the maximum and maximum distance
between each joint pair.
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Figure 8.10: (a) Collision detection calls, (b) number of edges, and (c) connection
time for roadmaps constructed using reachable volume local planning with scaled
Euclidean (rv-se), reachable volume local planning with reachable volume distance
(rv-rv), and straight line local planning with scaled Euclidean distance (sl-se) when
applicable (* denotes when sl-se is not applicable).
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Figure 8.11: Edge difference between reachable volumes local planning (RVLP) and
straight line (sl) using scaled Euclidean distance.
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Figure 8.12: Edge difference between reachable volume distance (RVDM) and scaled
Euclidean (se) using the reachable volume local planner.
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Figure 8.13: Experimental results for chains and tree-like robots in various environ-
ments for 2000 samples. Stars indicate methods unable to generate samples in the
allotted time.
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Figure 8.14: Local planner success and size of largest connected component for 22
and 70 dof chains in the walls environment.

(a) (b)

Figure 8.15: Local planner success and size of largest connected component for 70
dof chain in the tunnel environment.
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(a) (b)

(c) (d)

Figure 8.16: Evaluation of how local planner success and size of the largest CC scales
with roadmap size in walls (a,b) and tunnel (c,d) environments with robots ranging
from 22-dof to 1034-dof.
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(a)

(b)

Figure 8.17: Sample images of the connected components for the 70-dof chain in the
walls environment with 3500 samples. Notice that the reachable volume sampler(top)
connects 2 of the chambers while the uniform sampler(bottom) does not.

(a)

Figure 8.18: Sample images of the connected components for the 70-dof chain in the
tunnel environment with 3500 reachable volume samples. Notice that this roadmap
includes connected components in the tunnel region of the environment.
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Figure 8.19: (a) Number of nodes and (b) running time required for RVRRT variants
(see Table 8.3) in the l-tun, walls, and rods environments. *s indicates that a method
was unable to find a solution.
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Figure 8.20: (a) Number of nodes, (b) collision detection calls and (c) running time
required for RRT, DDRRT and 3 RVRRT variations in environments without con-
straints. *s indicates that a method was not able to find a solution.
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Figure 8.21: (a) Number of nodes, (b) collision detection calls and (c) running time
required for RRT, DDRRT and 3 RVRRT variations in environments with con-
straints. *s indicates that a method was not able to find a solution or could not
be applied to the problem.
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9. CONCLUSION

This dissertation introduces a new concept, reachable volume, that is a geometric

representation of the regions the joints and end effectors of a robot can reach, and

use it to define a new planning space called RV-space where all points automatically

satisfy a problem’s constraints. Visualizations of reachable volumes can enable op-

erators to see the regions of workspace that different parts of the robot can reach.

Samples and paths generated in RV-space naturally conform to constraints, making

planning for constrained systems no more difficult than planning for unconstrained

systems. Consequently, constrained motion planning problems that were previously

difficult or unsolvable become manageable and in some cases trivial. We show that

reachable volumes have a O(1) complexity and can be computed in linear time in

problems without constraints. In constrained problems, we show that the complexity

is dependent on the complexity of the problem’s constraints.

We introduce tools and techniques to extend the state of the art sampling based

motion planning algorithms to RV-space. We present a reachable volume sampler, a

reachable volume local planner and a reachable volume distance metric. These tools

are applicable to robots with combinations of planar, prismatic and spherical joints

and to problems with constraints on the joints and end effectors of the robot. We

show that the running time of the reachable volume sampler is linear with respect to

the number of joints in the robot in unconstrained problems, and that it is linear in

the complexity of the reachable volumes in problems with constraints. We also show

that PRMs constructed using reachable volumes are probabilistically complete.

We demonstrate that reachable volume sampling can be applied to a wide variety

of problems including high degree of freedom chains, tree-like linkages, closed chains,
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and combinations of them. We show results for constrained problems with as many

as 70 degrees of freedom and for unconstrained problems with as many as 1034

degrees of freedom. We show that the reachable volume sampler produces more

connectable samples with greater ease than existing methods for constrained systems

with spherical joints and with combinations of planar and spherical joints. In

contrast most previous methods either cannot be applied to these problems, do not

produce quality solutions or have a significantly higher running time. We also show

that it is applicable to a wide variety of constrained systems including problems

which existing methods cannot solve. Our next step will be to explore applying

reachable volumes to other problems. We are particularly interested in applying it

to computational biology problems such as protein folding. These problems have a

large number of degrees of freedom and are likely well suited for reachable volume

sampling. We also plan to apply reachable volume sample to folding robots.

We also plan to explore how reachable volumes can improve control and interac-

tion with high degree of freedom robots. We plan to further develop the reachable

volume visualization tool so that it can be used to provide feedback that will assist

in robot control. We also plan to apply reachable volumes and reachable volume

sampling to user guided motion planning where reachable volumes can be used to

guide planning and to provide feedback.
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