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ABSTRACT 

For chemical engineering dynamic systems, there is an increasing demand for 

better process performance, high product quality, absolute reliability & safety, maximum 

cost efficiency and less environmental impact. Improved individual process components 

and advanced automatic control techniques have brought significant benefits to the 

chemical industry. However, fault-free operation of processes can not be guaranteed. 

Timely fault diagnosis and proper management can help to avoid or at least minimize the 

undesirable consequences. 

There are many techniques for fault diagnosis, and observer-based methods have 

been widely studied and have proved to be efficient for fault diagnosis. The basic idea of 

an observer-based approach is to generate a specific residual signal which carries the 

information of specific faults, as well as the information of process disturbances, model 

uncertainties, other faults and measurement noises. For fault diagnosis, the residual 

should be sensitive to faults and insensitive to other unknown inputs. With this feature, 

faults can be easily detected and may be isolated and identified. 

This thesis applied an observer-based fault diagnosis method to three exothermic 

CSTR case studies. In order to improve the operational safety of exothermic CSTRs with 

risks of runaway reactions and explosion, fault diagnostic observers are built for fault 

detection, isolation and identification.  For this purpose, different types of most common 

faults have been studied in different reaction systems. For each fault, a specific observer 

and the corresponding residual is built, which works as an indicator of that fault and is 
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robust to other unknown inputs. For designing linear observers, the original nonlinear 

system is linearized at steady state, and the observer is designed based on the linearized 

system. However, in the simulations, the observer is tested on the nonlinear system 

instead of the linearized system. In addition, an efficient & effective general MATLAB 

program has been developed for fault diagnosis observer design. Extensive simulation 

studies have been performed to test the fault diagnostic observer on exothermic CSTRs. 

The results show that the proposed fault diagnosis scheme can be directly implemented 

and it works well for diagnosing faults in exothermic chemical reactors.  
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NOMENCLATURE 

CA Concentration of A component in the reactor 

T Temperature of the mixture in the reactor 

Tw Temperature of the coolant 

F Feed flow rate 

V Volume of the reactor 

CAin Inlet feed concentration 

Tin Inlet feed temperature 

VW Volume of the cooling jacket 

Twin Inlet coolant temperature 

FW Inlet coolant flow rate 

Cp Heat capacity of the reacting mixture 

Cpw Heat capacity of the coolant 

ρ Density of the reacting mixture 

ρw Density of the reacting coolant 

U Overall heat transfer coefficient 

E Activation energy 

∆E Uncertainty in the activation energy 

∆U Uncertainty in the overall heat transfer coefficient 

f Fault 

d Disturbance 
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A Overall heat transfer area 
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1. INTRODUCTION 

 

1.1 Motivation 

1.1.1 Why Fault Diagnosis? 

For chemical dynamic systems, there is an increasing demand for better process 

performance, high product quality, absolute reliability & safety, maximum cost 

efficiency and less environmental impact. There are many ways to achieve these objects. 

Traditionally, industry struggles to improve individual process components, including 

plant equipment, controllers, sensors and actuators. Improvement of individual 

components can somehow lower the risk of faults. However, fault-free processes cannot 

be guaranteed during operation. Minor equipment damage as well as sensor & actuator 

malfunction may result in unexpected events. Even if the hardware equipment have no 

problems during operation, process abnormalities, due to complexity of chemical 

process, still have risks to cause faults.  

When faults occur, the operating points will always go away from desired points. 

Small deviation may affect product quality, and large deviation may cause unplanned 

shut down, which increases the operating cost. Larger deviation without timely detection 

and management will inevitably result in safety issues, and even human casualties and 

environmental problems.  

Timely diagnosis (including detection, isolation and identification) of faults and 

proper management (including timely maintenance, necessary switch off some processes 
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and reconfiguration of controllers) can help to avoid or at least minimize the undesirable 

consequences. Thus fault diagnosis is very important for chemical processes.  

1.1.2 Why Observer Based Methods? 

For fault diagnosis, there are two schemes: hardware redundancy based method 

and analytical redundancy based method. Hardware redundancy is a traditional method, 

using the identical (redundant) hardware components parallel to process components. If 

an output of a process component differs from the output of its identical component, the 

fault can be detected. The obvious advantages of this method are its direct fault isolation 

and high reliability. But the disadvantages are also apparent: this scheme can only be 

applied on some components with outputs or sensors. Also, some expensive components 

with hardware redundancies or some equipment with limited space require higher 

technology and cost. 

The other scheme is the analytical redundancy, replacing the hardware 

redundancy by a mathematical model. Many digital computers can simulate 

mathematical models and estimate the outputs. The difference between measured 

variables and estimated output can help for fault diagnosis. Currently, there are three 

main analytical redundancy based methods: observer-based method, parity-space based 

method and parameter-identification based method. Observer-based method is easy to be 

used for online implementation and for quick detection. Also, observer based method is 

more flexible, because parity-space and parameter identification based method are 

special forms of observer based method. 
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1.1.3 Why for Linear Systems? 

Linear system is relatively simple and easier to study. Many systems can be 

replaced by reasonable linear models, which have the characteristics of processes. If the 

operating region is not too wide and the linearization error is not too large, linearized 

model is a good option. 

1.2 Objectives 

Just like the sensors, if we can build soft sensors which not only indicate the 

existence of faults, but also the location and size of the faults, fault diagnosis is 

completely realized. Previously, state observers have been used to estimate the state 

variables. Comparing the difference, called residual, between estimated states and 

measurements, we can somehow notice the faults and disturbances in the system. With 

disturbances and faults, the residuals are always nonzero. But we are more interested in 

the faults instead of disturbances. If we can build residuals which are only affected by 

faults, the residuals will work as indicators of faults. When faults occur, the residuals are 

nonzero. Without faults, the residuals stay at zero. Thus the main objective of this thesis 

is to design special observers which get the disturbances decoupled from the residuals. 

The residuals work as soft sensors of faults. Then apply this method to chemical 

processes. Even though this method has been studied for two decades and has wide 

applications in electrical and aerospace engineering, it has had limited application in 

chemical engineering. The objective of this thesis is to present unknown input diagnostic 

observer technique and apply this method to chemical processes.  
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If effective fault diagnosis can be achieved, the fault indicators can be connected 

to the alarms system. It will be very convenient and efficient for chemical engineers to 

diagnose faults at an early stage in the chemical plant. Also, the signals of fault soft 

sensors can be transferred to the Distributed Control Systems (DCS) or Programmable 

Logic Controller (PLC). With the information of faults, DCS or PLC will correct the 

measurements and controllers’ output. In this way, chemical plant safety can be 

improved.  

1.3 Thesis Outline and Contributions 

The following overview briefly describes its major contributions and presents an 

outline of this dissertation.  

Chapter 2: Review of fault diagnosis techniques – introduces the basic concepts 

used in fault diagnosis and presents an overview of fault diagnosis methods. Basic 

concepts include types of faults, fault detection, fault isolation and fault identification. 

Different fault diagnosis methods have been reviewed.  

Chapter 3: Unknown input diagnosis observer (UIDO) design - reviews 

Luenberger functional observer, unknown input observer (UIO) and unknown input 

diagnostic observer. Detailed derivation of UIDO is presented in this chapter. The design 

procedure is summarized and a MATLAB program is also developed.  

Chapter 4: Application to exothermic CSTRs – presents the application of UIDO 

method to three representative exothermic CSTR systems. The first one is a CSTR 

consisting of two possible faults in two different sensors. The second CSTR has one 

possible fault in the heat exchanger and the other possible fault in the reactor 
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temperature sensor. The third CSTR considers two possible faults in an analytical sensor 

and heat exchanger, and one disturbance in reaction activation energy. These three cases 

consider different reaction systems.  

Chapter 5: Conclusions and future directions - presents a summary of this thesis, 

discusses the conclusions of the applications and gives several possible future directions. 
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2. REVIEW OF FAULT DIAGNOSIS TECHNIQUES 

 

2.1 Basic Concepts 

2.1.1 Types of Faults 

Location-based Categories 

Sensor Faults 

Sensor faults: In the broadest definition, a sensor is an object whose purpose is to 

detect events or changes in its environment, and then provide a corresponding output. In 

Process Control, information is gathered automatically from various sensors or other 

devices in the plant. This information is used to control different types of equipment and 

thereby to control operation of the plant. These sensors detect temperatures, pressures, 

fluid flow rates and levels, etc. [2].  

Therefore, a sensor fault may degrade performance of decision-making systems, 

including feedback control system, safety control system, quality control system, state 

estimation system, optimization system[3]. For instance, in a CSTR system, the 

temperature and pressure sensors are used to measure the temperature and pressure of 

the reactor, and transfer the measured signal to the feedback control system. In closed 

loop control system, the outputs from sensors are used as the input of the controllers to 

maintain the operating points within a desired range. The presence of sensor faults 

would affect the decision making of the feedback controller. Any fault in sensors may 
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cause the operating points deviating from the set points. If the deviation is out of desired 

range, several issues may occur, including product quality and safety, etc.  

There are five major sensor categories of collecting various types of variables in 

industrial [4]. 

1. Physical parameter sensors: temperature, pressure, density, weight, etc.;  

2. Spatial parameter sensors: state, position, level, depth, interface, etc.;  

3. Sensors for detecting abnormal phenomena: flame, smoke, ATEX-rated 

atmosphere, hazardous gaseous/liquid/solid substances, video-monitoring, etc.;  

4. Kinematic parameter sensors: flow rate, velocity, acceleration, vibration, 

rotation, mechanical stress, etc.;  

5. Physicochemical parameter sensors: pH, rH, conductivity, resistivity, 

radioactivity, intensity, voltage, metal content, etc. 

The first three categories are involved in over 90% of the accidents. Thus it is 

important to detect sensor faults. 

Common sensor faults/failures include: (a) bias; (b) drift; (c) performance 

degradation (or loss of accuracy); (d) sensor freezing; and (e) calibration error [3]. 

Figure 2.1 depicts common types of sensor faults. 
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Fig. 2.1 Common types of sensor faults 

 

The mathematical representation of the sensor faults [5]: 
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Actuator Faults 

An actuator is a type of motor that is responsible for moving or controlling a 

mechanism or system. It is operated by a source of energy, typically electric 

current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into 

motion [6]. For process control system, actuators are necessary to transform output of 

controllers (or control signal) into motion to control processes. A fault in actuator may 
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cause loss of control. Actuator faults include, for example, stuck-up of control valves 

and faults in pumps, etc. Several common faults in servomotors include Lock-in-Place 

(LIP), Float, Hard-over Failure (HOF) and Loss of Effectiveness (LOE). In the case of 

LIP case, the actuator “freezes” at a particular condition and will not respond to 

subsequent commands. In the case of HOF, the actuator moves to the lower or upper 

position limit independent of subsequent commands. When float failure occurs, the 

actuator output stick to zero and will not respond to the commands. Loss of effectiveness 

is characterized by lowering the actuator’s gain respecting to its nominal value [3, 7]. 

Figure 2.2 depicts common types of actuator faults. 

 

Fig. 2.2 Common types of actuator faults 

 

Different types of actuator faults can be mathematically represented by: 
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Component Faults 

These faults occur in the equipment of plant. When component faults occur, the 

physical parameters of that component change, and then the plant dynamics may change. 

The main reason for equipment faults is wear and tear. Sometimes the leakage in the 

tank or pipeline, or the fouling in the heat exchanger may cause serious consequences 

and immeasurable loss. Thus it is important to detect equipment faults during process 

[1].   

Heat exchangers and heat exchanger networks are frequently used for cooling 

and recovering heat for safety concerns and energy requirements. For a fiercely 

exothermic-reaction reactor, the heat exchanger is necessary to cool down the 

temperature in case of runaway reactions. Also in the oil refining plant, the amount of 

energy used is enormous. Thus it is important to know the performance of heat 

exchangers. The well-known problem of heat exchangers is the fouling, which affects 

heat transfer, and the temperature of products, and then safety issues and energy waste 

occur. Thus production engineers need monitoring methods to answer practical questions 

including: What’s the actual performance of the particular heat exchanger at particular 

time? Which moment is ideal or necessary to shut down the process and maintain the 

heat exchanger? 
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Since the fouling mainly affects the heat transfer coefficient, and fouling process 

is quite slow comparing to the dynamics of chemical process, it can be mathematically 

represented by: 

 ( )     ( )      ̇    

where U is the overall heat transfer coefficient at given time t, U0 is the initial overall 

heat transfer coefficient, b(t) exists because of fouling. 

The Way of Affecting System Dynamics 

Due to the way of affecting the system dynamics, faults can be classified into two 

categories: additive fault and multiplicative fault. It has to be pointed out that, while in 

many cases a particular fault can be classified as additive or multiplicative according to 

its nature, sometimes it may also be arbitrary. As we will see, the additive fault is much 

easier to detect than multiplicative fault, therefore it is better to consider a fault as an 

additive fault whenever possible [8]. 

Additive Fault 

In general, additive fault is assumed to be the deviation from the normal 

behavior, but independent of system configuration. Normally, the values of additive 

faults are zero. When an additive fault occur, it will cause changes of system variables 

[8]. For a process control system, an offset in a sensor or an actuator can be considered 

as a constant, and a drift in a sensor as a ramp. It is a typical additive fault. For a 

disturbance, it is also an extra unknown input. It is reasonable to consider that there is no 

physical difference between a disturbance and an additive fault. 
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Multiplicative Fault 

Multiplicative fault will change as some plant parameters change [8]. Typically, 

model errors or model uncertainties are considered as multiplicative faults. Model 

uncertainties are the gap between the real system and the model. In practice, we could 

not get the exact model of a real system. But if the model uncertainty is very small and 

will not cause relatively large model configuration, the model is always to be considered 

as the perfect model without model uncertainties. 

2.1.2 Fault Diagnosis 

 Fault Detection: Detection of the occurrence of faults in the functional 

units of the process, which lead to undesired or intolerable behavior of the 

whole system. 

 Fault Isolation: Localization (classification) of different faults. 

 Fault Identification: Determination of the type, magnitude and cause of 

the fault. 

2.2 Classification of Fault Detection Schemes  

2.2.1 Hardware Redundancy Based FD 

Hardware (or physical/parallel) redundancy is a traditional method for fault 

diagnosis. This approach uses multiple sensors to measure a particular variable. Also, a 

voting scheme is used to decide if and when a fault has occurred and its likely location 

amongst redundant system [1]. But the applicability is limited because of the extra cost 

and additional space required. Additionally, its application is limited on sensor faults. 
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Fig. 2.3 Schematic description of the hardware redundancy scheme 

2.2.2 Plausibility Test 

Plausibility test assumes a fault which results in the loss of plausibility. This 

technique evaluates outputs of process and compares with their rough behavior under 

normal operation. Examples include the sign and size of the measurements. But this 

method is less efficient in detecting faults and difficult for complex system [1, 9]. 

Fig. 2.4 Schematic description of plausibility scheme 
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2.2.3 Signal-based FD 

This approach is based on the properties of measured signals. Typical properties 

include magnitude and trend checking from the derivative, mean and variance, spectral 

power densities, correlation coefficient, etc., of the measured signals. Among these 

treatments of signal, absolute value and derivative (trend) of measured signal are the two 

most simply and widely used methods for fault detection. In signal-based fault detection, 

suitable upper and lower bound are set based on the knowledge of the system and 

required performance of the process. If the absolute value or derivative, etc., cross the 

limit, it means a fault occurs.   

 

Fig. 2.5 Schematic description of signal processing based scheme 

y(t): measured signal 

Y(t): processed signal (absolute value, derivative, etc.) 
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 ( )           ( )               

This method is simple and easily implemented. But the disadvantages are 

obvious: it cannot detect a small fault when the signal is still within the desired range. 

Also, the efficiency is limited when the operating range is wide because of the possible 

large noise, disturbances and variation of input signals.  

2.2.4 Model-based FD 

The intuitive idea of model-based fault detection is from hardware redundancy. 

Model-based fault detection (or analytical redundancy) uses redundant analytical 

relationship between various measured variables rather than single variable. That is to 

say, model-based fault detection replaces the hardware redundancy by a mathematical 

model. This approach is achieved by comparing measured variables with their 

estimations from the mathematical model [1]. The differences between measured 

variables and estimations are called residuals. For a fault-free system, the residuals are 

zero. If a fault occurs, the corresponding residuals are not zero. Thus a residual, similar 

to the difference amongst hardware redundancy system, is a fault indicator of monitored 

process.     

The major advantage of this method is that no extra hardware components, but a 

control computer with related software, are required for fault detection. And fast 

development of computer technique makes this approach feasible and practicable [10].  
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Fig. 2.6 Schematic description of model-based fault diagnosis scheme 

 

Knowledge-based FD  

For large-scale systems, detailed quantitative mathematical model may not be 

available or may be costly and time-consuming to obtain. In this situation, it is better to 

choose knowledge-based methods which are based on qualitative models for process 

monitoring. These methods include expert systems, artificial neural networks, fuzzy 

logic, etc. [11]. 

Observer-based FD 

The first observer-based FDI system was proposed by Beard and Jones in the 

early 1970s [12], which marked a historical milestone in the development of the model-

based fault diagnosis [1]. And then Luenberger observers were first applied for fault 
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detection [13] and isolation [14-16]. In the late 1980s, the position of observer-based 

approach for FDI was established [17]. 

Observer-based method is one of the most applied model-based techniques for 

FDI. By comparing the process output with estimation, the residual is obtained.  

Unknown Input Observer (UIO) 

The idea of robust fault detection is to perfectly decouple the estimated state 

from unknown input (disturbances) based on the disturbances distribution. If the 

disturbances cannot affect the estimated states, the residual should be independent of the 

disturbances.  It is reported [18] that Frank [19] firstly used robust observer-based fault 

detection schemes for instrument failure detection. And then robust unknown input 

observers were intensively studied [20-26]. 

The main advantage of unknown input observer is the decoupling of 

disturbances. But the drawback is also obvious: model uncertainties would affect the 

performance of UIO. If the model uncertainties can be modeled as the additive term as 

external disturbances, the UIO can be used to decouple the effect of model uncertainties. 

However, it will inevitably increase the number of disturbances. If the number of 

unknown inputs including disturbances and faults is larger than the number of 

independent measurements, it is almost impossible to isolate the faults. For chemical 

processes, only a few state variables can usually be measured. Thus it is difficult to deal 

with model uncertainties.  
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2.2.5 A Comparison of Different Fault Detection Methods 

It has to be noted that comparing different fault detection methods is not easy. 

Choices are affected by several factors including information of the process, availability 

of the process mathematical model, complexity of the mathematical model, system 

nonlinearity, safety requirement, etc. If the analytical model is available and easy to be 

implemented, analytical model-based approach is preferred, since it is faster for fault 

detection and easier for on-line implementation. If the mathematical model is difficult to 

obtain, or if it is quite complex to implement, knowledge-based approach or signal-based 

method is preferred. 

2.3 Fault Diagnosis Approach for Chemical Process 

Chemical industry is one of the most important economic forces in the world 

[27]. Modern chemical plant is large-scale and highly complex [28] and operates under 

closed loop control for product quality and production efficiency. However, unexpected 

consequences, including major production loss, human injury and environmental impact, 

may occur when faults make the operating points deviating from the designed range. 

Only petrochemical industries may lose 20 billion dollars every year [29].  Therefore, 

there is considerable research in fault diagnosis [29-31], and various approaches for 

process monitoring and fault diagnosis have been studied and developed. These methods 

may be classified into three categories: process model-based method, multivariate 

statistical process monitoring and knowledge-based approaches [32]. 

One widely used approach in chemical industry is multivariate statistical process 

monitoring [33-37]. For a plant with normal operation, process data can be collected to 
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build an empirical correlation model by multivariate latent variable methods [38], 

including principal component analysis (PCA) and partial least squares (PLS), which 

have successful application in process industries. This empirical model with low 

dimension is able to capture the key information from normal operating data. The 

comparison between the current data and the empirical model is used to detect abnormal 

behavior by statistical tests. The contribution plots method [39] is then used for simple 

fault isolation. Past fault data is also required to improve fault diagnosis by isolating 

complex faults [40]. This method is able to handle the relatively complex system with a 

large number of measurements or without first principle analytical model. However, the 

fault-isolation design relies heavily on the past data with faults. These data are always 

unavailable or are difficult and expensive to obtain [32].  

Considering the drawbacks of multivariate statistical process monitoring method, 

an alternative approach for fault diagnosis is analytical model-based method. Process 

model-based method was first proposed and has also been received significant attention 

[1, 10, 41-46]. The limited information from measurements can not determine the 

presence of faults in chemical processes. In this method, the dynamics of systems and 

relationship between various variables (process model) can offer more information 

including the faults of the system. The extracted information from the process model and 

input/output data is called analytical redundancy. For fault diagnosis, a residual is 

always generated as a fault indicator of a particular fault through analytical redundancy. 

Fault is then detected and isolated by checking the value of a residual. If the relationship 

between a fault and the corresponding residual can be found, that fault can be identified. 
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Process model-based approach has been studied extensively over several decades for 

linear systems [1, 47, 48] and nonlinear systems [49-52]. But in the process, there are 

still some disturbances and model uncertainties. Rajaraman and Mannan et al. used 

parameter estimation method to estimate parameter with uncertainties [53]. But the 

nonlinear model is repeatedly linearized step by step, which takes a lot of computation 

time. Kazantzis and Kravaris proposed a systematic observer design framework for 

estimating unmeasured sate variables and applied this observer to a batch reactor and a 

CSTR [54]. But it is very difficult to use a similar method to design an observer for fault 

diagnosis. Therefore, an simple and efficient residual only sensitive to a particular fault 

but robust to other unknown inputs is desired. Unknown input observer is developed for 

decoupling the effects of other unknown inputs [47]. However, this method requires 

accurate mathematical model, which is very difficult to achieve or time-consuming to 

obtain or even unavailable for some complex chemical processes. Thus the application 

of model-based method is limited [55]. 

Another fault diagnosis method is the knowledge-based approach. Among 

knowledge-based approaches, wavelet neural network has been successfully applied in a 

wide range of applications [56]. Zhou and Mannan et al. applied feed forward neural 

networks to a batch reactor and a distillation column. However, the drawbacks of this 

method is long training time and it is difficult to extract symbolic knowledge from 

trained network [57]. 
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It is difficult to determine which method above is the best because every method 

has its own advantages and disadvantages. But when the analytical process model is 

available or easy to obtain, model-based method is always the first option. 

2.4 Unknown Input Observers 

In modeling, there are various types of uncertainties including model 

mismatches, parameter changes and unknown external excitation, which can be 

conveniently represented as unknown inputs or disturbances [58].  

The observer was first proposed and developed by Luenberger [59-61]. After the 

early development, observers with unknown inputs have been developed as the so-called 

unknown input observer (UIO) or disturbance-decoupled observers [62-72]. The first 

unknown input observer was proposed in 1973 [72] (the earliest document this thesis can 

find) by the response of a suitably selected dynamic system. Another approach was 

proposed in 1975 by designing a reduced-order observer without any knowledge of 

unknown inputs [62]. The existence conditions for the reduced-order observer was 

proposed by Kudva et al [64]. Bhattacharyya proposed a unknown input observer by 

geometric approach [63]. Geometric approach is one of the fields in the control theory, 

but the application of this approach requires a deep understanding of mathematics. 

Miller et al. proposed a reduced-order Luenberger observer for a linear time-invariant 

system by simplest matrix generalized inverse [66]. Fairman et al. designed disturbance 

decoupled observer via singular value decomposition [67]. Hou et al. derived an 

equivalent system, which is free of unknown inputs, for designing the disturbance 
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decoupled observer [58]. Yang et al. used straightforward matrix calculations to design a 

full-order and a reduced-order observer [71]. 

Because of the special feature of disturbance decoupling, all of the methods 

mentioned above helped to develop unknown input fault diagnostic observers.  

2.5 Unknown Input Diagnostic Observer 

The objective of unknown input diagnostic observer (UIDO) is to make the 

residual decoupled from unknown inputs (disturbances). But the original idea is to make 

the state estimation error decoupled from disturbances, and thus get residual independent 

disturbances. Watanabe et al. first proposed this approach for sensor fault detection and 

isolation by decoupling uncertainty. After that, Frank et al. generalized this method for 

fault detection and isolation [20, 73, 74]. Chen et al. applied this method to a realistic 

chemical process system example for robust FDI [75]. For robust FDI, many researchers 

made contributions to this area [26, 76-78]. Frank et al. used canonical form 

transformation method to simplify the computation [73]. Ding et al. generalized all of 

the methods above and used a very simple and general numerical method to design 

UIDO [1]. This design method has more freedom and the computation is quite efficient. 

This thesis mainly refers this method. 
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3. UNKNOWN INPUT DIAGNOSTIC OBSERVER (UIDO) DESIGN 

 

Luenberger first proposed the concept of observer to estimate system states in 

1964 [59], and then first proposed the functional observer for various purposes in 1971 

[61]. After that, observers have been studied extensively. The Unknown Input Observer 

(UIO) has received considerable attention in the literature [47, 62-66, 68-71, 73, 75, 78, 

79]. A brief introduction on the UIO has already been given in chapter 2. The study of 

UIO helps to design a special observer for fault diagnosis [1, 17, 18, 20, 22, 26, 29, 75-

81]. This kind of observer is called Unknown Input Diagnostic Observer (UIDO) [1]. 

The introduction can also be found in chapter 2. 

In the following subsections, Luenberger functional observer is first introduced. 

Then unknown input observer. Finally, UIDO design procedure and derivation is 

reviewed. The derivation mainly based on Ding’s book [1]. The only exception is the 

last subsection where instead of using parity space approach of Ding’s book [1], a simple 

alternative method is used to derive the inequality conditions and obtain the same 

results.     

3.1 Luenberger Functional Observer 

Considering continuous-time linear time-invariant (LTI) system as following: 

  ̇        (3.1) 

         (3.2) 

where      is a vector of state variables,       is a vector of input, and      is a 

vector of output variables. 
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As for system (3.1)-(3.2), the Luenberger type Functional Observer [61] is built 

for various purposes including feedback control and state estimation [59]. 

 ̇           (3.3) 

where      is a vector of observer state variables.   matrix is a Hurwitz matrix. The 

observer state z represents an estimation of   , where   is a transformation matrix. By 

modifying the matrix  , functional observer (3.3) can be identity state observer, reduced 

order observer, or other kinds of observers for various purposes [61]. 

3.2 Unknown Input Observer 

Considering continuous-time linear time-invariant (LTI) system with unknown 

inputs as follows: 

 ̇            (3.4) 

            (3.5) 

where      is a vector of state variables,       is a vector of input, and      is a 

vector of output variables.       is a vector of unknown input (uncertainty) vector. 

As for systems (3.4)-(3.5), unknown input observer is designed as following: 

 ̇           (3.6) 

where      is a vector of observer state variables.   matrix is a Hurwitz matrix. Similar 

to Luenberger functional observer, there is still a transformation matrix T between 

system state x and observer state z. The form of (3.6) is the same as Luenberger 

functional observer, but UIO is able to get the disturbances decoupled and still able to 

achieve various objectives by modifying the T matrix. Many researchers have been 

focused on this area to design a particular observer for a specific purpose, including state 
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estimation and feedback control purpose. Luenberger functional observer is a very 

general form, not only for the nominal system, but also for the system with disturbances 

or faults. The designing method is not introduced here. Interested readers can find 

introduction in chapter 2.      

3.3 Unknown Input Diagnostic Observer 

The objective of UIDO is to detect, isolate and identify the faults in the system. 

The method used is to generate a special residual which is sensitive to a specific fault but 

insensitive to other faults or disturbances, instead of trying to estimate the entire state 

vector. Through this way, the design freedom is significantly increased. The order of the 

UIDO could be equal to the order of the system, or it could be lower order or higher 

order. 

3.3.1 Problem Formulation 

The continuous-time linear time-invariant (LTI) system is given by 

  ̇                (3.7) 

                 (3.8) 

where      is a vector of state variables,       is a vector of input, and      is a 

vector of output variables.       is a vector of unknown input (uncertainty) vector, and 

      is a vector of fault. Matrices A, B,   ,   , C, D,    and    are appropriately 

dimensioned real constant matrices. We define 

    [         ] (3.9) 

    [         ] (3.10) 
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  [

  
  
  

] 

(3.11) 

where 

 

  {

                  (           ) 

                 (             )

                (           )

 

(3.12) 

Apply (3.9)-(3.12), we get 

    [    ] (3.13) 

    [    ] (3.14) 

Based on the Luenberger type observer, The Unknown Input Diagnostic Observer 

(UIDO) is formulated for given system (3.7)-(3.8) as following. 

  ̇           (3.15) 

And the residual is  

            (3.16) 

where      is a vector of observer state variables, and the residual is given by     . The 

G matrix is a Hurwitz stable. There is a state transformation matrix: T. The relationship 

between the state variables and the observer variables is that when that is no fault in the 

system and the sensors,  

    
   
  ( )|

   
   ( ) 

(3.17) 

The matrices T, G, H, L, v, w, q are to be selected. Some conditions are required to 

determine these matrices. The objective of the residual is to decouple the effect of the 

disturbance and to be sensitive to faults. In order to make the residual as the indicator of 
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faults, the residual must be zero when there are no faults in the system or sensors. When 

there are faults in the system or sensors, the residual must not be zero. 

Let’s define 

       (3.18) 

From (3.18), the error dynamics is represent by 

 ̇  (          )  (       )  (       ) 

 (       ) 
(3.19) 

If the following conditions hold, 

         (3.20) 

        (3.21) 

          (3.22) 

          (3.23) 

the error dynamics can be simplified to 

 ̇     (       )  (3.24) 

At steady state, 

 ̇     (       )    (3.25) 

From (3.25) we can get 

      (       )  (3.26) 

The residual r becomes 
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     (             )   (    )     

       (     )  (    )            

         (       )  (     )  (    )            

    [     (       )     ]  (     )  (    )       

(3.27) 

If the following additional conditions hold 

         (3.28) 

      (3.29) 

       (3.30) 

      (       )        (3.31) 

then 

   [     (       )     ]  (3.32) 

If      (       )      is invertable, 

   [     (       )     ]
    (3.33) 

Conditions (3.20)-(3.23) and (3.28)-(3.31) are called Luenberger conditions. 

 Summary of design condition as follows: 
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     (       )        

For convenience, these eight conditions are called Luenberger conditions in this thesis. 

3.3.2 Observer Design 

The observer design problem is to solve the Luenberger conditions. Because the 

canonical form is always an extremely convenient starting point for certain design 

problems [82], the pair (C, A) and the pair (w, G) is given in the canonical form [1]. 

Derivation Based on the (  ̅  ̅) Canonical Form

Canonical form for the system (3.7)-(3.8) is constructed by transforming the state 

vector to a new coordinate system where the system equations have a particular form 

[83]. 

 ̅            ̅ (3.34) 

Following Luenberger’s work [82], Korovin and Fomichev [83] found a way to select P 

matrix. From the observability, a composed matrix is selected as following. 

  

[
 
 
 
 
 
 
 
 
 
 

  
   
 

   
    

     
  
 

   
    

     
 

   
    ]

 
 
 
 
 
 
 
 
 
 

     ,   [

  
  
 
  

],                        (3.35) 

Then inverse the v matrix 
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     [          ] (3.36) 

Let 

     [                         ] (3.37) 

System (3.7)-(3.8) is then represented by observer canonical form 

  ̇̅        ̅                (3.38) 

        ̅             (3.39) 

Let 

  ̅         ̅       ̅̅ ̅        ̅       ̅    
   (3.40) 

System (3.38)-(3.39) becomes 

  ̇̅   ̅ ̅   ̅   ̅    ̅   (3.41) 

    ̅ ̅             (3.42) 

where 

 

 ̅  [

         
   

         

],        ̅  

[
 
 
 
 
                       

                         
    
 
    

    
 
    

   

    
 
    

    

 
 
 

 
 

    ]
 
 
 
 
 

 (3.43) 

 

     

[
 
 
 
 
 
      
      
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 ]
 
 
 
 
 

             

[
 
 
 
 
 
      
      
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 ]
 
 
 
 
 

        (3.44) 

      (     )       ,      (     )        (3.45) 

Let’s split  ̅ matrix into two parts [1], because there is one property of    matrix we can 

use later. 
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  ̅        ̅ (3.46) 

where 

        (         ) (3.47) 

 

    

[
 
 
 
 
     
     
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 ]
 
 
 
 

                (3.48) 

   ̅ is the rest of  ̅ matrix. 

Let’s take matrix G, w in the observer canonical form [1]. 

   [   ] (3.49) 

where 

` 

   

[
 
 
 
 
    
    
 
 
 

 
 
 

 
 
 

 
 
 ]
 
 
 
 

    (   ) (3.50) 

 
  [

  
 
  
]     (3.51) 

   [    ] (3.52) 

 (w,G) is set in the canonical observer form. Because every observer pair can be 

similarity transformed into canonical form, this observer canonical form does not lose 

generality. 

Derivation from Luenberger Condition TA=GT+LC [1] 

From (3.20) and (3.40),  

      ̅          ̅ (3.53) 
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Let  

  ̅      , and    ̅   ̅   (3.54) 

From (3.46),(3.49) ,(3.53) ,(3.54) 

  ̅   [   ] ̅   ̅ ̅ (3.55) 

Let  

 

 ̅  [
  
 
  

], and  ̅  [

  
 
  

] (3.56) 

Then  

 

[

  
 
  

]          [

  
 
  

]  [
  
 
  

]  ̅ (3.57) 

 

Expand (3.57) from the last row, we can get 

           (   ̅      )  

From the last second row 

          
  (   ̅      )   (     ̅        )  

From the last third row 

          
  (   ̅      )  

  (     ̅        )  

 (     ̅        ) 
 

    

        
    (   ̅      )  

    (     ̅        )  
     

 (   ̅      ) 
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    (   ̅      )  

    (     ̅        )  
     

 (   ̅      ) 
 

From the first row 

              ̅  

Derivation from Luenberger Condition vC-wT=0 [1] 

From (3.28), (3.40) and (3.54),  

   ̅    ̅    (3.58) 

From (3.52), (3.56) and (3.58) 

      ̅ (3.59) 

Substitute (3.59) into the expansion of (3.57) 

        ̅   (      ) ̅  

        ̅  
  (      ) ̅   (          ) ̅  

    

      ̅  
    (      ) ̅  

      (      ) ̅  

 (      ) ̅ 

 

      ̅  
    (      ) ̅  

      (      ) ̅  

 (      ) ̅ 

 

   ̅  
  (      ) ̅  

      (      ) ̅   (      ) ̅    (3.60) 

Lemma 3.1: 

                 
       ,  

holds if and only if      
   .  
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Further       for           .  

And      
    for               

From lemma 3.1 and (3.60) 

   ̅  
     

 (      ) ̅  
       

     

 (                ) ̅  
        

                 

    

           

Then the expansion of (3.57) become  

      ̅  

        ̅   (      ) ̅  

    

         ̅  
       (      ) ̅  

           (                ) ̅  

           ̅  
         (      ) ̅  

         (                ) ̅    

    

      ̅  
    (      ) ̅  

      (                ) ̅  
        

      ̅  
    (      ) ̅  

      (                ) ̅  
        

Let define: 

  ̅   (          )                     (3.61) 
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And 

  ̅   , and  ̅  [ ̅     ̅        ̅ ] (3.62) 

Then we can get  

 

 ̅

[
 
 
 
 
 ̅  

    

 ̅  
      

 
 ̅  

 ]
 
 
 
 

   (3.63) 

Thus  

     ̅  ̅  

       ̅  ̅    ̅    ̅  

    

        ̅  ̅  
        ̅    ̅  

            ̅     ̅  

          ̅  ̅  
          ̅    ̅  

          ̅     ̅    

    

     ̅  ̅  
     ̅    ̅  

       ̅     ̅  
        

     ̅  ̅  
     ̅    ̅  

       ̅     ̅  
        

Thus 

 

 ̅  

[
 
 
 
 
 
 
 
   
   ̅    
 
 

 ̅    
 
 ̅   
 ̅ 

 
 ̅    
 
 
 ̅ 
 

 
 
 ̅ 
 
 
 

     

 ̅      ̅ 
  ̅  
 
 ̅ 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

 ̅
 ̅  
 

 ̅  
        

 ̅  
      

 
 ̅  

   

 ̅  
   ]

 
 
 
 
 
 
 
 

 (3.64) 
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During the calculation, it is more convenient to use matrix A rather than matrix A0. Thus 

it is necessary to convert matrix A0 to matrix A. 

 

[

 ̅
 ̅  
 
 ̅  

 

]  [

   
  ̅    
 

  ̅  
     

 
 

 
  ̅  

    

 
 
 
 

] [

 ̅
 ̅(      ̅)

 
 ̅(      ̅)

 

] (3.65) 

The formula of (3.65) is obvious, thus there is no need to prove. 

According to (3.46) and (3.65), we can get: 

 

[

 ̅
 ̅  
 

 ̅  
   

]  [

   
  ̅    
 

  ̅  
     

 
 

 
  ̅  

    

 
 
 
 

] [

 ̅
 ̅ ̅
 

 ̅ ̅   

] (3.66) 

According to (3.66) 

 

[
 
 
 
 
 ̅  

    

 ̅  
      

 
 ̅  

 ]
 
 
 
 

 

[
 
 
 
   ̅  

           ̅  

  ̅  
         ̅    
 

  ̅  
     

 
 

 
  ̅  

        

    

 
  ̅  
 

  ̅  
          

    

 
 
 
 

    

 
 
 

  ̅  

    

 
 
 
 ]
 
 
 
 

[

 ̅
 ̅ ̅
 
 ̅ ̅ 

] (3.67) 

Let’s define: 

 

   

[
 
 
 
   ̅  

           ̅  

  ̅  
         ̅    
 

  ̅  
     

 
 

 
  ̅  

        

    

 
  ̅  
 

  ̅  
          

    

 
 
 
 

    

 
 
 

  ̅  

    

 
 
 
 ]
 
 
 
 

 (3.68) 

Then (3.67) becomes 

 

[
 
 
 
 
 ̅  

    

 ̅  
      

 
 ̅  

 ]
 
 
 
 

   [

 ̅
 ̅ ̅
 
 ̅ ̅ 

] (3.69) 

According to (3.63) and (3.69), we can get:  
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 ̅

[
 
 
 
 
 ̅  

    

 ̅  
      

 
 ̅  

 ]
 
 
 
 

  ̅  [

 ̅
 ̅ ̅
 
 ̅ ̅ 

]    (3.70) 

Let’s define: 

     ̅   (3.71) 

where: 

    [             ] (3.72) 

According to (3.70)-(3.71), we can get: 

 

  [

 ̅
 ̅ ̅
 
 ̅ ̅ 

]    (3.73) 

According to (3.64), (3.66), (3.68), (3.71) and (3.72), we can get: 

 

 ̅  [

         
      

 
    

 
 

 
 

    

          
     

 
 

 
 

] [

 ̅
 ̅ ̅
 

 ̅ ̅   

] (3.74) 

According to Lemma 3.1 and (3.61), we can get: 

 
{
         ̅                          
                                       

 (3.75) 

From (3.75) 

 

 ̅  
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  ̅             

 
  ̅         
  ̅       ]

 
 
 
 
 
 
 

 (3.76) 
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From (3.54), (3.76) 

 

  

[
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 ̅  
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   (3.77) 

According to and (3.62), (3.68), (3.71), (3.72) 

 

   [ ̅     ̅        ̅ ]
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 (3.78) 

According to (3.77), (3.78) 

 

   [

    
    
 

      

]     (3.79) 

Derivation Based on Original System 

The results above are based on the (  ̅  ̅) observer canonical form. Now it’s time 

to remove the canonical form. 

Let 

  ̅         ̅       ̅̅ ̅        ̅       ̅    
   (3.80) 

According to (3.73) and (3.80) 

 

  [

 
  
 
   

]    (3.81) 

According to (3.74) and (3.80) 
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  [

         
      

 
    

 
 

 
 

    

          
     

 
 

 
 

] [

 
  
 

     

] (3.82) 

Derivation from Luenberger Condition: TEd - LFd =0 and VFd=0 [1] 

According to (3.79) and (3.82), 
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]    [

    
    
 

      

]           (3.83) 

According to (3.30) and (3.83) 
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]    [

    
    
 

      

]      (3.84) 

Let’s expand (3.84) from the last row to the first row: 

                     

                                

       
                                     

    

       
              

                               

   

 

From the expanded formula of (3.84) and (3.30), we can construct a new form as 

following: 
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[             ] [

    
      
 

       

 
 

 
   

    

 
 
 
  

]    (3.85) 

Thus 

 

  [

    
      
 

       

 
 

 
   

    

 
 
 
  

]    (3.86) 

Derivation from Luenberger Condition:           and      (       )  

      

The parity space approach can solve these two Luenberger conditions [1].  But 

this thesis uses a different but more direct and simple method to derive from these two 

conditions. 

In order to simplify the problem, let’s make 

       (3.87) 

According to (3.23), (3.79) and (3.82) 
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]    [

    
    
 

      

]      (3.88) 

Let’s expand (3.88) 

 

[
 
 
 
 
      

              
                               

 
      

                                 
                           

                ]
 
 
 
 

     

From the expansion of (3.88), we can construct a new form as following: 
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  [

    
      
 

       

 
 

 
   

    

 
 
 
  

]    (3.89) 

3.3.3 Summary of UIDO Design for Fault Diagnosis 

For the unknown input observer,  

  ̇             

              

The design procedure has the following steps [1].  

Step 1: Solve   [            ]  [   ] for vs; 

where 

    [                       ]  
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]  

 

     [

 
  
 
   

]  

 

     [

    
      
 

       

 
 

 
   

    

 
 
 
  

]  

It is solvable if and only if 

     [            ]       [        ]  

Step 2: Given vs, calculate v and T; 



42 
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] [

 
  
 

     

]  

Step 3: Select G and w; 

 

  

[
 
 
 
 
 
 
 
 
 

   

 
 
 
 
 

    

 
 
 
 
 

    

 
 
 
 
 

    

  
  
 
    
  ]
 
 
 
 

       

where   [

  
 
  
]     is chosen to make G Hurwitz. 

   [    ]  

Step 4: Calculate L, H, q; 

 

   [

    
    
 

      

]         

          

       

3.3.4 MATLAB Program for UIDO Design 

The purpose of the MATLAB program is to design an unknown input diagnostic 

observer (3.15)-(3.16) for linear system (3.7)-(3.8). 

The input of this MATLAB program is the observer order s, and linear system 

matrices A, B, Ed, Ef, C, D, Fd and Ff. Based on the linear system, the unknown input 

diagnostic observer can be designed automatically. And the observer eigenvalues are 
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designed to be faster than the linear system but slower than the ten times fast of the 

linear system. The purpose of the upper limit is to be tolerant to noises. The output of 

this MATLAB program is the UIDO matrices T, G, H, L, v, w and q. 

The MATLAB program is as follows: 

function [Tout,Gout,Hout,Lout,vout,wout,qout] = ObserDesign( s,A,B,Ed,Ef,C,D,Fd,Ff ) 

%% The objective of this function is to design UIDO 

%% Detailed explanation goes here 

%% Input 

% s: Observer order 

% A,B,Ed,Ef,C,D,Fd,Ff are the system matrices 

% dx/dt = A*x + B*u + Ed*d + Ef*f 

%     y = C*x + D*u + Fd*d + Ff*f 

%% Output 

% Tout,Gout,Hout,Lout,vout,wout,qout are the observer matrices 

% dz/dt = G*z + H*u + L*y 

%     r = v*y - w*z - q*u 

 % The eigenvalues of Observer are designed to be faster than the system but slower than 10 

times fast % of the system. 

%% Calculation begins 

n=size(A,1); 

m=size(C,1); 

ku=size(B,2); 
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kf=size(Ef,2); 

kd=size(Ed,2); 

  

Hos=zeros((s+1)*m,n); 

Hfs=zeros((s+1)*m,(s+1)*kf); 

Hds=zeros((s+1)*m,(s+1)*kd); 

  

%get Hos 

for i=1:s+1 

    row_start=(i-1)*m+1; 

    row_end=i*m; 

    Hos(row_start:row_end,1:n)=C*A^(i-1); 

end 

  

%get Hfs and Hds 

for i=1:s+1 %i represent row i 

    for j=1:s+1 %j represent column j 

        row_start=(i-1)*m+1; 

        row_end=i*m; 

        column_start_d=(j-1)*kd+1; 

        column_end_d=j*kd; 

        column_start_f=(j-1)*kf+1; 

        column_end_f=j*kf; 

        if i==j 
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            Hfs(row_start:row_end,column_start_f:column_end_f)=Ff; 

            Hds(row_start:row_end,column_start_d:column_end_d)=Fd; 

        elseif i-j>=1 

            Hfs(row_start:row_end,column_start_f:column_end_f)=vpa(C*A^(i-j-1)*Ef,100); 

            Hds(row_start:row_end,column_start_d:column_end_d)=vpa(C*A^(i-j-1)*Ed,100); 

        end 

    end 

end 

H_od_s=[Hos Hds]; 

H_fod_s=[Hfs Hos Hds]; 

  

eigOfSys=max(real(eig(A))); % find the system speed 

  

%% step 1: Check rank and original system stability, and calculate vs 

if rank(H_fod_s)>rank(H_od_s) && eigOfSys<0 

    vs=vpa(null(H_od_s')',100); 

    row_vs=size(vs,1); 

    numi=1; 

    vs_correct=vs(numi,:); 

    while rank(vs_correct*Hfs)==0 && numi<row_vs 

        numi=numi+1; 

        vs_correct=vs(numi,:); 

    end 
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    %% Step 2: Given vs, calculate v and T 

    Vs_matrix=zeros(s+1,m); 

    for i=1:s+1 

        Vs_matrix(i,1:m)=vs_correct( ((i-1)*m+1) : i*m ); 

    end 

    v=Vs_matrix(s+1,:); 

     

    % get T_x_z 

    Vs_T=zeros(s,m*s); 

    for i=1:s 

        for j=1:s 

            if i+j<=s+1 

                Vs_T(i,(j-1)*m+1:j*m)=Vs_matrix(i+j,:); %5.71 

            end 

        end 

    end 

    T_x_z=Vs_T*Hos(1:s*m,:); 

     

    %% Step 3: get G and w 

    G0=[zeros(1,s-1);eye(s-1)]; 

    eigens=zeros(s,1); 

    temp=(10-1)*eigOfSys/(s+1); 

    for i=1:s 

        eigens(i)=eigOfSys+i*temp; 
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    end 

    g0=poly(eigens)'; 

    g=zeros(s,1); 

    for i=1:s 

        g(i)=-g0(s+2-i); 

    end 

    G=[G0,g]; 

    eig(G); 

     

    % get w 

    w=zeros(1,s); 

    w(1,s)=1; 

     

    %% Step 4: Calculate L, H, q 

    % get L 

    L=-Vs_matrix(1:s,:)-g*v; 

    % get H q 

    q=v*D; 

    H=T_x_z*B-L*D; 

     

    %% Prepare to return designed matrix 

    Tout=T_x_z; 

    Gout=G; 

    Hout=H; 
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    Lout=L; 

    vout=v; 

    wout=w; 

    qout=q; 

else 

    Tout='No Solution'; 

    Gout='No Solution'; 

    Hout='No Solution'; 

    Lout='No Solution'; 

    vout='No Solution'; 

    wout='No Solution'; 

    qout='No Solution'; 

end 

end 
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3.3.5 UIDO Design for Fault Diagnosis for Linear Systems 

Consider a linear system with multiple faults and disturbances: 
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There are    unknown disturbances and    unknown faults in this system. For 

fault diagnosis,    UIDO need to be designed.  

Design of i
th

 UIDO: detect, isolate and identify    

Step 1 Rearrangement of the System  

In this step, only    is considered as the fault, and the other faults and 

disturbances are all considered as disturbances  
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Step 2 Design the UIDO Based on System (3.92)-(3.93) 

According to section 3.3.3, the ith UIDO can be designed as follows. 

  ̇                 (3.94) 

                   (3.95) 

Equations (3.94)-(3.95) can be designed automatically using the MATLAB 

program in section 3.3.4 
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4. APPLICATION TO EXOTHERMIC CSTRS

This chapter presents the results obtained by the application of the algorithms in 

Chapter 3 to exothermic Continuous Stirred-tank Reactors (CSTRs). The chemical 

reaction rate is quite sensitive to the system temperature. For an exothermic CSTR 

system, runaway reaction or thermal explosion may occur if the heat generation rate 

exceeds the heat removal rate. This energy accumulation may result from malfunction of 

cooling system or temperature sensors and it could seriously affect the closed-loop 

temperature-control system. Therefore, it is very important to detect faults in sensors and 

faults in cooling jacket in the CSTR system. 

As for the model of CSTR systems, it will be assumed that the exothermic CSTR 

is adequately modeled by three differential equations: 

 A component mass balance for the reactant.

 An energy balance for the reactor.

 An energy balance for the cooling jacket.

Therefore the model includes three state variables: component concentration 

(  ), reactor temperature (T) and cooling jacket temperature (  ). Three representative 

case studies will be presented here: 

 Case 1: two possible faults in the reactor and cooling jacket temperature

sensors. 

 Case 2: one possible fault in the reactor temperature sensor, and another

one in heat exchanger. 
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 Case 3: location of possible faults is the same as case 2, but a model 

uncertainty of the reaction activation energy is introduced in the model. 

Each of the case studies will involve a different reaction system.       

4.1 Case 1: Two Temperature Sensor Faults 

For some highly exothermic CSTRs with explosive reactants or products 

typically in munitions factories, the reactor and the cooling system have to be well 

maintained. And the fouling in the cooling system is relatively easy to be regularly 

maintained. The possible risks may come from the presence of faults in the temperature 

sensors during the operation process. Therefore, this case only considers one possible 

fault in the temperature sensor of reactor and the other possible fault in the temperature 

sensor of cooling jacket. 

4.1.1 Introduction 

RDX, known as Research Department Formula X, is an explosive nitroamine 

which is widely used in military and industrial applications. It was developed as an 

explosive which was several times as powerful as TNT, and RDX was widely used 

during World War II. RDX is stable in storage and is considered one of the most 

powerful and brisant of the military high explosives [84]. During World War II, the US 

produced about 15,000 long tons (15,000 t) per month and Germany about 7,000 long 

tons (7,100 t) per month [85]. RDX has several advantages for advanced propulsion, 

including better performances (large amount of gas, high energy, high specific impulse 

for rockets and high impetus for guns), safety (difficult accidental ignition and low 

https://en.wikipedia.org/wiki/Explosive
https://en.wikipedia.org/wiki/Nitroamine
https://en.wikipedia.org/wiki/Trinitrotoluene
https://en.wikipedia.org/wiki/World_War_II
https://en.wikipedia.org/wiki/Brisance
https://en.wikipedia.org/wiki/World_War_II
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sensitivity in open air), and environment friendliness (smokeless, nontoxic, no corrosive 

combustion products) [86]. 

There are several methods of RDX manufacture including: (1) the reaction of 

nitric acid with hexamine [87], (2) reaction of the mixture of hexamine, ammonium 

nitrate and nitric acid [88], (3) preparation from formaldehyde, sulphamic acid and nitric 

acid [88], (4) preparation from paraformaldehyde, ammonium nitrate and acetic 

anhydride [88], (5) preparation from hexamine dinitrate, ammonium dinitrate and acetic 

anhydride [89]. The most widely used method in munitions factory is the reaction of 

hexamine with excess concentrated nitric acid. But this method is very dangerous in its 

reaction process [90]. 

4.1.2 Reactive System 

The chemical reaction of hexamine and nitric acid to manufacture RDX is 

expressed by the following equation including main reaction and side reaction [90]. 

 
                  

 

 
         

 

 
   (    )  

 

 
       

 

 
    

(Hexamine)                             (RDX) 

      A                B                      C                   D                   E               F                  

(4.1) 

The reaction rate is: 

 
           ( 

  
  
)  
     (4.2) 

where CB is the major component in the mixture, and is assumed to be constant during 

the process. 
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4.1.3 Modeling 

Model of CSTR 

The mass balance in the reactor is: 

 
  ̇  

 

 
(       )     (4.3) 

The heat balance in the reactor is: 

 
 ̇  

 

 
(     )  

(    )

   
   

  (    )

    
 (4.4) 

The heat balance in the cooling jacket is: 

 
 ̇  

  
  
(       )  

  (    )

       
 (4.5) 

Table 4.1 gives the process parameters. These parameters are mainly taken from 

[91], except that instead of assuming constant cooling temperature, the cooling jacket 

dynamics is included in the model.   

Modeling of Faults    

Two faults will be considered: 

 An additive fault in reactor temperature sensor 

 An additive fault in cooling jacket temperature sensor 

No disturbances and other faults are considered in this case. 

The system output is: 

 
[
  
  
]  [

    
     

] (4.6) 
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Table 4.1: Process parameters of RDX manufacturing in CSTR  

Parameter Description Value Unit 

V Volume of the reactor 630 L 

k0 Frequency factor of Arrehenius form 2.06×10
4
  (L/mole)

1.28
·s

-1
 

Ea Activation energy 47149  J/mol 

∆H Enthalpy of reaction (exothermic) 87319.5  J/mol 

ρ Density of the reacting mixture 1317.5 g/L 

Cp Heat capacity of the reacting mixture 1.989  J/(g·K) 

Fin Feed flow rate 0.79  L/s 

CAin Inlet feed concentration of component A 0.9851  mol/L 

CBin Inlet feed concentration of component B 20.9087  mol/L 

Tin Inlet feed temperature 298.15 K 

Vw Volume of the cooling jacket 60  L 

ρw Density of the reacting coolant 1000  g/L 

Cpw Heat capacity of the coolant 4.2  J/(g·K) 

U Overall heat transfer coefficient 1400 w/m
2
·K 

Å Overall heat transfer area 7  m
2
 

Twin Inlet coolant temperature 293.15  K 

Fwin Inlet coolant flow rate 2  L/s 

R Gas constant 8.3144621  J/(K·mol) 

 

CA, T, Tw are state variables. At steady state: 

CA,s=0.3615 mol/L 

Ts=301.2448K 

Tw=297.5088 K 

4.1.4 Observer Design 

There are two possible faults in the system, thus two observers are required. Each 

observer is to estimate one fault, and the effect of the other fault is decoupled on the 

observer and residual.  
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Observer 1: Estimate the Reactor Temperature Sensor Fault 

The objective of this observer is to estimate the possible fault in the reactor 

temperature sensor. In order to decouple the effect of the other possible fault in the 

cooling jacket temperature sensor, cooling jacket fault is considered to be disturbance.  

The model of CSTR is linearized at steady state (fault and disturbance are zero). 

The linearized system is as follows (3.7)-(3.8): 

  ̇                 

                  

where: 
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Based on the linearized system, the unknown input diagnostic observer is as follows 

(3.15)-(3.16): 

  ̇            

             

Based on the observer, the estimated fault is as follows (3.33): 
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   [     (       )     ]
     

According to section (3.3.3), set s=3, then: 
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Thus it is solvable of   [            ]  [   ] for    

Step 1 Solve   [            ]  [   ] for   ; 

After calculation,  

    [                ]   

Step 2 According to vs, get v and T; 

        [       ]   
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Step 3 Choose g to make G stable, and w is also determined. 
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Step 4 Get L, H, q; 
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Observer 2: Estimate Cooling Jacket Temperature Sensor Fault 

The objective of this observer is to estimate the possible fault in the cooling 

jacket temperature sensor. In order to decouple the effect of the other possible fault in 

the reactor temperature sensor, reactor temperature sensor fault is considered to be 

disturbance.  

The model of CSTR is linearized at steady state (fault and disturbance are zero). 

The linearized system is as follows (3.7)-(3.8): 

  ̇                 
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where: 
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Based on the linearized system, unknown input diagnostic observer is as follows (3.15)-

(3.16): 

  ̇            

             

Based on the observer, the estimated fault is as follows (3.33): 
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According to (3.3.3), set s=3, then: 
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  [

       
       
        

]  

   [       ]  

   [   ]  

 q=0  

4.1.5 Simulation 

The system model (4.3)-(4.6) and observers are simulated by MATLAB. The 

initial state of the system is the steady state without fault. White noises with normal 

distribution have been added to the temperature sensor. Two step faults in the 

temperature sensors occur at different times. The initial state of the observers is zero. 

The eigenvalues of observers are set negative making sure the observers are stable.   

Simulation Conditions for the Reactor 

Initial Conditions 

 

[
   
  
   

]  [
      
        
        

]  

Noise 

Normally distributed random noises with zero mean and standard deviation 0.1 

were simulated with the MATLAB function “randn” and were added to the simulated 

values of   and   . 
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Faults 

         (it occurs at t=300s)  

          (it occurs at t=100s)  

Time 

 Initial Time:         

 Final Time:            

Simulation Conditions for the Observers 

Initial Conditions 

 
Observer 1: [

  
  
  
]  [

 
 
 
]  

 
Observer 2: [

  
  
  
]  [

 
 
 
]  

Eigenvalues 

Based on the eigenvalues of linearized systems, observer eigenvalues are selected 

faster than the linearized system but slower than ten times the speed of the linearized 

system. 

Linearized System 1: eig = { -0.0031 + 0.0019i, -0.0031 - 0.0019i, -0.0755}; 

Linearized System 2: eig = { -0.0031 + 0.0019i, -0.0031 - 0.0019i, -0.0755}; 

Observer 1: eig = {-0.0102, -0.0173, -0.0244}; 

Observer 2: eig = {-0.0102, -0.0173, -0.0244}; 
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4.1.6 Simulation Results and Discussion 

To validate the results, nonlinear model of the CSTR system (4.3)-(4.6), the 

corresponding linearized system (3.7)-(3.8) and the observers (3.15)-(3.16) have been 

programmed and simulated by MATLAB. The simulation results are described in the 

following subsections. In order to better evaluate the performance of the unknown input 

diagnostic observer, states of system and observers along with residual signal and 

estimated faults are plotted. 

System Results for the Reactor 

The CSTR system starts at steady state. Fig. 4.1 shows that at time t=100s and 

t=300s, there are temperature step changes. But we can not determine if the step signals 

from the measurements are caused by system state changes or sensor faults. Therefore, it 

is necessary to build an indicator signal (residual) for fault detection. 
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Fig. 4.1 CSTR state variables over time 

Simulation Results for the Observers 

Observer 1 

Fig. 4.2 shows that observer 1 only responds at t = 300s (when reactor 

temperature sensor fault occurs), and has no response at t = 100s (when cooling jacket 

temperature sensor fault occurs).  
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Fig. 4.2 Observer 1 state variables over time 

 

Observer 2 

Fig. 4.3 shows that observer 2 responds at t = 100s (when cooling jacket 

temperature sensor fault occurs). 
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Fig. 4.3 Observer 2 state variables over time 

 

Fault Diagnosis 

Even though the observer states can represent the presence of a specific fault, 

observer states are also affected by the system state. We can not determine the presence 

of faults by observer states. It is necessary to check the residual signal, which is only 

sensitive to a specific fault at steady state.  

Residual works as an indicator of a specific fault. Fig. 4.4 shows that at t = 300s 

(and Fig. 4.6 at t = 100s), there is a big spike. This change is caused by the reactor 
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temperature sensor fault. Sensor output signals are the input of observers. Step change in 

the sensor signal may cause instant large deviations of observer sates and residual at 

transient period can not be used to identify the size of fault. After a while, the residual 

comes back to steady state.  

From Fig. 4.4 and Fig. 4.6, the new steady states of residuals are nonzero, which 

successfully indicates the presence of faults. That is to say, residual signals are enough 

for fault detection and isolation. But just from the residual signal, it is still difficult to 

evaluate the size of fault. From (3.33), we can estimate the value of fault based on the 

residual signal. Fig. 4.5 and Fig. 4.7 show that the estimated faults are around the real 

faults within an error band caused by sensor noises.    
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Observer 1 

 

Fig. 4.4 Residual for reactor temperature sensor fault over time 
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Fig. 4.5 Estimated fault compared with real fault in reactor temperature sensor 
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Observer 2 

 

Fig. 4.6 Residual for cooling jacket temperature sensor fault over time 
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Fig. 4.7 Estimated fault compared with real fault in cooling jacket temperature sensor 

 

So far, fault detection, isolation and identification have been achieved at the 

same time. By observing the simulation results, it is easy to immediately notice that the 

unknown input diagnostic observer works well on this exothermic reactor. 

4.2 Case 2: One Sensor Fault and One Component Fault 

In this case, two possible faults are concerned: one possible fault is in the reactor 

temperature sensor and the other one is in the heat exchanger caused by fouling. The 

other parts of CSTR system are well maintained. 
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4.2.1 Introduction 

Acetic anhydride is an organic compound widely used in the production of 

cellulose acetate, explosives, aspirin, aceticacid, and in others organic synthesis. Its 

handling can be dangerous. It is an irritant and highly flammable liquid and, in gaseous 

phase, it can release toxic vapors. Moreover, the acetic anhydride vapor/air mixtures, at 

temperatures above 322K, maybe come explosive. The acetic anhydride hydrolysis is 

another reaction with high thermal sensitivity [92, 93]. 

4.2.2 Reactive System  

The hydrolysis of acetic anhydride, is an exothermic reaction in liquid phase 

catalyzed by sulfuric acid. It can be written as follows:  

 
(     )  ( )      ( )  

              
→                   ( ) 

                             A                     B                                     C 

(4.7) 

The reaction rate is: 

 
        

(
  
  
)   (4.8) 

where    is the sulfuric acid concentration. 

4.2.3 Modeling 

Model of CSTR 

The mass balance in the reactor is: 

 
  ̇  

 

 
(       )     (4.9) 

The heat balance in the reactor is: 
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The heat balance in the cooling jacket is: 

 
  ̇  
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Table 4.2 gives the values of parameters. The kinetic parameters are from [92, 93].  

Modeling of Faults    

Two faults will be considered: 

 An component fault in cooling jacket because of fouling 

 An additive fault in reactor temperature sensor 

No disturbances and other faults are considered in this case. 

The system output is: 
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Table 4.2: Process parameters of acetic anhydride hydrolysis in CSTR 

Parameter Description Value Unit 

V Volume of the reactor 100 L 

k0 Frequency factor of Arrehenius form 1.85×10
13

 L/(mole·s) 

Ea Activation energy 93446 J/mol 

∆H Enthalpy of reaction (exothermic) 58520 J/mol 

ρ Density of the reacting mixture 1050 g/L 

Cp Heat capacity of the reacting mixture 3.533 J/(g·K) 

Fin Feed flow rate 1.5 L/s 

CAin Inlet feed concentration of component A 5 mol/L 

Cs Sulfuric acid concentration in CSTR 2 mol/L 

Tin Inlet feed temperature 323.15 K 

Vw Volume of the cooling jacket 30 L 

ρw Density of the reacting coolant 1000 g/L 

Cpw Heat capacity of the coolant 4.2 J/(g·K) 

U Overall heat transfer coefficient 400 w/m
2
·K 

Å Overall heat transfer area 10 m
2
 

Twin Inlet coolant temperature 293.15 K 

Fwin Inlet coolant flow rate 2 L/s 

R Gas constant 8.3144621 J/(K·mol) 

 

  ,  ,    are state variables. At steady state: 

    =0.0439 mol/L 

  =365.9042 K 

    =316.6191 K 

4.2.4 Observer Design 

There are two possible faults in the system, thus two observers are required. Each 

observer is to estimate one fault, and the effect of the other fault is decoupled on the 

observer and residual. 
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Observer 1: Estimate the Reactor Temperature Sensor Fault 

The objective of this observer is to estimate the possible fault in the reactor 

temperature sensor. In order to decouple the effect of the other possible fault in the heat 

exchange coefficient caused by fouling in the heat exchanger, heat exchanger fault is 

considered to be disturbance. 

The model of CSTR is linearized at steady state (f1, d are zero). The linearized 

system is as follows (3.7)-(3.8): 

  ̇                 

                  

where: 
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Based on the linearized system, the unknown input diagnostic observer is as follows 

(3.15)-(3.16): 
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  ̇            

             

Based on the observer, the estimated fault is as follows (3.33): 
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According to section (3.3.3), set s=2, then: 
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Thus it is solvable of   [            ]  [   ] for    

Step 1: Solve   [            ]  [   ] for   ; 

After calculation,  

    [        ]  [                                           ]  
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Step 2: According to vs, get v and T; 
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Step 3: Choose g to make G stable, and w is also determined. 
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Step 4: Get L, H, q; 
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Observer 2: Estimate heat exchange coefficient 

The objective of this observer is to estimate the possible fault in the heat 

exchanger. In order to decouple the effect of the other possible fault in the reactor 

temperature sensor, reactor temperature sensor fault is considered to be disturbance. 

The model of CSTR is linearized at steady state (f2, d are zero). The linearized 

system is as follows (3.7)-(3.8): 

  ̇                 
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where: 

 

  [

       
    
       

]                                                    [           ]  

 
  [

                         
       
 

               
             

]                  [
 
 

       
]  

   [
   
   

]                                                     [
 
 
]  

 
   [

 
 
 
]                                                                [

 
      
       

]  

    [
 
 
]                                                                 [

 
 
]  

Based on the linearized system, the unknown input diagnostic observer is as follows 

(3.15)-(3.16): 

  ̇            

             

Based on the observer, the estimated fault is as follows (3.33): 
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According to section (3.3.3), set s=3, then: 
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 q=0  

4.2.5 Simulation 

The system model (4.9)-(4.12) and observers are simulated by MATLAB. The 

initial state of the system is the steady state without fault. White noises with normal 

distribution have been added to temperature sensors. One step fault in the temperature 

sensor and one ramp fault in heat exchanger occur at different time. The initial state of 

the observers is zero. The eigenvalues of observers are set negative making sure the 

observers are stable. 

Simulation Conditions for the Reactor 

Initial Conditions 
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Noise 

Normally distributed random noises with zero mean and standard deviation 0.1 

were simulated with the MATLAB function “randn” and were added to the simulated 

values of   and   . 

Faults 

        (it occurs at t=300s) 

           (it occurs at t=100s and increases continuously. f2 is linear to 

time. At t=5000s, f2=0.1U) 

Time 

 Initial Time:         

 Final Time:            

Simulation Conditions for the Observers 

Initial Conditions 

 Observer 1: [
  
  
]  [

 
 
]  

 
Observer 2: [

  
  
  
]  [

 
 
 
]  

Eigenvalues 

Based on the eigenvalues of linearized systems, observer eigenvalues are selected 

faster than the linearized system but slower than ten times the speed of the linearized 

system. 
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Linearized System 1: eig = { -0.0217, -0.1032, -1.6086}; 

Linearized System 2: eig = { -0.0217, -0.1032, -1.6086}; 

Observer 1: eig = {-0.0868, -0.1520}; 

Observer 2: eig = {-0.0706, -0.1194, -0.1683}; 

4.2.6 Simulation Results and Discussions 

To validate the results, nonlinear model of the CSTR system (4.9)-(4.12), the 

corresponding linearized system (3.7)-(3.8) and the observers (3.15)-(3.16) have been 

programmed and simulated by MATLAB. The simulation results are described in the 

following subsections. In order to better show out the superiority of the unknown input 

diagnostic observer, states of system and observers along with residual signal and 

estimated faults are plotted.  

System Results for the Reactor 

The CSTR system starts at steady state. Fig. 4.8 shows that at time t = 300s and t 

= 100s, there is a step change in reactor temperature and a ramp change in cooling 

jacket, respectively. But we still can not determine that the signal changes from the 

measurements are caused by system state changes or unknown inputs. Therefore, it is 

necessary to build an indicator signal (residual) for fault detection. 
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System State Variable 

 

Fig. 4.8 CSTR state variables over time 

 

Simulation Results for the Observers 

Observer 1 

Fig. 4.9 shows that observer 1 has step change at t=300s (when reactor 

temperature sensor fault occurs) and has little ramp change since t=100s (when heat 

exchanger fouling begins). 
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Fig. 4.9 Observer 1 state variables over time 

Observer 2 

Fig. 4.10 shows that observer 2 responses at t = 100s (when heat exchanger 

fouling begins). 
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Fig. 4.10 Observer 2 state variables over time 

Fault Diagnosis 

Fig. 4.9 shows that the observer state may be affected by both system state and 

faults. We can not determine the presence of faults by observer states. It is necessary to 

check the residual signal, which is only sensitive to a specific fault at steady state. 

Residual works as an indicator of a specific fault. Fig. 4.11 shows that at t = 

300s, there is a big spike. This change is caused by the reactor temperature sensor fault. 

Sensor output signals are the input of observers. Step change in the sensor signal may 

cause instant large deviations of observer sates and residual at transient period can not be 

used to identify the size of fault. After a while, the residual comes back to steady state.  
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From Fig. 4.11 and Fig. 4.13, the new states of residuals are nonzero, which 

successfully indicate the presence of faults. That is to say, residual signals are enough 

for fault detection and isolation. But just from the residual signal, it is still difficult to 

evaluate the size of fault. From (3.33), we can estimate the value of fault based on the 

residual signal. Fig. 4.12 and Fig. 4.14 show that the estimated faults are around the real 

faults within an error band caused by sensor noises.   

Observer 1 

Fig. 4.11 Residual for reactor temperature sensor fault over time 
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Fig. 4.12 Estimated fault compared with real fault in reactor temperature sensor 
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Observer 2 

 

Fig. 4.13 Residual for heat exchanger fouling fault over time 
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Fig. 4.14 Estimated fault compared with real fault in heat exchanger 

So far, fault detection, isolation and identification have been achieved at the 

same time. By observing the simulation results, it is easy to immediately notice that 

unknown input diagnostic observer works well for fault diagnosis. 

4.3 Case 3: Dealing with Model Uncertainties 

In this case, an analytical instrument is used to measure the component 

concentration. The analytical sensor is more likely to have fault. In this case, another 

possible fault is in the heat exchanger. Also, model uncertainty of reaction activation 

energy is present in the model. This case is different from the previous two cases: first, a 
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model uncertainty exists in the reaction activation energy; second, the fault in the heat 

exchanger may be as high as 50% of the nominal value. Thus model mismatch increases 

in this case. In order to investigate the effect of model uncertainty on fault diagnosis, two 

alternative pairs of observers have been examined. The first pair was designed on the 

basis of the linearized system, as in the previous case study. The second pair considered 

(i) model uncertainty as an additive disturbance to the reaction rate and (ii) the overall 

heat exchange rate as fault.  

4.3.1 Introduction 

A non-isothermal continuous stirred tank reactor (CSTR) is considered with 

coolant jacket dynamics, where the following exothermic irreversible reaction between 

sodium thiosulfate and hydrogen peroxide is taking place [53, 54]. 

4.3.2 Reactive System  

                                     

 A              B                  C                D              E 

(4.13) 

The reaction rate is: 

 
       

(
     
  

)  
 
 (4.14) 

where d1 is the uncertainty of the reaction activation energy, and E is the nominal 

activation energy. 
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4.3.3 Modeling 

Model of CSTR 

The mass balance in the reactor is: 

 
  ̇  

 

 
(       )     (4.15) 

 

The heat balance in the reactor is: 

 
 ̇  

 

 
(     )    

(    )

   
 (
(    ) (    )

    
) (4.16) 

 

The heat balance in the cooling jacket is: 

 
  ̇  

  
  
(       )  (

(    ) (    )

       
) (4.17) 

The parameters are given in Table 4.3. The parameters are mainly from [54]. 

Modeling of Faults 

Two faults will be considered: 

 An additive fault    in the analytical sensor 

 An fault    in heat exchanger because of fouling 

Modeling of Disturbances 

One disturbance will be considered: 

 The reaction activation energy has an uncertainty    

The system output is: 
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[
  
  
  
]  [

     
 
  

] (4.18) 

The concentration of component A is assumed to be measured by an analytical sensor. 

Table 4.3: Process parameters of reaction sodium thiosulfate and hydrogen 

peroxide in CSTR 

Parameter Description Value Unit 

V Volume of the reactor 100 L 

k0 Frequency factor of Arrehenius form 6.85×10
11

L/(s·mol) 

Ea Activation energy 76534.704 J/mol 

∆H Enthalpy of reaction (exothermic) 596.619×10
3

J/mol 

ρ Density of the reacting mixture 1000 g/L 

Cp Heat capacity of the reacting mixture 4.2 J/(g·K) 

Fin Feed flow rate 1 L/s 

CAin Inlet feed concentration of component A 1 mol/L 

CBin Inlet feed concentration of component B 2 mol/L 

Tin Inlet feed temperature 278.15 K 

Vw Volume of the cooling jacket 30 L 

ρw Density of the reacting coolant 1000 g/L 

Cpw Heat capacity of the coolant 4.2 J/(g·K) 

U Overall heat transfer rate 500 w/(m
2
·K)

Å Overall heat transfer area 10 m
2

Twin Inlet coolant temperature 278.15 K 

Fwin Inlet coolant flow rate 10 L/s 

R Gas constant 8.3144621 J/(K·mol) 

  ,  ,    are state variables. At steady state: 

    =0.0555 mol/L 

  =343.1617 K 

    =285.0661 K 
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4.3.4 Observer Design 

There are two possible faults in the system, thus two observers are required. Each 

observer is to estimate one fault, and the effect of the other fault and disturbance are 

decoupled on the residual. But in order to deal with the model uncertainties, an 

alternative pair of observers was also considered and compared to the first pair of 

observers. 

Observer 1: Estimate Analytical Sensor Fault f1, and Consider f2 as Disturbance d2 

The objective of this observer is to estimate the possible fault in the analytical 

sensor. In order to decouple the effect of the other possible fault in the heat exchange 

coefficient caused by fouling in the heat exchanger, heat exchanger fault is considered to 

be disturbance. 

The model of CSTR is linearized at steady state (fault and disturbance are zero). 

The linearized system is as follows (3.7)-(3.8): 

  ̇                 

                  

 

where: 

 

  [

       
    
       

]                                                [           ]  

where: 
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]  

 
   [

  
  
  

]                                                                [
 
 
 
]  

Based on the linearized system, the unknown input diagnostic observer is as follows 

(3.15)-(3.16): 

  ̇            

             

Based on the observer, the estimated fault is as follows (3.33): 

   [     (       )     ]
     

According to section (3.3.3), set s=1, then: 

        [                     ]  
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Observer 2: Estimate Heat Exchanger Fault f2, and Consider f1 as Disturbance d2  

The objective of this observer is to estimate the possible fault in the heat 

exchanger. In order to decouple the effect of the other possible fault in the reactor 

temperature sensor, reactor temperature sensor fault is considered to be disturbance. 

The model of CSTR is linearized at steady state (f2, d are zero). The linearized 

system is as follows (3.7)-(3.8): 

  ̇                 

                  

 

where: 
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Based on the linearized system, the unknown input diagnostic observer is as follows 

(3.15)-(3.16): 

  ̇            

             

Based on the observer, the estimated fault is as follows (3.33): 

   [     (       )     ]
     

According to section (3.3.3), set s=1, then: 

        [                  ]  
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Observer 1’: Estimate Analytical Sensor Fault f1 

Observer 1’ considers reaction rate in the form of         
( 

 

  
)   

     

     . Where    is the total disturbance in the reaction rate term. And the entire term 

   (    ) is also considered as a disturbance   . In this way, the system nonlinearity 

is significantly decreased, and the system model becomes: 

 
  ̇  

 

 
(       )  (     )  

 
 ̇  

 

 
(     )  (     )

(    )

   
 (
  (    )    

    
)  

 
  ̇  

  
  
(       )  (

  (    )    
       

)  

The system output is: 
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]  [

     
 
  

]  

The model of CSTR is linearized at steady state (f2, d are zero). The linearized system is 

as follows (3.7)-(3.8): 

  ̇                 

                  

where: 
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Based on the linearized system, the unknown input diagnostic observer is as follows 

(3.15)-(3.16): 
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  ̇            

             

Based on the observer, the estimated fault is as follows (3.33): 

   [     (       )     ]
     

According to section (3.3.3), set s=1, then: 
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Observer 2’: Estimate Heat Exchanger Fault    by Estimating    (    ) 

Observer 2’ considers reaction rate in the form of         
( 

 

  
)   

     

     . Where    is the overall disturbance in the reaction rate term. And sensor fault    

is considered as disturbance   . This observer is to estimate the entire term    

   (    ). Because heat transfer area is known, and T,    can be measured,    is then 
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to be estimated. In this way, the system nonlinearity is significantly decreased, and the 

system model becomes: 

 
  ̇  

 

 
(       )  (     )  

 
 ̇  

 

 
(     )  (     )
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 (
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)  
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)  

The system output is: 

 

[
  
  
  
]  [

     
 
  

]  

The model of CSTR is linearized at steady state (f2, d are zero). The linearized system is 

as follows (3.7)-(3.8): 

  ̇                 

                  

where: 
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Based on the linearized system, the unknown input diagnostic observer is as follows 

(3.15)-(3.16): 

  ̇            

             

Based on the observer, the estimated fault is as follows (3.33): 

   [     (       )     ]
     

According to section (3.3.3), set s=1, then: 
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4.3.5 Simulation 

The system model (4.15)-(4.18) and observers are simulated by MATLAB. The 

initial state of the system is fault free. White noises with normal distribution have been 

added to the temperature sensor. One step fault in the temperature sensor and one ramp 

fault in heat exchanger occur at different times. The initial state of the observers is zero. 

The eigenvalues of observers are set negative making sure the observers are stable. 

Simulation Conditions for the Reactor 

Initial Conditions 

 

[
   
  
   

]  [
      
        
        

]  

Noise 

Normally distributed random noises with zero mean and standard deviation 0.1 

(and 0.001) were simulated with the MATLAB function “randn” and were added to the 

simulated values of   and    (and   ). 

Faults 

        (it occurs at t=300s) 

           (it occurs at t=100s and increases continuously. f2 is linear to 

time. At t=5000s, f2=0.1U) 
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Disturbance 

Set the reaction activation energy uncertainty as 10% of the nominal value: 

d1=∆E= -0.1E 

Time 

 Initial Time:         

 Final Time:            

Observer Part 

Initial Conditions 

 Observer 1:      

 Observer 2:      

 Observer 1’:      

 Observer 2’:      

Eigenvalues 

Based on the eigenvalues of linearized systems, observer eigenvalues are selected 

faster than the linearized system but slower than ten times the speed of the linearized 

system. 

Linearized System 1:  eig = {-0.0256, -0.2418, -0.3732}; 

Linearized System 2:  eig = {-0.0256, -0.2418, -0.3732};   

Linearized System 1’: eig = {-0.0100, -0.0206, -0.3744};   

Linearized System 2’: eig=  {-0.0100, -0.0206, -0.3744};   

Observer 1: eig = -0.1406 
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Observer 2: eig = -0.1406 

Observer 1’:eig = -0.0550 

Observer 2’:eig = -0.0550 

4.3.6 Simulation Result and Discussion 

Similar to previous cases, the system model and observers were simulated. The 

simulation results are described in the following subsections. In order to better evaluate 

the performance of the unknown input diagnostic observer, states of system and 

observers along with residual signals and estimated faults are plotted. 

System Results for the Reactor 

The CSTR system starts at points near steady state. Fig. 4.15 shows that at time 

t=300s and t=100s, there is a step change in reactor temperature and a ramp change in 

cooling jacket, respectively. But we still can not determine that the signal changes from 

the measurements are caused by system state changes or unknown inputs. Therefore, it is 

necessary to build an indicator signal (residual) for fault detection. 
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System State Variable 

 

Fig. 4.15 CSTR state variables over time 

 

Simulation Results for the Observers 

Observer 1 

Fig. 4.16 shows that observer 1 has step change at t=300s (when reactor 

temperature sensor fault occurs). 

Fig. 4.17 shows that observer 2 has obvious ramp change at t=100s. 

Fig. 4.18 is the same as Fig. 4.16, and Fig. 4.19 is similar to Fig. 4.17.  
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Fig. 4.16 Observer 1 state variables over time 
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Observer 2 

 

Fig. 4.17 Observer 2 state variables over time 
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Observer 1’ 

 

Fig. 4.18 Observer 1’ state variables over time 
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Observer 2’ 

 

Fig. 4.19 Observer 2’ state variables over time 

 

Fault Diagnosis 

Residual works as an indicator of a specific fault. From Fig. 4.20 and Fig. 4.22 

(Fig. 4.24 is similar to Fig. 4.20, and Fig. 4.26 is similar to Fig. 4.22), the new states of 

residuals are nonzero, which successfully indicate the presence of faults. That is to say, 

residual signals are enough for fault detection and isolation. But just from the residual 

signal, it is still difficult to evaluate the size of fault. From (3.33), we can estimate the 
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value of fault based on the residual signal. Fig. 4.21 and Fig. 4.25 show that the 

estimated faults are around the real faults within an error caused by sensor noises. But 

for Fig. 4.23, there is a big error for the estimation of the fault in heat exchange 

coefficient because of linearization erorors. However, observer 2’ accurately estimates 

the fault in heat exchange coefficient by decreasing the nonlinearity of the model. 

 

Observer 1 

 

Fig. 4.20 Residual for analytical sensor fault over time 



109 
 

 

Fig. 4.21 Estimated fault compared with real fault in reactor analytical sensor 
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Observer 2 

 

Fig. 4.22 Residual for heat exchanger fouling fault over time 
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Fig. 4.23 Estimated fault compared with real fault in heat exchanger 

 

Because of linearization errors caused by nonlinearity, the estimated fouling fault 

in the heat exchanger has large errors. Thus a better observer and residual for fouling 

fault diagnosis is desired. 
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Observer 1’ 

 

Fig. 4.24 Residual for analytical sensor fault over time 
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Fig. 4.25 Estimated fault compared with real fault in reactor analytical sensor 
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Observer 2’ 

 

Fig. 4.26 Residual for heat exchanger fouling fault over time 
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Fig. 4.27 Estimated fault compared with real fault in heat exchanger 

 

From the figures above, we can notice that if a fault or disturbance occurs in the 

high nonlinearity term in the system model, it is better to consider the whole nonlinear 

part as fault or disturbance. In this way, the linearization errors can be reduced, and the 

fault estimation would be more accurate. 
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Conclusions 

The major focuses of this thesis is on unknown input diagnostic observer for 

exothermic CSTR systems. The objectives of the thesis have been stated in the first 

chapter. In order to achieve these objectives, the method of unknown input diagnostic 

observer has been reviewed. The performance of this approach was illustrated by 

representative applications to exothermic CSTR cases.  

The first objective of the thesis is to find a proper diagnostic technique which can 

be used in chemical process systems and in particular exothermic CSTRs. To achieve 

this objective, many papers and books have been studied and three categories of fault 

diagnosis approaches have been reviewed. These approaches include multivariate 

statistical process monitoring, analytical model-based method and knowledge-based 

approach. Considering that a first principle model is often available for CSTRs, 

observer-based method was selected in this thesis. In order to decouple the effects of 

disturbances and isolate and identify the faults, the unknown input diagnostic observer 

(UIDO) was selected for application. The derivation of UIDO was reviewed and a new 

simple derivation of parts of the Luenberger conditions has been proposed. The UIDO 

design procedures were presented. A general MATLAB program for UIDO design was 

developed in this thesis. 

The second objective of this thesis is to apply the method selected to exothermic 

CSTR systems. In order to achieve this goal, the CSTR system is modeled with possible 
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faults and disturbances. Then the CSTR model was linearized at steady state. UIDO was 

designed based on the linearized model. To better evaluate applicability to real 

processes, noises were added to the sensor outputs and the observer was tested on the 

nonlinear system instead of the linearized system. After extensive simulations on the 

case studies, we conclude that:       

 Unknown input diagnostic observe works well on exothermic CSTRs for 

fault detection, isolation and identification. 

 Unknown input diagnostic observe also works on nonlinear system with 

relatively small model uncertainties. 

 MATLAB program for UIDO design works efficiently and effectively. 

5.2 Future Directions 

Even though the unknown input diagnostic observer works well on exothermic 

CSTR systems, there is still a room for further improvements. A few possible directions 

are outlined as follows: 

 The linear UIDO works well on the exothermic CSTR systems. But these 

systems in this thesis are simple and mildly nonlinear. For chemical 

processes, most systems are highly nonlinear with complex dynamics. 

Nonlinear unknown input diagnostic observer is one of the directions.  

 The design of nonlinear unknown input diagnostic observers requires 

deep mathematical knowledge even for small scale systems. Even if this 

objective can be achieved in the future, first principle models of chemical 

processes are not always available or may be difficult to obtain, in which 
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case, UIDO would not be applicable. In order to overcome this limitation, 

multivariate statistical process monitoring methods can be investigated 

for large and complex systems. 

 Multivariate statistical process monitoring methods can be used in 

complex chemical processes. However, the data obtained from processes 

provides limited information and fault diagnosis results are not as reliable 

as the UIDO method. What’s worse, statistical-based method requires 

process data in the presence of faults for faults isolation. This data are 

always unavailable or difficult and expensive to obtain. An alternative 

method is neural network fault diagnosis. This method is considered as a 

middle method between UIDO method and statistical-based method. But 

neural network method may need long training time.  

Currently, no method is absolutely perfect for fault diagnosis. Diverse methods 

need to be studied under various circumstances.  
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