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ABSTRACT

Clouds cover at least two thirds of the Earth at any given time. Clouds play a large

role in the Earth’s global energy budget, but the impact of cirrus clouds is still widely

questioned and researched. Cirrus clouds reside high in the atmosphere where temperatures

are so cold that the cloud particles are comprised of ice crystals rather than water droplets.

Gaining a better understanding of ice cloud optical properties and the distribution of cirrus

clouds provides an explanation for the contribution of cirrus clouds to the global energy

budget.

Using remote sensing techniques in conjunction with radiative transfer models

(RTMs), accurate simulations of cirrus clouds can enhance the understanding of the global

energy budget as well as improve the use of global climate models. Prior to their use,

RTMs must be tested for accuracy and sensitivity to various cloud optical property (COP)

pairs. A well validated RTM such as the Line-By-Line Radiative Transfer Model plus the

Discrete Ordinates Radiative Transfer Program (LBLRTM + DISORT) is compared to a

newer, faster RTM such as the Visible Infrared Imager Radiometer Suite (VIIRS) Fast Ra-

diative Transfer Model (VFRTM). By comparing brightness temperature (BT) simulations

from both models, the accuracy of the VFRTM can be obtained. Based on previous stud-

ies, a root mean square error (RMSE)< 0.5 K for brightness temperature difference (BTD)

analysis is an appropriate level of error. This study shows RMSE < 0.2 K for BTD using

reanalysis data for atmospheric profiles rather than idealized profiles and updated ice parti-

cle habit information from the Moderate-resolution Imaging Spectroradiometer (MODIS)

ii



Collection 6 (C6). At a higher resolution, the simulated results of the VFRTM are com-

pared to the observations of VIIRS to further indicate the accuracy of the model for use

on a global scale as well as to validate the use of MODIS C6 data. RMSE results for the

given case study represent < 1.5% error from the VFRTM for all cases. The VFRTM is

validated and is an appropriate RTM to use for global cloud retrievals to help improve and

update the global energy budget and global climate models.
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NOMENCLATURE

AVHRR Advanced Very-high Resolution Radiometer

BT Brightness Temperature

BTD Brightness Temperature Difference

COP Cloud Optical Properties

De f f Effective Particle Size

DISORT Discrete Ordinates Radiative Transfer

FIRTM-AD Fast Infrared Radiative Transfer Model Using the
Adding Doubling Method

FRTM Fast Radiative Transfer Model

HRTM High-spectral-resolution Radiative Transfer Model

IPNG Infrared Atmospheric Sounding Interferometer

IR Infrared

JPSS Joint Polar Satellite System

LBLRTM Line-By-Line Radiative Transfer Model

LUT Look Up Table

MERRA Modern-Era Retrospective Analysis for Research and
Applications

MODIS Moderate-resolution Imaging Spectroradiometer

NPOESS National Polar-orbiting Operational Environmental
Satellite System
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OLS Operational Linescan System

RMS Root Mean Square

RSB Reflective Solar Bands

RTE Radiative Transfer Equation

RTM Radiative Transfer Model

SDR Sensor Data Records

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SNPP Suomi National Polar-orbiting Partnership

SRF Spectral Response Functions

τ Optical Thickness

TEB Thermal Emissive Bands

VFRTM VIIRS Fast Radiative Transfer Model

VIIRS Visible Infrared Imager Radiometer Suite
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1 INTRODUCTION

1.1 Background

At any point in time, on average, two thirds of the Earth experiences cloud cover,

and with the inclusion of sub-visible cirrus clouds, this number increases to nearly 73%

(Stubenrauch et al., 2013). Though globally distributed, clouds are more prevalent over

ocean than land, with cirrus clouds, in particular, found at all latitudes with no regard to

season or land cover (Fu and Liou, 1993). On a global scale, cirrus accounts for 20-30%

of all cloud cover, but in the tropics where they are the most prevalent, that number in-

creases to at least 60-70% (Fu and Liou, 1993; Meyer, 2004; Baran, 2009). Cirrus clouds

form high in the troposphere and have been known to extend into the lower stratosphere

as well (Figure 1.1). With temperatures at the tropopause colder than -50°C, cirrus clouds

Figure 1.1: Cloud types (Ahrens and Samson, 2011)
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are made up almost exclusively of non-spherical ice crystals of various shapes, sizes, and

roughnesses. Magono and Lee (1966) were the first to comprehensively describe and clas-

sify ice crystals by updating work done by Nakaya (1954) with appropriate temperature

and vapor conditions. More recently, work done by Baumgardner et al. (2005) and Baran

(2009) show via in-situ measurements using optical particle spectrometers and a Cloud

Particle Imaging probe respectively, that hexagonal columns, plates, and bullet-rosettes

are the most common ice crystal habits found within cirrus clouds. Their findings matched

those of Hobbs et al. (1975) who also found cirrus clouds to be comprised of those same

habits 30 years earlier. Examples of these shapes and their descriptions are found in Figure

1.2 (Cole, 2013).

Figure 1.2: Common ice crystal habits: (a) solid column, (b) hollow column, (c) plate, (d)
droxtal, (e) bullet rosette, (f) column aggregate, (g,h) plate aggregates, (i) hollow column
rosette (Wendisch and Yang, 2012)

Cirrus cloud formation is primarily attributed to large-scale weather disturbances

with different classifications of cirrus clouds being associated with specific weather pat-
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terns. Low cirrus and cirrostratus are associated with high pressure systems or upper level

troughs, while cirrus uncinus are related to mesoscale or synoptic scale disturbances. Ex-

tensive cirrus sheets are most often associated with frontal passages or anvil cloud remains.

Work done by Yagi (1969) provides detailed synoptic conditions needed to form cirrus

clouds, including stable air above and below the cloud layer as well as a dry adiabatic

lapse rate and vertical wind shear at the top of the cloud. Yagi postulated that the static

stability at the bottom of the cloud may be responsible for the shape and extent of the cirrus

cloud.

Clouds play a large role in the Earth’s global energy budget, but as shown in Fig-

ure 1.3, cloud types are not explicitly separated in global budgets. Weather and climate

Figure 1.3: Global mean energy budget of Earth for 2000-2010 (Stephens et al., 2012)

on Earth depend on the distribution of incoming solar radiation from the sun, which may

be scattered, reflected, or absorbed by clouds and aerosols in the atmosphere (Trenberth

et al., 2009). Because cirrus clouds are high in the atmosphere, but can also be optically

thin compared to lower, thicker clouds, they transmit almost all of the shortwave solar
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radiation, but tend to trap longwave terrestrial radiation. This longwave radiation is ab-

sorbed and re-emitted, towards the Earth’s surface, where some is absorbed and some is

re-emitted creating a positive climate feedback loop that causes warming at the surface and

in the troposphere (Liou and Takano, 1993). An example schematic in Figure 1.4 shows

an example of this feedback loop. Due to the extensive spatial and temporal persistence of

Figure 1.4: Positive climate feedback from high cirrus clouds

cirrus clouds, it is imperative to understand the radiative properties of these clouds (Meyer,

2004). Given the distribution of crystal shape, size, and roughness, deductions can bemade

about single-scattering properties such as the phase function, albedo, and extinction coef-

ficient of a given ice particle. Any change in cloud microphysics can greatly affect the

radiative properties and thus the radiative forcing of cirrus clouds. Liou (1986) found that

ice crystal size distribution, assumed ice water content of a cloud, cloud thickness, and en-
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vironmental conditions have a significant effect on the radiative forcing of cirrus clouds.

Given the difficulty associated with obtaining an explicit ice crystal habit and radiative

property information because of the high altitudes, optically thin nature, and non-spherical

shape of ice crystals, the contribution of cirrus clouds to the Earth’s global energy budget

is still one of the most uncertain aspects of atmospheric science research. Having a better

understanding of the spatial and temporal resolution of cirrus clouds through knowledge of

their radiative properties could help improve the global energy budget and global climate

models.

1.1.1 Remote Sensing

The International Satellite Cloud Climatology Project was one of the first field cam-

paigns to facilitate in-situ cloud measurements to determine the spatial distribution and

optical depth of cirrus clouds (Yang et al., 2014). Unfortunately, the aircraft-based mea-

surements caused issues such as shattering the ice crystals as they were measured (Yang

et al., 2014). Using LIDAR prevents ice crystal shattering and allows for the discrimination

between water and ice clouds based on their backscatter signal. Given the various types of

ice crystals contained within cirrus clouds, without a perfect knowledge of the scattering

and polarization properties of each shape, LIDAR utilization unfortunately becomes more

limited (Liou, 1986). Through various studies that predate the satellite era, it is made clear

that a more cohesive and conclusive method of cirrus cloud detection is needed.

Remote sensing is “a method of obtaining information about properties of an object

without coming into physical contact with that object” (Glickman, 2000). To infer the
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physical and radiative properties of a remote object of interest, remote sensing uses the

measurement of electromagnetic radiation based on passive (i.e., detects naturally occur-

ring energy) or active (i.e., detects energy emitted from a sensor that reflects off a target)

sensors on satellites, aircraft, or ground based systems (Yang et al., 2014). Unlike in-

situ measurements that can destroy ice crystals and ground-based systems that have too

much lower atmosphere interference, satellite remote sensing methods are the most practi-

cal choice for obtaining TOAmeasurements of the temporal and spatial properties of cirrus

clouds.

Viewing cirrus clouds in the longwave (far) infrared (IR) portion of the electromag-

netic spectrum (Figure 1.5) may hold the key to understanding the radiative effects of cirrus

Figure 1.5: Electromagnetic spectrum (Lahti, cited 2016)

clouds. The best method for understanding the radiative effects of cirrus clouds is to ob-
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tain and analyze the brightness temperatures (BT) or the measure of the amount of Top

of Atmosphere (TOA) radiance in a given area. Formally, BT is “a descriptive measure

of radiation in terms of the temperature of a hypothetical blackbody emitting an identical

amount of radiation at the same wavelength,” and is given by

BT = Bλ
−1[εBλ (T )] (1.1)

where Bλ is Planck’s law, ε is emissivity, and T is temperature (Glickman, 2000; Petty,

2006). When ε = 1, the BT is equal to the physical temperature of an object, and that

object is considered to be a blackbody, which is a perfect absorber and emitter of incident

radiation.

In the IR, a cloud-free atmosphere is transparent with little to no absorption or scat-

tering. This allows solar radiation to pass unattenuated. When analyzing clouds however,

the effect of absorption and emission in this region of the electromagnetic spectrum can be

appreciable (Yang et al., 2001). Ice is highly absorptive and emissive in the IR. At larger

optical thicknesses,cirrus clouds will act as blackbodies and emit radiation consistent with

their temperatures. High, thick cirrus clouds exhibit the coldest BTs based on their altitude

and temperature. High, thin cirrus clouds are not thick enough to act as blackbodies and

instead transmit solar and terrestrial radiation through the cloud, giving BTs similar to the

surface of the Earth. Thicker stratus or cumulus clouds found lower in the atmosphere have

higher BT values, as they are representative of the temperatures lower in the atmosphere.

An understanding of the BT values of clouds of varying thickness and height can

lead to insight into the radiative effects of various cloud types, especially cirrus. This could
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ultimately be helpful for cloud retrievals. Using IR to analyze the properties of cirrus clouds

has the additional advantage of greater consistency between daytime to nighttime viewing,

and it is unaffected by sunglint from specular reflection off of the ocean surface, a common

issue at visible wavelengths (Yang et al., 2001). Using IR wavelengths is also helpful for

reducing the scattering effects of ice crystals. Phase functions, which describe the amount

of angular distribution of energy scatter, become essentially featureless at IR wavelengths

due to smoothing at side-scattering and back-scattering angles by absorption (Yang et al.,

2001). Forward scattering can be removed via truncation techniques such as the delta-M

method developed by Wiscombe (1977). These techniques are found in radiative transfer

models.

1.1.2 Radiative Transfer

Remote sensing techniques are often paired with radiative transfer simulations. Ra-

diative transfer is the theory that describes the propagation of radiation through a given

medium that may have a combination of scattering, absorbing, or emitting objects. A ra-

diative transfer model (RTM) is a computational description of the radiative transfer that

produces radiation products for specific atmospheric conditions. RTMs aim to solve the

complex radiative transfer equation (RTE) that accounts for the scattering, absorption, and

emission of the atmosphere. The general RTE is given by

dI(Ω) =−nσ̄ABSdxI(Ω)−nσ̄SCAT dx
∫

4π

dΩ′

4π
p(Ω′,Ω)I(Ω)

+nσ̄ABSdxB(T )+nσ̄SCAT dx
∫

4π

dΩ′

4π
p(Ω,Ω′)I(Ω′) (1.2)
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where dx is an infinitesimal length, I is radiance, Ω is the direction of incident radiation,

Ω′ is the arbitrary direction for radiances, n is the number of objects per unit volume,

σ̄ABS is the average absorption cross section, σ̄SCAT is the average total scattering, p is the

scattering phase function, and B(T ) is the emission by a blackbody at the temperature of

the object (Coakley and Yang, 2014). The left side of the equation represents a change in

radiance as it passes through an infinitesimal volume of the atmosphere. The right side of

the equation has four terms with the following meanings: radiance lost due to absorption

in the volume, radiance lost due to scattering out of the direction of propagation, radiance

gained due to emission within the volume, and radiance gained due to scattering in the

direction of propagation (Coakley and Yang, 2014). A schematic of the processes from the

general RTE can be seen in Figure 1.6. As ice clouds are highly absorptive and emissive

Figure 1.6: Illustration of a single beam of radiance and the processes that affect it as it
propagates through space
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but scattering is reduced at IR wavelengths, this equation can be simplified to fit the needs

of the problem.

RTMs can be used to validate other RTMs or for retrieval of ice cloud properties.

Retrieval of ice cloud properties is an inverse problem, or the conversion of radiometric

or polarimetric measurements into physical properties (Yang et al., 2014). Validation is a

direct problem where the ice cloud properties are assumed or are already known, and the

radiometric or polarimetric measurements are simulated. By simulating and analyzing BT

and brightness temperature difference (BTD), dependencies on optical thickness (τ) and

effective diameter size (De f f ) arise and the accuracy of the RTM can be tested. Having an

RTM that can be used for operational applications such as remote sensing data retrievals,

cloud cover maps, or data assimilation is imperative. As older generation imagers are

decommissioned, the need for newer RTMs optimized for use with the newest systems

grows. The development of the Visible Infrared Imager Radiometer Suite (VIIRS) Fast

Radiative Transfer Model (VFRTM) for use with the VIIRS sensor is further discussed

below.

1.2 VIIRS Sensor

In 2010 the Joint Polar Satellite System (JPSS) was established as the next generation

of polar-orbiting operational environmental satellite systems following a restructuring of

the National Polar-orbiting Operational Environmental Satellite System (NPOESS) (Cao

et al., 2013b). Prior to the reorganization of the program, NPOESS’s key research ob-
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jectives included conducting instrument risk reduction by offering early instrument and

system-level testing, design modifications in a timely manner to ensure NPOESS launch

readiness, and the reduction of risk to ground system processing including evaluating data

products (Hutchison and Cracknell, 2005). JPSS continues to advance these research ob-

jectives.

The development and launch of the Suomi National Polar-orbiting Partnership

(SNPP) satellite was the first mission for JPSS. The satellite is the namesake of Verner

E. Suomi, a meteorologist from the University of Wisconsin who is widely recognized

throughout the fields of Meteorology and Atmospheric Science as the “Father of Satellite

Meteorology” (NOAA NESDIS JPSS, cited 2016). SNPP serves as the bridge between

the old (i.e., Aqua and Terra) and new generations of NOAA and NASA satellite pro-

grams. SNPP was built by Ball Aerospace under a contract with Goddard Space Flight

Center and is part of the Ball Configurable Platform family of satellites designed for cost-

effective remote sensing use (NASA, cited 2016a). On board SNPP are five instruments:

VIIRS, Cloud and Earth Radiant Energy System (CERES), Cross-track Infrared Sounder

(CrIS), Advanced TechnologyMicrowave Sounder (ATMS), and OzoneMapping and Pro-

filer Suite (OMPS) (NASA, 2011). With the addition of all of the instruments, SNPP has a

payload of 2,100 kg and is the size of a small school bus (NASA, cited 2016a). Launched

from Vandenberg Air Force Base, California on October 28, 2011 at 05:48 EDT, SNPP

entered into an 824 km circular, sun-synchronous, polar orbit with a 13:30 local-time as-

cending node (NASA, cited 2016a, 2011). Orbiting the Earth from pole to pole about 14
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times a day (period of 101.44 minutes), the entire surface of the Earth can be viewed twice

a day (NASA, 2011).

Built by Raytheon, VIIRS is the largest instrument on SNPP (as show by Figure 1.7)

weighing in at 275 kg (Raytheon Company, 2011). VIIRS is categorized as a whiskb-

Figure 1.7: SNPP spacecraft and instruments (SSEC University of Wisconsin-Madison,
2012)

room scanning radiometer that observes the Earth’s surface in a cross-track direction with

a scanning swath of±56° by 3,040 km (Hutchison and Cracknell, 2005). It’s development

was based on a lineage of other satellites dating back to the 1970s. The Advanced Very-

high Resolution Radiometer (AVHRR), the Moderate-resolution Imaging Spectroradiome-

ter (MODIS), the Sea-viewingWide Field-of-view Sensor (SeaWiFS), and the Operational

Line-scan System (OLS) were the primary instruments from which inspiration was drawn

for the design of VIIRS (Cao et al., 2013b). Raytheon wanted to develop a product that

combined the radiometric accuracy of AVHRR with the high spatial resolution of OLS and
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the success of MODIS (Raytheon Company, 2011). A rotating telescope (also found on

SeaWiFS) and the addition of a day-night-band based on the OLS design were included in

the final design of VIIRS (Cao et al., 2013b).

There are several improvements between VIIRS and its predecessors. The higher

orbit of SNPP allows for full global coverage and better control of stray-light, which is

detected light that is not from the bandwidth of the measuring wavelength due to light

scattering, light diffraction, or instrument error (Cao et al., 2013b). VIIRS also uses “bow-

tie removal” (i.e., scan-to-scan overlap in off-nadir areas which is not transmitted to the

ground and is instead assigned a fill value) to save transmission bandwidth (Cao et al.,

2013b). The “bow-tie effect” itself comes from the pixel growth rate (i.e., the growth of

the sample distance due to increased distance between the ground and the sensor) increasing

from 11.7 km at nadir to 25.8 km at the end of scan. Using pixel aggregation to control the

pixel growth towards the end of a scan, VIIRS is able to improve (as much as 4 times) upon

the pixel growth problem that exists for its predecessors AVHRR and MODIS (Cao et al.,

2013b). This allows for the spatial resolution throughout the scan to be more comparable.

According to Cao et al. (2013a), at a 375 m to 750 m spatial resolution (depending on

the spectral band), the VIIRS thermal imaging bands have outperformed both MODIS and

AVHRR, each of which has an IR resolution of 1 km (Cao et al., 2013a; Hillger et al., 2013).

VIIRS was also created with the intent of lasting nearly twice as long as its predecessors

(Raytheon Company, 2011).

There are 22 spectral bands covering the electromagnetic spectrum from 0.412 µm to
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12.01 µm through the visible, near-IR, mid-IR, and long-wave-IR regions (Hutchison and

Cracknell, 2005). More specifically, there are 16 moderate resolution bands (M-bands),

five imaging resolution bands (I-bands), and one panchromatic day-night-band. The M-

bands have 11 reflective solar bands (RSB) and five thermal emissive bands (TEB), and the

I-bands have three RSBs and two TEBs (Cao et al., 2013b). The spectral bands themselves

are comparable to those in MODIS, with most of the RSBs and some of the TEBs having

wider to near double bandwidths, leading to better spatial resolution while maintaining

the signal to noise ratio (SNR) (Cao et al., 2013b). Exact specifications including spatial

resolution and wavelength range can be found in Figure 1.8. RSBs on VIIRS were turned

on November 8, 2011, and the nadir door was opened November 21, 2011, marking the

first day visible images were available (Cao et al., 2013b).

1.3 Radiative Transfer Models

There are a plethora of RTMs that are used to answer a multitude of radiative transfer

problems. The LBLRTM+DISORTmethod is a well validated and highly accurate model.

The results are used to compare to faster RTMs such as the VFRTMwhich is a newer model

that must be validated for new data sets and conditions.

1.3.1 LBLRTM + DISORT

This model involves a combination of the Line-By-Line Radiative Transfer Model

(LBLRTM) and the Discrete Ordinates Radiative Transfer FORTRAN90 Program (DIS-

ORT), referred to as LBLRTM + DISORT. Both LBLRTM and DISORT use a background
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Figure 1.8: VIIRS bands (Hillger, cited 2016)

atmosphere that is plane parallel (i.e., horizontal variations are ignored and dependence

on height is assumed), and vertically inhomogeneous divided into discrete homogeneous

and isothermal atmospheric layers for clear sky with a vertically homogeneous but non-

isothermal cloud able to be inserted an any level. LBLRTM is a line-by-line model devel-

oped and produced by Atmospheric and Environmental Research, Inc. LBLRTM is based

on FASCODE (Fast Atmospheric Signature Code) developed at the Air Force Geophysics

Laboratory to be a line-by-line calculation of radiance and transmittance of the atmosphere

(Clough et al., 2005). LBLRTM uses a Voigt line shape and has an algorithmic accuracy
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of calculation of approximately 0.5%, except in the wings of the Voigt lines where that

error can increase to±3% (Atmospheric and Environmental Research, cited 2016; Clough

et al., 1981). LBLRTM is used to calculate gaseous absorption and transmittance over a

spectrum with results used in both clear sky and cloudy sky cases. Gas transmittance is

needed for further calculations in a thermal band RTM such as DISORT.

Disseminated by NASA’s Goddard Space Flight Center and written by Stamnes et al.

(1988), DISORT strives to be the most general RTM available to the public (Stamnes et al.,

2000). The code was written to be a new implementation of the discrete ordinates method

for vertically layered atmospheres (Stamnes et al., 1988). The discrete ordinates method

for radiative transfer comes from the work of Chandrasekhar (1960) where the solution to

the radiative transfer equation (RTE) is derived using a finite set of discrete-streams repre-

senting the angles in the integration. This method is therefore a numerical and approximate

solution technique for solving the RTE and is reliable for radiative transfer calculations for

atmospheres with clouds (Liou, 1973; Wendisch and Yang, 2012). According to Stamnes

et al. (1988), the computation time of DISORT can be derived as the third power of the

number of streams (i.e., direction in which radiation is propagating) used and becomes the

most cumbersome portion of the computation time. Using double precision and the δ -M

method, forward scattering is truncated in DISORT, and computational efficiency is in-

creased slightly (Stamnes et al., 1988). By using both methods in conjunction, a high level

of accuracy can be obtained, but in relation to other RTMs, computational efficiency is re-

duced. Using this method allows for a benchmark result to be obtained and later compared
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to simulations from faster RTMs as a means of verifying the results of the faster models

(e.g., VFRTM).

1.3.2 VFRTM

The VFRTM is a type of high-spectral-resolution forward RTM developed at Texas

A&MUniversity by Chenxi Wang in 2013. It was created to be a fast and computationally

efficient RTM without loss of accuracy for a given satellite-based instrument with the pur-

pose of advancing operational retrievals of atmospheric profiles and cloud or aerosol prop-

erties (Liu et al., 2014). The fast RTMs (FRTM) were initially developed for application

to the Atmospheric Infrared Sounder, the Infrared Atmospheric Sounding Interferometer,

MODIS, and Spinning Enhanced Visible and Infrared Imager instruments. The purpose of

the VFRTM is to create a FRTM that can be optimized for the instruments of the future,

such as VIIRS. During the transition period between MODIS and VIIRS data, the VFRTM

can use data from either imager. In order to accurately simulate radiative transfer in the IR,

an RTM must be able to calculate both gaseous absorption and multiple scattering within

each cloud layer.

An efficient RTM used for the remote sensing of objects needs to have a clear-sky

transmissivity or absorption τ simulator, a fast RTE solver, and a cloud multiple scattering

model (Wang, 2013). Using correlated-k distribution (CKD) methods, gaseous absorption

calculations are approximated rather than using the longer, tedious line-by-line method.

Calculations use continuum absorption to account for gas absorption and treat H2O, CO2,

and O3 as a mixed gas instead of as separate constituents (Wang, 2013). H2O, CO2, and
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O3 are the three primary absorbers of the longwave IR atmospheric window seen in Figure

1.9 between 8 and 14 µm. The primary reason for including continuum absorption is the

Figure 1.9: Transmittance and absorbingmolecules of the atmospheric windows (USNavy,
cited 2016)

importance of pressure broadened lines in the far wings, especially in the 700-1200 cm−1

region where the bandwidths being used for this study are located (Clough et al., 1989).

Once the transmissivities are calculated, they are put into look up tables (LUTs) for each

VIIRS channel being studied. To further solve the problem of computational inefficiency,

several studies (Baran and Francis, 2004; Wei et al., 2004; Dubuisson et al., 2005; Hei-

dinger et al., 2006; Niu et al., 2007; Zhang et al., 2007; Wang et al., 2011) developed a

series of fast RTE solvers to help facilitate ice cloud retrieval algorithms for single layer

clouds (Wang et al., 2011). The RTE used in the VFRTM is the IR FRTM fromWang et al.

(2011).

Finally, an ice cloud that is prone to multiple scattering needs to be added to the

RTM. Using the example of Figure 1.10, there are N −1 layers in the atmosphere, with an
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ice cloud layer at LM. T (z) gives the air temperature at an altitude z, τN is the optical depth

Figure 1.10: Example of a single ice cloud layer atmosphere (Wang et al., 2011)

of layer N, ε is the emissivity, IN represents the emitted or reflected radiance from a layer

N, and Γ(z) represents the transmissivity of the atmosphere from the TOA to an altitude z

(Wang, 2013). The sum of Equations 1.3, 1.4, and 1.5 yields ITOA, which is necessary to

analyze BT (Wang, 2013).

IA = IsΓ1tΓ2 + I↑1 tΓ2 + I↑c Γ2 + I↑2 (1.3)

IB = (I↓1 + I↓c Γ1 + I↓2 tΓ1)× (1− εs)Γ1tΓ2 (1.4)

IC = I2tΓ2 (1.5)

In the above equations, the upward arrow represents up-welling radiances, and the down-
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ward arrow represents down-welling radiances.

To account for the scattering within each layer, the VFRTM uses high-spectral-

resolution ice cloud bulk scattering properties (Baum et al., 2007), single scattering prop-

erties of ice crystals (Yang et al., 2005; Zhang et al., 2004), and in-situ microphysical data

(Wang, 2013). The ice cloud bulk scattering properties used to account for scattering within

each layer were created using DISORT for 33 τ values ranging from 0.01 to 100, 18 De f f

values from 10 to 180 µm, nine viewing zenith angles from 0° to 180°, and 600 monochro-

matic wavenumbers with a 0.1 cm−1 from 700 cm−1 to 1300 cm−1 (Wang, 2013). The

results are stored in LUTs and are called within the program for specific wavelengths.

1.4 Previous Studies

Starting with a study that predates the launch of VIIRS, this section aims to show

the improvement of RTMs over the last 10 years with a focus on those with remote sens-

ing applications and high-spectral-resolution results. All look at BT simulations in the IR

spectrum as a means of validating the RTM in use against the slower but more accurate

LBLRTM + DISORT. Using various methods of numerical and approximate solution tech-

niques for solving the RTE, these studies provide a framework of reference for this study.

Close attention is paid to RTM setups and data used as well as validation techniques and

results.
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1.4.1 Zhang et al., 2007

An important concept in the Zhang et al. (2007) study is that an RTM needs to be

computationally efficient and accurate, as well as applicable to a variety of conditions.

RTMs can be used to observe cloud clearing, for cloud optical property (COP) retrieval,

and for satellite data assimilation. In general, multiple scattering makes solving the RTE

difficult, but in the IR region that problem is simplified due to minimal scattering in the IR

region of the electromagnetic spectrum. Previous RTM studies remove this feature of the

RTE altogether which limits the flexibility of the model. Using methods such as DISORT

or the Monte Carlo method, multiple scattering can be fully accounted for, providing a

wide range of uses for the RTM. It is however, computationally inefficient to apply these

methods to a broadband spectrum. By using modifications to the algorithms, efficiency is

increased.

The fast infrared radiative transfer model (FIRTM-AD) was developed using the

adding-doubling principle. Using a vertically inhomogeneous, multilayer, plane paral-

lel atmosphere, the FIRTM-AD is a clear sky model that can also account for molecular

absorption and an RTE solver that accounts for multiple scattering in cloud layers are de-

veloped. Pre-computed LUTs for reflection, transmission, and emissivity are calculated

with appropriate COP and wavelengths. These LUTs help to save computational time and

increase efficiency, but bring into question the reduction in accuracy due to necessary in-

terpolation at some points. Clouds and atmospheric gases “coexist” within a single layer

(rather than having gases in the atmosphere above and below the clouds) which results in
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an increase of optical thickness and a decrease of single scattering albedo.

The accuracy of the FIRTM-AD is tested by computing BT across the spectrum at a

high spectral resolution of 0.1 cm−1 and comparing the results to those from the DISORT

model using the same conditions. A standard tropical atmospheric profile is divided into

100 layers over a 100 km atmospheric depth with a vertical resolution of 0.5 - 2.5 km. There

is a single ice cloud layer around 14 km above the surface. BTs are simulated for both the

FIRTM-AD and DISORT for various COP combinations and viewing angles, and the dif-

ference between the results is taken. The errors from previous RTMs that remove multiple

scattering are represented by the root mean square (RMS) error of the BTD and are on the

order of 0.5 K. The Noise Equivalent Differential Temperature of hyper-spectral sounders

is 0.2 K. As the FIRTM-AD takes into account multiple scattering, and the hyper-spectral

sounders have the lowest error level, the FIRTM-AD should also have error < 0.2 K. Er-

rors from FIRTM-AD are an order of magnitude smaller than the prescribed error level,

with all results < 0.05 K. This RTM is highly accurate and can be used for observational

applications.

1.4.2 Wang et al., 2011

RTMs developed for scientific research such as DISORT, and those using the Monte

Carlo method and adding-doubling techniques, are not optimal for use in operational appli-

cations such as satellite data products. The development of a fast RTM (FRTM) by Wang

et al. (2011) that uses parametrizations (such as CKD) to minimize computational effort for

high-spectral-radiance simulations, is helpful for operational needs. The background at-
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mosphere used for simulations is plane parallel vertically inhomogeneous atmosphere and

can be divided into discrete homogeneous and isothermal clear atmospheric layers with

a vertically homogeneous but non-isothermal ice cloud inserted at an appropriate level.

Molecular scattering under clear sky conditions is ignored here due to the lack of scatter-

ing in IR wavelengths, but the CKD method is used by the FRTM to derive atmospheric

transmittance. For cloudy sky cases, bulk scattering is inferred from single scattering prop-

erties that are generated by DISORT and placed into LUTs.

Comparisons are made between the FRTM and LBLRTM + DISORT simulated BTs

using a generalized tropical atmosphere broken down into 100 layers over a 100 km atmo-

spheric depth with a vertical resolution of 0.5 - 2.5 km. For a zenith angle of 20° and τ <

5, the BTD is < 0.1 K and decreases to < 0.01 K for an increasing τ . This decrease is due

to the opaque clouds acting as blackbodies. BTD values are also higher for smaller De f f .

There is a higher level of accuracy from the 12 µm channel, possibly due to the imaginary

part of the ice refractive index increasing monotonically as a function of wavelength. This

points to the importance of scattering for small ice particles, which causes large BTDs.

This means that the FRTM may not handle scattering as well as DISORT. After obtaining

error values that are sufficiently small enough, the FRTM can be used to infer ice cloud

properties in satellite data using algorithms with COP chosen by low RMS error levels.

1.4.3 Wang et al., 2013

Based on similar work done in Wang et al. (2011), the Wang et al. (2013) study

focuses on a need for an accurate and rapid thermal IR RTM that incorporates both gaseous
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absorption and multiple scattering within cloud layers. LBLRTM accounts for line and

continuum absorption while RTMs such as DISORT consider multiple scattering and create

benchmark results. A high-spectral-resolution cloudy sky RTM (HRTM) was developed in

this study to account for gaseous absorption based on the FRTM from Wang et al. (2011).

Wang et al. (2013) created the HRTM based on a fast clear sky transmittance simula-

tor, a fast RTE solver, and an ice cloud multiple scattering thermal emission and absorption

model. A clear sky transmission database is generated with a 0.1 cm−1 spatial resolution

using pressure, temperature, and absorption profiles rather than using LBLRTM to derive

them. Gases are treated as “mixed gases” in the database so that continuum absorption

can be used to save computational effort. An RTE solver uses LUTs to account for mul-

tiple scattering, absorption, and thermal emissions within the cloud layer. Ice cloud bulk

scattering products for high-spectral-resolution cases are developed from single scattering

properties and in-situ micro-physical data.

Using a mid-latitude summer atmosphere broken into 70 layers for cloudy sky sim-

ulations, the HRTM BT simulations are compared to BT simulations from LBLRTM +

DISORT. The largest error was 0.2 K for small COP pairs, and the largest error was found

in areas of large absorption. With an increase in τ , RMS error reduces to 0.05 K due to

the opacity of the cloud. These results show that the HRTM can model thin cirrus clouds

and can be used further to infer COP from collocated observed data sets. Using a high-

spectral-resolution application for the FRTM, this RTM is able to work with various other

spectroradiometers that previous RTMs could not have handled well.
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1.4.4 Liu et al., 2014

Using multiple streams, low orders of scattering, or LUTs as approximations, accu-

racy of the model is reduced, but computational efficiency is improved. The Liu et al.

(2014) study develops an FRTM that uses CKD to minimize computation time and places

an emphasis on simulating VIIRS data while allowing for application to other imagers.

CKD was used as an approximation to LBLRTM techniques to calculate gaseous absorp-

tion by replacing the integral of gas transmission over highly variable spectral space with

a smoother absorption coefficient space. This method also treated overlapping lines as-

sociated with different gases as one gas by combining absorption coefficients of multiple

gases to reduce computation time. By creating a CKD model for each spectral channel

associated with VIIRS, gaseous absorption could be calculated quickly for each channel.

Transmissivities for the clear sky case were calculated using a US Standard Atmospheric

Profile divided into 50 layers, each 1 km thick. The results were then used in the cloudy

sky cases to simulate BT using the FRTM from Wang et al. (2011), along with bulk scat-

tering properties and MODIS C6 data used for ice cloud properties. Results are averaged

over the spectrum using spectral response functions (SRF).

When comparing the simulations of the FRTM to LBLRTM + DISORT, the BTD

error was < 0.15 K, and it decreased to < 0.1 K for larger τ . Once the accuracy level of

the FRTMwas found to be high enough, a case study was done to assess the performance of

the simulator. Atmospheric profiles fromMERRA and COP fromMODIS C6 were used to

simulate BTs to compare to VIIRS observations. The simulation showed close agreement
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to the VIIRS observations with differences due to error from model approximations and

model assumptions, retrieved cloud properties, and atmospheric profiles. The last three

error types account for the bulk of the discrepancies, showing that the model itself still has

high performance accuracy for simulations.
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2 DATA

For this validation study, VIIRS data granules are selected over ocean to remove land

based biases and near the Intertropical Convergence Zone (ITCZ) where convection and

therefore ice clouds are more likely to be found. After looking at the GOES-West satellite

IR imagery for clouds and convection, the frame of temporal reference was reduced to two

granules, a daytime granule on June 20, 2014 and a nighttime granule on June 21, 2014.

The June 21, 2014 granule was tested first, with the June 20, 2014 granule selected at a

later time to provide further validation. The exact temporal and spatial information for the

areas being studied can be found in Figure 2.1.

Figure 2.1: Temporal and spatial information for granules (NOAA, cited 2016)
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2.1 VIIRS

As the satellite orbits, VIIRS scans a swath of the Earth that is about 3,040 km wide

in the cross-track direction (Seaman, 2013). A rotating mirror reflects radiation onto the

16 detectors of the M-bands, and each rotation is one scan that produces a strip of data 12

x 3,040 km in size (Seaman, 2013). One granule is constructed using 48 scans covering a

combined area of 570 x 3,040 km in size (Seaman, 2013). The large granules distributed by

the National Oceanic and Atmospheric Administration Comprehensive Large Array-data

Stewardship System are actually four granules combined into one larger data set covering

an area of 2,280 x 3,040 km (Seaman, 2013). The data is transmitted to the ground as

raw data records which are processed, calibrated, and converted to Sensor Data Records

(SDR) (Seaman, 2013). JPSS VIIRS Sensor Data Record (VIIRS_SDR) data sets contain

the geolocation files, and BT information for the longwave IR channels (Seaman, 2013).

The geolocation files contain latitude, longitude, surface elevation, satellite zenith angle,

satellite azimuth angle, solar zenith angle, solar azimuth angle, and distance to satellite

(Seaman, 2013). Additionally, the JPSS VIIRS Non-Gridded Intermediate Products (VI-

IRS_IPNG) data sets with the same temporal and spatial distribution as the SDR files are

used in this study. VIIRS COP and cloud top parameters containing τ , De f f , and cloud top

height information are held in the VIIRS_IPNG data set.
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2.2 MERRA

This study uses the Modern-Era Retrospective Analysis for Research and Applica-

tions (MERRA) to create atmospheric profiles as input for the RTMs. MERRA is a reanal-

ysis of the atmosphere performed by NASA using the Goddard Earth Observing System

Model Version 5 (NASA, cited 2016b). The files used in this study contain standard prod-

ucts (state variables) that are assimilated, meaning they use a combination of atmospheric

data analysis and model forecasts to generate a series of global atmospheric quantities that

are closer to the actual atmospheric state than idealized atmospheric profiles used in pre-

vious studies (Global Modeling and Assimilation Office, 2012). The frequency of data

collection is every 3 hours (00, 03, 06, 09, 12, 15, 18, 21 UTC) (Global Modeling and As-

similation Office, 2012). Finally, the grid is reduced to a 1.25° x 1.25° horizontal spatial

resolution with vertical pressure over 42 levels ranging from 1000 mb to 0.1 mb (Global

Modeling and Assimilation Office, 2012). The MERRA product used are air tempera-

ture, ozone mixing ratio, geopotential height, and specific humidity (Global Modeling and

Assimilation Office, 2012). An example of the four products used to create atmospheric

profiles for each grid point in the area of the granule can be seen in Figure 2.2. 1,000 mb

air temperatures are used in VFRTM simulations for comparisons to VIIRS observations.

29



(a) Air Temperature (b) Ozone Mixing Ratio

(c) Geopotential Height (d) Specific Humidity

Figure 2.2: MERRA data 00 UTC

30



3 METHODS

The validation of the VFRTM involves a two-pronged approach of comparisons. The

first is a comparison between simulators and the second is a comparison between simulated

and observed results. Figure 3.1 shows the process of validation of the VFRTM from the

data used through comparison of results. This serves as a good reference for the methods

discussed at length in this section.

Figure 3.1: Flowchart outlining the process of validation for the VFRTM

3.1 LBLRTM + DISORT vs. VFRTM

By comparing the simulation output of LBLRTM + DISORT to those of VFRTM,

the speed and accuracy of VFRTM can be validated. This method has been updated with
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respect to previous studies by using MERRA profiles rather than idealized profiles for

gaseous absorption and transmittance calculations. For use on a global scale, this provides

the closest equivalent to real world data, and allows for improvement upon global scale

retrievals.

3.1.1 LBLRTM + DISORT

The LBLRTM+DISORT assumes a plane-parallel, inhomogeneous atmosphere split

into 80 discrete homogeneous and isothermal layers (an arbitrary choice), with more layers

resulting in a more precise final result. The layers are written with a top down approach

where level 1 is 50 km above the surface and level 81 is the surface of the Earth. From level

1 to 21 the atmospheric layers are 1 km deep, shrinking to 0.5 km in depth approaching the

surface, with a cloud placed at level 61, 10 km above the surface. The atmospheric depth

is set to 50 km rather than to 100 km (the border between the atmosphere and outer space)

because the clouds in question should be well under the stratosphere and gases are treated

as mixed in the layers above and below the cloud, thus the full depth of the atmosphere is

not necessary for calculations. A TAPE5 file (atmospheric profile created using MERRA

data) for each grid point is used as input into the LBLRTM, and a directory of 80 τ files is

produced. The 80 τ files are combined into one transmission file, with those results being

fed into DISORT.

Cloud information from MODIS Collection 6 (C6) is included into DISORT at this

point. A MODIS collection is the processing or reprocessing of satellite obtained data

using consistent algorithms (Platnick and Xio, 2014). Level-2 data such as τ , De f f , and
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water path for ice cloud thermodynamic phases were updated in MODIS C6 beginning in

December 2013, with the most important update being the inclusion of the single habit

severely roughened aggregate columns for ice clouds (Platnick and Xio, 2014). MODIS

C6 data also included an analytical gamma distribution for the ice cloud model and smaller

τ to remove the high bias of ice cloud τ in the IR fromMODIS C5 (Holz et al., 2015; Plat-

nick et al., 2015). The geometric and scattering properties of the MODIS C6 ice cloud

model plotted for a visible wavelength of 0.65 µm as an example can be viewed in Figure

3.2. From Figure 3.2b it is discernible that the severely roughened surface from the aggre-

Figure 3.2: MODIS C6 ice cloud model: (a) geometry of an eight-column hexagonal ag-
gregate with roughened surfaces, (b) phase function (P11) of the aggregate with an effective
diameter of 50 µm, (c) asymmetry factor as a function of De f f , and (d) P12/P11 element of
the aggregates with a De f f of 50 µm (Liu et al., 2014)

gate creates a very smooth phase function, decreasing the amount of back and side scatter

by the particle. The consistency throughout De f f sizes in Figure 3.2c demonstrates that
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the asymmetry factor is independent of De f f and represents primarily forward scattering

(Wendisch and Yang, 2012). Similar results are expected in the IR, as scattering is reduced

at IR wavelengths.

DISORT intakes the transmittance files calculated for each grid point and runs over

each line of the spectrum before outputting the wave-number, De f f and τ values, and spec-

tral BT for each point over a specified satellite viewing zenith angle ranging from 0° to 80°.

It is to be expected that the largest angle (80°) would represent the longest path length,

the smallest amount of incident radiance, and the least accurate TOA BT at that location.

Additionally, the smallest angle (0°) should represent the smallest path length, the largest

amount of incident radiance, and therefore the most accurate TOA BT at that location. The

primary conclusion taken from this is that BT accuracy and value should increase with de-

creasing angle, meaning the closer to zenith the satellite collects BT data, the more accurate

and higher in value those returns will be compared to the same spot at a larger zenith angle.

Closer to the horizon, there is higher potential for error to be introduced via pixel growth

or increased path length. The selection of zenith angle used in calculations will depend on

the test being run.

The BT values produced by LBLRTM + DISORT are presented in the form of spec-

tral BT which need to be translated to band averaged BT in a series of three steps. First,

spectral BT data is converted to spectral radiance values using the Planck’s equation,

L(ν , t) =
c1ν3

ec2ν/t −1
(3.1)

where L(ν , t) is blackbody radiance [mW/m2 − sr − cm−1], c1 = 1.191042 ∗ 10−5
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[mW/m2−sr−cm−4], c2 = 1.4387752 [Kcm], ν is wavenumber [cm−1], and t is blackbody

temperature [K]. The spectral radiances are then translated to band averaged radiances via

integration over the weighted response functions interpolated over the spectrum, of each

VIIRS channel. The integration is given by,

R =
∑
∫

R(ν)SRF(ν)dν
∑
∫

SRF(ν)dν
(3.2)

where R is the band averaged radiance, R(ν) is radiance, and SRF(ν) is the spectral re-

sponse function. Finally, to convert band averaged radiance to band averaged BT, the

inverse of the Planck’s law is used.

t(ν ,L) =
c2ν

ln(c1ν3/L+1)
(3.3)

3.1.2 VFRTM

The IR simulator for the VFRTM has programs that work very similarly to those

in LBLRTM + DISORT to allow for the final products to be compared. Modules that

contain pre-calculated LUTs for gas absorption are used by CKD programs which intake

atmospheric profiles (created using MERRA data), and calculate gaseous absorption and

transmittance. These transmissivities are then used by the RTE solvers to simulate BT

values. The CKD method is used for inhomogeneous paths and is an approximation of the

k-distribution method used for a homogeneous path. CKD is given by,

τ(u) =
∫ 1

0
exp[−

∫ u

0
k(g,u′)du′]dg (3.4)

where τ is optical depth, u is the location in the integration path, k is the absorption spec-

trum, and g is a representation of the interval of the absorption spectrum. The CKDmethod
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takes only seconds to run one pixel and uses three orders of magnitude less computational

effort than the LBLRTM + DISORT method which takes tens of minutes to run for just

one pixel (Petty, 2006). This method avoids the use of brute force line-by-line method of

calculating transmittances by using integrations computed over a smoother function via

large discrete steps (used to reduce computational effort) that can allow for maintained ac-

curacy. The CKD method allows for calculations to have overall errors of < 1% (Petty,

2006). The final result contains COP and BT values for all three channels that are already

band averaged so no additional calculations or conversions need to be made.

3.1.3 Calculations and Inputs

When comparing two RTM simulations, there are several methods used to measure

the accuracy of the VFRTM in relation to the benchmark results fromLBLRTM+DISORT.

The first is to compare BT simulations from both RTMs by plotting them in scatter plot

form. Both models are run for clear sky and cloudy sky cases over four zenith angles: 0°,

20°, 40°, and 60°. For the clear sky case τ = 0.001 and De f f = 0.001 µm. Extinction

of radiation by scattering is negligible not only for particles of that size, but also in the

IR region in general. In the absence of clouds, it is largely the absorption by gases that

controls the opacity of the atmosphere, and with a τ value that small, nearly all radiation

is transmitted to the surface (Petty, 2006). For the cloudy sky, three cases are considered:

thin, medium, and thick. For the thin cloud τ = 0.1 and De f f = 20 µm, for the medium

cloud τ = 3 and De f f = 50 µm, and for the thick cloud τ = 8 and De f f = 100 µm. A cloud

is considered optically thin if τ << 1 and optically thick if τ >> 1. The object of this
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test is to show strong correlation of BT values for a given pixel between simulations of the

slow and fast models, with a low level of error to show the accuracy of the fast model.

A second analysis that can be done is to look at the BTD between the two simulations.

For this test 10 points were picked at random from each granule, and the simulator was run

at a zenith angle of 20° for various COP. A zenith angle of 20° has been used in previous

studies, and it represents an angle that sees more than what is directly under the satellite but

also is not subject to large amounts of pixel growth. To be representative of an atmosphere

with ice clouds, De f f was set to 20, 50, 80, 110 µm and was run over τ values of 0.01, 0.03,

0.05, 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 20, and 30. Using a range of τ from

optically thin through optically thick will help to show any sensitivities to or dependencies

on τ for VFRTM. The lower the differences, the more accurate the fast model is. While all

of the same input values are used for both LBLRTM + DISORT and VFRTM, a specific

input text file is used for the VFRTM simulation. An example of the input file can be found

in Table 3.1.

3.2 VFRTM vs. VIIRS Observations

Comparing BT values simulated by VFRTM to those observed by VIIRS can provide

validation of the use of MODIS C6 data. This method also allows for a higher-resolution

comparison than that of the previous section. Surface temperature, satellite viewing zenith

angle, τ , De f f , and cloud top height (cloud layer) are adjusted for each pixel run through

VFRTM. VIIRS data from June 21, 2014 is used as a case study. This is an improve-
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Table 3.1: Example of Data in ‘input.txt’ File for BTD Plot Simulations

1 Number of cloud / aerosol layers
1 Cloud_type (0: water, 1:ice) from bottom to top
61 Cloud_layer (1: at TOA size_layer: boundary cloud)
20 Number of cloud layer loops
0.01 Optical Depth (Additional values included depending on the test)
20. Effective Size (Additional values included depending on test)
299.0 Surface Temperature
0 Albedo Type (0: constant 1: user_defined)

0.02 Surface albedo if albedo type = 0 (1-emissivity)
20.0 Viewing zenith angle (degree)
1 Code of satellite instrument (1: VIIRS, 2: MODIS)

ment upon previous studies that used RMS error to select appropriate COP values or used

MODIS COP to compare directly to VIIRS simulations. This study uses VIIRS data prod-

ucts to simulate BT for the granule to compare to the actual observed BT in an attempt to

demonstrate performance accuracy.

3.2.1 VIIRS

To make comparisons to VFRTM, latitude, longitude, satellite viewing zenith angle,

τ , De f f , and BTs are taken from VIIRS_SDR data sets, and COP and cloud top heights

were collected from VIIRS_IPNG data sets. The data for surface temperature is taken

from MERRA 1,000 mb air temperatures averaged between 09 UTC and 12 UTC to give

the approximate surface temperatures at 10:30 UTC. This is the closest time to that of the

VIIRS data in use, 10:38-10:44 UTC.

The BT values are stored as 16-bit unsigned integer arrays and as such must be con-

verted to proper scientific units using scale and offset values provided in a two-element
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vector of 32-bit floating point values where the first value represents the ‘scale value’ and

the second value represents the ‘offset value’ (Seaman et al., 2014). Using

f = c0n+ c1 (3.5)

where c0 is the scale value, c1 is the offset value, and n represents the unsigned integer

value, and the values in Table 3.2, the BT values can be converted.

Table 3.2: Scaling Values for VIIRS BT Values

Channel Scale Value Offset Value
M14 c0 = 0.00373892 c1 = 120.000
M15 c0 = 0.00412044 c1 = 111.000
M16 c0 = 0.00425779 c1 = 103.000

An additional issue is the use of fill values from bow-tie removal within the data

sets. Those found within VIIRS data are listed in Table 3.3 along with their meanings

(Seaman, 2013). Surface temperature data from MERRA also contains NaN values in

Table 3.3: Fill Values for VIIRS Data

Array Value Name Meaning
65533 OBPT On-board pixel trim
-999.5 ERR Error during processing or non convergence
-999.6 OGPT On-ground pixel trim
-999.9 N/A Not applicable value

similar locations to the VIIRS bow-tie removal spots. These values must also be removed,

and if they are not, they could lead to erroneous simulations that could skew results and

analysis. Once the fill values are removed, the input can be used in the VFRTM to simulate
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the BT values that VIIRS observed. Plots of the observed and simulated BT values are

created for analysis.
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4 RESULTS

4.1 Simulation vs. Simulation

Comparing the results of the benchmark value simulations of LBLRTM + DISORT

to those of VFRTM allows for an analysis of the accuracy of the VFRTM. The VFRTM

can be validated if the errors are small. Several criteria are used to assess the accuracy of

the VFRTM.

4.1.1 Scatter Plot Analysis

The first method is use scatter plots of VFRTM versus LBLRTM + DISORT. This

provides a visual representation of the correlation between the two models. As a reference,

a 1-to-1 line is plotted for each case. The amount of linear correlation is given by the

correlation coefficient,

r =
∑(x− x̄)(y− ȳ)√
∑(x− x̄)2(y− ȳ)2

(4.1)

where x represents the LBLRTM + DISORT values, y represents the VFRTM values, and x̄

and ȳ represent the sample means of those arrays. The RMS difference of the BTs provides

a measure of the magnitude of the difference between the two models given by

RMS(BT D) =

√
∑N

i (BT Di)2

N
(4.2)

where BT Di at the ith point is represented by,

BT D = BTV FRT M −BTLBLRT M+DISORT (4.3)
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and N is the total number of points. Percent error is also used to represent relative error of

the model given by,

Relative Error =
|Measured Value−Actual Value|

Actual Value
(4.4)

Using the data from both June 20, 2014 (day case) and June 21, 2014 (night case), clear

sky and cloudy sky tests are run.

First, for the clear sky case BT was simulated for both LBLRTM + DISORT and

VFRTM for June 21, 2014 over four zenith angles (0°, 20°, 40°, and 60°) with τ = 0.001

and De f f = 0.001 µm. Each test was run over a 1° by 1° grid (ultimately containing 540

points) within the granule for each of the three longwave channels. Figure 4.1 gives an

example of these plots for channels M14, M15, and M16 at a zenith angle of 20°. The

results of tests using zenith angles 0°, 40°, and 60° can be found in Appendix A. The

statistical analysis for the clear sky case calculations at all four tested zenith angles found

in Table 4.1. Correlations for all cases range between r = 0.92 and r = 0.96 with RMS error

between 0.3 K and 0.7 K, increasing for increasing wavelength and zenith angle. This

level of RMS error corresponds to < 0.25% of error from the VFRTM, and the low level

of percent error shows that the VFRTM would be accurate to use for clear sky cases. The

discrepancy between simulated BT may be due to the way that variable is processed with

such small COPs. In general, the points further from the 1-to-1 line in the clear sky case

have higher BT values simulated by VFRTM. This is not the case for the cloudy sky tests.

Continuing to use data from June 21, 2014, simulations were run for “thin” (τ =

0.1, De f f = 20 µm), “medium” (τ = 3, De f f = 50 µm), and “thick” (τ = 8, De f f = 100

42



(a)

(b)

(c)

Figure 4.1: Clear sky example channels M14 (a), M15 (b), and M16 (c)
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Table 4.1: Clear Sky Example: Statistical Analysis

Angle M14 M15 M16
r RMS Error r RMS Error r RMS Error

0° 0.96 0.30 K 0.94 0.52 K 0.92 0.70 K
20° 0.96 0.31 K 0.94 0.54 K 0.92 0.72 K
40° 0.94 0.36 K 0.92 0.60 K 0.92 0.76 K
60° 0.94 0.42 K 0.93 0.74 K 0.96 0.74 K

µm) clouds. Again, each case has 540 points from the 1° by 1° grid plotted for each

channel. Plots for the 20° zenith angle cases are shown in Figure A.5 along with statistical

analysis for all zenith angles tested in Table 4.2. Plots for the other zenith angles tested can

also be found in Appendix A. Overall the correlation for all cases is extremely high with

r > 0.99. This result is further backed up by the RMS error ranging from 0.137 for thin

clouds to 0.166 for thick clouds. The corresponding error is< 0.06% for all cases, which is

approximately a quarter of the error from the clear sky case. Error is essentially constant in

each cloud case between increasing wavelength and increasing zenith angle showing very

little sensitivity to either variable. Error does increase with cloud thickness, but for each

of the three cases presented and all cases in between, the VFRTM is extremely accurate

when compared to the benchmark simulations produced by LBLRTM + DISORT.

Comparing the clear sky case to the cloudy sky cases, the cloudy sky cases are much

more accurate than the clear sky cases. Although the same data are used to create atmo-

spheric profiles for gaseous absorption and transmittance calculations for both the clear sky

and cloudy sky cases, the VFRTM shows better accuracy in the cloudy sky calculations.

The slightly lower accuracy in the clear sky case may be due to the COP used. It may be
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Cloudy sky examples channels M14, M15, and M16: (a)-(c) thin, (d)-(f)
medium, (g)-(i) thick
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Table 4.2: Cloudy Sky Examples: Statistical Analysis

Thin Cloud

Angle M14 M15 M16
r RMS Error r RMS Error r RMS Error

0° 0.99 0.14 K 0.99 0.14 K 0.99 0.14 K
20° 0.99 0.14 K 0.99 0.14 K 0.99 0.14 K
40° 0.99 0.14 K 0.99 0.14 K 0.99 0.14 K
60° 0.99 0.14 K 0.99 0.14 K 0.99 0.14 K

Medium Cloud

Angle M14 M15 M16
r RMS Error r RMS Error r RMS Error

0° 0.99 0.15 K 0.99 0.15 K 0.99 0.16 K
20° 0.99 0.15 K 0.99 0.16 K 0.99 0.16 K
40° 0.99 0.16 K 0.99 0.16 K 0.99 0.16 K
60° 0.99 0.16 K 0.99 0.16 K 0.99 0.16 K

Thick Cloud

Angle M14 M15 M16
r RMS Error r RMS Error r RMS Error

0° 0.99 0.16 K 0.99 0.16 K 0.99 0.16 K
20° 0.99 0.16 K 0.99 0.16 K 0.99 0.16 K
40° 0.99 0.17 K 0.99 0.17 K 0.99 0.17 K
60° 0.99 0.17 K 0.99 0.17 K 0.99 0.17 K

that the VFRTM is just not as accurate for a clear sky case as for a cloudy sky case because

of the way it handles such small COPs, and the model may just perform the best when

there are clouds involved in the simulation. Multiple scattering is still accounted for in the

VFRTM for clear sky cases (unlike in previous studies) and as such may be contributing

to the error level. Further research should be done on clear sky simulations to determine if

the amount of error can be reduced further to the level of the cloudy sky simulations.

In an attempt to determine any differences between day and night simulations, a set

of cloudy sky tests were done for the daytime granule from June 20, 2014. Due to the
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accuracy level of the clear sky case as well as the accuracy level of the various zenith

angle tests that were run for the nighttime granule, only the cloudy sky cases were tested

at a zenith angle of 20° for this data set. Plots for the three cases can be found in Appendix

A (as they look similar to those from June 21, 2014), while the statistical analysis results

can be found in Table 4.3. There are several erroneous points in each plot that lead to a

minimal reduction in correlation in comparison to the nighttime case. RMS error for these

cases is much more variable (possibly due to the erroneous points), but has around half the

amount of error as the nighttime cases except for a few channels. The values of RMS error

represent error from the VFRTM as low as 0.01% in some cases.

Table 4.3: Cloudy Sky Examples (June 20, 2014): Statistical Analysis

Angle M14 M15 M16
r RMS Error r RMS Error r RMS Error

Thin 0.99 0.17 K 0.99 0.08 K 0.99 0.22 K
Medium 0.99 0.11 K 0.99 0.05 K 0.99 0.04 K
Thick 0.99 0.08 K 0.99 0.09 K 0.99 0.03 K

When comparing the daytime cases to the nighttime cases, RMS error is much lower

during the day and corresponds to a lower amount of error in the VFRTM simulations.

Overall, the thicker clouds are handled better by the model during the day, and the thin

cloud is handled better by the model at night. BT values between day and night cases are

also different, as is expected. As mentioned previously, high cirrus clouds act as blackbod-

ies, with thin cirrus clouds being an exception. High, thin clouds have similar BT values

during the day and night. These clouds are so thin that they cause a reaction similar to the
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clear sky case. During the day solar radiation transmits through the clouds to the surface.

Because the cloud is so optically thin, the imager sees a BT similar to the surface temper-

ature rather than the temperature at the top of the cloud. At night the process is similar,

with terrestrial radiation emitted from the surface and passing through the cloud (rather

than being absorbed) so that the imager also sees a value similar to that of the surface. As

the clouds become thicker, they act more like blackbodies, and the values recorded by the

imager are more representative of their altitude.

During the day, for high, thick clouds, solar radiation still passes through the cloud

to the surface where it is absorbed into the surface of the Earth. A small amount of solar

radiation is reflected off the top of the cloud towards the imager immediately. The BT

values are representative of the cloud top with the thickest clouds having the coldest values

due to lack of interaction of terrestrial radiation that is seen in the medium cloud case. At

night, the reasoning is similar, but the terrestrial radiation is emitted with a value of the

surface temperature causing the BT values of the clouds to be higher at night than during

the day. High clouds trap terrestrial emission through absorption with radiance being re-

emitted towards the Earth’s surface or lost out to space where it is detected by VIIRS.

Again, the thicker clouds have lower BTs as they trap more of the surface radiance than

the medium clouds. Knowing the BT values expected from various cloud types during the

day and the night could improve global cloud retrievals. The COP of each cloud type tested

is important to know to make broad-based assumptions from simulations on a global scale.

BTD and RMS error are used to test the sensitivity of simulations to COP in an attempt to
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improve the methods of operational uses of radiative transfer techniques.

4.1.2 Brightness Temperature Difference Analysis

The second method used in this study to validate the accuracy of the VFRTM is to

calculate BTD for a select few points from each date using Equation 4.3. These plots are a

function of τ and De f f and help to test the sensitivity of the VFRTM to these COP in the IR

region of the electromagnetic spectrum. A BTD = 0 would show that the simulation from

VFRTM is equal to that of the LBLRTM + DISORT while a BTD > 0 represents VFRTM

simulations being greater than those from LBLRTM + DISORT and BTD < 0 represents

VFRTM simulations being less than those fromLBLRTM+DISORT. The smaller themag-

nitude of the differences calculated, the more accurate the VFRTM is. Statistical analysis

is done in the form of RMS error of BTD calculations. For each data granule, 10 randomly

selected pixels were plotted and analyzed. BTD is calculated for four De f f values over a

series of τ values representative of what may be seen in an atmosphere with an ice cloud.

The RMS error calculations were done with the data from those 10 points and based on the

consistency in results from those points, the magnitude of error is representative of the full

data granule.

For both data granules, one set of BTD plots will be analyzed here with others avail-

able for viewing in Appendix B. First looking at 18°N/124°W from June 20, 2014, Figure

4.3 shows several discernible features that are also prevalent in the other pixels tested. In

Figure 4.3a there is a large dip around τ = 5 that is only present for the M15 band and

not present in the figures with larger De f f sizes. Another primary feature found in all of
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the plots is the “spike” in BTD found at τ = 1.5 for all channels regardless of De f f size.

This spike is an increase in the magnitude of BTD and represents a less accurate result of

the VFRTM at that thickness. This could be an issue with how this τ interacts with the

data profiles, or there could be an issue with the simulation for a particle of this size. For

this pixel, all values are < 0 showing that the simulated VFRTM results for this pixel are

smaller than those produced by LBLRTM + DISORT. In general, for the June 20, 2014

cases, BTD < 0.3 K with BTD decreasing to < 0.15 K for increasing De f f values. For

increasing τ , BTD values for each channel decrease to a constant value that is different for

each channel, but which is between 0 and magnitude 0.1 for all cases. This shows that past

the point of approximately τ = 10, the VFRTM has no sensitivity to τ , given that optically

thick clouds act as blackbodies.

For June 21, 2014, a very similar result is found. The large dip in 4.4a for channel

M15 around τ = 5 is still visible and all subplots in Figure 4.4 contain the same spike at τ

= 1.5 for all channels. The results for this data set are the same order of magnitude as the

previous set with all pixels having a BTD < 0.3 K with values reducing to < 0.1 K with

increasing τ . Similarly to the other data set, each channel has a constant value BTD value

between 0 and 0.1 K. Due to the strong agreement in results between both data sets, the

VFRTM is highly accurate when compared to the simulations of LBLRTM + DISORT.

Lastly, using RMS error calculations, the accuracy of the VFRTM can be further

demonstrated by providing a meaningful measure of the error in the differences between

the two simulations. These results are used as an index for the overall error level of the
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(a) (b)

(c) (d)

Figure 4.3: Brightness temperature difference for 18°N/124°W June 20, 2014
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(a) (b)

(c) (d)

Figure 4.4: Brightness temperature difference for 23°N/137°W June 21, 2014
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VFRTM. Based on the work done by Niu et al. (2007), Zhang et al. (2007), and Ding et al.

(2011), an appropriate level of error for the VFRTM under ice cloud conditions in the long

wave IR channels is on the order of 0.5 K. RMS error was calculated using data from each

of the 10 random points plotted for each data set, for each IR channel, and an overall value

for each De f f size. Values for June 20, 2014 and June 21, 2014 can be found in Table 4.4.

Table 4.4: Root Mean Square Error Values

June 20,2014
De f f M14 M15 M16 All
20 µm 0.12 K 0.15 K 0.07 K 0.12 K
50 µm 0.11 K 0.07 K 0.07 K 0.09 K
80 µm 0.11 K 0.07 K 0.07 K 0.095 K
110 µm 0.11 K 0.07 K 0.07 K 0.09 K

June 21,2014
De f f M14 M15 M16 All
20 µm 0.19 K 0.15 K 0.08 K 0.15 K
50 µm 0.18 K 0.06 K 0.08 K 0.12 K
80 µm 0.18 K 0.06 K 0.08 K 0.12 K
110 µm 0.17 K 0.06 K 0.08 K 0.12 K

The results show that for both dates and all cases, the RMS is< 0.2 K which demon-

strates that the VFRTM is highly accurate for the ice cloud case based on the appropriate

level of error from previous studies. This result is much better than those found in previ-

ous studies which may be due to the use of MERRA reanalysis data rather than idealized

profiles. Some previous studies have lower RMS error, but that may be due to the use of

idealized profiles or treatment of gases. In general, the level of error is higher for smaller

De f f in both the day and the night cases. This shows that there is higher sensitivity of the

models to smaller cloud particles. In terms of the tests run for each channel, for both data
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sets, M14 has the highest error followed by M16, then M15. Each channel is more sensi-

tive to a specific atmospheric absorber, but since they are combined in the VFRTM to save

on computation time, there could be increased levels of error with certain IR channels.

As BTD plots are used to show the sensitivity to COP, RMS error values were calcu-

lated for four τ values of various orders of magnitude using data from all three IR channels.

Between the day and the night case found in Table 4.5, error is very similar for large τ for

all De f f . This is not surprising as these thicker clouds are essentially acting as blackbod-

ies and the influence of COP in simulations is negligible. Error levels begin to diverge at

smaller τ with the daytime case having higher accuracy in simulations than the nighttime

case. During the night when RMS error from the scatter plots showed that the model is

more accurate with thin cloud calculations, there is also higher sensitivity to the COP than

during the day. Overall, VFRTM has a higher sensitivity to smaller De f f and τ pairs.

Table 4.5: Root Mean Square Error Values for Various τ

June 20,2014
De f f τ = 0.01 τ = 1.5 τ = 10 τ = 30
20µm 0.12 K 0.12 K 0.11 K 0.07 K
50µm 0.12 K 0.10 K 0.07 K 0.07 K
80µm 0.12 K 0.09 K 0.07 K 0.07 K
110µm 0.12 K 0.09 K 0.07 K 0.07 K

June 21,2014
De f f τ = 0.01 τ = 1.5 τ = 10 τ = 30
20µm 0.17 K 0.16 K 0.12 K 0.07 K
50µm 0.17 K 0.14 K 0.07 K 0.07 K
80µm 0.17 K 0.13 K 0.07 K 0.07 K
110µm 0.17 K 0.12 K 0.07 K 0.07 K
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4.2 Simulation vs. Observation

To compare the results of the simulation to the VIIRS observations, data from June

21, 2014 are used as a case study. BTs are simulated using geolocation and COP informa-

tion from VIIRS itself. Atmospheric profiles and surface temperatures are from MERRA

and are averaged between 9 UTC and 12 UTC to provide data as close as possible to the

time of the VIIRS data. Comparing the simulated BTs to those observed by the VIIRS

sensor provides a validation of the use of MODIS C6 data, as well as a validation of the

accuracy of the VFRTM at a higher-resolution. The observed BTs in Figure 4.5 look rea-

sonable. The coldest values represent high cloud tops, where there may be thunderstorms

or high cirrus clouds, and the warmest values represent lower cloud tops. Unfortunately,

the simulations show little consistence with the observed values. After looking further at

the De f f data from the VIIRS COP data, there are many values of 0.5 µm. These data are

likely erroneous and should have been treated as fill values. Furthermore, clouds under 4

km are water clouds and could skew the final results.

After removing the pixels with erroneous values of De f f and low water clouds, a

much better result is obtained. The structure of high cloud tops associated with convec-

tion is visible in both images (see Figure 4.6). The same cloud structures are visible in

both the observed and simulated cases unlike the previous set of images where there is no

consistency between images. After adding back in the Dee f f values but leaving out the

low ice clouds, the large amount of error remains. This shows that the primary issue is the

inclusion of the De f f = 0.5 µm values. There is good agreement between the simulated
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Initial comparison between observed (left column) and simulated (right col-
umn) brightness temperatures
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and observed BTs. Table 4.6 shows the low level of RMS error as well as the percent error

for each channel which represents the amount of error from the VFRTM in BT simulations

for this case study. The RMS error increases for increasing wavelength. This may be due

Table 4.6: Case Study: Statistical Analysis

M14 M15 M16
RMS Error 2.70 K 2.83 K 3.83 K
Percent Error 1.0% 1.1% 1.5%

to reduced scattering at longer wavelengths leading to an increase in difference between

simulated and observed BT, which could mean VFRTM needs improvement on how scat-

tering is handled. Similarly, the relative error also increases as wavelength increases, but

the overall error amount is very low. The results of this statistical analysis show that not

only is it possible to simulate BT at high resolutions on a large scale, but that the result is

highly accurate. This could lead to strong improvements of global cloud retrieval and a

better understanding of the effects of cirrus clouds on the global energy budget as well as

an improvement to their contribution in global climate models.
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(e) (f)

Figure 4.6: Comparison between observed (left column) and simulated (right column)
brightness temperatures after removing fill values and water clouds
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5 SUMMARY AND CONCLUSIONS

Clouds are an integral part of the balance of the global energy budget. Cirrus clouds

are not represented well within the breakdown of the global energy budget because so

much is still unknown about their spatial and temporal distribution, their COPs, and their

contribution of warming from the positive climate feedback loop they create. Using a

combination of remote sensing techniques and RTMs, BTs of clouds can be simulated, and

COPs can be retrieved. With a better knowledge of the COPs of cirrus clouds and their

amount of global coverage, the global energy budget and global climate models can be

updated.

Before using an RTM for global retrieval purposes, the RTM needs to be validated.

The well validated LBLRTM + DISORT is used to produce “benchmark” simulations to

compare to those of the VFRTM. BT values are the best method of simulation for clouds in

the IR spectrum because they provide the best measure of radiance with scattering reduced

in that portion of the electromagnetic spectrum. Comparing the simulations of the VFRTM

to those of the LBLRTM + DISORT provides a measure of accuracy for the VFRTM. Data

from MERRA, VIIRS, and MODIS C6 are used as input data for BT simulations.

Accuracy is documented through several types of comparisons. First a comparison

of BTs are presented in terms of scatter plots. Clear sky and cloudy sky cases are tested

for various COP pairs for both a daytime and nighttime case. Error is higher for the clear

sky cases than the cloudy sky cases. This should be investigated further. The level of error
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could be due to how the VFRTM handles the lack of cloud particles. For the cloudy sky

cases, error was much lower with error increasing slightly for increased τ . Comparing the

results of the cloudy sky cases of the daytime case and the nighttime case, there is lower

error overall for the daytime cases. Thicker clouds are handled better by the model during

the day, and thinner clouds are handled better by the model during the night. Further case

studies should be conducted to confirm this possible diurnal effect.

BTD analysis is also done for a select few pixels from both the daytime case and the

nighttime case. These plots are used as a test of sensitivity of the model to various COP

values. A spike in values occurs at τ = 1.5 in all cases. This τ value does not interact well

with the data profiles or is just not handled well by the simulator. Upon removing those

data, a smoother result is obtained. In general, error decreases for increasing τ and is never

more than 0.3 K for smaller COP. In terms of RMS error, an appropriate level of error is

considered to be < 0.5 K based on previous studies. For all channels and all De f f , error is

< 0.2 K. This shows a high level of accuracy for the VFRTMwhen reanalysis data is used.

Again the error was lower during the day, but for both cases, the highest sensitivity of the

model was for the smallest COP pair.

A final test for accuracy is done by comparing the observations of VIIRS to the

simulations of VFRTM. This provides a test of accuracy at a much higher resolution than

previous tests and also allows for a better test of MODIS C6 data. All fill values from COP

and BT data are removed prior to running the VFRTM. The results of the simulation are

disappointing and show no correlation to the observed BT values. Upon further analysis

60



of the data, it seems that a large number of De f f values are set to a value of 0.5 µm which

suggests these values were not processed correctly. Upon their removal, a much better

result is obtained. To increase the accuracy of the result, all clouds under 4 km were also

removed from the data set as these clouds are comprised of water droplets, and the focus

of this study is on clouds comprised of ice crystals. The final simulation does very well in

comparison to the observed values with RMS error< 4K for all channels, which represents

an error from the VFRTM of < 1.5% for all cases.

All three tests provide a highly accurate result. The RMS error values are repre-

sentative of low error from the VFRTM simulations. The highest % error found is in the

observations vs. simulations case, and further work can be done to reduce the amount

of error. When MERRA data is used for atmospheric profiles and surface temperatures,

interpolation between points due to a difference in spatial resolution between data sets is

needed. Using reanalysis data is still an improvement upon the use of idealized data sets

from previous studies. Reanalysis data is the closest to real time data that can be applied

for studies such as this one, and reanalysis data provides a better example of simulation

values than idealized data sets. The use of VIIRS data to simulate VIIRS BT values is a

big improvement upon previous studies that used other instrumentation data to simulate the

observations of VIIRS. Overall, the VFRTM is found to be highly accurate and is validated

for further use such as global cloud retrievals to help improve the global energy budget and

global climate models.
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APPENDIX A

SCATTER PLOTS

A.1 Cloudy Sky Examples: June 20, 2014

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Cloudy sky examples June 20, 2016 channels M14, M15, and M16: (a)-(c)
thin, (d)-(f) medium, (g)-(i) thick
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A.2 Additional Satellite Viewing Zenith Angle Examples: June 21, 2014

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Clear sky examples channels M14, M15, and M16: (a)-(c) 0°, (d)-(f) 40°,
(g)-(i) 60°
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Thin cloud examples channels M14, M15, and M16: (a)-(c) 0°, (d)-(f) 40°,
(g)-(i) 60°
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.4: Medium cloud example channels M14, M15, and M16: (a)-(c) 0°, (d)-(f) 40°,
(g)-(i) 60°
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.5: Thick cloud example channels M14, M15, and M16: (a)-(c) 0°, (d)-(f) 40°,
(g)-(i) 60°
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APPENDIX B

BTD PLOTS

B.1 Additional Select Pixels: June 20, 2014

(a) (b)

(c) (d)

Figure B.1: Brightness temperature difference for 31°N/117°W June 20, 2014
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(a) (b)

(c) (d)

Figure B.2: Brightness temperature difference for 28°N/118°W June 20, 2014
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(a) (b)

(c) (d)

Figure B.3: Brightness temperature difference for 14°N/128°W June 20, 2014
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(a) (b)

(c) (d)

Figure B.4: Brightness temperature difference for 29°N/132°W June 20, 2014
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(a) (b)

(c) (d)

Figure B.5: Brightness temperature difference for 19°N/138°W June 20, 2014
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(a) (b)

(c) (d)

Figure B.6: Brightness temperature difference for 14°N/142°W June 20, 2014
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(a) (b)

(c) (d)

Figure B.7: Brightness temperature difference for 11°N/146°W June 20, 2014
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(a) (b)

(c) (d)

Figure B.8: Brightness temperature difference for 26°N/148°W June 20, 2014
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(a) (b)

(c) (d)

Figure B.9: Brightness temperature difference for 17°N/151°W June 20, 2014
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B.2 Additional Select Pixels: June 21, 2014

(a) (b)

(c) (d)

Figure B.10: Brightness temperature difference for 1°N/119°W June 21, 2014
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(a) (b)

(c) (d)

Figure B.11: Brightness temperature difference for 12°N/121°W June 21, 2014
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(a) (b)

(c) (d)

Figure B.12: Brightness temperature difference for 3°N/122°W June 21, 2014
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(a) (b)

(c) (d)

Figure B.13: Brightness temperature difference for 8°N/123°W June 21, 2014
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(a) (b)

(c) (d)

Figure B.14: Brightness temperature difference for 2°N/133°W June 21, 2014
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(a) (b)

(c) (d)

Figure B.15: Brightness temperature difference for 4°N/134°W June 21, 2014
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(a) (b)

(c) (d)

Figure B.16: Brightness temperature difference for 14°N/144°W June 21, 2014
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(a) (b)

(c) (d)

Figure B.17: Brightness temperature difference for 16°N/149°W June 21, 2014
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(a) (b)

(c) (d)

Figure B.18: Brightness temperature difference for 19°N/151°W June 21, 2014
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