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ABSTRACT

Multi-resolution metrology devices co-exist in today’s manufacturing environ-

ment, producing coordinate measurements complementing each other. Typically,

the high-resolution device produces a scarce but accurate dataset, whereas the low-

resolution one produces a dense but less accurate dataset. Research has shown that

combining the two datasets of different resolutions makes better predictions of the

geometric features of a manufactured part. A challenge, however, is how to effectively

match each high-resolution data point to a low-resolution point that measures ap-

proximately the same physical location. A solution to this matching problem appears

a prerequisite to a good final prediction.

This dissertation solves this metrology matching problem by formulating it as

a quadratic integer programming, aiming at minimizing the maximum inter-point-

distance difference (maxIPDdiff) among all potential correspondences. Due to the

combinatorial nature of the optimization model, solving it to optimality is com-

putationally prohibitive even for a small problem size. In order to solve real-life

sized problems within a reasonable amount of time, a two-stage matching framework

(TSMF) is proposed. The TSMF approach follows a coarse-to-fine search strategy

and consists of down-sampling the full size problem, solving the down-sampled prob-

lem to optimality, extending the solution of the down-sampled problem to the full

size problem, and refining the solution using iterative local search.

Many manufactured parts are designed with symmetric features; that is, many

part surfaces are invariant (are mapped to themselves) to certain intrinsic reflec-

tions and/or rotations. Dealing with parts surfaces with symmetric features makes

the metrology matching problem even more challenging. The new challenge is
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that, due to this symmetry, alignment performance metrics such as maxIPDdiff

and root mean square error are not able to differentiate between (a) correct so-

lutions/correspondences that are orientationally consistent with the underlying true

correspondences and (b) incorrect but seemingly correct solutions that can be ob-

tained by applying the surface’s intrinsic reflections and/or rotations to a correct

set of correspondences. To address this challenge, a filtering procedure is proposed

to supplement the TSMF approach. Specifically, the filtering procedure works by

generating a solution pool that contains a group of plausible candidate sets of cor-

respondences and subsequently filtering this pool in order to select a correct set of

correspondences from the pool.

Numerical experiments show that the TSMF approach outperforms two widely-

used point set registration alternatives, the iterative closest point (ICP) and coherent

point drift methods (CPD), in terms of several performance metrics. Moreover,

compared to ICP and CPD, the TSMF approach scales very well as the instance

size increases, and is robust with respect to the initial misalignment degree between

the two datasets. The numerical results also show that, when enhanced with the

proposed filtering procedure, TSMF exhibits much better alignment performance

than TSMF without filtering, CPD and ICP in terms of both orientation correctness

of the selected solution and several other performance metrics. Furthermore, in

terms of computational performance, TSMF (with and without filtering) can solve

real-life sized metrology data matching problems within a reasonable amount of time.

Therefore, they are both well suitable to serve as an off-line tool in the manufacturing

quality control process.
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NOMENCLATURE

B&B Branch-and-Bound
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Filter1 Filtering option 1
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sumIPDdiff summation IPD difference

TSMF Two-Stage Matching Framework

XiaHeur Heuristic matching algorithm proposed by Xia et. al.
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1. INTRODUCTION*

1.1 Motivation and Research Objective

To ensure the dimensional quality of manufactured products, metrology equip-

ment is needed to take coordinate measurements. Two lines of metrology devices

co-exist today: one is the contact coordination measuring machine (CCMM) [1] with

a mechanical touch probe and the other is optical coordination measuring machine

(OCMM) [2] equipped with a laser scanning sensory system. Figure 1.1 illustrates a

manufactured part being measured by the two metrology devices.

In this pair, CCMM is the high-resolution (HR) device which can measure up

to the resolution of 0.5 µm. Comparatively, OCMM is the low-resolution (LR) one

whose resolution is usually one order of magnitude lower than that of the CCMM [3].

On the other hand, OCMM, due to its use of the laser scanning mechanism, can take

dense measurements from a medium to large sized part reasonably fast, say in hours,

while using a CCMM on the same part may take considerably longer time, say

days. Even then the CCMM measurements do not cover the part’s surface as nearly

dense as those by OCMM. In the end, the two resulting metrology datasets have

measurements of different resolutions and different surface-covering densities. They

form a pair of datasets complementing, rather than replacing, one another, as the

LR data, with its dense coverage, capture the local and global shape feature better,

while the HR data, albeit scarce in number, does describe by each of its data points

the true yet unknown surface in a more accurate and precise manner.

*Part of the material in this section is reprinted with permission from “Match misaligned two-
resolution metrology data” by Yaping Wang, Erick Moreno-Centeno and Yu Ding, 2016. IEEE
Transactions on Automation Science and Engineering (In Press), manuscript no. T-ASE-2015-493,
article DOI: 10.1109/TASE.2016.2587219, July/2016 c©2016 IEEE.
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Figure 1.1: Two-resolution metrology data

Researchers recognize the need and benefit of combining the two-resolution metrol-

ogy datasets. For instance, Xia et. al. [4] has shown that combining the two-

resolution datasets produces better prediction quality of the underlying surface fea-
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ture than only using one of them. A prerequisite in achieving an effective combination

is to match each HR data point to an LR data point that measures approximately

the same physical location. This matching is, however, a challenge because the two

datasets are often misaligned. By “misalignment”, we mean that the coordinates of

a data point cannot serve as a unique reference to the physical location on the part

surface where the measurement was actually taken. Given two datasets, it is not

immediately clear which point in one dataset corresponds to a selected point in the

other dataset. Misalignment happens, nearly inevitably, because 1) the coordinate

systems used to record the measurements on CCMM and OCMM are usually differ-

ent; and 2) the part is typically re-oriented between the two measuring tasks, and

hence has different poses while being measured.

The objective of our research is to develop a robust algorithm, i.e., misalignment

insensitive, for matching the two metrology datasets so as to lay a sound foundation

that enables the neighborhood linkage model in [4] to be applied for producing better

surface feature predictions.

1.2 Problem Definition

Our problem is within the class of problems referred to as rigid point set registra-

tion (RPSR) problems (a.k.a. point matching problems). Given two finite point sets

A and B, each on a different coordinate system, the RPSR is to find a rigid trans-

formation and/or point-to-point correspondences that minimize(s) the misalignment

between transformed point set A and point set B. The term “set of correspondences”

or simply “correspondences” is used here to specify a complete set of point-to-point

assignment between two point sets, whereas “a pair of matching points” only spec-

ifies one single point-to-point assignment, i.e. if ai ∈ A is matched to bj ∈ B, then,

(ai, bj) is called a pair of matching points. Henceforth the terms dataset and point
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set are used interchangeably.

The metrology data matching problem addressed in this study is defined as fol-

lows: Given a sparse HR dataset and a dense LR dataset that are obtained by

measuring the same part surface, we want to find point-to-point correspondences

from the HR dataset to the LR dataset under an one-to-one (injection) function

such that each HR point is matched to an LR point measuring approximately the

same physical location.

Unlike a generic RPSR problem, our metrology data matching problem has the

following unique characteristics: 1) Each dataset is a collection of unstructured co-

ordinate points. Specifically, the datasets do not include any additional information

concerning the nature of the points or the relationships between points, e.g., no la-

bels, polygon mesh representation or other features like intensity or texture of the

surface available. 2) The misalignment between the two datasets may be arbitrarily

large. 3) The cardinality of the HR dataset is significantly smaller than that of the

LR dataset, as the HR dataset has significantly lower density than the LR dataset,

yet both datasets fully cover the part surface. In summary, the distinctive charac-

teristic of our problem is the drastic density and cardinality differences between the

datasets, distinguishing our problem from the RPSR problems previously addressed,

including those whose datasets have no or negligible density differences [5–7], or

a much smaller cardinality difference [8], or no appreciable density or cardinality

difference [9].

Many manufactured parts are designed with symmetric features; that is, many

part surfaces are invariant (are mapped to themselves) to certain intrinsic reflec-

tions and/or rotations. Dealing with parts surfaces with symmetric features makes

the metrology matching problem even more challenging. The new challenge is

that, due to this symmetry, alignment performance metrics such as maxIPDdiff
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and root mean square error are not able to differentiate between (a) correct so-

lutions/correspondences that are orientationally consistent with the underlying true

correspondences and (b) incorrect but seemingly correct solutions that can be ob-

tained by applying the surface’s intrinsic reflections and/or rotations to a correct set

of correspondences.

1.3 Research Approach

There are three typical strategies to solve a RPSR problem:

1. Establish the point-to-point correspondences first and then recover the rigid

body transformation based on the obtained correspondences (see, e.g., [10,11]).

Then, with the established correspondences at hand, one can employ a closed-

form least square solution (see, e.g., [12,13]) to recover the rigid transformation

that optimally aligns (i.e., minimizes the L2 distances between) the two metrol-

ogy datasets.

2. First estimate the rigid body transformation, that best aligns the two datasets,

and then find the correspondences (see, e.g., [14, 15]). Once the two datasets

are aligned by applying the estimated transformation, one can simply use a

closest-point criterion to obtain the correspondences.

3. Find the transformation and the correspondences jointly (see, e.g., [5, 6, 16]).

This strategy is generally implemented by either alternating between recover-

ing the transformation parameters and determining the correspondences until

convergence or optimizing transformation and correspondences simultaneously

using a single probabilistic or optimization model.

Our solution approach follows the first strategy and intends to solve the RPSR

problem by focusing on finding the point-to-point correspondences between the two

5



datasets without the need of computing the underlying rigid body transformation be-

forehand. To establish the point-to-point correspondences, inspired by the matching

heuristic proposed in [4], our approach makes use of the invariance property of inter-

point-distance (IPD) of rigid body transformations (IPD first introduced in [17]).

IPD is defined for any two points/measurements in the same dataset and is calcu-

lated as the Euclidean distance between the two points. The invariance property of

IPD means the following: given any pair of physical points in the manufactured part,

the Euclidean distance between the two points remains the same after applying any

rigid body transformation. However, in our context, the invariance property of IPD

only holds approximately because of the resolution scale difference between CCMM

and OCMM and the randomness in the measurement locations due to the different

measuring plans in CCMM and OCMM. Specifically, given a pair of physical points

that were (approximately) measured in both datasets the distance between the pair

of measurements in the first dataset should be approximately equal to the distance

between the pair of measurements in the second dataset. Moreover, recall that both

datasets cover the part surface evenly and the LR dataset is significantly denser than

the HR one. Therefore, it is reasonable to assume each HR point has a corresponding

LR point physically residing so close to it that we can deem both points represent

approximately the same physical location on the part surface, and thus, they are

considered to be a pair of matching points.

The invariance property of IPD allows us to compare the intrinsic pairwise dis-

tances internal to one dataset to those internal to the other dataset. To compare

the internal pairwise distances (i.e. IPDs) of two pairs of matching points, with each

pair in a respective dataset, we compute the IPD difference associated with these

two pairs of points and use this difference as a criterion (i.e., a dissimilarity mea-

sure) to evaluate how good one pair is matched to the other pair. Let us denote by
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H = {hi ∈ Rd : i = 1, . . . , nh} the HR dataset and L = {ls ∈ Rd : s = 1, . . . , nl} the

LR data set, where nl � nh , and d is usually 2 or 3. Then, given two pairs of match-

ing points (hi, ls) and (hj, lt), the associated IPD difference is
∣∣∣‖hi− hj‖− ‖ls− lt‖∣∣∣.

Our approach aims to find the best correspondences between the two datasets

whose largest IPD difference is minimized. This goal is achieved by formulating our

matching problem as a quadratic integer programming model (QIP) — see details in

Section 3.1. However, due to the combinatorial nature of the QIP model, solving its

linearized version using a general mixed integer linear programming (MILP) solver

is computationally prohibitive even for a small problem size (e.g., 16 HR points and

100 LR points). Even with the help of an effective search space pruning method

(discussed later in Section 3.2), it is still difficult to solve to optimality a medium-

sized problem (e.g., 16 HR points and 400 LR points). Therefore, our goal is to

obtain a near optimal solution for large size problems within a reasonable amount of

time.

To achieve this goal, we propose a two-stage matching framework (TSMF) com-

bining the branch-and-bound (B&B) search method and approximation algorithms.

More specifically, our approach follows a coarse-to-fine search strategy, entailing the

following major actions: (1) down-sample both datasets to smaller sizes; (2) find the

optimal correspondences for the down-sampled problem; (3) extend the optimal cor-

respondences of the down-sampled problem to the full datasets and find a complete

set of correspondences, and (4) finally, employ an iterative local search procedure to

refine this complete set of correspondences until there is no appreciable improvement.

Finally, to address the difficulty of matching metrology data for manufactured

parts surfaces with symmetric features, a filtering procedure is proposed to supple-

ment the proposed TSMF approach. Specifically, the filtering procedure works by

generating a solution pool that contains a group of plausible candidate sets of cor-
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respondences and subsequently filtering this pool in order to select a correct set of

correspondences from the pool.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. Section 2 reviews the lit-

erature that either focuses on RPSR methods that may be applied to our specific

problem or that shares strong similarities with our approach. Section 3 presents our

mathematical formulation for the misaligned two-resolution metrology data match-

ing problem. Section 4 describes the details of the proposed TSMF approach and

demonstrates the merits of TSMF by comparing it to two widely-used RPSR al-

gorithms on real-life sized problem instances. As a complementary utility to the

proposed TSMF approach, Section 5 proposes a filtering procedure to enhance the

performance of TSMF on metrology matching problems where the part surface has

symmetric features. Finally, Section 6 summarizes the dissertation and discusses

some future research directions.
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2. LITERATURE REVIEW*

The RPSR problem arises in many different fields, such as computer vision, im-

age processing, pattern recognition, computational biology, etc., and has thus been

extensively studied. Since a few outstanding surveys were published recently, see,

e.g., [18–23], we do not intend to give another comprehensive review here. Instead,

this literature review focuses on the RPSR methods that may be applied to our spe-

cific problem or that share strong similarities with our approach; most of them also

take unstructured data point sets as input datasets. In this review, we categorize the

RPSR solution methods into four different groups: local deterministic optimization

methods, probabilistic methods, heuristic and meta-heuristic methods and global

optimization methods.

2.1 Local Deterministic Optimization Methods

Local deterministic methods intend to minimize the misalignment between the

datasets using local neighborhood search. The most famous method is the iterative

closest point (ICP) method introduced by Besl and McKay [5]. ICP iteratively

registers the two point sets by alternating between the transformation estimation

and the correspondences determination. Specifically, for each data point in one data

set, ICP first matches it with a point in the other data set based on the closest-

point criterion, then estimates the transformation (i.e., it finds the transformation

that minimizes the L2 distance between the data sets) based on the established

correspondences, and then applies the estimated transformation to better algin the

*Part of the material in this section is reprinted with permission from “Match misaligned two-
resolution metrology data” by Yaping Wang, Erick Moreno-Centeno and Yu Ding, 2016. IEEE
Transactions on Automation Science and Engineering (In Press), manuscript no. T-ASE-2015-493,
article DOI: 10.1109/TASE.2016.2587219, July/2016 c©2016 IEEE.
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data sets. This three-step process is repeated until the registration error is below

a pre-specified tolerance. ICP is widely used in many different RPSR applications

due to its simplicity and good performance. The main shortcoming is that ICP

can easily be trapped in a local minimum [7] without a good initial alignment. To

circumvent this shortcoming, different variants of ICP have been proposed [24, 25].

Another drawback is that ICP does not guarantee to return a set of one-to-one

correspondences [26]. More recently, Linh and Hiroshi combined ICP and nested

annealing aiming to find the globally optimal alignment between the two point sets

[27]—yet, the authors pointed out that this algorithm is still likely to converge to

local minima.

In addition to ICP, two other local optimization methods are available. Pottmann

et al. [28] proposed a registration approach using instantaneous kinematics and a

local quadratic approximation of a squared distance function of a surface, which

they demonstrated to have better convergence than ICP. Mitra et al. [29] used a

gradient descent based optimization technique to update the rigid transformation

parameters iteratively by setting the partial derivatives of the residual error to zero

and solving the resulting linear systems. Even though the gradient descent method

is more stable and converges faster than ICP and its variants, a good solution from

the method still heavily depends on the starting position of the point sets [21]. In

fact, all the aforementioned local optimization methods require more or less a good

initial transformation estimation to work properly, which limits considerably their

success in handling the arbitrarily large misalignment in our problem.

2.2 Probabilistic Methods

Probabilistic point matching methods can be further divided into two subgroups.

The methods in the first subgroup model one or both of the datasets using a Gaussian
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mixture model (GMM) and cast the registration process as a maximum likelihood

estimation (MLE) problem (see, e.g. [6, 30–33]). In other words, these methods

aim to maximize the likelihood that one dataset fits another via an expectation-

maximization (EM) algorithm. One well-known approach in this subgroup is called

coherent point drift (CPD) [6]. CPD poses the RPSR registration of two datasets as

a probability density estimation problem and models one dataset as GMM centroids.

The best alignment is achieved by fitting the GMM centroids to the other dataset by

maximizing the likelihood. CPD is able to preserve the topological structure of the

point sets and can efficiently handle large size datasets for both rigid and non-rigid

cases. Lu et. al. [34] proposed an accelerated CPD algorithm that can register large

3D point clouds more quickly than CPD by further accelerating the Gaussian sum-

mation process during the calculation of correspondence probability matrix of CPD.

In [35], Eckart et. al. proposed a GMM-based point cloud dataset registration algo-

rithm that applies a so-called dual-model E-M framework to achieve faster and better

convergence for a wider range of initial misalignments. However, this algorithm only

outperforms alternative methods when the maximum misalignment angle is less than

90 degrees and the translation is less than the length of the dataset. The methods

in the second subgroup are generally known as the robust point matching (RPM)

algorithms, which combine the so-called “soft assign” technique and deterministic

annealing to determine the correspondences [36–38]. It has been shown [38] that

the process of alternating between soft assignment of correspondences and transfor-

mation estimation is equivalent to the EM algorithm used in the first subgroup. In

comparison to ICP and its variants, probabilistic methods are more robust to initial

misalignment between the two datasets. However, they can still be trapped in local

minima if the misalignment degree is relatively large; for instance, CPD can handle

a misalignment up to 70 degrees but not greater [6]. and the accelerated CPD in [34]
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was only tested for handling misalignment up to 25 degrees.

2.3 Heuristic and Meta-Heuristic Methods

The third group of methods use either heuristic or meta-heuristic algorithms to

find the correspondences or to estimate the transformation parameters. Xia et. al. [4]

proposed a fast heuristic matching algorithm, referred to as XiaHeur hereafter, which

is based on the IPD invariance property of rigid body transformations. Specifically,

XiaHeur first randomly selects one HR point as anchor point and then provisionally

matches it to an LR point to form an anchor pair. With this anchor pair, XiaHeur

matches the remaining HR points, one at a time; specifically, XiaHeur matches each

HR point with an unmatched LR point that results in the the smallest IPD difference

between these newly formed matching pair and the anchor pair. Once all the remain-

ing HR points have been matched to an LR point, we obtain one provisional set of

correspondences. After this, XiaHeur matches the HR anchor point to the next LR

point to form a new anchor pair and repeats the process of matching the remaining

HR points. This is done until all LR points have been tried to form an anchor pair

with the HR anchor point. The final set of correspondences, chosen among all the

obtained provisional sets of correspondences, is the set of correspondences with the

smallest maximum IPD difference. The pseudo-code of XiaHeur is included in Ap-

pendix A. Being a heuristic algorithm, XiaHeur is fast and easy to execute but does

not control the resulting maximum IPD difference in each provisional set of corre-

spondences. Indeed, as shown in the computational results in Section 4, it produces

a poor set of correspondences with quite a sizeable maximum IPD difference.

As for meta-heuristic algorithms, both genetic algorithms (GA) and simulated

annealing (SA) are popular choices. A GA was used in [39] to find the transfor-

mation parameters that minimize a modified Hausdorff distance between two sets
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of extracted image features. However, before performing the actual alignment for

two images, they resort to a preprocessing step of extracting the feature points from

both images based on the global and local curvatures, which can not be done with

only unstructured unlabeled point coordinates in our problem setting. While in [8],

GA was employed to find good correspondences for free-form surfaces and then the

transformation is found using least square fitting method. SA was used in [40], in

conjunction with ICP, to deal with two partially overlapping datasets; specifically,

SA was used to alleviate the local-optimal-entrapping shortcoming of ICP, while ICP

was used to speed up SA. Since this hybrid approach relies on the dead reckoning

technique [41] to obtain a coarse position estimation, its applicability is limited.

All the GA or SA based methods mentioned above can avoid being trapped to a

poor local optima to some extent, but still not guaranteed to reach a global optima

eventually.

2.4 Global Optimization Methods

Global optimization methods cast the RPSR problem as a global mathematical

optimization model and aim to align data point sets with any initial misalignment.

This group of methods intend to find either an optimal global solution through a

branch-and-bound (B&B) based approach or a practical near-to-optimal solution by

combining the B&B approach and some approximation algorithms. Li et. al. [42]

presented a method based on the B&B search to globally register two given 3D im-

ages. This method is not applicable to our problem because it assumes equal sizes of

the two sets and no translation between them. Gelfand et. al. [11] proposed a method

for registering 3D shapes based also on the pair-wise distance consistency (i.e., the

IPD invariant property), but this approach relies on strong distinctive features of

the input shapes to perform well. The work presented in [43] and [7] employed B&B
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for image matching applications. However, both methods are specialized for 2D

datasets, and it is not a trivial task to generalize them to 3D cases. For instance,

extending the geometric B&B method in [7] to higher dimension will considerably

enlarge the search space for the transformation function. Moreover, the method in [7]

only deals with data point sets with equal size that is up to relatively small size of

100. Raviv et. al. [10] proposed a non-rigid registration method for 3D shapes that

shares a similar coarse-to-fine matching strategy to our approach (elaborated in Sec-

tion 4). The method in [10] has two limitations, however, making it not suitable for

our problem: 1) it requires the datasets to have mesh structure (smooth geometric

measure); 2) its exact coarse matching model can only handle point sets with the

same cardinality (see constraint (3.5) in [10]); and 3) the method in [10] gradually

add unmatched points from neighborhood during each refining iteration, while our

approach extends an exact coarse partial set of correspondences to a complete set in

one step and then iteratively refine it via a local search procedure. Recently, Brown

et. al. proposed a B&B-based globally optimal 2D-3D registration algorithm [44].

But, this algorithm relies on features not found on unstructured 3D cloud points.

To evaluate the performance of TSMF, we choose one representative algorithm

from each of the first three groups and compare them to our proposed TSMF, as

the methods in the last group are not applicable to our problem. In the first group,

ICP is selected due to its popularity and good performance. In the second group,

CPD is chosen because of its robustness compared to ICP and ICP’s variants. Xi-

aHeur is selected from the third group because it is fast and simple, and thus, is

most likely adopted in industrial practice. It is worth pointing out that CPD and

ICP algorithms are not randomized algorithms; they are deterministic algorithms.

Even though CPD models the rigid registration problem as a probability density

probability problem, the Expectation Maximum algorithm to solve the registration
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problem is deterministic. Thus, running ICP multiple times on the same instance

will always produce the exact same solution (the same is true for CPD).
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3. PROBLEM FORMULATION*

This section presents the mathematical formulation for the misaligned two-resolution

metrology matching problem. We first introduce a quadratic integer programming

formulation and then briefly describe its linearized version. Last, we introduce an

effective search space pruning technique that can help greatly decrease the compu-

tational time of solving the linearized optimization problem.

3.1 Quadratic Integer Program and its Linearization

Given that the invariance property of IPD holds for our problem, we formulate

the misaligned metrology data matching problem as a min-max quadratic integer

program (minMaxQIP). We first introduce a few notations. Denote by dHij the IPD

between point hi and point hj in the HR dataset, i.e., dHij = ‖hi − hj‖. The IPD

for the LR dataset, dLst, is likewise defined. Denote by xis the binary assignment

variable, such that xis = 1 if hi is matched to ls, and xis = 0 otherwise. As such, the

minMaxQIP formulation is as follows.

*Part of the material in this section is reprinted with permission from “Match misaligned two-
resolution metrology data” by Yaping Wang, Erick Moreno-Centeno and Yu Ding, 2016. IEEE
Transactions on Automation Science and Engineering (In Press), manuscript no. T-ASE-2015-493,
article DOI: 10.1109/TASE.2016.2587219, July/2016 c©2016 IEEE.
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min
x

max
i, j = 1, . . . , nh
s, t = 1, . . . , nl

∣∣dHij − dLst∣∣xisxjt, (3.1)

s. t.

nl∑
s=1

xis = 1, i = 1, . . . , nh; (3.2)

nh∑
i=1

xis ≤ 1, s = 1, . . . , nl; (3.3)

xis ∈ {0, 1}, i = 1, . . . , nh; s = 1, . . . , nl. (3.4)

The objective here is to minimize the maximum IPD difference (referred to as

maxIPDdiff hereafter) across all potential correspondences between the two datasets.

Constraint (3.2) ensures that each HR point is matched to exactly one LR point.

Constraint (3.3) forces an LR point to be assigned to at most one HR point. Con-

straints (2) and (3) together make sure that the whole HR set is matched to a subset

of the LR set under an one-to-one (injective) function.

MinMaxQIP is mathematically equivalent to a min-max version of the quadratic

assignment problem (QAP) [45], which is proven to be NP-hard [46] and considered

indeed one of the hardest combinatorial optimization problems. The state-of-the-art

exact algorithms for QAP can only solve problems with up to 35 facilities [47], which

is equivalent to 35 HR points and 35 LR points in our context. For manufacturing

applications, we need an approach that can solve much larger instances (e.g., an HR

dataset size of about 100 and an LR dataset over 1,000) within a reasonable amount

of time. To address the challenge brought forth by the larger problem size, we devised

a coarse-to-fine matching strategy such that we only need to solve a much smaller

size of the minMaxQIP problem to optimality, where the much smaller minMaxQIP
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problem is referred to as the down-sampled problem.

To prepare for our solution procedure, we linearize the minMaxQIP model. First,

we define new binary variables zisjt to replace the quadratic term xisxjt in the ob-

jective function, and add (3.6) to ensure that zisjt is 1 when both xis and xjt are

1. Then, we change the original min-max objective function to a minimization one

by defining a new continuous variable u to replace the inner maximization, i.e.,

max
∣∣dHij − dLst∣∣ zisjt. To reflect that u is the maximum over all combinations of

i, j, s, t, constraint (3.7) is added, which says that the maximum over all possible

terms is greater than or equal to every one of individual terms. The linearized model

is given below.

min
x

u, (3.5)

s. t. (2− 4),

xis + xjt ≤ zisjt + 1, i, j = 1, ..., nh; s, t = 1, ..., nl; i < j, s 6= t; (3.6)

u ≥
∣∣dHij − dLst∣∣ zisjt, i, j = 1, ..., nh; s, t = 1, ..., nl; i < j, s 6= t; (3.7)

zisjt ∈ {0, 1}, i, j = 1, ..., nh; s, t = 1, ..., nl; i < j, s 6= t. (3.8)

3.2 Search Space Pruning Technique

Before delving into the details of our proposed two-stage solution approach in

next section, we present that a simple search space pruning can greatly reduce the

solution time of the linearized optimization problem.

Let u∗ be the optimal solution (maxIPDdiff) of the linearized model. The key

of the search space pruning is to find a tight upper bound for u∗, which we call

the search space threshold, denoted by T . That is, T is a value that we know for
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sure is larger than u∗, but we hope is not much larger than u∗. Consequently, one

can reject all possible pairwise correspondences whose IPD difference is greater than

T . Specifically, given two HR points (hi, hj) and two LR points (ls, lt), if the IPD

difference between them is greater than T , then only one HR point can be matched

to one of the two LR points. This is to say, if hi is matched to ls, then hj cannot be

matched to lt, or vice versa.

Finding a proper T is essential for the search space pruning technique to work

effectively. T should be as small as possible to effectively eliminate sufficient amount

of the potential pairwise correspondences. But it cannot be too small; otherwise

it may block off the underlying optimal solution; that is, it may render the pruned

model infeasible — in which case one would need to increase T and resolve the model.

'h

''h

al

bl

cl

dl

τ 

Figure 3.1: Ideal case for choosing a proper T

To find an effective and safe T , we consider an ideal situation where measurements
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in both datasets are perfectly evenly spaced over a flat part surface. A small section

of a hypothetical part surface under this ideal situation is shown in Figure 3.1,

where each cross represents an LR point and each circle stands for an HR point,

and τ denotes the maximum distance between an LR point and its closest neighbor

in the LR dataset. As shown in Figure 3.1, to estimate the largest possible IPD

difference, we examine the worst case scenario where every HR point sits almost at

the center of its closest four surrounding LR points, and HR point h′ (h′′) sits a

little bit closer to LR point lb (lc) than to LR point la (ld). As such, the HR points

h′ and h′′ should be matched to the LR points lb and lc, respectively, and the IPD

difference between this two pairs of matching points is 1.414τ . Under the ideal case,

this 1.414τ is approximately the largest value u∗ can take, as one can imagine that no

matter where we move the HR points, the IPD difference is likely to get no greater.

This understanding suggests that T can be set to 1.414τ . In practice, of course, the

datasets are not perfectly evenly spaced and the part surfaces are usually curved.

Consequently, 1.414τ may not be an upper bound of u∗. We believe that this value

still represents an effective threshold. To be safer, we relax T to 1.5τ . Our later

numerical analysis in Section 4 shows that this search space pruning technique on

average eliminates almost 80% of binary variables and never yielded an infeasible

pruned model.

It should be noted that, in this paper, we assume that the measurements in

both HR and LR datasets are evenly spaced over the part surface. This assumption

is realistic because the evenly spaced measurements can be readily obtained using

today’s metrology technology [4]. Said this, we acknowledge that there might be

circumstances where taking evenly measurements throughout the surface may not

be desirable. For example, if the surface is very wiggly, it may be preferred to

take denser measurements near the locations with high curvature than other relative
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flatter areas so that the critical surface features are captured without an undue

increase of measurements (especially in the HR dataset). Under these circumstances,

it is desirable and practical to maintain the measurements’ evenness only locally (with

higher density measurements evenly distributed over the high curvature areas and

lower density measurements evenly distributed over the not very curvy locations).

The Appendix B explains in detail why our choice of T = 1.5τ is also appropriate

under this circumstance.

To implement the search space pruning technique, for two pairs of potential

matching points (hi, ls) and (hj, lt), we do not define variable zisjt if their IPD dif-

ference is greater than T . To mathematically reflect this in the linearized model (i.e.

equation (2)-(8)), we include constraint (3.9) to the linearized model and change

(3.6) to (3.10) as below.

xis + xjt ≤ 1, i, j = 1, . . . , nh; s, t = 1, . . . , nl;

i < j; s 6= t; if
∣∣dHij − dLst∣∣ > T, (3.9)

xis + xjt ≤ zisjt + 1, i, j = 1, . . . , nh; s, t = 1, . . . , nl;

i < j; s 6= t; if
∣∣dHij − dLst∣∣ ≤ T . (3.10)

A nice property of the pruning technique is that the optimal objective value of the

pruned model is independent of the value of T in the following sense. If T < u∗ then

the pruned model is infeasible (and thus one would need to increase T and resolve

the model); while if T ≥ u∗ then the optimal objective value of the pruned model

will be equal to u∗. To see this, note that the pruning technique only eliminates the
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pairwise correspondences (corresponding to the binary variables zijst of the linearized

model) whose IPD differences are greater than T . In other words, only sub-optimal

solutions are discarded. Therefore, as long as T ≥ u∗, the pruned model has the

same optimal objective value as the unpruned model.
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4. TWO-STAGE MATCHING FRAMEWORK*

Even though the search space pruning technique significantly decreases the so-

lution time of small instances, it does not do so sufficiently to medium-to-large in-

stances. Thus, in order to tackle problems with real-life sizes, we relax our optimiza-

tion goal from solving to optimality to finding a robust, near-optimal solution and

devise a two-stage matching framework (TSMF) to accomplish this relaxed goal.

We start with an overview of our solution framework. Our solution approach

is conducted in two stages and each stage comprises two steps. The first stage of

TSMF aims to obtain the optimal correspondences for a subset of the HR and LR

data points and its steps are: 1) down-sample both datasets; 2) find the optimal

correspondences for the down-sampled problem by solving it to optimality using

B&B.

The second stage of TSMF extends the partial set of correspondences (i.e. the

optimal correspondences for the down-sampled problem) found at the first stage to

the original problem; its two steps are: 1) extend the partial set of correspondences of

the down-sampled problem to a complete set of correspondences on the full datasets

(i.e. find LR correspondences for the HR points that were not in the down-sampled

HR dataset); 2) refine the complete set of correspondences through an iterative

local search until there is no appreciable improvement. Figure 4.1 summarizes the

proposed framework.

*Part of the material in this section is reprinted with permission from “Match misaligned two-
resolution metrology data” by Yaping Wang, Erick Moreno-Centeno and Yu Ding, 2016. IEEE
Transactions on Automation Science and Engineering (In Press), manuscript no. T-ASE-2015-493,
article DOI: 10.1109/TASE.2016.2587219, July/2016 c©2016 IEEE.
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optimal correspondences for 

the down-sampled problem

a complete set of 

correspondences

Stage 1 – Obtain a Partial Set of Correspondences

Solve linearized model to optimality 

on the down-sampled problem

Extend to a complete set of correspondences 

using generalizedXiaHeur

Refine the complete set of correspondences 

using an iterative local search

# of HR points 

to down-sample

Input 

parameters

down-sampled 

datasets

# of LR points 

to down-sample

Stage 2 – Extend & Refine the Partial Set of Correspondences

Search space 

pruning  

threshold

Local search

 size

Down-sample the HR set using a 

greedy dominating set algorithm

Capture corner points in LR set using PCA

Down-sample the LR set using a 

greedy dominating set algorithm

Capture corner points in HR set using PCA

Figure 4.1: Flowchart of two-stage matching framework

Remark: If there are no down-sampled LR points close to an HR point, then the

solve-to-optimality step may not give a satisfactory partial set of correspondences,

which eventually lead to a poor matching solution for the original problem. Our

proposed TSMF approach has one mechanism to prevent this issue from happening

and one mechanism to remedy the issue if it happens. 1) Prevention mechanism: the

proposed greedyDownsampling algorithm in Part A of Subsection IV is devised to

prevent the issue by making the down-sampled dataset spread out on the surface as

evenly as possible. The evenness makes it very likely that each down-sampled HR
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point has a down-sampled LR point reasonably close to it. Indeed, our computational

experiments results also confirmed that, for all instances, each point in the down-

sampled HR dataset has a down-sampled LR point reasonably close to it. 2) Remedy

mechanism: the iterative local search procedure is designed to refine (and correct)

any coarse correspondence due to the imperfect results of the down-sampling process.

4.1 First Stage - Obtaining a Partial Set of Correspondences

4.1.1 Step 1: Down-sampling Both Datasets

When down-sampling both datasets, we have two objectives: a) that the optimal

correspondences of the down-sampled problem are close to the optimal correspon-

dences for the full datasets; b) that the sizes of down-sampled sets should be small

enough so that the down-sampled problem can be efficiently solved to optimality

using a general MILP solver. To achieve these objectives, a down-sampling algo-

rithm needs to meet two requirements: a) the down-sampled points should be nearly

evenly spread over the part surface; b) the resulting down-sampled set should contain

a desired number of points.

To fulfill the two requirements, we propose a greedy down-sampling approach,

called greedyDownsampling, that combines the dominating set method and principal

component analysis (PCA). Specifically, the final down-sampled set comprises a set

of dominating points returned by the dominating set method and the corner points

detected by PCA. Note that the greedyDownsampling approach is applied to each

of the two datasets in the same manner. Next, we present the details of the two

components of the greedyDownsampling approach.

The idea behind the dominating set method is as follows: If each data point is

either part of the sampled set, or very close to a data point in the sampled set,

then the set of sampled points is guaranteed to spread evenly over the part surface.
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This is because the full dataset is evenly spaced over the part surface. This idea can

be implemented by solving the minimum dominating set problem on an undirected

graph G = (V,E) appropriately constructed on the full dataset. A dominating set is

a subset D of V such that every vertex not in D is adjacent to at least one vertex in

D. The minimum dominating set problem is to find a dominating set with minimum

cardinality. For our purposes, G = (V,E) is constructed as follows: Vertex set V

comprises all data points in the full dataset, and there is an edge between each

data point and other points residing within a certain distance of it. We denote this

distance by Rn. Building G in this way guarantees evenness of the down-sampled

set (i.e. the dominating set).

The minimum dominating set problem is NP-hard [48]. Yet, for our purposes,

using a greedy algorithm to find an approximate solution is good enough. The

greedy algorithm starts with an empty dominating set D and iteratively appends

to D the vertex v ∈ V with the maximum degree and updates G by removing that

newly added point and all vertices adjacent to it until G becomes empty. Since both

datasets are arbitrarily indexed for identification, for both datasets, the algorithm

always selects the median point as the first dominating point so that the two separate

down-sampling process (one for each dataset) start approximately from the same

physical location of the part surface; and we choose the vertex with the smallest

index to break ties when there is more than one vertex having the maximum degree.

Recall that the second requirement of our down-sampling approach is to obtain

a desired number of points from the full dataset. To achieve this, one needs to

set Rn such that the greedy algorithm returns a dominating set of the desired size

or very close to the desired size. Since the dominating set’s cardinality increases

monotonically as Rn decreases, to find the proper Rn, one can simply do a binary

search over a plausible range of Rn. A safe initial range for Rn is between zero and a
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half of the longest between-point Euclidean distance in the respective dataset. The

binary search procedure starts with Rn taking the middle value of the initial range

and uses it to construct graph G. With G constructed, our procedure checks if the

cardinality of the returned dominating set is close enough to the desired number of

down-sample points (say within 5%). If it is, the binary search stops; otherwise, (a)

if the dominating set’s cardinality is smaller than the desired number, the binary

search continues on the lower half of the current Rn range and decreases the current

Rn to the midpoint of this lower half range, or, (b) if the dominating set’s cardinality

is larger than the desired size, the binary search continues on the upper half of the

current Rn range and increases Rn to the midpoint of this upper half range.

The other component in the greedyDownsampling approach is PCA, which is

used to compensate the dominating set method for its tendency not to include the

edge/corner points. Specifically, we use the first two principal components of the

dataset to obtain four corner points, two for each principal component. To get the

first two corner points, we project the full dataset to the first principal component

and choose the two points whose projection is farthest apart. The other two points

are obtained similarly using the second principal component.

4.1.2 Step 2: Solve the Down-sampled Problem to Optimality

After down-sampling both datasets, we find the optimal solution (i.e., a partial

set of correspondences for the full datasets) for the down-sampled sets by solving

the linearized (minMaxQIP) model to optimality. This is done by using a general

MILP solver but we take advantage of the search space pruning technique described

in Section 3.2.

This step ensures that each point in the down-sampled HR set is matched to

its best LR correspondence in the down-sampled LR dataset. The found correspon-
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dences is of course only a partial set of the full correspondences, but having it creates

a good basis for improvement in the second stage.

4.2 Second Stage - Extend the Partial Set of Correspondences and Refine the

Complete Solution

Once the first stage is completed, each of the two datasets can be thought of

having two subsets, the matched subsets and the unmatched subsets comprising the

remaining data points, namely that H = H(matched)∪H(unmatched) and L = L(matched)∪

L(unmatched), so that each point in H(matched), there is a point in L(matched) that is

matched to it. Our objective in the second stage is to find a point correspondence

in L(unmatched) for every point in H(unmatched), conditioned on the partial set of point

correspondences that have already been formed between H(matched) and L(matched).

The existence of a set of matched pairs between the HR and LR datasets in fact

provides a set of anchor pairs, to borrow the term from XiaHeur. It motivates us to

follow the idea of that heuristic to match the remaining HR data points to their LR

counterparts. Acknowledging that XiaHeur is not robust in its matching outcome,

the two steps in this stage are devised to safeguard the solution quality.

4.2.1 Step 1: Generalizing XiaHeur by Using Multiple Anchor Pairs

Through our investigation, we found that using the plain version of XiaHeur is

not robust because it heavily relies on a single anchor pair. To see this, consider the

example in the left panel of Figure 4.2. In the upper subfigure, there are two HR

data points, illustrated by a solid circle and a solid triangle, respectively, while in

the bottom subfigure, there is a group of LR datapoints, one illustrated by a solid

circle and the rest illustrated by crosses. The single anchor pair comprises the two

solid circles, denoted by ha1 and la1 , respectively. The solid triangle point, named

hu, is the unmatched HR point. With one anchor pair (ha1 , la1), there are multiple
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plausible LR points that could be matched to hu. As illustrated in the left panel

of Figure 4.2, when considering a degree of measurement uncertainty up to ∆, all

LR points residing within the two dashed circles could have the same merit to be

matched to hu. Some solutions could even appear on the opposite direction relative

to la1 , as compared to that between hu and ha1 .
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Figure 4.2: Advantage of using multiple anchor pairs

In this step, we propose a generalized version of XiaHeur, called generalizedXia-

Heur, to overcome this drawback of XiaHeur. The major change made in general-

izedXiaHeur is to use the multiple anchor pairs—those formed in the first stage of

our solution framework. Specifically, for an unmatched HR point hu, generalizedXia-

Heur finds its matching point in the LR dataset such that the largest IPD difference

between this new matching pair and each of the anchor pairs is minimized; see the

illustration in the right panel of Figure 4.2. Through extensive numerical studies, we
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believe that the generalizedXiaHeur provides a remarkably robust match outcome,

even in the presence of measurement noises in the datasets.

4.2.2 Step 2: Iterative Local Search

The generalizedXiaHeur, albeit its robust performance, is still a heuristic, thus

leaving room for further improvement. Thus, we propose to use an iterative local

search procedure to refine the complete set of correspondences obtained by general-

izedXiaHeur.

Appreciable 
improvement 

achieved?

 The complete set of 
correspondences found by 

generalizedXiaHeur

Improved complete set 
of correspondences 

after Iteration k

YES

NO

Start

End

Local Search 
Iteration k

k = k +1 

k = 1

Figure 4.3: Iterative local search procedure
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The iterative local search procedure comprises a sequence local search iterations.

As illustrated in Figure 4.3, each local search iteration aims to find a better set

of correspondences than the best set of correspondences found so far. Moreover,

such searches are limited to the sets of correspondences that are “close/local” to

the current best set of correspondences. The sequence of local search iterations

terminates when there is no appreciable improvement. Note that the input for each

local search is the current best set of correspondences; specifically, the input for

the first local search is the set of correspondences found by generalizedXiaHeur and

the input for each subsequent local search is the set of correspondences found by

the preceding local search iteration. The reminder of this section explains one local

search iteration.

The basic idea of (one iteration) local search is illustrated in Figure 4.4 where

each dot in the top sinewave represents an HR point and each cross in the bottom

sinewave stands for an LR point. In the input of the local search, each HR point is

matched to an LR point (denoted by a bold cross). During the local search, each

HR point is allowed to be re-matched to any LR point in the neighborhood of that

HR point’s current LR correspondence (the crosses within the circle centered at the

respective current LR correspondence).
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Figure 4.4: Local search illustration for one iteration

Given a neighborhood size, the local search can be done by solving a modified

linearized minMaxQIP model, called local search model. Specifically, the local search

model is very similar to the linearized minMaxQIP model (eqns. (3.5) to (3.8))

except that, in the local search model, each HR point can only be matched with one

of the LR points in the neighborhood of that HR point’s current LR correspondence.

We do not give the local search model explicitly because we do not solve it directly

but solve it as described in the reminder of this subsection.

Solving the local search model to optimality is very computationally expensive

for real-life sized problems, even when using small neighborhood sizes and even after

applying the search space pruning technique. In contrast, a MILP solver is very

fast in determining the feasibility of the local search model after applying to it

a search space pruning threshold, called TLS. This large complexity difference is

because one can greatly simplify the local search model if one is only interested in
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checking its feasibility. Specifically, to check the feasibility of the model one can

drop the objective function, previously u, (equivalently, set it to a constant in the

MILP solver, say zero), and consequently eliminate all the constraints related to u

as they are not needed for the feasibility check. With these changes, we give below

the feasibility-check model that one needs to solve to determine the feasibility of the

local search model given a specific TLS.

min 0

s. t.
∑

s∈NHi

xis = 1, i = 1, ..., nh; (4.1)

xis = 0, i = 1, ..., nh; s ∈ {1, ..., nl} \NHi (4.2)

nh∑
i=1

xis ≤ 1, s = 1, ..., nl; (4.3)

xis + xjt ≤ 1, i, j = 1, ..., nh; s ∈ NHi; t ∈ NHj; if
∣∣dHij − dLst∣∣ > TLS

(4.4)

xis ∈ {0, 1}, i = 1, ..., nh; s = 1, ..., nl. (4.5)

In this model, NHi denotes the set of LR points in the neighborhood of the i-th

HR point’s current LR correspondence; constraint (4.1) forces each HR point, say

point hi, to be matched to exactly one of the LR points in NHi; constraint (4.2)

ensures that an HR point, say point hi, is not matched to an LR point outside NHi;

constraint (4.3) guarantees that each LR point is only matched to at most one HR

point; and constraint (4.4) excludes all correspondences whose maxIPDdiff is greater

than TLS. (To further expedite the feasibility check, one can properly set a parameter
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in the MILP solver to emphasize feasibility over optimality; in CPLEX, this is to set

parameter MIPEmphasis to 1.)

Next we explain how to find the local search model’s optimal solution by taking

advantage of the MILP solver’s efficiency to solve the feasibility-check model. Note

that the feasibility-check model is feasible if and only if the applied TLS is greater

than or equal to the maxIPDdiff of the local search model’s optimal solution. There-

fore, as explained below, one can perform a binary search over TLS in order to find

the optimal solution to the local search model.

In the binary search, the initial range of TLS is between zero and the maxIPDdiff

of the best set of correspondences found so far. The binary search starts with TLS

taking the midpoint of its initial range and solves the feasibility-check model built

using that TLS. If the model is feasible, then the binary search continues on the

lower half of TLS’s current range and decreases TLS to the midpoint of that lower

half range; otherwise, the binary search continues on the upper half of TLS’s current

range and increases TLS to the midpoint of that upper half range. The binary search

proceeds until the range length is within a predefined tolerance, say 0.01.

4.3 Computational Experiments and Results

This section describes the experimental setup and compares the performance of

TSMF to that of widely-used point set registration methods: ICP and CPD. For

this purpose, we used two 3D metrology datasets of a milled sinewave surface. All

experiments were done on a Linux (CentOS 5.4) machine with Intel E5-1620 3.4GHz

processor and 32GB RAM.
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4.3.1 Experimental Setup

4.3.1.1 Datasets

The HR and LR 3D metrology datasets (see Figure 1.1) were obtained from

a manufactured part of size 101×101×51 (mm), measured by a CCMM (Sheffield

Discovery II D-8 with a TB 20 touch probe) and a OCMM (LDI Surveyor DS-2020

with a RPS 150 laser unit), respectively. The resolutions of CCMM and OCMM are

roughly 5 µm and 50 µm, respectively. The two datasets were originally obtained by

the study in [4], and each dataset consists of 1,560 data points that are evenly spaced

over the surface. The typical number of data points collected by a CCMM over this

size of product is usually an order, or orders, of magnitude fewer than that collected

by an OCMM. The reason that the study of [4] collected the same number of data

points in the HR set as in the LR set is because the study needed the additional

HR data points for validation purposes. In fact, the largest number of data points

used as the HR set in [49] is 80, and the remaining 1,480 HR points were used to

assess the quality of the combined prediction made by their proposed model. In this

research, we believe it is practical to increase the HR data points slightly but not

substantially more. So, we chose 100 as the maximum number of points in HR set,

while using all the 1,560 LR points.

To test the effectiveness and scalability of TSMF, we generated six instances as

test cases of various sizes. Smaller sized datasets were created through thinning two

original datasets. Sizes of all six instances are listed in the top row of Table 4.1.

Each instance size is indicated by its name which comprises two parts: the number

before “×” denotes the cardinality of the HR dataset, whereas the number after “×”

denotes the cardinality of the LR dataset. The original LR dataset is plotted in

Figure 4.5.
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Figure 4.5: Plot of the low-resolution sinewave data

4.3.1.2 TSMF Settings and Implementation

There are four key parameters used in TSMF: (1) the search space pruning thresh-

old (T ); (2) the neighborhood size of the iterative local search step in the second

stage; and (3-4) the down-sampled sizes of the HR and LR datasets.

As mentioned in Section 3.2, T is chosen to be 1.5 times the maximum distance

between an LR point and its closest neighbor in the LR dataset. The neighborhood

size of the local search is set to 10; this provides a good balance between the search

size and the time required to solve each local search.

To set the last two algorithmic parameters—the down-sampled sizes of the HR

and LR datasets—we conducted extensive experiments and determined that the

largest down-sampled problem size that a MILP solver can solve to optimality within

a couple of minutes is roughly 10 HR points by 180 LR points. In the meanwhile,

we also observed that, for each HR dataset, eight data points are enough to form a

good anchor set leading to an effective generalizedXiaHeur step.

For the above reasons, we chose to down-sample every HR dataset into eight HR
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points: four using PCA and four using the dominating set algorithm. In contrast, the

sizes of the down-sampled LR datasets were proportional to the sizes of the respective

original LR dataset. Specifically, we down-sampled the largest LR dataset into 180

points—four using PCA and 176 using the dominating set algorithm. Together with

the eight down-sampled HR points, this formed a combined set of 8×180 points,

which is in the ballpark of the problem size that a MILP solver can solve to optimality

in a desirable duration. Note that, for the largest LR dataset, the dominating set

algorithm chose 176 points out of the 1560 points; which is roughly 11.3%. Thus, for

the remaining LR datasets, we used the dominating set algorithm to select roughly

the same 11.3% of points out of the respective LR dataset; i.e. obtaining 91 and 46

points from the original LR datasets of size 800 and size 400, respectively. Table 4.1

summarizes the down-sample set sizes for each test instance.

TSMF was implemented in C++ using Concert Technology interface for the

MILP solver CPLEX (version 12.4). The PCA function we used at the down-

sampling step is from the Armadillo C++ linear algebra library [50].

Instance 100×1560 64×1560 50×800 32×800 25×400 16×400

HR points 8 8 8 8 8 8

LR points 180 180 95 95 50 50

Table 4.1: Desired number of points to down-sample
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4.3.1.3 CPD and ICP Implementations and Settings

Multiple ICP implementations are available online. We selected the ICP code

developed by Per Bergström due to its popularity. The MATLAB code can be down-

loaded from http://www.mathworks.com/matlabcentral/fileexchange/12627-iterative-

closest-point-method. Since no initial starting transformation is available in our ex-

periments for ICP, we changed the parameter init flag from default value 1 to 0 to

reflect this fact. All other input parameters were left as default. As we want to

match the entire HR dataset to a subset of the LR dataset, when applying ICP to

our data instances we treat the LR and HR datasets as model and data, respectively.

For CPD, we chose its most recent implementation code in MATLAB, available

at https://sites.google.com/site/myronenko/research/cpd. Given the nature of our

problem, we selected the rigid registration option of CPD, i.e., opt.method = ‘rigid’.

Out of nine remaining input parameters of CPD, we changed three parameters to

a non-default value: 1) opt.scale = 0 to disallow scaling in the context of a rigid

body transformation; 2) opt.corresp = 1 to compute the correspondences at end of

the registration; 3) opt.normalize = 0 to disallow dataset normalization. We do not

normalize the data because doing so results in the best CPD performance for solving

our problem.

4.3.2 Results and Performance Analysis

In this subsection, we conduct the following analyses:

• Evaluate the performance of greedyDownsampling.

• Show the effectiveness of search space pruning technique.

• Compare our TSMF to XiaHeur (with and without local search) and show the

effectiveness of the local search.
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• Evaluate TSMF’s performance against ICP and CPD.

We want to note that as the density of each HR dataset is different and the cardi-

nality ratio of the HR dataset and LR dataset in each instance is also different (thus

the underlying maxIPDdiff is different for each instance), throughout this section,

we report all performance metrics as a multiple of the average smallest IPD in the

LR set, denoted by w. Specifically, w is calculated for each instance by averaging the

distances between each LR point and its closest neighbor in the LR dataset. This

allows us to compare the results across the different instances.

The first analysis is about the performance of the greedyDownsampling method.

We compare it with an down-sampling alternative, the Farthest Point Sampling

(FPS) method proposed in [51]. Since it is difficult to compare these two down-

sampling methods directly, what we choose to do is the following. For each down-

sampling method, we first down-sample both datasets using one of the methods and

then solve the down-sampled problem to optimality using the search space pruning

technique. The down-sampling method that results in a better solve-to-optimality

solution, i.e., a smaller maxIPDdiff, is deemed as a better option.

Table 4.2 presents the performance comparison results of the greedyDownsam-

pling and FPS methods. For each instance, the numbers in columns 2 and 3 represent

the maxIPDdiff (expressed in multiples of w) of the optimal solution of the down-

sampled problem obtained using FPS and greedyDownsampling respectively. The

greedyDownsampling method outperforms FPS for all instances. In addition, the

execution time of greedyDownsampling and FPS are comparable across all instances

and both took less than one second. Thus, the greedyDownsampling method suits

our purposes better.
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Instance
FPS greedyDownsampling

maxIPDdiff (w) maxIPDdiff (w)

100×1560 2.0324 1.3979

64×1560 1.9704 1.3866

50×800 2.1425 2.0197

32×800 2.1379 2.0311

25×400 1.6056 1.4966

16×400 1.2542 1.0418

Table 4.2: Performance comparison down-sampling methods

Next, we evaluate the effectiveness of the search space pruning technique when

it is employed to solve the down-sampled to optimality in the first stage of TSMF.

We first show the effectiveness of the suggested pruning threshold T = 1.5τ in terms

of percentage of solution time reduced and percentage of binary variables pruned

after applying the suggested T = 1.5τ to the solve-to-optimality model. Then, we

further demonstrate the effectiveness of the suggested T = 1.5τ by studying how the

solution time and number of pruned binary variables change as a function of T .

Table 4.3 summarizes the performance results of applying the suggested T value

of 1.5τ to the solve-to-optimality model for each instance size. The percentage of

solution time reduced and the percentage of binary variables pruned are calculated by

comparing the with-pruning results to the without-pruning results. On average, the

search space pruning technique eliminated 78% of the binary variables and reduced

the solution time by 86.3%. Overall, the search space pruning technique is very

effective in reducing the solution time of the solve-to-optimality model by eliminating

a significant amount of binary variables from the model; moreover, its effectiveness
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increases as the problem sizes become larger. Note that we compute the value of

τ (in the suggested T = 1.5τ) based on the down-sampled LR dataset instead of

the full LR dataset since the search pruning technique is applied when solving the

down-sampled problem to optimality.

Instance 100×1560 64×1560 50×800 32×800 25×400 16×400

w/o Search Space

Pruning Time (s)
1616.5 1400.1 1701.9 280.6 94.4 51.6

w/ Search Space

Pruning Time (s)
86.8 90.3 57.5 33.9 47.4 10.6

% of Solution

Time Reduced
94.6% 93.6% 96.6% 87.9% 49.8% 79.5%

% of Binary

Variables Pruned
84.2% 83.4% 81.0% 79.5% 70.0 % 67.4%

Table 4.3: Effectiveness of search space pruning technique

To further demonstrate the effectiveness of the suggested T = 1.5τ , a sensitivity

study is performed by applying to the solve-to-optimality model each of the follow-

ing candidate T values: 0.5τ , 0.75τ , 1τ , 1.5τ , 2τ , 2.5τ , 3τ , 3.5τ , and 4τ . Table 4.4

tabulates the main sensitivity study results. For each T value, three performance

metrics are reported: solution time, percentage of solution time reduced, and per-

centage of binary variables pruned. Note that the results for T values of 0.5τ , 0.75τ ,

2.5τ and 3.5τ are not recorded in Table 4.4. This is because 0.5τ and 0.75τ yield

41



infeasible pruned solve-to-optimality models; and 2.5τ (resp. 3.5τ) leads to the same

pruned solve-to-optimality model as 2τ (resp. 3τ). Table 4.4 shows that, for all

instance sizes, 1τ also gives the same results (and the same pruned model) as the

suggested 1.5τ . The equivalence of the models obtained by using 1τ, 2τ, and 3τ and

1.5τ, 2.5τ, and 3.5τ , respectively is due to our conservative definition of τ as the

maximum distance between an LR point and its closest neighbor in the LR dataset.

Therefore, we decide to use 1.5τ as in our tests it always yielded the same pruned

model as 1τ , yet we prefer to err on the safer side. In general, the solution time

decreases significantly as T decreases from 4τ to 1.5τ . Specifically, on average, de-

creasing T from 4τ to 1.5τ saves 51% of the original solution time. An interesting

observation is that, the solution time does not always increase as the value of T

increases for the two smallest instances. For example, for instance 25×400, the solu-

tion time decreases by 8.7 seconds when T increases from 2τ to 4τ . These counter-

intuitive results are rare (and only occur in the smallest instances); moreover they

can be explained by the well-known variability of the solvers’ solution times (most

noticeable when the solution times are small). Despite this, 1.5τ always requires

significantly less solution time compared to 2τ , 3τ and 4τ . In sum, the effectiveness

of the suggested T value of 1.5τ in reducing the solution time is significant for all

instance sizes, especially for large instances.
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Instance 1τ 1.5τ 2τ 3τ 4τ

16×400

Time (s)

% of Time Reduced

% of Variables Pruned

10.6

79.5%

67.4%

10.6

79.5%

67.4%

30.4

41.1%

40.4%

33.3

35.5%

20.0%

43.3

16.1%

8.0%

25×400

Time (s)

% of Time Reduced

% of Variables Pruned

47.7

49.5%

70.0%

47.4

49.8%

70.0%

80.2

15.0%

44.0%

47.7

49.5%

23.5%

71.5

24.3%

11.0%

32×800

Time (s)

% of Time Reduced

% of Variables Pruned

33.9

87.9%

79.5%

33.9

87.9%

79.5%

69.0

75.4%

60.4%

116.3

58.6%

43.6%

193.0

31.2%

29.5%

50×800

Time (s)

% of Time Reduced

% of Variables Pruned

58.0

96.6%

81.0%

57.5

96.6%

81.0%

239.1

86.0%

63.2%

179.1

89.5%

47.0%

477.4

71.9%

33.0%

64×1560

Time (s)

% of Time Reduced

% of Variables Pruned

89.6

93.6%

83.4%

90.3

93.6%

83.4%

204.4

85.4%

67.6%

500.0

64.3%

53.1%

964.9

31.1%

40.0%

100×1560

Time (s)

% of Time Reduced

% of Variables Pruned

86.9

94.6%

84.2%

86.8

94.6%

84.2%

336.5

79.2%

69.1%

593.9

63.3%

55.1%

1227.6

24.1%

42.3%

Table 4.4: Sensitivity study results with different T values

The third analysis shows the local search’s effectiveness. Table 4.5 compares four

alternative approaches: XiaHeur, XiaHeur with local search, TSMF without local

search and full TSMF (i.e. TSMF with local search).
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Instance
XiaHeur

XiaHeur

+ local search

TSMF without

local search
Full TSMF

maxIPD

-diff(w)

Time

(s)

maxIPD

-diff(w)

Time

(s)

maxIPD

-diff(w)

Time

(s)

maxIPD

-diff(w)

Time

(s)

100×1560 39.63 1.7 24.79 33.8 1.465 86.9 0.128 162.1

64×1560 35.47 1.2 23.15 10.0 1.427 89.5 0.052 120.4

50×800 33.20 0.3 19.31 5.8 2.203 58.0 0.054 73.8

32×800 25.53 0.2 15.91 2.6 2.679 34.4 0.045 43.3

25×400 0.02 0.1 0.02 0.4 1.497 47.5 0.025 51.2

16×400 8.99 0.05 4.26 1.3 1.404 10.8 0.014 12.3

Table 4.5: Performance of local search and XiaHeur

In Table 4.5, the results of each alternative approach are tabulated in a pair of

columns, where the maxIPDdiff and solution time of applying that particular alter-

native approach for all six instances are tabulated in the left column and the right

column, respectively. By doing a pair-wise comparison for all approaches in Table

4.5, one can observe that: 1) full TSMF significantly outperforms both XiaHeur and

XiaHeur with local search in five out of six instances except for the second small-

est instance, where the maxIPDdiff obtained by applying XiaHeur is only slightly

smaller than that obtained by full TSMF; 2) comparing the first two pairs of columns

shows that local search improved the solution quality of XiaHeur by 34%, and com-

paring the last two pairs of columns shows that the solution quality was improved by

97% by including local search in TSMF; 3) even though XiaHeur and XiaHeur with

local search outperform TSMF with respect to solution time, all solution times of

TSMF are within a reasonable limit so that TSMF can very well serve as an off-line

44



application. In summary, full TSMF produces significantly better solutions than

both XiaHeur and XiaHeur with local search within a reasonable amount of time.

In addition, the local search is very effective in improving the solution quality. More

importantly, local search appears to give greater improvements when starting from

a better solution.

The remainder of this subsection evaluates the overall performance of TSMF by

comparing it to both ICP and CPD algorithms. Since the misalignment between

the two datasets is not known and can be arbitrarily large, it is important to check

the robustness of each approach to the change of the underlying rigid transformation

between the two datasets. For this purposes, we created 100 variants for each of

the six original instances listed in Table 4.1. These 100 variants of each original

instance are created by applying 100 uniformly distributed random rotation matrices

and random translations (i.e., 100 random rigid body transformations) to the HR

dataset of that original instance. In this paper, we generate these 100 uniformly

distributed random rotation matrices using the random rotation matrix generation

approach proposed in [52]. Note that our TSMF approach is insensitive to the

change of initial misalignment degree between the two datasets, but practically, it

is reasonable to only allow the manufactured part rotate within the range of −90◦

and 90◦ degrees along axes X and Y , and rotate any degree along the vertical axis Z

(see Figures 1.1 and 4.5). This restriction allows us to make fair comparison between

TSMF and other alternative methods.

To reach an unbiased conclusion on the performance evaluation, we use three reg-

istration error metrics: maxIPDdiff, the summation of IPD differences (sumIPDdiff),

and the root mean squared error (RMSE). Metric maxIPDdiff is used because it is

the metric optimized by TSMF. Metric sumIPDdiff is reported because it is used

as the objective function of many IPD-based point set registration algorithms (see,
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e.g. [7,10]). RMSE is also reported because it is a very popular measure of alignment

error between the two datasets in point set registration problems (see, e.g. [5,24,25]).

Moreover, RMSE is also the objective function that ICP aims to optimize. For each

test instance, RMSE is calculated as follows: 1) estimate the rigid body transfor-

mation between the two datasets based on the obtained correspondences; 2) apply

the estimated transformation to one dataset in order to align the two datasets; 3)

calculate RMSE as the square root of the average squared Euclidean distance of all

point correspondences.

Table 4.6 summarizes the performance of TSMF, ICP and CPD on all 600 test

cases (100 variants per instance size) in terms of maxIPDdiff. Specifically, Table

4.6’s last four columns give the minimum maxIPDdiff, average maxIPDdiff, stan-

dard derivation of maxIPDdiff, and maximum maxIPDdiff for the 100 variants of

each instance size, respectively. Table 4.6’s third column gives the number of vari-

ants, out of the 100, on which TSMF outperforms ICP and CPD. Figure 4.6 visualizes

the comparison among the three methods via an error-bar plot with respect to max-

IPDdif. Each error-bar is plotted using the minimum value and the maximum value

from Table 4.6.

Similar comparisons were done using RMSE and sumIPDdiff. Table 4.7 and

Figure 4.7 give the results using RMSE. Table 4.8 and Figure 4.8 gives the results

using sumIPDdiff. It should be noted that the 100 variants of each instance size in

Table 4.6, 4.7 and 4.8 (also in the three corresponding Figures 4.6, 4.7 and 4.8) are

100 different instance of the same instance size each with a different misalignment

degree between the two datasets. So, for each instance size, the results for ICP and

CPD are not 100 different runs of ICP and CPD on the same instance. Therefore,

the variance showed in the results of ICP and CPD is due to their sensitivity to the

misalignment degree change between the two datasets.
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As expected, since the optimization model formulation of TSMF is a fully IPD-

based formulation, it is insensitive to the change of the initial misalignment between

the two datasets. In contrast, both ICP and CPD are very sensitive, thus not ro-

bust to the change of the misalignment between the two datasets (overall, ICP is

more sensitive than CPD). From Figures 4.6 and 4.8, it is clear that TSMF always

outperforms ICP and CPD; specifically, for every instance size, TSMF’s solution has

lower maxIPDdiff and sumIPDdiff than the best solution of ICP and CPD. With

respect to RMSE: 1) TSMF outperforms ICP in all 100 test variants of four out

of six instance sizes except for the largest and the second smallest instances, where

our TSMF performs better than ICP for 80 out of 100 test variants and for 98 out

of 100 test variants, respectively; 2) TSMF also outperforms CPD in all 100 test

variants of the five largest instances except for the smallest instance where TSMF

outperforms CPD in only 12 test variants. The average computation time of ICP

and CPD is short and in seconds. Even though TSMF is slower than ICP and CPD,

its solution time is well acceptable for it to be practically useful in an off-line pre-

cision inspection setting—especially considering that obtaining the HR dataset can

take hours. Finally, it is clear from Figures 4.6 to 4.8 that TSMF’s performance

scales very well with respect to every performance metric, while ICP’s and CPD’s

performances deteriorate as the instance size increases.
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# of variants

worse
maxIPDdiff (w)

Instance Method than TSMF Min Avg. Std. Dev. Max

100×1560

TSMF

ICP

CPD

-

100

100

0.13

1.04

2.26

0.13

2.05

3.21

0

1.32

0.51

0.13

13.05

3.59

64×1560

TSMF

ICP

CPD

-

100

100

0.052

1.03

2.28

0.052

2.72

3.26

0

2.71

0.41

0.052

11.60

3.60

50×800

TSMF

ICP

CPD

-

100

100

0.054

1.03

3.62

0.054

3.05

5.12

0

1.67

1.25

0.054

10.24

6.33

32×800

TSMF

ICP

CPD

-

100

100

0.045

1.02

4.05

0.045

3.00

4.79

0

1.88

0.88

0.045

9.49

10.57

25×400

TSMF

ICP

CPD

-

100

100

0.025

0.04

1.43

0.025

1.70

1.43

0

0.67

0.002

0.025

4.00

1.44

16×400

TSMF

ICP

CPD

-

100

100

0.014

0.06

0.03

0.014

1.64

0.40

0

0.77

0.47

0.014

4.21

1.04

Table 4.6: Performance comparison in terms of maxIPDdiff
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Figure 4.6: Performance in terms of maxIPDdiff

# of times worse RMSE (w)

Instance Method than TSMF Min Avg. Std. Dev. Max

100×1560

TSMF

ICP

CPD

-

80

100

0.59

0.34

0.62

0.59

0.78

0.99

0

0.25

0.20

0.59

1.85

1.22

64×1560

TSMF

ICP

CPD

-

100

100

0.06

0.41

0.68

0.06

0.85

1.03

0

0.25

0.20

0.06

1.97

1.32

50×800

TSMF

ICP

CPD

-

100

100

0.08

0.30

2.11

0.08

0.98

1.57

0

0.30

0.21

0.08

1.86

2.11

32×800

TSMF

ICP

CPD

-

100

100

0.07

0.35

1.04

0.07

1.01

1.41

0

0.29

0.26

0.07

2.04

2.70

25×400

TSMF

ICP

CPD

-

98

100

0.38

0.29

0.62

0.38

0.65

0.70

0

0.19

0.04

0.38

1.20

0.77

16×400

TSMF

ICP

CPD

-

100

12

0.41

0.33

0.13

0.41

0.64

0.28

0

0.13

0.09

0.41

1.08

0.46

Table 4.7: Performance comparison in terms of RMSE
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Figure 4.7: Performance in terms of RMSE

# of times worse sumIPDdiff (w)

Instance Method than TSMF Min Avg. Std. Dev. Max

100×1560

TSMF

ICP

CPD

-

100

100

150.5

742.0

2502.7

150.5

1907.0

3594.5

0

754.0

499.0

150.5

5885.7

4162.9

64×1560

TSMF

ICP

CPD

-

100

100

27.2

327.8

1220.6

27.2

936.4

1591.9

0

433.1

194.1

27.2

2420.8

1927.9

50×800

TSMF

ICP

CPD

-

100

100

16.0

193.9

1119.5

16.0

675.8

1504.8

0

339.9

234.4

16.0

1912.8

1883.3

32×800

TSMF

ICP

CPD

-

100

100

6.43

91.2

362.8

6.43

308.8

565.2

0

145.2

135.4

6.43

1122.6

576.7

25×400

TSMF

ICP

CPD

-

100

100

2.01

4.1

173.5

2.01

146.6

181.0

0

58.9

5.11

2.01

312.1

196.9

16×400

TSMF

ICP

CPD

-

100

100

0.68

1.47

1.09

0.68

54.4

6.8

0

16.1

7.6

0.68

90.1

21.1

Table 4.8: Performance comparison in terms of sumIPDdiff
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Figure 4.8: Performance in terms of sumIPDdiff

4.4 Summary

In this section, we proposed a two-stage matching framework (TSMF) approach to

address the two-resolution metrology matching problem with arbitrary misalignment

between the two metrology datasets. Our TSMF approach is robust (specifically, it is

insensitive to the misalignment degree) and is able to find a near-to-optimal solution

for real-life sized problems within a reasonable amount of time. The first of the two

stages comprising the approach aims to find a partial set of correspondences by down-

sampling the problem and then solving the down-sampled problem to optimality. The

second stage extends the partial set of correspondences obtained in the first stage

to a complete set of correspondences (i.e. a complete solution for the original full

problem) and further refines the extended set of correspondences by performing an

iterative local search.

Numerical experiments showed that TSMF can solve real-life-sized metrology
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matching problems within couple of minutes. This makes TSMF well suitable to

serve as an off-line tool. Moreover, TSMF outperforms ICP and CPD in all 600 test

instances in terms of both maxIPDdiff and sumIPDdiff, and almost always produces

better solution than ICP and CPD with respect to RMSE for the five largest in-

stance sizes. Unlike ICP and CPD, our approach is robust with respect to the initial

misalignment degree between the two datasets, and it scales very well with respect

to all three performance metrics as the instance size increases.
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5. METROLOGY DATA MATCHING PROBLEM FOR MANUFACTURED

PARTS WITH SYMMETRIC FEATURES

Many manufactured parts have symmetric features. For instance, the milled

workpiece with a sinewave shaped surface used throughout this dissertation has two

types of symmetries: rotation symmetry and reflection symmetry. This is because

the measurements were only taken from the top sinewave surface of the workpiece.

Specifically, as shown in Figure 5.1, a 180 degree rotation of the top sinewave surface

of the milled workpiece along the dashed line of rotation symmetry will make the

rotated sinewave coincide with itself; a reflection along the dotted plane of symmetry

of the workpiece will also make the sinewave coincide with itself.

Plane of reflection 
symmetry

Line of rotation 
symmetry

Figure 5.1: Milled part with sinewave surface

Throughout this dissertation, a correct set of correspondences refers to a set of

correspondences that is orientationally consistent with the underlying true set of

correspondences.
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It is important to note that, if the symmetric features of the part surface are

designed and manufactured perfectly, no point set registration algorithm can solve

the two-resolution metrology data matching problem in terms of finding the cor-

rect set of correspondences. This is because the maximum IPD differences of the

correct set of correspondences and of its reflected and rotated correspondences are

all zero; moreover, this is also true for any other performance metric, such as the

sumIPDdiff and RSME. This is illustrated in Figure 5.2, where the top and bottom

represent the HR datasets and LR datasets, respectively. Specially, in Figure 5.2,

from left to right, the three pairs of two datasets represent the correct set of cor-

respondences, the reflection of the correct set of correspondences, and the rotation

of the correct set of correspondences, respectively. Note that in each of the three

columns of Figure 5.2, the lowercase letters label the correspondences between the

two datasets. More specifically, the measurements/points with the same letters are

matched; equivalently, when two measurements/points are matched it is as if the re-

spective measured physical locations on the part surface were matched. Evidently, if

the sinewave surface is manufactured perfectly, then every metric (e.g. maxIPDdiff,

sumIPDdiff, and RSME) would be zero for all three sets of correspondences.
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Reflection of the Correct Set of 
Correspondences
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d
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d
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a

b

c

Rotation of the Correct 
Set of Correspondences 

Correct Set of 
Correspondences

HR

LR

HR HR

LRc

b

a

d

LR

Figure 5.2: Correct set of correspondences, reflection and rotation of a correct set
of correspondences for a manufactured part with symmetric features

However, even if the nominal design of the part surface is perfect, in practice,

the manufacturing process of the surface is not. Then, provided that the scale of the

imperfection of the manufactured sinewave surface (e.g. possible dents on the surface)

is greater than the resolution scale of the two datasets, one can take advantage of the

imperfection to distinguish the correct set of correspondences from the reflected and

rotated ones. This is precisely what the algorithm developed in this section does.

As illustrated in Figure 5.2, we need to differentiate between three distinct types

of sets of correspondences. Specifically, we need to differentiate them in terms of

whether each HR point is matched to an LR point that measures (approximately)

the same physical location on the part surface. Throughout the reminder of this

dissertation, we use the following terminology:

• A correct set of correspondences (illustrated in Column 1 of Figure 5.2) refers to

a set of correspondences that is orientationally consistent with the underlying

true set of correspondences. In other words, a correct set of correspondences
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matches each HR point to an LR point that measures (approximately) the

same physical location on the part surface.

• An incorrect set of correspondences matches each HR point to an LR point that

measures a clearly distinct (sometimes even a “far away”) physical location

on the part surface. As hinted in Figure 5.2, there are two special types of

incorrect sets of correspondences that are worth defining because of their close

resemblance of correct sets of correspondences:

– A reflection of a correct set of correspondences (illustrated in Column 2 of

Figure 5.2) refers to a set of correspondences that: (a) incorrectly matches

physical locations on the part surface (e.g. in Column 2 of Figure 5.2, the

top left corner of the physical part is matched to the bottom left corner

and the top right corner is matched to the bottom right corner), and more

importantly, (b) whose incorrect matchings can be corrected by reflecting

the correspondences. For example, in Column 2 of Figure 5.2, if the

labels in LR dataset are reflected along the plane of reflection symmetry

illustrated in Figure 5.1—i.e., labels ‘a’ and ‘b’ are exchanged with labels

‘d’ and ‘c’, respectively—, then the newly matched measurements will

represent the same physical location.

– A rotation of a correct set of correspondences (illustrated in the Column

3 of Figure 5.2) refers to a set of correspondences that: (a) incorrectly

matches physical locations on the part surface (e.g. in Column 3 of Figure

5.2, the top left corner of the physical part is matched to the top right

corner and the bottom left corner is matched to the bottom right corner),

and more importantly, (b) whose incorrect matchings can be corrected by

rotating the correspondences. For example, in Column 3 of Figure 5.2,
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if the labels in LR dataset are rotated 180 degrees along the dashed line

of rotation symmetry illustrated in Figure 5.1—i.e., labels ‘a’ and ‘c’ are

exchanged with labels ‘b’ and ‘d’, respectively—, then the newly matched

measurements will represent the same physical location.

This section aims to improve the TSMF approach to address the difficulty of

matching metrology data with symmetric features. To achieve this, we first pro-

pose to generate a group of plausible candidate sets of correspondences which we

call solution pool, and then devise a filtering procedure to select the correct set of

correspondences from the solution pool. The remainder of this section is organized

as follows: Section 5.1 discusses where and how to generate a solution pool. Section

5.2 describes the proposed filtering procedure, followed by a discussion of three fil-

tering options. Finally, Section 5.4 presents the experimental results and evaluates

the performance of the three proposed filtering options.

5.1 Solution Pool Generation

There are three places during TSMF where a solution pool can be generated.

First, a solution pool can be generated during the solve-to-optimality step by using

the solution pool feature of the MILP solver. Second, a solution pool can be generated

during the process of extending the (optimal) partial set of correspondences to a

complete one by keeping all the sets of correspondences whose maxIPDdiff is less

than a pre-specified threshold. Third, a solution pool can be generated during the

iterative local search step by using the solution pool feature of the MILP solver. As

explained in the two ensuing paragraphs, one must generate the solution pool during

the solve-to-optimality step.

First, we argue that it is not viable to generate the solution pool during the pro-

cess of extending the partial set of correspondences or during the iterative local search

57



step. Note that both generalizedXiaHeur and local search do not change (or change

very little) the orientation of the solve-to-optimality solution. More specifically,

generalizedXiaHeur preserves the solution orientation because it uses the solve-to-

optimality solution as anchor points during the solution extension process. Similarly,

the local search procedure only searches a small neighborhood to refine the corre-

spondences of the extended solution and thus only adjusts the orientation of the

solve-to-optimality solution by a very small degree. Consequently, an incorrect par-

tial set of correspondences from the solve-to-optimality step will inevitably cause

the solution pools generated at later places during TSMF (i.e. after extending the

partial set of correspondences and after iterative local search procedure) to contain

only incorrect sets of correspondences.

Next, we argue that generating the solution pool during the solve-to-optimality

step allows us to include at least one correct partial set of correspondences in the pool.

Note that, due to the symmetry of the part surface and the not-so-perfect evenness

of the down-sampled datasets, the optimal partial set of correspondences obtained at

the solve-to-optimality step might not be correct. However, it is reasonable to expect

that the objective value of a correct partial set of correspondences at the solve-to-

optimality step is close to that of the optimal solution of the solve-to-optimality

step. Therefore, by including a group of feasible partial sets of correspondences

whose objective values are close to the optimal objective value, one can be reasonably

certain that the solution pool will contain at least one correct set of correspondences.

Hereafter, we refer to this solution pool as the basic pool.

Next, Subsection 5.1.1 describes how to generate the basic pool using the solution

pool feature of CPLEX, and then Subsection 5.1.2 discusses the derivation of two

other solution pools variants based on the basic pool.

58



5.1.1 Basic Pool Generation

The basic pool comprises a group of feasible partial sets of correspondences whose

objective values are close to the optimal objective value. Thus, the basic pool can be

easily generated by invoking the solution pool feature of a MILP solver during the

solve-to-optimality step. The solution pool feature is provided by most MILP solvers

to allow one to generate and store multiple intermediate feasible solutions of a MILP

model. Since the MILP solver we have been using throughout this dissertation is

CPLEX 12.4, below we describe how to generate the basic pool only in CPLEX 12.4

(through its concert technology C++ interface).

To generate the basic pool, we need to set the following two CPLEX parameters

before calling the solve method (i.e. the function called to solve a MILP model):

SolnPoolIntensity and SolnPoolGap. The following two paragraphs give more details

on how we set these two parameters to generate the basic pool.

The parameter SolnPoolIntensity controls the level of effort that CPLEX exerts

to generate the solution pool. Specifically, SolnPoolIntensity can be set to an integer

value between 0 and 4; higher values indicate higher levels of effort to generate

a larger number of feasible solutions in the solution pool. The default value of

SolnPoolIntensity is 0, which only keeps a small number of solutions in the basic

pool. From some preliminary numerical experiments, we observed that, one needs

to set SolnPoolIntensity to the most aggressive level of 4 to ensure there is at least

one correct set of correspondences in the basic pool.

The parameter SolnPoolGap sets a relative tolerance on the objective values of

the solutions included in the pool. For instance, setting SolnPoolGap to 1.0 directs

CPLEX to only keep solutions whose objective values are less than 2 times the opti-

mal objective value. In order to ensure that the basic pool only includes the feasible
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solutions with objective values close to the optimal objective value, SolnPoolGap

needs to be set to a reasonably small percentage. Through extensive experiments,

we found that setting SolnPoolGap to 1.0 is a good choice. Indeed, our computa-

tional results in Section 5.4 show that setting SolnPoolGap to 1.0 ensures that the

resulting basic pools of all six test instances contain at least one correct (partial)

set of correspondences. In fact, for all six instances, a correct partial set of corre-

spondences in the basic pool has an objective value which is less than 1.71 times

the optimal objective value; moreover, for four out of six instances, a correct partial

set of correspondences in the basic pool has an objective value which is less than

1.5 times the optimal objective value. Therefore, setting SolnPoolGap to 1.0 is a

conservative choice. In addition, setting SolnPoolGap to 1.0 also on average reduces

the basic pool size by at least 60% compared to the basic pool generated without

imposing a limit on SolnPoolGap. This is important because generating a basic pool

with significantly smaller size can save substantial amount of computational time

required to complete the pool generation.

In this paragraph, we describe the populate method, an alternative way to gener-

ate the basic pool in CPLEX, and explain why the aforementioned solve method is

preferred to the populate method. (Remark: this paragraph can be omitted without

loss of continuity). The populate method intends to generate solutions in addition to

those found during the regular branch and bound (B&B) process. Specifically, the

populate method also explores those nodes in the B&B tree that would be pruned

by the default optimality based B&B algorithm of CPLEX [53]. However, one main

drawback of the populate method is that it is prone to generate many duplicated

solutions in the pool. Through extensive experiments, we found this duplication can

be alleviated to some extent by simultaneously directing CPLEX (a) to set SolnPool-

Replace (used to designate the strategy for replacing a solution in the solution pool
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when the solution pool has reached its capacity) to 2 to produce a diverse set of

solutions in the pool, (b) to set PopulateLim (used to limit the number of MILP

solutions generated for the solution pool) to a larger number, and to set solnPool-

Capacity (used to limit the number of solutions kept in the solution pool) to a small

percentage of PopulateLim. However, these improved settings do not mitigate the

solution duplication problem to a satisfactory level.

5.1.2 Two Solution Pool Variants of the Basic Pool

Two variants of the basic pool can be derived during two other steps of TSMF.

Specifically, the first variant, termed extended pool, is derived by extending with gen-

eralizedXiaHeur each partial set of correspondences in the basic pool to a complete

set of correspondences. The second variant, termed refined & extended pool, is de-

rived by refining each complete set of correspondences in the extended pool using the

iterative local search procedure. The extended pool allows us to filter the solution

pool after applying the generalizedXiaHeur algorithm. The refined & extended pool

allows us to filter the solution pool after applying the iterative local search procedure

(i.e. at end of the TSMF).

Note that, as illustrated in Figure 5.3, there is a one-to-one correspondence be-

tween the solutions in the basic pool and those in the two other solution pool variants.

Specifically, each solution in the basic pool has exactly one extended version in the

extended pool and one extended & refined version in the extended & refined pool.

Therefore, we use a unique solution index when referring to a solution regardless of

its status. Specifically, as shown in Figure 5.3, solution Bi in the basic pool corre-

sponds to solution Ei in the extended pool and solution Ri in the extended & refined

pool, respectively. Hereafter, with a slight abuse of notation, since the three pools

contain the same set of solutions (with different solution statuses), we use the generic
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term “solution pool” to refer to this set of solutions. In other words, we want to refer

to the set of solutions without referring to their specific statuses. Similarly, we refer

to solution i as the ith solution in the solution pool, and solution i could correspond

to any of its three solution statuses (i.e. Bi, Ei, and Ri) depending on the context.

Basic Pool Extended Pool Extended & Refined Pool

B1

B2

B3

.

.

.

Bn-1

Bn

E1

E2

E3

.

.

.

En-1

En

R1

R2

R3

.

.

.

Rn-1

Rn

via generalizedXiaHeur via iterative local search

Figure 5.3: One-to-one correspondences between three solution pools

5.2 Filtering Procedure

The objective of the filtering procedure is to select a correct set of correspon-

dences from the solution pool. As mentioned earlier, provided that the scale of

the imperfection of the manufactured surface (e.g. possible dents on the surface)

is greater than the resolution scale of the two datasets, one can take advantage of

the imperfection to distinguish the correct set of correspondences from the reflected

and rotated ones. Specifically, it is reasonable to expect that the correct set of cor-

respondences has the minimum RMSE once the two datasets are properly aligned.

However, our preliminary experiments showed that the set of correspondences with
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the minimum RMSE is not necessarily a correct one—it may be a reflection or a

rotation of a correct set of correspondences. Moreover, this is also true the other

performance metrics maxIPDdiff and sumIPDdiff. Therefore, here we present a fil-

tering procedure that aims to find a correct set of correspondences even when the

“optimal” set of correspondences is not correct. In short, our filtering procedure aims

to find the correct set of correspondences with minimum RMSE—which we term as

the best correct set of correspondences. Next, we first explain a core component of

the filtering procedure and then describe the filtering procedure in detail.

A core component of the filtering procedure is to estimate the rigid body trans-

formation between the two datasets based on a given set of correspondences in the

solution pool. Specifically, given a set of correspondences, estimating the rigid body

transformation entails finding the rotation matrix and translation vector so that

both datasets are best aligned (in terms of a least square error criterion). There ex-

ists multiple rigid transformation estimation algorithms in the literature. Eggert et

al. [12] compared four popular rigid transformation recovery algorithms (i.e., a sin-

gular value decomposition (SVD)-based algorithm [54], orthonormal matrix based

algorithm [55], unit quaternion based algorithm [56], and dual quaternion based al-

gorithm [57]) through extensive numerical experiments, and concluded that, under

typical real-world noise levels, all four methods are equally robust. We choose the

SVD-based algorithm because its implementation is widely available in linear algebra

packages.

It should be noted that we assume the axes of the 3D coordinate systems of

both CCMM and OCMM (used for obtaining the HR and LR datasets respectively)

satisfy the right-hand rule. Thus, the correct rigid transformation between the two

datasets must comprise a proper rotation and a translation. In particular, due to

our assumption, the correct rigid transformation cannot contain a reflection (i.e., an
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improper rotation). Therefore, given a set of correspondences, if the estimated rigid

transformation contains a reflection (i.e., the determinant of the estimated rotation

matrix is −1 [12, 54]), then it indicates that the given set of correspondences is in-

correct (specifically, it is a reflection of a correct set of correspondences). Thus, a

reflection of a correct set of correspondences can be detected directly. In contrast,

one cannot detect directly a rotation of a correct set of correspondences. This is

because the rigid transformation estimated from either a correct set of correspon-

dences or a rotation of a correct set of correspondences comprises a proper rotation

and a translation. Therefore, in order to differentiate between correct sets of corre-

spondences and reflections of correct sets of correspondences, one must rely on the

minimum RMSE criterion.

Based on the above analyses, we propose a filtering procedure that combines the

minimum RMSE criterion and a reflection detection component. Below, we describe

the two steps of the filtering procedure in detail.

Step 1 - Calculate and rank the RMSE of all solutions in the pool.

This step calculates the RMSE of all solutions in the pool and ranks them ac-

cordingly from smallest to largest. RMSE is calculated as follows: (a) estimate

the rigid body transformation between the two datasets based on the obtained

correspondences; (b) apply the estimated transformation to one dataset in or-

der to align the two datasets; (c) calculate RMSE as the square root of the

average squared Euclidean distance of all point correspondences.

Step 2 - Find the non-reflected solution with minimum RMSE.

First, find the solution with the minimum RMSE in the pool. Then, check

whether the estimated rigid transformation based on that solution contains

a proper rotation. If so, this solution is the non-reflected solution with the
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minimum RMSE and should be selected as the final output. Otherwise, the

considered solution is a reflection of a correct set of correspondences; and one

should repeat this step by examining the solution with the next smallest RMSE

in the pool until a non-reflected solution is found.

5.3 Three Filtering Options

Having described the filtering procedure, we now discuss the three possible places

during TSMF where the filtering procedure can be performed. As illustrated in

Figure 5.4, the first place to perform the filtering procedure is after the solve-to-

optimality step, and the filtering is performed on the partial sets of correspondences

in the basic pool. The second place to perform the filtering procedure is after extend-

ing each partial set of correspondences in the basic pool by generalizedXiaHeur and

the filtering is performed on the extended complete sets of correspondences in the

extended pool. The third place to apply the filtering procedure is after refining each

complete set of correspondences in the extended pool by iterative local search, and

the filtering is performed on the complete sets of correspondences in the refined &

extended pool. We remark that, in all three filtering options, the filtering procedure

would be applied exactly in the same manner; that is, they only differ on the solution

pool to which the filtering procedure is applied.
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Stage 1 – Obtain a partial set of correspondences

Step 2: Find the optimal correspondences for the down-
sampled problem

Step 1: Down-sampling both HR and LR 
datasets

Basic Pool 

Filter the basic pool 

Step 1: Extend to complete set of correspondences by 
finding LR correspondences for unmatched HR points

Stage 2 – Extend & refine the partial set of correspondences

Step 2: Refine the complete set of correspondences 
using an iterative local search

Extended Pool

Extended & Refined  Pool 

Filter the extended pool 

Filter the
extended & refined pool 

Filter1 Filter2

Filter3

Figure 5.4: Three possible places during TSMF to perform filtering

Hereafter, we refer to the above three filtering options as Filter1, Filter2 and

Filter3, respectively. For instance, if Filter1 option is chosen, then the filtering pro-

cedure is performed on the basic pool after the solve-to-optimality step. Performance

evaluation of these three filtering options will be conducted in Section 5.4.

5.4 Computational Experiments and Results

This section first describes the implementation and experimental setup of the

filtering procedure, then presents the computational results and compares the align-

ment performance of the three filtering options. For this purpose, we still use the

same six metrology data instances of a milled sinewave surface with the same TSMF

parameters used in Subsection 4.3.1. All the numerical experiments are conducted

on the same computing environment — Linux (Ubuntu 14.04) machine with Intel

E5-1620 3.4GHz processor and 32G RAM.
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5.4.1 Implementation and Experimental Setup

The proposed filtering procedure was implemented in C++ using the Concert

Technology interface of CPLEX 12.4 and was integrated into TSMF. Hereafter, we

refer to this integrated program as TSMFwithFilter and to the original (non-filtered)

TSMF simply as TSMF. The SVD function used in the filtering procedure is provided

by the Armadillo C++ linear algebra library [50].

Since incorporating the filtering procedure into TSMF does not affect TSMF’s

insensitivity to the change of misalignment between the two datasets, it is only

necessary to test the three filtering options of TSMFwithFilter on the original data

instance of each instance size and not on all 600 instances (100 randomly rotated

and translated variants for each of the six instance sizes).

It should be noted that, by default, CPLEX invokes the so-called deterministic

parallel mode when solving a MIP model. This mode directs CPLEX to apply as

much parallelism as possible (i.e., use the maximum number of threads available)

while still achieving deterministic results. That is, repeated running on the same

instance with the same parameter settings on the same computing platform will

follow exactly the same solution path, yielding the same solution values and per-

formance. However, even with the same instance and CPLEX parameter settings,

running TSMFwithFilter on a different computing platform may lead to different

computational results.

5.4.2 Results and Performance Analysis

In this subsection, we examine the effectiveness of the three proposed filtering

options and identify the best one (i.e. the most effective one). The key characteristic

of the effectiveness of a filtering option is whether the final selected solution is a

correct set of correspondences. Then, we compare the best filtering option with the
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original TSMF and the two alternative methods, CPD and ICP, in terms of align-

ment performance.

Comparison of the alignment performance of the three filtering options

The main objective of this comparison is to find out which filtering option(s)

select a correct set of correspondences and whether their computational times are

reasonable. Since the underlying true set of correspondences of the two datasets is

known, the orientation correctness of the selected set of correspondences is checked

by visually comparing the selected set of correspondences to the correct set of cor-

respondences once the two datasets are aligned to one coordinate system. Appendix

C illustrates and explains in detail this visual examination of the alignment perfor-

mance.

Table 5.1 summarizes the main results of three filtering options for each instance

size. Columns 1 and 2 give the instance size and the filtering option. Column

3 gives the number of candidate sets of correspondences in the solution pool of

each instance size. Column 4 gives the index of the selected set of correspondences

by the respective filtering option. Column 5 indicates whether the selected set of

correspondences is correct; specifically, the results in this column summarize Figures

C.1 to C.6 in Appendix C. Columns 6 - 8 record the running time of solve-to-

optimality step (including the basic pool generation time), the local search time,

and the total running time of TSMFwithFilter. The last three columns report the

maxIPDdiff, sumIPDdiff and RMSE of the selected set of correspondences after local

search, respectively. Note that, as in Section 4.3, hereafter, we report maxIPDdiff,

sumIPDdiff and RMSE as a multiple of w—the average distance between each LR

point and its closest neighbor in the LR dataset. Note that the computational time

for greedyDownsampling, generalizedXiaHeur and the filtering procedure are not
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included in Table 5.1 as they are really fast; specifically, their average running time

per instance are 0.05 seconds, 0.57 seconds and 0.006 seconds, respectively.

Table 5.1: Main results of three filtering options

From Table 5.1, we conclude that Filter3 outperforms Filter1 and Filter2 in terms

of successfully selecting a correct set of correspondences1. In particular, Table 5.1

shows that Filter3 always selected a correct set of correspondences. In contrast, Fil-

ter1 and Filter2 output a correct set of correspondences only for the largest instance.

1Note that, due to the minimum-RMSE criterion used in the filtering procedure, the Filter3
may also reject some other correct sets of correspondences if there are more than one correct set of
correspondences in the extended & refined pool.
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In addition, Table 5.1 shows that the correct set of correspondences selected by

Filter3 almost always outperform those selected by Filter1 and Filter2 in terms of

maxIPDdiff, sumIPDdiff and RMSE. The only exceptions are: 1) All filtering options

output the exact same set of correspondences for the largest instance; and 2) Filter2

slightly beats Filter3 in terms of maxIPDdiff and sumIPDdiff for instance 32×800.

In contrast, when it comes to computational time, Filter1 and Filter2 on aver-

age run 5.6 times faster than Filter3. This is not surprising because Filter3 needs

to perform the iterative local search process (the second most computationally ex-

pensive component in TSMF) on every set of correspondences in the solution pool.

A close inspection reveals that Filter3 took less than 25 minutes in five out of six

instances, but took more than three hours for instance 64×1560. Note that, for

instance 64×1560, the vast majority of the run time was spent on generating the

basic pool. While a run time of more than three hours may seem excessive, it is

important to consider that the measuring process of the HR dataset may also take

hours. Therefore, we believe that Filter3 is well suitable to serve as an off-line tool.

Give the above results, we next evaluate the performance of the two main compo-

nents/guiding principles of the filtering procedure—the reflection detection compo-

nent and the minimum RMSE criterion. For this purpose, Table 5.2 reports, for each

instance and filtering option, the confusion matrix tabulating the accuracy perfor-

mance of the reflection detection component of the filtering procedure. Similarly to

the evaluation of the alignment performance, the results in Table 5.2 were obtained

via a visual inspection.
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Table 5.2: Confusion matrices of the reflection detection component of the three
filtering options for each instance

Table 5.2 shows that, on every instance, the reflection detection component in

Filter2 and Filter3 has 100% accuracy in correctly differentiating between reflections

and proper rotations. In contrast, the reflection detection component in Filter1 is

only fully accurate for the five smallest instances. We conclude that the reflection

detection component is extremely accurate. Moreover, Table 5.2 also shows that,

for some instances, several of the sets of correspondences with the smallest RSMEs

implied a reflection; and, in all of these cases, the reflection detection component

correctly filtered them out. Therefore, we also conclude that the reflection detection

component is useful and supplements the minimum RMSE criterion.
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Important Remark: The reflection detection component in Filter2 (resp. Fil-

ter1) correctly detected all (resp. almost all) of the reflected set of correspondences

for all six instances; however, as shown in Table 5.1, Filter1 and Filter2 failed to

select a correct set of correspondences among these non-reflected ones. Specifically,

it selected an incorrect proper rotation (see, e.g., the third column in Figure 5.2).

which is a proper rotation of itself). This is because all correct solutions in the basic

pool (resp. extended pool) have a larger RMSE than that of the properly rotated

solution selected by Filter1 (resp. Filter2). Therefore, by comparing the results in

Table 5.1 and Table 5.2, we conclude that minimum RMSE criterion is not reliable

when applied to Filter1 and Filter2. This is mainly because the solutions in the

basic pool and the extended pool do not have as good alignment quality as those in

the extended & refined pool. Below we explain the underlying reason for the poor

performance of Filter1 and Filter2.

The failure of Filter1 can be mainly attributed to two aspects: the not-so-evenness

of the down-sampled datasets and the sparsity of down-sampled HR points (around

eight points). On one hand, the not-so-evenness of the down-sampled datasets may

distort the RMSE of the solutions. This distortion can potentially increase the RMSE

of the correct solution so that it becomes larger than that of the incorrect ones.

Also, the not-so-evenness of the down-sampled datasets increases the dissimilarity

level between the two down-sampled datasets. This larger dissimilarity between the

two datasets introduces large “noises” (combined with two types of symmetries of

the sinewave surface) that cause Filter1 to fail2. On the other hand, the sparsity

may cause the down-sampled HR points to lay almost on a plane, which makes

2Due to large level of “noises” of two down-sampled datasets, SVD-based reflection detection
component simply classifies a solution to either reflection or proper rotation randomly depending
on which class has the smaller RMSE. Besides, this large “noises” combined with the two types of
symmetries of the part surface makes the minimum RMSE criterion (i.e., the second step of the
filtering procedure) not reliable.
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it impossible to differentiate between a proper rotation and a reflection (i.e. in the

planar case, both a reflection and a proper rotation are equivalent). Yet, as expected,

this rarely happens; as shown in Table 5.2, only Filter1 confused one proper rotation

as a reflection for the largest instance.

Filter2 fails mainly because of the fact that the solution extension step by general-

izedXiaHeur does not improve the correspondences’ quality of the anchor pairs. The

correspondences’ quality of the anchor pairs is not good because the anchor pairs

correspondences are determined based on the not-so-even down-sampled datasets.

Therefore, in sum, Filter2 fails for the similar reasons underlying Filter1’s failure.

In contrast, Filter3, after applying the iterative local search step, does rematch

the anchor pairs. Moreover, in general, the solutions in extended & refined pool

have better alignment quality than those in the basic pool and extended pool. This

allows the proposed filtering procedure to work more effectively. In other words,

better solution quality makes it more likely for the SVD-based rigid transformation

estimation algorithm to correctly detect reflections and proper rotations, and for the

overall performance of Filter3.

Comparison of Filter3 with other alternative methods

Now we compare the best filtering option, Filter3, with TSMF, CPD and ICP in

terms of both solution orientation correctness and three performance metrics (max-

IPDdiff, sumIPDdiff, and RMSE). The comparison results are tabulated in Table

5.3.
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Table 5.3: Compare Filter3 with other methods

First, we compare Filter3 to the original TSMF. Table 5.3 shows that Filter3

always outperforms TSMF because TSMF missed the correct set of correspondences

for all six instances. Moreover, in terms of both maxIPDdiff and sumIPDdiff, Fil-

ter3 gives very comparable solutions for the five smallest instances, and outperforms

TSMF for the largest instance by one order of magnitude. In terms of RMSE, Fil-

ter3 outperforms TSMF for all six instances; for some instances by one order of
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magnitude.

Second, we compare Filter3 to two other widely-used rigid registration algorithms,

CPD and ICP. Table 5.3 shows that both CPD and ICP are only able to output a

correct set of correspondences for two out of six instances, while Filter3 always gives

the correction set of correspondences. Moreover, Filter3 outperforms both CPD and

ICP for all six instances in terms of maxIPDdiff, sumIPDdiff and RMSE.

5.5 Summary

This section aims to address the difficulty of matching two-resolution metrology

data for manufactured parts with symmetric geometric features. To achieve this, a

filtering procedure is proposed to improve the TSMF approach in terms of finding

a correct set of correspondences between the two metrology datasets with symmet-

ric geometric features. More specifically, we propose to generate such solution pool

containing a group of plausible candidate sets of correspondences and devise a filter-

ing procedure to select the correct set of correspondences from that solution pool.

We also discussed where and how to generate a solution pool and introduced three

filtering options, each filtering a different solution pool variant at a different place

during TSMF.

We conducted two main performance comparisons in this section: 1) comparison

of the alignment performance of the proposed three filtering options; and 2) com-

parison of Filter3 with other alternative methods (i.e., TSMF, CPD and ICP). The

first performance comparison showed that Filter3 outperforms Filter1 and Filter2,

and always selected a correct set of correspondences. In contrast, Filter1 and Filter2

output a correct set of correspondences only for the largest instance. Moreover, the

correct solution selected by Filter3 almost always outperforms those selected by Fil-

ter1 and Filter2 in terms of maxIPDdiff, sumIPDdiff and RMSE. Even though Filter1
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and Filter2 run much faster than Filter3, Filter3 is still well suitable to serve as an

off-line tool. The second performance comparison showed that the best filtering op-

tion, Filter3, always outperforms TSMF for all six instances in terms of successfully

selecting a correct set of correspondences. In addition, when compared to CPD and

ICP, Filter3 outperforms them for four out of six instances as both CPD and ICP

are also able to output a correct set of correspondences for two instances. In terms

of three performance metrics (i.e., maxIPDdiff, sumIPDdiff and RMSE), Filter3 also

always produces better results than CPD and ICP and either gives comparable or

one order of magnitude better results than TSMF.
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6. SUMMARY AND FUTURE WORK

6.1 Summary

Aligning two-resolution metrology data is a very important and challenging prob-

lem. The problem is challenging in two ways: (1) the problem is computationally

prohibitive for off-the-shelf optimization solvers; (2) the existing heuristic approaches

to address the problem are not robust and often lead to solutions of very poor qual-

ity (this is especially true for problems with a large degree of misalignment). In

this dissertation, we proposed a two-stage matching framework (TSMF) to provide a

competitive and robust solution to this problem. The TSMF approach can serve as a

good off-line tool to aid the geometric quality control process of manufactured parts.

Moreover, to address the difficulty of matching metrology data for manufactured

parts with symmetric features, a filtering procedure is proposed to enhance the TSMF

approach. Specifically, the filtering procedure aims to select set of correspondences

that are orientationally consistent with the underlying true set of correspondences.

The proposed TSMF approach aims to establish the correspondences between

two fully-overlapping metrology data with different resolutions, dramatic cardinality

difference and arbitrarily large degree of misalignment. The TSMF approach follows

a coarse-to-fine strategy and contains two stages. The first stage obtains a coarse

alignment (i.e. a partial set of correspondences) by solving a down-sampled problem.

The second stage extends the partial set of correspondences obtained from solving to

optimality the down-sampled problem to a complete one on the original full datasets,

and refines the extended set of correspondences through an iterative local search.

Numerical results showed that TSMF outperforms two widely used algorithms,

ICP and CPD, in all instances with respect to both maximum inter-point-distance
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difference (maxIPDdiff) and summation inter-point-distance difference (sumIPDdiff)

metrics and almost always obtains a better solution than ICP and CPD with respect

to the root mean square error (RMSE) metric. Compared to ICP and CPD, TSMF

is robust to the initial misalignment degree between the two metrology datasets, and

its performance, in terms of all performance metrics, scales very well as the instance

size increases.

To address the difficulty of matching metrology data for manufactured parts with

symmetric features, a filtering procedure is proposed to improve the TSMF approach

in terms of selecting a set of correspondences that is orientationally consistent with

the underlying true set of correspondences. Our approach works by generating a

solution pool that contains a group of plausible candidate sets of correspondences

and subsequently filtering this solution pool in order to select a correct set of corre-

spondences from that solution pool.

With respect to the alignment performance of our proposed filtering procedure,

the numerical results showed that, TSMF-with-filtering exhibits much better align-

ment performance than TSMF-without-filtering, CPD and ICP in terms of both

orientation correctness of the selected solution and three quantitative performance

metrics.

Furthermore, when it comes to computational performance, TSMF can solve

real-life sized metrology data matching problems within a couple of minutes. Even

though TSMF-with-filtering takes relatively significantly more time than TSMF-

without-filtering, its worst-case running time is still acceptable considering that that

the measuring process of the HR dataset may also take a comparable amount of time.

Therefore, we believe that both TSMF-with-filtering and TSMF-without-filtering are

well suited to serve as off-line tools in the manufacturing quality control process.
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6.2 Future Work

6.2.1 Development of Bayesian Alignment Model to Solve the Metrology Matching

Problem

We plan to explore the direction of developing a Bayesian alignment approach

as an alternative method to address the metrology data matching problem for part

surfaces with symmetric features. Specifically, our goal is to develop a Bayesian

alignment approach similar to the one in [16] to solve the metrology problem. There

are two main incentives to develop such a Bayesian approach: 1) to develop a proba-

bilistic model that accounts for different sources of noises in the metrology data that

have not been modeled and are not easily incorporated in the TSMF approach; and

2) to develop an alternative method to address the challenges posed by metrology

problems of part surfaces with symmetric features.

Thus, the research goal would be to develop a computationally efficient Bayesian

alignment approach capable of handling large metrology problem sizes within a rea-

sonable amount of time. To achieve this goal, we propose to devise a more effi-

cient computational method than the Markov chain Monte Carlo (MCMC) sampling

procedure developed in [16] to solve the Bayesian alignment model. This task is

important because the MCMC procedure in [16] is unable to solve, within a reason-

able amount of time, alignment problems as large as those arising in the metrology

matching problem context (see, e.g., [16] and [49]).

6.2.2 Extend our TSMF approach to Other Applications

Another promising direction is to explore the possibility of generalizing our frame-

work to other practical applications where point set registration techniques paly a key

role. For instance, remote sensing is another area on which the proposed matching

framework could have potential applications. One application in remote sensing is
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forestry survey which shares similar two-resolution data matching characteristics as

our metrology data matching problem. In forestry survey, forestry scientists need to

combine a scanning LiDAR (Light Detection And Ranging) with a profiling LiDAR

to survey forestry better [49]. More specifically, a scanning LiDAR covers a relatively

small geographical area of about one square mile and thus provides high-resolution

forestry data. In contrast, a profiling LiDAR system covers much larger geograph-

ical areas (as large as some counties in Texas), and thus results in low-resolution

forestry data. Such forestry survey applications have their own special characteris-

tics and thus require novel application of existing point set registration methods or

new methodologies and algorithms to address them.

6.2.3 Parallelization of TSMF

Another promising but not trivial research direction is to parallelize the TSMF

approach. With increasingly easier and cheaper access to the powerful high perfor-

mance computing environment, it is worth the effort to research on the parallelization

of the proposed TSMF approach as an effective parallelization would allow us to be

able to solve problems with larger size and possibly in a faster speed.
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APPENDIX A

XIAHEUR PSEUDO-CODE

This appendix gives the Pseudo-code of XiaHeur. First, we define some useful

notations. Since the datasets are labelled arbitrarily only for identification, without

loss of generality, we let HR anchor point be the first point in the HR data set and

denote it by ha1; similarly, denote the LR point in each anchor pair and unmatched

HR points by lak (for k = 1, . . . , |LR|) and hi (for i = 2, . . . , |HR|), respectively.

Then, the pseudo-code of XiaHeur is given below.

1: for each anchor pair (ha1 , l
a
k) do

2: for each unmatched HR point hi do

3: Find the unmatched LR point, lj , with the minimum IPD difference,
∣∣∣‖ha1−hi‖−‖lak−lj‖∣∣∣

4: Record this minimum IPD difference as IPDdiffi

5: if IPDdiffi is less than a prescribed threshold then
6: lj is considered as the LR match for hi
7: else
8: break . No valid match exists for hi, and continue with the next anchor pair
9: end if

10: end for
11: Record the complete correspondences found when using the current anchor pair as “refer-

ence”
12: Record max

i
{IPDdiffi} as the maximum IPD difference (maxIPDdiff ) for this complete

correspondences
13: end for
14: return the complete correspondences with the smallest maxIPDdiff as the solution

Figure A.1: Pseudo-code of XiaHeur

Note that we make minor changes to the original XiaHeur algorithm described

in [4] to meet our matching goal of minimizing the largest IPD difference between the

two datasets: 1) no specific threshold (i.e. ω̄ in Section 3.2 of [4]) is used to determine
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whether there exists a so-called consistent match for a specific anchor pair; instead,

for each anchor pair, XiaHuer simply finds a provisional set of correspondences using

the minimum largest IPD difference criterion. 2) only one best set of correspondences

is selected among all provisional sets of correspondences, as opposed to keep all so-

called consistent matches.
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APPENDIX B

JUSTIFICATION OF SUGGESTED SEARCH SPACE PRUNING THRESHOLD

FOR WIGGLY SURFACES

This appendix illustrates that the suggested pruning threshold T = 1.5τ (and

especially our definition of τ — the maximum distance between an LR point and

its closest neighbor in the LR set) is also appropriate for wiggly surfaces where the

measurements may not be evenly spaced throughout the part surface. Specifically, for

wiggly surfaces, the preferred measurement plans for both HR and LR datasets may

still maintain the measurements’ evenness locally (with higher density measurements

evenly distributed over high curvature areas and lower density measurements evenly

distributed over not very curvy locations). Throughout this appendix, the terms

measurements and points are used interchangeably.

Consider a hypothetical wiggly part surface shown in Figure B.1. This surface

comprises a relatively flat section with a sparse set of evenly spaced measurements

and a relatively high curvature section with a dense set of evenly spaced measure-

ments. In Figure B.1, each cross represents an LR point and each circle denotes an

HR point; each HR point sits almost at the center of its closest four surrounding

LR points; h′ sits a little bit closer to lb than to la, and h′′ is slightly closer to lc

than to ld; and thus HR points h′ and h′′ should be matched to the LR points lb

and lc, respectively. Note that this setup, just like the setup in Subsection 3.2, was

created in order to have the largest possible IPD difference between correct pairs

of matchings. Hereafter, for brevity, we denote the line segment and its length be-

tween two points, say points A and B, by AB and |AB|, respectively. The triangle

inequality implies that |h′h′′| < |h′lb| + |lblc| + |lch′′|, which in turn implies that
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|h′h′′| − |lblc| < |h′lb| + |lch′′| (that is, the IPD difference between the two pairs of

matching points is less than |h′lb| + |lch′′|). Therefore, a safe upper bound for the

largest possible IPD difference is |h′lb| + |lch′′|. Now, due to the surface curvature,

|h′lb| ≈ 0.707τ (where, 0.707τ is half of the diagonal length of a square with side

length of τ); and similarly, |h′′lc| ≈ 0.353τ . Finally, since 0.707τ + 0.353τ = 1.06τ ,

we conclude that our suggested threshold value of T = 1.5τ is a safe upper bound

on the maximum possible IPD difference.

al

bl

'h

''h
dl

cl

Figure B.1: Illustration of uneven case on wiggly surface

Remark: The above discussion only considers the case where one HR point is

selected from the relatively flat surface section and the other HR point is selected

from the relatively high curvature surface section. Two other possible cases are: 1)

both HR points are selected from the relatively flat section; or 2) both HR points

92



are selected from the high curvature section. For these two cases, one can follow

the derivation discussed in Subsection 3.2 to justify 1.5τ ’s appropriateness. Note

that, for case 2), the largest possible IPD difference under an ideal flat situation is

approximately 0.707τ which needs to be reasonably relaxed to a larger amount to

account for the high curvature around the two pairs of matching points, but this

larger amount should still be well below 1.5τ .
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APPENDIX C

VISUAL ILLUSTRATION FOR ALIGNMENT PERFORMANCE OF THREE

FILTERING OPTIONS

The key characteristic of the effectiveness of a filtering option is whether the

final selected solution is a correct set of correspondences. Therefore, to compare the

alignment performance of the three filtering options (i.e., Filter1, Filter2 and Filter3),

one main objective is to find out which filtering option(s) output a correct set of

correspondences (i.e. a set of correspondences that is orientationally consistent with

the underlying set of correspondences). Since, in our test datasets, the underlying

true set of correspondences of the two datasets is known, the orientation correctness

of the selected set of correspondences can be checked by visually comparing the

selected set of correspondences to the correct set of correspondences once the two

datasets are aligned. This appendix explains and illustrates in detail the visual

examination of alignment performance of the three filtering options.

To visually evaluate the alignment performance of the three filtering options on

each instance, a multi-plots figure was drawn to illustrate the alignment performance

of each selected solution. The multi-plots figures for the six instances, from smallest

to largest, are shown in Figures C.1 to C.6. Each multi-plots figure comprises two

components: the top component is a single plot of the true set of correspondences;

and the bottom component is a 3-by-3 subplot matrix. The true set of correspon-

dences serves as a comparison basis to visually inspect whether a selected solution

is orientated correctly. In the bottom 3-by-3 subplot matrix, each row corresponds

to a filtering option and each column corresponds to a place during TSMF where

one of filtering options was performed. More specifically, the three rows, from top to
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bottom, plot the solutions selected by Filter1, Filter2 and Filter3, respectively; and

the three columns, from left to right, represent the following places during TSMF:

after solve-to-optimality, after extending solution by generalizedXiaHeur, and after

local search, respectively. Thus, each subplot cell in the 3-by-3 subplot matrix shows

how the selected solution by the respective filtering option looks like at the respec-

tive place during TSMF. To draw each subplot cell, we first estimate the rigid body

transformation (from HR dataset to LR dataset) based on the solution selected by

the respective filtering option at the respective place during TSMF, and then apply

the estimated transformation to align the HR dataset to the same coordinate system

of the LR dataset. All LR points are denoted by a green dot; each HR point is

labelled by a red asterisk along with its index, and its LR correspondence is marked

by the black square closest to it.

Another way to read the 3-by-3 subplot matrix is row-wise. Specifically, each row,

from left to right, represents how the respective selected solution evolves through

TSMF.

In addition, under each alignment subplot cell of the 3-by-3 subplot matrix, we

provide the quantitative metrics for the respective solution at that respective place

during TSMF. Specifically, the quantitative metrics report its RMSE, maxIPDdiff,

and whether or not that solution is detected as a reflection.

From Figures C.1 to C.6, we can see that Filter3 always selects a correct set of

correspondences and it outperforms Filter1 and Filter2 for the five smallest instances

and ties with Filter1 and Filter2 for the largest instance. It should be noted that,

for the largest instance 100 × 1560, all filtering options select the same correct set

of correspondences, i.e. solution 12. Similarly, for instance 64×1560, Filter1 and

Filter2 select the same solution.
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Correct Set of Correspondences

After SolveToOpt After Extension After LocalSearch

Filter1

(a) det(R)=+1, non-reflection

RMSE=RMSE.min=0.685w

maxIPDdiff = 1.072w

(b) det(R)=+1, non-reflection

RMSE=0.629w

maxIPDdiff = 1.337w

(c) det(R)=+1, non-reflection

RMSE=0.283w

maxIPDdiff = 0.049w

Filter2

(d) det(R)=+1, non-reflection

RMSE=0.689w

maxIPDdiff = 1.458w

(e) det(R)=+1, non-reflection

RMSE=RMSE.min=0.589w

maxIPDdiff = 1.458w

(f) det(R)=+1, non-reflection

RMSE=0.335w

maxIPDdiff = 0.747w

Filter3

(g) det(R)=+1, non-reflection

RMSE=0.786w

maxIPDdiff = 1.763w

(h) det(R)=+1, non-reflection

RMSE=0.651w

maxIPDdiff = 1.763w

(i) det(R)=+1, non-reflection

RMSE=RMSE.min=0.008w

maxIPDdiff = 0.015w

Figure C.1: Selected solutions’ alignment performance of instance 16× 400
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Correct Set of Correspondences

After SolveToOpt After Extension After LocalSearch

Filter1

(a) det(R)=+1, non-reflection

RMSE=RMSE.min=0.852w

maxIPDdiff = 1.532w

(b) det(R)=-1, reflection

maxIPDdiff = 1.532w

(c) det(R)=-1, reflection

maxIPDdiff = 0.049w

Filter2

(d) det(R)=+1, non-reflection

RMSE=0.935w

maxIPDdiff = 1.929w

(e) det(R)=+1, non-reflection

RMSE=RMSE.min=0.935w

maxIPDdiff = 1.929w

(f) det(R)=+1, non-reflection

RMSE=0.074w

maxIPDdiff = 0.028w

Filter3

(g) det(R)=+1, non-reflection

RMSE=1.409w

maxIPDdiff = 2.892w

(h) det(R)=+1, non-reflection

RMSE=1.409w

maxIPDdiff = 2.892w

(i) det(R)=+1, non-reflection

RMSE=RMSE.min=0.009w

maxIPDdiff = 0.022w

Figure C.2: Selected solutions’ alignment performance of instance 25× 400

97



Correct Set of Correspondences

After SolveToOpt After Extension After LocalSearch

Filter1

(a) det(R)=+1, non-reflection

RMSE=RMSE.min=0.953w

maxIPDdiff = 2.070w

(b) det(R)=+1, non-reflection

RMSE=0.992w

maxIPDdiff = 2.333w

(c) det(R)=+1, non-reflection

RMSE=0.759w

maxIPDdiff = 1.075w

Filter2

(d) det(R)=-1, reflection

maxIPDdiff = 2.134w

(e) det(R)=+1, non-reflection

RMSE=RMSE.min=0.886w

maxIPDdiff = 2.134w

(f) det(R)=+1, non-reflection

RMSE= 0.070w

maxIPDdiff = 0.045w

Filter3

(g) det(R)=+1, non-reflection

RMSE= 1.608w

maxIPDdiff = 2.580w

(h) det(R)=+1, non-reflection

RMSE= 1.222w

maxIPDdiff = 2.580w

(i) det(R)=+1, non-reflection

RMSE=RMSE.min=0.020w

maxIPDdiff = 0.046w

Figure C.3: Selected solutions’ alignment performance of instance 32× 800
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Correct Set of Correspondences

After SolveToOpt After Extension After LocalSearch

Filter1

(a) det(R)=+1, non-reflection

RMSE=RMSE.min=0.945w

maxIPDdiff = 2.020w

(b) det(R)=+1, non-reflection

RMSE=0.897w

maxIPDdiff = 2.203w

(c) det(R)=+1, non-reflection

RMSE=0.079w

maxIPDdiff = 1.054w

Filter2

(d) det(R)=+1, non-reflection

RMSE=1.148w

maxIPDdiff = 2.674w

(e) det(R)=+1, non-reflection

RMSE=RMSE.min=0.845w

maxIPDdiff = 2.674w

(f) det(R)=+1, non-reflection

RMSE= 0.079w

maxIPDdiff = 0.054w

Filter3

(g) det(R)=+1, non-reflection

RMSE=1.675w

maxIPDdiff = 3.997w

(h) det(R)=+1, non-reflection

RMSE= 1.218w

maxIPDdiff = 3.997w

(i) det(R)=+1, non-reflection

RMSE=RMSE.min=0.020w

maxIPDdiff = 0.050w

Figure C.4: Selected solutions’ alignment performance of instance 50× 800
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Correct Set of Correspondences

After SolveToOpt After Extension After LocalSearch

Filter1

(a) det(R)=+1, non-reflection

RMSE=RMSE.min=0.715w

maxIPDdiff = 1.439w

(b) det(R)=+1, non-reflection

RMSE=RMSE.min=0.436w

maxIPDdiff = 1.439w

(c) det(R)=+1, non-reflection

RMSE=0.378w

maxIPDdiff = 0.984w

Filter2

(a) det(R)=+1, non-reflection

RMSE=RMSE.min=0.715w

maxIPDdiff = 1.439w

(b) det(R)=+1, non-reflection

RMSE=RMSE.min=0.436w

maxIPDdiff = 1.439w

(c) det(R)=+1, non-reflection

RMSE=0.378w

maxIPDdiff = 0.984w

Filter3

(d) det(R)=+1, non-reflection

RMSE=1.115w

maxIPDdiff = 2.260w

(e) det(R)=+1, non-reflection

RMSE=0.874w maxIPDdiff =

2.264w

(f) det(R)=+1, non-reflection

RMSE=RMSE.min=0.020w

maxIPDdiff = 0.059w

Figure C.5: Selected solutions’ alignment performance of instance 64× 1560
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Correct Set of Correspondences

After SolveToOpt After Extension After LocalSearch

Filter1

(a) det(R)=+1, non-reflection

RMSE=RMSE.min=0.916w

maxIPDdiff = 2.070w

(b) det(R)=+1, non-reflection

RMSE=RMSE.min=0.555w

maxIPDdiff = 2.249w

(c) det(R)=+1, non-reflection

RMSE=RMSE.min=0.019w

maxIPDdiff = 0.057w

Filter2

(d) det(R)=+1, non-reflection

RMSE=RMSE.min=0.916w

maxIPDdiff = 2.070w

(e) det(R)=+1, non-reflection

RMSE=RMSE.min=0.555w

maxIPDdiff = 2.249w

(f) det(R)=+1, non-reflection

RMSE=RMSE.min=0.019w

maxIPDdiff = 0.057w

Filter3

(g) det(R)=+1, non-reflection

RMSE=RMSE.min=0.916w

maxIPDdiff = 2.070w

(h) det(R)=+1, non-reflection

RMSE=RMSE.min=0.555w

maxIPDdiff = 2.249w

(i) det(R)=+1, non-reflection

RMSE=RMSE.min=0.019w

maxIPDdiff = 0.057w

Figure C.6: Selected solutions’ alignment performance of instance 100× 1560
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