
ASSIGNMENT ALGORITHMS FOR MULTI-ROBOT TASK ALLOCATION IN

UNCERTAIN AND DYNAMIC ENVIRONMENTS

A Dissertation

by

CHANGJOO NAM

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Dylan A. Shell
Committee Members, Sergiy Butenko

Yoonsuck Choe
Dezhen Song

Head of Department, Dilma Da Silva

August 2016

Major Subject: Computer Science

Copyright 2016 Changjoo Nam

ABSTRACT

Multi-robot task allocation is a general approach to coordinate a team of robots to

complete a set of tasks collectively. The classical works adopt relevant theories from other

disciplines (e.g., operations research, economics), but oftentimes they are not adequately

rich to deal with the properties from the robotics domain such as perception that is local

and communication which is limited. This dissertation reports the efforts on relaxing

the assumptions, making problems simpler and developing new methods considering the

constraints or uncertainties in robot problems.

We aim to solve variants of classical multi-robot task allocation problems where the

team of robots operates in dynamic and uncertain environments. In some of these prob-

lems, it is adequate to have a precise model of nondeterministic costs (e.g., time, distance)

subject to change at run-time. In some other problems, probabilistic or stochastic ap-

proaches are adequate to incorporate uncertainties into the problem formulation. For these

settings, we propose algorithms that model dynamics owing to robot interactions, new cost

representations incorporating uncertainty, algorithms specialized for the representations,

and policies for tasks arriving in an online manner.

First, we consider multi-robot task assignment problems where costs for performing

tasks are interrelated, and the overall team objective need not be a standard sum-of-costs

(or utilities) model, enabling straightforward treatment of the additional costs incurred by

resource contention. In the model we introduce, a team may choose one of a set of shared

resources to perform a task (e.g., several routes to reach a destination), and resource con-

tention is modeled when multiple robots use the same resource. We propose efficient task

assignment algorithms that model this contention with different forms of domain knowl-

edge and compute an optimal assignment under such a model.

ii

Second, we address the problem of finding the optimal assignment of tasks to a team of

robots when the associated costs may vary, which arises when robots deal with uncertain

situations. We propose a region-based cost representation incorporating the cost uncer-

tainty and modeling interrelationships among costs. We detail how to compute a sensitiv-

ity analysis that characterizes how much costs may change before optimality is violated.

Using this analysis, robots are able to avoid unnecessary re-assignment computations and

reduce global communication when costs change.

Third, we consider multi-robot teams operating in probabilistic domains. We represent

costs by distributions capturing the uncertainty in the environment. This representation

also incorporates inter-robot couplings in planning the team’s coordination. We do not

have the assumption that costs are independent, which is frequently used in probabilistic

models. We propose algorithms that help in understanding the effects of different char-

acterizations of cost distributions such as mean and Conditional Value-at-Risk (CVaR), in

which the latter assesses the risk of the outcomes from distributions.

Last, we study multi-robot task allocation in a setting where tasks are revealed sequen-

tially and where it is possible to execute bundles of tasks. Particularly, we are interested

in tasks that have synergies so that the greater the number of tasks executed together, the

larger the potential performance gain. We provide an analysis of bundling, giving an un-

derstanding of the important bundle size parameter. Based on the qualitative basis, we

propose multiple simple bundling policies that determine how many tasks the robots bun-

dle for a batched planning and execution.

iii

ACKNOWLEDGEMENTS

The last five years at Texas A&M University were filled with great memories. Studying

in a doctoral program, especially out of my homeland, was a big adventure. Although

there have been many ups and downs, I am grateful to every moment that brought me

to this place. The cover of dissertation shows that I am the sole author, but I would not

be able to complete this without the unstinting supports from many teachers, colleagues,

friends, and family. I would like to express my sincere gratitude to them.

I would like to express my deepest gratitude to my advisor, Dr. Dylan A. Shell. Since

our first meeting on a sizzling summer day, he has been an enthusiastic advisor and also a

thoughtful mentor. He guided me with his keen insight and exceptional intuition. He did

not just try to teach me but threw great questions, which helped me to find the answers by

myself. He encouraged me whenever I struggled with my research. Without his support, I

would not be where I am today.

I am also very grateful for the help and advice from my committee members, Dr.

Sergiy Butenko, Dr. Yoonsuck Choe, and Dr. Dezhen Song. Their insightful comments

and constructive criticisms on my research made me to follow their high research standard.

The current and previous members of Distributed AI Robotics Lab have been great

friends and also excellent fellow researchers. I would like to thank Jung-Hwan, Young-

Ho, Sasin, Lantao, Plamen, Reza T., Taahir, Ben, Shawn, Yong, Reza O., Yulin, Eric, Kai,

and Rui for the discussions, encouragements, and fun times.

I am also thankful to the Department of Computer Science and Engineering and its

amazing staff. All the administrative work would not be that smooth without the support

from the department. The free coffee in the lounge has played a big role for my produc-

tivity. The custodial staff has made the building a pleasant place to work in. More im-

iv

portantly, I appreciate the teaching assistantship opportunities from the department, which

gave me valuable experiences in teaching. I am very grateful to Dr. Hyunyoung Lee,

who supervised my TA work for several semesters. Her great management skills for the

large-sized classes enabled me to carry out my duties without being overloaded.

I thank the colleagues at Amazon Robotics, who supported me to finish my internship

successfully. I am proud of myself that I had worked with those brilliant people. I have so

many fond memories of the summer in Boston.

Many friends have helped me stay happy through those difficult years. I will cherish

all the unforgettable moments that we had.

I would not be able to complete my education without the unbounded love and end-

less support from my families in Korea. I deeply appreciate my parents’ dedication and

patience. Also, I am thankful to my brother for his efforts on family affairs during my

absence. I would like to express my gratitude to my in-laws for having believed and sup-

ported me.

Most importantly, my wife Eunji has been my ideal companion through the last seven

years. The life would not be always happy, but let’s stand by each other whenever and

wherever.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xv

1. INTRODUCTION . 1

1.1 Motivation . 2
1.2 Research Objective . 5
1.3 Dissertation Contribution . 6
1.4 Organization . 7

2. RELATED WORK AND PRELIMINARIES 9

2.1 Related Work . 9
2.2 Preliminaries . 11

2.2.1 A mathematical formulation of MRTA 12
2.2.2 Sensitivity analysis of optimal assignments 12

3. ASSIGNMENT ALGORITHMS FOR MODELING RESOURCE CONTENTION
IN MULTI-ROBOT TASK ALLOCATION 16

3.1 Related Work . 19
3.2 Problem Formulation . 21

3.2.1 Bipartite multigraph . 21
3.2.2 Multi-choice assignment problem with penalization (mAPwP) . . 23
3.2.3 Penalization . 24
3.2.4 Examples . 25

3.3 NP-Hardness of mAPwP Problems . 27
3.3.1 The P-type problem is NP-hard 27
3.3.2 The L-type problem is in P . 30
3.3.3 The C-type problem is NP-hard 30

vi

3.3.4 A polynomial-time solvable class of the C-type problem 31
3.3.5 Remark on the hardness results 33

3.4 Algorithms for mAP Problems . 34
3.4.1 The multi-choice Hungarian method 34
3.4.2 The multi-choice Murty’s ranking algorithm 35
3.4.3 Exact algorithm for the P-type problem 36
3.4.4 Optimal algorithm for the L-type problem 38
3.4.5 Approximation algorithm for the C-type problem 39

3.5 Extension: Modeling Synergies . 41
3.6 Experiments . 43

3.6.1 Penalization functions . 44
3.6.2 Random problem instances . 45
3.6.3 Multi-vehicle transportation problems 46
3.6.4 Physical robot experiment . 50

3.7 Summary . 52

4. MITIGATING WEAKNESSES IN CENTRALIZED MULTI-ROBOT TASK
ALLOCATION WITH UNCERTAIN AND INTERRELATED COSTS 54

4.1 Related Work . 57
4.2 Interrelated Costs in a Finite Region . 58

4.2.1 The representation . 59
4.2.2 The algorithms mitigating the weaknesses of centralized systems . 61

4.3 Experiments . 73
4.3.1 Computing θ(X∗) . 73
4.3.2 Reducing futile effort . 74
4.3.3 Factorizing a team of robots . 75
4.3.4 Persisting with an initial assignment 77
4.3.5 Incremental communication . 77
4.3.6 Interrelated costs . 78

4.4 Summary . 80

5. ANALYZING THE SENSITIVITY OF THE OPTIMAL ASSIGNMENT IN
PROBABILISTIC MULTI-ROBOT TASK ALLOCATION 82

5.1 Related Work . 84
5.2 Preliminary: Risk Measures . 85
5.3 The Probabilistic Cost Representation 86
5.4 Optimal Assignment with Probabilistic Costs 88

5.4.1 Standard sensitivity analysis for the risk preference 91
5.4.2 Heuristic sensitivity analysis for risk preference 93
5.4.3 Extension: finding optimal assignments for α ∈ [0, 1] 93
5.4.4 Remarks . 96

vii

5.5 Experiments . 97
5.5.1 Assignment computation considering uncertainties 99
5.5.2 Random instances for performance evaluation 99
5.5.3 Cost uncertainties from state estimation 102
5.5.4 Cost uncertainties from historical data or measurements 102

5.6 Summary . 104

6. TASK BUNDLING FOR SEQUENTIAL STOCHASTIC TASKS IN MULTI-
ROBOT TASK ALLOCATION . 106

6.1 Related Work . 108
6.2 Problem Description . 110

6.2.1 Problem formulation . 110
6.2.2 An example: the multi-robot routing problem 112

6.3 An Analysis of Bundle Size . 112
6.3.1 The base case: independent robots 113
6.3.2 Coordinated robots . 116
6.3.3 Elements of task stochasticity 119

6.4 Bundling Policies . 121
6.4.1 Model-based policies . 121
6.4.2 Remarks . 122
6.4.3 Model-free policies . 122
6.4.4 Algorithm . 123

6.5 Quantitative Study: Comparisons of the Policies 124
6.5.1 Experimental settings . 126
6.5.2 Analysis . 126
6.5.3 Non-i.i.d. task locations and task arrival interval 130

6.6 Summary . 131

7. CONCLUSION AND FUTURE WORK . 132

REFERENCES . 136

APPENDIX A. A TRANSFORMATION OF A NONSEPARABLE PROBLEM
TO A SEPARABLE PROBLEM . 149

APPENDIX B. UNDERSTANDING DEGENERACY IN LP 151

APPENDIX C. A HARDNESS PROOF FOR THE NONLINEAR CONVEX COST
BOUNDARY . 152

APPENDIX D. A RANDOMIZED HEURISTIC HP ALGORITHM 154

viii

LIST OF FIGURES

FIGURE Page

1.1 A classical model of task planning. 1

1.2 An example of the ST-SR MRTA problem with a priori known costs. (a)
Robots are assigned to tasks with the minimum sum of costs (solid lines).
(b) Cost is a quantification of effort to complete a task. The shaded ele-
ments in the cost matrix represent an optimal assignment with the mini-
mum sum of costs. 2

1.3 Examples of dynamic or uncertain situations. (a) Robots have interactions
over the shared resource (i.e., physical space). The interactions have con-
siderable influence to costs. (b) A robot faces a nondeterministic situation,
in which the traffic signal causes the uncertainty in the cost. (c) A robot
has uncertain state estimates, which are represented by probability distri-
butions. (d) A robot has limited information about future tasks. 4

1.4 An overview of the contributions of this dissertation. Our work attempts
to expand the classical MRTA models in various directions. 6

2.1 A 2-D example of θ(X∗). Any cost in the set has the same optimal assign-
ment. 14

3.1 Two examples of resources with limited capacities that must be shared in
most practical contexts. Both communication and space contention cause
performance to scale sub-linearly with the number of robots. 17

3.2 A specific example of resource contention: two robots choose the shortest
path to perform their tasks, they should compute their paths to avoid inter-
action with each other. When the right robot chooses the longer path via
the door on the far right, the sum of distances is larger, but it minimizes
cost when resource contention is considered. 18

ix

3.3 An example of the mAPwP and its graph representation. (a) Robots have
a choice between routes to reach their destinations, but interference will
occur if a passageway is shared (e.g., if both R1 and R2 try to reach desti-
nations via p1.) (b) A weighted bipartite multigraph representation for this
example. An edge between ri and tj represents the use of a resource to
perform the j-th task by the i-th robot, and its weight (cijk) is a cost asso-
ciated with performing the task by the robot. xijk is a binary variable that
indicates allocation of a robot to a task through a resource (the variables
are omitted for clarity). 26

3.4 The DP-type problem derived from the 3-CNF formula. A satisfying as-
signment of Φ has x1 = 1, x2 = 1, x3 = 1, and x4, x5 either 0 or 1. Cor-
responding assignment is that x11 = 1, x12 = 0, x23 = 1, x24 = 0, x35 =
1, x36 = 0. The values of other elements do not affect the satisfiability of
Φ. This assignment makes ΦJ > 0. 29

3.5 A comparison between the Hungarian and the MC Hungarian methods.
Their input cost matrices with output assignments (shaded squares) and
corresponding graphs are shown. A bold line indicates an allocation of a
robot to a task. The second summation in (3.2) and (3.3) ensures a task to
be performed through only one resource if pij > 1. 36

3.6 An illustration of the exact algorithm’s terminating condition. When an
unpenalized cost is larger than the current minimum cost (including a pe-
nalization), at s = 4, the algorithm terminates because all subsequent as-
signments cost more than the minimum cost even without penalizations. . 38

3.7 An example in which both synergy and resource contention occur while
robots perform individual tasks. Tasks are inside of the cluttered disaster
site, and each robot can choose one path between p1 and p2 to reach the
tasks. The robots who choose the same path become to push debris together. 43

3.8 Running time and solution quality of random instance. (a) The L-type
and C-type algorithms are slightly faster than the rounding method whose
worst case running time is exponential. (b) The C-type has better solution
quality than the rounding method. 46

3.9 Robots and tasks are located across five bridges. n robots and tasks are
uniformly distributed in the upper and lower boxes, respectively. 48

x

3.10 Approximations of a complex nonlinear function to simple functions for
practical implementations. (a) We approximate a complex exponential
function with a linear and a convex quadratic function. (b) Solution quali-
ties when the approximated functions are used for all five bridges. 49

3.11 Running time and solution quality of the multi-vehicle transportation prob-
lem. (a) The L-type and C-type algorithms quickly produce solutions. (b)
The qualities are close to one for both algorithms. 51

3.12 Two cases of resource use by two mobile robots. (a) Robots use the same
resource so that interference is occurred. (b) Robots use different resources
to avoid the interference. 52

4.1 A simple example where task costs which are not precisely known to the
robot beforehand. The driving time c to the destination will vary depending
on the traffic signals. A lower bound c is d

vmax
when t1 = t2 = 0, and an

upper bound c̄ is d
vmax

+ 25 (assuming the robot drives with the maximum
speed) where d is the distance to the destination and vmax is the maximum
speed. 55

4.2 Figurative illustrations of the region-based cost representation. Costs that
are uncertain and interrelated are represented with boundaries by treating
the set of possible costs as regions. 55

4.3 Further robot navigation scenarios and corresponding cost boundaries. . . 60

4.4 An example of an MRTA problem with changeable costs. We have three
robots (R1,2,3) and three destinations (T1,2,3). The goal is to have one robot
at each destination while minimizing the total sum of traveling time. Since
the costs could vary within the ranges in (b), there are multiple assignments
possible. The proposed methods can be used concurrently to analyze the
assignments and to have less centralized operations. 61

4.5 The methods to mitigate centralization in MRTA. (a) Cliques could be
found by analyzing θ(X∗q) for q = 0, · · · , N − 1, where N is the num-
ber of all possible assignments with given C. (b) The maximum cost loss
is computed for which robots do not have communication and persist an
initial assignment even with cost changes. (c) Robots have local commu-
nication to check whether their changed costs violate the current θ(X∗). . 63

xi

4.6 A 2-D figurative representation of cost space. (a) Bold lines represent
linear boundaries (hyperplanes) of θ(X∗) and the shaded area represents a
cost matrix C bounded by C and C̄. (b) If a boundary does not cover all
shaded area, the objective value of maximization over the area is negative
(left). Otherwise, the value is nonnegative (right). 67

4.7 Experimental setup for the multi-robot navigation problem. The marked
robots and tasks in (a) are specially chosen for Section 4.3.3. 74

4.8 The performance of the randomized anytime algorithm. It quickly ap-
proaches to 100% which is the result from the exact method. 75

4.9 Comparisons of different approaches with respect to cost changes. 76

4.10 Factorization results. Frequencies of cliques found (20 iterations). 77

4.11 Frequency of communication ranges. For each team size, the left most bar
means individual check whereas the right most bar mean global commu-
nication. Local communication is more frequent with Alg. 6. 79

4.12 The results of partitioning a team of robots. Modeling interrelationships
reduces false positives in computing all possible assignments within a cost
region. Thus, more partitions can be found with the smaller number of
assignments. 80

5.1 Cost uncertainty can arise in many ways. For example, owing to position
uncertainty of the robot and the task. The sum of two independent normal
distributions is also normally distributed, so the distance between a robot
and a task is normally distributed. The traveling time is proportional to the
distance, so time spent navigating (a useful metric of cost) is also normally
distributed. 83

5.2 An example risk preference indifferent problem. Robots navigate to tasks
via a road network. By virtue of the symmetric property of the normal
distribution, Rij = Ri and Tij = Tj hold for all i and j. Assuming all
Eij’s are constant (or equal), two assignments A and B have the same
variability, which makes them to have the same CVaR sum. 91

5.3 An example progression of Alg. 9 (n = 4). In each iteration, the algorithm
finds a new interval (the thick horizontal bar) and its corresponding optimal
assignment. The algorithm improves the map of α in each iteration and
eventually finds the exact solution (Iteration 6). 95

xii

5.4 A hypothetical and an example mapping of optimal assignments on the
α-λ plane, which is analogous to the mapping with respect to α shown in
Fig. 5.3. 98

5.5 Running time of random instances (statistics summarize 20 measurements).
(a) The standard algorithm run until it finds the exact interval. (b) The run-
ning time of the heuristic method is shown for larger instances. 100

5.6 An experiment with cost distributions from a state estimator. (a) Cost (trav-
eling time) distributions are computed based on the path lengths and the
covariance matrices of the robot poses. (b) Using Alg. 9, the problem
of choosing α in the continuous space [0, 1] is converted to choosing one
assignment from the discrete set of assignments. 103

5.7 A transportation problem in a metropolitan area. The mission is visiting
the tasks by the vehicles with the minimum sum of traveling times. The
traveling times are distributed owing to the varying traffic conditions, so
the scalar cost representation is not adequately rich. 104

6.1 A simple example: navigation tasks are revealed sequentially from T1 to
T4. The robot performs tasks and loiters until a new task is introduced. In
(a), the robot begins performing tasks right after they arrive. In (b), the
robot waits until four tasks have been revealed, then finds a cheaper tour
than (a). 107

6.2 Illustrative functions that describe the average system cost (red) and times-
pan (gray) per task. The optimal bundle size for the system cost x∗f is un-
bounded for both (a) and (b) since f(·) is strictly decreasing owing to the
synergies among tasks. s(·) is infinite for x < xD and the same with f(·)
otherwise. There exists a finite bundle size x that makes g(·) minimum.
g(·) for x < xD is not shown since the value is infinite. 113

6.3 The models (6.2) (red dotted) and (6.3) (blue solid). The horizontal line
represents α. The greed curve shows the experimental result from a heuris-
tic HP algorithm (Alg. 11 in Appendix D). 117

6.4 Empirical results of a team of five robots. In (b), it is shown that syn-
chronization improves the performance (the uppermost is the case where
nILP = 1 and the lower-most has nILP = 5). (c) shows that the basic model
from Sec. 6.3.1 is the upper bound of all combinations of coordination
methods, synchronization. 120

6.5 Plots showing bundle size vs. iterations. The policies converge to the
optimal bundle predicted from the model. 123

xiii

6.6 Comparisons of policies with all combinations of the arrival process (Fixed
or Poisson), the coordination method (Independent or Assignment), and
the degree of synchronization (Async or Sync). Three letters represent the
combination. 128

6.7 The objective space of the case where tasks arrive with α. The polices
form a Pareto frontier as marked in (a). The three polices correspond to
the fixed-x, up-to-x, and the sweeping policy with the synchronized robots
using the ILP. The Poisson arrival case is omitted since it has the same result.130

xiv

LIST OF TABLES

TABLE Page

3.1 A summary of algorithms that consider interference among robots. 16

3.2 Nomenclature. 22

3.3 A summary of the mAP problems. 25

3.4 A summary of the problems and algorithms. 41

3.5 Running time and solution quality of random instances. 47

3.6 Penalization function approximation results of the five bridges. 49

3.7 Differences of the total cost sums between the C-type and the Hungarian
method in the multi-vehicle transportation problem. 50

3.8 Running time and solution quality of the multi-vehicle transportation prob-
lem. 51

4.1 Comparisons of different approaches with respect to cost changes. (The
Hungarian method, 1-D intervals, sensitivity analysis.) 76

4.2 Factorization results. Frequencies of cliques found (20 iterations). 76

4.3 The maximum loss of persisting assignment. Some examples of execution
results are shown (navigation scenario). The middle three columns shows
cost sums (sec), and the last column shows running time (sec). 77

4.4 Frequency of communication ranges. The bold numbers indicate the fre-
quencies of local communications. For example, in the rescue scenario,
3-robot team has 6 self checks and 8 two-robot communications. 78

4.5 The results from sensitivity analysis for cost regions. 80

5.1 Running time (sec) of Alg. 7 and 8 (20 repetitions). 100

5.2 Results of Alg. 9 and an iterative method (20 repetitions). 101

xv

6.1 Comparisons of policies. The values represent the mean and the standard
deviation over 10 repetitions. 127

6.2 The results from non-i.i.d. task locations and arrival intervals. Sync and
AS are used. 131

xvi

1. INTRODUCTION

Multi-robot systems have advantages over single robots. The advances in computa-

tional power, sensor and communication technologies, and low-cost robot productions

accelerate the advent of new technologies in various areas such as environmental mon-

itoring [60], search and rescue [81], warehouse automation [106], surveillance [1], etc.

Those applications make use of coordinated interaction among robots so they exhibit bet-

ter performance than employing multiple individual robots in most cases. For a fluid and

effective coordination, a team of robots needs a plan for task execution.

Conventionally, multi-robot task planning is decomposed into three steps as shown

in Fig. 1.1. The task assessment step decomposes or combines tasks according to task

specification and robot capabilities. Also, this step estimates the state of robots, tasks, and

environments and evaluates the plans for executions. These estimates and evaluations are

abstracted into a measure, such as cost or utility of task performance. The measure is an

input to task allocation, which is a high-level decision of assigning a team of robots to a

set of tasks. The decision is given to the next step, which generates motions of robots to

perform the assigned tasks. Among these steps in task planning, we are interested in task

allocation because of its generality and efficiency resulting from the effective abstraction.

Multi-robot task allocation (MRTA) addresses optimization of collective performance

Perception
Task

assessment

Task

allocation

Motion

planning
Execution

Iterating for continuing operations

Task planning

Figure 1.1: A classical model of task planning.

1

(a) An illustration of an MRTA problem. (b) The cost matrix con-
structed from (a).

Figure 1.2: An example of the ST-SR MRTA problem with a priori known costs. (a) Robots are assigned to
tasks with the minimum sum of costs (solid lines). (b) Cost is a quantification of effort to complete a task.
The shaded elements in the cost matrix represent an optimal assignment with the minimum sum of costs.

by reasoning about which robots in a team should perform which tasks. It aims to achieve

a common goal through coordinated behavior. MRTA problems can be classified by robot

capabilities, task requirements, and the length of planning horizon (instantaneous or ex-

tended periods of time) [43]. Among several MRTA problems, we are mainly interested

in the problems in which each robot can perform only one task at a time and each task re-

quires only one robot to execute it (falling into the ST-SR1 class [43]). We consider instan-

taneous computations of task allocations using currently available information (Fig. 1.2a

shows an example of the MRTA problem). However, the information may project future

(or possible) states, so robots could have some foresight to deal with contingencies. Later,

we extend this single step assignment computation to a longer time horizon as we consider

realizations of the uncertainties.

1.1 Motivation

State estimates of robots working in dynamic and uncertain environments are prone to

be outdated or inaccurate. The distributed nature of multi-robot systems worsens the es-

1Single-robot Task and Single-task Robot.

2

timation because those systems are subject to additional constraints such as local percep-

tions and limited communication. Even though multi-robot systems have these properties,

the vast majority of MRTA solution methods have been constructed by adapting theories

from relevant disciplines including operations research, economics, and mathematics [43],

which can be improved by domain properties.

Task cost is an estimate of a value that shall be paid to perform tasks. In general, each

robot estimates the costs, then these estimates are shared by robots over a communication

network (Fig. 1.2b shows a cost matrix, which is a collection of costs of all robots). An

optimal assignment is computed in a centralized manner (e.g., most approaches using

the Hungarian method [65], an auctioneer [34], or a linear programming framework) or

a decentralized manner (e.g., using a message passing mechanism [74]). The estimates

could be inexact if the robot and task states change dynamically or the costs are computed

based on state estimates which themselves change. In some cases, only probabilistic or

stochastic information of costs is available to account for uncertainties in environments

and state estimates.

We begin with investigating dynamically changing costs resulting from robot interac-

tions. Robot interactions can be thought of as a run-time behavior so they are often treated

in an online fashion. Often, the effect of interactions are treated as negligible. However,

the optimal assignment under the assumption of negligible robot interactions may produce

sub-optimal behaviors. Treating robot interactions by ad hoc methods (e.g., impromptu

avoidance of other robots) may also worsen the quality of the assignment. Practically,

robot interactions have considerable influence on costs, and the influence could be criti-

cal when robots contend for shared resources (Fig. 1.3a shows robot interactions over the

constrained physical space).

Uncertain costs arise when robots may face nondeterministic situations. While robots

are executing their assigned task, the assumptions under which costs were calculated may

3

(a) Robot interactions. (b) A nondeterministic situation.

(c) Uncertain state estimates. (d) Uncertain task information.

Figure 1.3: Examples of dynamic or uncertain situations. (a) Robots have interactions over the shared re-
source (i.e., physical space). The interactions have considerable influence to costs. (b) A robot faces a
nondeterministic situation, in which the traffic signal causes the uncertainty in the cost. (c) A robot has
uncertain state estimates, which are represented by probability distributions. (d) A robot has limited infor-
mation about future tasks.

turn out to be invalid; the environment may change, robots may have interactions or mal-

functions, or a variety of other unexpected situations may emerge (Fig. 1.3b shows a non-

deterministic situation—the traffic signal—that may change the cost). One solution which

ensures a fluid response to these contingencies is to periodically re-calculate costs and re-

compute the optimal task assignments. However, this solution incurs computational and

communication expense proportional to the desired recency.

As a consequence of considering uncertain costs, we also think about a model of

cost uncertainty that is represented as probability distributions (an example is shown in

Fig. 1.3c). If we use the distribution functions for costs, characterizing the distributions by

some statistics (e.g., expected values) makes the problem tractable. Otherwise, we need to

compute the sum of distributions, which is computationally expensive (e.g,. need convo-

4

lutions). However, useful information about costs would be lost from the characterization.

For example, the expected value cannot describe the uncertainty (or variability) modeled

in the distribution. There is a need of more measures that characterize distributions suffi-

ciently without losing important information.

Thus far, we have one common assumption that the set of tasks is finite and known

a priori. In practical applications, only partial information of the task set might be acces-

sible or the set is not even finite (Fig. 1.3d shows an example where tasks are not known

before they arrive). One solution for the problems with sequentially arriving online tasks,

where the locations and arrivals of tasks are stochastic, would be iterating conventional

optimization methods for a sequence of the small subsets of tasks. Then the research

problem reduces to a sequence of optimization problems for the finite subsets of tasks,

which answers the question of how to allocate tasks to robots. But determining the size

of each set precedes this optimization because including more tasks in the set uses a more

informed view, potentially improving the optimization result.

1.2 Research Objective

In this dissertation, we aim to solve richer MRTA problems where some commonly

made simplifying assumptions are relaxed. (i) We consider robot interactions as a non-

negligible factor in task assignment optimization. We investigate how robot interactions

over limited resources change costs, by modeling the consequence of the interactions pre-

cisely. (ii) We incorporate uncertainty into the region-based representation of costs where

the region reflects possible contingencies during the execution of tasks. (iii) We consider a

probabilistic formulation where costs are described by distributions. The formulation does

not assume independent costs so inter-robot couplings are captured. (iv) We consider the

setting where tasks are revealed sequentially, and it is possible to execute bundles of tasks.

5

1.3 Dissertation Contribution

Assignment

algorithms with

scalar costs

Sensitivity

analysis for

region-based

costs

Bundling

policies for

online stochastic

costs

Assignment

algorithms with

penalizing costs

Risk assessment

for probabilistic

costs

Figure 1.4: An overview of the contributions of this dissertation. Our work attempts to expand the classical
MRTA models in various directions.

Fig. 1.4 shows an overview of the contributions of this dissertation. This work ex-

pands the classical MRTA models in various directions to incorporate uncertainties and

dynamics.

First, we propose assignment algorithms that include a model of robot interactions

over shared resources. We introduce a generalization that allows for the additional cost

incurred by resource contention to be treated in a straightforward manner. In this vari-

ant, robots may choose one of the shared resources (e.g., constrained space) to perform a

task, and interference may be modeled as occurring when multiple robots use the same re-

source. By evaluating the consequence of robot interactions precisely through the model,

an assignment computation can achieve global optimality instead of altering with the as-

signment during execution to deal with dynamically changing costs.

Second, we propose a region-based characterization of costs and algorithms that rea-

6

son about the optimality of the assignment within the region. The cost representation

allows modeling contingencies in dynamic and uncertain environments. We develop an

algorithm that employs the sensitivity analysis of linear programming so all that the pos-

sible optimal assignments within the cost region can be computed. The analysis enables

the robots to avoid unnecessary re-assignment computations and reduce global communi-

cation when costs change during executions.

Third, we propose a probabilistic model with a risk preference specification and algo-

rithms that analyze the sensitivity of the optimal assignment with respect to the preference.

We use random variables for costs where the interrelationships among costs are not ne-

glected, so inter-robot couplings can be incorporated into the formulation. We parameter-

ize the problem with a risk preference that determines the importance between the mean

and a risk measure on distributions. We analyze the sensitivity of assignment optima to

particular risk valuations, which help in understanding the effects of risk on the problem.

Fourth, we propose task bundling policies where tasks are revealed sequentially over

time. We consider synergistic tasks where planning with more tasks improves the perfor-

mance, so the problem is not only in allocating tasks to robots, but also in determining the

number of tasks that the robots plan and execute together. We identify two objectives that

describe the performance of a team serving tasks over an infinite length (or a very long)

horizon. We analyze the effect of the bundle size on performance. Based on the findings,

we develop task bundling policies working with stochastic arrivals and probabilistic spatial

distributions of tasks.

1.4 Organization

In Chapter 2, we provide related work and preliminaries. We describe a mathematical

formulation of MRTA and sensitivity analysis of optimal assignments. Chapter 3 consid-

ers optimization of multi-robot task allocation when the overall performance of the team

7

need not be a standard sum-of-cost model, but additional costs are incurred by robot inter-

actions on shared resources. Chapter 4 and 5 consider the widely used optimal assignment

problem formulation for task allocation but with two (a region-based and a probabilistic)

representations that feature uncertain and interrelated costs. In Chapter 4, we propose al-

gorithms using sensitivity analysis of linear programming to reduce dependencies on the

centralized structure of multi-robot systems. In Chapter 5, we cast an MRTA problem as a

scalarized biobjective assignment problem which minimizes the mean and a risk measure

of a cost sum distribution. We develop algorithms for sensitivity analysis of the assignment

subject to the scalarization parameter, which we term a risk preference. Chapter 6 tack-

les online task allocation problem with synergistic tasks. We propose model-based and

model-free policies for task bundling and compare them with a baseline method which

does not bundle but perform tasks instantaneously upon arrivals. Chapter 7 concludes and

describes future directions.

8

2. RELATED WORK AND PRELIMINARIES

In this chapter, we review multi-robot task allocation (MRTA) approaches in general.

We also provide a mathematical formulation of MRTA and sensitivity analysis of linear

programming problem.

2.1 Related Work

The classical work in multi-robot coordination concentrates on designing the overall

system architecture (e.g., [32], [41], [90], [105]). The early work focuses on developing

working systems and demonstrations of implementations. As the field of study matures,

various and specific topics have been addressed such as multi-robot path planning [29],

formation control [23], exploration [91], and localization [8]. Among the various topics,

the coordinating mechanism for a team of robot to achieve a common goal has received

substantial attention because of its universality in multi-robot systems.

Gerkey and Matarić [43] propose a taxonomy for MRTA problems, which has been

used widely, to provide a formal analysis of MRTA approaches. They suggest three axes

of categories that classify MRTA problems by robot capabilities, task requirements, and

the length of time horizon. Specifically, the first axis distinguishes between robots that can

perform only one task at a time (ST) and that can simultaneously perform multiple tasks

(MT). The second axis distinguishes tasks that can be performed by one robot (SR) and that

may require multiple robots (MR). The third axis is for the length of time horizon where

one category is for instantaneous assignments (IA) and the other is for time-extended as-

signments (TA)1.

This classification is fairly clear and concise to describe many MRTA problems. It is

1All these acronyms stand for Single-Task robots, Multi-Task robots, Single-Robot task, Multi-Robot
task, Instantaneous Assignment, and Time-extended Assignment.

9

convenient to confine the range of discussions but may exclude some important aspects

of more complex task allocation problems (e.g., dependencies among robots, tasks, or

costs). In a bid to encompass more sophisticated problems, Korsah et al. [63] recently

suggest a new taxonomy that has one more axis for interrelated utilities and constraints.

The new axis describes different types of dependencies among costs by no dependencies

(ND), in-schedule dependencies (ID), cross-schedule dependencies (XD), and complex

dependencies (CD). This taxonomy is more comprehensive since most MRTA problems

have some degree of interrelationships among robots and tasks.

Still, the taxonomy might be insufficient to characterize some MRTA problems posi-

tioned close to the border lines of the classification. For example, a single-task robot may

happen to perform other tasks while doing its own work (e.g., unintentionally exploring

other robots’ assigned area of an unknown space while it is moving to its assigned area) as

discussed in Section 3.5 of [83]. Oftentimes, this kind of indirect coordination is not taken

into account in the classification so the problem is treated in the ST-SR category. We also

found another example regarding time horizon that a problem considers an instantaneous

assignment may hedge against future states (e.g., computing a single-step allocation con-

sidering contingencies) [84]. In this case, the methodology may belong to the IA category

(e.g., an assignment algorithm) but the problem itself belongs to the TA category.

Even though those classifications are not sufficiently inclusive for all MRTA problems,

it is worth trying to characterize our problem with the taxonomy. We generally considers

the ST-SR MRTA problem. In this case, instantaneous assignments can be computed in

polynomial time by optimal algorithms such as the Hungarian method [65] and other al-

gorithms [10], [16]. Computing time-extended assignments is NP-hard and usually solved

by greedy or iterative methods. Our problems ambiguously range over both of the IA and

TA classes since we consider instantaneous assignments, but they are computed based on

information about possible future states. We also extend the planning horizon to infinity

10

where the future tasks are described stochastically. In addition, our problems consider in-

terrelated costs so belongs to the XD class, where costs of performing atomic or compound

tasks have interdependencies.

Another widely used classification criteria is the structure of the task allocation mech-

anism. A multi-robot system may choose a centralized approach, where one of robots

collects information from other robots and makes a decision for its team. Centralized ap-

proaches are widely used because they are simple to implement and easy to achieve global

optimality since global information is available. The Hungarian method is one of the com-

monly used algorithms in centralized teams. Other linear programming-based methods are

also widely used [6], [15]. However, these approaches show limitations when communi-

cation is not perfect and free. The central decision maker may suffer from computational

burden if a team is large. If a system adopts a decentralized approach, each robot is in

charge of its decision. Decentralized approaches are robust against single-point failures

and do not need global communication. Market-based methods [34] distribute resource to

pursue a maximal benefit for the whole team. There are some other methods such as a dis-

tributed version of the Hungarian method [44] and a message-passing method [74]. These

approaches may not be able to attain global optimality if some important information is

not delivered to some of constituents.

2.2 Preliminaries

In this section, we provide a mathematical formulation of the MRTA problem. Then

we introduce sensitivity analysis of an optimal assignment that provides a prescribed re-

gion of costs where changes within the region do not impair the optimality of the current

assignment.

11

2.2.1 A mathematical formulation of MRTA

The ST-SR-IA MRTA problem can be posed as an Optimal Assignment Problem (OAP).

For n robots and n tasks2, we assume we are given costs cij ∈ R≥0 that represent the cost

of the ith robot Ri performing the j th task Tj for i, j = 1, · · · , n. The robots should be

allocated to tasks with the minimum cost sum. Let xij be a binary variable that equals

to 0 or 1, where xij = 1 indicates that the Ri performs Tj . Otherwise, xij = 0. Then a

mathematical description of the MRTA problem is

min
n∑
i=1

n∑
j=1

cijxij (2.1)

subject to

n∑
j=1

xij = 1 ∀i, (2.2)

n∑
i=1

xij = 1 ∀j, (2.3)

0 ≤ xij ≤ 1 ∀{i, j}, (2.4)

xij ∈ Z+ ∀{i, j}. (2.5)

We make use of a matrix representation X∗ that are n × n matrices representing a cost

matrix and an optimal assignment of the problem, respectively.

2.2.2 Sensitivity analysis of optimal assignments

Sensitivity analysis (SA) has been studied for several decades in Operations Research

to assess the robustness of optima for an optimization problem to perturbations in the input

specification [38], [104], [70]. Analysis of an optimal assignment must compute a region
2This is without loss of generality, since if the numbers of robots and tasks are not equal, dummy robots

or tasks would be inserted to make them equal. The costs of dummies have very large numbers so that they
can be naturally excluded from the optimal assignment.

12

where costs within that region preserve the current optimal assignment. However, SA has

found limited applicability to multi-robot task allocation problems: the analysis assumes

that the decision maker (its counterpart in multi-robot systems is the central computation

unit) is able to access all information off-line and has control all over the constituents

without communication constraints. The physically distributed nature of multi-robot sys-

tems and their limited communication and computational resources pose challenges to the

direct application of classical SA.

The OAP can be relaxed to a linear programming problem (LP) by removing the inte-

gral constraint3. The LP formulation of MRTA may make use of Sensitivity Analysis (SA)

of an optimal assignment to yield a safe region of costs where all costs within the region

preserve the current optimality. We provide a brief interpretation of the analysis for the

MRTA problems, based on a comprehensive study of Ward and Wendell [104].

An LP problem corresponding to an MRTA problem can have more than one feasible

solution. For each feasible solution, the variables xij (i, j = 1, · · · , n) can be divided

into basic variables and nonbasic variables4. Let k be an index of a feasible solution. For

each k, critical region Rk, a set of costs where an MRTA problem has the same optimal

assignment for any cost c ∈ Rk, is defined as

Rk = {c ∈ R(n2) : cNk − cJkB
−1
k ANk ≥ 0} (2.6)

where Jk and Nk indicate basic and nonbasic variables of the kth feasible solution, respec-

tively. Bk and ANk are constraint matrices of basic variables and nonbasic variables.5 cJk

and cNk are cost vectors of basic and nonbasic variables. Note that the critical region Rk

3This relaxation depends on cij ∈ Q, which is exact for any implementation.
4A variable is basic if it corresponds to one of the vectors in the basis, given a feasible basis to a linear-

programming problem.
5A constraint matrix of an optimization problem consists of coefficients of variables. Bk is a set of

columns corresponding to basic variables. Similarly, ANk
corresponds to the coefficients of nonbasic vari-

ables.

13

O c1

θ(X*)=R1∪R2

R1R2

c2

Figure 2.1: A 2-D example of θ(X∗). Any cost in the set has the same optimal assignment.

is formed by linear boundaries with nonempty interiors.

However, there is an additional complexity because the MRTA problem is degenerate

(see Appendix B). The critical region Rk is not a complete description of the region which

preserves optimality of the current assignment. The complete set is

θ(X∗) =
⋃
k∈H

Rk, (2.7)

where H = {k : X∗Jk = B−1
k ,X∗Nk = 0}, which is the union of critical regions of all de-

generate solutions. Note that θ(X∗) is also a polyhedral set [104, Theorem 17] consisting

of linear boundaries that cross the origin (there might be overlaps among Rk). Fig. 2.1

shows a 2-D example of θ(X∗). Notice that the smallest nontrivial MRTA problem has 4

dimensions (2 robots and 2 tasks), so we show this trivial case for a better visualization.

An n×nMRTA problem has 2n−1 basic variables and (n−1)2 nonbasic variables. To

compute (2.7), we must identify the basic and nonbasic variables of the kth feasible solu-

tion. The n variables corresponding to costs in the optimal assignment are basic variables,

but the degeneracy means that the remaining n − 1 basic variables cannot be identified

directly. Thus, we shall choose the n− 1 basic variables from the remaining n2 − n vari-

ables to complete a feasible solution, yielding a total of
(
n2−n
n−1

)
feasible solutions. Note,

14

however, that despite the set being large the interiors of Rk may overlap so θ(X∗) can be

covered by a small subset of Rk.

15

3. ASSIGNMENT ALGORITHMS FOR MODELING RESOURCE CONTENTION

IN MULTI-ROBOT TASK ALLOCATION

MRTA addresses optimization of collective performance by reasoning about which

robots in a team should perform which tasks. Even starting with the classical work, many

different approaches have been proposed, such as behavior-based [90], [105] and market-

based [17], [32], [42] task allocation. Although resource contention and physical inter-

ference have long been known to limit performance [46], [45], [97], the vast majority of

MRTA work considers settings for which interference is treated as negligible (cf. review

in [43]). This limits the applicability of these methods and computing a task assignment

under assumptions of noninterference may produce suboptimal behavior even if the algo-

rithm solves the assignment problem optimally. Several authors have proposed task allo-

cation approaches that model or avoid interference (usually physical interference), see for

example, [28], [51], [25], [92] (a summary is shown in Table 3.1.). These works, however,

do not set out to achieve global optimality, or understand the computational consequences

of a model of interference.

In this chapter, following the lead of early and practical work, we assume a networked

Table 3.1: A summary of algorithms that consider interference among robots.

Authors & paper Way to deal with interference Poly-time? Optimal?

Dahl et al. [28]
Use reinforcement learning to distribute resources

No No
to robots

Guerrero Include the effect of interference in the utility function No
No

and Oliver [51] of the auction method (deadline)

Choi et al. [25]
Use a market-based distributed agreement protocol

Yes
No (provably

that guarantees a conflict-free assignment good solution)
Pini et al. [92] Spatially partition tasks to reduce interference No No

c© 2015 IEEE. Reprinted, with permission, from Changjoo Nam and Dylan Shell, “Assignment Algo-
rithms for Modeling Resource Contention in Multirobot Task Allocation,” IEEE Transactions on Automation
Science and Engineering, Jul 2015.

16

(a) Physical space

Node 1: 1Mbps

Node 2: 800Kbps

(b) Communication bandwidth

Figure 3.1: Two examples of resources with limited capacities that must be shared in most practical con-
texts. Both communication and space contention cause performance to scale sub-linearly with the number
of robots.

system in which all information is known by at least one robot that is responsible for

optimizing task allocation. In practice, this robot can be dynamically elected robot from

amongst the team. We also assume the ST-SR-IA MRTA problem, which can be posed as

an Optimal Assignment Problem (OAP). The OAP is well-studied and can be cast as an

integral linear program which is in complexity class P. This conventional MRTA problem

does not specify how robots use resources so it is unable for it to account for interference

incurred by sharing resources. Instead, it assumes that resources are individually allocated

to robots or, if shared, that they impose no limits.

In our problem, however, robots may have to choose between resources used to per-

form tasks (e.g., several routes to reach a destination), as shown in Fig. 3.1, and the costs

of performing the tasks may vary depending on the choice. If several robots use the same

resource (reflected in a relationship between their choices), we allow interference between

them to be modeled. Inter-agent interference (as described in Fig. 3.2) is treated mathemat-

ically as a penalization to the cost of performing that task. In this manner, we can model

17

Sarah
Connor

Assassinate
Sarah Connor

Do the laundry
Shortest
path

Longer path

Figure 3.2: A specific example of resource contention: two robots choose the shortest path to perform their
tasks, they should compute their paths to avoid interaction with each other. When the right robot chooses the
longer path via the door on the far right, the sum of distances is larger, but it minimizes cost when resource
contention is considered.

shared resources and generalize the conventional MRTA problem formulation to include

resource contention. The result is an optimization problem for finding the minimum-cost

solution including the interference induced penalization cost. We term this the multi-

choice assignment problem with penalization (mAPwP). The model we introduce allows

a robot to make a selection from among multiple means by which it could perform a task.

Naturally, the penalization depends on the particular selection.

In general, there are many ways penalization costs could be estimated. When evalua-

tion of the interference is polynomial-time computable, we call this the mAPwP problem

with polynomial-time computable penalization function (P-type mAPwP). Even with a

cheaply computable penalization function, we show that the P-type problem is NP-hard1.

We also investigate two other problems that have particular forms of penalization func-

tions: linear and general convex penalization functions. We show that the two problems

1Adding the notion of multiple choices does not change the complexity class, which is P. However,
introducing the penalization function makes the problem hard.

18

are in P and NP-hard, respectively. We provide an exact algorithm and two polynomial-

time algorithms for the problems. The algorithms are domain-independent so that it can be

used for many multi-agent scenarios that have quantifiable interference between agents.

The remainder of this chapter is organized as follows. Section 3.1 discusses the related

literature on optimization methods for MRTA. Section 3.2 defines the problem mathemat-

ically, and Section 3.3 describes the NP-hardness results. Section 3.4 presents algorithms,

and Section 3.5 extends the suggested modeling method of resource contention to another

interrelated costs. Section 3.6 describes experiments, and the final section concludes.

3.1 Related Work

Recent studies dealing with limited shared resources in multi-robot systems are mainly

focused on the multi-robot path planning (MPP) problem: Alonso-Mora et al. [2] employ

a mixed-integer quadratic programming methods to optimize trajectories of robots while

avoiding collisions; Yu and LaValle [107] propose an integer linear programming method

to find collision-free paths for multiple robots; He and van den Berg [52] suggest an MPP

algorithm that consists of macro-, micro-, and meso-scale planners. Their meso-scale

planner considers groups of other robots as a coherent moving obstacle while the micro-

scale planner locally avoids individual obstacles. Those methods quickly find high-quality

solutions. However, their approaches are domain-specific so not appropriate for general

problems where robots contend for arbitrary shared resources, not necessarily only physi-

cal space. Moreover, resources modeled in [107] are able to accommodate only one robot

at each time step, which is restrictive to model real-world applications. In [52], the micro-

scale collision avoidance is based on local observations, and it does not achieve global

optimality. We are not aware of previous hardness results with respect to resource sharing

in multi-robot systems.

The equivalence of the classical assignment problem by a network flow problem has

19

been well known for decades. This may lead to the suggestion that one can prevent inter-

ference by imposing additional constraints in the form of capacity constraints in the flow

formulation. This can be solved by a centralized manner [35] or a distributed manner [66],

[77]. However, that approach models interference as a binary penalization, which is zero

or infinite, whereas incurred by resource contention are more widely applicable if the in-

terference is modeled as a continuous function that increases proportionally to the amount

of interference. (See, for example, our use of published and validated traffic models in

Section 3.6.)

The approach of imposing constraints to restrict robots from using shared resources

is used in many MRTA algorithms such as [101], [96], [99], [110], [24], [56]. This ap-

proach is widely used because of its simplicity since the constraints can be constructed

once restrictions on resources are identified (e.g., the maximum number of robots using

a shared resource). However, such constraints satisfy some models of shared resource,

but the models are not adequately rich to describe the problem precisely. For example,

if a capacity constraint is imposed for a shared resource, an allocation that violates the

constraint cannot be considered at all. However, a shared resource can be used without a

capacity limit but with some additional costs as more robots use the resource. Inversely,

there could be additional costs even though the number of robots using a shared resource

is less than a capacity. In addition, [73], [74] also consider MRTA problems where tasks

have dependencies. The inter-task dependencies are caused by precedence or deadline of

tasks. The dependencies are handled by imposing constraints. Again, this approach may

not be describes some problems precisely. For example, a shipping task could miss its

deadline if a penalty is paid for not fulfilling the due date.

An alternative is for the P-type problem can be cast as a linearly constrained 0-1 pro-

gramming problem, with the penalization function incorporated into the objective function

with the cost sum. The objective function is optimized over a polytope defined by the mu-

20

tual exclusion and integral constraints. The results in this chapter suggest that one can

have an optimal solution in polynomial time if the penalization function is linear. When

the penalization is more complex, a common method to solve the problem is enumeration,

for example using the branch-and-bound method, but its time complexity in the worst case

is as bad as that of an exhaustive search; rather more insight is gained by employing the

method we introduce in this chapter. Many practical algorithms [68, 58, 27] are suggested

in the literature, but they also have exponential running time in the worst case. Linearizing

the complex penalization function could be an alternative to have polynomial running time

but has no performance guarantee.

Lastly, Roughgarden [95] introduces noncooperative routing games in which each

agent chooses a complete route between a source and a sink in a network in congestion-

sensitive manner. Routing games have the objective of minimizing the sum of traffic costs

including additional costs from congestion, which is same with the multi-vehicle traffic

problem used in the experiments (Section 3.6.3). It is interesting that selfish agents are

able to find an optimal set of routes. However, routing games confine their applications

to routing problems on physical resources (e.g., roads) so they are limited to deal with

general resource contention.

3.2 Problem Formulation

3.2.1 Bipartite multigraph

The mAPwP problem can be expressed as a bipartite multigraph. Let G = (R, T,E)

be a bipartite multigraph consisting of two independent sets of vertices R and T , where

|R| = n and |T | = m, and a collection of edges E. An edge is a set of two distinct vertices

denoted (i, j) and incident to i and j. Each edge inG is incident to both a vertex inR and a

vertex in T , and pij is the number of edges between two vertices. The vertices in R and T

can be interpreted as n robots and m tasks, respectively. An edge is a way in which a robot

21

Table 3.2: Nomenclature.

G(R, T,E)
a bipartite multigraph consisting of two disjoining sets
R and T and a collection of edges E;

L the bit length of input variables of an instance;
NΠ the number of all assignments;
Q(·) the penalization function;
Ql the penalization function of the l-th resource;
Qs the penalization of s-th assignment;
X∗ the optimal assignment;
Xs−/+ the s-th assignment before/after penalization;

cijk
the cost of performing the j-th task by the i-th robot in
the k-th manner;

c∗ the cost sum of the optimal assignment;

cs−/+
the cost sum of the s-th assignment before/after
penalization;

d the length of a road;
i the index of vertices in R (robots);
j the index of vertices in T (tasks);
k the index of edges in E (choice);
n the number of vertices in R (robots);
nl the number of robots on the l-th resource;
m the number of vertices in T (tasks);
pij the number of choices between ri ∈ R and tj ∈ T ;

xijk
the binary variable that indicates that the i-th robot
performs the j-th task in the k-th manner;

s the s-th best assignment in terms of optimality;
vf the traffic flow speed of a road;
β the coefficients of a penalization function;

η
the ratio of an approximated solution to an optimal
solution (η = c′∗/c∗);

λ the slope of the headway-speed curve;
ρ the traffic density of a road;
ρj the jam density of a traffic road;

22

may use resources, for which it expected to select one among pij choices for a given task.

The precise interaction between resources is modeled via penalization function, described

next.

3.2.2 Multi-choice assignment problem with penalization (mAPwP)

Given n robots and m tasks, the robots should be allocated to tasks with the minimum

cost. Each allocation of a robot to a task can be done via one of the pij choices where i and

j are indices of the robots and the tasks, respectively. Each of the pij choices represents

some set of resources used by a robot to achieve a task. The multiple choices indicate the

resources can be used in many ways. We assume we are given cijk, the interference-free

cost of the i-th robot performing the j-th task through the k-th choice. Let xijk be a binary

variable that equals to 0 or 1, where xijk = 1 indicates that the i-th robot performs the j-th

task in the k-th manner. Otherwise, xijk = 0.

In problem domains where multiple robots share resources, use of the same limited

resource will typically incur a cost. We model this via a function which corrects the

interference-free assignment cost (i.e., the linear sum of costs) by including the additional

cost of the effects of resource contention (Q(·) in (3.1))2. We assume that the cost and

the penalization are nonnegative real numbers. We also permit the cost to positive infinity

when interference is catastrophic (or, for example, only one robot is permitted to use the

resource). We assume n = m. If n 6= m, dummy robots or tasks would be inserted to

make n = m. Then a mathematical description of the mAPwP problem is

min
n∑
i=1

m∑
j=1

pij∑
k=1

xijkcijk +Q(x111, x112, . . . , x11p11 , . . . , xnmpnm), (3.1)

2The formal definition of Q(·) will be shown in Section 3.2.3.

23

subject to

m∑
j=1

pij∑
k=1

xijk = 1 ∀i, (3.2)

n∑
i=1

pij∑
k=1

xijk = 1 ∀j, (3.3)

0 ≤ xijk ≤ 1 ∀{i, j, k}, (3.4)

xijk ∈ Z+ ∀{i, j, k}. (3.5)

We note that (3.5) is superfluous if no penalization function is considered or Q(·) is lin-

ear, because the constraint matrix satisfies the property of totally unimodular (TU) matrix.

Specifically, an optimization problem with a linear objective function has only integer so-

lutions if its constraint matrix satisfies totally unimodularity [30], so the integral constraint

is not necessary.3

3.2.3 Penalization

The penalization function maps a particular assignment to the additional cost associ-

ated with the interference. In the formulation of mAPwP earlier, Q(·) denotes the penal-

ization function in most general terms. If the mAPwP is with a polynomial-time com-

putable Q(·), it is the P-type problem. The input domain for Q has ∼ O(max{n,m}! ·

(max{pij})min{n,m}) elements; in most cases a penalization function is more conveniently

written in some factorized form. One example is if one is concerned only with the number

of robots using a resource, not precisely the identities of the robots that are. IfQl(nl) is the

penalization function of the l-th choice where nl is the number of robots for that choice,

3The standard treatment of the Optimal Assignment problem without a penalization factor for task allo-
cation (e.g., in [43]) considers only a bipartite graph (i.e., ∀i∀jpij = 1). Although TU is well-known for the
problem, we believe this to be the first recognition of this fact for the problem above.

24

Table 3.3: A summary of the mAP problems.

Problem Description
mAPwP The multi-choice assignment problem with penalization
P-type The mAPwP problem with any penalization functions that are polynomial-time computable

DP-type The decision version of the P-type problem
C-type The mAPwP problem with convex penalization functions
L-type The mAPwP problem with linear penalization functions

then the total penalization could be written as:

Q(x111, x112, . . . , x11p11 , . . . , xnmpnm)

= Q1(n1) +Q2(n2) + . . .+Qq(nq)

=

q∑
l=1

Ql(nl).

(3.6)

where q is the total number of choices in an environment. If the robots are homogeneous,

nl is the same as the number of robots on the l-th choice. Otherwise, each robot has

a weight that represents the occupancy of the robot. The P-type problem is a general

problem that Q(·) can be any form of function. If Q(·) is convex, the mAP becomes the

mAP with convex penalization function (C-type mAPwP). Especially, it comes to be the

mAP with linear penalization function (L-type mAPwP) if Q(·) is linear. The descriptions

of the problems are summarized in Table 3.3.

3.2.4 Examples

An example of the mAPwP is shown in Fig. 3.3a. The goal is to minimize the total

traveling time by distributing robots (R1, R2 and R3) to three destinations (T1, T2 and T3).

R1 andR2 can use all the paths, but R3 cannot use the passage p2 becauseR3 is wider than

the passage. A weighted bipartite multigraph that is equivalent to the example is shown in

Fig. 3.3b. The graph has |R| = |T | = 3 vertices, and every pair of vertices has 2 edges

except for p31 = p32 = p33 = 1. There will be interference, for example, if both R1 and

25

(a) An example of the mAPwP. (b) The equivalent graph representa-
tion.

Figure 3.3: An example of the mAPwP and its graph representation. (a) Robots have a choice between
routes to reach their destinations, but interference will occur if a passageway is shared (e.g., if both R1 and
R2 try to reach destinations via p1.) (b) A weighted bipartite multigraph representation for this example.
An edge between ri and tj represents the use of a resource to perform the j-th task by the i-th robot, and
its weight (cijk) is a cost associated with performing the task by the robot. xijk is a binary variable that
indicates allocation of a robot to a task through a resource (the variables are omitted for clarity).

R2 try to reach destinations on p1, so a time delay is incurred which must be added to the

total traveling time.

Types of shared resources need not be limited to physical space. A family of cooper-

ative information collecting missions could have resource contention on shared commu-

nication channels. The mission is collecting information, such as pictures, depth infor-

mation, or audio source, from environments and transmitting them to a central repository

while minimizing the sum of completion time. Each robot is required to choose one of

the locations in an environment and transmit collected data through one of several private

wireless networks that have different bandwidth.4 Data transmission time depends on the

size of the chosen channel’s throughput and the data size, but additional transmission time

4To simplify the problem, we assume that the time for approaching to a location and transmitting data
dominates the time for other tasks such as data acquisition. We also assume that physical space is enough to
perform tasks without interference among robots.

26

occurs if the traffic exceeds the bandwidth. This example of network congestion can be

formulated similarly with the physical space case.

3.3 NP-Hardness of mAPwP Problems

In this section, we show the P-type and C-type problems are NP-hard optimization

problems, and the L-type problem is in P. We prove the corresponding decision version

of the P-type (DP-type) is NP-complete to prove the P-type problem is an NP-hard opti-

mization problem [57]. Then we briefly describe the L-type problem is in P and show the

C-type problem is NP-hard.

3.3.1 The P-type problem is NP-hard

Theorem 3.1 The DP-type problem is in NP.

Proof. The DP-type problem simply asks whether an assignment has cost less than a given

threshold.

Input: n robots, m tasks, pij choices, a polynomial-time computable penalization function

Q, and costs of edges cijk, a constant α.

Question: Is the penalized cost of a given assignment less than α?

Certificate: An arbitrary assignment xijk.

Algorithm:

1 Check whether the assignment violates any constraints

2 Calculate the total cost of the assignment

3 Penalize the cost by the penalization function

4 Check whether the penalized cost is less than α

This is polynomial-time checkable so that the DP-type problem is in NP. �

Theorem 3.2 The DP-type problem is NP-hard.

Claim. The proof is based on relation to the classic boolean satisfiability problem. The

27

3-CNF-SAT problem asks whether a given 3-CNF formula is satisfiable or not. It is a well-

known NP-complete problem. If 3-CNF-SAT ≤P DP-type, then the DP-type problem is

NP-hard.

Proof. The reduction algorithm begins with an instance of 3-CNF-SAT. Let Φ = C1 ∧

C2∧ ...∧Ck be a 3-CNF boolean formula with k clauses over n variables, and each clause

has exactly three distinct literals. We shall construct an instance of the DP-type problem

where pij = 1 (i = 1, ..., n and j = 1, ..., 2n) such that Φ is satisfiable if and only if the

solution of the instance of DP-type problem has cost less than a constant α.

We construct a bipartite multigraphG = (R, T,E) as follows. We place n nodes r1, r2,

..., rn ∈ R for n variables and 2n nodes t1, f1, t2, f2, ..., tn, fn ∈ T for truth values (true

and false) of the variables. For i = 1, ..., n and j = 1, ..., 2n, we put edges (ri, ti) ∈ E and

(ri, fi) ∈ E where ti and fi ∈ T . The costs of the edges are given by cij . In addition, we

construct an assignment by assigning vertex i in R to vertex j in T only when xij = 1 for

i = 1, ..., n and j = 1, ..., 2n. (Note that xij ∈ {0, 1}.)

Now, we construct a function ΦJ as follows. Each clause in Φ is transformed to a sum

of terms in parentheses so that the terms correspond to the three literals in the clause. For a

positive literal, we put xij where i is equal to the index of the literal and j = 2i−1 whereas

j = 2i for a negative literal. Disjunctions of clauses are transformed to multiplications. A

penalization of an assignment is defined as

Q =

 0 ΦJ > 0

N otherwise,
(3.7)

where N is a large number. If ΦJ has a solution which makes ΦJ > 0, the penalization is

zero. Therefore, the cost of the assignment is
∑

i,j cijxij and Q = 0 so the assignment has

the total cost
∑

i,j cijxij . Otherwise, it will have a large nonzero penalization such as N.

28

t1

r1

f1 t2

r2

f2 t3

r3

f3 t4

r4

f4 t5

r5

f5

x11 x12 x23 x24 x35 x36 x47 x48 x59 x5·10

Figure 3.4: The DP-type problem derived from the 3-CNF formula
Φ = (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x3 ∨ ¬x1 ∨ ¬x2). A satisfying assignment of Φ
has x1 = 1, x2 = 1, x3 = 1, and x4, x5 either 0 or 1. Corresponding assignment is that
x11 = 1, x12 = 0, x23 = 1, x24 = 0, x35 = 1, x36 = 0. The values of other elements do not
affect the satisfiability of Φ. This assignment makes ΦJ > 0.

We can easily construct Q from Φ in polynomial time.

As an example, consider the construction if we have

Φ = (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x3 ∨ ¬x1 ∨ ¬x2), (3.8)

then the transformation is shown in Fig. 3.4. Φ has five variables so five nodes and ten

nodes are placed in R and T , respectively. The nodes in R and T which have the same

subscripts are connected. We produce function:

ΦJ = (x11 + x23 + x48) · (x23 + x47 + x5·10) · (x35 + x12 + x24), (3.9)

and its penalization will be 0 or N depending on the assignment.

We show that this transformation is a reduction in a little more detail. First, suppose

that Φ has a satisfying assignment. Then each clause contains at least one literal that true

is assigned, and each such literal corresponds to a matching of ri and ti. On the contrary, a

literal assigned false corresponds to a matching of ri and fi. Thus, assigning truth values

to the literals to make Φ satisfied yields matchings between R and T . We claim that the

matchings are an assignment which makes ΦJ > 0. The assignment makes each sum of

three terms (in parentheses) at least 1 so that ΦJ, a multiplication of the parenthesized

29

terms, is greater than or equal to 1. Therefore, by the construction, we can get the total

cost of the assignment and answer whether the cost is less than α.

Conversely, suppose that the DP-type problem has an assignment that makes ΦJ > 0.

We can assign truth assignments to the literals corresponding to the matchings between

R and T so that each clause has at least one variable which is true. Since each clause is

satisfied, Φ is satisfied. Therefore, 3-CNF-SAT ≤P DP-type.5 �

In the example of Fig. 3.4, a satisfying assignment of Φ has x1 = 1, x2 = 1, x3 = 1,

and x4, x5 either 0 or 1. Corresponding matchings in DP-type are that r1 and t1, r2 and

t2, r3 and t3 while r4 is matched to either t4 or f4. Also, r5 is matched to either t5 or

f5. Therefore, the assignment is x11 = 1, x12 = 0, x23 = 1, x24 = 0, x35 = 1, x36 = 0.

The values of other elements do not affect the satisfiability of Φ. This assignment makes

ΦJ > 0.

Corollary 3.3 By Theorem 3.1 and 3.2, the DP-type problem is NP-complete. Therefore,

the P-type problem is an NP-hard optimization problem.

3.3.2 The L-type problem is in P

Mathematically, the L-type problem can be cast as an integer linear programming prob-

lem whose constraint matrix satisfies the property of totally unimodularity. This problem

can be solved in polynomial time as described in [30, Corollary 2.2]. Therefore, the L-type

problem is in P.

3.3.3 The C-type problem is NP-hard

The mAP with a convex quadratic penalization function (CQ-type) is a proper subset

of the C-type problem, and is a natural next step after examining L-type problem. The

5There can be a simplification of the reduction. We can construct a function ΦJ from any of the 3-CNF-
SAT problem Φ. We define a polynomial-time penalization function Q as (3.7). Then solving the DP-type
problem solves the corresponding instance of the 3-CNF-SAT problem.

30

CQ-type problem has the form

min {xTHx+ cx : Ax ≤ b, x ∈ {0, 1}} (3.10)

whereH is positive semidefinite and symmetric, c is nonnegative,A is TU, and b is integer.

The following binary quadratic programming (BQP) is an NP-hard problem [9, Theo-

rem 4.1]. The BQP problem is

min {yTMy + dy : A′y ≤ b′, y ∈ {0, 1}} (3.11)

where M = LTDL, D = I , d = 0, L is TU and nonsingular, A′ is TU, and b′ is integer.

Theorem 3.4 The CQ-type problem is NP-hard.

Claim. IfM is symmetric and positive semidefinite, we can reduce any BQP to an instance

of the CQ-type problem. Namely, BQP ≤P CQ-type.

Proof. Since D = I , M = LTL. Then (LTL)T = (L)T (LT)T = (LTL). Thus, M is

symmetric.

For any column vector v, vTLTLv = (Lv)TLv = (Lv) · (Lv) ≥ 0. Thus, LTL is

positive semidefinite. Therefore, BQP ≤P CQ-type as we claimed. �

Lemma 3.5 CQ-type (C-type.

Corollary 3.6 By Theorem 3.4 and Lemma 3.5, the C-type problem is NP-hard.

3.3.4 A polynomial-time solvable class of the C-type problem

The C-type problem is a nonseparable convex optimization problem. If a C-type prob-

lem can be converted to a separable convex optimization problem without breaking the

totally unimodularity of the constraint matrix, the problem is solvable in polynomial time

[55] and Alg. 4.2 in [55] is an optimal algorithm for these cases. Note that a nonsepara-

31

ble problem can be transformed to a separable problem by substituting nonseparable de-

pendent polynomials with additional independent variables and imposing additional con-

straints6 (see [18, Table 13.1] and Appendix A for more detail and an example). Since the

cost sum part of the objective function in (3.1) is separable in itself, only the penalization

function is subject to conversion. A constraint matrix after the conversion is

ASP =

 A 0

AN −I

 (3.12)

where A is the original TU constraint matrix, and [AN− I] are newly imposed constraints.

A is n×mp, AN is w ×mp, 0 is n× w, and I is w × w matrix where w is the number of

newly added variables. According to the properties of TU matrix, we have the following

properties of ASP:

- [A 0] is TU.

- If AN is TU, [AN − I] is also TU.

- Joining two arbitrary TU matrices is not guaranteed to make a TU matrix. Thus, ASP

may not be TU although both of [A 0] and [AN − I] are TU.

- If AN is not TU, then ASP is not TU.

Since a TU AN could make ASP either TU or non–TU, the totally unimodularity of ASP

should be checked. The definition of TU (i.e., the determinant of every square submatrix

has value -1, 0, or 1) or a necessary and sufficient condition described in [22] can be used

to check the totally unimodularity. However, using those methods for the entire ASP could

be computationally expensive for large-sized problems. We suggest a preliminary test to

see if a transformation breaks the totally unimodularity of the original problem.
6Theoretically, any optimization problem can be restated as a separable program, but this is of limited

practically as the number of the additional variables and constraints is large [18].

32

Theorem 3.7 Separable convex integer optimization problem, whose constraint matrix is

not TU, is NP-hard.

Proof. Separable integer linear programming (ILP) problem is a special case of the sepa-

rable convex integer programming problem. An ILP, whose constraint matrix is not TU, is

NP-hard [59] regardless of whether it is separable or not. Therefore, the separable convex

integer optimization problem, whose constraint matrix is not TU, is NP-hard. �

Thus, a non–TU AN makes the C-type problem NP-hard by Theorem 3.7. A prelimi-

nary test that is checking the totally unimodularity of AN before checking the entire ASP

may save time, because ASP needs not to be checked if AN is not TU. However, ASP shall

be checked if AN is TU since a non–TU AN is a sufficient condition, but not a necessary

condition, to make non–TU ASP.

3.3.5 Remark on the hardness results

There is a significance in the NP-completeness (not merely the NP-hardness) result

of the DP-type problem when the penalization function is polynomial-time computable.

The problem with polynomial-time solvable penalization functions has a spectrum of the

hardness from P to NP-complete; the upper bound is perhaps surprising. Many MRTA

problems become NP-hard when richer and more precise descriptions (e.g., additional

constraints) are added to the problem formulation [43]. While the problem is not expected

to be polynomial-time solvable, even if some polynomial-time algorithms did solve all NP-

complete problems, the NP-hard ones might remain. If a problem has a non-polynomial-

time-solvable penalization function, the problem becomes NP-hard. The spectrum is a

concise visualization of understanding how hard the problem is depending on the form of

the penalization function.

33

3.4 Algorithms for mAP Problems

In this section, we devise algorithms for mAP problems. The exact algorithm for the

P-type problem recursively enumerates unpenalized assignments and their costs from the

best assignment in terms of optimality, by calling a combinatorial optimization algorithm

for each iteration. However, no enumeration and optimization algorithm exists for multi-

graphs, so we must extend Murty’s ranking algorithm [82] and the Hungarian method [65]

to the weighted bipartite multigraphs. The extension does not change the complexity class

of the problem since the problem’s coefficient matrix is still totally unimodular even with

a bipartite multigraph [19]. We term the algorithms the Multi-Choice (MC) Hungarian

and Multi-Choice (MC) Murty’s ranking algorithm.

Then we suggest polynomial-time algorithms for the L-type and C-type problems. For

brevity, we denote them by the (optimal) L-type algorithm and the (approximate) C-type

algorithm, respectively. The algorithms consist of two phases: the optimization phase

and the rounding phase. In the first phase, we relax the integral constraint (3.5) so that

a solution can be obtained in polynomial time, but it can be fractional. Thus, the second

phase rounds a fractional solution to ensure the integrality of the assignment. We use an

interior point method (IPM) in the first phase and the MC Hungarian method in the second

phase. The L-type algorithm is optimal, and the C-type algorithm is near-optimal. We

provide the performance guarantee of the C-type algorithm.

3.4.1 The multi-choice Hungarian method

We generalize the Hungarian method to allow multiple choices of performing tasks.

Fig. 3.5 shows the differences in input and output between the original Hungarian method

and the MC Hungarian method. For implementation, we modify the labeling operations

(the initialization and the update operations) and the path augmentation from the original

Hungarian method. The labeling operations include all pij edges incident to i and j. In

34

the path augmentation step, the minimum-weighted edge among pij is selected as the path

between i and j. The pseudocode is given in Alg. 1. The time complexity of this algorithm

is O(p2(max{n,m})3).

Algorithm 1 The Multi-Choice (MC) Hungarian method

Input: An n × mp cost matrix which is equivalent to a weighted bipartite multigraph
G = (R, T,E) where |R| = n, |T | = m and pij = p,∀{i, j}.
Output: An optimal assignment M∗ and its cost c∗.

1. Generate initial labeling l(i) = min1≤j≤m{cijk},
∀i ∈ [1, n] and l(j) = 0,∀j ∈ [1,m] and matching M .

2. If M perfect, stop. Otherwise, pick an unmatched vertex
r ∈ R. Set A = {r}, B = ∅.

3. If N(A) = B, update labels by

l(r) = l(r)− δ r ∈ A

l(t) = l(t) + δ t ∈ B
where δ = maxr∈R,t∈T−B{l(r) + l(t) + cijk}.

4. If N(A) 6= B, pick t ∈ N(A) \B.
4a. If t unmatched, u→ t is an augmenting path, then

augment M and go to step 2.
4b. If t is matched to z, extend alternating tree by
A = A

⋃
{z}, B = B

⋃
{t}, and go to step 3.

Note: N(r) = {t|(r, t) ∈ Ge}, where Ge is the equality graph, and N(A) =
⋃
∀r∈AN(r).

3.4.2 The multi-choice Murty’s ranking algorithm

We modify the partitioning part of the original ranking algorithm. The set of all match-

ings is partitioned into subsets by removing each vertex and edges of s-th matching. After

finding an optimal solution of each subset by Alg. 1, the vertices and the edges of the

optimal solution are recovered. In the removing and recovering procedures, pij edges are

removed and recovered all together. The other parts are same as the original version. The

time complexity of this algorithm is O(sp2(max{n,m})4).

35

(a) The Hungarian method solves the prob-
lems that have only single choice.

(b) The MC Hungarian method allows multiple choice of
performing tasks.

Figure 3.5: A comparison between the Hungarian and the MC Hungarian methods. Their input cost matrices
with output assignments (shaded squares) and corresponding graphs are shown. A bold line indicates an
allocation of a robot to a task. The second summation in (3.2) and (3.3) ensures a task to be performed
through only one resource if pij > 1.

3.4.3 Exact algorithm for the P-type problem

3.4.3.1 Algorithm description

The pseudocode is given in Alg. 2. We denote the s-th assignment before/after penal-

ization as Xs−/+ and its cost is cs−/+. Similarly, Qs refers the penalization of the s-th

assignment. In the first iteration (i.e., s = 1), the algorithm computes the best assignment

without penalization (c1−). The penalization of the best assignment (Q1) is computed and

added to the cost of the best assignment (c1+ = c1− +Q1). Then, the algorithm computes

the next-best assignment and compares its unpenalized cost (cs−) with the minimum penal-

ized cost to the previous step (min{c1+, ..., c(s−1)+}). The MC Murty’s ranking algorithm

enables recursive computation of the next-best assignment (line 3). The algorithm repeats

each iteration until either of the following conditions are met: when an unpenalized cost

is greater or equal to the minimum penalized cost so that min{c1+, ..., c(s−1)+} ≤ cs−, or

the algorithm has enumerated all assignments (NΠ = mPn × Πn,m
i,j pij).

Fig. 3.6 illustrates the terminating condition of the algorithm. The algorithm computes

the best (s = 1) assignment and its unpenalized cost. Once an assignment is determined,

36

its penalization is computed and added to the unpenalized cost. The algorithm enumerates

assignments iteratively and terminates when an unpenalized cost is larger than the current

minimum cost including penalization. In the figure, the fourth assignment has a larger

unpenalized cost than the cost of the second (current minimum) assignment. Thus, the

algorithm terminates after it computes the unpenalized cost of the fourth assignment. Even

without penalizations, all subsequent assignments have larger unpenalized costs than the

minimum cost. The exact algorithm guarantees optimality but has potentially impractical

running-time, as it may enumerate factorial numbers (NΠ) of iterations in the worst case.

Algorithm 2 Exact algorithm

Input: An n × mp cost matrix which is equivalent to a weighted bipartite multigraph
G = (R, T,E) where |R| = n, |T | = m and pij = p,∀{i, j}, and penalization functions
Ql for all l.
Output: An optimal assignment X∗ and its cost c∗.

1 Initialize s = 1
2 while s < NΠ

3 Compute Xs and cs− //MC Murty’s ranking algorithm
4 if s = 1
5 Compute Qs and cs+ = cs− +Qs

6 s = s+ 1
7 else
8 if (cs− ≥ min{c1+, ..., c(s−1)+})
9 X∗ = Xs−1 and c∗ = min{c1+, ..., c(s−1)+}
10 return X∗, c∗
11 else
12 Compute Qs and cs+ = cs− +Qs

13 s = s+ 1
14 end if
15 end if
16 end while
17 X∗ = Xs and c∗ = min{c1+, ..., cs+}
18 return X∗, c∗

37

Figure 3.6: An illustration of the exact algorithm’s terminating condition. When an unpenalized cost is
larger than the current minimum cost (including a penalization), at s = 4, the algorithm terminates because
all subsequent assignments cost more than the minimum cost even without penalizations.

3.4.4 Optimal algorithm for the L-type problem

The first phase uses an interior point method (IPM) for linear programming (LP). LP

has the optimal solution on a vertex of a polytope. All vertices of a polytope defined by

a TU matrix are integer. However, an IPM may produce a fractional solution in which a

problem has multiple optimal solutions [30]. In this case, all optimal solutions form an

optimal face of the polytope [109]. It is then likely that an IPM converges to an interior

point of this optimal face, which is not integer. By using an IPM, we obtain a polynomial

running time7 but lose the integrality of the solution.

If the solution from the first phase is fractional, we use the MC Hungarian method to

choose one of the multiple optimal solutions which is integer. The fractional matrix from

the first phase is doubly stochastic: the sum of each value in a row and a column is equal to

one (e.g.,
(

0.9 0.1
0.1 0.9

)
). A doubly stochastic matrix must be produced because the assignment

satisfies the mutual exclusion constraint (3.2)–(3.3), which is same with the definition

of the doubly stochastic matrix. Owing to the combinatorial structure of the fractional

7The simplex method does not produce a fractional solution because it visits only vertices which lie
on integer points. However, the simplex method is not a polynomial-time algorithm because it could visit
exponentially many vertices.

38

assignment matrix, each value of the assignment variables can be interpreted as a weight

of the likelihood where the variable has the value of one. We use the MC Hungarian

method where the input matrix (i.e., cost matrix) is the fractional assignment matrix. The

MC Hungarian method for rounding outputs an integer assignment matrix (satisfying the

mutual exclusion and the integral constraints) whose cost sum is the maximum. Therefore,

the fractional matrix is combinatorially rounded (e.g.,
(

1 0
0 1

)
). The pseudocode of the L-

type algorithm is not given due to the space limit but same with Alg. 3 except Line 1: it

uses an IPM for LP.

The time complexity of the IPM for LP that we used is O((max{2n, nmp})3L) [47]8

where L is the bit length of input variables. The Multi-Choice Hungarian method has

O(p2(max{n,m})3) complexity. Thus, the overall time complexity isO((max{2n, nmp})3L).

We use MOSEK optimization toolbox for MATLAB [80], particularly msklopt function.

3.4.5 Approximation algorithm for the C-type problem

The pseudocode is given in Alg. 3. The first phase uses an IPM for a convex opti-

mization problem. The objective function must be twice differentiable to use the IPM. In

convex programming, the solution could be fractional because not only are there multiple

optimal solutions but also it is the unique optimal fractional solution. We also use the MC

Hungarian method to round fractional solutions. Since the rounded solution may not be

an optimal integer assignment, we provide its performance guarantee.

Theorem 3.8 The performance guarantee of the C-type algorithm is max {Q1,...,NΠ
} −

min {Q1,...,NΠ
}.

Proof. Let P1,...,NΠ
be assignments of an C-type problem instance and Q1,...,NΠ

be the

penalizations of the assignments. Let K be the upper bound of unpenalized costs, so all

assignments can have their unpenalized costs up to K. Without loss of generality, all

8The state of the art is [4] whose complexity is O(max(2n,nmp)3

lnmax(2n,nmp)L).

39

P1,...,NΠ
have the unpenalized cost K because there can be multiple assignments that have

the same cost sum. Let J be the largest integer solution among P1,...,NΠ−1
and PNΠ

be the

optimal assignment whose cost is J∗. Then

J = K + max {Q1,...,NΠ−1
},

and we define

J∗ = K + ε+QNΠ

where ε is a nonnegative real number.

Since J ≥ J∗, max{Q1,...,NΠ−1
} ≥ QNΠ

which means QNΠ
= min{Q1,...,NΠ

}. Then

J − J∗ = J − (K + ε+QNΠ
) = J − K− ε−QNΠ

≤ J − K−QNΠ
= max {Q1,...,NΠ−1

} −QNΠ

= max {Q1,...,NΠ−1
} −min{Q1,...,NΠ

}.

Since max {Q1,...,NΠ
} ≥ max {Q1,...,NΠ−1

},

J − J∗ ≤ max {Q1,...,NΠ
} −min {Q1,...,NΠ

}.

�

The significance of the performance guarantee can differ depending on the viewpoint.

Clearly, the importance of the performance guarantee depends on the precise form (and

the value) of the penalization function. Thus, the guarantee is less important when its

particular value is very large. However, the guarantee is significant in the sense of its

independence from assignments. Regardless of which assignment is computed, the guar-

antee solely depends on the penalization function. We have seen that the hardness of the

problem has a spectrum depending on the form of the penalization function (in Section

3.3.5). Likewise, the importance of the guarantee also has a spectrum depending on the

40

form of the penalization function. If a penalization function has bounded changes with

respect to its input, the difference between an approximation and an optimal value would

not be very large, so the (practical) importance of the guarantee is more significant. We

may construct a penalization function that satisfies a certain condition (e.g., limiting the

function’s change), and increase the significance of the performance guarantee.

The time complexity of an IPM for a convex optimization problem isO((max{2n, nmp})3.5L)

[85]. Thus, the overall time complexity is O((max{2n, nmp})3.5L). We use MOSEK

mskscopt function for the optimization phase. Table 3.4 summarizes the problems and

algorithms.

Table 3.4: A summary of the problems and algorithms.

Problem: P-type C-type L-type

Objective function
Polynomial-time

Convex Linear
computable

Complexity class NP-hard NP-hard P

Algorithm
Step I

Iterative method Linear programming Convex optimization
(Ranking alg. + (IPM) (IPM)

Step II MC Hungarian) Rounding (MC Hungarian method)
Overall complexity O(mPn × Πn,m

i,j pij) O((max{2n, nmp})3.5L) O((max{2n, nmp})3L)

Performance
Optimal

max {Q1,...,NΠ
}

Optimal
guarantee −min {Q1,...,NΠ

}

3.5 Extension: Modeling Synergies

The modeling method presented in this chapter also can be applied to modeling neg-

ative penalization, namely synergies. Some synergistic effects make interrelations among

costs and can be modeled by a concise representation like Q(·) in (3.1). Fig. 3.7 shows an

example. Robots are located outside of a cluttered disaster site (e.g., a collapsed building

or an explosion site). The robots have individual tasks (e.g., monitoring survivors until

assistance arrives) inside of the site. There are multiple paths to reach the tasks, but they

41

Algorithm 3 The C-type algorithm

Input: An n × mp cost matrix which is equivalent to a weighted bipartite multigraph
G = (R, T,E) where |R| = n, |T | = m, pij = p, ∀{i, j}, and convex penalization
functions Ql for all l.
Output: An optimal assignment X∗ and its cost c∗.

1 Compute X∗R+ and c∗R+ //IPM for CP

2 Compute X̂∗Z+ and ĉ∗Z+ //MC Hungarian method

3 X∗ = X̂∗Z+ , c∗ = ĉ∗Z+

4 return X∗, c∗

are covered with debris. Robots should push their ways through the debris. The goal is to

minimize the total traveling time to reach their destinations. Even though the robots per-

form their own tasks, there can be collaborations among robots on the same resource such

as pushing debris together on the same path. Robots are neither tightly coupled to make

coalitions nor required to have pre-coordination. Collaborations make synergistic effects,

but more robots on the same resource produce more resource contention so the number of

robots on shared resources is needed be determined optimally. Note that the exact algo-

rithm is not applicable when negative costs may be incurred by synergistic effects. In this

case, the negative costs could make any subsequent penalized cost cs+ less than the current

optimal assignment c∗, so the algorithm is not able to decide whether to terminate before it

enumerates all assignments. However, the other two algorithms are still applicable when

synergistic effects are modeled as a linear or a convex function.

Applications are not limited to physical interactions. When robots explore to search

for their individual targets, one robot can connect to a network and tell other robots in the

network what it detects if the detected target is not the robot’s target. The collaboration

reduces searching time and its effectiveness is amplified as more robots participate by

connecting to the same network. However, this synergistic effect would be deteriorated

as more robots connect to the same network because the communication bandwidth is

42

R2

R3

T2

T3

T1 p2

p1

R1

Figure 3.7: An example in which both synergy and resource contention occur while robots perform individ-
ual tasks. Tasks are inside of the cluttered disaster site, and each robot can choose one path between p1 and
p2 to reach the tasks. The robots who choose the same path become to push debris together.

limited.

3.6 Experiments

We demonstrate that the exact algorithm works well and returns a result in reasonable

time for practically sized cost matrices. The L-type and C-type algorithms produce solu-

tions quickly for even larger matrices. We implemented all the algorithms in MATLAB.

The solution quality is measured by a ratio of an approximated solution to an optimal so-

lution η = c′∗

c∗
≥ 1. We assume that n = m and pij = p,∀{i.j} for all the experiments. If

the pijs are not identical, then we add dummy edges with infinite cost. As we detail next,

both randomly generated problem instances and instances based on real-world scenarios

were used to validate the algorithms. Also, they are demonstrated with physical robots in

small-scale experiments in our laboratory. First, we provide some detail on the particular

penalization models used.

43

3.6.1 Penalization functions

A penalization function models the interference incurred in a particular environment,

and should consider the specific aspects of the robots and environment. Simple examples

based on a factorization that adds costs as a function of the number of robots utilizing a re-

source, include models in the form of linear and an convex quadratic functions. Following

the form in (3.6), let those penalization models for use of the l-th resource be

Ql(nl) =

 βLnl + β′L nl ≥ 1

0 otherwise,
(3.13)

and

Ql(nl) =

 βCn
2
l + β′Cnl + β′′C nl ≥ 1

0 otherwise,
(3.14)

where βL, β
′
L, βC, β

′
C, and β′′C are constants.

For the multi-vehicle transportation scenario, we used the classic flow model developed

by domain experts to quantify traffic congestion [86]. Many models have been proposed in

the literature that compute a traffic speed v (m/s) according to traffic density ρ (vehicle/m).

We let ρ = nl because we only consider an instantaneous assignment problem. We use an

exponential model for our application that travel time (sec) is used as cost

Ql(nl) =

dl

vf

[
1−exp

{
− λ
vf

(
1
nl
− 1
ρj

)}] ρj ≥ nl

+∞ otherwise,

(3.15)

where vf is the free flow speed (when nl = 0), ρj is the jam density, and λ is the slope of

44

the headway-speed curve9 at v = 0, and dl is the length of a resource that could be shared

with other robots such as a passage.

We also suggest an idea of designing wireless network congestion models. Throughput

of per client (Mbps) with respect to the number of client (n) is shown in [37, Figure 4 and

Table 4]. From the data, a quadratic convex function is fitted where the function represents

the relationship between the number of clients (robots) and the unit transmission time

(reciprocal of throughput). This is a rough modeling based on the data sheet, and domain

experts may build more accurate models. The network congestion example suggested in

Section 3.2.4 can use this model to minimize the total completion time including data

transmission time.

3.6.2 Random problem instances

A uniform cost distribution (U(0, 60)) is used to test the algorithms. The penalization

function (3.14) is used for the exact and C-type algorithms, and (3.13) is used for the L-

type algorithm (βL = βC = 1 and β′L = β′C = β′′C = 0). With fixed p = 5, the size

of the cost matrix (n) increases from 5 to 100 at intervals of 5 (10 iterations for each n).

Fig. 3.8 and Table 3.5 show running times and solution qualities of our algorithms. We also

compare them with conventional methods such as branch and bound (BB) and randomized

rounding.10 We do not report results for the BB method on the C-type because the running-

time is impractical and prohibitive even when the instance size is small (e.g., n = 10). We

display results in multiples of 10, owing to the space limitations.

The exact algorithm finds an optimal assignment in a reasonable time on small in-

stances (n ≤ 8); even a small problem has a huge search space (e.g., NΠ = 375, 000 when

9The ratio of (infinitesimal) velocity change over (infinitesimal) headway change.
10If a penalization function is linear, network flow algorithms can have a better bound (e.g.,O(pn3)) than

the L-type algorithm. For convex penalization functions, network flow algorithms have no way to deal with
nonlinear objective functions [11]. One of the possible ways that leads to global optimality for the problems
with nonlinear objective functions is to use a nonlinear programming formulation. However, the formulation
may not produce integer solutions so BB and randomized rounding are used.

45

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Running time (Uniform costs)

Input size (n)

Ti
m

e
(s

ec
)

Exact
B&B: LP
Rounding: CP
mAPwCP
Rounding: LP
mAPwLP

(a) Running times

0 20 40 60 80 100

1

1.2

1.4

1.6

1.8

2

2.2
Solution quality (Uniform costs)

Input size (n)

R
at

io
 (η

 =
 c

/c
*)

B&B: LP
Rounding: CP
mAPwCP
Rounding: LP
mAPwLP

(b) Solution qualities

Figure 3.8: Running time and solution quality of random instance. (a) The L-type and C-type algorithms are
slightly faster than the rounding method whose worst case running time is exponential. (b) The C-type has
better solution quality than the rounding method.

n = 5 and p = 5). The L-type and C-type algorithms quickly find solutions even if n is

large. Our methods are faster than the BB methods and similar to the randomized round-

ing methods. However, the methods we propose are the only to have polynomial running

time. The solution qualities of the C-type is better than the BB method (also the proposed

algorithms have a performance guarantee). The BB methods find an optimal solution but

have exponential worst-case time complexity. These properties are shown in the results:

the running time is longer but the solution quality is optimal (η = 1). The randomized

rounding methods are faster because they have a single random-rounding step, but the

randomness makes their solution quality bad.

3.6.3 Multi-vehicle transportation problems

A multi-vehicle transportation problem is used as a representative real-world applica-

tion for our algorithms. We assume that n homogeneous robots and n tasks are distributed

across p bridges in an urban area as shown in Fig. 3.9. The robots and the tasks are uni-

formly distributed within the boundaries. Distances from the robots to the tasks though the

bridges are collected by using the Google Directions API [48]. The raw data are in me-

46

Table 3.5: Running time and solution quality of random instances.

(a) The exact algorithm.

n 3 4 5 6 7 8 9
Running Mean 0.0041 0.0115 0.0208 0.0894 0.3324 3.8327 95.1580

time (sec) Std. dev. 0.0043 0.0047 0.0144 0.0721 0.2467 2.6072 93.7848

(b) The L-type and C-type algorithms and existing methods.

n 10 20 30 40 50 60 70 80 90 100

L
-t

yp
e

Running Mean 0.2689 0.2743 0.2812 0.3003 0.3127 0.3406 0.3848 0.4333 0.5029 0.5786
time (sec) Std. dev. 0.0040 0.0091 0.0037 0.0064 0.0062 0.0046 0.0059 0.0081 0.0091 0.0067
Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C
-t

yp
e

Running Mean 0.2296 0.2421 0.2546 0.2898 0.3354 0.4005 0.4908 0.5835 0.7094 0.8462
time (sec) Std. dev. 0.0051 0.0068 0.0055 0.0044 0.0071 0.0116 0.0101 0.0150 0.0187 0.0311
Quality Mean η 1.0537 1.0314 1.0093 1.0092 1.0076 1.0104 1.0074 1.0067 1.0020 1.0030

(η) Std. dev. 0.0282 0.0353 0.0086 0.0078 0.0042 0.0105 0.0089 0.0100 0.0016 0.0020

B
&

B
:L

P

Running Mean 0.2688 0.2787 0.3235 0.4121 0.5442 0.7207 1.0080 1.4342 2.0219 2.7971
time (sec) Std. dev. 0.0160 0.0084 0.0040 0.0054 0.0162 0.0037 0.0070 0.0137 0.0080 0.0277
Quality Mean η 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R
ou

nd
in

g:
L

P

Running Mean 0.2972 0.2662 0.2644 0.2797 0.3051 0.3598 0.4173 0.4392 0.5186 0.6446
time (sec) Std. dev. 0.0386 0.0146 0.0072 0.0053 0.0067 0.0619 0.0305 0.0121 0.0295 0.0706
Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R
ou

nd
in

g:
C

P

Running Mean 0.2477 0.2841 0.2538 0.2816 0.3310 0.4203 0.4930 0.6485 0.7368 0.8602
time (sec) Std. dev. 0.0208 0.0266 0.0150 0.0041 0.0075 0.0164 0.0104 0.0564 0.0398 0.0249
Quality Mean η 1.5435 1.6424 1.2960 1.2140 1.1957 1.1746 1.1448 1.1075 1.1332 1.0651

(η) Std. dev. 0.6057 0.5695 0.3391 0.1603 0.2342 0.0614 0.0731 0.0342 0.0630 0.0342

47

Figure

3.9:

Robots

and

tasks

are

located

across

five

bridges.

n

robots

and

tasks

are

uniformly

distributed

in

the

upper

and

lower

boxes,

respectively.

ters (m) but converted to time (sec) according to vf. Thus, the cost is travel time without

congestion and penalized by the increased time owing to congestion. With fixed p = 5, n

increases from 5 to 50 (3 to 9 for the exact algorithm). Other parameters are set as follows:

vf = 16.67 m/s,

dl = {500, 300, 250, 400, 200} m,

ρj l = {120, 80, 70, 90, 80} robot/choice

λl = {0.1389, 0.1667, 0.1528, 0.1944, 0.1389} s−1

where l = 1, ..., 5. The parameters reflect the characteristics of the real-world multi-

vehicle transportation problem.

We use (3.15) for the exact algorithm. However, our implementations for Alg. 3 do not

allow a complex exponential objective function like (3.15). Thus, we approximate (3.15)

48

10 20 30 40 50

100

200

300

400

of robots (n)

P
en

al
iz

at
io

n
(s

ec
)

Exponential traffic model approximation: Bridge 5

Residuals
Linear: 283.8153
Convex: 49.2053

Original
Linear
Convex

(a) An example of approximations

10 20 30 40 50
0.99

1

1.01

1.02

1.03

Input size (n)

R
at

io
 (

η
=

 c
/c

*)

Approximation quality with respect to the original exponential model

Linear
Convex

(b) Solution quality

Figure 3.10: Approximations of a complex nonlinear function to simple functions for practical implementa-
tions. (a) We approximate a complex exponential function with a linear and a convex quadratic function. (b)
Solution qualities when the approximated functions are used for all five bridges.

with a linear and a convex quadratic function such as (3.13) and (3.14). An example of the

approximations is shown in Fig. 3.10a. The quality of the approximation is measured by

the sum of squared residuals. Table 3.6 shows the approximation results of all penalization

functions of the five bridges.

Table 3.6: Penalization function approximation results of the five bridges.

Residuals
Fitting type Bridge 1 Bridge 2 Bridge 3 Bridge 4 Bridge 5

Linear 301.2 408.8 531.1 389.6 283.8
Convex 22.92 70.61 124.1 52.28 49.21

The Fig. 3.10b shows solution qualities when the approximated functions are used.

For each instance, we compute an optimal assignment with the exact algorithm when the

original model is used. Then we compare it to the assignments when the approximated

functions are used. As a result, the solution qualities are good (less than 1.024) so those

approximations are acceptable.

We compare our method with the optimal assignment problem formulation that does

not include additional costs incurred by resource contention (but the additional costs occur

49

when robots perform tasks). We use Alg. 3 with the convex quadratic penalization function

that we approximated from (3.15). For the comparison, we use the Hungarian method to

compute an optimal assignment without considering penalization. Once an assignment is

obtained, we use the same convex quadratic penalization function to the additional costs

associated with the assignment. Table 3.7 show the results (10 iterations for each n).

The results show that incorporating resource contention into this transportation problem is

crucial to achieve global optimality.

Table 3.7: Differences of the total cost sums between the C-type and the Hungarian method in the multi-
vehicle transportation problem.

n 5 10 15 20 25 30 35 40 45 50
Cost difference (sec) 5.5311 15.7429 14.0122 20.4954 21.3051 40.0226 45.8332 49.9823 61.9301 83.9979

Next, we compare our algorithms with the existing methods that use our models.

Fig. 3.11 and Table 3.8 show the results (10 iterations for each n). The results are similar to

the random instance case. This experiment shows that our algorithms can model realistic

scenarios of robotic applications.

3.6.4 Physical robot experiment

We demonstrate that our method achieves global optimality even interference is not

negligible. Fig. 3.12 shows the experimental setting. Two iRobot Creates (R1 and R2)

have tasks of visiting the other robot’s position on the opposite side of environment (T1

and T2). There are two passages to reach their destinations (shown as p1 and p2 in the

figure). We use travel time as the cost and (3.15) as the penalization function. We com-

pute the assignment with Alg. 2. We assume that R1 and R2 are functionally identical.

Space constraints and the data from the previous experiments forced us to omit reporting

quantitative results.

50

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Running time (Uniformly distributed robots/tasks)

Input size (n)

Ti
m

e
(s

ec
)

Exact
mAPwCP
mAPwLP

(a) Running times

0 10 20 30 40 50
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1
Solution quality (Uniformly distributed robots/tasks)

Input size (n)

R
at

io
 (η

 =
 c

/c
*)

mAPwCP
mAPwLP

(b) Solution qualities

Figure 3.11: Running time and solution quality of the multi-vehicle transportation problem. (a) The L-type
and C-type algorithms quickly produce solutions. (b) The qualities are close to one for both algorithms.

Table 3.8: Running time and solution quality of the multi-vehicle transportation problem.

(a) The exact algorithm.

n 3 4 5 6 7 8 9
Running Mean 0.0044 0.0088 0.0395 0.1298 0.5913 4.2897 126.0774

time (sec) Std. dev. 0.0015 0.0045 0.0290 0.1171 0.8772 6.8811 202.1757

(b) The L-type and C-type algorithms.

n 5 10 15 20 25 30 35 40 45 50

L
-t

yp
e

Running Mean 0.2634 0.2627 0.2678 0.2710 0.2753 0.2855 0.2846 0.2935 0.3017 0.3118
time (sec) Std. dev. 0.0069 0.0054 0.0054 0.0073 0.0032 0.0108 0.0072 0.0037 0.0024 0.0033
Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C
-t

yp
e

Running Mean 0.2293 0.2232 0.2307 0.2417 0.2496 0.2589 0.2779 0.2976 0.3170 0.3515
time (sec) Std. dev. 0.0159 0.0034 0.0059 0.0058 0.0081 0.0056 0.0076 0.0133 0.0045 0.0040
Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

51

(a) Both R1 and R2 use p1. (b) R1 uses p1, and R2 uses p2.

Figure 3.12: Two cases of resource use by two mobile robots. (a) Robots use the same resource so that
interference is occurred. (b) Robots use different resources to avoid the interference.

When the robots move through the shortest path to the destination to attain the min-

imum travel time, they choose the same passage p1 (Fig. 3.12a). However, this choice

incurs interference between the robots. When the assignment is penalized, the best assign-

ment is changed to the other assignment: R1 uses p1 and R2 uses p2 (Fig. 3.12b). When

the robots use the same resource p1, it takes 102 seconds to complete the tasks whereas

the interference-free assignment takes 87 seconds.

3.7 Summary

In this chapter, we define the mAPwP problems and show that the P-type and C-type

problems are NP-hard, and the L-type problem is in P. We develop the Multi-Choice Hun-

garian method, which is a generalization of the original method, to allow multiple choices

of performing tasks. We present an exact algorithm that generalizes Murty’s ranking al-

gorithm to solve the multi-choice problem, which employs the MC Hungarian method as

a subroutine. In addition, we propose two polynomial-time algorithms for the L-type and

C-type problems. The L-type algorithm produces an optimal assignment, and the C-type

algorithm computes a solution with bounded quality. In the experiments, we model in-

52

terference among robots by introducing several penalization functions; the results show

that the exact algorithm finds an optimal solution, and the L-type and C-type algorithms

produce an optimal and a high-quality solution quickly. We also conduct physical robot

experiments to show how resource contention aggravates optimality in practice and that

the proposed algorithm achieves global optimality when an interference model is included.

53

4. MITIGATING WEAKNESSES IN CENTRALIZED MULTI-ROBOT TASK

ALLOCATION WITH UNCERTAIN AND INTERRELATED COSTS

In MRTA, it is general that each robot estimates the costs of performing each task,

then these estimates are shared by robots over a communication network. Most often an

optimal assignment is computed by a central computation unit (e.g., most approaches using

the Hungarian method [65], an auctioneer [34], or a linear programming framework). But

while robots are executing their assigned task, the assumptions under which costs were

calculated may turn out to be invalid: the environment may change, robots may fail, or

a variety of other unexpected situations may emerge. One solution which ensures a fluid

response to these contingencies, is to periodically re-calculate costs and re-compute the

optimal task assignments. This solution incurs computational and communication expense

proportional to the desired recency.

We are interested in the MRTA problem where an instantaneous scalar estimate of a

cost may be inappropriate or invalid. This arises naturally when there is uncertainty in

some state used in computing the costs, or when the costs evolve as tasks are performed

and the estimates are out of date. The first and perhaps most straightforward representation

for an uncertain cost is to generalize a single value to a range of possible values, moving

geometrically from a point to a line. For example, the autonomous robot in Fig. 4.1 is able

to estimate its shortest and longest driving times (which may be used as cost measures) to a

destination by considering information about its route. The lower bound of the time would

be merely the time spent on driving (distance over the maximum speed), and adding the

maximum waiting time for traffic signals yields the upper bound1. Then, conceptually, all

c© 2015 IEEE. Reprinted, with permission, from Changjoo Nam and Dylan Shell, “When to do your
own thing: Analysis of cost uncertainties in multi-robot task allocation at run-time,” in Proceedings of IEEE
International Conference on Robotics and Automation, May 2015.

1For simplicity, we assume an absence of congestion and acceleration/deceleration here.

54

t1=[0, 10] t2=[0, 15]

Figure 4.1: A simple example where task costs which are not precisely known to the robot beforehand. The
driving time c to the destination will vary depending on the traffic signals. A lower bound c is d

vmax
when

t1 = t2 = 0, and an upper bound c̄ is d
vmax

+ 25 (assuming the robot drives with the maximum speed) where
d is the distance to the destination and vmax is the maximum speed.

O c1c1

c2

c2

c1

c2

(a) A cost region defined by
an upper and a lower bound.
Costs are uncertain but inde-
pendent.

O c1

c2

(b) A linear convex boundary
showing both uncertainty and
a linear interrelationship.

O c1

c2

(c) A nonlinear nonconvex
boundary, for complex uncer-
tainty and interrelationships
between costs.

Figure 4.2: Figurative illustrations of the region-based cost representation. Costs that are uncertain and
interrelated are represented with boundaries by treating the set of possible costs as regions.

permissible values for costs fall in a (high-dimensional) region as illustrated in Fig. 4.2a.

Regions more complex than an axis-aligned box can describe nontrivial interrelationships

between the permissible costs (as in Fig. 4.2b or Fig. 4.2c).

Sensitivity analysis (SA) has been studied for several decades in Operations Research

to assess the robustness of optima for an optimization problem to perturbations in the input

specification [38], [104], [70]. Analysis of an optimal assignment must compute a region

where costs within that region preserve the current optimal assignment. However, SA has

found limited applicability to multi-robot task-allocation problems: the analysis assumes

that the decision maker (its counterpart in multi-robot systems is the central computation

55

unit) is able to access all information off-line and has control all over the constituents

without communication constraints. The physically distributed nature of multi-robot sys-

tems and their limited communication and computational resources pose challenges to the

direct application of classical SA.

We use ideas from SA to develop methods that explore questions pertinent to resource

limitations in multi-robot systems. For a given problem instance, these methods reduce

global communication and centralized computation, or quantify the optimality trade-offs

if communication is avoided. This chapter makes the following contributions:

• We propose a region-based cost representation that captures the uncertainty in the

states of robots, tasks, or the environment. This representation does not make the

simplifying assumption where costs are independent; it models tightly interrelated

costs, which enables a region of costs to present richer information.

• We develop an algorithm that analyzes the cost structure for a given assignment. It

seeks cliques in the team, factorizing the group into sub-teams that are able to work

independently, communicating only among themselves, forgoing global communi-

cation but without sacrificing global optimality.

• We consider the problem of deciding whether it is beneficial to persist with the cur-

rent assignment even if cost changes mean that it is no longer optimal. We develop

a method for computing the worst-case cost sum if the robots retain their current

assignment, allowing one to decide whether to persist with the current assignment

because the computational/communication expense needed for re-assignment is pro-

hibitive.

• We examine how, once costs change, the robots can determine whether the current

task assignments are sub-optimal with minimal communication. Each robot may

56

compute a safe (one-dimensional) interval within which any cost variation does not

affect optimality. But even if a cost violates these bounds, other costs may have

changed too, and optimality may still be retained when the cost changes are consid-

ered together. We introduce a method that incrementally increases the dimension-

ality of the bounding region, growing the number of costs considered by commu-

nicating with adjacent robots. Global communication may be required in the worst

case but oftentimes local computation can reach the conclusion that the assignment

is still optimal.

4.1 Related Work

Some authors have proposed reoptimization schemes for multi-robot systems, allow-

ing updated assignments to be computed efficiently. Mills-Tettey et al. [79] describe a

dynamic (or incremental) Hungarian method that repairs initial optimal assignment to ob-

tain a new optimal assignment when costs have changed. Also, Shen and Salemi [98]

present a decentralized dynamic task allocation algorithm that uses a heuristic searching

method. These algorithms still use computational resources for those cost modifications

which end up with the same assignment.

Parker et al. [89] propose a decentralized algorithm to minimize the maximum cost

where cost changes over time. They represent a cost as a monotonically increasing func-

tion as time passes (e.g., fire spreading). Each agent assigned to a task decreases the cost

with a fixed rate. They propose a modified MAX-SUM algorithm that optimizes a global

utility function in a greedy way where the modification of the original max-sum algorithm

is made to incorporate uncertainty of the global utility. They precisely model varying costs

and include the model to the max-sum framework with the notion of uncertainty. How-

ever, their method has limited applicabilities when the change of costs cannot be foreseen.

Moreover, they assume that robots work with a constant rate, but the assumption could be

57

incorrect when the performance of robots depends on exogenous factors.

Liu and Shell [71] propose the interval Hungarian method (IHM) to manage uncer-

tainties in costs. Given an optimal assignment, the algorithm computes the maximum

interval of each cost in which costs within the interval do not change the current optimal

assignment. Thus, robots are able to decide how a cost change affects the optimality of

the current solution. However, the algorithm treats the problem of multiple cost modifica-

tions, which do occur naturally in multi-robot systems (e.g., a single robot failure affects

n costs), in an ad hoc fashion. The same authors also propose a sparsification and parti-

tioning method to distribute the assignment problem to reduce global communication and

re-assignment [72]. The method coarsens the utility matrix by using locality and sparsity

of tasks. Once the matrix is partitioned into several clusters, each cluster is able to compute

an assignment independently. Inspired by that work, we propose a factorization method

for problems where mere single time-step sparsity is not enough.

4.2 Interrelated Costs in a Finite Region

In this section, we formalize the cost representation in terms of a bounded region.

Then we propose three methods that alleviate dependencies on centralized structures such

as global communication and centralized computation. First, given a model of how costs

may evolve, we develop an algorithm that partitions a team of robots into several indepen-

dent cliques, which can maintain global optimality by communicating only amongst them-

selves. Second, we propose a method for computing the worst-case cost sub-optimality if

robots persist with the initial assignment and perform no further communication and com-

putation. Lastly, we develop an algorithm that assesses whether cost changes affect the

optimality of the current assignment through a succession of local checks.

58

4.2.1 The representation

We assume, most generally, that the costs belong to a finite region C where C ⊆ R(n2).

So any cost matrix C ∈ C. Domain knowledge permits specification of the boundary

of C. If only upper and lower bounds of costs are known, we can define the largest cost

boundary as in Fig. 4.2a, that is, as a hyper-cuboid2. In other words, C ∈ C has for each

cij a range cij ≤ cij ≤ c̄ij . It serves as a concise characterization of uncertain costs but,

crucially, fails to capture any interrelationships between costs.

Costs that have interrelationships can be modeled by having a more complex bound-

ary for C as shown in Fig. 4.3a where the boundary is modeled as a linear function. A

slightly richer example appears in Fig. 4.3b where part of a route is shared between two

destinations but after a fork in the road there are different waiting times and distances. The

resultant cost boundary is a convex polygon.

But practically, costs could have rather more complex boundaries. Fig. 4.3c shows an

example of Zermelo’s navigation problem [108]. Suppose an underwater vehicle capable

of navigating a certain maximum speed and heading angle moves through a water flowing

with a current. The problem is to find the time-optimal path from a position to a destina-

tion. If the vehicle solves the problem by steadily aiming at the appropriate fixed angle to

the current, the vehicle is able to navigate along a straight path to the destination, which

is the optimal. Costs change with the change of the direction of the current. If the current

may have any direction, the corresponding boundary of the costs is nonlinear convex as

shown in the right graph in Fig. 4.3c.

2The dimensionality of the cost space of an MRTA problem is often extremely high. The 2-D represen-
tation is a presentation aid.

59

t1=[0, 10] t2=[0, 15]

(a) (Left) Two destinations have routes that share a common seg-
ment. If cost is proportional to driving time, the traffic signals (with
unknown state) induces a delay that affects both. (Right) The line
represents the possible costs.

t1=[0, 10] t2=[0, 5]

t3=[0, 15]

(b) (Left) A road route forks and each fork has different waiting
times and lengths. One traffic signal affects both driving times to
the destinations but other signals influence the times independently.
(Right) The corresponding convex linear cost boundary.

θ

T2

T1

x

y
10m

10m

(c) (Left) An underwater vehicle plans to navigate to each of two
destinations. The vehicle is influenced by water current and adjusts
its heading to cancel out the current. The costs depending on the an-
gle θ of the current. (Right) The corresponding convex nonlinear cost
boundary when 0 ≤ θ < 2π and the vehicle moves at the maximum
speed.

Figure 4.3: Further robot navigation scenarios and corresponding cost boundaries.

60

𝑹𝟏

𝑹𝟐 𝑹𝟑

𝑻𝟏

𝑻𝟐

𝑻𝟑

𝟏𝟎𝟎𝒎

5𝟎𝒎

𝒕𝒘 = [𝟎, 𝟏𝟎]

m/s

(a) A multi-robot navigation example.

𝑅1

𝑅2

𝑅3

𝑇1 𝑇2 𝑇3

[10, 30]

[20, 60]

[10, 30]

[20, 60]

[10, 30]

[20, 60]

[30, 80]

[20, 50]

[10, 40]

(b) The cost matrix corresponding to (a).

Figure 4.4: An example of an MRTA problem with changeable costs. We have three robots (R1,2,3) and three
destinations (T1,2,3). The goal is to have one robot at each destination while minimizing the total sum of
traveling time. Since the costs could vary within the ranges in (b), there are multiple assignments possible.
The proposed methods can be used concurrently to analyze the assignments and to have less centralized
operations.

4.2.2 The algorithms mitigating the weaknesses of centralized systems

With a centralized system, computing the results of the SA for the multi-robot task

assignment is straightforward. The central unit computes an optimal assignment with the

latest costs and (2.7). Robots then report cost changes to the central unit and which then

checks if they violate θ(X∗). If the change does not alter the current optimal assignment,

the team keeps working as before (no other computation is needed, no other robots need

be notified of the cost change).

The centralized approach is simple to implement but often undergoes problems arising

from the distributed nature of multi-robot systems. Especially, maintaining global con-

nectivity in multi-robot systems is expensive, and the quality of communication changes

drastically [88]. We aim to develop methods for distributing the assignment problem to

alleviate dependence on the centralized structure: (i) factorizing a team of robots into

cliques if such cliques exist (Fig. 4.5a), (ii) computing the cost difference between the

61

worst-case cost sum (if the robots persist their initial assignment) and the best-case cost

sum (if they reassign tasks) (Fig. 4.5b), and (iii) communicating locally to decide whether

a re-assignment is necessary with cost changes (Fig. 4.5c).

In (i), we find all N possible assignments with a cost matrix C, which is changeable,

to factorize a team of robots without locality and sparsity of tasks. The challenge is how

to find N assignments. A brute-force method is computing all assignments for all costs in

the hyper-cuboid, but it is impossible because there is an infinite number of cij ∈ [cij, c̄ij].

Once optimal assignments X∗q and their θ(X∗q) for q = 0, · · · , N − 1 are computed by

resolving the challenge in (i), (ii) can be solved by finding the minimum cost matrix Cminq

in each θ(X∗q) and compute

max(C̄�X∗0 −Cminq �X∗q) (4.1)

for q = 0, · · · , N−1 where the operator�means the sum of all elements in the Hadamard

product of two matrices3. X∗0 indicates the initial optimal assignment. In other words, (4.1)

is the cost difference between the minimum among cost sums, where robots change their

assignments for the recent cost updates, and the maximum cost sum if robots maintain

their initial assignment.

If robots have one-dimensional intervals of their costs in which any cost change within

its interval does not alter the current assignment regardless of other cost changes, the

robots can work independently until any of their own intervals is violated. In (iii), such

intervals should be computed and distributed to robots. If a robot finds one of its intervals

is violated, the robot checks itself whether θ(X∗q) is violated by looking at its all other

costs. If other cost changes countervail the violation, the current assignment is preserved.

Otherwise, the robot communicates with an adjacent robot to consider more cost changes.

3Formally, A�B = eT (A ◦B)e.

62

(a) Factorizing a team into smaller
cliques.

(b) Persisting an initial assign-
ment.

(c) Local communication to
check optimality violations of
costs.

Figure 4.5: The methods to mitigate centralization in MRTA. (a) Cliques could be found by analyzing θ(X∗q)
for q = 0, · · · , N − 1, where N is the number of all possible assignments with given C. (b) The maximum
cost loss is computed for which robots do not have communication and persist an initial assignment even
with cost changes. (c) Robots have local communication to check whether their changed costs violate the
current θ(X∗).

Global communication may be required in the worst case, but local communication is

often enough.

Next, we show a simple scenario and how the proposed methods can be used concur-

rently. After that, we briefly describe our implementations of computing (2.7) and propose

three methods for the problems stated above.

4.2.2.1 An example scenario

We consider a multi-robot navigation problem. Suppose we have three autonomous

robots (R1,2,3) and three destinations (T1,2,3) as shown in Fig. 4.4. Time is the measure

of cost. The goal is to have one robot at each destination while minimizing the total sum

of traveling times. We assume that the robots drive through the shortest path, and each

intersection has a traffic signal. The waiting time at each signal is tw ∈ [0, 10]. Again,

we assume that robots drive at the maximum speed (10 m/s) when they move, and we do

not model delays from congestion and acceleration/deceleration. The corresponding cost

63

matrix is shown in Fig. 4.4b.

The initial optimal assignment is X∗0 =
(1 0 0

0 1 0
0 0 1

)
. If global communication and compu-

tation are reliable and not prohibitively expensive, the robots may use SA directly. If not,

the central unit computes the maximum cost difference (ii) to decide whether the robots

respond to changes. The worst cost sum when the robots keep the initial assignment is

100, and the best cost sum when they consider cost changes is 50 (i.e., when X∗1 =
(0 0 1

0 1 0
1 0 0

)
.

If the central unit decides that the difference (loss) 50 is too large, it tries to find cliques

(i) but there is no such clique in this example. Therefore, the robots finally cope with cost

changes in an incremental fashion (iii) from local communication.

4.2.2.2 Computing θ(X∗)

A feasible solution must include n optimal variables (correspond to optimal assign-

ments). Among the remaining n2 − n variables, n − 1 variables need to be chosen to

complete a feasible solution which consists of 2n−1 basic variables. Our implementation

SA(X∗0,C0) enumerates all |k| =
(
n2−n
n−1

)
feasible solutions to compute (2.7). The running

time grows factorially as the input size increases. However, the interiors of Rk may over-

lap and θ(X∗) could be covered by a subset of Rk. A method such as [40] can be used

to find nonoverlapping subsets of θ(X∗) which requires less effort than enumerating all

feasible solution sets.

We develop a randomized anytime algorithm RandSA(X∗0,C0) to facilitate a faster

computation of θ(X∗). A partial enumeration of degenerate solutions bring an incomplete

set, which is θ′(X∗), but the incomplete set often takes a large portion of θ(X∗). From this

observation, we implement a randomized anytime algorithm that randomly chooses de-

generate solutions without replacement and computes corresponding critical regions (2.6)

as much as possible with given time. The random sampling is done without replacement

so θ′(X∗) is nondecreasing during an execution. We prove that the randomized method is

64

complete so eventually computes an exact solution.

Theorem 4.9 The randomized anytime sensitivity analysis is complete.

Proof. The full set of linear inequalities θ(X∗) is the union of Rk where k ∈ H , as defined

by (2.7). For each k, Rk could be a complete set or a partial set of θ(X∗). The randomized

anytime method randomly chooses a feasible solution k and does not replace the sample.

If Rk is a complete set, the algorithm finds the complete θ(X∗) and accordingly finds the

exact interval of α. In the worst case, the algorithm chooses all samples, so all feasible

solutions are picked to compute all Rk for k ∈ H . Therefore, the union of Rk forms the

complete θ(X∗). �

The randomized method can be modified to sample with replacement, which has the

advantage that the method needs less memory space since it does not keep track of the

sampled Rk’s have been seen. Doing so sacrifices completeness, though it may converge

to quickly. It is also straightforward to bound the likelihood of providing a complete set

because there are
(
n2−n
n−1

)
choices.

4.2.2.3 Factorizing a team of robots

Factorization can be done by analyzing all possible assignments X∗q for q = 0, · · · , N−

1 computed by Alg. 4. An assignment problem has at least 4-dimension (two robots and

two tasks) so it is hard to visualize geometry of the problem. Thus, we describe a figura-

tive 2-D representation in Fig. 4.6a. One difference of the 2-D representation from higher

dimensional cases is that all linear equations in θ(X∗) are greater or equal to zero (see

(2.6)), but the upper boundary of θ(X∗) in Fig. 4.6a has the opposite inequality.

We have an initial optimal assignment X∗0 and its θ(X∗0) (Alg. 4, line 2-3). l is an

arbitrary linear boundary in θ(X∗). If the objective value is greater or equal to zero when

l is maximized over the shaded area4 (line 6), l contains the entire cost set (the shaded

4All l should be maximized because of the inequalities of them (see (2.6)).

65

area C in Fig. 4.6a). Otherwise, the shaded area is not covered by l (see Fig. 4.6b) thus a

cost on l is perturbed to find a new θ(X∗) that includes the rest of C (line 12-22). Once

the current θ(X∗) is expanded by perturbing points (i.e., costs), newly found θ(X∗q) are

merged and checked also. The algorithm terminates if θ(X∗) completely includes C. It

returns all X∗q and θ(X∗q) found.

In Fig. 4.6a, the direction of a perturbation is toward c′. The magnitude ε of the

perturbation should be carefully chosen because a large εmay skip some θ(X∗q) on the way.

We describe how we determine the optimal magnitude and the direction of a perturbation.

Theorem 4.10 Let l be an arbitrary linear boundary in θ(X∗). The magnitude of a pertur-

bation ε to perturb an arbitrary point p on l of |p|
n

will not miss any θ(X∗).

Proof. Let l be the normal of an arbitrary linear boundary l in θ(X∗). From line 6 in

Alg. 4, we have c′, which is an extreme point of C outside of the current θ(X∗). The

projection of c′ onto l is

p =
c′ · l
|l|2

l.

Suppose that lc is the normal vector of the nearest boundary to l (other than itself). Let q

be a vector orthogonal to lc. The direction of movement from p to q is along a vector

pnew = p + d(q− p)

where d = |p| tanψ is the magnitude of the move. We look for the minimum d because

pnew is toward the closest boundary. tanψ is an increasing function in (−π
2
, π

2
). Therefore,

if ψ is minimized, d is also minimized.

Normalized vectors of the above vectors are denoted as l̂, l̂c, p̂, ˆpnew, and q̂. Since

l̂ ⊥ p̂ and l̂c ⊥ q̂, the angle between l̂ and l̂c is ψ as well. Therefore, l̂c · l̂c = cosψ. Since

ψ = arccos l̂c · l̂c, ψ is minimum at maximum l̂c · l̂c.

66

O c1c1

c2

c2

c1

c2

c'

p
l

lc

θ(X*)

pnew

ψ

q

(a) A 2-D figurative picture.

O c1

c2

O c1

c2

(b) Objective values of two cases.

Figure 4.6: A 2-D figurative representation of cost space. (a) Bold lines represent linear boundaries (hyper-
planes) of θ(X∗) and the shaded area represents a cost matrix C bounded by C and C̄. (b) If a boundary does
not cover all shaded area, the objective value of maximization over the area is negative (left). Otherwise, the
value is nonnegative (right).

As we discussed in Section 2.2.2, coefficients (normals) of linear boundaries in θ(X∗)

are−1, 0, or 1. To make a dot product of two normals of boundaries maximum, the bound-

aries should have the maximum number of 1’s (or the maximum number of−1’s). 1̂ is the

case but two boundaries should be distinct. Therefore, the product of 1√
n2

[1 1 1 · · · 1 1] and

1√
n2−1

[1 1 1 · · · 1 0] is the maximum, that is n2−1√
n2
√
n2−1

where n is the dimension of the cost

space.

Now we have ψmin = arccos n2−1√
n2
√
n2−1

. Therefore,

dmin = |p| tan(arccos
n2 − 1√
n2
√
n2 − 1

) = |p| 1√
n2 − 1

,

which is the distance to the closest boundary along pnew. We set a safe magnitude of

perturbation ε = |p|
n

, which does not skip any θ(X∗). �

Here we observe that only line 6 in Alg. 4 is related to the shape of cost boundary.

In line 6, a cost boundary is a feasible region of the linear programming problem. If the

feasible region is linearly constrained convex (i.e., a hyper-polytope), on may still find the

67

Algorithm 4 FindTheta
Input: An n× n cost matrix C0, C, and C̄
Output: A set of assignments X∗q and θ(X∗q) for q = 0, · · · , N − 1

1 i = 0, q = 1
2 X∗0 = Hungarian(C0)
3 θ0(X∗) = SA(X∗0,C0) //compute (2.7)
4 θ(X∗) = θ0(X∗)
5 while (1)
6 (c′i, obji) = linprog(li,C, C̄,max) //max li over the bounds

// li: the normal of the ith linear boundary li in θ(X∗)
7 if obji ≥ 0 //if C does not satisfy li ≥ 0
8 i = i+ 1
9 if i = |θ(X∗)| //if all linear boundaries in θ(X∗) are checked
10 break
11 end if
12 else //perturb a point p on li toward c′ to find

//a new X∗ and θ(X∗)
13 p = c′·li

|li|2 li // p is a projection of Xi onto li

14 ε = |p|
n

15 pnew = p + ε(c′ − p)
16 Cq = reshape(pnew, n) //reshape a vector to an n× n matrix
17 X∗q = Hungarian(Cq)
18 θ(X∗q) = SA(X∗q,Cq)
19 θ(X∗) = θ(X∗) ∪ θ(X∗q)
20 i = 0
21 q = q + 1
22 end if
23 end while
24 return {X∗0, · · · ,X∗N−1} and {θ(X∗0), · · · , θ(X∗N−1)}

68

vertices of the cost boundary with the maximum objective value by linear programming;

this preserves the same time complexity. If the feasible region is convex but nonlinear, we

can use convex optimization methods such as the interior point method, and the problem is

still in P as shown in Appendix B. However, the problem becomes NP-hard if the feasible

region is nonconvex (either linear or nonlinear) [7].5

These preceding hardness results show that the analysis of the assignment optimality

can include interrelated costs essentially for free if they are linear, but are tractable even

for costs related to problems like that of Zermelo’s. Furthermore, experimental results in

Section 4.3 show that treating interrelated costs as independent significantly decreases the

value of the analysis.

Cliques can be found easily by summing the assignments found that is XC =
∑N−1

q=0 X∗q .

If there are elements with zero in XC , the robot-task pairs are never assigned. If a block

diagonal matrix can be found, the main diagonal blocks represent cliques. With local com-

munication and computation within each clique only, the robots achieve global optimality.

4.2.2.4 Choosing to persist with the initial assignment

The pseudocode is shown in Alg. 5. All assignments X∗q and θ(X∗q) for q = 0, · · · , N−

1 are given by Alg. 4 (line 1). For each θ(X∗q), find the minimum costs Cq over θ(X∗q) with

the bounds C, and C̄ (line 3). For each q, we have an assignment X∗q and the minimum cost

Cminq . In line 6, min CminqX
∗
q returns the minimum cost sum of N assignments. On the

other hand, we can compute the maximum cost sum if robots do not change their initial

assignment, by computing C̄X∗0. Therefore, line 6 gives the maximum cost loss when

robots persist the initial assignment while having no communication and re-assignment.

One can decide with cworst whether to persist with the initial assignment by considering

5There are polynomial-time approximation algorithms for such nonconvex optimization problem (see
the review of optimization solvers in [69]). Therefore, we can replace the linear programming solver (line 6
in Alg. 4) by a solver appropriate to the shape of the feasible region.

69

Algorithm 5 MaxLoss
Input: An n× n cost matrix C0, C, and C̄
Output: A maximum cost difference cworst

1 ({X∗0, · · · ,X∗N−1}, {θ(X∗0), · · · , θ(X∗N−1)}) = FindTheta(C0,C, C̄)
2 for q = 0 to N − 1
3 (c′q, objq) = linprog(c, θ(X∗q),C, C̄,min)

//minimize costs over θ(X∗q) with the bounds
4 Cq = reshape(c′q, n)
5 end if
6 cworst = max{C̄�X∗0 −min(Cminq �X∗q)}
7 return cworst

the computational/communication expense of a re-assignment.

4.2.2.5 Incremental communication

θ(X∗) can be summarized in different ways to show relevant information about the

effect of cost changes. A one-dimensional cut yields a lower and an upper bound for each

cost. This interval is valid if all other costs remain unchanged. But α-dimensional cuts

allow simultaneous changes of the α costs, but n2 − α costs must remain unchanged. The

tolerance approach finds the maximum tolerance percentage of the costs that finally gives

a tolerance region. The region is a hyper-cuboid in which each dimension is bounded by

an interval cij − τij ≤ cij ≤ cij + τij where τij ∈ R≥0. (See [104] and the more recent

advance by Filippi [36] for details.)

This intervals (call this τ -interval for distinction) is not larger than the 1-D cuts of

θ(X∗), but they are independent from other cost changes. It is attractive in multi-robot

systems because robots do not need any communication for cost changes, unless their own

intervals are violated by cost changes. On the other hand, even though one of a robot’s

costs violates its τ -interval, other cost changes countervail the violation. For example,

an increase of a cost violates the interval, but a decrease of another cost could retain the

70

optimal assignment. We develop an algorithm shown in Alg. 6 that incrementally checks

a violation from a robot itself to adjacent robots.

θ(X∗0) and τ -intervals of the initial assignment are computed and distributed to robots

(line 2-5). Then the following procedure runs on each robot Ri concurrently. If cij vi-

olates its τ -interval, the costs are collected in a set Cvi (line 6-11). Ri checks cij ∈ Cvi

altogether whether they satisfy θ(X∗0). (Use cij of C0 for cij /∈ Cvi .6) The checking returns

Vi ∈ {0, 1} where Vi = 0 means that the cost changes turn out not to violate θ(X∗0) and

otherwise Vi = 1. It can be done simply by substituting cost variables in θ(X∗0) by the

initial and changed costs (line 13). If Vi = 0, the algorithm terminates and return Vi to

the central unit. Otherwise, Ri finds an adjacent robot and receives its changed cost set

Cva .7 If any of Ri finally returns Vi = 1, the robots need global communication; if none

of Ri returns Vi = 1, their cost changes do not alter the current assignment, and this fact

is checked without global communication.

4.2.2.6 Complexity analysis

Computing θ(X∗) hasO(|k|n2) time complexity where |k| is the number of degenerate

solution sets. Each k has (n−1)2 linear boundaries so there are at most |k|(n−1)2 bound-

aries. Alg. 4 is dominated by θ(X∗) computation in the while loop (lines 5–23). Each loop

iterates if a new θ(X∗) has found. Therefore, the time complexity is O((|k|n2)N) where

N is the number of possible assignments with cost matrix C. Alg. 5 executes Alg. 4 first,

and an O(n3) LP runs N times. Then it has O((|k|n2)N + Nn3) = O((|k|n2)N). Alg. 6

includes SA so is dominated by it, but the remainder of the procedure, which runs on each

robot has O(n) time complexity (we ignoring the costs of inter-robot communication in

this analysis). If Alg. 5 follows after executing Alg. 4, its complexity is O(Nn3) since it

6This needs an assumption that cij /∈ Cvi remain unchanged.
7We assume there is at least one robot in range. If there is no such robot, Ri can navigate or wait to have

a robot.

71

Algorithm 6 IncrementalComm
Input: An n× n cost matrix C0, C, and C̄
Output: Indicator variables {V1, · · · , Vn}

1 l = 1, V1, · · · , Vn = 0, Cvi = ∅
2 X∗0 = Hungarian(C0)
3 θ(X∗0) = SA(X∗0,C0)
4 T = TA(θ(X∗0),C0) //compute τ-intervals: Tij = [cij − τij, cij + τij]
5 Distribute θ(X∗0) and Tij to corresponding Ri

//Below lines run on each robot Ri concurrently
6 for j = 1 to n // i is fixed to each robot’s index
7 if cij < cij − τij and cij + τij > c̄ij // if Tij is violated,
8 Vi = 1 //there is at least one violation in Ri’s cost
9 Cvi = Cvi ∪ cij //collect violated costs
10 end if
11 end for
12 while |Cvi | ≤ n2 //while not all costs are included
13 Vi = Check(θ(X∗0), Cvi ,C0) //check Cvi altogether
14 if Vi = 0
15 break
16 end if
17 (Ra, Cva) = FindAdjacent(Ri) //Ra is an adjacent robot
18 Cvi = Cvi ∪ Cva
19 end while
20 return Vi //Vi = 1 if global comm. needed, otherwise Vi = 0

72

uses the output of Alg. 4.

The worst-case time complexity is not polynomial to input size because N and |k| are

on the order of a factorial of n. However, not all cij ∈ R≥0 are likely to be considered

because it is a bounded region, and the number of possible assignments is manageable.

Also, |k| can be reduced by using known methods such as that in [40], as discussed.

4.3 Experiments

We consider two scenarios based on reality where cost is traveling time. Both employ

the same assumptions as the example in Section 4.2.2.1. The first one is a rescue scenario

shown in Fig. 4.7a. Here, 10 victims (red stars) are inside a disaster site (black polygon)

and 10 robots (blue circles) are outside. The robots navigate into the site while pushing

debris. The robots move with 1 m/s speed and meet debris at every 10 m. The time to push

one object is tw ∈ [0, 1]. The second scenario is the multi-robot navigation problem shown

in Fig. 4.7b, where 30 Robots and 30 tasks are uniformly distributed in a bounded area.

The robots move at 10 m/s and encounter a traffic signal at every 300 m. The waiting time

for the signal is tw ∈ [0, 30]. Distances from the robots to the tasks are collected using the

Google API [48]. The raw data are in meters but converted to time (sec) by considering

robots’ moving speeds.

4.3.1 Computing θ(X∗)

The running times of the exact method are 0.014, 0.0764, 1.4524, 98.0622 sec for

n = 3, 4, 5, 6, respectively (variances are 0.001, 0.006, 0.0021, 0.1947, and 10 iterations).

Since the number of degenerate solutions |k| has factorial growth as n increases, the run-

ning time is not fast for larger problem instances. However, as discussed above, |k| can be

reduced. With large sizes, the anytime algorithm we suggested can help decrease running-

time.

As discussed in Section 4.2.2.2, the randomized anytime algorithm computes a partial

73

(a) A rescue scenario. Stars are victims
and circles are robots.

(b) A navigation scenario. Ran-
domly distributed robots and tasks.

Figure 4.7: Experimental setup for the multi-robot navigation problem. The marked robots and tasks in (a)
are specially chosen for Section 4.3.3.

set θ′(X∗). Fig. 4.8 shows percentages of the area from the randomized method with re-

spect to the complete θ(X∗) from the exact method when n = 4. For each time step, the

percentage is measured by 100 uniform samples over cij ∈ [0, 1000],∀i, j. The random-

ized method quickly approaches to 100% (at 0.0226 sec, it is same with the exact method).

This means that θ(X∗) from this randomized method is likely good enough to useful in

most practical instances. Since the topic of this chapter is not about improving running

time per se, we use the exact method in this section to find a theoretically complete region.

4.3.2 Reducing futile effort

We compare systems with the Hungarian method, 1-D intervals, and SA to see how ef-

ficiently they deal with cost changes. Suppose that there are multiple consecutive updates

to costs given to the central unit. A system using the standard Hungarian method must ex-

ecute the algorithm at every update to ascertain whether the updated costs alter the current

assignment. Some re-computations find new assignments, but the others would be fruit-

74

0 50 100 150 20040

50

60

70

80

90

100

110
The randomized anytime SA

%

Time step

Figure 4.8: The performance of the randomized anytime algorithm. It quickly approaches to 100% which is
the result from the exact method.

less attempts. Employing the 1-D interval method (e.g., iHM) saves some re-computation,

attempting a new assignment when any of the intervals are violated. Nevertheless some re-

computation would still be in vain because the method fails to consider simultaneous cost

changes. Lastly, a system with SA does not recompute an assignment unless changed costs

actually alter the current assignment. We measure the number of effective re-computations

with the same cost changes. We compare the standard Hungarian method and the 1-D cuts

of θ(X∗), which are identical to the intervals from the iHM, and θ(X∗).

Given an arbitrary n × n cost matrix (for n = 3, 4, 5), an optimal assignment was

computed. Then 50 random matrices, uniformly sampled between [0, 2], are added to the

cost matrix. The result is shown in Fig. 6.6 and Table 6.1. The success rate is computed

by (# of assignment changes/# of re-computations)× 100. The result clearly shows that

SA reduces unnecessary computations and communication.

4.3.3 Factorizing a team of robots

For each scenario, we randomly choose four robots and four tasks from the data col-

lected. For each chosen problem instance, we run Alg. 4. The result is shown in Fig. 4.10

75

Figure 4.9: Comparisons of different approaches with respect to cost changes.

Table 4.1: Comparisons of different approaches with respect to cost changes. (The Hungarian method, 1-D
intervals, sensitivity analysis.)

n = 3 n = 4 n = 5
Method Attempts Success Rate Attempts Success Rate Attempts Success Rate

HM 50 15 30.00% 50 14 28.00% 50 15 30.00%
1-D 36 15 43.59% 36 14 38.88% 42 15 35.71%
SA 15 15 100% 14 14 100% 15 15 100%

and Table 4.2 (2R:2R means that there are two cliques of two robots). Even though the sce-

narios do not have obvious spatial sparsity and/or locality, the algorithm is able to detect

cliques when a team has such structure. The average running times of two scenarios are

2.0210 sec and 2.2768 sec (σ2 = 0.1144, σ2 = 0.1851 for 20 iterations), respectively. We

also report results of factorization when tasks do have strong spatial locality (Fig. 4.10c).

Two robots and two tasks are located as the marked robots and tasks in Fig. 4.10.

Table 4.2: Factorization results. Frequencies of cliques found (20 iterations).

Clique size
Frequency

Rescue Navigation Locality
1R:3R 4 2 0
2R:2R 4 2 20

4R only 12 16 0

76

1R:3R 2R:2R 4R
0

5

10

15

20

Factorization: Rescue

F
re

qu
en

cy

(a) The rescue scenario.
1R:3R 2R:2R 4R

0

5

10

15

20

Factorization: Navigation

F
re

qu
en

cy

(b) The navigation scenario.
1R:3R 2R:2R 4R

0

5

10

15

20

Factorization: Locality

F
re

qu
en

cy

(c) Tasks with spacial locality.

Figure 4.10: Factorization results. Frequencies of cliques found (20 iterations).

Table 4.3: The maximum loss of persisting assignment. Some examples of execution results are shown
(navigation scenario). The middle three columns shows cost sums (sec), and the last column shows running
time (sec).

Size Persist Change Max Loss Time
2R 867.4 591.0 276.40 0.0624
3R 1036.6 518.2 518.4 0.8424
4R 1885.2 895.7 989.5 16.1305

4.3.4 Persisting with an initial assignment

Table 4.3 shows examples of maximum cost losses for different sizes of team. One

(the central unit or an operator) can decide whether to execute the initial assignment with-

out having any communication and computation using the cost loss information. If the

communication/computation expenses are prohibitive, it would be beneficial to persist the

initial assignment.

4.3.5 Incremental communication

Finally, we show how few communication messages are actually needed to detect

whether optimality has been violated by cost changes. For each scenario, we compute

the τ -intervals and distribute them to the robots. Each robot independently performs its

task unless its costs violate the τ -intervals. Once any robot has intervals violated, the

77

Table 4.4: Frequency of communication ranges. The bold numbers indicate the frequencies of local com-
munications. For example, in the rescue scenario, 3-robot team has 6 self checks and 8 two-robot communi-
cations.

Rescue Navigation
XXXXXXXXXXXXTeam size

Range
Self 2 3 4 5

Time (sec)
Self 2 3 4 5

Time (sec)
Mean Var Mean Var

3R 6 8 6 N/A N/A 0.0769 0.0004 11 5 4 N/A N/A 0.0476 0.002
4R 2 5 6 7 N/A 0.5156 0.0471 7 5 1 7 N/A 0.4898 0.373
5R 2 3 6 1 7 20.0539 55.4456 1 6 2 1 10 19.5001 60.9115

robot runs the individual procedure in Alg. 6. For each changed set of costs, we check

how many robots are involved in communicating, and record the frequency of occurrence

for this number. A team may have several local checks, but one robot may require global

communication. In such a case, we record the largest communication needed among the

robots. Note that we ensure every robot has at least one violation so all robots execute

Alg. 6. We randomly choose robots and tasks from the data sets. We change the team

size from three to five. Fig. 4.11 shows the results (for 20 iterations). In many executions,

purely local communication is enough (bold numbers in Table 4.4) to see how the costs

changes affect optimality of the current assignment. Note that running time includes the

central unit’s computation time for the τ -interval and θ(X∗). As the team size increases,

the running time increases as there is a combinatorial number of local communications.

The variance also increases because an early termination takes very short time while addi-

tional local communications take an amount of time related to a combinatorial factor.

4.3.6 Interrelated costs

We assume that costs have linear relationships and, like Fig. 4.3a, the robots share one

resource to perform tasks. Thus, any vicissitude affecting the resource changes all costs

by the same amount. For example, if there is a delay on a common route to reach tasks, all

traveling times increase accordingly by the same amount. We randomly choose an n × n

cost matrix and a scalar value of delay from U(0, 10). We model the relationships of costs

78

3-Robot 4-Robot 5-Robot
0

2

4

6

8

10

12
Local communication: Rescue

F
re

qu
en

cy

Self 2 3 4 5

(a) The rescue scenario.

3-Robot 4-Robot 5-Robot
0

2

4

6

8

10

12
Local communication: Navigation

F
re

qu
en

cy

Self 2 3 4 5

(b) The navigation scenario.

Figure 4.11: Frequency of communication ranges. For each team size, the left most bar means individual
check whereas the right most bar mean global communication. Local communication is more frequent with
Alg. 6.

through a set of linear equations (e.g., cij− cpq = tij− tpq for ij 6= pq where t is a nominal

cost without delay). We run Alg. 4 to compute all optimal assignments under the cost

boundary modeling interrelationships of costs. We also run the algorithm with a simple

bounded region that does not model the interrelationships.

The output of the algorithm is all optimal assignments that a team of robots may have

given a region of costs. In other words, assignments other than the output assignments

never happen to the team. Thus, a small number of output assignments means that there

are only few scenarios in task assignment. The results show that the number of output

assignments is greatly reduced when interrelationships are modeled (averagely from 9.95

to 1.85 as shown in Table 4.5a). From this analysis, we are able to find partitions in a team

of robots in which each partition can work independently without communicating with

other robots outside. Specifically, partitions can be found by summing the assignment

matrices found. If there are elements with zero in the summed matrix, the corresponding

robot-task pairs will be never assigned. If a block diagonal matrix can be found, the main

79

1R only 1R:3R 1R:1R:2R 2R:2R No partition0

5

10

15

20

Partitioning a team of robots: no interrelationship modeled

Fr
eq

ue
nc

y

(a) No interrelationship modeled.
1R only 1R:3R 1R:1R:2R 2R:2R No partition0

5

10

15

20

Partitioning a team of robots: interrelationships modeled

Fr
eq

ue
nc

y

(b) Interrelationships modeled.

Figure 4.12: The results of partitioning a team of robots. Modeling interrelationships reduces false positives
in computing all possible assignments within a cost region. Thus, more partitions can be found with the
smaller number of assignments.

diagonal blocks represent cliques. The results are shown in Fig. 4.12 and Table 4.5(b).

The cost region that models interrelationships removes false positives of possible optimal

assignments, so more partitions can be found.

Table 4.5: The results from sensitivity analysis for cost regions.

(a) The number of assignments from given cost
regions (20 iterations).

Interrelationship Not modeled Modeled
Mean 9.9500 1.8500

Std. dev. 4.2855 1.0984

(b) The frequency of partitions found when
n = 4 (20 iterations).

Partition type
Interrelationship

Not modeled Modeled
1R’s 0 18

1R:3R 0 3
1R:1R:2P 1 1

2R:2R 0 1
No partition 19 2

4.4 Summary

In this chapter, we propose a cost representation that incorporates uncertainty in costs

and models interrelated costs. The representation assumes that costs are bounded by a

80

finite region. We employ a sensitivity analysis approach for multi-robot task allocation

and compare it with other methods, showing that is advantageous when costs change. We

also proposed three methods that reduce centralization of multi-robot systems alongside

the basic routine for computing θ(X∗) and a fast approximate version, which is a random-

ized anytime algorithm. We examined our algorithms with realistic scenarios and data,

not merely randomly generated matrices. We also show that modeling interrelationships

yields tighter cost regions and hence better predictions for how the optimality of the task

allocation under interrelated and uncertain costs.

81

5. ANALYZING THE SENSITIVITY OF THE OPTIMAL ASSIGNMENT IN

PROBABILISTIC MULTI-ROBOT TASK ALLOCATION

In MRTA, the most common formulation involves, firstly, a cost being estimated for

each robot–task pairing, and then the computation of an assignment that minimizes the

sum of costs, i.e., the ST-SR-IA MRTA problem. When circumstances change or new

information comes to light (e.g., such as the discovery of a new task, deployment of addi-

tional robots, or the unexpected occurrence of an event) the assignment of robots to tasks

may need to be adjusted to reflect these contingencies. By doing so repeatedly and with

regularity, the robots can produce dynamic cooperative behavior that befits a team.

The literature on MRTA is expansive but in almost all treatments the estimated costs are

scalar values, failing to capture any uncertainty in the states of the robots, or the tasks, or

the environment. A further, and also nearly universal, assumption of the ST-SR problems

is that the costs are independent, having no interrelationship between values. Practical

inefficiencies can result rather easily from ignoring either such interdependencies or un-

certainty. Even very straightforward scenarios lead to MRTA problem instances where

these assumptions, though standard, are dubious. This chapter investigates the problem of

optimal assignments when neither of these simplifying assumptions are made.

This chapter explores a way to capture specific forms of uncertainty and to incorpo-

rate interrelationships between costs because we are interested, generally, in richer cost

representations along both dimensions. We consider costs as random variables for which

distributional information is available. Such the information could be obtained from robots

employing a state estimator or historical measurements from a dataset. For example, con-

sider the navigation example in Fig. 5.1 in which the robot and the task have position

This chapter, authored by Changjoo Nam and Dylan Shell, will appear in IEEE Robotics and Automa-
tion Letters as a regular article with the same title.

82

Figure 5.1: Cost uncertainty can arise in many ways. For example, owing to position uncertainty of the robot
and the task. The sum of two independent normal distributions is also normally distributed, so the distance
between a robot and a task is normally distributed. The traveling time is proportional to the distance, so time
spent navigating (a useful metric of cost) is also normally distributed.

uncertainties represented by 2 × 2 covariance matrices output from a Kalman filter. Un-

certainty in the robot’s pose and its estimate of the task’s position mean that traveling time

is uncertain too. More specifically, the cost is normally distributed if positions also have

normal distributions because the sum of two independent normal distributions is also nor-

mal. In this trivial example, we are assuming that no contingencies arise while the robots

are traveling and that the cost (in time) is simply proportional to the distance.

In the present work, we characterize costs by their mean and Conditional Value-at-

Risk (CVaR), the latter is a risk measure suitable for any type of distribution. The chapter

describes statistical properties of optimal assignments given the characterizations of costs

(i.e., the mean and CVaR) and a precise form of interrelationship in the costs that we can

model tractably. We examine an efficient model for computation of optimal assignments

subject to a risk preference that determines the relative importance between the mean

and CVaR, when there is a tension between them. We show that there is a useful class

of assignments that are indifferent to this risk preference. For problems outside of this

class, we introduce a fast heuristic algorithm which computes the sensitivity of an optimal

assignment to the particular risk preference.

83

5.1 Related Work

Assignment problems where costs are random variables are termed random assign-

ment problems, an area of extensive research that was first surveyed comprehensively

by Burkard and Cela [21] and, more recently, by Krokhmal and Pardalos [64]. Broadly

speaking, exact analysis studies problems in terms of instance size, n, while asymptotic

analysis considers n→∞. These analyses provide the upper and lower bounds, and the

expected value of the cost sum of an optimal assignment. The values are expressed as

functions of n, allowing one to understand behaviors of the problem according to its size

easily (see [21] for more detail). These work has a wide range of applications in prac-

tical problems where costs have uncertainties. The result gives a useful information to

system designing or decision-making process. In the probabilistic MRTA, we may use

the analyses to see how a realization of the cost sum of an optimal assignment, which

is determined based on only the expected values of the costs, is close to the best- or the

worst-case. However, the assumptions of homogeneous distributions (e.g., mostly the uni-

form [0, 1] distribution) and the independent and identically distributed random variables

limit exploring more complex settings where costs are dependent and drawn from various

distributional assumptions.

Nikolova and Stier-Moses [87] propose a traffic assignment model that incorporates

uncertainty by introducing stochastic costs. There, a cost is the sum of an expected travel

time and a random variable representing the uncertainty in the time. They assume that all

random variables are uncorrelated. Each agent chooses a set of routes in a network and has

an objective value that is the weighted sum of the expected travel time and the standard

deviation of its travel time along the routes. Their work provides equilibria for several ver-

sions of routing games. This stochastic cost representation has been successfully used and

analyzed in game theoretic perspective of the routing problem, and now we are interested

84

in applying the stochastic representation and the risk-averse formulation to MRTA.

The closest work to this chapter is that of Ponda et al. [93], who propose a stochastic

formulation of task allocation problems where planning parameters have uncertainties ow-

ing to the discrepancies between system models and actual system dynamics. The chance-

constrained approach, which maximizes the worst-case cost sum within a risk threshold, is

used. The proposed framework allows agents to work in a distributed manner by allocating

individual risk threshold parameters based on a global risk threshold. The result shows that

their planner outperforms the deterministic and the robust planners for any risk threshold.

However, the consequence of a particular value of the global threshold cannot be antici-

pated directly in terms of the resulting allocation of agents to tasks. Thus, a necessity of

analyzing the outcomes of those threshold values arises to consider countermeasures (e.g.,

reallocations) against the uncertainties.

5.2 Preliminary: Risk Measures

In financial mathematics, risk is defined as the variability of the future value of a po-

sition [5], and a risk measure maps a set of random variables into the set of real numbers.

In the 1950’s, Markowitz initiated the research of optimizing a portfolio considering the

overall return and risk. In [76], variance is employed as the risk measure of a portfolio.

However, the variance as a risk measure has been criticized as having the drawback that

it treats the positive and negative deviations from the mean identically.1 For this reason,

other risk measures have been developed, such as Value-at-Risk (VaR) and Conditional

Value-at-Risk (CVaR).

Given a confidence interval λ ∈ (0, 1), VaRλ is the smallest value such that the prob-

ability that a loss exceeds the value at most (1 − λ). For example, if the VaR on an asset

is $100 at a confidence level 95%, the probability that a loss greater than or equal to $100

1For example, the realizations of costs in the probabilistic MRTA less than the mean are actually bene-
ficial.

85

is 0.05. CVaRλ is the expectation of the worst (1 − λ) of the distribution. CVaR has the

advantage over VaR because of the measure’s convexity and sub-additivity [94]. Compu-

tations of CVaR are not simple (they involve integrals), but closed-form expressions of a

large number of common distributions are provided in [75]. For those distributions that do

not have closed-form expressions of CVaR, one may compute integrals or sample from the

distribution and compute the average of the samples greater than or equal to VaR. If one

has historical data, CVaR can be computed by fitting a density function to the data or by a

nonparametric method by using the data directly. Interested readers are referred to Artzner

et al. [5].

5.3 The Probabilistic Cost Representation

A straightforward way to model uncertainty is to treat the cij in (2.1) as random vari-

ables, Cij . One may further express the observation that uncertainty of a cost arises from

three sources: the robot, task, and the environment associated with the robot and task (e.g.,

the path between a robot and a task), via statistical properties that express interrelatedness

in the costs. We consider costs of the form of a sum:

Cij = Rij + Tij + Eij, (5.1)

where the Rij , Tij , Eij are random variables, representing costs contributed by the ith robot,

the j th task, and an environment between them, subject to the following conditions:

1. every Eij is independent of every Rkl;

2. every Eij is independent of every Tkl;

3. every Rij is independent of every Tkl;

4. each Eij is independent of ∀kk 6=i ∀ll 6=j Ekl;

5. each Rij is independent of ∀kk 6=i ∀l Rkl;

86

6. each Tij is independent of ∀k ∀ll 6=j Tkl.

Note that there is no assumption of identical distributedness.

Statistical dependencies can exist between factors not precluded by the six conditions

above. The term Eij is a factor which influences Cij independently of other factors. But

the Rij variable can have dependencies on Rik, it is intended to capture uncertainty born of

aspects of the ith robot. The same thinking applies to Tij for the j th task.

Theorem 5.11 For costs of the form (5.1) subject to the six stated constraints, the costs Cij

where x∗ij = 1 (i, j ∈ {1, · · · , n}) are independent random variables given an assignment

X∗ satisfying (2.2)–(2.3).

Proof. Consider distinct Ckl and Crs, where x∗kl = 1, and x∗rs = 1. Clearly Ekl is inde-

pendent from Ers, but Rkl can only be dependent on Rrs if k = r, which contradicts (2.3).

Similarly, Tkl can only be dependent on Trs if l = s, which contradicts (2.2). �

The joint distribution of the costs must be known in order to compute the distribution

of the sum of random costs. With the independence of the costs, the joint distribution can

be obtained by the product of the given marginal cost distributions, which is significantly

more convenient than that of the dependent case.

We prove another theorem about CVaR for a computationally tractable formulation of

the probabilistic MRTA problem described in the following section. Definitions 5.12, 5.13,

and Theorem 5.14 are from a comprehensive review of risk measures and comonotonicity

[31].

Definition 5.12 (Comonotonic set) The set A ⊆ Rn is comonotonic if for any y and z in

A, either y ≤ z or z ≤ y holds.

Definition 5.13 (Comonotonic random vector) A random vector is comonotonic if it has

a comonotonic support.

87

Theorem 5.14 (Comonotonic additivity) In Theorem 4.2.1 in [31], it is proven that

CVaRλ,Sc =
n∑
i=1

CVaRλ,Zi , (5.2)

where CVaRλ,V denotes the CVaR of the random variable V with a confidence level λ.

Here, Sc is the sum of comonotonic random variables (Zc
1, Z

c
2, · · · , Zc

n) such that Sc =

Zc
1 + Zc

2 + · · · + Zc
n. Thus, the CVaR of the sum of the random variables is equal to the

sum of the CVaRs of the random variables if the random variable forms a comonotonic

random vector.

From the definitions and theorem above, we derive a theorem for a convenient compu-

tation of the CVaR of an assignment.

Theorem 5.15 The CVaR of an assignment X can be computed simply from the sum of

each cost distribution’s CVaR. Mathematically:

CVaRλ,CX
=

n∑
i=1

n∑
j=1

CVaRλ,Cijxij. (5.3)

Proof. The cost sum of an assignment, CX, consists of the sum of costs (i.e., random

variables) whose decisions variables are xij = 1 (i.e., CX =
∑n

i,j=1 Cijxij). The support

of those random variables is the complete set of, or a subset of, nonnegative real numbers,

which is a totally ordered set. A totally ordered set is a comonotonic set by definition. So

the sum of costs in an assignment is the sum of comonotonic variables, and Theorem 5.14

holds for the CVaRs of CX and Cij . �

5.4 Optimal Assignment with Probabilistic Costs

For i, j ∈ {1, · · · , n}, we use the mean µij and CVaRλ,ij of random variable Cij to

characterize its distribution. By virtue of the additive property of CVaR in an assignment

(as proved in Theorem 5.15), we can define two objective functions replacing (2.1), which

88

are the sum of means and CVaRs:

min
n∑
i=1

n∑
j=1

µijxij, (5.4)

min
n∑
i=1

n∑
j=1

CVaRλ,ijxij. (5.5)

It is worth noting that, without Theorem 5.11 and 5.15, one must compute the sum of

the distributions and the CVaR of the sum, which involve several integrals. The problem

of optimizing these functions subject to (2.2)–(2.5) is the biobjective assignment problem

(BiAP) [102]. The optima are best visualized as a Pareto front. Some assignments may

have low summed mean but high CVaR, some with low CVaR but high mean, and others

may represent a compromise.

It is not meaningful to seek a single optimum given that there are two objectives unless

we can express a preference as a precise trade-off between minimizing the mean and min-

imizing the CVaR. We quantify this as a risk preference, viz. a stipulation of the relative

importances of the mean and the CVaR of the robot system. This yields a scalarized BiAP

to seek a single optimal assignment that

min
n∑
i=1

n∑
j=1

(
αµijxij + (1− α)CVaRλ,ijxij

)
, (5.6)

subject to (2.2)–(2.5) where α ∈ [0, 1] is the risk preference. Thus, with this preference,

one may apply a standard assignment algorithm to produce an assignment.

It is worth noting that λ is another parameter along with α that changes the scalarized

objective value (5.6) because it changes the value of CVaR. Therefore, the determination of

λ from [0, 1] should be taken into account for the scalarization. Conventionally, λ, which

is the confidence interval with respect to CVaR, is chosen between 95% and 99%. In this

89

work, we follow one of the conventions for determining λ, but varying its value is still a

meaningful future direction to consider. We discuss an extension including the effect of λ

in Sec. 5.4.4.

On the other hand, we note that some problems have an optimal assignment X+ such

that

min
n∑
i=1

n∑
j=1

(
αµijx

+
ij + (1− α)CVaRλ,ijx

+
ij

)
, (5.7)

is minimized for all values of α in [0, 1]. We term these problems risk preference indifferent

since the outcome is identical regardless of the risk preference value.

Theorem 5.16 Problems with costs of the form (5.1) subject to the six stated statistical

requirements, with the additional fact the ∀j (∀i Rij = Ri) and ∀i (∀j Tij = Tj) (both

Ri and Tj are random variables), and ∀i, j Eij = kij (where each kij is constant) are risk

preference indifferent.

Proof. If Ri has CVaRλ,Ri and Tj has CVaRλ,Tj , then all assignments X’s (optimal and oth-

erwise) have a sum of
∑n

i=1

∑n
j=1 CVaRλ,ijx

+
ij =

∑n
i=1 CVaRλ,Rix

+
ij +

∑n
j=1 CVaRλ,Tjx

+
ij .

Hence, the optimal assignment only depends on the first term of (5.7), that is the one in-

volving µij . The minimizer of this assignment is the overall minimizer no matter the value

of α. �

Several practical problems fall into the category of risk indifferent. Fig. 5.2, for in-

stance, is one such example, where the distributions are symmetric from the mean of robot

or task locations toward the opposite directions. Since CVaR is proportional to the vari-

ability (e.g., variance) of a distribution, the sum of CVaRs of the two assignments A and

B are the same. Thus, the value of α does not affect the determination of an optimal

assignment.

90

R1

R2

T2

T1

Assignment A

Assignment B

Figure 5.2: An example risk preference indifferent problem. Robots navigate to tasks via a road network.
By virtue of the symmetric property of the normal distribution, Rij = Ri and Tij = Tj hold for all i and
j. Assuming all Eij’s are constant (or equal), two assignments A and B have the same variability, which
makes them to have the same CVaR sum.

Nevertheless, certainly there remain many problems which are not risk indifferent.

Since the value of α weights two sums with different meanings, it is a fairly ad hoc pa-

rameter. We therefore propose a sensitivity analysis that allows a user to determine how

critical their choice of α is in producing the particular optimum. The analysis helps under-

standing the effect of the preference change and gives the user some help in determining

its value.

5.4.1 Standard sensitivity analysis for the risk preference

Given a risk preference α, we compute a safe interval of αwhere any change within the

interval does not change the current optimal assignment. Conceptually, this is the same as

the sensitivity analysis introduced in Sec. 2.2.2. The difference is that the bounded region

of costs is determined by the weighted sum of two objective values:

C = αM + (1− α)P, (5.8)

where C is a matrix representation of Cij for i, j ∈ {1, · · · , n}. Similarly, M and P are

n×nmatrices consisting of µij and CVaRλ,ij , respectively. The costs of a scalarized BiAP,

C varies depending on α. Since α is a one-dimensional parameter in [0, 1], (5.8) forms a

91

line in the cost space.

As discussed before, θ(X∗) is a polyhedral cone consisting of linear inequalities (2.6).

Since we have a set of linear equations θ(X∗) and a linear function C, one can compute

intersections between them. An intersection is a particular value of C that corresponds

to a unique α because (5.8) is an injective function. Thus, we can compute an interval

α ∈ [a, b] that is the minimum and maximum of those intersections. A straightforward way

to achieve this is by linear programming where the objective function (5.8) is minimized

or maximized over θ(X∗). But because there is only one variable α, we do not need to

consider the full cost space of C. We may reduce the dimensionality to compute an interval

of α, by minimizing and maximizing α over a set of linear inequalities that are functions

of α, obtained by substituting cij by αµij + (1− α)CVaRλ,ij .

Pseudocode for this procedure is shown in Alg. 7. Given M and P, we compute C (line

1) and compute an optimal assignment by an assignment algorithm such as the Hungarian

method (line 2). We use the sensitivity analysis described in Sec. 2.2.2 to compute θ(X∗)

(line 3). Then we rearrange θ(X∗) as a function of α. Lines 4 and 5 compute the minimum

and maximum intersection, so the objective values yield the exact interval of α where any

α within the interval does not destroy the optimality of the current assignment.

Algorithm 7 RiskSA
Input: n × n matrices M and P that consist of µij and CVaRλ,ij , respectively. A risk
preference α.
Output: An exact interval [a, b] of α and the optimal assignment X∗ in that interval.

1 C = αM + (1− α)P
2 X∗ = HUNGARIAN(C)
3 θ(X∗) = SA(X∗,C) //compute θ(X∗) by (2.7)
4 a = LINPROG(α, θ(X∗), 0, 1, max) //compute the max α ∈ [0, 1]
5 b = LINPROG(α, θ(X∗), 0, 1, min) //compute the min α ∈ [0, 1]
6 return X∗, a, b

92

5.4.2 Heuristic sensitivity analysis for risk preference

The discussion in Sec. 2.2.2 anticipates the weakness of the preceding algorithm: the

running time and space complexity are factorial in n because SA in line 3 of Alg. 7 enu-

merates all possible feasible solutions, a set whose size has factorial growth. In this sec-

tion, we describe a heuristic method that produces estimates of the output interval much

more quickly, whose pseudocode is described in Alg. 8.

The algorithm begins with a given value of α and computes the optimal assignment for

α. The algorithm expands the interval for the optimal assignment downward (lines 5–14)

and upward (lines 16–25). In each iteration, α increments or decrements by δ. It runs until

the optimal assignment is altered with the changing α or a change of α reaches the bound-

ary values (0 or 1). The algorithm underestimates the interval because it stops and does

not expand the interval if a change by δ alters the optimal assignment. In each direction,

the maximum difference between the approximated boundary and the exact boundary is

δ. Thus, the approximated interval is smaller than the exact interval by at most 2δ. The

time complexity of the algorithm is O(n3/δ) since it calls the Hungarian method (O(n3))

at most b1/δc times.

5.4.3 Extension: finding optimal assignments for α ∈ [0, 1]

A practitioner may have some doubts when choosing a value of α. In such cases, it

is useful to see how the optimal assignment changes for the entire range of values. This

can be computed via sensitivity analysis of optimal assignments with respect to the value

of α. This analysis can be achieved via repeated calls to Alg. 7. The first iteration finds

an interval of an arbitrary α for its optimal assignment. Then the next iteration finds

another interval outside the initial interval (i.e., choosing an arbitrary value of α outside

the interval already found). The method finishes once all intervals in [0, 1] are found. Since

Alg. 7 finds the exact interval of α for an optimal assignment, choosing any α outside the

93

Algorithm 8 HeuristicSA
Input: n × n matrices M and P that consist of µij and CVaRλ,ij , respectively. A risk
preference α0 and the approximation parameter δ.
Output: An approximation interval [a′, b′] of α and the optimal assignment X− in that
interval.

1 α = α0

2 a− = b− = α
3 C = αM + (1− α)P
4 X− = HUNGARIAN(C)
5 while α− δ ≥ 0 //expand α downward by δ in each loop
6 α = α− δ
7 C = αM + (1− α)P
8 X∗ = HUNGARIAN(C)
9 if X∗ == X−//if X∗ does not change with the new α
10 a′ = α //expand a′

11 else
12 break // X∗ changed, stop downward expansion
13 end if
14 end while
15 α = α0

16 while α + δ ≤ 1 //expand α upward by δ in each loop
17 α = α + δ
18 C = αM + (1− α)P
19 X∗ = HUNGARIAN(C)
20 if X∗ == X−

21 b′ = α //expand b′

22 else
23 break // X∗ changed, stop upward expansion
24 end if
25 end while
26 return X−, a′, b′

94

Figure 5.3: An example progression of Alg. 9 (n = 4). In each iteration, the algorithm finds a new interval
(the thick horizontal bar) and its corresponding optimal assignment. The algorithm improves the map of α
in each iteration and eventually finds the exact solution (Iteration 6).

range will give a new optimal assignment and its interval.

Although using Alg. 7 gives exact intervals of all optimal assignments for α ∈ [0, 1], it

can be computationally intractable as the problem size increases (finding all Pareto fron-

tiers is NP-complete). Thus, we repeat Alg. 8 until all optimal assignments for all discrete

values of α ∈ [0, 1] (discretized by δ in Alg. 8) have been explored. This method may not

find all optimal assignments for all continuous values of α, but give valuable information

for determining α quickly.

Alg. 9 computes the sensitivity analysis of optimal assignments with respect to α using

a modified version of Alg. 8 (a minor modification is limiting the working range of the

algorithm to I instead of the full range [0, 1]) and Fig. 5.3 gives an example of use of

the algorithm. The algorithm begins with the initial unexplored range of α which is [0, 1]

(line 2). It runs until no range remains unexplored or any of unexplored ranges is greater

than δ. In each iteration, one unexplored range is selected and removed from the queue U

(line 4). Then α is computed as the midpoint of the selected range (line 5). The optimal

assignment X∗i for that α and its approximation interval Si is computed (lines 6, 7). In

Fig. 5.3, the cross indicates α and the colored horizontal bar represents the interval. If the

95

lower bound of the interval is larger than the lower bound of the previously unexplored

range (line 8), a new unexplored range is inserted to the queue (line 9). Lines 11–13 show

the same process for the upper bound. For example, [a′, b′] = [0.278, 0.512] in the first

iteration in Fig. 5.3. Thus, U = {[0, 1]} becomes U = {[0, 0.278), (0.512, 1]}. The time

complexity of the algorithm is O(n3/δ2) since it calls Alg. 8 at most b1/δc times.

Algorithm 9 α-hSA
Input: n × n matrices M and P that consist of µij and CVaRλ,ij , respectively. The
approximation parameter δ.
Output: A set of optimal assignments X and their α-intervals S.

1 i = 0
2 U = {[0, 1]} //initialize the queue of unexplored α
3 while (U is not empty) || (any range in U is greater than δ)
4 I = DEQUEUE(U) //dequeue one unexplored range

5 α = MIN(I) + MAX(I)−MIN(I)
2

//begin with the midpoint of an unexplored range
6 [X∗i , a

′, b′] = HEURISTICSA′(M,P, α, δ, I) //run Alg. 8
7 Si = [a′, b′] //the apx. interval of X∗i
8 if MIN(I) < a′

9 ENQUEUE(U, (MIN(I), a′)) //exclude searched range
10 end if
11 if MAX(I) > b′

12 ENQUEUE(U, (b′,MAX(I))) //exclude searched range
13 end if
14 increment i
15 end while
16 return X = {X∗0, · · ·X∗Π}, S = {S0, · · ·SΠ}

5.4.4 Remarks

In the BiAP, the optimal solution depends on α appreciably. Despite its importance,

only empirical methods exist to select α. The preceding sections have provided sufficient

conditions for problems in which the particular value of α is irrelevant. Secondly, they

96

have presented algorithms that describe the importance of precise selection of α charting

differing regimes of behavior because doing so reduces manual labor in exploring different

risk policies.

On the other hand, λ is another parameter that decides the value of total scalarized

cost as discussed in Sec. 5.3. In this chapter, λ is fixed to a predetermined value (i.e., one

between 95% and 99%) since the parameter has a clear interpretation. If the determination

of λ is not convinced, one could perform another sensitivity analysis with respect to the

value of λ that is briefly described below.

We know that (5.8) forms a line in the cost space while changing α ∈ [0, 1]. Thus,

given a fixed value of λ ∈ [0, 1], changing α ∈ [0, 1] generates a line. For all values of

λ, one ends of the lines (when α = 1, which the CVaR term has no contribution to the

cost sum) reach to the same point in the cost space. Changing both parameters produces

a (hyper) surface in the cost space unless P in (5.8) is invariant (in this case, the cost still

forms a line). The shape of the surface, which could be nonlinear, is determined by the

cost distributions. The surface has a point that all constituting lines of the surface (i.e.,

each of the lines is formed when changing α for each value of λ) join at, such as a cone.

Given a cost surface, we can use the standard sensitivity analysis or RANDSA proposed

in Ch. 4 to compute the regions of the optimal assignments on the surface. The regions

from a sensitivity analysis correspond to the regions of optimal assignments on the α-

λ plane as shown in Fig. 5.4, which is analogous to the one-dimensional mapping with

respect to α in Fig. 5.3.2

5.5 Experiments

We examine four distinct types of experiments. First, we generate random cost ma-

trices that simulate the situations with large uncertainties. This experiment shows the

2Fig. 5.4b is not drawn by a sensitivity analysis but by changing two parameters manually.

97

λ

α0

1

1

Assignment A

Assignment B

Assignment C

(a) A hypothetical mapping.

0 0.2 0.4 0.6 0.8 1
,

0

0.2

0.4

0.6

0.8

1

6

(b) A mapping from a small-sized in-
stance (n = 5).

Figure 5.4: A hypothetical and an example mapping of optimal assignments on the α-λ plane, which is
analogous to the mapping with respect to α shown in Fig. 5.3.

validity of our formulation of using the mean and CVaR, which is a richer representation

of costs than using scalar values only. Next, we measure the performance (running time

and solution quality) of the algorithms with random instances. Next, we examine two

robot scenarios where the mission is visiting task locations by robots (or self-driving vehi-

cles), giving a view of the sensitivity of a risk preference in practice applications. First, we

capture uncertainties in the state of robots from a robot simulator using extended Kalman

filter (EKF) for localization. The result shows the usefulness of our algorithm for deter-

mining the value of α. Second, we collect traveling times in an urban area using Google

Directions API [49]. The API provides a traveling time between two points for a specific

time in a day. It is an instance of obtaining cost distributions from historical data or mea-

surements. From the data, we compute the mean and CVaR of traveling times. The system

is with Intel Core i3-2310M with 4G RAM and MATLAB R2015b.

98

5.5.1 Assignment computation considering uncertainties

We run an experiment that shows the advantage of using the mean and CVaR than

scalar values (e.g, mean) for costs. Our formulation is adequate for the situations with

uncertainties, so we set cost distributions to have nontrivial variances. The probability

distributions of costs are neither necessarily a particular distribution nor identical. We only

need to know their density functions. Then the means and the CVaRs of those distributions

can be computed. For the computations of CVaRs, the methods discussed in Sec. 5.2 can

be used. Again, [75] provide closed-form equations of common CVaRs, so one may not

need complex computations. We use normal distributions3 for costs, where each cost has

the mean and standard deviation drawn from uniform distributions U(0, 10) and U(0, 20),

respectively (e.g., a normal cost distribution N (5, 152)). We randomly generate an n × n

matrix of normal distributions and compute an optimal assignment based on both the mean

and CVaR (with α = 0.05, which is risk-averse). For comparison, we compute another

optimal assignment only with the mean values. Then a cost matrix is sampled from the

matrix of normal distributions. We compare the cost sum of the both assignments. We test

10,000 random matrices for n = 50 and set λ = 0.95. In average, our formulation reduces

7.511% of the cost sum (the standard deviation is 0.1578) compared to the case of using

the mean only. For example, the cost sum of an assignment is 92.49 when the mean and

CVaR are used whereas it is 100 when only the mean is used. The result shows that our

formulation is able to save costs using the richer information regarding uncertainties.

5.5.2 Random instances for performance evaluation

We randomly generate an n × n matrix of normal distributions where the mean and

variance of each distribution are drawn from a uniform distribution U(0, 1). The approxi-

mation parameter is δ = 0.001 throughout all experiments. A smaller δ increases accuracy

3The CVaR of a normal distribution is −µ+ σ
λf(λ) for a pdf f(·).

99

2 3 4 5 6
Problem size (n)

0

200

400

600

T
im

e
(s

ec
)

Standard
Heuristic

(a) Running time up to n = 6.

20 40 60 80 100
Problem size (n)

0

2

4

6

T
im

e
(s

ec
)

Heuristic

(b) Running time for large instances.

Figure 5.5: Running time of random instances (statistics summarize 20 measurements). (a) The standard
algorithm run until it finds the exact interval. (b) The running time of the heuristic method is shown for
larger instances.

but increases the running time. The parameter δ can be adjusted considering the time

allowed for the computation and the desired degree of accuracy of the solution.

Fig. 5.5, and Tables 5.1 and 5.2 show the results with those random matrices. The

running time (averaged over 20 repetitions) of the standard method is prohibitive when

n > 6. Up to n = 6, the standard and the heuristic method use the same problem instance

for each repetition. For n > 6, we only run the heuristic method. The results in Fig. 5.5b

show that the heuristic method is scalable for large instances.

Table 5.1: Running time (sec) of Alg. 7 and 8 (20 repetitions).

(a) Running time up to n = 6. The running time of the standard algorithm for n > 6 is prohibitive.

Alg. n 2 3 4 5 6

Standard
Mean 0.09980 0.2030 1.724 27.59 487.7

Std. dev. 0.09450 0.03960 0.05320 2.046 85.19

Heuristic
Mean 0.1465 0.2125 0.2479 0.3508 0.3961

Std. dev. 0.04642 0.06633 0.08662 0.09421 0.1079

(b) Running time of the heuristic algorithm.

n 10 20 30 40 50 60 70 80 90 100
Mean 0.6706 0.9870 1.244 1.440 1.505 1.688 2.292 2.561 3.103 4.026
Std. 0.2255 0.5324 0.8664 0.8682 0.9744 1.014 1.151 1.441 1.990 2.021

100

We measure the running time and the solution quality of Alg. 9 for n = 10, · · · , 50

(Table 5.2-a). This result is compared to a basic method that runs the Hungarian method

iteratively from α = 0 to 1. The number of iterations is determined to reach the same

solution quality with Alg. 9 (i.e., α increments by 0.0007 in each iteration). The solution

quality (Table 5.2-b) is measured by the searched ranges over the entire range of α. Notice

that two methods are tested with the same set of random instances.

Alg. 9 shows faster running times than the iterative method while both methods pro-

duce high quality solutions. The algorithm runs offline before operating robots, so 15

seconds for 50 robots is reasonable.4 The solution quality decreases as n grows because

the methods with large instances calls their subroutines (i.e., Alg. 8 and the Hungarian

method) frequently, where each call of a subroutine produces an error at most 2δ. The

exactness of the solution is adjustable by δ depending on the given computation time.

Table 5.2: Results of Alg. 9 and an iterative method (20 repetitions).

(a) Running time (sec).

n 10 20 30 40 50

Alg. 9
Mean 0.8717 2.532 5.061 9.073 15.51

Std. dev 0.1736 0.5523 0.8147 0.9947 1.474
Iterative Mean 1.221 3.523 6.946 12.23 20.40
method Std. dev 0.2579 0.7551 1.090 1.096 1.981

(b) Solution quality (%).

n 10 20 30 40 50

Alg. 9
Mean 99.37 98.81 98.35 97.71 96.74

Std. dev 0.1000 0.2300 0.2700 0.4900 0.4400
Iterative Mean 99.73 99.29 98.89 98.47 97.77
method Std. dev 0.0900 0.1800 0.2200 0.3000 0.2700

4The algorithm computes of all optimal assignments for the entire range of α. Then a system operator
(or robots) determines a particular value of α before execution. Or the value of α may change at run-time
by looking at the result in hand.

101

5.5.3 Cost uncertainties from state estimation

We use a robot simulator [26] employing a state estimator (EKF) to capture the un-

certainties in robot poses so that costs can be represented by distributions. We place five

robots and five tasks as shown in Fig. 5.6a where the mission is visiting the tasks by the

robots without duplicated assignments. Cost is traveling time where the objective is to

minimize the sum of traveling times. We assume that the robots move at 1 m/s (no accel-

eration/deceleration). Also, we assume that the locations of the tasks are certain, and the

robots plan paths not to collide with other robots. For a robot-task pair, the path length

between the mean robot position and the task location, which is the mean of the path

length distribution, can be computed. The variance of the distribution is determined by

the outgoing direction from the current robot pose (i.e., σ2 = vTΣv where v is the vector

representing the outgoing direction of a path and Σ is the covariance matrix). From this

distance distribution, we calculate the cost (i.e., traveling time) distribution by dividing

the mean and the standard deviation by the velocity. Repeating this computation for all n2

costs constructs a matrix of cost distributions.

Fig. 5.6b shows the result from Alg. 9 where the input is the matrix of cost distributions

and δ = 0.001. Two assignments and their corresponding intervals are found. Assignment

A is relatively risk-averse than Assignment B. It is shown that the determination of the

value of α in the continuous space from zero to one is converted to choosing one assign-

ment from the discrete set of two assignments, which is much simpler than the original

problem.

5.5.4 Cost uncertainties from historical data or measurements

We examine a practical transportation problem of self-driving vehicles in a metropoli-

tan area. We position five vehicles and five tasks at random locations on the map shown

in Fig. 5.7. The mission is visiting the task locations by the vehicles where the traveling

102

0 1 2 3 4 5 6 7 8 9 10

xT(m)

-1.5

-1

-0.5

0

0.5

1

1.5

yT
(m

)

3-sigTellipseTofTcovariance TaskRobot Path

(a) A snapshot from a robot simulator [26] with an
example assignment of five robots and five tasks. The
robots move to the tasks along the paths.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RiskBpreferenceB(alpha)

AssignmentBBAssignmentBA

(b) The result from Alg. 9. Two assignments and
their corresponding intervals are found.

Figure 5.6: An experiment with cost distributions from a state estimator. (a) Cost (traveling time) distri-
butions are computed based on the path lengths and the covariance matrices of the robot poses. (b) Using
Alg. 9, the problem of choosing α in the continuous space [0, 1] is converted to choosing one assignment
from the discrete set of assignments.

times vary depending on traffic conditions including physical interactions with other ve-

hicles. We collect traveling times using Google Directions API [49]. For each pair of a

vehicle and a task, 1,439 data points are collected, which are the measurements at every

one minute during a day from 0:00 to 23:59. (The number of data points would seem

small depending on the point of view, but a traveling time between two locations does not

change radically in one minute.) Note that the path of a pair is the same for all data points,

which is marked as an arrow in Fig. 5.7. These data reflect the traffic condition at the

specific time in a day. Thus, the data points are naturally distributed.

Instead of fitting probability density functions to the data, we choose to use a nonpara-

metric method to obtain the mean and CVaR for each vehicle-task pair. We calculate the

mean from a set of data point for a pair. For the CVaR, we calculate the mean of the high-

est 5% of the set (i.e., λ = 0.95). This nonparametric method does not have the problem

of imposing an incorrect assumption about the distribution.

We run Alg. 9 with the matrix of means and CVaRs of the traveling times. The algo-

rithm finds a unique optimal assignment for any α ∈ [0, 1], which means that this problem

belongs to the class of risk preference independent. The reason is that the CVaRs are pro-

portional to the length of the paths (the means of the paths), so the optimal assignment

103

Self-driving vehicle

Task

Assignment/path

Figure 5.7: A transportation problem in a metropolitan area. The mission is visiting the tasks by the vehicles
with the minimum sum of traveling times. The traveling times are distributed owing to the varying traffic
conditions, so the scalar cost representation is not adequately rich.

does not change while α changes. Alg. 9 is able to decide whether a problem instance

belongs to the risk preference independent class.

5.6 Summary

In this chapter, we consider multi-robot task allocation under uncertain costs. We

use a cost representation incorporating uncertainty and interdependency, via distributional

models. We provide conditions to show that the interdependencies among costs do not

exist between elements in an assignment. The representation gives a new perspective on

optimizing an allocation subject to a risk preference, where uncertainty takes a role in de-

termining an optimal assignment. In addition, we show a problem class where the position

taken on risk has no effect on the optimal assignment. For the problems where the risk

preference is important, we provide algorithms for analyzing the sensitivity of an optimal

assignment with respect to the risk preference. This enables a better understanding of how

to determine the risk preference and its consequence. We would like to investigate further

104

what conditions (i.e., properties of problem domains) make a task allocation problem risk

indifferent.

105

6. TASK BUNDLING FOR SEQUENTIAL STOCHASTIC TASKS IN

MULTI-ROBOT TASK ALLOCATION

In the canonical formulation of the ST-SR MRTA problem, the sets of robots and tasks

are fixed, and a decision-maker (e.g., a central computation unit) has full access to all in-

formation about the tasks. Practically, it may be impossible to know the complete set of

tasks beforehand, as tasks might be revealed sequentially through observations or upon ar-

rivals. Such online tasks are seen in many applications (e.g., dial-a-ride, material handling

for online orders, demining). Compared to the case where the task set is known a priori,

relatively little MRTA work examines online instances in a way that involves reasoning

about the arrival of yet to be revealed tasks [53].

In this chapter, we study online tasks that are revealed sequentially and consider an

infinite time horizon, with a focus on tasks with positive synergies. Serving tasks on

an infinite time horizon needs a different performance metric other than the sum-of-cost

which is conventionally used in MRTA. We consider two objectives which are the average

system cost (e.g., fuel) per task and the average timespan of a task.1 If multiple synergistic

tasks are bundled together, then the total system cost of executing them is smaller than

executing the tasks each independently. An obvious way to deal with these sorts of tasks

is aggregating a set and then compute an allocation with the complete information for

those tasks. Waiting for tasks to arrive in order to form a sufficiently large aggregation

requires time which increases the timespan per task. This trade-off raises the question,

how many tasks should the robots bundle over and above the standard question of how

should the tasks be allocated among robots.

This chapter explores the foundations of multi-robot task allocation for tasks which

1In the domains where tasks are navigation, the cost and the timespan are equivalent to the distance
traveled and the arrival time per task, respectively.

106

T4

T2

T1

T3

(a) The robot performs the
tasks as soon as they are re-
vealed.

T4

T2

T1

T3

(b) The robot waits for four
tasks and performs them as a
bundle.

Figure 6.1: A simple example: navigation tasks are revealed sequentially from T1 to T4. The robot performs
tasks and loiters until a new task is introduced. In (a), the robot begins performing tasks right after they
arrive. In (b), the robot waits until four tasks have been revealed, then finds a cheaper tour than (a).

arrive online, sequentially, and are synergistic in nature. We begin with a qualitative study

with the basic setting where a task is revealed deterministically (e.g, within some fixed in-

terval), where cost of the task being serviced is a function of its location, and the location

of the task is independently and identically drawn from a known probability distribution.

Later, we extend our scope of study to consider probabilistic task arrivals (a Poisson pro-

cess) and non-i.i.d. task distributions. The set of tasks need not necessarily be bounded,

but the set of robots is assumed fixed. Tasks arrive concurrently with execution of tasks,

so tasks accumulate while robots are execute previous bundles. Fig. 6.1 depicts one itera-

tion of a routing example, showing the marked effect of bundles with different numbers of

tasks. We explore the basic case where robots work independently without coordination

and tasks arrive deterministically with an i.i.d. spatial distribution. Next, using informa-

tion that describes stochastic tasks, we model the objective values analytically as functions

of bundle size. These models yield an optimal bundle size for each objective. However,

using the predicted (constant) bundle size becomes suboptimal once the modeling the as-

107

sumptions are violated (e.g., robots are coordinated so they have a different model of the

system cost, or the tasks do not have a regular arrival interval, the task distribution is not

i.i.d.) To address this, we propose simple policies that work optimally in the base case and

that also efficiently adapt to improve their performance for more complex settings.

This chapter contributes a formulation of the problem of optimal task bundling for

MRTA for sequentially revealed, synergistic tasks (Sec. 6.2.1). Within that formula-

tion, we identify two objectives that describe two aspects performance, each depending

on bundle size in a manner opposite the other. After analyzing the most basic scenario

(Sec. 6.3.1), we introduce models that describe the objectives as a function of bundle size.

Using these models, our study of iterated bundle executions leads us to propose simple

and efficient bundling policies suitable for variations of the problem which generalize the

basic instance. Evaluation of our policies (and comparison with a baseline sans-bundling)

is carried out quantitatively with extensive experiments (Sec. 6.5).

6.1 Related Work

Most previous work in MRTA with online tasks focus on the question of how to al-

locate tasks. Early work on auction mechanisms [33] and greedy allocation [42] studied

the allocation of online tasks where the total number of tasks is known. Some recent

work [3, 78] considers online tasks with unpredictable arrivals, but the option of bundling

is not discussed. Online bipartite matching algorithms (e.g., [103]), which solve the under-

lying mathematical problem of the online MRTA, also do not consider bundling. Instead,

they study how to match online vertices based on their stochastic information.

While bundling tasks has not received much attention, we are certainly not the first to

propose the idea. Koenig et al. propose Sequential Single-Item (SSI) auctions with bundles

in [62]. In the bidding phase, robots submit bids for bundles (i.e., subsets) of tasks from

a known set of all tasks. The bidding phase and the winner determination phase iterate

108

sequentially until all tasks are assigned. Compared to the standard parallel auctions, this

method reduces the team’s cost by exploiting synergies among tasks. The approach also

reduces the time spent bidding compared to the standard combinatorial auctions since not

all permutations of assignments are considered. Zheng et al. [111] propose SSI with roll-

outs where single tasks are auctioned in each iteration, but the cost of each task is evaluated

together with the previously allocated tasks to each robot in order to exploit synergies.

Heap and Pagnucco [54] extended SSI to bundles with Sequential Single-Cluster (SSC)

auctions where the robots bid on clusters of tasks, formed through a k-means clustering

algorithm.

Prior work with synergistic tasks uses two objectives MiniSum and MiniMax that are

analogous to our system cost per task and the timespan of a task, respectively. These works

have the same objective, namely, seeking the maximal synergy and the minimal timespan.

However, the prior work considers a fixed, finite set of tasks and, as will become clear in

the next section, considering an unbounded (and unremitting) sequence of tasks constrains

the set of solutions because one must ensure that the task buffer does not overrun. In

general, the prior work does not identify or have to address the consequences of bundling

which worsens time-related objectives. But when tasks arrive in an online manner, there is

a true trade-off that must be made; this aspect is absent from previous investigations. The

present work also treats synergistic tasks in rather more sophisticated manner, providing

an explicit model that quantifies the improvement in objective value.

Bullo et al. [20] survey the recent work on the dynamic vehicle routing (DVR) prob-

lem where visit locations are generated according to a spatio-temporal Poisson process.

Various routing policies are described for different team properties (e.g., centralized or de-

centralized, communication capability) and constraints (e.g., deadlines, priorities, vehicle

kinematics). Those policies are analyzed by spatial queueing theory, which provides the

lower bound for the optimal system and the stability condition. This study can strengthen

109

our work by providing theoretical analyses on the optimality of our task bundling policies

in routing applications. However, the objective of our study is to identify principles for

optimizing and coordinating robot systems that are domain independent. Thus, we study

a numerical optimization of the bundle size, which is applicable whenever the tasks arrive

online and ceaselessly.

6.2 Problem Description

This section formulates the problem mathematically, expresses constraints on the prob-

lem, and describes the objectives to be minimized. The multi-robot routing scenario is used

as an example.

6.2.1 Problem formulation

Given a set R = {R1, · · · , Rn} of n robots, every α > 0 time interval, a task Tj arrives

and is enqueued along with other waiting tasks in a structure T. The total number of tasks

is unknown and it could be an unbounded sequence. Here α could be deterministic or a

random variable—in the latter case, we use α to denote the mean of a distribution. We

assume that robots share all available task information (i.e., T) for example, through some

communication network.

We model tasks by thinking about the costs associated with their performance—in

order to make this concrete we will assume that the application entails mobile robots and

the cost is a function of the locations of the robot and task. We assume that locations of

tasks are drawn from a probability distribution, and this has the appropriate relationship

on costs. Let c(S) be the cost of performing the set of tasks S. We consider tasks with

the property: for S1 and S2 where S1 6= S2, c(S1) + c(S2) > c(S1 ∪ S2). In other words,

performing multiple tasks together has the potential to lump some common work together

and the cost of performing a bundle of tasks is sub-linear in bundle size, i.e., smaller than

the sum of the costs when executed independently.

110

Robot Ri forms its own bundle Xi by extracting tasks from T, where |Xi| would

change. Once Tj is assigned to Xi, it is no longer available to other robots unless Ri

releases the task. Tasks continue to arrive while robots perform the work assigned to

them, that is, that which is within their respective bundles. The robots iterate bundling and

executing tasks in turn. Depending on the number of tasks in Ri’s bundle, Ri may be idle

while waiting to fill Xi, which we denote Ri ∈ Ridle. Otherwise, Ri ∈ Ractive. Note that

R = Ridle ∪Ractive and Ridle ∩Ractive = ∅.

Strategies for assigning tasks to robots make use of flexibility in (i) making the choice

of whom to assign to a certain task, and (ii) when to assign the task. In general, waiting

increases the available opportunities to optimize performance but, waiting itself, induces

delays. Since (ii) is a central consideration in the present work, it is important to delineate

the requirements of the strategies for assigning tasks. We do this by noting two necessities

for the performance of online tasks:

- Unconditional Task Acceptance: Any task that arrives, must be enqueued to T.

- Non-starvation: No task may be abandoned to remain in T indefinitely.

Subject to fulfilling those two requirements, we consider two objectives to minimize.

Since there is no fixed set of tasks in an infinite (or a very long) length horizon, the con-

ventional sum-of-cost measure is no longer ideal. More meaningful are the average values

of the following:

1. An important metric is the cost incurred by a robot to perform a task. Let cij ∈ R≥0

represent the cost of Ri performing Tj , then the objective is the average cost spent

by a robot to finish a task, c̄. The average is taken across all robots and task pairs;

we call this the system cost.

2. The timespan, or end-to-end time, of a task τj ∈ R≥0 metric represents the elapsed

111

time from the moment task is inserted to T until its completion. The objective is the

average timespan of a task, τ̄ , taken across all tasks.

6.2.2 An example: the multi-robot routing problem

The multi-robot routing problem is a representative example of the setting we describe

since it involves synergistic tasks that arrive online. It is also of natural interest since it

includes features common to many application domains. Precisely, the tasks require that

some robot visit a location. The locations are revealed sequentially and the goal is to visit

all locations (as shown in Fig. 6.1) while minimizing the average time traveled c̄, or the

average task end-to-end time τ̄ , or some combination of the objectives. A robot visits

only one location at a time, and the task requires that one robot arrive. A robot bundling

multiple tasks may then plan a Hamiltonian path. To solve the problem, the robots need

a policy that determines how many locations they ought to bundle and how they should

cooperate together to decide which robot should visit which locations. This is a running

example throughout the chapter because it is sufficiently rich to explore the fundamental

properties underlying strategic bundling.

6.3 An Analysis of Bundle Size

This section develops models for the objective values defined in the previous section.

In the basic setting, robots work independently, and tasks are revealed with a fixed interval.

For these simple models, it is possible to find analytic expressions for the optima. Next,

we introduce some complexity into the model exploring, empirically, how coordination

methods affect outcomes.

112

O Bundle size (x)

T
im

e
(s

ec
)

xm

α

xD

Execution time
Bundling time
End-to-end time

(a) The case where x∗g = xm.

O Bundle size (x)

T
im

e
(s

ec
) Execution time

Bundling time

α

xD

End-to-end time

(b) The case where x∗g = xD.

Figure 6.2: Illustrative functions that describe the average system cost (red) and timespan (gray) per task.
The optimal bundle size for the system cost x∗f is unbounded for both (a) and (b) since f(·) is strictly
decreasing owing to the synergies among tasks. s(·) is infinite for x < xD and the same with f(·) otherwise.
There exists a finite bundle size x that makes g(·) minimum. g(·) for x < xD is not shown since the value
is infinite.

6.3.1 The base case: independent robots

6.3.1.1 The general model

In the base case, robots do not coordinate amongst themselves to exploit task locality

between bundles, rather they bundle and execute tasks independently. Ordering of tasks

within their bundles is optimized locally and depends on the path they construct. We

assume stochastic tasks with locations independently and identically distributed from a

Uniform distribution over a sub-region of the plane with area S. Also, a new task is

revealed every α seconds. Steady-state models of both the system cost c̄, which is the

average system cost (execution time) per task, and the average timespan (end-to-end time)

τ̄ of a task, are constructed next. It may be helpful to refer to Fig. 6.2 during the exposition.

A model for c̄ is given by f(x|S, v) where x is the bundle size and v is the task perfor-

mance rate (e.g., velocity) of a robot (the red curve in Fig. 6.2). Task synergies imply that

f(·) is decreasing and, hence, the bundle size that minimizes the system cost is infinite

(x∗f = ∞). The functional h(x|α, n, f) describes the average time that a task stays await-

ing sufficient tasks to been enqueued to form a complete bundle. Since tasks are added

113

into T and are distributed to n robots, h(·) increases when more robots are bundling, for a

fixed α. But note also that h(·) is discontinuous since h(x|α, n, f) = 0 if x < xD (the blue

line in Fig. 6.2). Here the quantity xD denotes the bundle size when f(x|S, v) = α, that is,

the point of equilibrium between the rate of task arrivals and (average) executions. Below

xD, |T| diverges so there is no steady-state (tasks keep being accumulated) and robot take

tasks out from T without waiting, so the bundling time is zero. For x ≥ xD, tasks do

not accumulate in the queue T, and a robot must wait for tasks to arrive in order to fill its

bundle and so the bundling time is nonzero. Thus, h(x|α, n, f) = h′(x|α, n) for x ≥ xD,

where h′(·) represents the bundling time without considering the potential overflow of T.

There is another component s(x|α, f), the residing time of a task in T, which is the time

spent by a task before any robot has returned and begun to assemble its next bundle. We

have s(x|α, f) = ∞ for x < xD. Otherwise, s(x|α, f) = f(·) since tasks only stay in T

while robots are execute their bundles.

A model of τ̄ is given by g(x|S, v, α, f):

g(x|S, v, α, f) = max(f(x|S, v), h(x|α, n, f), s(x|α, f)), (6.1)

which are the thick gray curves in Fig. 6.2. g(·) for x < xD is not shown since the value is

infinite. The x value that makes g(·) minimum is the optimal bundle size x∗g. Determining

x∗g consists of two possible cases, shown in Fig. 6.2a and Fig. 6.2b. In Fig. 6.2a, xm is

the equilibrium between the task bundling time and the execution time. At xm, the robot

finishes executing a bundle when the next bundle has just filled. Thus, x∗g = xm because

g(xm|·) takes the minimum at this point. It is important to note that there is no waiting

time between iterations. In Fig. 6.2b, xm does not exist because the tasks in T overflow. At

xD, the execution time dominates the zero bundling time, and f(xD|·) has the minimum,

so x∗g = xD. Practically, x∗g is computed by max(xm
′
, xD) where xm′ is the intersection

114

between f(·) and h′(x|α, n).

6.3.1.2 The multi-robot routing example

Since the pioneering work of Beardwood et al. [12], there has been extensive research

on computing the optimal length of the tour in random instances of the traveling salesman

problem (TSP). The early models in [12, 100] are simple but limited to the asymptotic

behavior. Lee and Choi [67] proposed a more accurate model given a finite number of

cities. The multi-robot routing problem aims to optimize the tour of each robot, which

involves optimizing the Hamiltonian path (HP)—a special case of the TSP where the return

tour to the start location is unnecessary. We modify the model in [67] for the HP. The

system cost (time traveled) per task is

f(x|S, v) =

(
(0.7211

√
x+ 1 + 0.604)

√
S − Ed

v(x+ 1)

)
· (β log x+ 1) (6.2)

where S is the area of a rectangular field and v is the velocity of the robot. The scalar Ed

is the expected distance between two points drawn from a uniform distribution, represent-

ing the last visited location and the initial location (notice that the initial location is also

random because it is the last visited location from the previous batch). The expression

0.7211
√
x+ 1 + 0.604 from the model in [67] yields the optimal length of a TSP tour

with x locations,2 and Ed is subtracted because a HP does not include the return trip to the

initial location. The entire expression is divided by the number of locations (per task) and

scaled by
√
S
v

(length/velocity). However, Ed is not scaled by
√
S since it already includes

the size of the area as a variable. A scaling factor, β, reflects how close the algorithm

used is to optimal, where β = 0 for an optimal algorithm with larger values for practical

suboptimal algorithms.

2The salesman starts at one of the locations, but the robot starts from the last location in the previous
batch in our case. Thus, the total number of locations is x+ 1.

115

A task waits in a bundle (size of x) for xα − jα seconds where j is the time when

the task is inserted. Then, the sum of the bundling time for all tasks is
∑x

j=1 xα − jα =

x2α− x(x+1)
2

α = α
2
x(x− 1). And the function describing the bundling time per task is

h(x|α, n, f) =

0 if x < xD

h′(x|α, n) = nα
2

(x− 1) otherwise.
(6.3)

Note that n is multiplied since tasks are distributed to n robots. Interestingly, h′(·) is a

special case of the mean residual life of a customer in a renewal process presented in [61].

The residual life is the amount of time that the customer must wait until being served. The

general form of (6.3) when task arrivals follow a Poisson process is

h′(x|α, n, σ2
α) =

nα

2

(
1 +

σ2
α

α2

)
(x− 1) (6.4)

where σ2
α is the variance of the arrival interval. If σ2

α = 0, then (6.4) reduces to (6.3).

Fig. 6.3 shows (6.2) (red) as a function of bundle size (x) along with values from ex-

periments (green) with values α = 10, v = 1m/s, and S = 150m× 150m. The blue line

represents (6.3). We implemented a simple heuristic Hamiltonian path algorithm (Alg. 11

in Appendix D) to explore this model, and β = 0.0542 was empirically determined for our

algorithm.

6.3.2 Coordinated robots

Next, we turn to coordinated robots. There are two major considerations in thinking

about the objective values for teams of closely coupled robots. The first consideration

is what task allocation method will be used to distribute tasks from T to the robots (e.g.,

116

Figure 6.3: The models (6.2) (red dotted) and (6.3) (blue solid). The horizontal line represents α. The greed
curve shows the experimental result from a heuristic HP algorithm (Alg. 11 in Appendix D).

assignment algorithms, integer programming methods, auction-based algorithms, or etc.)3.

Our implementation uses integer linear programming (ILP) to optimally distribute tasks

based on the distances between robots and tasks. The second consideration is the degree

of synchronization in the team for the task distribution. Specifically, we need to decide

how many robots are included when distributing tasks. If the robots that have completed

their tasks wait until other robots become free, the distribution of tasks among them can

make maximal use of their spatial dispersion. If the robots do not wait, the tasks they

are assigned will suit them individually, being slightly myopic. Waiting for robots to

finish their tasks allows more robots to participate in the assignment, imposing greater

synchronization on the robots. But, in a way analogous to the advantages of large task

bundles over small ones, it gives more opportunity for the optimizer to find savings.

Modeling this coordinated case is possible when one has domain knowledge of the sort

used to build the model in Sec. 6.3.1.2. However, the necessary domain knowledge is not

always available so, as an alternative, one may fit a function to empirical data. We are not

3In some domains, combinatorial approaches have been studied to solve the task distribution and opti-
mization together (e.g., the multiple TSP [13]).

117

aware of any model describing the system cost of the coordinated robot team in the multi-

robot routing problem. Fitting a function may require extensive experiments be performed,

which may be tedious or expensive. Depending on the coordination method used, one can

still draw inferences on how the system cost changes by examining the model of the base

case, and making adjustments for coordinated case from a empirical data.

In Fig. 6.4, we show measured values of f(·) when robots are coordinated through an

ILP (averaged over 10 repetitions). The x-axis and y-axis represent the bundle size (x)

and the degree of synchronization (nILP). Given 5 robots, nILP ranges from 1 (completely

asynchronous) to 5 (completely synchronized). Fig. 6.4b shows the system cost across

different bundle sizes. The uppermost line (lime green) shows the cost when nILP =

1. The lower-most line (brown) describes the case where nILP = 5. The result shows

that a synchronized team outperforms asynchronous robots4. There are two reasons why

synchronous robots perform better even though additional idle time is incurred in waiting

for other robots. First, as already alluded to, including more robots in the ILP makes

the resulting assignment globally optimal with the current tasks in T. Secondly, while

the robots wait for other robots, they are simultaneously getting more options for tasks

because new ones keep arriving. Since the ILP includes all tasks in T and Ridle, the

chance of lowering the cost per task increases as T grows.

On the other hand, there appears to be an anomaly in Fig. 6.4 as, when x is small,

the cost does not decrease monotonically with increasing x. It indicates that bundling two

tasks is worst than not bundling them. The transition between two lines in Fig. 6.4c comes

from the synchronization and the optimal task distribution. The oddity is not observed in

the independent and synchronized robot team. It is the optimal task distribution which

explains the oddity. When the bundle size is small, tasks overflow T. Their locations are

4The result from the independent robots case is not shown, but a synchronized team performs better than
it too.

118

uniformly distributed in space, so that as T overflows, robots are able to find one or two

tasks with very small costs. As the bundle size increases, tasks are removed more quickly

and the density of tasks decreases, and the distance per task inevitably returns to normal.

In the independent team, the tasks are randomly distributed to robots so the dense tasks

make for no change.

By bringing these insights together one comes to the conclusion that, for the setting be-

ing examined, the base case is an upper bound of the system cost, across all combinations

of coordination methods and degree synchronization. Fig. 6.4c shows the base case (upper

black line) and the coordinated robots case where nILP = 5 (lower brown line). Thus, the

base case provides a model that overestimates cost in other cases. If we compute x∗g using

the basic model, x∗g is larger or equal to the actual optimal bundle size (e.g., the red curve

in Fig. 6.2 moves below, so xm or xD decrease). Without deeper domain knowledge, one

cannot know the exact x∗g but the range is determined from the basic model.

6.3.3 Elements of task stochasticity

Tasks locations and arrivals include uncertain elements that induce a gap between the

model and the performance observed in the system. Next, we address the issues arising

from stochasticity in tasks; it motivates our introduction of bundling policies that adapt to

circumstances, and can be useful when the ideal models fails to capture some aspects of

the system.

6.3.3.1 Task locations

Owing to the stochasticity of task locations, the system’s cost described thus far should

be those of as describing the mean of a random variable. The particular realizations will

differ from this average value. In practice, if a robot completes its bundle of tasks faster

than the average execution time, the next bundle will not be completely filled yet. Thus

the actual x∗g would differ from the value in the basic model.

119

(a) The system cost along x and nILP.

(b) The system cost of different nILP along x.
(This view simply projects nILP out of Fig. (a).)

(c) The comparison between the base case and the
case of coordinated robots with nILP = 5.

Figure 6.4: Empirical results of a team of five robots. In (b), it is shown that synchronization improves the
performance (the uppermost is the case where nILP = 1 and the lower-most has nILP = 5). (c) shows that
the basic model from Sec. 6.3.1 is the upper bound of all combinations of coordination methods, synchro-
nization.

120

6.3.3.2 Task arrival process

Though some applications certain have tasks are revealed at fixed intervals, a proba-

bilistic arrival process is more common. One generalization is to consider a Poisson arrival

process, modeling completely random arrivals of events. Probabilistic arrivals will alter

the true x∗g so that it differs from the one in the basic model because h(·) is no longer

deterministic (e.g., the blue line in Fig. 6.2 has some variance).

6.4 Bundling Policies

Based on the previous discussion, this section proposes some bundling policies, while

the following section provides through evaluations. Each of the policies are simple algo-

rithms that perform optimally in the basic case, but provide broader support, being flexible

enough to behave agreeably across a range of more complex cases.

6.4.1 Model-based policies

6.4.1.1 Fixed-x policy

If the models g(·) and h(·) are available, finding an x that minimizes (6.1), the end-

to-end time, gives x∗g. Also, finding the x that minimizes h(·), the system cost, gives x∗f .

Let k be the bundle size that each robot takes (it may differ for different robots if their

performance rates differ, such as having different velocities). Each robot keeps k = x∗g or

k = x∗f depending on its objective. Since x∗f goes to infinity with synergistic tasks, this

is not a practical bundle size. Thus, we only consider k = x∗g. When a robot finishes its

current bundle and tries to execute the next bundle, there might be insufficient tasks in T

to form that bundle. The robot may wait, idly, for new tasks. Let xP denote the size of T

which triggers execution of the current bundle. In the fixed-x policy, xP = x∗g. If |T| ≥ xP,

the robot takes k tasks and executes them immediately. Because this policy cannot handle

uncertainties in the task profile (discussed in Sec. 6.3.3) it is possible that end-to-end time

121

could diverge if T overflows.

6.4.1.2 Up-to-x policy

This policy is the same with the fixed-x policy except that the robot does not wait

to fill its bundle. In every iteration, the robot takes k tasks from T, where k ≤ x∗g, if

|T| ≥ xP = 1. This eliminates the bundling time.

6.4.2 Remarks

As we discussed in Sec. 6.3.2, when the robots are coordinated and/or synchronized,

then the x∗g computed from the basic model differs from the actual optimal bundle size.

Since x∗g overestimates the true value, the consequence is that it may increase the end-to-

end time to some degree, but it never causes T diverge. The sub-optimality in end-to-end

time is somewhat allayed by having a better system cost (from the larger task bundles).

6.4.3 Model-free policies

6.4.3.1 Sweeping policy

The sweeping policy takes all tasks k = |T| if |T| ≥ xP = 1. Since the previous

two polices cannot handle the case where the robots complete their current bundles earlier

than the expectation, or tasks arrive faster than the mean interval. These two types of

behavior may happen due to fluctuations away from the mean for some period of time.

This policy saves bundling time when the number of tasks is insufficient. Also, the policy

exploits the synergies maximally by taking all available tasks. Most importantly, the policy

is useful even when the models are unavailable. The bundle size converges to a value

reflecting the equilibrium in which the execution time and bundling times are equal (in

average). Fig. 6.5a shows the changes of the bundle size versus time when task locations

are uniformly distributed and tasks arrive regularly.

122

0 20 40 60 80 100
#step

0

10

20
B

un
dl

e
si

ze
Experiment
Avg. bundle size
Optimal bundle size from model

(a) The sweeping policy

0 20 40 60 80 100
#step

0

10

20

B
un

dl
e

si
ze

Experiment
Avg. bundle size
Optimal bundle size from model

(b) The averaging policy

Figure 6.5: Plots showing bundle size vs. iterations. The policies converge to the optimal bundle predicted
from the model.

6.4.3.2 Averaging policy

The sweeping policy’s equilibrium is constant unless the stochastic properties of the

task location and arrival process change. The sweeping policy does not make explicit

use of a representation of the equilibrium. It is worthwhile to modify to track the equi-

librium via history. The averaging policy begins with xP = 1 and repeats the follow-

ing: if |T| ≥ xP, then the robot records the current |T| in the history window W (i.e.,

W ← ENQUEUE(W, |T|)). It then takes k = xP tasks and leaves the remaining tasks

behind in T. Next, a new xP is computed by averaging the previous values saved in W

(i.e., xP = MEAN(W)). The smaller the window size, the more sensitive the policy to

variability.

6.4.4 Algorithm

We develop a multi-robot routing algorithm with a centralized task distribution mech-

anism. Pseudocode appears in Alg. 10, using of the fixed bundle-size policy. In the initial-

ization (lines 1–8), the bundle Xi of robot i is filled with the current location of the robot,

and the optimal bundle size x∗i is computed. After the initialization, the algorithm iterates

lines 10–31 infinitely. Lines 10–17 run for those robots that execute their Hamiltonian

paths. Line 11 executes the path and removes visited locations from the bundle. A robot

transitioning into the idle state in lines 12–16. The algorithm allocates tasks to idle robots

123

in each step (line 19). If there are available tasks and idle robots, the bundles are updated

through ALLOCATE function.

ALLOCATE computes an optimal assignment of tasks in T to the idle robots in Ridle,

where |T| = m and |Ridle| = n′. One or more tasks are assigned to each robot based on

the cost cij where cij = ||l(Ri)− l(Tj)||. Let yij be a binary variable that equals to 0 or 1,

where yij = 1 indicates that Ri performs Tj , and yij = 0 elsewhere. Then a mathematical

description of the assignment problem is

min
n′∑
i=1

m∑
j=1

cijyij (6.5)

subject to

n′∑
i=1

yij = 1 ∀j, (6.6)

yij ∈ {0, 1} ∀{i, j}. (6.7)

(6.6) prohibits a task to be assigned to multiple robots.

After computing the assignment, ∀j, with yij = 1, the associated Tj is added to Xi.

Those assigned tasks are removed from T (line 20). Lines 22–31 are policy dependent.

The lines run for all idle robots, which wait until the condition for the policy is satisfied.

After that, robot i becomes active, computing a Hamiltonian path from the locations in its

batch (lines 27–29).

6.5 Quantitative Study: Comparisons of the Policies

In this section, we describe experiments that examine the various polices on the multi-

robot routing problem. The coordination method called ‘IND’ randomly distributes tasks

from T to robots. As to the dimension of synchronization: asynchronous robots do not

124

Algorithm 10 M-HP
Input: the number of robots n, the velocity of robots vi, the area of the field S, the task
arrival interval α
Output: Continuous executions of Xi

1 T = ∅//the set of tasks

2 Ractive = ∅//the set of working robots

3 Ridle = {R1, · · · , Rn}//the set of idle robots

4 TPi = ∅//a temporal set

5 for each Ri ∈ Ridle

6 Xi = {l(Ri)}//l(·): the location of the input

7 Compute x∗i = max(xm, xD)
8 end for
9 while uninterrupted
10 for each Ri ∈ Ractive

11 Execute Xi and remove visited locations
12 if Xi = ∅//no more location to visit

13 Ractive = Ractive \Ri

14 Ridle = Ridle ∪Ri

15 Xi = {l(Ri)}//the start location of next Xi

16 end if
17 end for
18 if |Ridle| ≥ nILP

19 X1,··· ,|Ridle| = ALLOCATE(T, Ridle)//solve (6.5)-(2.5)

20 T = T \ (X1 ∪ · · · ∪X|Ridle|)//remove allocated tasks

21 end if
22 for each Ri ∈ Ridle

23 TPi = TPi ∪Xi//merge the bundle with

//the remaining tasks in TPi

24 if TPi ≥ xP//xP: policy-dependent parameter

25 Xi = TPi(1 : k)//k: policy-dependent bundle size

26 TPi = TPi(k + 1 : end)
27 Xi = RANDHP(Xi)//compute an HP

28 Ridle = Ridle \Ri

29 Ractive = Ractive ∪Ri

30 end if
31 end for
32 end while

125

wait for other robots (but may be included with other robots by chance). In contrast,

synchronized teams works as a block. We also include numbers from a baseline where

robots do not bundle but instantaneously execute tasks one by one.

6.5.1 Experimental settings

For a fixed number of robots (n = 5), we assume that all robots move at the same

velocity v, and the bundle size is computed from the model is the same for all robots. As

discussed above, using x∗f is unrealistic since it would make robots wait for an unbounded

number of tasks. Thus, we minimize the end-to-end time only, and scrutinize how the

system cost changes. We set α = 5 for the regular task arrival process. The parameter

for the Poisson arrival process is ρ = 1
α

, where the mean arrival interval is ρ−1 = α.

Those two arrival processes have the same mean task arrival interval. We measure the two

objective values and run 10 repetitions. The results appear in Table 6.1 and Fig. 6.6.

6.5.2 Analysis

The results show that all bundling polices in all combinations represent significant

improvements over the non-bundling baseline. The improvement in the time traveled is

a consequence of larger bundles although we aim to optimize the end-to-end metric. We

focus on the end-to-end time in the following analysis. Table 6.1a and Table 6.1b show

the results of the fixed task arrival interval case and the Poisson arrival case, respectively.

In both cases, synchronizing the robots (Sync) with an optimal task distribution mech-

anism (AS) significantly increases performance. As discussed, this is because including all

robots in AS results in a globally optimal assignment solution. If the robots bundle tasks,

Sync gains more tasks while the robots wait for each other. This increases the chance

of having lower-cost tasks in AS. Bundling improves the performance as well. Bundling

reduces the execution time which is one of the components of the end-to-end measure

(the residing time in T, the bundling time, and the execution time). If robots finish tasks

126

Table 6.1: Comparisons of policies. The values represent the mean and the standard deviation over 10
repetitions.

(a) Fixed task arrivals (α = 5)

Deg. of Time traveled End-to-end
Sync IND AS IND AS

B
as

el
in

e Async 79.31
(1.073)

78.77
(1.135)

13300
(223.7)

13210
(212.0)

Sync 78.09
(1.088)

38.53
(0.9862)

13890
(340.1)

6939
(479.8)

Fi
xe

d
x Async 24.60

(0.3407)
24.07

(0.1681)
1696

(107.6)
1434

(65.54)
Sync 24.45

(0.3596)
12.70

(0.5858)
2557

(177.7)
1059

(166.2)

U
p

to
x Async 28.27

(0.5257)
28.25

(0.4188)
2476

(166.6)
2344

(163.1)
Sync 26.84

(0.1947)
15.74

(0.4869)
1926

(165.0)
726.3

(126.0)

Sw
ee

pi
ng Async 26.58

(0.1870)
26.72

(0.2104)
2499

(160.5)
2668

(201.7)
Sync 23.78

(0.6062)
16.05

(0.9959)
834.9

(51.30)
714.96
(192.1)

A
ve

ra
gi

ng Async 27.63
(0.4369)

27.79
(0.2985)

2266
(184.6)

2321
(116.9)

Sync 27.18
(0.8579)

16.60
(0.8263)

2455
(151.3)

1650
(127.6)

(b) Poisson task arrivals (ρ = 1/5)

Deg. of Time traveled End-to-end
Sync IND AS IND AS

B
as

el
in

e Async 78.49
(1.111)

78.59
(0.7917)

12910
(220.7)

12880
(152.4)

Sync 78.65
(0.7509)

39.24
(1.301)

13670
(304.0)

7264
(652.2)

Fi
xe

d
x Async 24.65

(0.2831)
23.83

(0.3252)
1613

(109.7)
1434

(70.31)
Sync 24.49

(0.5503)
13.03

(0.5994)
1787

(322.0)
1216

(286.6)

U
p

to
x Async 29.48

(0.6724)
29.56

(0.4917)
2610

(195.0)
2639

(257.5)
Sync 27.75

(0.6123)
16.91

(0.6896)
1688

(129.4)
760.3

(199.5)

Sw
ee

pi
ng Async 29.02

(0.6002)
28.76

(0.5024)
2702

(236.6)
2686

(231.7)
Sync 25.75

(0.4472)
16.66

(0.9694)
801.4

(51.73)
812.8

(208.1)

A
ve

ra
gi

ng Async 29.97
(0.5120)

29.73
(0.5907)

2475
(190.7)

2402
(216.3)

Sync 28.59
(1.404)

17.98
(0.8220)

2473
(158.5)

1615
(227.2)

127

(a) The time traveled (the system cost).

(b) The end-to-end time (the timespan of a task).

Figure 6.6: Comparisons of policies with all combinations of the arrival process (Fixed or Poisson), the
coordination method (Independent or Assignment), and the degree of synchronization (Async or Sync).
Three letters represent the combination.

128

faster, the residing time in T decreases, which is also a component of the end-to-end time.

A larger bundle increases the bundling time only, and this increase is dominated by the

decrease of other two components.

Bundling outperforms instantaneous executions. Also, with regard to coordination

method: Sync outperforms Async, and AS outperforms IND. Using only Sync does not

always guarantee an improvement. If we use Sync, robots sometimes wait too long to

fill the bundle. This bundling time becomes overshadows other times in Sync and IND

because the bundles of all robots should be filled, and IND does not take maximum advan-

tage of synchronized robots (i.e., there is no optimization in task distribution). Using only

AS also does not always guarantee a significant improvement. Using AS with Async has

robots that are quiet close to working independently. It is unlikely that robots will finish

their bundles at the same time, so most time they individually take lower-cost tasks. In a

bounded region, visiting a bundle of random locations versus only those locations close to

the robot may have negligible difference, especially when we optimize the tour.

The fixed-x policy yields the smallest system cost. The policy never takes fewer tasks

than its overestimate of the optimal bundle size, and it exploits synergies among tasks.

The up-to-x policy reduces the bundling time by never waiting to fill bundles, but this may

increase the system cost. The sweeping policy is similar to the up-to-x but without limiting

the number of tasks that the robots bundle. Therefore, the system cost is better than up-

to-x, in general. The averaging policy does not show any remarkable performance; its

advantage is in dealing with noisy patterns in the task profile.

In choosing a policy, one’s purpose must be borne in mind. To help determine the

appropriate policy, we show the results in the objective space in Fig. 6.7. Among all

combinations (in Fig. 6.7a), only non-dominated combinations are shown in Fig. 6.7b.

The Pareto frontier is consists only of combinations of AS and Sync, so coordinating and

synchronizing robots is the most beneficial for both objectives. Beyond this combination,

129

(a) All solutions. (b) The non-dominated solutions.

Figure 6.7: The objective space of the case where tasks arrive with α. The polices form a Pareto frontier
as marked in (a). The three polices correspond to the fixed-x, up-to-x, and the sweeping policy with the
synchronized robots using the ILP. The Poisson arrival case is omitted since it has the same result.

one must select a policy. For the system cost, we would use the fixed-x policy if models

are available. Without any model, the sweeping policy is the best. For the end-to-end

time, the up-to-x and the sweeping policy show similar performances. We would choose

between them according to the availability of the models.

6.5.3 Non-i.i.d. task locations and task arrival interval

We also run experiments with the task locations that are not independently and iden-

tically distributed. With a probability of 0.5, a task is drawn from a Uniform distribution

within the arena that robots work. With a probability of 0.5, a task is drawn from a Normal

distribution that has the location of the last task as the mean. The task arrival process also

has the interval between tasks that is non-i.i.d. With a probability of 0.5, the arrival process

follows the Poisson process with ρ which is a sinusoidal function. With a probability of

0.5, the interval is drawn from a Uniform distribution where the upper bound is related to

the previous value of ρ.

We only report results for Sync and AS. We tested the sweeping and the average poli-

130

cies since the models are not available in this non-i.i.d. case. The results (Table 6.2) show

that the model-free policies outperforms the baseline method. Among the two model-free

policies, one would choose the sweeping policy since this policy is shown to adapt itself

well to changes in the task profile.

Table 6.2: The results from non-i.i.d. task locations and arrival intervals. Sync and AS are used.

Time traveled End-to-end
Baseline 37.64 (0.7788) 5856 (293.1)

Sweeping 14.80 (1.0594) 2660 (1096)
Averaging 21.03 (0.5740) 4566 (1461)

6.6 Summary

This chapter treats a variant of the multi-robot task allocation problem where stochastic

tasks arrive continuously, and the system must determine how to bundle tasks in order to

make best use of synergies between tasks. First, we proposed a basic model to understand

the foundations of bundling in this setting. Then, from empirical studies, we explored how

the model changes as a function of bundle size, team size, task distribution method, and

degree of synchronization. Based on this qualitative study, we proposed a set of simple

bundling policies to optimize the system cost or the timespan. It is shown that bundling

outperforms no bundling. Also, the policies are able to deal with uncertainties in the task

profile, such as probabilistic task arrivals or non-i.i.d. task locations and arrival intervals.

131

7. CONCLUSION AND FUTURE WORK

In this dissertation, we solved MRTA problems subject to resource constraints, operat-

ing in dynamic environments, dealing with the risk arising from uncertainty, and serving

online tasks. The results include: (i) polynomial-time task allocation algorithms consid-

ering shared resources (e.g., physical space, communication bandwidth) where a perfor-

mance guarantee is provided for the approximation algorithm, (ii) algorithms that help

mitigate the weaknesses in centralized systems (e.g., expensive global communication and

centralized computations) when task costs change during execution, (iii) algorithms that

analyze the sensitivity of optimal assignments with respect to risk (using risk measures

such as the Conditional Value-at-Risk), and (iv) task bundling policies where tasks are

revealed sequentially over time.

In Chapter 3, we defined the task allocation problems with resource contention and

showed the complexity of them where problems with general and convex penalization

functions are NP-hard and the problem with linear functions is in P. We developed an ex-

act algorithm for general problems and two polynomial-time algorithms for the problems

with convex and linear penalty functions. The algorithms produce an optimal or a high-

quality approximation solution depending on the hardness of the problems. We applied

the algorithms for a multi-robot transportation problem where narrow roads are shared by

the robots, and the penalization function models traffic congestions precisely.

In Chapter 4, we proposed a region-based cost representation that incorporates uncer-

tainty in costs. A finite region prescribes the possible changes of costs that might occur

while robots are operating. We employed a sensitivity analysis of linear programming and

showed that it reduces assignment re-computations when costs change. Also, we proposed

three methods that remedy the weaknesses of the centralized structure in multi-robot sys-

132

tems by reducing the re-computations and global communication. We also showed that

modeling interrelationships among costs makes cost regions tighter, thus we could have

better predictions for cost changes.

Chapter 5 considered multi-robot task allocation under a probabilistic model of cost.

We used random variables for costs to incorporate uncertainty and interdependency. Even

without the assumption of independent costs, we showed that the costs chosen in an as-

signment are independent. We characterized the distributions by their expected values

and CVaRs. We formulated a parameterized assignment problem where a risk preference

determines the importance between the characterizations. Also, we showed a problem

class that is indifferent to a particular value of the risk preference. For the risk preference

dependent problems, we provided algorithms for analyzing the sensitivity of an optimal

assignment with respect to the risk preference.

Chapter 6 treated an online variant of task allocation where stochastic and synergistic

tasks arrive sequentially. The system must determine how many tasks the robots bundle

to find the optimal point trading off between the system cost (e.g., fuel spent) and the

timespan of tasks (e.g., the time from the task insertion to completion). We investigated a

basic model to understand the foundations of bundling. We performed empirical studies

and explored how the basic model changes depending on the bundle size, task distribution

method, and the degree of synchronization. This qualitative study enabled us to propose a

set of bundling policies

For future work, we would like to extend some of the work done and explore interest-

ing questions in online task allocation. In Chapter 3, the algorithms use the centralized

approach where a central unit computes an optimal assignment and distributes the as-

signment to other robots. Thus their use could be restrictive if central computation and

global communication are not possible or the expense of central computation and global

communication is prohibitive. We are interested in developing decentralized versions of

133

the algorithms along with modeling contention on other types of (e.g., non-physical) re-

sources. For Chapter 5, we would like to investigate further what conditions (i.e., proper-

ties of problem domains) make a task allocation problem risk indifferent. Chapter 6 brings

interesting open questions in serving online tasks while optimizing the steady-state perfor-

mance of the system. We plan to further study the strategies to improve the performance

of bundled task execution. There are several directions for improvement. For example,

robots may swap the tasks in their bundles for additional refinements. Preemptions of

bundle executions may be useful so that some robots can stop working if they exceed the

expected execution time for their bundles. We also wish to extend our study to tasks with

negative synergies, no synergy, and (non-monotonic) complex synergies. Moreover, we

are interested in other variants of tasks, such as tasks with deadline constraints or tasks

that could be abandoned or rejected.

One of the findings in this dissertation study is that we identified probably not all, but

some common and important interrelationships and uncertainties in robots, tasks, and en-

vironments that were able to be incorporated into the model of cost. But more importantly,

we expanded the classical MRTA approaches in various directions. These expansions at-

tempt to synthesize the decomposed components in task planning described in Fig. 1.1.

First, robot interactions traditionally treated in the motion planning and execution time are

modeled and embedded in the task allocation mechanism. Second, some portion of task

assessment is combined with task allocation to model uncertainties. As a result, the cost

models, which is an input to task allocation, become richer than the conventional scalar

costs. Last, task allocation is extended for continuing operations that are uncertain.

Still, these efforts are done in the classical framework of task planning (e.g., Fig. 1.1).

For a long-term goal, we want to develop a unified online task planning framework where

the decomposed steps in task planning are combined so that planning can flow seamlessly

without loosing useful information. Also, we want to not only preserve the richness of the

134

information regarding task planning but also achieve tractability. A combination of effi-

cient optimization methods and expressive models in artificial intelligence (e.g., partially-

observable Markov decision process, linear temporal logic based planning, game theory)

would achieve the both objectives.

135

REFERENCES

[1] Jose Acevedo, Begona Arrue, Ivan Maza, and Anibal Ollero. A decentralized al-

gorithm for area surveillance missions using a team of aerial robots with different

sensing capabilities. In Proceedings of IEEE International Conference on Robotics

and Automation, pages 4735–4740, 2014.

[2] Javier Alonso-Mora, Martin Rufli, Roland Siegwart, and Paul Beardsley. Collision

avoidance for multiple agents with joint utility maximization. In Proceedings of

IEEE International Conference on Robotics and Automation, pages 2833–2838,

2013.

[3] Sofia Amador, Steven Okamoto, and Roie Zivan. Dynamic multi-agent task alloca-

tion with spatial and temporal constraints. In Proceedings of the International Con-

ference on Autonomous Agents and Multi-agent Systems, pages 1495–1496, 2014.

[4] Kurt Anstreicher. Linear programming in o([n
3

lnn]l) operations. SIAM Journal on

Optimization, 9(4):803–812, 1999.

[5] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent

measures of risk. Mathematical finance, 9:203–228, 1999.

[6] Nuzhet Atay and Burchan Bayazit. Mixed-integer linear programming solution to

multi-robot task allocation problem. Technical Report 2006-54, Washington Uni-

versity in St. Louis, 2006.

[7] Charles Audet, Pierre Hansen, Brigitte Jaumard, and Gilles Savard. A branch

and cut algorithm for nonconvex quadratically constrained quadratic programming.

Mathematical Programming, 87:131–152, 2000.

136

[8] Alexander Bahr, John Leonard, and Maurice Fallon. Cooperative localization for

autonomous underwater vehicles. International Journal of Robotics Research,

28(6):714–728, 2009.

[9] Ross Baldick. A unified approach to polynomially solvable cases of integer “non-

separable” quadratic optimization. Discrete Applied Mathematics, 61(3):195–212,

1995.

[10] Michel Balinski. Signature methods for the assignment problem. Operations Re-

search, 33(3):527–536, 1985.

[11] Mokhtar Bazaraa, John Jarvis, and Hanif Sherali. Linear programming and network

flows. John Wiley & Sons, 2011.

[12] Jillian Beardwood, John Halton, and John Michael Hammersley. The shortest path

through many points. In Mathematical Proceedings of the Cambridge Philosophical

Society, volume 55, pages 299–327. Cambridge Univ Press, 1959.

[13] Tolga Bektas. The multiple traveling salesman problem: an overview of formula-

tions and solution procedures. Omega, 34:209–219, 2006.

[14] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization:

analysis, algorithms, and engineering applications. Siam, 2001.

[15] Curt Alexander Bererton. Multi-robot coordination and competition using mixed

integer and linear programs. PhD thesis, Carnegie Mellon University, 2004.

[16] Dimitri Bertsekas. A new algorithm for the assignment problem. Mathematical

Programming, 21(1):152–171, 1981.

[17] Silvia Botelho and Rachid Alami. M+: a scheme for multirobot cooperation through

negotiated task allocation and achievement. In Proceedings of IEEE International

Conference on Robotics and Automation, pages 1234–1239, 1999.

137

[18] Stephen Bradley, Arnoldo Hax, and Thomas Magnanti. Applied mathematical pro-

gramming. 1977.

[19] Richard Brualdi and Herbert Ryser. Combinatorial matrix theory, volume 39. Cam-

bridge University Press, 1991.

[20] Francesco Bullo, Emilio Frazzoli, Marco Pavone, Ketan Savla, and Stephen Smith.

Dynamic vehicle routing for robotic systems. Proceedings of the IEEE, 99:1482–

1504, 2011.

[21] Rainer Burkard and Eranda Cela. Linear assignment problems and extensions.

Springer, 1999.

[22] Paul Camion. Characterization of totally unimodular matrices. Proceedings of

American Mathematical Society, 16:1068–1073, 1965.

[23] Jian Chen, Dong Sun, Jie Yang, and Haoyao Chen. Leader-follower formation

control of multiple non-holonomic mobile robots incorporating a receding-horizon

scheme. International Journal of Robotics Research, 29(6):727–747, 2010.

[24] Steve Chien, Anthony Barrett, Tara Estlin, and Gregg Rabideau. A comparison

of coordinated planning methods for cooperating rovers. In Proceedings of the

International Conference on Autonomous Agents, pages 100–101, 2000.

[25] Han-Lim Choi, Luc Brunet, and Jonathan How. Consensus-based decentralized

auctions for robust task allocation. IEEE Transactions on Robotics, 25(4):912–926,

2009.

[26] Peter Corke. Robotics, Vision & Control: Fundamental Algorithms in Matlab.

Springer, 2011.

138

[27] Daniel Dadush, Chris Peikert, and Santosh Vempala. Enumerative lattice algorithms

in any norm via m-ellipsoid coverings. In Proceedings of IEEE Annual Symposium

on Foundations of Computer Science, pages 580–589, 2011.

[28] Torbjorn Dahl, Maja Matarić, and Gaurav Sukhatme. Multi-robot task-allocation

through vacancy chains. In Proceedings of IEEE International Conference on

Robotics and Automation, pages 2293–2298, 2003.

[29] Vishnu Desaraju and Jonathan How. Decentralized path planning for multi-agent

teams with complex constraints. Autonomous Robots, 32(4):385–403, 2012.

[30] Tamal Dey, Anil Hirani, and Bala Krishnamoorthy. Optimal homologous cy-

cles, total unimodularity, and linear programming. SIAM Journal on Computing,

40(4):1026–1044, 2011.

[31] Jan Dhaene, Steven Vanduffel, MJ Goovaerts, Rob Kaas, Qihe Tang, and David

Vyncke. Risk measures and comonotonicity: a review. Stochastic models, 22:573–

606, 2006.

[32] Bernadine Dias and Tuomas Sandholm. TraderBots: A New Paradigm for Ro-

bust and Efficient Multirobot Coordination in Dynamic Environments. PhD thesis,

Carnegie Mellon University, 2004.

[33] Bernardine Dias and Anthony Stentz. A market approach to multirobot coordina-

tion. Technical Report CMU-RI -TR-01-26, Carnegie Mellon University, 2000.

[34] Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. Market-based

multirobot coordination: A survey and analysis. Proceedings of the IEEE, 94:1257–

1270, 2006.

[35] Timon Du, Eldon Li, and An-Pin Chang. Mobile agents in distributed network

management. Communications of the ACM, 46:127–132, 2003.

139

[36] Carlo Filippi. A fresh view on the tolerance approach to sensitivity analysis in linear

programming. European Journal of Operational Research, 167:1–19, 2005.

[37] Jim Florwick, Jim Whiteaker, Alan Amrod, and Jake Woodhams. Wireless lan

design guide for high density client environments in higher education. In Design

guide. Cisco Systems, 2013.

[38] Thomas Gal. Postoptimal analyses parametric programming and related topics.

McGraw-Hill, 1979.

[39] Tomas Gal, Hermann-Josef Kruse, and Peter Zörnig. Survey of solved and open

problems in the degeneracy phenomenon. Springer, 1988.

[40] Tomas Gal and Josef Nedoma. Multiparametric linear programming. Management

Science, 18:406–422, 1972.

[41] Brian Gerkey and Maja Matarić. Murdoch: Publish/subscribe task allocation for

heterogeneous agents. In Proceedings of the International Conference on Au-

tonomous Agents, pages 203–204, 2000.

[42] Brian Gerkey and Maja Matarić. Sold!: Auction methods for multi-robot coordina-

tion. IEEE Transactions on Robotics, 18:758–768, 2002.

[43] Brian Gerkey and Maja Matarić. A formal analysis and taxonomy of task allocation

in multi-robot systems. International Journal of Robotics Research, 23:939–954,

September 2004.

[44] Stefano Giordani, Marin Lujak, and Francesco Martinelli. A distributed algorithm

for the multi-robot task allocation problem. In Trends in Applied Intelligent Systems,

pages 721–730. Springer, 2010.

[45] Dani Goldberg. Evaluating the dynamics of agent-environment interaction. PhD

thesis, University of Southern California, 2001.

140

[46] Dani Goldberg and Maja Matarić. Interference as a Tool for Designing and Eval-

uating Multi-Robot Controllers. In Proceedings of AAAI National Conference on

Artificial Intelligence, pages 637–642, 1997.

[47] Clóvis Gonzaga. An algorithm for solving linear programming problems inO(n3L)

operations. Springer, 1989.

[48] Google. The Google Directions API. https://developers.google.com/maps/docume

ntation/directions/, 2013.

[49] Google. The Google Directions API.

 https://developers.google.com/maps/documentation/directions/, 2016.

[50] Harvey Greenberg. An analysis of degeneracy. Naval Research Logistics Quarterly,

33:635–655, 1986.

[51] José Guerrero and Gabriel Oliver. Physical interference impact in multi-robot task

allocation auction methods. In Proceedings of IEEE Workshop on Distributed In-

telligent Systems: Collective Intelligence and Its Applications, pages 19–24, 2006.

[52] Liang He and Jan van den Berg. Meso-scale planning for multi-agent navigation. In

Proceedings of IEEE International Conference on Robotics and Automation, pages

2839–2844, 2013.

[53] Bradford Heap. Sequential Single-Cluster Auctions for Multi-Robot Task Alloca-

tion. PhD thesis, The University of New South Wales, 2013.

[54] Bradford Heap and Maurice Pagnucco. Sequential single-cluster auctions for robot

task allocation. In Advances in Artificial Intelligence, pages 412–421. 2011.

[55] Dorit Hochbaum and George Shanthikumar. Convex separable optimization is not

much harder than linear optimization. Journal of the ACM, 37(4):843–862, 1990.

141

[56] Sue Ann Hong and Geoffrey Gordon. Decomposition-based optimal market-based

planning for multi-agent systems with shared resources. In International Confer-

ence on Artificial Intelligence and Statistics, volume 15, pages 351–360, 2011.

[57] Viggo Kann. On the approximability of NP-complete optimization problems. PhD

thesis, Royal Institute of Technology, 1992.

[58] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math-

ematics of Operations Research, 12(3):415–440, 1987.

[59] Richard Karp. Reducibility among combinatorial problems. Springer, 1972.

[60] Young-Ho Kim and Dylan Shell. Distributed robotic sampling of non-homogeneous

spatio-temporal fields via recursive geometric sub-division. In Proceedings of IEEE

International Conference on Robotics and Automation, pages 557–562, 2014.

[61] Leonard Kleinrock. Queuing systems. Wiley, 1975.

[62] Sven Koenig, Craig Tovey, Xiaoming Zheng, and Ilgaz Sungur. Sequential bundle-

bid single-sale auction algorithms for decentralized control. In Proceedings of In-

ternational Joint Conference on Artificial intelligence, pages 1359–1365, 2007.

[63] Ayorkor Korsah, Anthony Stentz, and Bernardine Dias. A comprehensive taxon-

omy for multi-robot task allocation. International Journal of Robotics Research,

32(12):1495–1512, 2013.

[64] Pavlo Krokhmal and Panos Pardalos. Random assignment problems. European

Journal of Operational Research, 194(1):1–17, 2009.

[65] Harold Kuhn. The hungarian method for the assignment problem. Naval Research

Logistic Quarterly, 2(1-2):83–97, 1955.

142

[66] Akshat Kumar, Boi Faltings, and Adrian Petcu. Distributed constraint optimization

with structured resource constraints. In Proceedings of International Conference on

Autonomous Agents and Multiagent Systems, pages 923–930, 2009.

[67] Jooyoung Lee and MooYoung Choi. Optimization by multicanonical annealing and

the traveling salesman problem. Physical Review E, 50:R651, 1994.

[68] Hendrik Lenstra. Integer programming with a fixed number of variables. Mathe-

matics of Operations Research, pages 538–548, 1983.

[69] Sven Leyffer and Ashutosh Mahajan. Nonlinear constrained optimization: methods

and software. Argonee National Laboratory, Argonne, Illinois, 2010.

[70] Chi-Jen Lin and Ue-Pyng Wen. Sensitivity analysis of objective function coeffi-

cients of the assignment problem. Asia-Pacific Journal of Operational Research,

24:203–221, 2007.

[71] Lantao Liu and Dylan Shell. Assessing optimal assignment under uncertainty: An

interval-based algorithm. International Journal of Robotics Research, 30(7):936–

953, 2011.

[72] Lantao Liu and Dylan Shell. Large-scale multi-robot task allocation via dynamic

partitioning and distribution. Autonomous Robots, 33:291–307, 2012.

[73] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara. Multi-robot assignment al-

gorithm for tasks with set precedence constraints. In Proceedings of IEEE Interna-

tional Conference on Robotics and Automation, pages 2526–2533, 2011.

[74] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara. Distributed algorithm design

for multi-robot task assignment with deadlines for tasks. In Proceedings of IEEE

International Conference on Robotics and Automation, pages 3007–3013, 2013.

143

[75] Andriy Andreev-Antti Kanto-Pekka Malo. On closed-form calculation of cvar.

2005.

[76] Harry Markowitz. Portfolio selection. The Journal of Finance, 7:77–91, 1952.

[77] Toshihiro Matsui, Hiroshi Matsuo, Marius Silaghi, Katsutoshi Hirayama, and

Makoto Yokoo. Resource constrained distributed constraint optimization with vir-

tual variables. In Proceedings of AAAI Conference on Artificial Intelligence, pages

120–125, 2008.

[78] Reshef Meir, Yiling Chen, and Michal Feldman. Efficient parking allocation as

online bipartite matching with posted prices. In Proceedings of the International

Conference on Autonomous Agents and Multi-Agent Systems, pages 303–310, 2013.

[79] Ayorkor Mills-Tettey, Anthony Stentz, and Bernardine Dias. The dynamic hungar-

ian algorithm for the assignment problem with changing costs. 2007.

[80] Mosek. The mosek optimization software version 6. Online at

http://www.mosek.com, 2009.

[81] Robin Murphy, Karen Dreger, Sean Newsome, Jesse Rodocker, Brian Slaughter,

Richard Smith, Eric Steimle, Tetsuya Kimura, Kenichi Makabe, Kazuyuki Kon,

et al. Marine heterogeneous multirobot systems at the great eastern japan tsunami

recovery. Journal of Field Robotics, 29(5):819–831, 2012.

[82] Katta Murty. An algorithm for ranking all the assignments in order of increasing

cost. Operations Research, 16:682–687, 1968.

[83] Changjoo Nam and Dylan Shell. Assignment algorithms for modeling resource

contention in multi-robot task-allocation. IEEE Transactions on Automation Sci-

ence and Engineering, 12:889–900, 2015.

144

[84] Changjoo Nam and Dylan Shell. When to do your own thing: Analysis of cost

uncertainties in multi-robot task allocation at run-time. In Proceedings of IEEE

International Conference on Robotics and Automation, pages 1249–1254, 2015.

[85] Yurii Nesterov, Arkadii Nemirovskii, and Yinyu Ye. Interior-point polynomial al-

gorithms in convex programming, volume 13. SIAM, 1994.

[86] Gordon Newell. Nonlinear effects in the dynamics of car following. Operations

Research, 9(2):209–229, 1961.

[87] Evdokia Nikolova and Nicolas Stier-Moses. A mean-risk model for the stochastic

traffic assignment problem. Operations Research, 62:366–382, 2014.

[88] Michael Otte and Nikolaus Correll. The any-com approach to multi-robot coordina-

tion. In Proceedings of the ICRA Workshop on Network Science and Systems Issues

in Multi-Robot Autonomy, 2010.

[89] James Parker, Alessandro Farinelli, and Maria Gini. Decentralized allocation of

tasks with costs changing over time. IJCAI Workshop on Synergies between Multi-

agent Systems, Machine Learning and Complex Systems, pages 62–73, 2015.

[90] Lynne Parker. Alliance: an architecture for fault tolerant multirobot cooperation.

IEEE Transactions on Robotics, 14:220–240, 1998.

[91] Fabio Pasqualetti, Antonio Franchi, and Francesco Bullo. On cooperative pa-

trolling: Optimal trajectories, complexity analysis, and approximation algorithms.

IEEE Transactions on Robotics, 28(3):592–606, 2012.

[92] Giovanni Pini, Arne Brutschy, Mauro Birattari, and Marco Dorigo. Interference

reduction through task partitioning in a robotic swarm. In Proceedings of Inter-

national Conference on Informatics in Control, Automation and Robotics, pages

52–59, 2009.

145

[93] Sameera Ponda, Luke Johnson, and Jonathan How. Distributed chance-constrained

task allocation for autonomous multi-agent teams. In Proceedings of the American

Control Conference, pages 4528–4533, 2012.

[94] Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-

risk. Journal of risk, 2:21–42, 2000.

[95] Tim Roughgarden. Routing games. Algorithmic game theory, 18, 2007.

[96] Sanem Sariel, Tucker Balch, and Nadia Erdogan. Incremental multi-robot task se-

lection for resource constrained and interrelated tasks. In Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and System, pages 2314–2319,

2007.

[97] Dylan Shell and Maja Matarić. On foraging strategies for large-scale multi-robot

systems. In Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and System, pages 2717–2723, 2006.

[98] Wei-Min Shen and Behnam Salemi. Distributed and dynamic task reallocation in

robot organizations. In Proceedings of IEEE International Conference on Robotics

and Automation, pages 1019–1024, 2002.

[99] Pedro Shiroma and Maria Fernando Montenegro Campos. Comutar: A framework

for multi-robot coordination and task allocation. In Proceedings of IEEE/RSJ Inter-

national Conference on Intelligent Robots and System, pages 4817–4824, 2009.

[100] David Stein. An asymptotic, probabilistic analysis of a routing problem. Mathe-

matics of Operations Research, 3:89–101, 1978.

[101] Fang Tang and Lynne Parker. A complete methodology for generating multi-robot

task solutions using asymtre-d and market-based task allocation. In Proceedings

146

of IEEE International Conference on Robotics and Automation, pages 3351–3358,

2007.

[102] Ekunda Ulungu and Jacques Teghem. The two phases method: An efficient pro-

cedure to solve bi-objective combinatorial optimization problems. Foundations of

Computing and Decision Sciences, 20:149–165, 1995.

[103] Erik Vee, Sergei Vassilvitskii, and Jayavel Shanmugasundaram. Optimal online

assignment with forecasts. In Proceedings of the ACM Conference on Electronic

Commerce, pages 109–118, 2010.

[104] James Ward and Richard Wendell. Approaches to sensitivity analysis in linear pro-

gramming. Annals of Operations Research, 27:3–38, 1990.

[105] Barry Werger and Maja Matarić. Broadcast of local eligibility for multi-target ob-

servation. Distributed Autonomous Robotic Systems 4, pages 347–356, 2001.

[106] Peter Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of

cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1):9–19, 2008.

[107] Jingjin Yu and Steven LaValle. Planning optimal paths for multiple robots on

graphs. In Proceedings of IEEE International Conference on Robotics and Au-

tomation, pages 3612–3617, 2013.

[108] Ernst Zermelo. Über das navigationsproblem bei ruhender oder veränderlicher

windverteilung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift

für Angewandte Mathematik und Mechanik, 11(2):114–124, 1931.

[109] Lei-Hong Zhang, Wei Yang, and Li-Zhi Liao. On an efficient implementation of

the face algorithm for linear programming. Journal of Computational Mathematics,

31(4):335–354, 2013.

147

[110] Yu Zhang and Lynne Parker. Considering inter-task resource constraints in task

allocation. Autonomous Agents and Multi-Agent Systems, 26:389–419, 2013.

[111] Xiaoming Zheng, Sven Koenig, and Craig Tovey. Improving sequential single-

item auctions. In Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and System, pages 2238–2244, 2006.

148

APPENDIX A

A TRANSFORMATION OF A NONSEPARABLE PROBLEM TO A SEPARABLE

PROBLEM

Here, we show the transformation of a nonseparable C-type problem to a separable

problem, and show how to check the totally unimodularity of the transformed problem.

Suppose that n = m = 3, pij = 2,∀{i, j}, and a convex quadratic penalization func-

tion Q(·) in (3.1) is

Q(x111, x112, . . . , x331, x332)

= (x111 + x121 + x131 + x211 + x221 + x231

+ x311 + x321 + x331)2 + (x112 + x122 + x132

+ x212 + x222 + x232 + x312 + x322 + x332)2

(A.1)

which is (3.14) where βC = 1 and β′C = β′′C = 0. (A.1) can be written as

Q(·) = y1
2 + y2

2 (A.2)

where

y1 = x111 + x121 + . . .+ x321 + x331,

y2 = x112 + x122 + . . .+ x322 + x332.

149

Thus, additional constraints

x111 + x121 + . . .+ x321 + x331 − y1 = 0,

x112 + x122 + . . .+ x322 + x332 − y2 = 0

are added to (3.2)–(3.5). Therefore, AN in (3.12) is

AN =

[
1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0

]
,

and this is TU by definition. Since a TU AN does not always guarantee a TU ASP, ASP also

has to be checked. ASP is not TU because at least one of its submatrix has a determinant

other than -1, 0, or 1 (e.g., det([1 1 0; 1 0 1; 0 1 1]) = −2). Therefore, this C-type problem

instance does not belong to the polynomial-time solvable class of the C-type problem.

150

APPENDIX B

UNDERSTANDING DEGENERACY IN LP

One easy way to understand degeneracy in LP is using a polytope defined by con-

straints of an optimization problem. In nondegenerate cases, an extreme point of a poly-

tope corresponds to one feasible solution. In degenerate cases, one extreme point cor-

responds to many different degenerate solutions. It is worth noting that the stalling and

cycling problems in the Simplex method are caused by pivoting between the multiple de-

generate solutions on the same extreme point. See [50, 39] for more details.

151

APPENDIX C

A HARDNESS PROOF FOR THE NONLINEAR CONVEX COST BOUNDARY

Line 6 of Alg. 4 is a linear programming problem. The objective function is linear, and

the linearly of the constraint set depends on which type of cost boundary is used. If the

boundary is nonlinear convex, the problem becomes the optimization of a linear objective

function subject to a nonlinear convex constraint set (LONC).

In this appendix, we prove that LONC is in P to show that Alg. 4 for LONC still runs in

polynomial time. We show a polynomial-time reduction from LONC to the optimization

of a nonlinear convex objective function subject to a linear convex set (NOLC) to prove

LONC is in P.

Theorem C.17 LONC is in P.

Claim. If LONC ≤P NOLC, LONC is in P since NOLC is proven to be in P [14].

Proof. In line 6 of Alg. 4, the objective function of the linear programming is separable. If

both the objective function and the set of constraints are separable, LONC is easily trans-

formed to NOLC in polynomial time by variable substitution (an example follows after this

proof). If the constraint set is represented by nonseparable functions, some known meth-

ods in [18, Table 13.1] can transform nonseparable functions to separable in polynomial

time. Therefore, LONC ≤P NOLC. �

An example of LONC is

maxx1 + x3 − x4

subject to

152

x2
1 + x4

3 ≥ 1

x2
2 + x2

4 ≥ 1.

This can be transformed to

max
√
y1 + 4

√
y3 −

√
y4

subject to

y1 + y3 ≥ 1

y2 + y4 ≥ 1

by substituting yi = x2
i for i = 1, · · · , 4. Now the transformed objective function is convex

and the constraints are linear, which is NOLC.

153

APPENDIX D

A RANDOMIZED HEURISTIC HP ALGORITHM

We implement a randomized heuristic algorithm for the HP problem. The algorithm

receives the input Xi where |Xi| = xi. It generates a list X′i of two elements: the initial

robot location and a randomly chosen visit location from Xi (line 1). The chosen location

is removed from Xi (line 2). We consider the insertion positions in X′i: between the two

elements and after the last element (we do not consider the foremost position before the

elements). In general, there are |X′i| insertion positions in X′i. Let Pl be the insertion

position for l = 1, · · · , |X′i|.

The algorithm involves the following procedure for all visit locations in Xi. From the

first location, (i) inserting the chosen visit location at each insertion position and gener-

ating multiple paths (line 6), and (ii) choosing the minimum length path among the paths

generated from i) (line 8). X′i increases by one in each iteration by inserting one visit lo-

cation. Once all visit locations are inserted to X′i (at line 10), the path of xi visit locations

has a reasonably small distance but still not optimal (or near-optimal). Now the algorithm

randomly chooses one visit location Tb and removes it from X′i (line 12). Then the algo-

rithm runs (i) and (ii) with Tb and X′i (lines 13–16). If the resulting path is better than

the previous one, the algorithm updates the path (line 18). This improvement repeats for

γxi iterations, where γ ∈ Z+. The resulting Hamiltonian path would not be optimal but

near-optimal. For better results (but probably a longer running time), the stopping point

could be the time when the path distance converges.

154

Algorithm 11 RANDHP
Input: Xi, a bundle of xi tasks
Output: X′i, a reordered Xi forming a Hamiltonian path

1 P = ∅, s = 0

2 X′i = {l(Ri), l(Ta)}//Ta is randomly chosen from Xi

3 Xi = Xi \X′i
4 for each Tj ∈ Xi

5 for each Pk ∈ X′i
6 P←INSERT(Tj , Pk)//insert Tj in Pk and add to P

7 end for
8 X′i = MINPATH(P)//find the minimum length path

9 P = ∅
10 end for
11 while s < γxi

12 X′i = X′i \ Tb//Tb is randomly chosen from X′i
13 for each Pk ∈ X′i
14 P←INSERT(Tb, Pk)//insert Tb in Pk and add to P

15 end for
16 X′′i = MINPATH(P)//find the minimum length path

17 if DIST(X′i)>DIST(X′′i)//compare distances of paths

18 X′i = X′′i //if the randomly modified path X′′i is

//better than the previous one, update X′i
19 end if
20 P = ∅
21 end while
22 return X′i

155

