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ABSTRACT

In this dissertation, we focus on solving the linear Boltzmann equation – or

transport equation – using spherical harmonics (PN) expansions with fully-implicit

time-integration schemes and Galerkin Finite Element spatial discretizations within

the Multiphysics Object Oriented Simulation Environment (MOOSE) framework.

The presentation is composed of two main ensembles.

On one hand, we study the first-order form of the transport equation in the con-

text of Thermal Radiation Transport (TRT). This nonlinear application physically

necessitates to maintain a positive material temperature while the PN approximation

tends to create oscillations and negativity in the solution. To mitigate these flaws,

we provide a fully-implicit implementation of the Filtered PN (FPN) method and

investigate local filtering strategies. After analyzing its effect on the conditioning of

the system and showing that it improves the convergence properties of the iterative

solver, we numerically investigate the error estimates derived in the linear setting

and observe that they hold in the non-linear case. Then, we illustrate the benefits of

the method on a standard test problem and compare it with implicit Monte Carlo

(IMC) simulations.

On the other hand, we focus on second-order forms of the transport equation for

neutronics applications. We mostly consider the Self-Adjoint Angular Flux (SAAF)

and Least-Squares (LS) formulations, the former being globally conservative but void

incompatible and the latter having – in all generality – the opposite properties. We

study the relationship between these two methods based on the weakly-imposed LS

boundary conditions. Equivalences between various parity-based PN methods are
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also established, in particular showing that second-order filters are not an appro-

priate fix to retrieve void compatibility. The importance of global conservation is

highlighted on a heterogeneous multigroup k-eigenvalue test problem.

Based on these considerations, we propose a new method that is both globally

conservative and compatible with voids. The main idea is to solve the LS form in the

void regions and the SAAF form elsewhere. For the LS form to be conservative in

void, a non-symmetric fix is required, yielding the Conservative LS (CLS) formula-

tion. From there, an hybrid SAAF–CLS method can be derived, having the desired

properties. We also show how to extend it to near-void regions and time-dependent

problems. While such a second-order form already existed for discrete-ordinates (SN)

discretizations (Wang et al. 2014), we believe that this method is the first of its kind,

being well-suited to both SN and PN discretizations.
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NOMENCLATURE

Abbreviations

AFE Angular Flux Equation

AMG Algebraic Multigrid

BDF-2 Implicit time discretization method based on the Backward Differen-

tiation Formula (BDF) method

C5G7 A reactor physics benchmark problem with 7 energy groups and 5

different configurations

CG Conjugate Gradient

CGFEM Continuous Galerkin Finite Element Method

CFL Courant–Friedrichs–Lewy

CLS Conservative Least-Squares

DGFEM Discontinuous Galerkin Finite Element Method

gmsh A multi-dimensional finite element mesh generator

GMRES Generalized Minimum Residual

IMC Implicit Monte-Carlo, a class of stochastic methods for Thermal Ra-

diation Transport

INL Idaho National Laboratory

libMesh A C++ framework designed for the numerical resolution of partial

differential equations

LS Least-Squares

MMS Method of Manufactured Solutions

MOOSE Multiphysics Object Oriented Simulation Environment, a finite ele-

ment framework developed by the Idaho National Laboratory
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NDA Nonlinear Diffusion Acceleration

ORNL Oak Ridge National Laboratory

pcm per cent mille (one one-thousandth of a percent)

PETSc Portable, Extensible Toolkit for Scientific Computation, a parallel soft-

ware library for numerical calculations, developed by the Argonne Na-

tional Laboratory

PJNFK Preconditioned Jacobian-Free Newton Krylov

PN Spherical Harmonics

Rattlesnake Radiation transport solver based on MOOSE developed by the Idaho

National Laboratory

SAAF Self-Adjoint Angular Flux

SAAF–LS Hybrid method combining the Self-Adjoint Angular Flux and Least-

Squares methods

SAAF–CLS Hybrid method combining the Self-Adjoint Angular Flux and Conser-

vative Least-Squares methods

SAAF–VT Self-Adjoint Angular Flux with a Void Treatment

SN Discrete Ordinates

SOR Successive Over-relaxation

SPD Symmetric Positive Definite

SSpline Spherical Spline, type of filter defined by Eq. 3.14

VisIt Open source, interactive, scalable, visualization, animation and anal-

ysis tool , developed by the Lawrence Livermore National Laboratory

Symbols (with default units, as appropriate)

A Global matrix

a Bilinear form
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a Radiation constant (a = (8π5k4)/(15h3c3) = 7.56573164 × 10−16 J–

m−3–K−4)

B Frequency-integrated Planckian blackbody source (in J–m−2–s−1)

C Fully-discretized collision operator

Cm
` Spherical harmonics normalization constant

Cv Material heat capacity (in J–m−3–K−1)

c Speed of light in vacuum (c = 299792458 m/s)

c Scaling parameter to weakly impose the Least-Squares boundary con-

ditions (in m−1), further assumed to be a strictly positive constant in

Chapter 5

D Spatial domain

D0 Subdomain composed of all the void (or near-void) regions in the spa-

tial domain

D1 Subdomain composed of all the non-void regions in the domain

d Number of spatial dimensions the solution depends on

dist(·, ·) Minimum distance between the elements of two sets

E Energy of the particle (in J)

E L2-error of the angular flux, defined by Eq. 3.51

e Material internal energy (in J)

eig(·) Set of the eigenvalues of a matrix

eV Electronvolt, fundamentally an energy unit but used here as a temper-

ature unit, by abuse of notations (1 eV = qṽ0/k K, ṽ0 = 1 V)

~eχ Unit vector defining the χ-axis (χ ∈ {x, y, z}); may also be referred to

as ~eu, u ∈ {1, 2, 3} (see Section 2.3)

F Filtering operator

viii



F Fully-discretized filtering operator

F Numerical flux

f Filtering function

H Scattering plus fission operator (in m−1)

h Planck constant (h = 6.626070040(81)× 10−34 J–s)

h Size of the largest disk that can be inscribed inside any cell of the mesh

(in m)

I Identity matrix, with its size implied by the context

Ip Identity matrix of size p, p ∈ N

k Boltzmann constant (k = 1.38064852(79)× 10−23 J/K)

keV A thousand electronvolts

L Linear form

L Streaming plus collision operator (in m−1)

Mu Dissipation matrix corresponding to ~eu

max Maximum element of a set (in magnitude)

min Minimum element of a set (in magnitude)

N Spherical harmonics expansion truncation degree

N0 Spherical harmonics expansion truncation degree for which an unfil-

tered calculation is satisfying

Ns Spherical harmonics expansion truncation degree of the scattering

source

N Set containing all the (`,m) ∈ N2 such that 0 ≤ |m| ≤ ` ≤ N , see

Eq. 2.14

~n Unit vector normal to an interior facet (arbitrary orientation)

~n0 Outward unit normal vector on a cell boundary
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~nb Outward unit normal vector on the domain boundary

P Number of non-redundant moments needed to describe the solution

q Elementary charge (q = 1.6021766208(98)× 10−19 C)

R Spherical harmonics

R Vector of the spherical harmonics up to degree N

~r Spatial coordinate vector (in m)

r Convergence rate, defined by Eq. 3.56

S Energy-integrated volumetric source (in m−3–s−1 or J–m−3–s−1)

S Vector of the volumetric source moments (in m−3–s−1 or J–m−3–s−1)

S2 Unit sphere (in 1-D, 2-D or 3-D depending on the dimension of the

problem)

T Material temperature (in K)

t Time (in s)

V Finite-Element space

V0 Finite-Element space restricted to a void or near-void region

V1 Complement of V0

v Particle velocity (in m/s)

w Solid angle of the unit sphere, equal to 2, 2π and 4π in 1-D, 2-D or

3-D, respectively (i.e. if d is equal to 1, 2 or 3, respectively)

x, y, z Spatial coordinates (in m)

α Order of the filter, defined by Eq. 3.15

Γ Interface between the void/near-void regions and the non-void regions

Γeven Boundary terms in the variational form of even-parity based methods,

see Eq. 4.67

Γint Set of all the interior facets

x



δi,j Kronecker delta (equal to one if i = j, to zero otherwise)

η Scattering plus fission PN operator (in m−1)

κ Radius of the eigenspectrum relative to its distance to the origin, as

defined by Eq. 3.48

λ Eigenvalue

µ Cosine of the polar angle

ν Frequency (in s−1)

ν Average number of neutrons emitted per fission

σ Constant to scale the SAAF and LS terms (in m−1)

σt Total macroscopic cross-section (in m−1)

σ?t Quasi-steady total macroscopic cross-section (in m−1), defined by

Eq. 3.41

σa Absorption macroscopic cross-section (in m−1)

σs Scattering macroscopic cross-section (in m−1)

σs Scattering PN operator (in m−1)

σs,` `-th moment of the scattering macroscopic cross-section (in m−1)

σf Fission macroscopic cross-section (in m−1)

σf Filtering strength (in m−1)

τ Stabilization parameter (in m)

Φ Energy-integrated scalar flux (in m−2–s−1 or J–m−2–s−1)

Φ Solution vector of the energy-integrated angular flux moments (in m−2–

s−1 or J–m−2–s−1)

ϕ Azimuthal angle

Ψ Energy-integrated angular flux (in m−2–s−1 or J–m−2–s−1)

~Ω Angular coordinate vector
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~∇ Gradient operator

|| · ||L1 L1-norm

|| · ||L2 L2-norm

{·} Average operator, as defined by Eq. 3.21

J·K Jump operator, as defined by Eq. 3.21

(·, ·)V Scalar product over a volume V and the unit sphere, defined by Eq. 2.18

〈·, ·〉∂V Scalar product over a surface ∂V and the unit sphere, defined by

Eq. 2.19

⊗ Tensor product

≡ Equality used as a definition

Subscripts

d Relative to an incoming Dirichlet boundary condition

e Even

g Energy group

init Initial (i.e. at t = 0)

` Spherical harmonics degree (same as Legendre polynomial degree)

l Left value

max Maximum

min Minimum

o Odd

r Reflecting

r Right value

u Relative to the u-th spatial dimension (u ∈ {1, ..., d})

Superscripts

∗ Test function
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† Adjoint operator

+ Interior side of a facet, defined by the orientation of the normal vector

as shown in Fig. 3.1

+ Angular integration only defined for the positive half-range (~Ω ·~n > 0),

see Eq. 2.18

− Exterior side of a facet, defined by the orientation of the normal vector

as shown in Fig. 3.1

− Angular integration only defined for the negative half-range (~Ω·~n < 0),

see Eq. 2.19

0 Unit normal vector chosen locally pointing towards the outside of D0,

see Section 5.2.2

1 Unit normal vector chosen locally pointing towards the outside of D1,

see Section 5.2.2

⊕ Relative to the positive half-range integral (for ~Ω · ~nb > 0)

	 Relative to the negative half-range integral (for ~Ω · ~nb < 0)

inc Incoming

m Spherical harmonics order

n Time step index (the absence thereof implying an evaluation at tn+1)

T Transposed operator
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1. INTRODUCTION

The propagation of particles such as neutrons or photons in a spatial domain

D and their interaction with the surrounding medium can be accurately described

by the linear Boltzmann equation, or transport equation. It is however particularly

challenging to solve because it involves seven independent variables (three for the

position, two for the angle of propagation, one for time and one for energy) while

allowing, in all generality, for discontinuities in the solution. As a matter of fact,

exact solutions can rarely be derived analytically, except in simplistic – yet useful –

configurations. With the advent of the Computer Age, numerical methods present

themselves as an ever more attractive, complementary alternative to experiments.

Since scientific computations only deal with finite quantities while trying to describe

continuous1 functions, some approximations need be somehow performed so as to

reduce the dimension of that seven-dimensional phase-space.

It can become even more arduous when it is coupled to other potentially non-

linear physics. In the present work, we also consider the case of Thermal Radiation

Transport (TRT) which describes the propagation of photons as well as their ab-

sorption by and re-emission from the material, thereby modifying the temperature

T of the surrounding material. The transport equation can in particular be seen as

the limiting case as the material heat capacity becomes infinite with a zero initial

temperature.

1.1 Angular Discretization

A number of studies has been focusing on developing various numerical methods

to solve this nonlinear multiphysics problem as efficiently and accurately as possible.

1In the sense that it can take on infinitely many different values.
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Techniques include stochastic approaches, such as Implicit Monte Carlo [3, 4], as well

as a variety of deterministic methods, among which are discrete ordinate (SN) meth-

ods [5], spectral approximations [6], finite element discretizations [7], and nonlinear

moments methods [8, 9, 10].

Although some of the work presented in this thesis also applies to SN discretiza-

tions, we mostly focus on the spherical harmonics – or PN – method which is a

spectral Galerkin Finite Element method in angle. It essentially consists of expand-

ing the angular-dependent variables using a truncated spherical harmonics expansion

up to degree N . The PN equations are then obtained by testing the equation against

these same spherical harmonics.2 This results in a method that preserves the ro-

tational invariance of the transport equation while offering spectral convergence,

i.e. exponential convergence with respect to N for infinitely smooth solutions [11].

Nevertheless, this method can give solutions that are oscillatory or even negative,

especially in regions where the material properties are either small or rapidly vary-

ing. Negativity in the angular flux is not only non-physical (as it means a negative

particle density) but can in turn lead to a negative material temperature, in which

case the Planckian re-emission term is not well-defined.

1.2 Filtering

Several techniques have been studied to cope with this serious deficiency, one of

which being the Filtered PN (FPN) method. Originally introduced by McClarren

and Hauck [12], it was designed to reduce the anisotropy of the solution by smooth-

ing out its angular dependency. Compared to other methods addressing the same

issue, such as positive PN (PPN) closures [13, 14], entropy-based closures [9, 10] or

moment closures based on residual minimization [15], the filtering approach is a lot

2The spherical harmonics thus serve as both the basis and test functions, hence the qualifying
adjective ”Galerkin”.
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less computationally expensive but is not robustly positive, meaning that it does

not ensure strict positivity of the solution. Furthermore, FPN methods usually have

a free parameter characterizing the filter strength that needs to be chosen by the

user. Several works have already presented promising results [12, 16, 17, 18, 19].

In particular, the work in [19] shows how to incorporate the filtering directly into

the nonlinear system, essentially recasting it as an additional collision term in the

transport equation. Nevertheless, the FPN method has yet to be studied on implicit

time-integration schemes, which are often preferred due to the extremely fast scales

in the transport equation. Indeed, in a lot of applications, the stability condition

imposed by explicit schemes on the time step ∆t is too restrictive. It is typically

bounded by ∆x/c where ∆x characterizes the spatial mesh size and c is the speed

of the particles (the speed of light in the TRT case).

1.3 Spatial Finite Element Discretization

Finite Element Methods have been widely used and studied, in particular because

it was suggested that methods with high order of accuracy tend to perform better

than low-order methods on comparatively finer meshes [20]. Nevertheless, due to

the hyperbolic nature of the transport equation, most of these methods – if not

all – require some sort of stabilization. In this work, we are considering two main

approaches3: Discontinuous Galerkin Finite Element Methods (DGFEM) for TRT

applications and Continuous Galerkin Finite Element Methods (CGFEM) for reactor

physics applications.

DGFEM were introduced for transport problems in Ref. [26] where it was observed

that the discontinuous basis, while more expensive than its standard continuous

3In no way are these the only existing methods. Alternative approaches include streamlined-
upwind Petrov-Galerkin methods [21, 22], parity-based formulations [23, 24] and artificial viscosity
based schemes – such as the entropy viscosity method [25].
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counterpart, give better approximations to problems with non-smooth solutions. In

addition to being robust in streaming regimes, where discontinuous solutions may

occur, DGFEM (with a sufficiently rich basis set) also perform well in the diffusion

limit [27, 28, 29].4 A semi-implicit discretization of the PN equations with DGFEM,

which treats the flux terms explicitly, can be found in Ref. [32].

For reactor problems, particularly steady-state neutron transport calculations,

CGFEM are typically preferred because of their relatively cheaper computational

cost, while offering a good accuracy. Stabilization of the method can then be achieved

by recasting the standard transport equation as one of the so-called second-order

forms.

1.4 Second-Order Forms

The terminology first-order and second-order forms refer to the order of the spa-

tial derivative. While the original – or first-order – transport equation only contains a

first-order spatial derivative, there exists several ways to rewrite it with second-order

ones. Such partial differential equations (PDE) are then referred to as second-order

forms and have the advantage of being intrinsically similar to diffusion equations.

As such, they can be well-suited to solution techniques initially designed for elliptic

problems, such as CGFEM. Furthermore, they may result in a symmetric positive

definite (SPD) matrix, thus ideal for the use of conjugate-gradient (CG) Krylov

solvers [33, 34].

Nevertheless, these attractive features do not come without its share of challenges.

Most of them, such as the Self-Adjoint Angular Flux (SAAF) [33, 35, 36, 37, 38] or

4Roughly speaking, this limit occurs when particle interactions with the surrounding medium
isotropize the radiation field and the angular average of the photon distribution satisfies a much
simpler diffusion equation [30, 31]. More specifically, whenever the absorption mean free path
λ = σ−1a of the problem becomes very small compared to the mesh size, an important property
of the scheme is to preserve the equilibrium diffusion limit. This ensures that the solution will be
accurate in that limit despite being underresolved with respect to λ [27].
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the even-parity [39] formulations, formally break down in void regions because it

requires the evaluation of σ−1
t , the inverse of the total macroscopic cross-section.

Approximating a zero cross-section with an arbitrary low number is not a viable

solution as it drastically degrades the solver performance [40]. An alternative is the

SAAF formulation with a Void Treatment (SAAF–VT) [38], one of the downsides of

this method being that it no longer results in an SPD system. In addition, it is not

well suited to a PN expansion because the bilinear form in the void regions goes –

in steady state and as the mesh is refined – to the first-order form in void, which is

ill-conditioned for PN .

As the available computational resources keep growing, numerical methods al-

lowing for more and more spatially and angularly refined calculations will become

increasingly attractive. Yet, a natural way of improving the spatial resolution in the

context of reactor physics is to give up on homogenization techniques. This often

leads to strong discontinuities in the material properties, let alone the necessity of

dealing with void or near-void regions. If there is hope in such second-order forms,

this latter challenge need necessarily be overcome.

Another class of methods based on weighted residual minimizations, such as

Least-Squares (LS) formulations [41, 42, 43], may not have this formal problem when

σt goes to zero but are in general not globally conservative. This is in particular the

case of the LS method compatible with voids [44]. Acceleration schemes such as

Nonlinear Diffusion Acceleration (NDA) can help recover global conservation [38]

but such schemes have yet to be developed for PN methods. Thus, to the best our

knowledge, there did not exist – prior to the present work – any second-order form

for PN that would result in a globally conservative and void compatible scheme.

5



1.5 Outline

The work in this thesis can be decomposed into two main ensembles: first, the

study of the fully-implicit Filtered PN method for the first-order form of the transport

equation in the TRT case, with the hope to reduce and mitigate the negativity

and unphysical oscillations inherent to the PN approximation; second, the study of

second-order forms for reactor physics applications to invent, as a result, a PN method

that would be both globally conservative and void compatible.

The remainder of this dissertation is organized as follows. In Chapter 2, we

present the neutronics and TRT problems with the notation to be used throughout

this work. We also briefly describe the spherical harmonics expansion – with more

details available in Appendix A.

In Chapter 3, we focus on the FPN method for TRT applications. We present

the angular and spatial discretizations and discuss the choice of numerical flux and

boundary conditions. We propose a general filtering strategy and study both the

impact of the filter on the iterative solver convergence properties and on the error

estimates derived in the linear setting [11]. Finally, we show results on a challenging

benchmark problem, known as the Crooked Pipe [45] and compare the code with

IMC calculations.

In Chapter 4, we study the relationship between the SAAF, SAAF–VT and LS

second-order forms and show that equivalence or consistency can be achieved de-

pending on the boundary conditions chosen and some assumptions pertaining to the

problem. Further analysis is conducted to better understand the connection between

several parity-based second-order forms and to show why a second-order filter fails

to create an efficient, void compatible method. Numerical results on a heteroge-

neous multigroup k-eigenvalue problem are presented to illustrate how critical global
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conservation is, for numerical schemes to yield accurate answers.

Chapter 5 takes the considerations from Chapter 4 one step further: after having

identified the reason why LS is not – in general – globally conservative, a new method

with that very property in a void region, named Conservative LS (CLS), is proposed.

It is consistent with the transport equation but sacrifices the symmetry of the bilinear

form. From there, an hybrid method, coined SAAF–CLS, is derived by combining

the CLS and SAAF formulations in the void and non-void regions, respectively.

Generalization to near-void regions is demonstrated. Numerical results show that this

method indeed constitutes the first void-compatible, globally conservative second-

order form for PN .

1.6 Novelty

The novelty of this research lies in the following aspects:

X Fully-implicit time-integration implementation and study of the FPN method

for TRT with a Lax-Friedrich numerical flux to reduce the computational cost.

X Investigation of local filtering strategies and extension to energy-dependent

filters.

X Analysis of the effect of the filter on the conditioning of the system in the

streaming limit, showing in particular that the filter improves the convergence

properties of the iterative solver.

X Study of FPN error estimates – previously derived for linear transport – in the

TRT case with non-linear material properties.

X Formal derivation of the conditional equivalence between the SAAF and LS

formulations, depending on the weakly-imposed LS boundary conditions, inde-

pendently of the angular discretization.
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X Formal derivation of SAAF–VT consistent boundary conditions for LS, inde-

pendently of the angular discretization.

X Formal derivation of the equivalence between the SAAF–PN and SAAF–VT–

PN methods while solving only for the even-parity moments.

X Formal derivation of the equivalence of the previous two methods and the

Even-Parity PN formulation.

X Derivation of a fix consistent with the transport equation to make LS globally

conservative in void regions.

X Invention of the SAAF–CLS second-order form both compatible with void and

globally conservative. This method, unlike the SAAF–VT method, shows good

results for both PN and SN . Extension to near-void regions.
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2. PROBLEM AND NOTATION

In this chapter, we first present the two applications that we are interested in:

neutronics and Thermal Radiation Transport (TRT) which both give prominence to

the transport equation. We briefly describe the PN approximation (with more details

available in Appendix A) and introduce notation and assumptions.

2.1 Physics

In this thesis, we focus our interest on the so-called transport equation, which

here designates the linear Boltzmann equation. In Chapter 3, we more specifically

consider Thermal Radiation Transport (TRT) which is the nonlinear coupling of the

transport equation with the material temperature equation. As Chapters 4 and 5 are

oriented towards neutronics applications, we do not account for that latter equation

therein, or, equivalently, we set the material heat capacity to infinity and the initial

temperature to zero.

In all generality, the transport equation depends on seven independent vari-

ables: three to describe the spatial position, noted ~r = (x, y, z)T ; two to indicate

the direction of propagation through the angular variable ~Ω =
√

1− µ2 cosϕ~ex +√
1− µ2 sinϕ ~ey+µ~ez where µ is the cosine of the polar angle and ϕ is the azimuthal

angle; one to specify the energy E of the particles and one for the time, noted t. The

problem is defined for ~r ∈ D, ~Ω ∈ S2, t > 0 and E > 0, where D and S2 respectively

designate the spatial domain and the unit sphere.

None of the following theory is restricted to energy-independent problems. As a

matter of fact, some of results presented below correspond to multigroup calculations.

Nevertheless, except in Section 3.4.4, the treatment of the energy variable is not the

point of emphasis of this work. Therefore, for simplicity in the notation – and without
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loss of generality – we omit the dependency on E and study the energy-integrated

transport equation, unless otherwise specified.

We describe in Section 2.1.1 the linear Boltzmann equation, along with its cor-

responding boundary and initial conditions. In Section 2.1.2, we detail the TRT

system of partial differential equations (PDE) to be studied in Chapter 3 and point

out the subtle difference in physical meaning the variable Ψ then has.

2.1.1 Neutronics

The energy-integrated linear Boltzmann equation reads:

1

v

∂Ψ

∂t
+ ~Ω · ~∇Ψ + σt(~r)Ψ(~r, ~Ω) =

∫
S2
σs(~r, ~Ω

′ · ~Ω)Ψ(~r, ~Ω′) dΩ′ + νσf (~r)Φ(~r) + S(~r, ~Ω),

(2.1)

where Ψ and Φ represent respectively the angular and scalar fluxes, with the following

relation:

Φ(t, ~r) ≡
∫
S2

Ψ(t, ~r, ~Ω) dΩ. (2.2)

In addition, σt, σs and σf respectively denote the total, scattering and fission macro-

scopic cross-sections. Besides, v and ν are the neutron velocity and the average

number of neutrons emitted per fission, respectively and S is the (known) volumet-

ric source. The boundary conditions are applied at the boundary of the domain

∂D. It is decomposed into two non-overlapping surfaces ∂D = ∂Dd ∪ ∂Dr, incoming

Dirichlet and reflecting boundary conditions being respectively imposed on ∂Dd and

∂Dr:

Ψ(~rb, ~Ω) ≡ Ψinc(~rb, ~Ω) =

 Ψd(~rb, ~Ω), ~rb ∈ ∂Dd,

Ψ(~rb, ~Ωr), ~rb ∈ ∂Dr,

for ~Ω · ~nb < 0,

(2.3)
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where Ψd is assumed to be given and the reflecting angle is defined as:

~Ωr = ~Ω− 2(~Ω · ~nb)~nb, (2.4)

~nb being the outward unit vector at a point ~rb on the boundary. An initial condition

must also be provided:

Ψ(t = 0, ~r, ~Ω) = Ψinit(~r, ~Ω). (2.5)

2.1.2 Thermal Radiation Tranport (TRT)

We consider the grey (frequency integrated) form of the thermal radiation trans-

port equations, given by [46]:

1

c

∂Ψ

∂t
+ ~Ω · ~∇Ψ + σt(~r, T )Ψ = σa(~r, T )B(T ) +

∫
S2
σs(~r, ~Ω

′ · ~Ω)Ψ(~r, ~Ω′) dΩ′+S, (2.6)

∂e

∂t
= σa(~r, T )

(
Φ− wB(T )

)
. (2.7)

These equations describe the energy balance in the radiation field and in the material.

The angular flux of the photon radiation is governed by Eq. 2.6 while Eq. 2.7 governs

the evolution of the material energy e(T ), where T (t, ~r) is the material temperature.

The constant c is the speed of light and w =
∫
S2 dΩ is the total angular weight The

energy-integrated Planckian blackbody source is defined as:

B(T ) ≡ 4π

w

∫ ∞
0

2hν3

c2

1

exp( hν
kT

)− 1
dν =

acT 4

w
, (2.8)

where h, k and a = (8π5k4)/(15h3c3) are the Planck, Boltzmann and radiation con-

stants, respectively. This integral is not defined for T ≤ 0, which is why maintaining

a positive material temperature is crucial for numerical codes.
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For simplicity, we assume that the derivative Cv = e′(T ), referred to as the

material heat capacity, is independent of T , although it is not required. Eq. 2.7 can

then be rewritten:

Cv
∂T

∂t
= σa(~r, T )

(
Φ− wB(T )

)
. (2.9)

The boundary and initial conditions for Ψ are still given by Eqs. 2.3 and 2.5. An

initial condition for T need also be provided:

T (t = 0, ~r) = Tinit(~r). (2.10)

At this point, it seems appropriate to point out that – although we have named

it identically – the angular flux Ψ does not have the same units in Eqs. 2.1 and 2.6.

In the former and latter equations, it has the units of neutrons per area per time and

of energy per area per time, respectively. This fundamentally reflects that, while

Eq. 2.1 conserves the number of neutrons, Eq. 2.6 does not conserve the number

of photons, but rather their energy. In the TRT literature, Ψ is commonly named

angular intensity and referred to as I (e.g. in [47]). We have estimated however that

the difference is too subtle to be worth maintaining throughout this thesis. The same

goes for Φ and S.

Occasionally, we may consider Eqs. 2.6 and 2.7 in the context of pure transport,

which is to say that we are in the limit Cv −→∞ and a zero initial temperature (or

equivalently to replace Eq. 2.7 with T = 0).

2.2 Spherical Harmonics Expansion

The PN equations are derived by applying a spectral Galerkin method to Eqs. 2.1

or 2.6 using the spherical harmonics of degree less than or equal to N as both the basis

and test functions. Roughly speaking, Ψ is then represented as a truncated linear
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combination of the spherical harmonics and the residual of our system of equations

is minimized in that same space. The expansion reads:

Ψ(~r, ~Ω) ≈ RT (~Ω) Φ(~r) =
N∑
`=0

∑̀
m=−`

Φm
` (~r)Rm

` (~Ω), (2.11)

where the real-form spherical harmonics are defined as:

Rm
` (~Ω) =



√
2Cm

` P
m
` (µ) cos(mϕ), 0 < m ≤ ` ≤ N

C0
` P

0
` (µ), 0 ≤ ` ≤ N

√
2C

|m|
` P

|m|
` (µ) sin(|m|ϕ), 0 < −m ≤ ` ≤ N

, (2.12)

Pm
` designating the associated Legendre polynomial of degree ` and order m and

Cm
` =

√
(2`+1)
w

(`−m)!
(`+m)!

being a normalization constant chosen such that the spherical

harmonics are orthonormal to each other, that is:

∫
S2
Rm
` (~Ω)Rm′

`′ (~Ω)dΩ = δ`,`′ δm,m′ , ∀ (`,m), (`′,m′) ∈ N , (2.13)

where δ is the Kronecker delta and

N ≡ {(`,m) ∈ N2 : 0 ≤ |m| ≤ ` ≤ N}. (2.14)

Besides, we have defined:

R ≡ {Rm
` ,m = −`, · · · , `; ` = 0, · · · , N} , Φ ≡ {Φm

` ,m = −`, · · · , `; ` = 0, · · · , N} .

(2.15)
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The Φm
` coefficients are called moments of the angular flux Ψ and satisfy the following

relationship:

Φm
` (~r) ≡

∫
S2
Rm
` (~Ω)Ψ(~r, ~Ω)dΩ, or, equivalently, Φ =

∫
S2

Ψ R dΩ. (2.16)

Once this expansion has been performed for all angular dependent quantities, the

PN equations are then obtained by testing Eqs. 2.1 or 2.6 against each individual

Rm
` , that is by multiplying it with R and integrating over S2.

2.3 More Notation and Conventions

Let V be the finite-dimensional trial space of functions in which we look for our

solution. In this context, the superscript ∗ is used to designate a test function. We

further define the vector of moments of Ψ∗ and of the volumetric source S as:

Φ∗ =

∫
S2

Ψ∗R dΩ , S =

∫
S2
SR dΩ. (2.17)

Considering a spatial domain V with boundary ∂V , we also define the following

operators, for any function f , g:

(f, g)V ≡
∫
V

∫
S2
f g dΩdr , 〈f, g〉+∂V ≡

∫
∂V

∫
~Ω·~n(~r)>0

f g |~Ω · ~n|dΩdr, (2.18)

〈f, g〉∂V ≡
∫
∂V

∫
S2
f g ~Ω · ~n dΩdr , 〈f, g〉−∂V ≡

∫
∂V

∫
~Ω·~n(~r)<0

f g |~Ω · ~n|dΩdr. (2.19)

In particular, we have:

〈f, g〉∂V = 〈f, g〉+∂V − 〈f, g〉
−
∂V . (2.20)

In addition, the superscript n is used to indicate the discrete approximation of a

time-dependent quantity at time tn. In the absence thereof, it is implied that such
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approximations are evaluated at tn+1. Likewise, the subscript g refers to the energy

group. As mentioned above, this superscript is omitted whenever the generalization

to a multigroup theory does not present any difficulty.

We fundamentally consider three-dimensional problems. However, in a lot of

cases, the solution may depend on only one or two spatial dimensions. Occasionally,

we may refer to such problems respectively as 1-D or 2-D. This does not mean that

the problem is restricted to a line or a surface but rather that the problem is infinite

in the other directions. Let d be the number of spatial variables the solution depends

on and P the number of non-redundant moments needed to describe the solution.

It can be shown that the value of P is equal to (N + 1), (N + 1)(N + 2)/2 and

(N + 1)2 if d is one, two and three, respectively [48] (see also Appendix A.2.2). For

convenience, we also choose to rename (and reorder, if need be) the basis unit vectors

as (~e1, ..., ~ed).
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3. FULLY-IMPLICIT FILTERED PN METHOD FOR THERMAL RADIATION

TRANSPORT USING DISCONTINUOUS GALERKIN FINITE ELEMENTS*

In this chapter, we discuss the Filtered PN (FPN ) method using a fully-implicit 

time discretization and Discontinuous Galerkin Finite Element Method (DGFEM)

for the spatial discretization, in the context of Thermal Radiation Transport (TRT).∗

The fully-implicit TRT FPN equations are presented in Section 3.1. The spatial 

discretization of the FPN equations is derived in Section 3.2. In Section 3.3, we 

investigate the filter in terms of convergence properties of the iterative solver and 

then consider the error estimates derived in Ref. [11] for the linear setting. Finally, 

in Section 3.4, we test the method with different filtering strategies on the challeng-

ing benchmark problem known as the Crooked Pipe [45]. Because this problem is 

particularly hard to converge, we first show good agreement between our code and 

implicit Monte-Carlo calculations on a simplified version. We then show for the

harder problem that the filter mitigates deficiencies in the PN solutions, especially 

for smaller values of N .

3.1 Implicit Filtered PN

We focus here on a Backward Euler time discretization without restricting the 

work to this particular implicit time-integration scheme. The TRT equations (2.6)

∗Part of this chapter is reprinted from ”Implicit Filtered PN for High-Energy Density Thermal 
Radiation Transport using Discontinuous Galerkin Finite Elements” by Vincent M. Laboure, Ryan 
G. McClarren and Cory D. Hauck, 2016. Journal of Computational Physics [49] Copyright 2016 
Elsevier. The author exercises his right granted by the copyright agreement to use the published 
journal article for personal use (specifically the inclusion in a dissertation).
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and (2.9) then read:

1

c

Ψ−Ψn

∆t
+ ~Ω · ~∇Ψ + σtΨ = σaB +

∫
S2
σs(~r, ~Ω

′ · ~Ω)Ψ(t, ~r, ~Ω′) dΩ + S, (3.1)

Cv(T )
T − T n

∆t
= σa(~r, T ) (Φ(t, ~r)− wB(T )) , (3.2)

with ∆t being the time step size. Recall (now and throughout this thesis) that the

rest of the notation was defined in Chapter 2.

3.1.1 PN Expansion

As explained in Section 2.2, the PN equations are obtained by approximating

Ψ ≈ RT Φ, Ψn ≈ RT Φn and S ≈ RT S, multiplying Eq. 3.1 with R and integrating

over the unit sphere S2. The spherical harmonics having been normalized so as to

be orthonormal, it reads:

1

c

Φ−Φn

∆t
+ ~D · ~∇Φ + σtΦ = σaB(T ) + σsΦ + S, (3.3)

where:

~D =
d∑

u=1

Du~eu , Du =

∫
S2

Ωu R(~Ω)RT (~Ω) dΩ, (3.4)

B =

∫
S2

RB(T )dΩ, (3.5)

σs = diag
{
σs,` , m = −`, ..., ` ; ` = 0, ..., N

}
, (3.6)

σa = diag
{
σa δ`,0 , m = −`, ..., ` ; ` = 0, ..., N

}
, (3.7)

σs,` =

∫
S2
σs P

0
` dΩ. (3.8)

To avoid having zero-speed waves in the problem, it is common practice to impose

N to be odd [6]. Therefore, in this entire chapter, we will limit ourselves to that
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particular situation.

3.1.2 Filtering

The filtering idea – first introduced by McClarren and Hauck [12] – originally

consisted in modifying the moments after each time step as follows:

Φm
` ←−

Φm
`

1 + α0`2(`+ 1)2
, (3.9)

where:

α0 =
ω

N2(σtL+N)2
, (3.10)

and ω and L are free parameters representing respectively the filter strength and a

characteristic length. The coefficient by which each moment is divided had several

desirable features: the preservation of the energy (or particle) balance, the rotational

invariance of the solution, the formal convergence as N goes to infinity and the

equilibrium diffusion limit were all preserved. This is respectively because the filter

coefficient is zero for ` = m = 0, does not depend on m, and vanishes as N goes to

infinity and if σt goes to infinity. One of its most concerning flaws was that the filter

strength ω had to be adjusted if the simulation was refined spatially and temporally.

Alternatively, another formulation of the filter is possible [19] and eliminates that

very flaw. It is applied to Eq. 3.3 by adding an extra collision term:

1

c

Φ−Φn

∆t
+ ~D · ~∇Φ + σt(~r)Φ + σf(~r)FΦ = σaB(T ) + σsΦ + S. (3.11)

The expression of F is given by:

F = diag
{
f(`,N) , m = −`, ..., ` ; ` = 0, ..., N

}
, (3.12)
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with the filter function f being:

f(`,N) ≡ − log ρfilterType

(
`

N + 1

)
. (3.13)

Several filter types are considered here:

ρLanczos(ζ) ≡ sin ζ

ζ
; ρSSpline(ζ) ≡ 1

1 + ζ4
; ρexp(ζ) ≡ exp(c0 ζ

α). (3.14)

In the exponential filter, α ∈ N and c0 = log(εM) where εM is the machine accuracy.

The main difference between the filters is their order which by definition [11] is equal

to α if and only if α satisfies the three following conditions:

ρfilterType(0) = 1 , ρ
(a)
filterType(1) = 0 for a = 1, ..., α− 1, and ρ

(α)
filterType(1) 6= 0.

(3.15)

The Lanczos and spherical spline filters are respectively 2 and 4. The integer α,

defined by Eq. 3.14 happens to also be the order of that filter1.

The variable σf in Eq. 3.11 is a tuning parameter – henceforth called filter strength

– that may be spatially (and energy) dependent. Strategies for determining a good

local value of σf are discussed in Section 3.3.1. In this context, one of the strengths

of the reformulation in [19] is that — unlike the original implementation in [12] —

the filter strength is independent of the size of the time step and the spatial mesh

[19]. Thus the value of σf needs to be tuned only once, and this can be done using

relatively cheap simulations on coarse meshes.

1This is why we use the same notation for these two a priori different variables.
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3.2 Spatial Discretization

This section is dedicated to the Discontinuous Galerkin Finite Element Method

(DGFEM) discretization of Eq. 3.11 in space, along with Eq. 3.2 for the material

temperature. Each component of Φ as well as T are approximated as piecewise

polynomial functions. Stability is achieved by specifying the numerical flux at cells

interfaces. Although this method is fairly standard and more details can be found

in [50, 51], we show how to derive the PN streaming term in Section 3.2.1. We

then discuss how to choose a good numerical flux in Section 3.2.2, describe how to

impose reflecting and incoming Dirichlet boundary conditions in Section 3.2.3 and

summarize the variational formulation in Section 3.2.5.

Let Kh be a collection of open convex, polyhedral cells K ⊂ D such that ∪K = D

with h > 0 being the size of the largest disk that can be inscribed inside any cell K.

Let Γint be the set of interior facets:

Γint = {e : e = K1 ∩K2 for any K1, K2 ∈ Kh, K1 6= K2} . (3.16)

3.2.1 Streaming Term

The weak formulation is obtained by multiplying Eqs. 3.11 and 3.2 respectively

with Φ∗ ∈ V P and T ∗ ∈ V and integrating over D. The difficulty of this method

lies in the treatment of the streaming term. An integration by parts is performed

thereon to make boundary terms appear:

(
Φ∗, ~D · ~∇Φ

)
D

=
∑
K∈Kh

(
Φ∗, ~D · ~∇Φ

)
K

=
∑
K∈Kh

(
−
(
~∇Φ∗, ~DΦ

)
K

+
〈
Φ∗, ~n0 · ~D Φ

〉
∂K

)
,

(3.17)
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where ~n0 is the unit normal vector directed towards the outside of an elementK ∈ Kh.

Reordering the summation to sum over the interior and exterior facets2 rather than

over the elements, it yields:

(
Φ∗, ~D · ~∇Φ

)
D

=−
(
~∇Φ∗, ~DΦ

)
D

+
∑
e∈Γint

(〈
Φ∗,+, ~n · ~D Φ+

〉
e
−
〈
Φ∗,−, ~n · ~D Φ−

〉
e

)
+
〈
Φ∗, ~nb · ~D Φ

〉
∂D,

(3.18)

where ~n is the unit normal vector3 and ~nb represents the outward normal unit vector4

on the boundary ∂D. For any discontinuous variable ψ, we define, on any facet, ψ+

and ψ− depending on the orientation of ~n, as shown in Fig. 3.1. Using the following

identity [51]:

ηξ − ζσ =
1

2
(η + ζ)(ξ − σ)− 1

2
(η − ζ)(ξ + σ), (3.19)

we have:

〈
Φ∗,+, ~n · ~D Φ+

〉
Γ
−
〈
Φ∗,−, ~n · ~D Φ−

〉
Γ

=
〈
JΦ∗K, {~n · ~D Φ}

〉
Γ

+
〈
{Φ∗}, J~n · ~D ΦK

〉
Γ
,

(3.20)

where the following operators are given, for any variable ψ, by:

JψK ≡ (ψ+ − ψ−) , {ψ} ≡ ψ+ + ψ−

2
, (3.21)

2An exterior facet is defined to be a facet which belongs to the boundary ∂D.
3Note that the orientation of ~n does not matter since the expression is still valid if we replace it

with −~n.
4For ~nb, the orientation matters.
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at any point on a facet. Imposing to have continuity of the numerical flux, i.e. J~n ·

~D ΦK = 0, we end up with:

(
Φ∗, ~D · ~∇Φ

)
D

= −
(
~∇Φ∗, ~DΦ

)
D

+
〈
JΦ∗K, {~n · ~D Φ}

〉
Γ

+
〈
Φ∗, ~nb · ~D Φ

〉
∂D. (3.22)

Figure 3.1: Notation for discontinuous variables, given a unit normal vector ~n.

3.2.2 Numerical Flux

In Eq. 3.22, we need to specify what the numerical flux, defined as ~n · ~D Φ and

~nb · ~D Φ respectively are on Γ and ∂D, given that Φ is potentially discontinuous

thereon. It is typically done through a penalty term whose effect is to stabilize the

scheme [51]:

{~n · ~D Φ} =
d∑

u=1

(
~eu · ~n Du{Φ}+

|~eu · ~n |
2

MuJΦK
)
, (3.23)

for all ~r ∈ Γ. Let us now step back a little to justify the choice of the dissipation

matrices Mu.

Defining the numerical flux in the case of the PN equations presents a challenge
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because each moment does not have a given direction of flow. If it were the case, an

upwinded numerical flux would be easy to compute. Previously, it has been common

practice to rely on Riemann solvers [48, 52]. It uses the fact that the Du matrices

are diagonalizable and therefore can be expressed as Du ≡ RuΛuLu where Λu is a

diagonal matrix. The dissipation matrices are then defined as:

Mu ≡ Ru|Λu|Lu, (3.24)

where |Λu| is obtained by taking the absolute value of each component of Λu. There

are two main issues with doing so. First, while Du is very sparse, Mu – with that

definition – is not, which can induce a large computational cost, especially for large

values of N . Second, unless N is odd and the problem only depends on one spatial

dimension, Λu has at least one zero eigenvalue, the effect of which is to have zero-

speed waves in the problem [6]. A way around that is to replace all zero eigenvalues

by some small value (e.g. the smallest nonzero eigenvalue). Although this fix does not

change the order of convergence of the method [6], it is no longer a strict upwinding.

It is therefore not perfectly rigorous to use this numerical flux on the boundary

domain as it would couple the incoming data (imposed by the boundary conditions)

and outgoing data.

It is then proposed to use a different type of numerical flux, namely a Lax-

Friedrich flux which consists of choosing:

Mu = λI, (3.25)

where λ is the maximum eigenvalue of the Du matrices and I denotes the identity

matrix. As this value approaches one from below as N → ∞; we set λ = 1. The
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advantage is to drastically increase the sparsity of Mu. A special treatment of the

numerical flux at the boundary has to be applied to make sure the boundary condi-

tions are only used to set incoming data. As mentioned above, this treatment would

– rigorously speaking – be required also in the case of an upwinded numerical flux

if the zero eigenvalues are modified. Thus, this does not constitute an additional

inconvenience per se and can be done using matrices whose elements consists of in-

tegrals over half of the angular domain. We are going to expand on this in Section

3.2.3.

In the meantime, we have:

{~n · ~D Φ} = ~n · ~D{Φ}+
||~n||L1

2
JΦK, (3.26)

for all ~r ∈ Γ. The streaming term can then be expressed as:

(
Φ∗, ~D · ~∇Φ

)
D

=−
(
~∇Φ∗, ~DΦ

)
D

+
〈
JΦ∗K, ~n · ~D {Φ}

〉
Γ

+
〈
JΦ∗K,

||~n||L1

2
JΦK

〉
Γ

+
〈
Φ∗,F(Φ,Ψinc)

〉
∂D,

(3.27)

where F(Φ,Ψinc) is the numerical flux at the boundary. Besides the L1 norm is

defined for any vector ~v as:

||~v||L1 ≡
d∑

u=1

|~v · ~eu|. (3.28)

The treatment for the numerical flux on the boundaries depends on the type of

boundaries.
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3.2.3 Boundary Conditions

We consider two types of boundary conditions: the reflecting and the incoming

Dirichlet boundary conditions, as described by Eq. 2.3.

3.2.3.1 Reflecting Boundary

In the case of a reflecting boundary condition, the numerical flux is very similar

to the one described by Eq. 3.26 except that the value of Ψ+ designates the value

inside the exterior facet (i.e. Ψ) and the value of Ψ− corresponds to the value outside

the exterior facet. The latter is determined by the boundary condition and is nothing

but Ψ(~Ωr). Therefore, the ’reflecting’ numerical flux is given by:

F(Φ,Ψinc) = Fr(Φ) ≡ ~nb · ~D Φ =
1

2
~nb · ~DΦ+

||~nb||L1

2
Φ+

1

2
LrΦ−

||~nb||L1

2
QrΦ, (3.29)

for all ~r ∈ ∂Dr, where:

Lr ≡
∫
S2
~Ω · ~nb R(~Ω) RT (~Ωr) dΩ , Qr ≡

∫
S2

R(~Ω) RT (~Ωr) dΩ. (3.30)

As a reminder, ~Ωr designates the reflected direction corresponding to ~Ω and depends

on ~nb (see Eq. 2.4).

The first two terms correspond to the inside of the exterior facet while the last

two correspond to the outside of the exterior facet. We then further define:

Fr(Φ) = Fext(Φ) + FBC
r (Φ), (3.31)

where:

Fext(Φ) ≡ 1

2
~nb · ~D Φ +

||~nb||L1

2
Φ, (3.32)
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and

FBC
r (Φ) ≡ 1

2
LrΦ−

||~nb||L1

2
QrΦ. (3.33)

We dropped the subscript r for Fext because we will see that it is identical for an

incoming Dirichlet boundary.

3.2.3.2 Incoming Dirichlet Boundary

In the case of an incoming Dirichlet boundary, the numerical flux will again be

determined again by Eq. 3.26 with the Ψ+ being the value inside the exterior facet

and Ψ− being the value outside the exterior facet, i.e. imposed by the boundary

condition. The problem is that we can only impose the incoming data of Ψ because

that is all the boundary conditions give us. For the outgoing data, we reconstruct

them using the outgoing data from the inside of the exterior facet. In other words, for

the outside of the exterior facet, we impose the incoming data through the boundary

conditions and the outgoing data imposing continuity with the inside of the exterior

facet.

We start by taking what could be seen as the half-range moments of Ψinc:

Φinc(~r) ≡
∫
~Ω·~nb<0

R Ψinc dΩ , Jinc(~r) ≡
∫
~Ω·~nb<0

|~Ω · ~nb|R Ψinc dΩ. (3.34)

Then, we construct the ’Dirichlet’ numerical flux as follows:

Fd(Φ,Ψinc) =
1

2

(
~nb · ~D Φ + L⊕Φ− Jinc

)
+
||~nb||L1

2

(
Φ−Q⊕Φ−Φinc

)
, (3.35)

for all ~r ∈ ∂Dd, where we have defined:

L⊕ =

∫
~Ω·~nb>0

|~Ω · ~nb|RRT dΩ , Q⊕ ≡
∫
~Ω·~nb>0

RRT dΩ. (3.36)
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Again, the terms
(
~nb · ~D Φ + L⊕Φ− Jinc

)
are nothing but ~n · ~D{Φ} where Φ+ = Φ

and where Φ− is chosen to be Φ if it corresponds to the outgoing data and to be

Φinc if it corresponds to the incoming data. Similarly, the terms
(
Φ−Q⊕Φ−Φinc

)
correspond to JΦK.

We can rearrange to get an expression similar to the numerical flux on reflecting

boundaries (see Eq. 3.31):

Fd(Φ,Ψinc) = Fext(Φ) + FBC
d (Φ,Ψinc), (3.37)

where Fext was defined in Eq. 3.32 and:

FBC
d (Φ,Ψinc) ≡ 1

2

(
L⊕Φ− Jinc

)
− ||~nb||L

1

2

(
Q⊕Φ + Φinc

)
. (3.38)

3.2.4 Mass Matrix Lumping

For robustness in optically thick regions, it may be necessary to lump the matrices

corresponding to the collision terms. This was demonstrated in [29] in the context

of discontinuous Galerkin discretizations of discrete ordinate equations. In practice,

lumping a matrix is done by replacing it by a diagonal matrix whose i-th term is the

sum of the elements on the i-th row of the original matrix. For the Crooked Pipe test

problem (see Section 3.4) this lumping proved to be necessary to avoid non-physical

instabilities in the solution.
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3.2.5 Variational Formulation

Our weak formulation5 is given by: Find (Φ, T ) ∈ V P × V such that:

∀ (Φ∗, T ∗) ∈ V P × V, a((Φ∗, T ∗), (Φ, T )) = L((Φ∗, T ∗)), (3.39)

where the bilinear form a is defined for all (Φ, T ), (Φ∗, T ∗) ∈ V P × V by6:

a((Φ∗, T ∗), (Φ, T )) =(
Φ∗, σ?t Φ

)
D +

(
Φ∗, σf F Φ

)
D −

(
Φ∗,σs Φ

)
D −

(
Φ∗,σa B(T )

)
D

−
(
~∇Φ∗, ~DΦ

)
D

+
〈
JΦ∗K, ~n · ~D {Φ}

〉
Γint

+
〈
JΦ∗K,

||~n||L1

2
JΦK

〉
Γint

+
〈
Φ∗,Fext(Φ)

〉
∂D +

〈
Φ∗,FBC

r (Φ)
〉
∂Dr +

〈1

2
Φ∗,L⊕Φ− ||~nb||L1Q⊕Φ

〉
∂Dd

+

(
T ∗,

1

∆t
T − σa

(√
wΦ0

0 − wB(T )
))
D
,

(3.40)

where:

σ?t ≡ σt +
1

c∆t
, (3.41)

and the linear form L is defined for all (Φ∗, T ∗) ∈ V P × V by:

L((Φ∗, T ∗)) =
(
Φ∗,

1

c∆t
Φn
)
D +

(
Φ∗,S

)
D +

〈1

2
Φ∗,Jinc + ||~nb||L1Φinc

〉
∂Dd

+
(
T ∗,

1

∆t
T n
)
D
.

(3.42)

5We consider here the case of Backward Euler for the time discretization but our implementation
allows for other time discretizations.

6The term
√
wΦ0

0 comes from the fact that Φ =
∫
S2 Ψ dΩ = w1/2

∫
S2 R

0
0 Ψ dΩ =

√
wΦ0

0. As a
reminder w = 2, 2π, 4π for d = 1, 2, 3, respectively.
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3.2.6 Implementation

The algorithm is implemented in two codes: a simple code that is used to ex-

plore the eigenstructure of the linearized system and a production code to generate

numerical solutions.

3.2.6.1 Simple Code

A pure transport code7 has been written in C++ using cubic elements and piece-

wise constant material properties. The spatial discretization was performed using a

DGFEM with the space V built from the tensor product of linear polynomials on

each cell.8

From the variational formulation 3.39, one can generate a linear system of the

form AU = b where U is the solution vector. If v(k) and v(l) are, respectively, the

k-th and l-th basis functions (v(k), v(l) ∈ V P+1), then the components of the global

matrix A are

Akl = a(v(l), v(k)) and bk = L(v(k)). (3.43)

This matrix was assembled in order to study its eigenspectrum as a function of the

filter strength σf. This was done using MATLAB [53].

3.2.6.2 Production Code

To generate numerical solutions for Eqs. 3.1 and 3.2, a code has been implemented

in Rattlesnake, the transport solver of the Idaho National Laboratory (INL), based

on the Multiphysics Object Oriented Simulation Environment (MOOSE) framework

[54]. Nonlinear solves are performed using the Jacobian Free Newton Krylov (JFNK)

method, and the PETSc [55] restarted generalized minimal residual (GMRES) solver

7As a reminder, by pure transport, we mean that the re-emission term in Eq. 3.1 is neglected.
This can be done, for instance, by setting the temperature T uniformly to zero.

8The number of basis functions is thus equal to eight times the number of cells.
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for the linear solves. In this method, the Jacobian is never explicitly formed but its

action is computed with two nonlinear residual evaluations. All the results from this

code are obtained using the first order LAGRANGE elements from libMesh [56].

The meshes are generated using gmsh [57] and the results are visualized with VisIt

[58]. Several convergence tests were performed to verify the spatial and temporal

accuracy of the code.

The linear system for Φ in Eq. 3.11 can be ill-conditioned in streaming regimes.

Specifically, σ?t → 1
c∆t

when σt → 0. Hence when σt is small and ∆t is large, the

system is dominated by the streaming operator ~D · ~∇, which is singular and not

diagonally dominant. The loss of diagonal dominance makes most iterative schemes

(Jacobi, Gauss-Seidel, SOR, etc.) unstable. To our knowledge, there does not exist

a universally effective preconditioner for the PN equations in the streaming limit,

though some multigrid in angle preconditioners have been studied in the past for the

even-parity form of the PN equations [59]. For the results in this chapter, we have

used the built-in algebraic multigrid (AMG) preconditioners in PETSc.

3.3 Study of the Filter

In this section, we discuss the selection of filter parameters. We then investigate

how the filter affects (i) the convergence of the iterative solver for the fully discretized

system and (ii) the convergence of the angular discretization as N →∞.

3.3.1 Filtering Strategy

In this subsection, we discuss the strategy for selecting the location, type, and

strength of the filter. Fig. 3.2 shows the dependence of different filter functions f

(cf. Eq. 3.13) on ` when N = 7. These results illustrate several general trends. First,

for fixed N , f is a monotonically increasing function of `. Second, the value of σf

must be adjusted according to the type of filter used. Third, as the order of the
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Figure 3.2: Filter function f vs. degree ` for exponential filters of various orders,
the Lanczos filter, and the spherical spline filter. The results are shown for N = 7.
The right plot is the same as the left one with a different scale to see the latter two
curves more clearly.

filter increases, the higher-order moments are filtered more, comparatively to the

low-order ones. In particular, an unfiltered calculation can be seen as a filtered one

with an infinite order. It is therefore intuitive – and empirically found – that, for

difficult problems, the higher-order filters do not perform as well as low-order ones,

even if the value of σf is adjusted. For this reason, we use the Lanczos filter for the

rest of the paper, unless specified otherwise.

The major drawback of the filter is that σf must be tuned by the user for each

individual problem. Unfortunately, the numerical solution can be very sensitive to

the value of σf, especially for small values of N . The choice of filter strength is

a trade-off between removing unphysical oscillations and excessive damping of the

solution. Since the appropriate balance may be different in different parts of the

spatial domain, it is usually advantageous to allow σf to vary in space. Often a

basic understanding of radiation transport can help guide the strategy for setting σf

without the need for extensive knowledge of the solution beforehand. When more
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information is needed, a relatively coarse simulation (in space and time) may be used

as a proxy. This is one of the main benefits of using the consistent formulation in

Eq. 3.11: the value σf does not need to be recomputed when the space-time mesh is

refined.

In our experience, we have found the following to be good practices for setting

the filter strength.

• Location. Run a calculation with no filter and find local regions where Φ0
0

becomes negative. Activate the filter in these ‘negative’ regions as well as in

upstream regions of comparable sizes. For the other parts of the problem, the

filter can typically be set to zero or to a much smaller value. If the problem is

uniform, then activate the filter everywhere.

• Filter type. Set the order of the filter to match the expected regularity

(with respect to angle) of the transport solution.9 If unsure, it is better to

underestimate the regularity. Lower order filters are typically more robust; for

the most difficult problems, we have found that the second-order Lanczos filter

works well.

• Filter strength. Using a coarse mesh, determine N0 which yields an accept-

able10 unfiltered calculation. A good scaling is usually obtained by setting

σf(~r) ≈ σt(~r)/f(1, N0) in the previously determined regions. Another option is

to tune the filter strength empirically (still on a coarse mesh).

These guidelines are quite broad but they usually are precise enough to determine

a suitable σf. The relative freedom that is left to the user is also an advantage since

9See Section 3.3.3 for a more precise statement of the regularity.
10As N →∞, the numerical solution converges to the analytical solution so there exists an integer

N0 such that the numerical solution is good enough. This notion is of course subjective and is up
to the user. In practice, N0 can for instance be chosen such that the unfiltered Φ0

0 is non-negative
or that the unfiltered T does not reach unphysical values.
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the extent to which the negativity and oscillations should be reduced can vary from

one application to another.

3.3.2 Effects of the Filter on the Iterative Solver

In this section, we study how the filter affects the convergence properties of the

GMRES solver for the fully discretized system. We first study the pure transport

case and propose empirical and theoretical predictions regarding the behavior of the

spectrum of the global matrix as a function of σf and N . After predicting how the

solver should be affected by these parameters, we present the practical number of

linear iterations for a complicated TRT benchmark problem.

3.3.2.1 Linear Setting: Pure Transport

We investigate first the spectrum of the linear system corresponding to the pure

transport problem. The matrix elements for this system are computed using the

simple code described in Section 3.2.6.1. We consider a cubic domain that is 1 m on

each side, with periodic boundary conditions in z and open boundaries elsewhere.

We set σt = 0 because we are mostly interested in the effect of the filter when the

unfiltered PN equations are ill-conditioned. We set N = 3, use a 10 × 10 × 1 mesh

(∆x = ∆y = 0.1 m, ∆z = 1 m), and set c∆t = 0.1 m (therefore, σ?t = 10 m−1).

Though relatively small, this problem already has 12, 800 unknowns.11

We write the global matrix A from Eq. 3.43 as A = R + C + F , where C and F

are the matrices corresponding to the collision and filtering operators, respectively.

More specifically, C = σ?tM0 and F = σf F⊗M where12

M0 = IP ⊗
∫
D
V VT dx and M =

∫
D
V VT dx. (3.44)

11There are sixteen moments, 100 cells, and eight basis functions per cell.
12Note that this block-diagonal form of the mass matrix M0 assumes that the basis functions

have been grouped according to their corresponding moments.
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Here Ik denotes the identity matrix of size k for any k ∈ N; ⊗ designates the tensor

product; and V is a vector whose components form an orthogonal basis of V . We

then compute the spectrum of the operator13

A ≡ C−1A = C−1R + ISP +
σf

σ?t
F⊗ IS, (3.45)

where S is the dimension of V .

Unfiltered spectrum. In the unfiltered case (σf = 0), we observe (i) that all

eigenvalues have a real part greater than one; (ii) that the eigenvalue of smallest

magnitude is λmin = 1; and (iii) that the eigenvalue of largest magnitude has the

form

λmax = 1 + η
1

∆x σ?t
. (3.46)

This formula is based on a linear fit of the numerical results (see Fig. 3.3). The

constant η, which depends on the other physical and numerical parameters, is deter-

mined by the fit. In the streaming limit (σt = 0), the ratio λmax/λmin, which gives a

lower bound on the condition number of A, is given by

λmax

λmin

= 1 + η
1

∆x σ?t
= 1 + η

c∆t

∆x
. (3.47)

Thus while A is never singular, it does become ill-conditioned as the CFL number

increases.

Filtered spectrum. We consider again the same system, but now with the

Lanczos filter. Fig. 3.4 shows the eigenspectrum for different values of σf.

For small values of σf, all the eigenvalues are shifted to the right, away from the

13The choice of A is for convenience. Because M0 is diagonal with minimum and maximum
elements 1/27 and 1 respectively, the asymptotic behavior of A is identical to that of A.
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Figure 3.3: The value λmax − 1 as a function of 1/(σ?t ∆x) for different values of σt,
c∆t/∆x and N . For a given value of N , the computed values of λmax − 1 are all
exactly predicted by the linear fit to the precision of the calculation (6 digits). The
slope changes slightly depending on the other parameters of the simulation.

origin (see Figs. 3.4b and 3.4c). Previous observations [5] and theoretical results [60]

show that the solver converges faster when eigenvalues are clustered away from the

origin. However, since there are no distinct clusters, we quantify this notion using

the ratio:

κ(σf) ≡
∣∣∣λmax − λmin

λmin

∣∣∣. (3.48)
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Figure 3.4: Spectrum of A in the complex plane for different values of σf for a P3

calculation. Note the log scale for the real part in the last subfigure.

These values, which are given in Table 3.1, suggest that the filter will improve the

solver convergence, at least for small values of σf.

As σf continues to increase (see Fig. 3.4d), the spectrum continues to stretch

along the real axis. At this point, it is more complicated to predict the behavior of

the solver.

For very large values of σf, the spectrum appears in N + 1 clusters very near the
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c∆t

∆x
σf λmax λmin κ(σf)/κ(0)

1 0 1.0000 8.6488 100.00%
1 50 1.1392 8.8633 88.65%
1 100 1.1737 9.0737 88.00%
1 200 1.1494 9.4792 94.75%
10 0 1.0000 77.488 100.00%
10 50 2.3920 79.633 42.22%
10 100 2.7366 81.737 37.74%
10 200 2.4940 85.792 43.67%

Table 3.1: Behavior for small values of σf of the maximum and minimum eigenval-
ues in the P1 case for different values of σf and different CFL numbers. The ratio
κ(σf)/κ(0), which characterizes the radius of the eigenspectrum relative to its dis-
tance to the origin, compared to the unfiltered case, highlights that the spectrum is
more clustered for ”small” values of σf.

real-axis (see Fig. 3.4d for the P3 case). Indeed, it follows from the decomposition

in Eq. 3.45 and Gerschgorin’s Circle Theorem that, because F is diagonal,

max
λ(σf)∈eig(A)

min
µ∈eig(F)

∣∣∣∣λ(σf)−
σfµ

σ?t

∣∣∣∣ ≤ %, (3.49)

where % is independent of σf. Hence as σf →∞, the spectrum separates into N + 1

distinct clusters Cµ contained in discs with centers σfµ/σ
?
t , µ ∈ eig(F), and radius %.

Moreover for µ 6= 0, the relative size of the closure Cµ converges to zero:

dist(σfµ/σ
?
t , Cµ)

σfµ/σ?t
→ 0 as σf −→ 0. (3.50)

In has been shown in [60] that for a matrix with d outlying eigenvalues, the

convergence properties of the GMRES solver are no longer affected by those outlying

eigenvalues after d iterations. Based on Eq. 3.50, we conjecture that for large σf, the

solver treats the clusters Cµ, µ 6= 0, as isolated points and that the majority of
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iterations is due to the spectrum in the cluster C0.

This would imply in particular that, for a uniform filtering strategy, the number

of iterations required should not depend on N as σf −→ ∞. For a local filtering

strategy, the behavior is more complicated to predict as only the eigenvalues that

correspond to filtered regions would be shifted as σf −→ ∞ while the eigenvalues

corresponding to unfiltered regions would be unchanged. It is then conceivable that

the number of iterations might depend on N in that limit because the size of the

cluster staying close to the origin increases as N gets larger.

Although further analysis is required to confirm this, it is believed that this

considerations on pure transport are useful to understand the nonlinear TRT case

because each nonlinear solve consists of multiple linear solves with the additional

terms mostly contributing to the diagonal terms on the global matrix. The above

reasoning relying on Gerschgorin discs would most likely translate to the general

case, though the derivation would be more tedious.

Let us now see if these results are indeed seen in practice.

3.3.2.2 Solver Efficiency for the Crooked Pipe

We next consider the effect of the filter on the iteration count for the full nonlinear

system when solving the Crooked Pipe problem using the MOOSE implementation

(cf. Section 3.2.6.2). A full description of this problem and numerical solutions can

be found in Section 3.4 (see Fig. 3.6 for the layout).

In Fig. 3.5, the total number of GMRES iterations are displayed for the first time

step, which is typically the most expensive. The numbers are generally consistent

with the analysis above in the linear case. For the uniform filter, the number of iter-

ations decreases monotonically as σf increases to a fixed number that is independent

of N . For the local filter, the iterations decrease initially and increase to a fixed value
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that is different for each N . (Note however, that this increase occurs well beyond

any practical value of σf and that the number of iterations as σf, N −→∞ seems to

converge.) The difference in performance between the uniform and local strategies

is due to the fact that the local filter introduces an artificial discontinuity in the

effective material cross-section.
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Figure 3.5: Iteration count for the first time step as a function of N and the filter
strength σf (in cm−1), using the Lanczos filter. As a reference, the value of σf for
this test problem was in practice chosen to be 50 cm−1 (vertical line). The value
of σf for the local filter designates the maximum value; see Fig. 3.9 for a complete
description.

In Table 3.2, we show the gain that we obtain in the number of iterations for

the practical value of σf compared to the unfiltered case. In both strategies, the

improvement in performance is noteworthy. Indeed, the number of iterations for the

practical value of σf decreases by more than one-half when compared to the unfil-

tered case for uniform filtering and by more than 20% for the locally filtered PN with
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N > 1.

Filtering P1 P3 P5 P7 P9 P11 P13 P15 P17

Uniform 0.473 0.439 0.449 0.463 0.482 0.470 0.471 0.471 0.479

Local 0.877 0.791 0.788 0.793 0.797 0.779 0.777 0.776 0.773

Table 3.2: Factor by which the number of iterations is multiplied for σf = 50 cm−1

compared to the unfiltered case (σf = 0).

3.3.3 Comparison to Error Estimates

Frank, Hauck and Kuepper [11] have derived error estimates for the convergence

of Filtered PN for the case of pure transport. Here we compare these estimates to

numerical results for smooth and non-smooth solutions of thermal radiative transfer

with non-linear material properties. Define the angular error

EN = ||ΨN −Ψ||L2 =

( ∞∑
`=0

∑̀
m=−`

∫
D

(
(ΨN)m` − Φm

`

)2

dx

)1/2

, (3.51)

where the expansion coefficients of ΨN solve the (time continuous) FPN equations

and we have added the subscript N to emphasize the dependence on N . Based on

[11], we expect

EN = O
(
N−min{k,α}) , (3.52)

where k is the order of convergence in the unfiltered case, α is the order of the filter

and the implied constant in Eq. 3.52 depends on Ψ and the time t. As a reminder,

the Lanczos and Spherical Spline filter orders are two and four, respectively. The

order of the exponential filter of order α is precisely α (see Eq. 3.14).
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As a test problem, we use the smooth Marshak Wave [61]. This problem is defined

on a slab geometry, which implies that Φ only depends on x ∈ [0, 1] and t. It assumes

a purely absorbing medium with cross-section σt = σa = (ac)−3/4 T−3. The material

heat capacity Cv is set to a1/4c−3/4.14 The initial conditions are

Φm
` (x, 0) =

δ`,0√
w

(
φl + (φr − φl)

1 + tanh
(
50(x− 0.25)

)
2

)
, (3.53)

T (x, 0) =
(√w
ac

Φ0
0(x, 0)

)1/4

, (3.54)

where φl = 4, φr = 0.004. We use Dirichlet boundary conditions (see Sec. 3.2.3.2)

at both boundaries: Ψinc = φl/w at x = 0 and Ψinc = φr/w at x = 1. We use 200

uniform cells of width ∆x = 0.005. The final time is tmax = ∆t = 0.005/c and the

filter strength is σf = 100.

To test both aspects of (3.52), we consider two problems. In the first one, S = 0;

in the second, we add a non-smooth, volumetric source that is constant in x and t

and a hat function in µ.

S(x, µ, t) =


20
∣∣(|µ| − 0.5)

∣∣, 0 ≤ |µ| ≤ 0.5

0, 0.5 ≤ |µ| ≤ 1

. (3.55)

Thus the angular derivative is not continuous. To estimate the error EN , we use Ψ99

and Ψ199, respectively, to approximate Ψ in the smooth and non-smooth cases.15

14In the original paper, the equations solved can be obtained by setting a = c = Cv = 1. Here we
prefer to keep the physical constants unchanged and use a different scaling, which leads to slightly
different expressions for the cross-sections, the heat capacity, the time step and the temperature.
We are however solving the same equations.

15In the non-smooth case, the reference solution must be more refined in order to see a more
saturated convergence rate. Similarly, the exponential filters being stronger than the Lanczos and
SSpline filters for a given σf (see Fig. 3.2), σf is set to 1 for the exponential filters in the non-smooth
case.
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In Tables 3.3–3.8 we show numerical values of ENi
and the convergence rate

ri = −
log(ENi

/ENi+1
)

log(Ni/Ni+1)
, (3.56)

for several different filters in the smooth case. As expected, the order of convergence

is close to the order of the filter.

N EN r

1 1.29E-06 4.35

3 1.08E-08 7.59

7 1.74E-11 5.04

15 3.75E-13 3.78

29 3.10E-14 0.68

49 2.17E-14 NA

99 Reference NA

Table 3.3: Unfiltered
(smooth)

N EN r

1 1.59E-06 2.01

3 1.75E-07 1.64

7 4.36E-08 1.83

15 1.08E-08 1.97

29 2.95E-09 2.15

49 9.56E-10 NA

99 Reference NA

Table 3.4: Lanczos
(smooth)

N EN r

1 1.78E-06 2.84

3 7.89E-08 3.25

7 5.00E-09 3.64

15 3.13E-10 3.82

29 2.53E-11 3.91

49 3.26E-12 NA

99 Reference NA

Table 3.5: SSpline
(smooth)
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N EN r

1 2.01E-05 0.65

3 9.77E-06 1.30

7 3.25E-06 1.70

15 8.90E-07 1.87

29 2.59E-07 1.94

49 9.39E-08 NA

99 Reference NA

Table 3.6: Exponential
filter, order 2 (smooth)

N EN r

1 9.87E-06 2.06

3 1.02E-06 3.17

7 6.98E-08 3.63

15 4.38E-09 3.81

29 3.54E-10 3.90

49 4.58E-11 NA

99 Reference NA

Table 3.7: Exponential
filter, order 4 (smooth)

N EN r

1 1.72E-06 3.51

3 3.64E-08 6.86

7 1.09E-10 6.77

15 6.23E-13 2.24

29 1.42E-13 1.83

49 5.43E-14 NA

99 Reference NA

Table 3.8: Exponential
filter, order 8 (smooth)

In Tables 3.9–3.14 we show the results in the non-smooth case. We observe that

the order of convergence is not affected by the order of the filter. This is as expected,

since k < α. Because lower-order filters are more robust, it is generally best to choose

α no less than k, but as close to k as possible.
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N EN r

1 1.60E-02 0.23

3 1.23E-02 1.40

7 3.76E-03 1.43

15 1.27E-03 1.50

29 4.73E-04 1.63

49 2.01E-04 1.57

69 1.18E-04 1.11

89 8.87E-05 1.65

109 6.35E-05 NA

199 Reference NA

Table 3.9: Unfiltered
(non-smooth)

N EN r

1 1.60E-02 0.23

3 1.23E-02 1.40

7 3.78E-03 1.43

15 1.27E-03 1.49

29 4.75E-04 1.63

49 2.02E-04 1.56

69 1.19E-04 1.12

89 8.93E-05 1.64

109 6.40E-05 NA

199 Reference NA

Table 3.10: Lanczos
(non-smooth)

N EN r

1 1.60E-02 0.23

3 1.23E-02 1.38

7 3.84E-03 1.45

15 1.27E-03 1.48

29 4.79E-04 1.61

49 2.06E-04 1.55

69 1.21E-04 1.14

89 9.06E-05 1.63

109 6.51E-05 NA

199 Reference NA

Table 3.11: SSpline
(non-smooth)
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N EN r

1 1.60E-02 0.23

3 1.23E-02 1.40

7 3.77E-03 1.43

15 1.27E-03 1.49

29 4.74E-04 1.63

49 2.02E-04 1.56

69 1.18E-04 1.11

89 8.91E-05 1.64

109 6.39E-05 NA

199 Reference NA

Table 3.12: Exponen-
tial filter, order 2 (non-
smooth)

N EN r

1 1.60E-02 0.23

3 1.23E-02 1.40

7 3.77E-03 1.43

15 1.27E-03 1.50

29 4.73E-04 1.63

49 2.01E-04 1.56

69 1.18E-04 1.11

89 8.88E-05 1.65

109 6.36E-05 NA

199 Reference NA

Table 3.13: Exponen-
tial filter, order 4 (non-
smooth)

N EN r

1 1.60E-02 0.23

3 1.23E-02 1.40

7 3.76E-03 1.43

15 1.27E-03 1.50

29 4.73E-04 1.63

49 2.01E-04 1.56

69 1.18E-04 1.11

89 8.88E-05 1.65

109 6.36E-05 NA

199 Reference NA

Table 3.14: Exponen-
tial filter, order 8 (non-
smooth)

3.3.4 Spatial and Temporal Convergence Studies

We check in this section that our code gives the expected orders of convergence

in time and in space. In time, we expect an order of convergence for the global error

to be one since we use the backward Euler discretization. In space, we expect to get

a second order convergence using Linear DGFEM. In both cases, we use the solu-

tion on a very refined mesh as the reference solution and we compute the error with

respect to that reference, leaving all the other parameters unchanged. We consider

the same test problem studied and described in Section 3.3.3. Tables 3.15 and 3.16

show that the error in the angular flux indeed behaves as expected. The filter type

does not change the order of convergence within three digits of accuracy.16

16Note however that the reference solution depends on the filter type since it is obtained by
running the same calculation on a finer mesh.
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∆t EN r

1/10 5.99× 10−2 0.711

1/20 3.66× 10−2 0.771

1/40 2.15× 10−2 0.850

1/80 1.19× 10−2 0.958

1/160 6.13× 10−3 1.128

1/320 2.80× 10−3 1.524

1/640 9.75× 10−4 NA

1/1280 reference NA

Table 3.15: Convergence in time for
a P9 calculation and 80 spatial cells.
The final time is tmax = 1.

Cells EN r

10 5.14× 10−2 0.252

20 4.31× 10−2 1.845

40 1.20× 10−2 2.582

80 2.01× 10−3 2.265

160 4.18× 10−4 2.071

320 9.94× 10−5 1.977

640 2.52× 10−5 NA

1280 reference NA

Table 3.16: Convergence in space for
a P9 calculation. The final time is
tmax = 10∆t = 0.01.

It was also checked that the same orders of convergence are obtained for a 2-D prob-

lem with an isotropic initial condition and a source given by S = 1+sin(4πx) sin(4πy)

in a unit square with uniform material properties and reflective boundary conditions

at every boundary. We have also checked that our code converges to the correct

semi-analytical solution for the P1 Su-Olson test problem [62]. Using the BDF-2

time discretization yields second-order convergence in time.

3.4 Numerical Results

In this section, we study a variation17 of the Crooked Pipe benchmark [45]. In this

problem, there are two purely absorbing materials in a two-dimensional, Cartesian

domain that is 7 cm × 2 cm, respectively, in the x and y directions (as shown in

Fig. 3.6), with the origin located at the bottom left corner. There is no z-dependence.

17The original Crooked Pipe problem has a cylindrical geometry; here we use Cartesian coordi-
nates.
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The location of the two materials is shown in Fig. 3.6. In the thin one, σa = 20 m−1

and Cv = 4.3× 104 J/m3/K; in the thick one, σa = 2× 104 m−1 and Cv = 4.3× 107

J/m3/K.18

On the left boundary, we apply an isotropic incoming source (see Eq. 2.3):

Ψd =
ac

w
T 4
L, TL = 0.3 keV, (3.57)

at x = 0 for 0 ≤ y ≤ 0.5 cm – that is, only along the thin region of the left

boundary. A reflective boundary condition is imposed on the bottom boundary and

open boundaries everywhere else. The initial temperature is set to T0 = 0.05 keV,

and the expansion coefficients of the initial scalar flux are

Φm
` (x, 0) =

acT 4
0√
w
δ`,0. (3.58)

As explained in Section 3.2.4, we lump the mass matrix for the collision terms

in order to increase robustness. The time step is set to 0.05 ns using a BDF-2

time-discretization scheme.19

3.4.1 Comparison with IMC: Simplified Problem

The sharp material interfaces and the absence of scattering in the Crooked Pipe

make it very difficult to solve. Furthermore, because σa in the thick region is very

large, fully converging the solution requires a significant amount of computational

resources. Thus, for verification purposes, we begin with a simpler test problem and

compare it to a solution obtained from an IMC calculation. In this problem, σa = 20

m−1 everywhere and the source on the left is applied along the entire left boundary.

18Note that 4.3× 107 J/m4/K ≈ 0.5 GJ/cm4/keV, which are the units that were actually used.
19The difference with the Backward-Euler scheme was barely noticeable, suggesting that the

temporal error is not dominant with this time step. Increasing the time step to 0.1 ns also had a
negligible impact.
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Figure 3.6: Mesh for the Crooked Pipe test problem. In the thin regions (shown in
blue), σt = σa = 20 m−1 and Cv = 4.3 × 104 J/m4/K. In the thick regions (shown
in red), each of these constants is factor of 1000 greater. The two straight lines
(in yellow) are y = 0 and x = 2.75 cm; the three points (in green) are (x1, y1) =
(0.25 cm, 0), (x2, y2) = (2.75 cm, 0) and (x3, y3) = (3.5 cm, 1.25 cm). The interface
between thick and thin regions is refined so that there are several cells per mean free
path. (The first layer of cells has a width of 0.005 cm.) The entire mesh contains
20,106 triangular elements.

We verify that a P29 solution agrees well with the IMC one; see Fig. ??. With this

fact in mind, we use a P39 solution with the spatial mesh shown in Fig. 3.6 as the

reference solution below.

3.4.2 Filtering Strategy

For robustness, we use the Lanczos filter in all of the filtered calculations. Based

on the guidelines detailed in the previous section, we consider three filtering strate-

gies.

• Unfiltered. This is the original PN method, obtained by setting σf = 0.

• Uniformly filtered. Here σf is a fixed constant across the domain. Based

on the discussion in Section 3.3.1 and given that the material temperature T

is virtually always above the initial temperature for N = 7 (see Fig. 3.10), we

choose a value such that σf f(1, N0 = 7) is comparable to the cross-section in
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Figure 3.7: Temperature profile along y = 0 and y = 1.9 cm as a function of x.
For convergence purposes, these results are obtained on the same geometry as
Fig. 3.6 except that the material properties are set to the thin region everywhere
and that the source is applied on the entire left boundary. The mesh however
was a uniform rectangular grid (100×50 for the IMC, 112×32 for the P29).
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Figure 3.8: Temperature profile (x, y) = (3.5 cm, 1 cm) and (x, y) = (5 cm, 1 cm) as
a function of time. For convergence purposes, these results are obtained on the same
geometry as Fig. 3.6 except that the material properties are set to the thin region
everywhere and that the source is applied on the entire left boundary. The mesh
however was a uniform rectangular grid (100×50 for the IMC, 112×32 for the P29).
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the thin part of the problem. Setting σf = 5 × 103 m−1 gives σf f(1, 7) ≈ 13

m−1 for the Lanczos filter. (Recall that σt = 20 m−1 in the thin region.)

• Locally filtered. The spatial profile of σf in this case is provided by Fig. 3.9.

Following the guidelines of Section 3.3.1, we set it to 5×103 m−1 after the first

elbow of the pipe (where the radiation tends to become negative) as well as in

an upstream region of comparable size. It is set to a value ten times smaller in

the rest of the pipe because it appeared to slightly improve the profile therein.

Figure 3.9: Value of σf (in cm−1) for the locally filtered calculations.

3.4.3 Results

In all simulations, radiation flows rapidly from the left boundary to the first elbow

of the pipe. It is then absorbed and re-emitted by the material. Isotropic re-emission

allows for some of the radiation to change direction and propagate further down the

pipe.

In the following subsections, we present 2-D maps of the different solutions at a

fixed time. We then examine these solutions in more detail: first along specified lines
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in space with time fixed and then at fixed points in space over a given time interval.

As expected, the locally filtered strategy generally produces the best solutions: it

maintains a positive scalar flux without damping its profile too strongly.

3.4.3.1 Scalar Flux 2-D Maps

In Fig. 3.10, we plot the heat map of the material temperature T for the unfiltered

case as t = 0.35 sh, the approximate time that gives the minimum values. It is based

on that figure that we chose the value for σf in Section 3.4.2.

In Figs. 3.11-3.13, we plot heat maps of the scalar flux Φ0
0 for the unfiltered,

uniformly filtered, and locally filtered spherical harmonic calculations, respectively,

at time t = 0.05 sh. It is around this time that the value of Φ0
0 in the unfiltered

solution reaches its minimum. Each figure contains solutions for N = 1, 3, 5 and 7.

The filtered P39 solution with uniform filtering is included for reference.

Fig. 3.11 shows the defects of the PN closures. P1 allows energy to flow through

the thin region around the bend in the pipe. Meanwhile, the P3, P5 and P7 calcula-

tions have regions – the edge of shadows – where the scalar flux becomes negative.

If a low enough initial temperature is chosen, the temperature will actually become

negative, then yielding nonsensical results. Fig. 3.12 shows that uniform filtering

efficiently removes regions of negativity, but also over-damps the scalar flux profile

for low values of N .

3.4.3.2 Lineouts

In this section and the following, we provide L2-error tables to quantify the filter

performances. It is generally defined as (
∫ umax

umin
(Φ0

0−Φref)
2 du)1/2, the reference being

the P39 curve. For the lineouts, u represents the corresponding spatial variable (u = x

for Fig. 3.14, u = y for Fig. 3.15). For the time histories, it represents the time t.

Figs. 3.14 and 3.15 show lineouts of the scalar flux profile at time t = 0.05 sh along
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the lines y = 0 cm and x = 2.75 cm, respectively. Except for P1, all of the unfiltered

PN solutions (Fig. 3.14a) along y = 0 are very similar and agree with the reference

solution to within 12%. In the uniformly filtered case (Fig. 3.14b), over damping has

slowed the effective flow of radiation down the pipe, causing solutions to be much

less accurate. Meanwhile, the locally filtered results (Fig. 3.14c) are slightly better

than the unfiltered ones.

Along the line x = 2.75 cm, nonphysical oscillations cause the scalar flux profile

for the unfiltered equations (Fig. 3.15a) to reach negative values. The filter helps

significantly in this region, with the local filter (Fig. 3.15c) again outperforming the

uniform one, especially for small values of N . Even so, the filtered solutions do

over-predict the scalar flux compared to the P39 solution after the first elbow.

3.4.3.3 Time Histories

As suggested in [45], we also monitor the evolution of Φ0
0 as a function of time

at 3 different points in space: (x1, y1) = (0.25 cm, 0), (x2, y2) = (2.75 cm, 0), and

(x3, y3) = (3.5 cm, 1.25 cm). These results are given in Figs. 3.16 - 3.18.

At (x1, y1) (Fig. 3.16), all the filtering approaches give reasonable results. The

values of Φ0
0 for uniform filtering in Fig. 3.16b are slightly higher than with the other

two types because the radiation propagates more slowly and is therefore more con-

centrated at the entrance of the pipe. For the same reason, the unfiltered calculations

tend to underestimate the temperature at that point for small values of N .

At (x2, y2), in Fig. 3.17a, the unfiltered solutions are all reasonably close to the

P39 solution at early times (see Table 3.17d), except for the P3 solution, which is

affected by the time history at this point. Similar behavior for P5 or P7 can be

observed at different points in space. The uniformly filtered solutions (Fig. 3.17b)

again suffer from over damping, while the locally filtered results (Fig. 3.17c) agree
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well with the reference solution. Only P1 does not capture the shape accurately.

At (x3, y3) in Fig. 3.18a, the unfiltered scalar intensities are too high. The filtering

improves this, with the uniform filter giving the best results for N = 1 and N = 3.

For N = 5 and N = 7, the local and uniform filters have similar errors.
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Figure 3.10: Material temperature T (in keV) at t = 0.35 sh for unfiltered P1, P3,
P5, and P7 calculations (from top to bottom). The last plot is a uniformly filtered
P39 calculation for reference. The white regions show where T is less than 98% of
the initial temperature. Only the piecewise constant component of the solution is
shown.
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Figure 3.11: Scalar flux Φ0
0 (in GJ/cm2/sh) at t = 0.05 sh for unfiltered P1, P3, P5,

and P7 calculations (from top to bottom). The last plot is a uniformly filtered P39

calculation for reference. The white regions show where Φ0
0 is less than 10−5 (i.e. es-

sentially negative with such a log scale). Only the piecewise constant component of
the solution is shown. 55



Figure 3.12: Scalar flux Φ0
0 (in GJ/cm2/sh) at t = 0.05 sh for uniformly filtered

P1, P3, P5, and P7 calculations (from top to bottom). The last plot is a uniformly
filtered P39 calculation for reference. Only the piecewise constant component of the
solution is shown.
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Figure 3.13: Scalar flux Φ0
0 (in GJ/cm2/sh) at t = 0.05 sh for locally filtered P1, P3,

P5, and P7 calculations (from top to bottom). The last plot is a uniformly filtered
P39 calculation for reference. Only the piecewise constant component of the solution
is shown.
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Figure 3.14: Scalar flux profile along the straight line y = 0 at t = 0.05 sh (refer
to Fig. 3.6 to see where the straight line is with respect to the geometry). The
stair-casing is an artifact of the visualization software, which plots piece-wise
constants.
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(c) Locally Filtered PN . (d) L2-error in GJ-cm−3/2-sh−1.

Figure 3.15: Scalar flux profile along the straight line x = 2.75 cm at t = 0.05 sh
(refer to Fig. 3.6 to see where the straight line is with respect to the geometry).
The stair-casing is an artifact of the visualization software, which plots piece-
wise constants.
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(c) Locally Filtered PN . (d) L2-error in GJ-cm−2-sh−1/2.

Figure 3.16: Scalar flux profile at the point (x1, y1) = (0.25 cm, 0). Refer to
Fig. 3.6 to see where this point lies with respect to the geometry.
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Figure 3.17: Scalar flux profile at the point (x2, y2) = (2.75 cm, 0). Refer to
Fig. 3.6 to see where this point lies with respect to the geometry.

61



t (sh)

0 0.5 1 1.5 2

S
c
a
la

r 
in

te
n
s
it
y
 (

G
J
/c

m
2
/s

h
)

×10-4

0

0.5

1

1.5
P1

P3

P5

P7

P39

(a) Unfiltered PN .

t (sh)

0 0.5 1 1.5 2
S

c
a
la

r 
in

te
n
s
it
y
 (

G
J
/c

m
2
/s

h
)

×10-4

0

0.5

1

1.5

P1

P3

P5

P7

P39

(b) Uniformly Filtered PN .

t (sh)

0 0.5 1 1.5 2

S
c
a
la

r 
in

te
n
s
it
y
 (

G
J
/c

m
2
/s

h
)

×10-4

0

0.5

1

1.5

P1

P3

P5

P7

P39

(c) Locally Filtered PN . (d) L2-error in GJ-cm−2-sh−1/2.

Figure 3.18: Scalar flux profile at the point (x3, y3) = (3.5 cm, 1.25 cm). Refer
to Fig. 3.6 to see where this point lies with respect to the geometry.
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3.4.4 Energy-Dependent Filtering

3.4.4.1 Specifications

Although we have only considered one-group calculations so far, it turns out

that extending the filtering approach to multigroup cases is a minor complication,

the filtering strength σf being then potentially group-dependent. In this section, we

illustrate it on the previous test problem with energy- and temperature-dependent

cross-sections. In Appendix B, we derive – based on the model opacity given in [63]

– the following two-group cross-sections:

σa, thick, g=0(T ) = 41.00T−0.5163, (3.59)

σa, thick, g=1(T ) = 0.01702T−2.564, (3.60)

where T is expressed in keV and σa in cm−1. The frequency bounds for the energy

groups are (hνmin, hν1, hνmax) ≡ (0.001 keV, 0.3 keV, 10 keV). The cross-sections in

the thin region are 1000 times less (see Fig. 3.6).

Besides, the initial condition is given by:

Ψg(t = 0) = Bg(T0) =

∫ νg

νg−1

B(ν, T0)dν, (3.61)

while the boundary condition at the left entrance of the pipe reads:

Ψd
g = Bg(TL) =

∫ νg

νg−1

B(ν, TL)dν, (3.62)

for g ∈ {0, 1}.
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3.4.4.2 Energy-Dependent Filter Strength

Since most of the energy at early times corresponds to the fast group (g = 1) –

see for instance Fig. B.1 in Appendix B, it can be expected that the filter strength

in that group need be larger than in the thermal group (g = 0).

After testing several values for σf,g on coarse meshes, it was found that σf,1 = 50

cm−1 in the fast group gives good results along x = 2.75 cm,20 as shown on Fig. 3.20:

the effect of filtering for the fast scalar flux is very much similar to that of the gray

case with an unfiltered approach, yielding negative values, while a uniformly filtered

calculation removes the negativity but converges more slowly than a locally filtered

one.

For the thermal scalar flux, the magnitude of the solution is almost 50 times less,

which implies than we do not need to activate the filter as strongly. Fig. 3.19 shows

the results for σf,0 = 5 cm−1. The unfiltered solution has a shape very similar to that

of the fast group. However, the uniformly filtered solution seems to perform better

than the locally filtered one because the filter strength is fairly small compared to

the fast group. It would then be possible to increase σf,0 but it does not seem crucial,

as the temperature profile on Fig. 3.21 tends to indicate: although the oscillations

and negativity from the thermal scalar flux have not been completely removed, the

locally filtered temperature is much more satisfying than the unfiltered and uniformly

filtered calculations for small values of N .

20Because the profiles are fairly close to those from the one-group calculations, we only show
results along x = 2.75 cm, for compactness.
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Figure 3.19: Scalar flux for the thermal group along the straight line x = 2.75
cm at t = 0.03 sh. The filter strength when filtering is activated is chosen to
be (σf,0, σf,1) = (5, 50) cm−1.
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Figure 3.20: Scalar flux for the fast group along the straight line x = 2.75 cm
at t = 0.03 sh. The filter strength when filtering is activated is chosen to be
(σf,0, σf,1) = (5, 50) cm−1.
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Figure 3.21: Temperature along the straight line x = 2.75 cm at t = 0.03 sh.
The filter strength when filtering is activated is chosen to be (σf,0, σf,1) = (5, 50)
cm−1.
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4. CONSIDERATIONS ON SECOND-ORDER FORMS*

After studying the first-order form of the transport equation in Chapter 3, we

shift our focus to second-order forms for the remainder of this thesis.∗

As explained in Section 1.4, they can be preferred over first-order forms whenever

the solution is smooth enough because they allow for the use of CGFEM, as opposed 

to the relatively more costly DGFEM. However, second-order forms are not exempt

from any flaws, for they often are either incompatible with void or fail to be globally

conservative. As both of these properties are highly desired1, this chapter aims

at better understanding these concepts before introducing, in Chapter 5, a new

PN method having the desired features.

The remainder of this chapter is structured as follows. In Section 4.1, we introduce 

and recall how to derive the main two second-order forms of interest in this work:

the SAAF method, globally conservative but void incompatible, and the LS method,

void compatible but not globally conservative. Conditional equivalences based on

the choice of the weakly-imposed LS boundary conditions are derived in Section

4.2. Some insight is presented on the concept of particle conservation in Section 4.3,

emphasizing where the lack thereof in the LS form generally comes from. Up to that 

point all the derivations are angular discretization agnostic.

From Section 4.4 on, the more specific case of PN discretizations is discussed,

first introducing the PN weak formulations of the previously described methods. In

∗Part of this chapter is reprinted from ”Least-Squares PN Formulation of the Transport Equation 
Using Self-Adjoint-Angular-Flux Consistent Boundary Conditions.” by Vincent M. Laboure, Yaqi 
Wang and Mark D. DeHart, 2016. PHYSOR 2016 Conference [64]. Copyright 2016 American Nuclear 
Society. The author exercises his right granted by the copyright agreement to use the work for 
personal use (specifically the inclusion in a dissertation).

1This is especially crucial in the context of giving up on homogenization techniques in reactor 
physics applications.
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Section 4.5, we focus on parity-based methods and show equivalences with the even-

parity PN second-order form. We also explain why the idea of a second-order filter,

a seemingly attractive extension of the work in Chapter 3 is unfruitful.

Finally, numerical results highlighting why global conservation can be so crucial

are presented in Section 4.6 and conclusions are drawn in Section 4.7.

In this chapter and the following, we consider the steady-state version of Eq. 2.1

and rewrite it as [65]:

~Ω · ~∇Ψ +σt(~r)Ψ(~r, ~Ω) =
Ns∑
`=0

σs,`(~r)
∑̀
m=−`

Φm
` (~r)Rm

` (~Ω) + νσf (~r)Φ(~r) +S(~r, ~Ω), (4.1)

where Ns designates the degree of anisotropy of the scattering source. For any

function f = f(~r, ~Ω), define the streaming plus collision operator as:

Lf ≡ ~Ω · ~∇f + σt f, (4.2)

and the scattering plus fission operator as:

Hf ≡
∫
S2
σs(~r, ~Ω

′ · ~Ω)f(~r, ~Ω′) dΩ′ + νσf (~r)

∫
S2
f(~r, ~Ω′) dΩ′. (4.3)

Eq. 4.1 can then be expressed in operator form:

LΨ = HΨ + S. (4.4)

4.1 Existing Methods

In this section, we show some well-known second-order forms and remind the

reader how to derive their respective variational formulations. First we consider the
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Self-Adjoint Angular Flux (SAAF) method. Second, we focus on Least-Squares (LS)

formulations.

4.1.1 Self-Adjoint Angular Flux Formulations

This method has been studied in numerous publications [33, 35, 36, 37, 38] and

relies on stabilizing it by transforming the first-order streaming term into a second-

order term using a so-called Angular Flux Equation (AFE).

4.1.1.1 Derivation

We start by testing Eq. 4.4 with Ψ∗ ∈ V :

(Ψ∗, LΨ)D = (Ψ∗, HΨ + S)D . (4.5)

An integration by parts on the streaming term yields:

−
(
~Ω · ~∇Ψ∗,Ψ

)
D

+ 〈Ψ∗,Ψ〉∂D + (Ψ∗, σtΨ)D = (Ψ∗, HΨ + S)D . (4.6)

Going back to Eq. 4.4, we can also express Ψ as:

Ψ =
1

σt

(
HΨ + S − ~Ω · ~∇Ψ

)
, (4.7)

which constitutes an AFE. The choice of the AFE is not unique – as we could for

instance choose Ψ = (σt −H)−1
(
S − ~Ω · ~∇Ψ

)
– but this former choice is recom-

mended in [38], in particular because no difficulty arises in purely scattering regions.

A substitution for Ψ from Eq. 4.7 in the streaming term of Eq. 4.6 yields the final
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weak formulation: find Ψ ∈ V such that for all Ψ∗ ∈ V ,

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D

+ 〈Ψ∗,Ψ〉∂D + (Ψ∗, σtΨ)D =

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D
.

(4.8)

The boundary conditions are imposed through the surface term on ∂D:

〈Ψ∗,Ψ〉∂D = 〈Ψ∗,Ψ〉+∂D − 〈Ψ
∗,Ψinc〉−∂D. (4.9)

This formulation is clearly not compatible with void, because of the σ−1
t term. Fur-

thermore, the bilinear form may be SPD if H and S have no anisotropic contribution

and if no reflecting boundary condition is used.

4.1.1.2 Void Treatment for SN

This previous formulation can be modified so as to make it compatible with void,

as shown in [38]. For convenience, we recall the corresponding variational formulation

and henceforth refer to it as the Self-Adjoint Angular Flux with a Void Treatment

(SAAF–VT) formulation: find Ψ ∈ V such that for all Ψ∗ ∈ V ,

(
~Ω · ~∇Ψ?, τ ~Ω · ~∇Ψ

)
D
−
(
~Ω · ~∇Ψ?, (1− τσt)Ψ

)
D

+ (σtΨ
?,Ψ)D

+ 〈Ψ?,Ψ〉+∂D − 〈Ψ
?,Ψinc〉−∂D =

(
τ ~Ω · ~∇Ψ? + Ψ?, HΨ + S

)
D
,

(4.10)

with τ being defined as:

τ ≡ min

(
1

σt

,
h

ς

)
, (4.11)

where h characterizes the mesh size and ς is a constant, typically chosen to be 2.

While nothing in this formulation a priori suggests that it only works with SN dis-

cretizations, numerical experiments with a PN approximation show that the solver
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does not converge in that latter case. If we take a closer look at Eq. 4.10, it appears

that in void, as h→ 0, the weak formulation tends to become:

−
(
~Ω · ~∇Ψ?,Ψ

)
D

+ 〈Ψ?,Ψ〉+∂D − 〈Ψ
?,Ψinc〉−∂D = 0, (4.12)

which is precisely the first-order form in void. Yet, as we saw in Section 3.3.2, the

first-order PN formulation is ill-conditioned in void.2 This fundamentally lies in the

singularity of the ~D matrices. It is therefore not surprising to see the SAAF–VT

method have conditioning problems with PN . Numerical results highlighting this

behavior will be shown in Section 5.3.5.1 (in particular, see Table 5.1).

4.1.2 Least-Squares Formulation

Several LS formulations have been developed, but we consider here the LS trans-

port equation compatible with voids from [44]. Besides being able to handle zero

cross-sections, some of its advantages include the preservation of the intermediate

and thick diffusion limit as well as its compatibility with source iteration algorithms.

One of its most concerning flaws – like most LS methods – is the loss of global

conservation, as we shall study in detail in Section 5.2

4.1.2.1 Derivation

We now present one way of deriving this LS formulation, which can be obtained

using the adjoint operator of L in infinite medium. As a reminder, L† is the adjoint

operator3 corresponding to L if and only if, for all f, g,

(f, Lg)D =
(
L†f, g

)
D . (4.13)

2Eq. 3.47 gives a lower bound to the condition number, which is therefore infinite in steady-state
(∆t→∞).

3The definition of the adjoint operator presupposes to have defined a scalar product. Here, we
use (·, ·)D as our scalar product.
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It can be shown – through an integration by parts – that, in an infinite medium,

L† = −~Ω · ~∇+ σt. (4.14)

Applying L† to Eq. 4.1:

L†LΨ = L† (HΨ + S) , (4.15)

it reads, after integrating against a test function Ψ∗:

(
Ψ∗, L†LΨ

)
D =

(
Ψ∗, L† (HΨ + S)

)
D . (4.16)

Using the definitions of L and L†, it becomes

−
(

Ψ∗, ~Ω · ~∇ ~Ω · ~∇Ψ
)
D
−
(

Ψ∗, ~Ω · ~∇ (σtΨ)
)
D

+
(
σtΨ

∗, ~Ω · ~∇Ψ
)
D

+ (σtΨ
∗, σtΨ)D

=−
(

Ψ∗, ~Ω · ~∇ (HΨ + S)
)
D

+ (σtΨ
∗, HΨ + S)D ,

(4.17)

and integrations by parts on the first two terms of the left-hand side and the first

term of the right-hand side, we get:

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D
− 〈Ψ?, ~Ω · ~∇Ψ〉∂D +

(
~Ω · ~∇Ψ∗, σtΨ

)
D
− 〈Ψ?, σtΨ〉∂D

+
(
σtΨ

∗, ~Ω · ~∇Ψ
)
D

+ (σtΨ
∗, σtΨ)D

=
(
~Ω · ~∇Ψ∗, HΨ + S

)
D
− 〈Ψ?, HΨ + S〉∂D + (σtΨ

∗, HΨ + S)D .

(4.18)

Grouping the terms yields

(
LΨ∗, ~Ω · ~∇Ψ

)
D

+ (LΨ∗, σtΨ)D − 〈Ψ
?, ~Ω · ~∇Ψ〉∂D − 〈Ψ?, σtΨ〉∂D

= (LΨ∗, HΨ + S)D − 〈Ψ
?, HΨ + S〉∂D,

(4.19)
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i.e.:

(LΨ∗, LΨ)D − 〈Ψ
?, ~Ω · ~∇Ψ + σtΨ−HΨ + S〉∂D

= (LΨ∗, HΨ + S)D .

(4.20)

Enforcing the transport equation to hold on ∂D, we end up with the following weak

formulation: find Ψ ∈ V such that for all Ψ∗ ∈ V ,

(LΨ∗, LΨ)D = (LΨ∗, HΨ + S)D . (4.21)

Several remarks can be made at this point:

• Eq. 4.21 could be obtained directly from Eq. 4.16 using the mathematical defi-

nition of the adjoint in an infinite medium. In general however (i.e. if not in an

infinite medium), we can no longer rigorously define L† as the adjoint operator

corresponding to L – because boundary terms would be needed. Rather, we

directly use Eq. 4.14 as a definition.

• It can also be shown that the solution of the variational formulation (4.21)

satisfies [66]:

Ψ = arg min
f∈V

∫
D

∫
S2

∣∣Lf −Hf − S∣∣2dΩdr, (4.22)

i.e. minimizes the transport equation residual, in an L2 sense. This in particu-

lar explains the name of such methods, since this constitutes a Least-Squares

minimization problem.

4.1.2.2 Boundary Conditions

The boundary conditions can be imposed weakly by adding an additional term,

yielding the final variational formulation [44, 67]: find Ψ ∈ V such that for all
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Ψ∗ ∈ V ,

(LΨ∗, LΨ)D + 〈cΨ∗, (Ψ−Ψinc)〉−∂D = (LΨ∗, Hψ + S)D , (4.23)

where c is a parameter, with units of a macroscopic cross-section. The choice of the

value for c is an important question that is the focus of the following section.

4.2 Conditional Equivalences

This section aims at studying the relationships between the various aforemen-

tioned second-order forms, based in particular on the value of c. We say that, for a

given problem, two variational formulations are equivalent if they are identical. We

say that they are consistent if their difference only lies in the discretization error,

or in other words, if the linear system to solve is identical upon angular and spatial

convergence.

4.2.1 SAAF/LS Conditional Equivalence

Let us first point out the following property, deriving from the divergence theo-

rem:

(
Ψ∗, ~Ω · ~∇Ψ

)
D

+
(
~Ω · ~∇Ψ∗,Ψ

)
D

=

∫
D

∫
S2
~Ω · ~∇(Ψ∗Ψ) dΩd~r,

=

∫
∂D

∫
S2

Ψ∗Ψ ~Ω · ~n dΩd~r,

= 〈Ψ∗,Ψ〉+∂D − 〈Ψ
∗,Ψ〉−∂D.

(4.24)
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Thus, assuming that σt is constant and non-zero across D, the LS formulation divided

by σt gives:

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D

+ 〈Ψ∗,Ψ〉+∂D − 〈Ψ
∗,Ψ〉−∂D + (Ψ∗, σtΨ)D

+ 〈 c
σt

Ψ∗, (Ψ−Ψinc)〉−∂D =

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D
,

(4.25)

that is:(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D

+ 〈Ψ∗,Ψ〉+∂D − 〈(1−
c

σt

)Ψ∗,Ψ〉−∂D − 〈
c

σt

Ψ∗,Ψinc〉−∂D

+ (Ψ∗, σtΨ)D =

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D
.

(4.26)

Therefore, in the case of a constant and strictly positive σt, the SAAF and LS

formulations, respectively given by Eqs. 4.8 and 4.23 are equivalent if and only if:

c = σt. (4.27)

Nevertheless, it is clear that this choice cannot always be pertinent because, for

problems surrounded by void (σt = 0 on ∂D), the boundary terms would vanish.

4.2.2 SAAF–VT/LS Conditional Consistency

In this subsection, we assume that τ is constant (see Eq. 4.11) and we show that

there is only one value for c such that Eqs. 4.23 and 4.8 are consistent. We first
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multiply Eq. 4.23 with τ and use the divergence theorem to get:

(
~Ω · ~∇Ψ?, τ ~Ω · ~∇Ψ

)
D

+ 〈τσtΨ
?,Ψ〉+∂D − 〈τσtΨ

?,Ψ〉−∂D + (τσtΨ
?, σtΨ)D

+ c 〈Ψ?, τ(Ψ−Ψinc)〉−∂D =
(
τ ~Ω · ~∇Ψ? + τσtΨ

?, HΨ + S
)
D
.

(4.28)

Subtracting (4.8) from (4.28) and looking for the value of c such that this equation

is satisfied for all Ψ? ∈ V , it yields:

(1− τσt)
[
−〈Ψ?,Ψ〉−∂D −

(
Ψ?, ~Ω · ~∇Ψ

)
D

]
+ (τσt − 1) (Ψ?, σtΨ)D

+ (cτ − τσt) 〈Ψ?,Ψ〉−∂D + (1− cτ)〈Ψ?,Ψinc〉−∂D = (τσt − 1) (Ψ?, HΨ + S)D .

(4.29)

Besides, since Ψ is the solution of the transport equation in a weak sense we have,

neglecting the discretization error4:

(
Ψ?, ~Ω · ~∇Ψ + σtΨ

)
D
≈ (Ψ?, HΨ + S)D . (4.30)

The previous terms then reduce to:

(cτ − 1) 〈Ψ?, (Ψ−Ψinc)〉−∂D = 0. (4.31)

Therefore, under the assumption that τ is constant and that the discretization error

is negligible, the LS and SAAF formulations are equivalent if and only if:

c =
1

τ
= max

(
σt,

ς

h

)
. (4.32)

4Note however that – as discussed in Section 5.2 – the discretization error may actually not be
negligible at all. The point here is to find a boundary term making LS potentially equivalent to
SAAF–VT in the limiting case.
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This value for c presents the advantage of not vanishing even when σt = 0 on ∂D

and can therefore be used for a wide variety of problems.

4.3 Conservation

From the variational formulation of a method, a lot can be said regarding its

conservation properties. In this section, we explain how the SAAF and SAAF–VT

can be shown to be globally conservative whereas LS is not. While these properties

are already known [44], the reasoning is worth being detailed as it will be useful in

Chapter 5. We distinguish two types of conservation: global and local. The former

means that the number of particles added to the domain D is rigorously equal to the

number of particles removed. The latter is more restrictive as it requires this same

balance equation to be satisfied locally on each cell.

4.3.1 Global Conservation

The beauty of variational formulations is that the numerical solution Ψ satisfies

the equation for any test function Ψ∗ ∈ V . In particular, choosing Ψ∗ = 1 ∈ V and

plugging it into Eq. 4.8 gives:

(
1, σtΨ

)
D︸ ︷︷ ︸

Collision rate

+
〈
1,Ψ

〉+

∂D −
〈
1,Ψinc

〉−
∂D︸ ︷︷ ︸

Net leakage rate

=
(
1, HΨ + S

)
D︸ ︷︷ ︸

Production rate

, (4.33)

which is precisely a conservation statement over Dhat will be satisfied by the numer-

ical solution. This proves that the SAAF formulation is globally conservative.

It turns out that the SAAF–VT variational formulation, given by Eq. 4.10 reduces

to the exact same equation for Ψ∗ = 1, which implies the same global conservation

property.
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Yet, Eq. 4.23 can also be written (this time, without assuming that σt is constant):

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D

+ 〈Ψ∗, σtΨ〉+∂D − 〈(σt − c)Ψ∗,Ψ〉−∂D − 〈cΨ
∗,Ψinc〉−∂D

−
(
~Ω · ~∇(σt)Ψ

∗,Ψ
)
D

+ (σtΨ
∗, σtΨ)D =

(
~Ω · ~∇Ψ∗ + σtΨ

∗, HΨ + S
)
D
,

(4.34)

which gives, choosing Ψ∗ = 1:

(σt, σtΨ)D −
(
~Ω · ~∇(σt),Ψ

)
D

+ 〈σt,Ψ〉+∂D − 〈σt − c,Ψ〉−∂D − 〈c,Ψ
inc〉−∂D = (σt, HΨ + S)D ,

(4.35)

or, equivalently:

(σt, σtΨ)D −
(
~Ω · ~∇c,Ψ

)
D

+
(
σt − c, ~Ω · ~∇Ψ

)
D

+ 〈c,Ψ〉+∂D − 〈c,Ψ
inc〉−∂D = (σt, HΨ + S)D .

(4.36)

These are not conservation statements because most terms are weighted either with σt

or c unless we have c = σt and σt constant. Of course, this does not rigorously prove

that LS is not conservative since there could be another Ψ∗ ∈ V such that Eq. 4.23

reduces to Eq. 4.33. One can show that there is no such Ψ∗ though. Besides, some

valuable insight can be gained from this equation:

• Eq. 4.35 actually would be a conservation statement under three conditions:

(i) σt is constant; (ii) c = σt and (iii) σt 6= 0, which are precisely the conditions

under which SAAF and LS are equivalent (see Section 4.2.1).

• Although we saw in Section 4.2.2 that SAAF–VT and LS are consistent if: (i)

τ is constant and (ii) c = τ and we just showed that SAAF–VT is globally

conservative, it does not mean that LS has that same property if these two

conditions are met. This is because the discretization error does not make
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these two methods equivalent.

We will actually show in Section 5.2 what term is missing for LS to be globally

conservative in a uniform region.

4.3.2 Corollary

So far we have established that LS is globally conservative if and only if: (i) σt is

constant; (ii) c = σt and (iii) σt 6= 0. This in particular implies that if there is void

anywhere in the domain, LS cannot be globally conservative.5

This important corollary will be the motivation behind the CLS method intro-

duced in Section 5.2.

4.3.3 Local Conservation

Admittedly, it is not possible with CGFEM to find a test function Ψ∗ ∈ V

constant across any given cell and zero elsewhere – which would otherwise yield a

conservation statement over each individual cells. This is because any linear combi-

nation of continuous functions is also continuous. Nevertheless, although a common

belief is that – unlike DGFEM – CGFEM must therefore lack local conservation, it

was shown in [68] that element nodal fluxes are actually conserved within this class

of methods. The consequence is then that CGFEM are locally conservative in that

sense.

4.4 PN Expansion

The purpose of the present section is to introduce some notation specific to PN dis-

cretizations for second-order and/or parity-based formulations. It thus sets the stage

for more complicated and tedious derivations in Section 4.5.

5Indeed, either the domain is pure void and we cannot choose c = σt or only part of the domain
is void and σt is not constant.
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Up to now, the considerations detailed in this chapter did not require any partic-

ular angular discretization. From now on, we use the PN approximation to expand

the angular-dependent variables, just like we did in Chapter 3. Most of the notation

relative to spherical harmonics expansions can be found in Section 2.2.

We first recall and define some matrix notation, most of which being very similar

to those used in Section 3.1.1. Then, we detail the SAAF–PN , SAAF–VT–PN and

LS–PN variational formulations.

4.4.1 Notation

Recall some definitions from Section 3.1.1:

~D =
d∑

u=1

Du~eu , Du =

∫
S2

Ωu R(~Ω)RT (~Ω) dΩ, (4.37)

η = diag
{
σs,` + νσfδ`,0 , m = −`, ..., ` ; ` = 0, ..., N

}
. (4.38)

We further define:

H ≡
∫
S2

(
~Ω~ΩT

)
⊗RRTdΩ, (4.39)

where ⊗ is the tensor product. In particular, for all u, v ∈ {1, ..., d}, we have:

Hu,v ≡
∫
S2

ΩuΩvRRTdΩ. (4.40)

4.4.2 SAAF–PN

The SAAF–PN formulation is obtained by expanding Ψ as RT Φ in Eq. 4.8 and

testing the equation against a test function Ψ∗ = RT Φ∗, yielding: find Φ ∈ V P such
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that for all Φ∗ ∈ V P ,

(
~∇Φ∗,

1

σt

H · ~∇Φ

)
D

+〈Φ∗,L⊕(~nb)Φ〉∂D − 〈Φ∗,N(~nb)Φ〉∂Dr − 〈Φ∗,Jinc〉∂Dd

+ (Φ∗, σtΦ)D =

(
1

σt

~D · ~∇Φ∗ + Φ∗,ηΦ + S

)
D
.

(4.41)

where:

N(~n) ≡
∫
~Ω·~nb<0

∣∣~Ω · ~nb∣∣R(~Ω) RT (~Ωr) dΩ. (4.42)

The definitions of L⊕ and Jinc are introduced in Eqs. 3.36 and 3.34.

Note that we are still using the operators (·, ·)D and 〈·, ·〉∂D, which involve an

angular integration, to avoid having to define new operators that would only integrate

over space. The variational formulation does not fundamentally change since the

angular integration over S2 of angular-independent quantities only multiplies all the

terms with w.

4.4.3 SAAF–VT–PN

The SAAF–VT–PN formulation is similarly obtained: find Φ ∈ V P such that for

all Φ∗ ∈ V P ,

(
~∇Φ∗, τH · ~∇Φ

)
D

+ 〈Φ∗,L⊕(~nb)Φ〉∂D − 〈Φ∗,N(~nb)Φ〉∂Dr − 〈Φ∗,Jinc〉∂Dd

−
(
~∇Φ∗, (1− τσt)~D · ~∇Φ

)
D

+ (Φ∗, σtΦ)D =

(
1

σt

~D · ~∇Φ∗ + Φ∗,ηΦ + S

)
D
.

(4.43)

This formulation is mostly for formal considerations as we already mentioned that it

suffers from conditioning issues (see Section 4.1.1.2). This is further demonstrated

in Table 5.1.
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4.4.4 LS–PN

The LS–PN formulation is similarly obtained: find Φ ∈ V P such that for all

Φ∗ ∈ V P ,

(
~∇Φ∗,H · ~∇Φ

)
D

+〈σtΦ
∗,L	(~nb)Φ〉∂D − 〈σtΦ

∗,N(~nb)Φ〉∂Dr − 〈σtΦ
∗,Jinc〉∂Dd

+ (σtΦ
∗, σtΦ)D =

(
~D · ~∇Φ∗ + σtΦ

∗,ηΦ + S
)
D
,

(4.44)

where:

L	 =

∫
~Ω·~nb<0

|~Ω · ~nb|RRT dΩ. (4.45)

4.5 Study of Parity-Based PN Methods

In this section, we discuss the even-parity form as well as the potential of the

SAAF and LS methods to be solved solely for the even component of Ψ. The fun-

damental idea is to define the even- and odd-parity components of Ψ and Ψ∗:

Ψe(~Ω) ≡ Ψ(~Ω) + Ψ(−~Ω)

2
, Ψ∗e(~Ω) ≡ Ψ∗(~Ω) + Ψ∗(−~Ω)

2
, (4.46)

Ψo(~Ω) ≡ Ψ(~Ω)−Ψ(−~Ω)

2
, Ψ∗o(~Ω) ≡ Ψ∗(~Ω)−Ψ∗(−~Ω)

2
, (4.47)

which also implies:

Ψ = Ψe + Ψo , Ψ∗ = Ψ∗e + Ψ∗o. (4.48)

In this section, we introduce some notation and then describe some existing methods.

Then, we prove the equivalences between some of these in the PN case. We give some

interpretation and explain why the idea of a second-order filter for void compatibility

is not successful.
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4.5.1 Notation

In addition to the definitions introduced in Section 4.4.1, we introduce some con-

sistent notation to specify the angular parity through a subscript e or o, respectively

referring to the ’even’ and ’odd’ parity.6

In particular, using the fact that the parity of the spherical harmonics is equal to

that of ` (see Appendix A.2.1), we define the even spherical harmonics and solution

vectors:

Re ≡ {Rm
` ,m = −`, · · · , `; ` = 0, · · · , N, ` even} , (4.49)

Φe ≡ {Φm
` ,m = −`, · · · , `; ` = 0, · · · , N ; ` even} , (4.50)

and their odd counterparts as:

Ro ≡ {Rm
` ,m = −`, · · · , `; ` = 0, · · · , N, ` odd} , (4.51)

Φo ≡ {Φm
` ,m = −`, · · · , `; ` = 0, · · · , N ; ` odd} . (4.52)

It follows:

Ψ ≈ RT Φ = RT
e Φe︸ ︷︷ ︸
≈Ψe

+ RT
o Φo︸ ︷︷ ︸
≈Ψo

, (4.53)

and we then define7:

~De ≡
d∑

u=1

De,u~eu , De,u ≡
∫
S2

Ωu Re(~Ω)RT
o (~Ω) dΩ , ~DT

e ≡
d∑

u=1

DT
e,u~eu, (4.54)

6This means that a quantity with a subscript e is implied to be an even function of ~Ω.
7The notation ~DT

e is ambiguous, which is why we explicitly detail its definition: it refers to the
vector of the DT

e,u matrices and not to the transposed vector of the De,u matrices.
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as well as:

He ≡
∫
S2

(
~Ω~ΩT

)
⊗ReR

T
e dΩ , He,u,v ≡

∫
S2

ΩuΩvReR
T
e dΩ. (4.55)

The following definitions will also prove to be useful8:

ηe = diag
{
σs,` + νσfδ`,0 , m = −`, ..., ` ; ` = 0, ..., N, ` even

}
. (4.56)

σs,o ≡ diag
{
σs,` , m = −`, ..., ` ; ` = 0, · · · , N, ` odd

}
, (4.57)

So ≡
∫
S2
SRo dΩ , Se ≡

∫
S2
SRe dΩ. (4.58)

4.5.2 Existing Parity-Based Methods

In this section, we present a few existing methods based on parity considerations:

the even-parity, ’even’ SAAF, ’even’ SAAF–VT and ’even’ LS formulations.

The main advantage of using parity-based methods is the reduced number of

unknowns. In the PN case, for instance, only solving for the even moments reduces

the size of the linear system by almost a factor two.9

4.5.2.1 Even-Parity Form

The transport equation (4.4) is transformed into an equivalent10 system:


~Ω · ~∇Ψo + σtΨe = HeΨe + Se

~Ω · ~∇Ψe + σtΨo = HoΨo + So

. (4.59)

8Note that instead of using the notation ηo, we simply use σs,o to emphasize that fission neutrons
are emitted isotropically and therefore do not appear in the odd-parity transport equation.

9See Appendix A.2.2 for the exact number of odd and even moments.
10This system is indeed equivalent to Eq. 4.4 although it contains twice as many equations because

Ψe and Ψo only need to be determined on half of the unit sphere, their parity giving their values
on the other half.
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The first equation gives the following weak formulation: find Ψe ∈ Ve such that for

all Ψ∗e ∈ Ve,

−
(
~Ω · ~∇Ψ∗e,Ψo

)
D

+
〈
Ψ∗e,Ψo

〉
∂D +

(
σtΨ

∗
e,Ψe

)
D =

(
Ψ∗e, HeΨe + Se

)
D, (4.60)

where the odd-angular flux Ψo can be evaluated using:

Ψo = (σt −Ho)
−1
(
So − ~Ω · ~∇Ψe

)
. (4.61)

It is interesting to notice that this expression is not void compatible which implies

that most parity-based methods will have problems in such regions. Note however

that it is valid in purely scattering regions because Ho only contains the odd-parity

scattering terms.

4.5.2.2 ’Even’ SAAF

What we coined the ’even’ SAAF method derives from the SAAF weak formu-

lation (given by (4.8)) where we only solve for the even-parity component of Ψ and

evaluate its odd-parity component using Eq. 4.61. In practice, it is obtained by only

keeping the terms from Eq. 4.8 associated to even test functions. We now show how

this is done.

Starting with Eq. 4.8 and expanding Ψ and Ψ∗ using Eqs. 4.46 and 4.47, it reads:

(
~Ω · ~∇Ψ∗e,

1

σt

~Ω · ~∇Ψe

)
D

+

(
~Ω · ~∇Ψ∗o,

1

σt

~Ω · ~∇Ψo

)
D

+ (σtΨ
∗
e,Ψe)D + (σtΨ

∗
o,Ψo)D

+ 〈Ψ∗,Ψ〉+∂D =

(
1

σt

~Ω · ~∇Ψ∗o + Ψ∗e, HeΨe + Se

)
D

+

(
1

σt

~Ω · ~∇Ψ∗e + Ψ∗o, HoΨo + So

)
D
.

(4.62)

This is because for any function f, g such that fg is an odd function of ~Ω, (f, g)D = 0.
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Only the terms corresponding to the even equations (i.e. to the test functions Ψ∗e)

are kept, yielding the ’even’ SAAF weak formulation: find Ψe ∈ Ve such that for all

Ψ∗e ∈ Ve,(
~Ω · ~∇Ψ∗e,

1

σt

~Ω · ~∇Ψe

)
D

+ 〈Ψ∗e,Ψ〉∂D + (Ψ∗e, σtΨe)D

=

(
1

σt

~Ω · ~∇Ψ∗e, HoΨo + So

)
D

+ (Ψ∗e, HeΨe + Se)D .

(4.63)

Note that we could similarly derive the ’odd’ SAAF formulation.

4.5.2.3 ’Even’ SAAF–VT

The ’even’ SAAF–VT weak formulation is similarly derived from Eq. 4.10 and

reads: find Ψe ∈ Ve such that for all Ψ∗e ∈ Ve,(
~Ω · ~∇Ψ∗e,

1

σt

~Ω · ~∇Ψe

)
D
−
(
~Ω · ~∇Ψ∗e, (1− τσt)Ψo

)
D

+ 〈Ψ∗e,Ψ〉∂D + (Ψ∗e, σtΨe)D

=

(
1

σt

~Ω · ~∇Ψ∗e, HoΨo + So

)
D

+ (Ψ∗e, HeΨe + Se)D .

(4.64)

4.5.2.4 ’Even’ LS

The ’even’ LS weak formulation is likewise derived from Eq. 4.23 and reads: find

Ψe ∈ Ve such that for all Ψ∗e ∈ Ve,

(
~Ω · ~∇Ψ∗e, ~Ω · ~∇Ψe

)
D

+
(
σtΨ

∗
e,
~Ω · ~∇Ψo

)
D

+
(
~Ω · ~∇Ψ∗e, σtΨo

)
D

+ (σtΨ
∗
e, σtΨe)D

+ 〈cΨ∗e,Ψ−Ψinc〉−∂D =
(
~Ω · ~∇Ψ∗e, HoΨo + So

)
D

+ (σtΨ
∗
e, HeΨe + Se)D ,

(4.65)
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4.5.3 Equivalence of the ’Even’ SAAF and Even-Parity Boundary Con-

ditions

We do not assume any angular discretization at this stage and show that the

boundary terms in Eqs. 4.60 and 4.62, corresponding respectively to the even-parity

and ’even’ SAAF formulations, are equivalent.

4.5.3.1 ’Even’ SAAF

Using parity considerations, it was shown in [69] that it is possible to express the

boundary term from Eq. 4.62 as:

〈Ψ∗,Ψ〉+∂D = 2〈Ψ∗e,Ψe〉+∂D − 2〈Ψ∗e,Ψinc〉−∂D + 2〈Ψ∗o,Ψe〉+∂D. (4.66)

This boundary type – therein referred to as the ’even’ type – has the property

to decouple the even moments from the odd moments in the case of an incoming

Dirichlet boundary condition (in which case Ψinc only contributes to the linear form)

[69].

Keeping only the previous terms corresponding to Ψ∗e, we then obtain the follow-

ing boundary term for the ’even’ SAAF formulation:

Γeven ≡ 2〈Ψ∗e,Ψe〉+∂D − 2〈Ψ∗e,Ψinc〉−∂D. (4.67)

4.5.3.2 Even-Parity

Considering Eq. 4.60, the boundary term of the even-parity form is 〈Ψ∗e,Ψo〉∂D.

The goal of this paragraph is to show that we can enforce the boundary conditions

such that this term is equal to Γeven.
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A Marshak boundary condition imposes that, at any point on ∂D:

∫
~Ω·~nb<0

Ψ Ψ∗e |~Ω · ~nb| dΩ =

∫
~Ω·~nb<0

Ψinc Ψ∗e |~Ω · ~nb| dΩ. (4.68)

Yet, because Ψ∗eΨo and Ψ∗eΨe are respectively odd and even functions of ~Ω and using

Eq. 4.68, we have:

〈Ψ∗e,Ψo〉∂D = −2〈Ψ∗e,Ψo〉−∂D,

= −2
(
〈Ψ∗e,Ψ〉−∂D − 〈Ψ

∗
e,Ψe〉−∂D

)
,

= 2
(
〈Ψ∗e,Ψe〉+∂D − 〈Ψ

∗
e,Ψ

inc〉−∂D
)
,

(4.69)

which proves that:

〈Ψ∗e,Ψo〉∂D = Γeven. (4.70)

In summary, the boundary terms from the ’even’ SAAF and even-parity with a

Marshak boundary condition formulations are identical.

4.5.4 ’Even’ SAAF–PN and Even-Parity PN Equivalence

Now that we have shown that the boundary terms from the ’even’ SAAF and

even-parity forms are identical, we want to show that the weak formulations are ac-

tually equivalent in the PN case.11

11It may still be true in the SN case; we have not investigated it though.
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4.5.4.1 Even-Parity PN

Using Eq. 4.70, the even-parity weak formulation given by Eq. 4.60 can be rewrit-

ten: find Ψe ∈ Ve such that for all Ψ∗e ∈ Ve,

−
(
~Ω · ~∇Ψ∗e,Ψo

)
D

+ Γeven +
(
σtΨ

∗
e,Ψe

)
D =

(
Ψ∗e, HeΨe + Se

)
D, (4.71)

and, as a reminder, the odd-angular flux Ψo can be evaluated using Eq. 4.61:

Ψo = (σt −Ho)
−1
(
So − ~Ω · ~∇Ψe

)
, (4.72)

which we could directly substitute into Eq. 4.71 to get rid of Ψo in the first volumetric

term. The problem is that with anisotropic scattering, the operator (σt−Ho)
−1 does

not reduce to a simple form (with isotropic scattering, it simply reduces to σ−1
t ) and

would in particular depend on the angular discretization. Therefore, we choose to

enforce the PN angular discretization at this stage.

First of all, the PN counterpart to Eq. 4.61 can be determined by directly in-

tegrating the second equation of (4.59) (or odd-parity transport equation) against

a test function Ro and expanding Ψe and Ψo using PN expansions, yielding the

following linear system:

~DT
e · ~∇Φe + σtΦo = σs,oΦo + So. (4.73)

The odd-moments can therefore be expressed as:

Φo = (σtI− σs,o)
−1
(
So − ~DT

e · ~∇Φe

)
, (4.74)

where I is the identity matrix.
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Yet, after expanding all variables with their spherical harmonics expansion, it

reads:

−
(
~∇Φ∗e,

~De Φo

)
D

+ Γeven +
(
Φ∗e, σtΦe

)
D =

(
Φ∗e,ηe Φe + Se

)
D. (4.75)

Using Eq. 4.74, we obtain the even-parity PN weak formulation: find Φe ∈ V Pe such

that for all Φe ∈ V Pe ,

(
~∇Φ∗e,

~De (σtI− σs,o)
−1 ~DT

e · ~∇Φe

)
D

+ Γeven +
(
Φ∗e, σtΦe

)
D

=
(
Φ∗e,ηe Φe + Se

)
D +

(
~∇Φ∗e,

~De (σtI− σs,o)
−1 So

)
D
.

(4.76)

We want to show that this weak formulation is identical to that obtained for the

’even’ SAAF–PN form.

4.5.4.2 ’Even’ SAAF–PN

We can get the ’even’ SAAF-PN weak formulation from Eq. 4.41, knowing from

Section 4.5.3 that the boundary terms are equal to Γeven: find Φe ∈ V Pe such that

for all Φe ∈ V Pe ,

(
~∇Φ∗e,

1

σt

He · ~∇Φe

)
D

+Γeven + (Φ∗e, σtΦe)D

= (Φ∗e,ηeΦe + Se)D +

(
1

σt

~∇Φ∗e,
~De(σs,oΦo + So)

)
D
.

(4.77)

90



The odd moments Φo can be substituted from this equation using Eq 4.74:

(
~∇Φ∗e,

1

σt

He · ~∇Φe

)
D

+ Γeven + (Φ∗e, σtΦe)D = (Φ∗e,ηeΦe + Se)D

+

(
1

σt

~∇Φ∗e,
~De(σs,o (σtI− σs,o)

−1
(
So − ~DT

e · ~∇Φe

)
+ So)

)
D
.

(4.78)

Although this is far from obvious, we have the following property:

He = ~De
~DT
e . (4.79)

This is not easy to prove12, if only because each De,u, u ∈ {1, ..., d} is not a square

matrix but of size Pe × Po, where Pe and Po are respectively the number of even

and odd moments (Pe + Po = P ). This relationship is useful to further simplify the

previous formulation:

(
~∇Φ∗e,

1

σt

~De

(
I + σs,o (σtI− σs,o)

−1) ~DT
e · ~∇Φe

)
D

+ Γeven + (Φ∗e, σtΦe)D

= (Φ∗e,ηeΦe + Se)D +

(
1

σt

~∇Φ∗e,
~De

(
σs,o (σtI− σs,o)

−1 + I
)

So

)
D
.

(4.80)

Yet, one can prove the following:

I + σs,o (σtI− σs,o)
−1 = diag

{
1 +

σs,`
σt − σs,`

, m = −`, ..., ` ; ` = 0, ..., N, ` odd
}
,

= diag
{ σt

σt − σs,`
, m = −`, ..., ` ; ` = 0, ..., N, ` odd

}
,

= σt (σtI− σs,o)
−1 .

(4.81)

Therefore, the ’even’ SAAF-PN formulation can be rewritten as: find Φe ∈ V Pe such

12This property was numerically verified for N ≤ 7 with up to 11 digits of precision. An attempt
to prove it can also be found in Appendix C – although it is believed that there is probably a more
concise proof.
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that for all Φe ∈ V Pe ,

(
~∇Φ∗e,

~De (σtI− σs,o)
−1 ~DT

e · ~∇Φe

)
D

+ Γeven +
(
Φ∗e, σtΦe

)
D

=
(
Φ∗e,ηe Φe + Se

)
D +

(
~∇Φ∗e,

~De (σtI− σs,o)
−1 So

)
D
,

(4.82)

which is nothing but the even-parity PN formulation given by Eq. 4.76. We have

thus shown that these two are equivalent.

4.5.5 ’Even’ SAAF–VT–PN and ’Even’ SAAF–PN Equivalence

In this section, we show that the even-parity PN , ’even’ SAAF–VT–PN and

’even’ SAAF–PN formulations are all equivalent (the equivalence between the first

two having been established in the previous section).

The ’even’ SAAF–VT–PN weak formulation is given by: find Φe ∈ V Pe such that

for all Φe ∈ V Pe ,

(
~∇Φ∗e, τ He · ~∇Φe

)
D
−
(
~∇Φ∗e, (1− τσt)~De Φo

)
D

+
(
Φ∗e, σtΦe

)
D + Γeven

=
(
Φ∗e,ηe Φe + Se

)
D +

(
τ ~∇Φ∗e,

~De (σs,o Φo + So)
)
D
.

(4.83)

Using Eq. 4.74 to eliminate Φo and after some manipulations, it can be expressed

as:

(
~∇Φ∗e, τ He · ~∇Φe

)
D

+
(
Φ∗e, σtΦe

)
D + Γeven −

(
Φ∗e,ηe Φe + Se

)
D

=
(
~∇Φ∗e,

~De

(
(1− τσt) (σtI− σs,o)

−1 + τ σs,o (σtI− σs,o)
−1 + τ

)
So

)
D

−
(
~∇Φ∗e,

~De

(
(1− τσt) (σtI− σs,o)

−1 + τ σs,o (σtI− σs,o)
−1) ~DT

e · ~∇Φe

)
D
.

(4.84)
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Yet,

(1− τσt) (σtI− σs,o)
−1 + τ σs,o (σtI− σs,o)

−1 + τ

= diag
{ 1− τσt

σt − σs,`
+

τ σs,`
σt − σs,`

+ τ , m = −`, ..., ` ; ` = 0, ..., N, ` odd
}
,

= diag
{1− τσt + τ σs,` + τ(σt − σs,`)

σt − σs,`
, m = −`, ..., ` ; ` = 0, ..., N, ` odd

}
,

= (σtI− σs,o)
−1 .

(4.85)

Therefore,

(
~∇Φ∗e, τ He · ~∇Φe

)
D

+
(
Φ∗e, σtΦe

)
D + Γeven −

(
Φ∗e,ηe Φe + Se

)
D

=
(
~∇Φ∗e,

~De (σtI− σs,o)
−1 So

)
D
−
(
~∇Φ∗e,

~De

(
(σtI− σs,o)

−1 − τ
)
~DT
e · ~∇Φe

)
D
.

(4.86)

Using (4.79) on the first term, we then get:

(
~∇Φ∗e,

~De (σtI− σs,o)
−1 ~DT

e · ~∇Φe

)
D

+
(
Φ∗e, σtΦe

)
D + Γeven

=
(
Φ∗e,ηe Φe + Se

)
D +

(
~∇Φ∗e,

~De (σtI− σs,o)
−1 So

)
D
.

(4.87)

Eq. 4.74 implies that the ’even’ SAAF–VT–PN with a void treatment formulation

can be given by: find Φe ∈ V Pe such that for all Φe ∈ V Pe ,

−
(
~∇Φ∗e,

~De Φo

)
D

+
(
Φ∗e, σtΦe

)
D + Γeven =

(
Φ∗e,ηe Φe + Se

)
D, (4.88)

which is exactly the even-parity PN formulation and thus also the ’even’ SAAF–

PN formulation (without void treatment).
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4.5.6 Interpretation

The previous claim may seem surprising in that we expect the ’even’ SAAF–VT–

PN method to be able to cope with void regions while the even-parity PN clearly

cannot (at least as is). In all reality however, a closer look at the ’even’ SAAF–VT–

PN method shows that it cannot deal with void either.

Indeed, if we use the ’even’ parity option, all the terms containing Φo must be

evaluated using Eq. 4.74 which does not work in void. Therefore, the second term

of Eq. 4.83, namely (−(~∇Φ∗e, (1− τσt)~De Φo)D) is incompatible with void.

Thus, there is nothing contradictory in the conclusion from the last subsection,

quite the opposite.

4.5.7 Conclusion

In summary, it can be concluded that the ’even’ SAAF–VT-PN method is equiva-

lent to the even-parity PN method and thus to the ’even’ SAAF-PN method without

void treatment. In other words, the void treatment does not do us any good with

the ’even’ parity option.

The fundamental reason for that is that the void treatment in the SAAF–VT

method relies on splitting Ψ as:

Ψ = (1− τσt)Ψ + τσtΨ (4.89)

and on only using the angular flux equation (AFE) on the second term. As the first

term (1 − τσt)Ψ eventually becomes (~Ω · ~∇Ψ∗e, (1 − τσt)Ψo)∂D, Ψo – which is not

a primal variable with the ’even’ parity option – thus has to be substituted using

Eq. 4.74. The effect of that substitution is to make a 1/σt term reappear.
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4.5.8 Void Incompatibility and Loss of Accuracy

Using parity-based methods can be fairly attractive since it reduces the number

of unknowns almost by half (see Appendix A.2.2). Nevertheless, two important

downsides are to be pointed out.

First, these methods are incompatible with void whenever the odd-parity mo-

ments have to be evaluated using Eqs. 4.61 or 4.74. The only second-order form

presented above that does not suffer from this flaw is the ’even’ LS form because all

the Ψo terms are weighted by the cross-section (either σt or σs) and thus vanish in

void regions.

Second, it may also induce a loss of accuracy because of the gradient operation

in Eqs. 4.61 or 4.74: in particular, for ’even’ LS, if V is the space of the piecewise

polynomials of order 1, the second term in Eq. 4.65 simply vanishes. In practice, we

observe that the spatial convergence is then only first order (see Figure 4.1). Similar

results are expected for the even-parity form since the boundary term 〈Ψ∗e,Ψo〉∂D

(see Eq. 4.60) requires the evaluation of Ψ∗o (unless perhaps in the case of reflecting

boundary conditions).

4.5.9 Second-Order Filter

Because we just saw that we do not know of any globally conservative parity-

based second order methods compatible with void, we present an idea to use the

filters studied in Chapter 3 to create such a method. We will however explain why

this option does not give satisfying results.
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4.5.9.1 Original Idea

As we previously mentioned, (4.59) can be discretized in angle using the PN ap-

proximation, in which case it reads:


~De · ~∇Φo + (σtI− ηe)Φe = Se

~DT
e · ~∇Φe + (σtI− σs,o)Φo = So

. (4.90)

Using the same approach as in Chapter 3, we can add a filtering operator to these

equations: 
~De · ~∇Φo + (σtI + σfFe − ηe)Φe = Se

~DT
e · ~∇Φe + (σtI + σfFo − σs,o)Φo = So

, (4.91)

where Fe and Fo respectively contain the even and odd components of F. The

diagonal terms of Fo are all strictly positive, ensuring that the matrix (σtI + σfFo−

σs,o) is always invertible, even if σt = 0 in some parts of the domain. The even-parity

filtered PN equation therefore reads:

~De · ~∇
((
σtI + σfFo − σs,o

)−1(
So − ~Do · ~∇Φe

))
+ (σtI + σfFe − σs,e)Φe = Se.

(4.92)

4.5.9.2 Flaws

Although this method may a priori seem to be well suited to deal with void

problems, it has a major flaw: unlike the first-order filter, for which it was desirable

that the filter contribution vanishes as N goes to infinity (since the unfiltered solution

converges to the analytical one), this second-order filter still need be significant, even

for large N . Otherwise, the matrix
(
σtI + σfFo − σs,o

)
would be close to singular
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and the solver could not converge any more efficiently, in that limit, than with the

standard even-parity form.

An idea would be to look for other second-order forms, better suited for filtering.

Unfortunately, a key feature of the filter is that its contribution to the zeroth equation

is zero, so as not to break the global conservation of the scheme. This is why such a

filtering method seemed only to be compatible with parity-based methods in the first

place. Yet, we have just shown that the ’even’ SAAF–PN and ’even’ SAAF–VT–

PN methods are equivalent to the even-parity PN method and thus perform equally

as bad in void. There does not exist – to our knowledge – any void compatible,

globally conservative second-order form solving only for the even-parity component

of the angular flux.

Nonetheless, the proposed second-order filter should still be able to help in the

case of strong spatial variations in the solution, to help mitigate negativity or oscil-

lations in the numerical solution.

4.6 Numerical Results

With the driving application of finding a void compatible method, we show nu-

merical results for the LS-PN method. First, we verify that we obtain the correct

solution for an infinite medium with some void regions. Second, we show that we

get the expected spatial and angular convergence rates. In particular, we observe

the loss of accuracy mentioned in Section 4.5.8. Next, we introduce a heterogeneous

multigroup k-eigenvalue problem with a void region and observe that LS does not

perform well, highlighting the crucial need for global conservation.

4.6.1 Infinite Medium with Void

First of all, we consider the very simple test problem of an infinite domain com-

posed of two regions: a uniform, pure-absorber material with a volumetric source
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(σt ≡ σa,1, S ≡ q) and a void.

Independently of the geometry (in particular the size and shape of the void re-

gion), the analytical solution is given by:

Ψ(~r, ~Ω) =

∫ ∞
0

q exp(−σa,1 s) ds =
q

σa,1
, (4.93)

i.e.

Φm
` (~r) =

q
√
w

σa,1
δ`,0. (4.94)

It was verified that all the methods with results presented below return this infinite

solution to machine precision.13

4.6.2 Method of Manufactured Solutions

We consider the following pure-absorber slab geometry problem:

µ
∂Ψ

∂x
+ σt(x)Ψ(x, µ) = S(x, µ) , 0 ≤ x ≤ L , −1 ≤ µ ≤ 1, (4.95)

where:

σt =


σ1 , L/4 < x < 3L/4

σ0 , otherwise

(4.96)

with σ1 = 5.0 cm−1, σ0 = 0.5 cm−1 and L = 10 cm. Reflecting boundaries are

imposed at x = 0 and x = L.

The Method of Manufactured Solutions (MMS) consists of choosing an analytical

solution Ψ̃ and deriving the source S̃ such that Ψ̃ is indeed solution of the PDE we

are interested in.

13The only exception is the SAAF–LS method in Chapter 5, which is only mentioned in this work
for comparison purposes and to emphasize the need for the conservative fix (see also Appendix D).
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We choose our solution in the following form:

Ψ̃ = f(x) g(µ) , 0 ≤ x ≤ L , −1 ≤ µ ≤ 1, (4.97)

which implies:

S̃ = µ
df

dx
g + σtfg. (4.98)

Expanding g using spherical harmonics:14

g =
∞∑
`=0

α`R`, (4.99)

it is shown in Appendix A.3 that the `-th moment (` ∈ N) of the source S̃ is given

by:

S̃` =
df

dx

(
`√

(2`+ 1)(2`− 1)
g`−1 +

`+ 1√
(2`+ 1)(2`+ 3)

g`+1

)
+ σtf g`, (4.100)

with the convention g−1 = 0.

In practice, we choose15:

f(x) = φ0

(
cos
(πx
L

)
+ a
)
, (4.101)

g(µ) = R0 + 0.5R2(µ) + 0.25R4(µ) + 0.125R0
6(µ) + 0.1R8(µ) + 0.05R10(µ). (4.102)

The convergence results are shown on Figs. 4.1 and 4.2. Several observations can

14It is noted that, because the problem only depends on one spatial dimension, the angular
dependency can be described exclusively with the spherical harmonics such that m = 0 (in other
words, the solution does not depend on ϕ, only on µ). For that reason, we drop the superscript
indicating the order m of the spherical harmonics.

15The choice of f and g is made such that Ψ̃ satisfies the reflecting boundary conditions. In
particular, it would be unphysical to have f ′ be non-zero on the boundary or to have the odd
moments of g be non-zero.
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Figure 4.1: L2-Error for Φ0 and Φ1 for N = 11 (4 cells for ref = 0).

be made:

• Fig. 4.1a shows that the spatial convergence rate of the LS–PN method with

piecewise linear Lagrange elements is second order, as expected. In particular,

using the ’even’ LS–PN method reduces the number of unknowns but induces

the loss of one order of spatial of convergence, as suggested in Section 4.5.8.

From Fig. 4.1b, it appears that the spatial convergence rate with piecewise

quadratic Lagrange elements is third order.

• The PN method being a spectral approximation, it is expected to get a spectral
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convergence, that is exponential convergence with respect to N for infinitely

smooth solutions [11]. By construction, g – and therefore Ψ̃ – are infinitely

smooth in angle. Fig. 4.2 indeed exhibits such a behavior for N ≤ 10. The

sudden drop in the error at N = 11 can be explained by noting that g can – by

contruction – be exactly described with moments such that ` ≤ 10. The reason

why the error drops at N = 11 and not N = 10 can be found in Eq. 4.100: S̃11

is non-zero because g10 6= 0. For N ≥ 11, the angular error is therefore zero

and the error is then exclusively dominated by the spatial error.
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Figure 4.2: L2-Error for Φ0 and Φ1 for a refinement of 11. The dashed line is the
interpolation of Φ0 for N in [0,10].
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4.6.3 Heterogenous Multigroup k-Eigenvalue Problem with Void

We consider a test problem described in Fig. 4.3 consisting of 8 pin cells sur-

rounding a void region. The interest is to compare our methods on a multigroup

heterogeneous test problem involving a void region. Each of the 9 square subdo-

mains is 1.2598 cm in length, assembled in a 3x3 configuration. The total size of

the problem is therefore 3.7794 cm × 3.7794 cm. The subdomain in the center of

the problem is void. The 8 others contain a pin of radius 0.45720 cm. Each pin

boundary is approximated by a 20-side polygon. The material properties of the fuel

and moderator (shown in blue and yellow on the figure, respectively) are chosen to

be identical to the ”UO2 Fuel-Clad mix” and ”Moderator” materials from the C5G7

benchmark [1]. This problem is assumed to be infinite along the z direction and

therefore only depends on x and y. The same problem16 was run using MCNP5 [70]

with 125 cycles of 106 particles (the first 25 cycles being discarded). The reference

eigenvalue was estimated to be k̃eff = 1.34745 with a standard deviation of 5 pcm.17

Table 4.1 shows the error with respect to k̃eff for the LS–PN method. Lacking

global conservation, it is extremely show to converge as the number of elements

and angular moments is increased. In particular, the LS–P39 solution with a spatial

refinement of 3 has over 5.3×108 unknowns18 but is still over one hundred standard

deviations away from the reference.

Table 4.2 compares the same quantity for the LS–SN and SAAF–VT–SN methods

as a function of the number of polar and azimuthal angles per quadrant, noted Np

and Na respectively. The quadrature rule used is the Bickley3-Optimized19 because

16For convenience however, the pin boundaries for the MCNP calculation are circles.
17We are very thankful to Pablo Vaquer for providing this multigroup MCNP reference solution.
18The number of unknowns is the product of the number of nodes n, moments P = (N + 1)(N +

2)/2 and energy groups G = 7.
19The total number of angles per quadrant is then NaNp.
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Figure 4.3: Geometry of a 3x3 pin cell test problem. The regions in blue, yellow and
red respectively correspond to the fuel, moderator and void. The former two use
the cross-sections of the C5G7 benchmark [1]. The latter is in practice chosen such
that σt = 10−10 cm−1. The fuel boundary is approximated with a 20-side polygon.
The meshes with a refinement of 0, 1, 2 (shown) and 3 have respectively 1116, 4829,
21090 and 92912 nodes. Besides, they respectively have 2134, 9455, 41776 and 184962
elements and 3249, 14283, 62865 and 277873 sides.

it appeared to converge faster than the Level-Symmetric quadrature rule. The LS

method once again exhibits a very slow convergence while the SAAF–VT–SN method,

which is globally conservative, converges significantly faster.

In the next chapter, we will introduce the SAAF–CLS method, which has global

conservation and void compatibility, and we will see that the results on that test

problem are greatly improved, compared to the LS methods. The updated results

can be found in Tables 5.3 and 5.4.
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LS–PN

N Ref = 0 Ref = 1 Ref = 2 Ref = 3
1 56391 52543 51219 50676
3 24370 20159 19083 18771
5 15091 10382 9208 8901
7 12107 7063 5755 5413
9 10705 5407 3974 3586
19 9431 3625 1845 1273
29 9163 3223 1352 722
39 9087 3110 1210 561

Table 4.1: Error keff − k̃eff (in pcm) for the LS–PN method. ”Ref” designates the
mesh refinement level. The standard deviation on k̃eff is 5 pcm.

SAAF–VT–SN LS–SN
(Np, Na) Ref = 0 Ref = 1 Ref = 2 Ref = 0 Ref = 1 Ref = 2
(2, 12) 67 -2 -8 9042 2955 1045
(2, 24) 83 9 -2 9033 2988 1075
(2, 48) 87 16 6 9004 2978 1080
(2, 96) 87 17 7 8995 2972 1077
(3, 12) 54 -16 -22 9121 3008 1056
(3, 24) 71 -4 -16 9112 3042 1087
(3, 48) 75 3 -8 9083 3032 1091
(3, 96) 75 3 -7 9074 3025 1089

Table 4.2: Error keff − k̃eff (in pcm) for the SAAF–VT–SN and LS–SN methods.
”Ref” designates the mesh refinement level. The standard deviation on k̃eff is 5 pcm.

4.7 Conclusion

In this chapter, we have studied various second-order forms in terms of global

conservation and void compatibility, including parity-based methods. We have in

particular shown how crucial it is for a scheme to have this former property. At

this point, we do not know of any second-order form giving satisfying results for
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PN discretizations and having both of these features. The motivation of Chapter 5

lies in creating one.
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5. THE SAAF–CLS METHOD: A GLOBALLY CONSERVATIVE

VOID-COMPATIBLE SECOND ORDER FORM*

There does not exist – to our knowledge – any second-order form for PN that

would result in a globally conservative and void compatible scheme. The driving

purpose of the present chapter is to develop such a method. However, this work will

not be limited to PN . The basic idea is to decompose our domain into two regions:

a non-void region noted D1 discretized using the standard SAAF formulation, which

was shown to be globally conservative in Section 4.3; and a void region noted D0

using the LS formulation compatible with voids.

In this chapter∗, we identify why the LS formulation in void is only globally

conservative if the discretization error in D0 can be neglected, i.e. upon convergence

to the analytical solution. A conservative fix is derived, yielding the Conservative LS

(CLS) method. It can also be extended to treating regions with uniform cross-section

(which is in particular useful for near-void regions). Nevertheless, this additional

term – just like the void treatment of the SAAF–VT method [38] – breaks the

symmetry of the bilinear form. Next, the variational formulation of the hybrid

SAAF–CLS scheme is derived and is shown to be globally conservative.

The remainder of this chapter is structured as follows. After introducing some

notation in Section 5.1, we show, in Section 5.2, what term is missing for the LS

formulation to be globally conservative in void. We then derive the SAAF–CLS

method in Section 5.3, achieving void compatibility and global conservation with an

appropriate choice of the scaling between the SAAF and CLS terms. We discuss the

∗Part of this chapter has been submitted as ”Globally Conservative, Hybrid Self-Adjoint An-
gular Flux and Least-Squares Method Compatible with Void” by Vincent M. Laboure and Ryan
G. McClarren and Yaqi Wang, 2016, to Nuclear Science and Engineering [71].
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actual implementation of the method and study the results on (i) a slab geometry

pure absorber problem, specifically looking at the importance of the conservative

fix; and (ii) the multigroup heterogeneous k-eigenvalue problem with a void region,

introduced in Section 4.6.3. We then study the possibility of generalizing this method.

In Section 5.4.1, we no longer require σt to be zero in the void regions but only to be

constant therein, particularly addressing the treatment of near-void regions. This is

used in Section 5.4.2 to run the dog leg void duct problem, a near-void benchmark

introduced by Kobayashi et al [2]. We mention the possibility of extending this work

to time-dependent problems in Section 5.4.3.

5.1 Notation

We decompose the spatial domain as D = D1 ∪ D0 (with
∫
D1∩D0

dr = 0) where

σt = 0 in D0. The interface between D0 and D1 is noted Γ = D0 ∩ D1. We refer to

the continuous finite element space corresponding to D, D0 and D1 as V , V0 and V1,

respectively.

As a reminder, we recall the LS weak formulation (see (4.23)) that we apply to

D0: find Ψ ∈ V0 such that for all Ψ∗ ∈ V0,

(LΨ∗, LΨ)D0
+ 〈cΨ∗, (Ψ−Ψinc)〉−∂D0

= (LΨ∗, Hψ + S)D0
, (5.1)

where L and H are respectively representing the streaming plus collision and scat-

tering plus fission operators. Their precise definitions are given by Eqs. 4.2 and

4.3.

In the previous chapter, c designated a parameter with the units of a macroscopic

cross-section. In this chapter, we need to further assume that it is a strictly positive

constant.
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5.2 Conservative Least-Squares Method

In this section, we point out why LS is not globally conservative and propose a

fix which constitutes the essence of the CLS method.

5.2.1 Lack of Conservation

We start with the LS formulation in void applied to D0: find Ψ ∈ V0 such that

for all Ψ∗ ∈ V0,

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

+ 〈cΨ∗, (Ψ−Ψinc)〉−∂D0
= 0. (5.2)

Using the divergence theorem to transform 〈cΨ?,Ψ〉−∂D0
, it becomes:

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

−
(
cΨ∗, ~Ω · ~∇Ψ

)
D0

−
(
~Ω · ~∇Ψ∗, cΨ

)
D0

+ 〈cΨ∗,Ψ〉+∂D0

− 〈cΨ∗,Ψinc〉−∂D0
= 0.

(5.3)

In particular, for the constant test function Ψ∗ = 1, we have:

−
(
c, ~Ω · ~∇Ψ

)
D0

+ 〈c,Ψ〉+∂D0
− 〈c,Ψinc〉−∂D0

= 0, (5.4)

which is a global conservation statement in D0 if and only if (1, ~Ω · ~∇Ψ)D0 = 0, i.e. if

the discretization error in D0 is negligible.1 While the analytical solution does satisfy

this relation, nothing can be said about the numerical solution. This LS formulation

is thus only globally conservative upon convergence of the numerical solution to the

analytical solution, which is expected because of the consistency of the discretization.

1Here, we have used the assumption that c is constant. If not, Eq. 5.4 is generally not a
conservation statement, even if (1, ~Ω · ~∇Ψ)D0 = 0.
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5.2.2 Conservative Fix

From the previous expression, it is clear that the scheme would be globally con-

servative if we were to add (cΨ∗, ~Ω · ~∇Ψ)D0 to the variational formulation. Since this

term can be obtained directly by testing the transport equation (see Eq. 4.1) applied

to D0 against cΨ∗, the converged solution would not be affected by this change. We

therefore define the CLS formulation applied to D0 to be: find Ψ ∈ V0 such that for

all Ψ∗ ∈ V0,

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

+
(
cΨ∗, ~Ω · ~∇Ψ

)
D0

+ 〈cΨ∗, (Ψ−Ψinc)〉−∂D0
= 0. (5.5)

Alternatively, splitting the boundary terms depending on whether they belong to ∂D

or to Γ, it can be expressed as:

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

−
(
~Ω · ~∇Ψ∗, cΨ

)
D0

+ 〈cΨ∗,Ψ〉+∂D0 − 〈cΨ∗,Ψinc〉−∂D0 + 〈cΨ∗,Ψ〉+,0Γ − 〈cΨ∗,Ψinc〉−,0Γ = 0,

(5.6)

where ∂D0 ≡ ∂D ∩ ∂D0. In this expression, we have also used the notation 〈·, ·〉±,0Γ

to indicate that the angular integration half-range ±~Ω · ~n(~r) > 0 is determined with

~n being the outward unit vector normal to Γ with respect to D0 (i.e. locally pointing

towards D1) . This formulation is globally conservative but is not symmetric.

5.3 SAAF–CLS Method

In this section, we create a hybrid method combining the CLS terms in D0 and

the SAAF terms in D1. The variational formulation is derived and numerical results

are presented.
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5.3.1 Variational Formulation

Choosing Ψ = σ−1
t (−~Ω · ~∇Ψ+HΨ+S) as the angular flux equation (the so-called

first AFE in [38], see also Eq. 4.7), the SAAF formulation applied to D1 is given by:

find Ψ ∈ V1 such that for all Ψ∗ ∈ V1,

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D1

+ (σtΨ
∗,Ψ)D1

+ 〈Ψ∗,Ψ〉+∂D1 − 〈Ψ∗,Ψinc〉−∂D1

+ 〈Ψ∗,Ψ〉+,1Γ − 〈Ψ∗,Ψinc〉−,1Γ =

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D1

,

(5.7)

where ∂D1 ≡ ∂D ∩ ∂D1. We scale Eq. 5.6 with a constant σ > 0 with units of a

cross-section, for consistency. We then combine it with Eq. 5.7 and notice that Ψ is

continuous across Γ (i.e. Ψ = Ψinc on Γ) to end up with:

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D1

+ (σtΨ
∗,Ψ)D1

+

(
~Ω · ~∇Ψ∗,

1

σ
~Ω · ~∇Ψ

)
D0

−
(
~Ω · ~∇Ψ∗,

c

σ
Ψ
)
D0

+ 〈 c
σ

Ψ∗,Ψ〉+∂D0 − 〈
c

σ
Ψ∗,Ψinc〉−∂D0 + 〈 c

σ
Ψ∗,Ψ〉0Γ

+ 〈Ψ∗,Ψ〉+∂D1 − 〈Ψ∗,Ψinc〉−∂D1 + 〈Ψ∗,Ψ〉1Γ =

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D1

.

(5.8)

Global conservation imposes the following condition:

c = σ. (5.9)
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The SAAF–CLS weak formulation is then given by: find Ψ ∈ V such that for all

Ψ∗ ∈ V ,

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D1

+

(
~Ω · ~∇Ψ∗,

1

c
~Ω · ~∇Ψ

)
D0

+ (σtΨ
∗,Ψ)D1

−
(
~Ω · ~∇Ψ∗,Ψ

)
D0

+ 〈Ψ∗,Ψ〉+∂D − 〈Ψ
∗,Ψinc〉−∂D =

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D1

.

(5.10)

One can check that this scheme is globally conservative by choosing Ψ∗ = 1. The

non-symmetric term is very similar to the extra term in the SAAF–VT formulation

(see Eq. 4.10). The difference between the two formulations however is that in void

regions, the second-order streaming term over D0 in Eq. 5.10 does not vanish, even

when the mesh is infinitely refined. This is crucial to avoid having a singular term

when using a PN expansion.

5.3.2 Implementation

The method derived above is implemented in Rattlesnake, the transport solver

from the Idaho National Laboratory based on the MOOSE framework [54]. All the

results presented below are obtained with the first order LAGRANGE elements from

libMesh [56]. We use the Preconditioned Jacobian Free Newton Krylov (PJFNK)

method for the nonlinear solves with the PETSc [55] restarted generalized minimal

residual (GMRES) solver for the linear solves. Preconditioning is done through the

built-in preconditioners in PETSc, either the algebraic multigrid Hypre BoomerAMG

[72] or the block jacobi preconditioners.

In practice, the implementation of (5.10) is very simple because it does not require

any more kernels and boundary conditions than the SAAF–VT formulation. As a

matter of fact, one can notice that (5.10) can also be directly obtained from (4.10)
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by defining τ ≡ 1/σt in D1 and τ ≡ 1/c in D0.

5.3.3 SAAF–CLS Scaling Factor c

Numerically, changing the value of c can have a significant impact on the solver

convergence. While its optimal value seems to be problem dependent (as well as

dependent on N), it is interesting to note that it has the same units as a cross-section.

If σt is constant on Γ, choosing c in the same order usually works well. If σt is not

constant thereon, its choice is not as obvious but can be typically picked between

the extrema. In Section 5.3.5.2, we show that it has little impact on the numerical

solution outside the void region, which means in particular that the reaction rates

will be minimally affected.

In addition, it is worth noting that, although we have assumed c to be constant for

the derivation of the SAAF–CLS method2, this assumption is actually not required by

the final formulation (see Eq. 5.10). In other words, choosing a spatially-dependent

c in D0 does not compromise the global conservation property of the method.3

Unless otherwise specified, c is set to 1 cm−1.

5.3.4 Terminology

In the following sections, several methods are being compared. Here, we specify

what is precisely meant by each of these. SAAF–CLS refers to Eq. 5.10.4 To highlight

why the conservative fix introduced in Eq. 5.4 is crucial, we also show the results of

the same method without the conservative fix and refer to it as SAAF–LS. Because

this method is only useful for comparison purposes, its derivation is shown in Ap-

2This assumption was then required to claim that Eq. 5.4 was a conservation statement.
3The fundamental reason is that c only appears in terms containing ~Ω·~∇Ψ∗: a global conservation

statement is obtained with Ψ∗ = 1, regardless of the value of c.
4After we have generalized this method to handle near-void regions, it will refer to Eq. 5.21,

Eq. 5.10 being the limiting case as σ0 −→ 0. After extending it to time-dependent problems, it will
then refer to Eq. 5.28.
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pendix D, the weak formulation being given by (D.8). The SAAF–VT formulation

refers to Eq. 4.10.

Lastly, we consider the plain LS method which is obtained using Eq. 5.13 over

the whole domain. By default, we then choose c = 1/τ , which is consistent with the

SAAF–VT formulation in the case of a constant τ , as we saw in Section 4.2.2.

5.3.5 Numerical Results

5.3.5.1 Slab Geometry Pure Absorber Problem

In this section, we consider a slab geometry (d = 1) scattering- and fission-free

domain (H = 0) composed of three distinct uniform regions, defined respectively for

0 ≤ x ≤ δ, δ ≤ x ≤ 3δ and 3δ ≤ x ≤ 4δ. In the first one, S ≡ q/w and σt ≡ σa,1; the

second one is a pure void; in the third one, S = 0 and σt ≡ σa,2. The boundaries at

x = 0 and x = 4δ respectively are reflecting and vacuum. The analytical scalar flux

is given by:

Φ(x) =
q

wσa,1


(2− E2 (σa,1(δ − x))− E2 (σa,1(δ + x))) , 0 ≤ x < δ,

(1− E2 (2σa,1δ)) , δ ≤ x < 3δ,

(E2 (σa,2(x− 3δ))− E2 (2σa,1δ + σa,2(x− 3δ))) , 3δ ≤ x < 4δ,

(5.11)

where E2 represents the following exponential integral:

E2 (x) =

∫ ∞
1

exp(−xz)

z2
dz. (5.12)

In practice, we choose q = 1 cm−3–s−1, δ = 2.5 cm, σa,1 = 0.5 cm−1 and σa,2

= 0.8 cm−1. A total of 4096 spatial cells is chosen. Fig. 5.1a highlights why a

conservative fix of the LS formulation is necessary (see Eq. 5.5). Without it, the
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Figure 5.1: Comparison of the scalar flux as a function of x with and without the
conservative fix described by Eq. 5.5 for different values of N .

solution in void is clearly inaccurate and the convergence with N is very slow. In

particular, we mentioned that the LS formulation is globally conservative if and

only if (1, ~Ω · ~∇Ψ)D0 = 0 (see Eq. 5.4), which is clearly not the case in the void

region. Fig. 5.1b qualitatively shows the improvement in the results when using the

conservative fix. Although we still have ~Ω · ~∇Ψ 6= 0 in the void region, the global

conservation therein is maintained and the difference with the analytical solution

appears to be greatly reduced.

Fig. 5.2 quantifies the L2-error with the analytical solution. Noteworthy is the fact

that using the hybrid SAAF–LS method (without the fix) does not even outperform

the plain LS method. However, the SAAF–CLS method clearly does, as a SAAF–

CLS–P5 calculation gives an error almost identical to the LS–P59 solution. Another

interesting feature is that the parity of N matters, odd values of N giving better
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results for our hybrid method.
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Figure 5.2: Comparison of the L2-error (in cm−3/2–s−1) of the scalar flux Φ for
different discretization. In particular, the SAAF–LS–PN method (i.e. without the
conservative fix in the void region) is comparable to the LS–PN method. The SAAF–
CLS–PN method does much better, especially for odd values of N .

Table 5.1 compares the SAAF–CLS–PN and SAAF–VT–PN methods on that

same problem. While the L2-errors of the numerical solution for a given N is close

for both methods, the number of GMRES iterations needed to converge grows very

quickly for the latter one. This exhibits the conditioning problems it suffers from

and makes it impractical for more complicated problems.

5.3.5.2 Modified Reed’s Problem

In this section, we wish to study the impact of the scaling factor c on the numerical

solution. In particular, we consider the situation where σt takes very different values
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L2-error Iteration count
N SAAF–CLS–PN SAAF–VT–PN SAAF–CLS–PN SAAF–VT–PN

0 1.24E-0 1.52E-0 9 7
1 1.41E-1 1.64E-1 35 801
2 3.87E-1 5.96E-1 50 1211
3 8.12E-2 6.58E-2 70 2765
4 2.08E-1 3.68E-1 84 4617
5 5.64E-2 3.77E-2 110 8120

Table 5.1: Comparison of the SAAF–CLS–PN and SAAF–VT–PN methods in terms
of the L2-error (in cm−3/2–s−1) and the number of GMRES linear iterations. Al-
though the L2-error is fairly comparable for a given N , the number of iterations
rapidly becomes intractable for SAAF–VT–PN .

on Γ, in which case the choice of c is not obvious (see Section 5.3.3).

Specifically, we look at a famous test problem, known as the Reed’s problem [73]

which has significant discontinuities between the different regions of the problem. To

accentuate the discontinuity of σt on Γ, we slightly modify the problem by reordering

the spatial regions. Table 5.2 summarizes the material properties of the problem,

defined for 0 ≤ x ≤ 8 cm, with reflecting and vacuum boundary conditions respec-

tively imposed at x = 0 and at x = 8 cm. We also choose 4096 cells, which makes

the spatial error negligible for the values of N considered in this section.

Region 1 Region 2 Region 3 Region 4 Region 5

q 100 0 0 0 1
σt 100 0 1 5 1
σs 0 0 0.9 0 0.9

Domain 0 ≤ x < 2 2 ≤ x < 4 4 ≤ x < 6 6 ≤ x < 7 7 ≤ x ≤ 8

Table 5.2: Material properties for the modified Reed’s problem: value for the
angular–integrated volumetric source q in cm−3–s−1 (S = q/w) and the total and
scattering cross-sections (in cm−1) in each region.

116



Fig. 5.3 shows the results for the SAAF–CLS–PN method for different values of

c. Fig. 5.3a indicates that it has a small impact on the P3 numerical solution and

that the difference is mostly limited to the void region, the solution elsewhere being

virtually identical. Furthermore, the discrepancy is reduced as N is increased, as the

P7 solution given on Fig. 5.3b shows.
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Figure 5.3: SAAF–CLS–PN method for different values of c (in cm−1) on the modified
Reed’s problem.

In conclusion, it indeed appears that the value of c has little influence on the

numerical solution5 outside of the void region, which implies that the reaction rates

are minimally affected. Moreover, this impact is further reduced as N is increased.

5It can however have an impact on the conditioning of the system.
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5.3.5.3 Heterogenous Multigroup k-Eigenvalue Problem with Void

In this section, we go back to the test problem introduced in Section 4.6.3, which

exhibited how important having globally conservative schemes can be. We show

updated results, by considering those obtained with the SAAF–CLS–PN and SAAF–

CLS–SN methods.

Table 5.3 shows the error with respect to k̃eff for the LS–PN and the SAAF–CLS–

PN methods. As a reminder, the former, lacking global conservation, is extremely

slow to converge. The latter gives much better results as any solution with N ≥ 3

yields an error smaller than the LS–P39 solution, which has over 5.3×108 unknowns.

In particular, the most refined calculations are within a few standard deviations.6

Table 5.4 compares the same quantity for the LS–SN , SAAF–CLS–SN and SAAF–

VT–SN methods as a function of the number of polar and azimuthal angles per

quadrant, noted Np and Na respectively. The same trend can be noticed: the glob-

ally conservative methods are much more accurate. In particular, the spatial error

dominates the calculations shown if Np ≥ 2. It is also interesting to note that SAAF–

CLS–SN and SAAF–VT–SN give very similar results, which is expected since the two

variational formulations are so close.

6Recall also that the reference solution uses circles as the pin boundaries while they are approx-
imated with 20-side polygons for the other methods.
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SAAF–CLS–PN LS–PN

N Ref = 0 Ref = 1 Ref = 2 Ref = 3 Ref = 0 Ref = 1 Ref = 2 Ref = 3
1 946 903 894 892 56391 52543 51219 50676
3 312 227 208 238 24370 20159 19083 18771
5 111 14 -8 -14 15091 10382 9208 8901
7 50 -48 -72 -78 12107 7063 5755 5413
9 38 -59 -83 -89 10705 5407 3974 3586
19 66 -23 -42 -47 9431 3625 1845 1273
29 79 -6 -23 -25 9163 3223 1352 722
39 85 1 -16 -18 9087 3110 1210 561

Table 5.3: Error keff − k̃eff (in pcm) for the SAAF–CLS–PN and LS–PN methods.
”Ref” designates the mesh refinement level. The standard deviation on k̃eff is 5 pcm.

SAAF–CLS–SN SAAF–VT–SN LS–SN
(Np, Na) Ref=0 Ref=1 Ref=2 Ref=0 Ref=1 Ref=2 Ref=0 Ref=1 Ref=2
(1, 12) 350 276 260 337 276 271 8570 3045 1284
(1, 24) 357 291 278 355 289 278 8561 3079 1316
(1, 48) 358 294 282 359 296 287 8530 3068 1320
(1, 96) 358 294 283 359 296 288 8521 3062 1318
(2, 12) 91 2 -17 67 -2 -8 9042 2955 1045
(2, 24) 98 15 -2 83 9 -2 9033 2988 1075
(2, 48) 98 18 3 87 16 6 9004 2978 1080
(2, 96) 98 18 3 87 17 7 8995 2972 1077
(3, 12) 81 -11 -31 54 -16 -22 9121 3008 1056
(3, 24) 87 3 -16 71 -4 -16 9112 3042 1087
(3, 48) 88 6 -11 75 3 -8 9083 3032 1091
(3, 96) 88 6 -11 75 3 -7 9074 3025 1089

Table 5.4: Error keff− k̃eff (in pcm) for the SAAF–CLS–SN , SAAF–VT–SN and LS–
SN methods. ”Ref” designates the mesh refinement level. The standard deviation
on k̃eff is 5 pcm.

5.4 Generalized SAAF–CLS Method

In this section, we study the possibility of generalizing the SAAF–CLS method.

First, we relax the assumption σt = 0 in D0 by allowing it to be a non-zero constant.
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We then show some results on the dog leg void duct problem. Next, we discuss the

eventuality of considering time-dependent problems and of extending the method to

parity-based schemes. While the former appears to be a minor complication, the

latter most likely induces the loss of void compatibility.

5.4.1 Extension to Near-Void Regions

We show that we can similarly derive a void compatible, globally conservative

scheme in the more general setting of a uniform non-void region in D0. The impor-

tance of this result lies in the fact that real-world applications rarely contain pure

void regions but more realistically near-void regions. The only different assumption

is thus that we no longer require σt = 0 in D0 but only to be uniform therein,

i.e. σt = σ0 in D0. Although the driving application is the treatment of near-void

regions, we do not need to assume that σ0 is small for the reasoning in this section

to hold.

5.4.1.1 Generalized CLS Method

The LS formulation compatible with voids applied to D0 is now given by [44, 67]:

(LΨ∗, LΨ)D0
+ 〈cΨ∗, (Ψ−Ψinc)〉−∂D0

= (LΨ∗, Hψ + S)D0
. (5.13)

As we saw in Section 4.3, LS is globally conservative if and only if σt is a strictly

positive constant and if we have c = σt. While the first condition is included in our

assumptions, we cannot satisfy the second in all generality because the boundary

terms would vanish in void or near-void regions. In summary, this means that, unless

c = σt, Eq. 5.13 is only globally conservative upon convergence to the analytical

solution, even though σt is constant over D0.

Just as in Section 5.3, we can define the Conservative Least-Squares formulation
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on D0 by adding the term ((c−σ0)Ψ∗, ~Ω·~∇Ψ+σ0Ψ−Hψ−S)D0 to the LS formulation,

which is consistent with the transport equation:

(LΨ∗, LΨ)D0
+ 〈cΨ∗, (Ψ−Ψinc)〉−∂D0

+
(

(c− σ0)Ψ∗, ~Ω · ~∇Ψ + σ0Ψ−Hψ − S
)
D0

= (LΨ∗, HΨ + S)D0 .

(5.14)

Equivalently, using the divergence theorem on the first and third term, it can be

expressed as:

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

+ (σ0Ψ∗, σ0Ψ)D0
+ 〈σ0Ψ∗,Ψ〉∂D0 + 〈cΨ∗, (Ψ−Ψinc)〉−∂D0

+ 〈(c− σ0)Ψ∗,Ψ〉∂D0 −
(

(c− σ0)~Ω · ~∇Ψ∗,Ψ
)
D0

+ ((c− σ0)Ψ∗, σ0Ψ−Hψ − S)D0

= (LΨ∗, HΨ + S)D0 ,

(5.15)

i.e.:

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

+ (σ0Ψ∗, σ0Ψ)D0
+ 〈cΨ∗, (Ψ−Ψinc)〉−∂D0

+ 〈cΨ∗,Ψ〉∂D0 −
(

(c− σ0)~Ω · ~∇Ψ∗,Ψ
)
D0

+ ((c− σ0)Ψ∗, σ0Ψ−Hψ − S)D0

= (LΨ∗, HΨ + S)D0 .

(5.16)

At the end of the day, the formulation can be expressed as: find Ψ ∈ V0 such that

for all Ψ∗ ∈ V0,

(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

+ (cΨ∗, σ0Ψ)D0
+ 〈cΨ∗,Ψ〉+∂D0

− 〈cΨ∗,Ψinc〉−∂D0

−
(

(c− σ0)~Ω · ~∇Ψ∗,Ψ
)
D0

= (~Ω · ~∇Ψ∗ + cΨ∗, HΨ + S)D0 .

(5.17)
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One can check that this scheme is globally conservative by choosing Ψ∗ = 1 and that

it does reduce to Eq. 5.6 in void.

5.4.1.2 Generalized SAAF–CLS Method

Using the fact that Ψ = Ψinc on Γ and scaling it with a constant σ for units

consistency with the SAAF weak formulation, the previous LS formulation becomes:

(
1

σ
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

+
( c
σ

Ψ∗, σ0Ψ
)
D0

+ 〈 c
σ

Ψ∗,Ψ〉+∂D0 − 〈
c

σ
Ψ∗,Ψinc〉−∂D0

+ 〈 c
σ

Ψ∗,Ψ〉0Γ −
(
c− σ0

σ
~Ω · ~∇Ψ∗,Ψ

)
D0

= (
1

σ
~Ω · ~∇Ψ∗ +

c

σ
Ψ∗, HΨ + S)D0 ,

(5.18)

where, as a reminder, ∂D0 ≡ ∂D ∩ D0 and the superscript in the notation 〈·, ·〉0Γ is

used to indicate that the unit vector normal on Γ is locally pointing towards the

outside of D0.

The generalized SAAF–CLS formulation is then obtained by adding the terms

from Eq. 5.7:

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D1

+

(
1

σ
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

+ (σtΨ
∗,Ψ)D1

+
( c
σ

Ψ∗, σ0Ψ
)
D0

+ 〈Ψ∗,Ψ〉+∂D1 − 〈Ψ∗,Ψinc〉−∂D1 + 〈 c
σ

Ψ∗,Ψ〉+∂D0 − 〈
c

σ
Ψ∗,Ψinc〉−∂D0

+ 〈Ψ∗,Ψ〉1Γ + 〈 c
σ

Ψ∗,Ψ〉0Γ −
(
c− σ0

σ
~Ω · ~∇Ψ∗,Ψ

)
D0

=

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D1

+

(
1

σ
~Ω · ~∇Ψ∗ +

c

σ
Ψ∗, HΨ + S

)
D0

.

(5.19)

To have global conservation, the boundary terms on Γ need to vanish, i.e.:

c = σ, (5.20)
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which the same condition as in the pure void case. The weak formulation is then

given by: find Ψ ∈ V such that for all Ψ∗ ∈ V ,

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D1

+

(
~Ω · ~∇Ψ∗,

1

c
~Ω · ~∇Ψ

)
D0

+ (Ψ∗, σtΨ)D1
+ (Ψ∗, σ0Ψ)D0

−
((

1− σ0

c

)
~Ω · ~∇Ψ∗,Ψ

)
D0

+ 〈Ψ∗,Ψ〉+∂D − 〈Ψ
∗,Ψinc〉−∂D

=

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D1

+

(
1

c
~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D0

.

(5.21)

Once again, this formulation is globally conservative, non-symmetric and reduces to

Eq. 5.10 if D0 is pure void (in which case σ0 = 0 and H = S = 0 in D0). This

formulation is still identical to the SAAF-VT formulation where we have defined

τ ≡ 1/σt in D1 and τ ≡ 1/c in D0 (see Eq. 4.10).

5.4.2 Dog Leg Void Duct Problem

In this section, we consider the third benchmark problem introduced by Kobayashi

et al in [2], also called the dog leg void duct problem. Here, we only show re-

sults for the pure absorber problem. The rectangular spatial domain is defined

for 0 ≤ x, z ≤ 60 cm and 0 ≤ y ≤ 100 cm. The geometry of the problem is

shown in Fig. 5.4 and consists of three uniform materials. First, a source region for

max(x, y, z) ≤ 10 cm with a volumetric source S = 1 cm−3–s−1 and σt = σa = 0.1

cm−1. Second, a near-void region (σt = σa = 10−4 cm−1) for 0 ≤ x, z ≤ 10 cm and

10 ≤ y ≤ 60 cm; 10 ≤ x ≤ 40 cm, 50 ≤ y ≤ 60 cm and 0 ≤ z ≤ 10 cm; 30 ≤ x ≤ 40

cm, 50 ≤ y ≤ 60 cm and 10 ≤ z ≤ 40 cm; 30 ≤ x ≤ 40 cm, 60 ≤ y ≤ 100 cm and

30 ≤ z ≤ 40 cm. Third, a shield region defined everywhere else by σt = σa = 0.1

cm−1. Reflecting boundary conditions are imposed at x = 0, y = 0 and z = 0;

vacuum boundary conditions are used at x = 60 cm, y = 100 cm and z = 60 cm.
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The coarsest mesh used has 6 × 10 × 6 cube elements and is referred to as the ”ref

= 0” mesh. Increasing the level of mesh refinement by one essentially multiplies the

number of elements by eight.

Figure 5.4: Geometry of the dog leg void duct problem (figure taken from ”3D
radiation transport benchmark problems and results for simple geometries with void
region” by Keisuke Kobayashi et. al. [2]).

The interest of this problem lies not only in comparing the different methods

on a widely-studied 3-D benchmark problem but also in testing our new method in

near-void regions, while the previous two problems only had pure void regions.

In this section, all the SN simulations use the Level-Symmetric angular quadrature

rule and the total number of angles is then given by N(N+2), as the solution depends

on all three spatial variables. As a comparison, the total number of moments for a

PN simulation in that case is (N+1)2, which implies that, for a given N , the number

of angular unknowns only differs by one between a PN and a SN calculation.

In [2], the semi-analytical scalar flux was given at different points of the domain.
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In Fig. 5.5a, we compute the SAAF–CLS–PN error at (x, y, z) = (5, 5, 5), (5, 35, 5),

(5, 55, 5) and (35, 55, 5) for different values of N and of the level of mesh refinement.

The first point is in the source region whereas the last three are in the near-void

region. It appears that the error indeed decreases as the simulation is refined in

space and angle, although it becomes less apparent for the spatial point (35, 55, 5),

further away from the source. This is not surprising as the magnitude of the scalar

flux rapidly decreases in the shield region. As we observed in Fig. 5.2, the error

seems to be generally higher for even values of N .

Fig. 5.5b shows the results for the LS–PN method which are very comparable

to SAAF–CLS–PN at the first and last spatial points but somewhat worse at the

second and third point. The difference is not as significant as in Fig. 5.1, most likely

because the near-void region is spatially much more limited than it was in Section

5.3.5.1, where the void region accounted for half of the spatial domain.

In Fig. 5.5c, the same quantities are shown for the SAAF–CLS–SN method, with

errors comparable to SAAF–CLS–PN at the first and last spatial points but not as

good at the second and third. It is noted however that the computational time tend

to be much lower for the SN method, in particular because the number of kernels

needed to be assembled for the streaming terms is noticeably higher for PN , due to

numerous off-diagonal coupling terms.

Lastly, Fig. 5.5d exhibits a behavior for the SAAF–VT–SN method very close

to that of SAAF–CLS–SN , especially for a level of spatial refinement higher than

2. This was expected as both variational formulations look very much alike (see

Eqs. 4.10 and 5.10). For instance, the error at the first spatial point for the most

refined mesh approaches 10−2 cm−2–s−1 in both cases. However, it is interesting

to point out that the Hypre BoomerAMG preconditioner [72] does not seem to be

efficient in the same ranges for both methods, most likely because of the on-diagonal
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contribution of the (~Ω · ~∇Ψ∗, c−1~Ω · ~∇Ψ)D0 term in the void region which does not

vanish as the mesh is refined.

5.4.3 Extension to Time-Dependent Problems

Let us first consider how the transient SAAF formulation can be derived, following

the same reasoning as in Section 4.1.1.

The time-dependent transport equation can be written:

1

v

∂Ψ

∂t
+ ~Ω · ~∇Ψ + σtΨ = HΨ + S, (5.22)

which gives the transient AFE:

Ψ =
1

σt

(
HΨ + S − ~Ω · ~∇Ψ− 1

v

∂Ψ

∂t

)
. (5.23)

Yet, Eq. 5.22 integrated over D1 against Ψ∗ yields, after an integration by parts on

the streaming term:

(
Ψ∗,

1

v

∂Ψ

∂t

)
D1

−
(
~Ω · ~∇Ψ∗,Ψ

)
D1

+ 〈Ψ∗,Ψ〉∂D1 + (Ψ∗, σtΨ)D1
= (Ψ∗, HΨ + S)D1

.

(5.24)

Substituting Eq. 5.23 into the second term gives:

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗,
1

v

∂Ψ

∂t

)
D1

+

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D1

+ 〈Ψ∗,Ψ〉+∂D1
− 〈Ψ∗,Ψinc〉−∂D1

+ (Ψ∗, σtΨ)D1
=

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D1

.

(5.25)

If we were to derive the transient LS formulation over D0 (while still defining L† ≡
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Figure 5.5: Error in the scalar flux (in cm−2–s−1) at 4 different spatial points as a
function of N and of the level of mesh refinement for various methods. On the top of
each graph, the reference value for Φ at the corresponding spatial point is indicated.
For a given spatial point, the y-axis range is identical for all methods.
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−~Ω · ~∇+ σt) in a similar way as we did in Section 4.1.2, we would obtain:

(
~Ω · ~∇Ψ∗ + σtΨ

∗,
1

v

∂Ψ

∂t

)
D0

+
(
~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
D0

+ 〈cΨ∗,Ψ−Ψinc〉−∂D

+ (σtΨ
∗, σtΨ)D0

=
(
~Ω · ~∇Ψ∗ + σtΨ

∗, HΨ + S
)
D0

.

(5.26)

We can then add the term ((c − σ0)Ψ∗,
1

v

∂Ψ

∂t
+ ~Ω · ~∇Ψ + σ0Ψ − Hψ − S)D0 to get

the transient CLS formulation (and retrieve global conservation over D0).

Following the same reasoning as presented in Section 5.4, the time-dependent

SAAF–CLS formulation eventually reads: find Ψ ∈ V such that for all Ψ∗ ∈ V ,

(
1

c
~Ω · ~∇Ψ∗ + Ψ∗,

1

v

∂Ψ

∂t

)
D0

+

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗,
1

v

∂Ψ

∂t

)
D1

+

(
~Ω · ~∇Ψ∗,

1

σt

~Ω · ~∇Ψ

)
D1

+

(
~Ω · ~∇Ψ∗,

1

c
~Ω · ~∇Ψ

)
D0

+ (Ψ∗, σtΨ)D1
+ (Ψ∗, σ0Ψ)D0

−
((

1− σ0

c

)
~Ω · ~∇Ψ∗,Ψ

)
D0

+ 〈Ψ∗,Ψ〉+∂D − 〈Ψ
∗,Ψinc〉−∂D

=

(
1

σt

~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D1

+

(
1

c
~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D0

,

(5.27)

which could be rewritten: find Ψ ∈ V such that for all Ψ∗ ∈ V ,

(
τ ~Ω · ~∇Ψ∗ + Ψ∗,

1

v

∂Ψ

∂t

)
D

+
(
~Ω · ~∇Ψ∗, τ ~Ω · ~∇Ψ

)
D

+ (Ψ∗, σtΨ)D

−
(

(1− τσt) ~Ω · ~∇Ψ∗,Ψ
)
D

+ 〈Ψ∗,Ψ〉+∂D − 〈Ψ
∗,Ψinc〉−∂D

=
(
τ ~Ω · ~∇Ψ∗ + Ψ∗, HΨ + S

)
D
,

(5.28)
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where τ is defined by:

τ ≡


1

c
, ~r ∈ D0

1

σt

, ~r ∈ D1

. (5.29)

Any type of time-discretization schemes could then be applied to this formulation

(Backward Euler, BDF–2,...). Looking at this variational formulation, it appears

that – despite having assumed c to be constant and σt to be uniform in the void

region D0 – relaxing these two assumptions does not affect the global conservation

of the method and is therefore perfectly acceptable in practice.

5.4.4 Parity Option

As we saw in Section 4.5, there does not seem to exist any void compatible and

globally conservative parity-based method. A legitimate question is whether the

newly-derived SAAF–CLS method could provide such a method.

The ’even’ SAAF–CLS formulation would read: find Ψe ∈ Ve such that for all

Ψ∗e ∈ Ve,(
τ ~Ω · ~∇Ψ∗e,

1

v

∂Ψo

∂t

)
D

+

(
Ψ∗e,

1

v

∂Ψe

∂t

)
D

+
(
~Ω · ~∇Ψ∗e, τ ~Ω · ~∇Ψe

)
D

+ (Ψ∗e, σtΨe)D −
(

(1− τσt) ~Ω · ~∇Ψ∗e,Ψo

)
D

+ Γeven

=
(
τ ~Ω · ~∇Ψ∗e, HΨo + So

)
D

+ (Ψ∗e, HΨe + Se)D ,

(5.30)

where Γeven is defined by Eq. 4.67. Unfortunately, even in the steady-state, isotropic

scattering cases, Ψo has to be evaluated in the void/near-void region. This is neces-

sarily done using Eq. 4.61, which is not valid in void regions. Therefore, the ’even’

SAAF–CLS formulation is not compatible with void.
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6. CONCLUSION

Now that this thesis is coming to a close, let us summarize what has been accom-

plished therein.

6.1 Implicit Filtered PN for First-Order Forms

In Chapter 3, we have presented and implemented a fully-implicit, discontinu-

ous Galerkin finite element method for simulating filtered spherical harmonic (PN)

equations in the context of thermal radiation transport and provided guidelines to

determine filtering strategies for general problems.

We have studied the eigenspectrum of the filtered PN equations. Interestingly, the

conditioning of underlying linear systems improves for moderate values of the filter

strength σf. Indeed, it was confirmed that such values led to a significant reduction

in the number of GMRES iterations needed to solve the Crooked Pipe benchmark

problem. We have also tested numerically the convergence properties of the filter

and have found that the features of the linear, pure transport problem carry over

to the non-linear, thermal radiation transport problem. Roughly speaking, the filter

order determines the convergence rate for smooth solutions, while for non-smooth

problems, the filter has little impact.

Finally, we have performed detailed simulations of the Crooked Pipe problem

and used it as a test case to compare different filtering strategies. We observe that

filtering improves numerical solutions significantly, especially for small values of N .

For the most part, it is a local filtering strategy that works best.
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6.2 Conditional Equivalence of Second-Order Forms

In Chapter 4, we have shown how the choice of the weakly-imposed boundary

conditions for LS can have a significant impact on the properties of the scheme. In

particular, we have shown how LS can – under certain limiting conditions – be made

equivalent to SAAF or consistent with SAAF–VT.

We have also proven the equivalences between several parity-based PN methods:

the even-parity PN , ’even’ SAAF-PN and SAAF–VT–PN . The practical corollary

is that these methods are not well-suited for second-order filters with the driving

application of allowing for void regions.

Numerical results on a heterogeneous multigroup k-eigenvalue problem with void

highlighted how global conservation can be crucial to achieve rapid convergence.

An important lesson from this chapter is that LS does not have this conservation

property unless the boundary scaling term and the total cross-section are strictly

positive constants, equal to each other. In particular, this cannot be achieved if

there is void anywhere in the domain of interest. This observation was key to the

conservative fix derived in the following chapter.

6.3 SAAF–CLS Method

In Chapter 5, we have derived a second-order method compatible with void and

globally conservative working with both PN and SN . This is achieved using LS terms

in the void region with a non-symmetric correction to retrieve global conservation.

It is then combined with SAAF terms in the non-void regions with a scaling chosen

such that the interface terms vanish, thereby maintaining global conservation. We

have observed that this conservative fix is crucial to gain any benefit, compared to

the plain LS method. Overall, this SAAF–CLS method has shown much improve-

ment for problems for which global conservation is key, such as configurations with
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large void regions or k-eigenvalue calculations. Particularly, we have obtained very

satisfying results for both the PN and SN versions of our method on a multigroup

k-eigenvalue problem with significant heterogeneity and void regions. These results

have been in good agreement with a MCNP reference calculation but also have been

very comparable to those obtained with the SAAF–VT–SN method.

While the SAAF–CLS and SAAF–VT variational formulations formally look very

similar, both sacrificing the symmetry of the bilinear form, our method presents the

advantage of being compatible with both PN and SN angular discretizations, unlike

the SAAF–VT method which has only shown success with SN . The reason is that

the latter method tends to reduce to a first-order form in void regions, which results

in a singular system following a PN discretization for a steady-state calculation with

CGFEM.

Further, we have generalized the SAAF–CLS method to near-void regions and

time-dependent problems. We showed that global conservation could be preserved,

providing a slightly different correction to the LS formulation. We have then tested

this method on the dog leg void duct benchmark problem by Kobayashi et al [2].

6.4 Future Studies

Future work will include some deeper studies on time-dependent problems where

void compatibility is required.

Furthermore, based on the observation that the Simplified PN (SPN) method

is equivalent to PN for a constant total cross-section and an infinite medium [74],

another idea would be to try to develop a hybrid scheme combining the CLS–PN and

SPN methods.
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APPENDIX A

SPHERICAL HARMONICS

A.1 Real vs. Complex Form

In this section, we compare the complex and real-form spherical harmonics and

explain why we believe that the latter form is preferable for transport applications.

A.1.1 Complex Spherical Harmonics

The complex spherical harmonics are defined for all (`,m) such that 0 ≤ |m| ≤ `

as follows:

Y m
` (µ, ϕ) = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!

(1− µ2)m/2

2``!
eimϕ

d`+m

dµ`+m
(
(µ2−1)`

)
for m ≥ 0,

(A.1)

Y m
` (µ, ϕ) = (−1)mY −m` (µ, ϕ) for m ≤ −1, (A.2)

where i =
√
−1 and X represents the complex conjugate of X.

A.1.2 Real-Form Spherical Harmonics

The real-form spherical harmonics defined by Eq. 2.12 satisfy:

Rm
` =



i√
2

(
Y m
` − (−1)mY −m`

)
, m < 0

Y 0
` , m = 0

1√
2

(
Y −m` + (−1)mY m

`

)
, m > 0

,

=


√

2 (−1)m=(Y
|m|
` ) , if m < 0

Y 0
` , if m = 0
√

2 (−1)m< (Y m
` ) , if m > 0

,

(A.3)
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where <(X) and =(X) designates the real and imaginary parts of a variable X,

respectively. It can be shown that the complex spherical harmonics functions also

form an orthonormal set of functions.

A.1.3 Recurrence Relationships

One way yo evaluate the ~D matrices (see Eq. 3.4) is by using recurrence relation-

ships. Defining ϑ to be the polar angle (µ = cosϑ), the following relationships are

true for any `,m such that 0 ≤ |m| ≤ ` ≤ N [48, 75, 76]:

cosϑY m
` = Am` Y

m
`+1 +Bm

` Y
m
`−1, (A.4)

sinϑ cosϕY m
` =

1

2
(−Cm

` Y
m+1
`+1 +Dm

` Y
m+1
`−1 + Em

` Y
m−1
`+1 − F

m
` Y

m−1
`−1 ), (A.5)

sinϑ sinϕY m
` =

i

2
(Cm

` Y
m+1
`+1 −D

m
` Y

m+1
`−1 + Em

` Y
m−1
`+1 − F

m
` Y

m−1
`−1 ), (A.6)

where:

Am` =

√
(`−m+ 1)(`+m+ 1)

(2`+ 3)(2`+ 1)
, Bm

` =

√
(`−m)(`+m)

(2`+ 1)(2`− 1)
, (A.7)

Cm
` =

√
(`+m+ 1)(`+m+ 2)

(2`+ 3)(2`+ 1)
, , Dm

` =

√
(`−m)(`−m− 1)

(2`+ 1)(2`− 1)
, (A.8)

Em
` =

√
(`−m+ 1)(`−m+ 2)

(2`+ 3)(2`+ 1)
, Fm

` =

√
(`+m)(`+m− 1)

(2`+ 1)(2`− 1)
. (A.9)

It is also possible to derive similar recurrence relationships for the real-form spherical

harmonics Rm
` but it gets a lot messier. We show how to do it for each component

for the reader’s entertainment but we will see later that using quadrature rules is

much more simple.
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A.1.3.1 z-Component

The z-component is the easiest to derive as it does not couple the moments with

different m. Let us first consider the m = 0 case:

cosϑR0
` = cosϑY 0

` = A0
`Y

0
`+1 +B0

`Y
0
`−1 = A0

`R
0
`+1 +B0

`R
0
`−1. (A.10)

If m < 0:

cosϑRm
` =

i cosϑ√
2

(Y m
` − (−1)mY −m` )

=
i√
2

(Am` Y
m
`+1 +Bm

` Y
m
`−1 − (−1)m(A−m` Y −m`+1 +B−m` Y −m`−1 ))

= Am` R
m
`+1 +Bm

` R
m
`−1

(A.11)

because A−m` = Am` and B−m` = Bm
` . We can show a similar result for m > 0. In

summary:

cosϑRm
` = Am` R

m
`+1 +Bm

` R
m
`−1 (A.12)

A.1.3.2 x-Component

We want to express sinϑ cosϕRm
` as a function of the real-form spherical har-

monics.

If m = 0,

sinϑ cosϕR0
` = sinϑ cosϕY 0

`

=
1

2

(
−C0

` Y
1
`+1 +D0

`Y
1
`−1 + E0

`Y
−1
`+1 − F

0
` Y
−1
`−1

)
.

(A.13)

Because C0
` = E0

` and D0
` = F 0

` , we have:

Y −1
`+1 − Y

1
`+1 =

√
2R1

`+1 , Y −1
`−1 − Y

1
`−1 =

√
2R1

`−1, (A.14)
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that is1:

sinϑ cosϕR0
` =

1√
2

(
C0
`R

1
`+1 −D0

`R
1
`−1

)
. (A.15)

If m > 0,

sinϑ cosϕR0
` =

sinϑ cosϕ√
2

(
Y −m` + (−1)mY m

`

)
=

1

2
√

2

( (
−C−m` Y −m+1

`+1 +D−m` Y −m+1
`−1 + E−m` Y −m−1

`+1 − F−m` Y −m−1
`−1

)
+ (−1)m

(
−Cm

` Y
m+1
`+1 +Dm

` Y
m+1
`−1 + Em

` Y
m−1
`+1 − F

m
` Y

m−1
`−1

) )
.

Yet,

C−m` = Em
` , Dm

` = F−m` , (A.16)

thus, using the fact that (−1)m−1 = (−1)m+1 = −(−1)m,

sinϑ cosϕRm
` =

1

2
√

2

(
− Em

` (Y −m+1
`+1 + (−1)m−1Y m−1

`+1 ) + Cm
` (Y −m−1

`+1 + (−1)m−1Y m+1
`+1 )

+ Fm
` (Y −m+1

`−1 + (−1)m−1Y m−1
`−1 )−Dm

` (Y −m−1
`−1 + (−1)m−1Y m+1

`−1 )
)

If m > 1, we simply have:

sinϑ cosϕRm
` =

1

2

(
− Em

` R
m−1
`+1 + Cm

` Yl+1,+m+1 + Fm
` R

m−1
`−1 −D

m
` R

m+1
`−1

)
(A.17)

If m = 1:

Y −m+1
`+1 + (−1)m−1Y m−1

`+1 = 2Y 0
`+1 , Y −m+1

`−1 + (−1)m−1Y m−1
`−1 = 2Y 0

`−1.

1Note that this expression does not have any problem for ` = 0 because D0
0 = 0.
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Therefore:

sinϑ cosϕRm
` =

1

2

(
Cm
` Yl+1,+m+1−Dm

` R
m+1
`−1

)
+

1√
2

(
−Em

` R
0
`+1 +Fm

` R
0
`−1

)
. (A.18)

If m < 0, the treatment is similar:

sinϑ cosϕR0
` =

i sinϑ cosϕ√
2

(
Y m
` − (−1)mY −m`

)
,

=
i

2
√

2

( (
−Cm

` Y
m+1
`+1 +Dm

` Y
m+1
`−1 + Em

` Y
m−1
`+1 − F

m
` Y

m−1
`−1

)
,

−(−1)m
(
−C−m` Y −m+1

`+1 +D−m` Y m+1
`−1 + E−m` Y m−1

`+1 − F
−m
` Y m−1

`−1

) )
,

=
i

2
√

2

(
− Cm

` (Y m+1
`+1 − (−1)m−1Y −m−1

`+1 ) +Dm
` (Y m+1

`−1 − (−1)m−1Y −m−1
`−1 )

+ Em
` (Y m−1

`+1 − (−1)m−1Y −m+1
`+1 )− Fm

` (Y m−1
`−1 − (−1)m−1Y −m+1

`−1 )
)
.

If m < −1,

sinϑ cosϕRm
` =

1

2

(
− Cm

` R
m+1
`+1 +Dm

` R
m+1
`−1 + Em

` R
m−1
`+1 − F

m
` R

m−1
`−1

)
. (A.19)

If m = −1,

Y m+1
`+1 − (−1)m−1Y −m−1

`+1 = 0 , Y m+1
`−1 − (−1)m−1Y −m−1

`−1 = 0. (A.20)

Thus,

sinϑ cosϕRm
` =

1

2

(
Em
` R

m−1
`+1 − F

m
` R

m−1
`−1

)
. (A.21)

A.1.3.3 y-Component

The derivation for the y-component is very much similar to that of the x-component

and is not detailed here. The results are summarized in the next section.
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A.1.3.4 Summary

To sum up, recursion relationships can be derived for the real-form spherical

harmonics but are a lot more complicated:

cosϑRm
` = Am` R

m
`+1 +Bm

` R
m
`−1 (A.22)

sinϑ cosϕRm
` =

=



1√
2

(C0
`R

1
`+1 −D0

`R
1
`−1) , if m = 0

1

2
(Cm

` R
m+1
`+1 −Dm

` R
m+1
`−1 ) +


1

2
(−Em

` R
m−1
`+1 − Fm

` R
m−1
`−1 ) , if m > 1

1√
2

(−Em
` R

m−1
`+1 − Fm

` R
m−1
`−1 ) , if m = 1

1

2
(Em

` R
m−1
`+1 − Fm

` R
m−1
`−1 ) +


1

2
(−Cm

` R
m+1
`+1 +Dm

` R
m+1
`−1 ) , if m < −1

0 , if m = −1
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sinϑ sinϕRm
` =



1√
2

(C0
`R
−1
`+1 −D0

`R
−1
`−1) , if m = 0

1

2
(Cm

` R
−m−1
`+1 −Dm

` R
−m−1
`−1 ) +


1

2
(Em

` R
−m+1
`+1 − Fm

` R
−m+1
`−1 ) , if m > 1

0 , if m = 1

1

2
(−Em

` R
−m+1
`+1 + Fm

` R
−m+1
`−1 ) +


1

2
(−Cm

` R
−m−1
`+1 +Dm

` R
−m−1
`−1 ) , if m < −1

1√
2

(−Cm
` R

−m−1
`+1 +Dm

` R
−m−1
`−1 ) , if m = −1

A.1.4 Computing ~D

Although the previous section seems to indicate that the recurrence relationship

are more complicated for the real-form spherical harmonics, it should be pointed

out that the ~D matrices can be easily computed using Gauss-Legendre or Gauss-

Jacobi quadrature rules. As a matter of fact, Dz can be exactly calculated using

the former type while Dx and Dy can be deduced from the expression of Dz and

applying rotation matrices.

More specifically, the element of the matrix Dz corresponding to the (`,m)-th

row and the (`′,m′)-th column is given by:

(Dz)(`,m),(`′,m′) =

∫
S2
µRm

` R
m′

`′ dΩ. (A.23)
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For simplicity, let us assume m,m′ > 0 and d = 3, in which case, we have:

(Dz)(`,m),(`′,m′) =

∫
S2

2Cm
` C

m′

`′ µP
m
` P

m′

`′ cos (mϕ) cos (m′ϕ) dΩ,

= 2Cm
` C

m′

`′

∫ 1

−1

µPm
` P

m′

`′ dµ

∫ 2π

0

cos (mϕ) cos (m′ϕ) dϕ,

= 2Cm
` C

m′

`′

∫ 1

−1

µPm
` P

m′

`′ dµ

∫ 2π

0

cos ((m+m′)ϕ) + cos ((m−m′)ϕ)

2
dϕ.

(A.24)

Because the integral over ϕ is non-zero if and only if m = m′, we obtain:

(Dz)(`,m),(`′,m′) = 2π Cm
` C

m
`′ δm,m′

∫ 1

−1

µ(1− µ2)m
dm

dµm
P 0
`

dm

dµm
P 0
`′dµ. (A.25)

Since P 0
` and P 0

`′ are polynomials of degree ` and `′, respectively, this implies that

the function integrated over µ is a polynomial of degree `+`′+1, i.e. at most 2N+1.

A (N + 1)-point Gauss-Legendre quadrature rule can therefore be used to compute

the coefficients of Dz exactly.

With a similar reasoning, we can show that the matrices L⊕ and Q⊕ can be

computed exactly using a (N + 1)-point Gauss-Jacobi quadrature rule and, if need

be, rotation matrices.

A.1.5 Advantages of the Real-Form Spherical Harmonics

Using complex or real-form spherical harmonics does not change the number of

unknowns. However there are reasons why the real-form spherical harmonics are

more appealing than their complex counterparts, which all come down to a simple

observation: the solution of the transport equation being intrinsically a real quantity,

trying to represent it with complex functions seems to be asking for trouble.
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More specifically, expanding the angular flux as:

Ψ =
∞∑
`=0

∑̀
m=−`

Ψm
` Y

m
` , (A.26)

a priori yields complex coefficients Ψm
` , unless the solution spatially only depends

on z: all the moments with m > 0 have a real part and a non-zero imaginary part.

This admittedly does not increase the number of non-redundant moments because

it is possible to reorder the expansion:

Ψ =
∞∑
`=0

(
Ψ0
`Y

0
` +

∑̀
m=1

(
Ψm
` Y

m
` + Ψ−m` Y −m`

))
=
∞∑
`=0

(
Ψ0
`Y

0
` +

∑̀
m=1

(
Ψm
` Y

m
` + Ψm

` Y
m
`

))
=
∞∑
`=0

(
Ψ0
`Y

0
` + 2

∑̀
m=1

<(Ψm
` Y

m
` )
)

=
∞∑
`=0

(
Ψ0
`Y

0
` + 2

∑̀
m=1

(
<(Ψm

` )<(Y m
` )−=(Ψm

` )=(Y m
` )
))
,

(A.27)

using the fact that Ψ is a real function. There are still (N + 1)2 unknowns in a

general case: <(Ψm
` ) for 0 ≤ m ≤ ` and =(Ψm

` ) for 1 ≤ m ≤ `. Nonetheless, there

are several reasons that make the use of this formula less attractive.

A.1.5.1 Physical Meaning

Let alone the fact that it is less intuitive to work with imaginary quantities, some

expansion coefficients with m > 1 lose their physical meaning (they are unchanged

for m = 0). In particular, Ψ0
0 and Ψ1

0 still represent the scalar flux and the partial

current along the z-direction, respectively. However, Ψ1
1 and Ψ−1

1 with real-form

spherical harmonics can be identified as the partial current along the x- and the
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y-axis, respectively, whereas <(Ψ1
1) and =(Ψ1

1) have no such meaning with complex

spherical harmonics.

A.1.5.2 Symmetric Matrices

Using the complex spherical harmonics makes the Dx and Dy matrices non-

symmetric. This is because, for d > 1, the m < 0 expansion coefficients are non-

zero, although they can be expressed in terms of the positive m expansion terms.

The equations for m = 0 (see Eqs. A.4–A.6) therefore still couples the negative

and positive m terms which doubles the corresponding coefficients and breaks the

symmetry of the matrix.2

For the real form spherical harmonics, although it is not obvious to see it directly

from the more complicated recurrence relationships (see Section A.1.3.4), Dx and

Dy are symmetric. It can actually be directly seen in their definitions.

A.1.5.3 Reflecting Boundary Conditions

Lastly, if the boundary conditions are determined using ghost cells (in the same

way as in [52]), it may be more complicated using complex spherical harmonics.

A.2 Parity Considerations

A.2.1 Spherical Harmonics Parity

As a reminder, the real-form spherical harmonics are defined as:

Rm
` (~Ω) =



√
2Cm

` P
m
` (µ) cos(mϕ), 0 < m ≤ ` ≤ N

C0
` P

0
` (µ), 0 ≤ ` ≤ N

√
2C

|m|
` P

|m|
` (µ) sin(|m|ϕ), 0 < −m ≤ ` ≤ N

, (A.28)

2This is very much similar to what happens for instance to a mass or stiffness matrix when a
reflecting boundary condition is applied: the off-diagonal elements of the row corresponding to the
reflecting nodes are multiplied by 2.
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Pm
` designating the associated Legendre polynomial of degree ` and order m and

Cm
` =

√
(2`+1)
w

(`−m)!
(`+m)!

being a normalization constant. The associated Legendre poly-

nomial is further defined to be:

Pm
` (µ) = (−1)m

(1− µ2)m/2

2``!

d`+m

dµ`+m
(
(µ2 − 1)`

)
, (A.29)

the (−1)m term – also known as the Condon-Shortley phase – may or may not be

included.3 Yet,

d`+m

dµ`+m
(
(µ2 − 1)`

)
=

d`+m

dµ`+m

(∑̀
k=0

(
`

k

)
(−1)`−kµ2k

)
, (A.30)

where, for all a, b ∈ N,
(
a
b

)
≡ a!

b!(a−b)! . Besides, since µ2k is an even function of µ,

d`+m

dµ`+m
µ2k is an odd function of µ if and only if (` + m) is odd (if we disregard the

trivial cases (`+m) > 2k). This implies that the parity of Pm
` is that of (`+m).

In addition, for a given ~Ω =
√

1− µ2 cosϕ~ex +
√

1− µ2 sinϕ ~ey + µ~ez, we have:

−~Ω =


√

1− µ2 cos (ϕ+ π)√
1− µ2 sin (ϕ+ π)

−µ

 . (A.31)

In other words, ~Ω is changed in −~Ω if µ and ϕ are respectively changed in −µ and

3This typically has very little impact in a code. In particular, most matrices (rotation matrices,
~D, Hu,v etc.) are unchanged whether it is included or not because it will only change the sign of
the corresponding moment for odd m.
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ϕ+ π. Therefore, for m > 0,

Rm
` (−~Ω) =

√
2Cm

` P
m
` (−µ) cos(m(ϕ+ π)),

=
√

2Cm
` (−1)`+mPm

` (µ) (−1)m cos(mϕ),

= (−1)`Rm
` (~Ω).

(A.32)

The same property can be established for m ≤ 0, which implies that the parity of Rm
`

is entirely determined by the parity of `. More specifically, Rm
` is an even function

of ~Ω if and only if ` is even.

A.2.2 Number of Even and Odd Moments

In this section, we derive the number of ’even’ and ’odd’ moments for N odd,

respectively noted Pe and Po. The total number of moments is noted P = Pe + Po.

A.2.2.1 One Dimension

Let us derive the number of moments for a problem depending only on d = 1

spatial dimension, in which case we only need the moments Φm
` such that 0 ≤ ` ≤ N

and m = 0. It follows:

Po =
N∑
`=1
` odd

1 =
N + 1

2
, (A.33)

Pe =
N∑
`=0
` even

1 =
N + 1

2
, (A.34)

We indeed have P = Pe + Po = N + 1, which is expected. Furthermore, for N odd,

we thus have:

Pe
P

=
Po
P

=
1

2
. (A.35)
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A.2.2.2 Two Dimensions

Let us derive the number of moments for a problem depending only on d = 2

spatial dimensions, in which case we only need the moments Φm
` such that 0 ≤ m ≤

` ≤ N . The number of odd moments is given by4:

Po =
N∑
`=1
` odd

∑̀
m=0

1 =
N∑
`=1
` odd

(`+ 1),

=

(N−1)/2∑
`′=0

(2`′ + 2) = (N + 1) + 2

(N−1)/2∑
`′=0

`′,

= (N + 1) +
(N − 1)

2

(N + 1)

2
,

=
(N + 1)(N + 3)

4
.

(A.36)

Similarly, the number of even moments is given by5:

Pe =
N∑
`=0
` even

∑̀
m=0

1 =
N∑
`=0
` even

(`+ 1),

=

(N−1)/2∑
`′′=0

(2`′′ + 1) =
(N + 1)

2
+ 2

(N−1)/2∑
`′′=0

`′′,

=
(N + 1)

2
+

(N − 1)

2

(N + 1)

2
,

=
(N + 1)2

4
.

(A.37)

As a sanity check, we can see that the total number of moments is:

P = Pe + Po =
(N + 1)2

4
+

(N + 1)(N + 3)

4
=

(N + 1)(N + 2)

2
, (A.38)

which is the well-know value.

4Using the substitution ` ≡ 2`′ + 1
5Using the substitution ` ≡ 2`′′
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This implies that:

Pe
P

=
N + 1

2(N + 2)
,

Po
P

=
N + 3

2(N + 2)
. (A.39)

A.2.2.3 Three Dimensions

Let us derive the number of moments for a problem depending only on d = 3

spatial dimensions, in which case we need all the moments, i.e. Φm
` such that 0 ≤

|m| ≤ ` ≤ N . The number of odd moments is given by:

Po =
N∑
`=1
` odd

∑̀
m=−`

1 =
N∑
`=1
` odd

(2`+ 1),

=

(N−1)/2∑
`′=0

(4`′ + 3) =
3(N + 1)

2
+ 4

(N−1)/2∑
`′=0

`′,

=
3(N + 1)

2
+

(N − 1)(N + 1)

2
,

=
(N + 1)(N + 2)

2
.

(A.40)

Similarly, the number of even moments is given by:

Pe =
N∑
`=0
` even

∑̀
m=−`

1 =
N∑
`=0
` even

(2`+ 1),

=

(N−1)/2∑
`′′=0

(4`′′ + 1) =
(N + 1)

2
+ 4

(N−1)/2∑
`′′=0

`′′,

=
(N + 1)

2
+ (N − 1)

(N + 1)

2
,

=
N(N + 1)

2
,

(A.41)
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As a sanity check, we can see that the total number of moments is:

P = Pe + Po =
N(N + 1)

2
+

(N + 1)(N + 2)

2
= (N + 1)2, (A.42)

as expected.

A.2.2.4 Summary

Table A.1 summarizes the number of moments for d = 1, 2, 3 for N odd. In all

three cases, we have:

Pe
P
−−−−→
N−→∞

1

2
,

Po
P
−−−−→
N−→∞

1

2
, (A.43)

with these limits being an equality for d = 1.

It seems thus acceptable to say that the number of moments is roughly speaking

divided by two when solving only for the even-parity moments.

Dimension d Pe Po P
Pe
P

Po
P

1
N + 1

2

N + 1

2
N + 1

1

2

1

2

2
(N + 1)2

4

(N + 1)(N + 3)

4

(N + 1)(N + 2)

2

N + 1

2(N + 2)

N + 3

2(N + 2)

3
N(N + 1)

2

(N + 1)(N + 2)

2
(N + 1)2 N

2(N + 1)

N + 2

2(N + 1)

Table A.1: Number of even, odd and all moments for d = 1, 2, 3, for N odd. For N
even, the value for P is unchanged.
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A.3 Moments of the Volumetric Source

This section is dedicated to show how to obtain the moments of the volumetric

source given by Eq. 4.100. The details of the problem and notation can be found in

Section 4.6.2.

As a reminder, because of the 1-D nature of the problem, the superscript indi-

cating the order of the spherical harmonics m are omitted, implying m = 0. Besides,

the volumetric source is given by:

S̃ = µ
df

dx
g + σtfg, (A.44)

and g is expanded as:

g =
∞∑
`=0

g`R` (A.45)

where the spherical harmonic R` and the Legendre polynomial P` of degree ` satisfy6:

R` =

√
2`+ 1

2
P`. (A.46)

A.3.1 Property

We have the well-known recurrence relation for any ` ∈ N:

µP` =
`+ 1

2`+ 1
P`+1 +

`

2`+ 1
P`−1 (A.47)

6See Eq. 2.12 with w = 2
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with the convention P−1 = 0. Similarly,

µR` =
`+ 1√

2(2`+ 1)
P`+1 +

`√
2(2`+ 1)

P`−1

=
`+ 1√

(2`+ 1)(2`+ 3)
R`+1 +

`√
(2`+ 1)(2`− 1)

R`−1

(A.48)

with the convention R−1 = 0.

A.3.2 Moments of S̃

The `-th (` ∈ N) moment of S̃ is then given by:

S̃` =

∫ 1

−1

S̃ R` dµ,

=

∫ 1

−1

(
µ

df

dx
g + σtfg

)
R` dµ,

=
df

dx

∫ 1

−1

µ
∞∑
`′=0

g`′R`′ R` dµ+ σtf

∫ 1

−1

∞∑
`′=0

g`′R`′ R` dµ,

=
df

dx

∫ 1

−1

∞∑
`′=0

g`′

(
`′ + 1√

(2`′ + 1)(2`′ + 3)
R`′+1 +

`′√
(2`′ + 1)(2`′ − 1)

R`′−1

)
R` dµ

+ σtf g`.

(A.49)

Therefore, with the convention g−1 = 0,

S̃` =
df

dx

(
`√

(2`+ 1)(2`− 1)
g`−1 +

`+ 1√
(2`+ 1)(2`+ 3)

g`+1

)
+ σtf g`. (A.50)
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APPENDIX B

ROSSELAND-AVERAGED CROSS-SECTIONS FOR THE MULTIGROUP

CROOKED PIPE TEST PROBLEM

The purpose of this appendix is to show how we determine the temperature-

dependent 2-group cross-sections for the multigroup Crooked Pipe test problem in

Section 3.4.4.

B.1 Model Opacity

We follow the model opacity given in [63]:

σa(ν, T ) = σ0
1− exp (−hν/kT )

(hν)3
, (B.1)

where σ0 is an arbitrary constant.1 In addition, ν is the photon frequency.

Considering the g-th group with an energy interval [Eg−1, Eg] = [hνg−1, hνg], we

compute the multigroup Rosseland cross-sections:

σa,g =

∫ νg

νg−1

∂Bν

∂T
dν∫ νg

νg−1

1

σ

∂Bν

∂T
dν

, (B.2)

where the frequency-dependent Planckian Bν is given by:

Bν =
2hν3

c2

1

exp
(
hν
kT

)
− 1

, (B.3)

1Note that σ0 does not have the same units as σa but we keep the same notations as in [63].
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which implies:

∂Bν

∂T
=

2h2ν4

c2kT 2

exp
(
hν
kT

)(
exp

(
hν
kT

)
− 1
)2 . (B.4)

For numerical integration purposes, it can be useful to note that:

(exp (α)− 1)2 = exp (α) (exp (α/2)− exp (−α/2))2 ,

= 4 exp (α) (sinh (α/2))2 ,

=
4 exp (α)

csch2 (α/2)
,

(B.5)

and thus that, defining α = hν/kT :

∂Bν

∂T
=

h2ν4

2c2kT 2
csch2

(
hν

2kT

)
, (B.6)

this final expression avoiding to have potentially huge values on both the numerator

and denominator. Furthermore, for code verification, it is useful to recall that:

∫ ∞
0

Bνdν =
acT 4

4π
,

∫ ∞
0

∂Bν

∂T
dν =

acT 3

π
. (B.7)

B.2 Application to the Multigroup Crooked Pipe Test Problem

In this section, we explain how we chose the energy structure that led to the

determination of the multigroup cross-sections for the crooked pipe. Because of the

large number of unknowns in the one-group calculation, we choose to limit ourselves

to two energy groups, without loss of generality.

We will refer to the groups g = 1 and g = 2 as the thermal and fast groups,

respectively. Besides, the red and blue regions from Fig. 3.6 are called thick and thin

regions, respectively.
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B.2.1 Energy Structure

To determine the energy bounds of the two groups, let us first look at the Planck-

ian distributions for particular temperatures. Physically speaking, the maximum

temperature in the Crooked Pipe test problem is T = 0.3 keV while the minimum2

temperature is T = 0.05 keV. Fig. B.1 shows the distributions for these two temper-

atures. It therefore appears that the vast majority of the Planckian re-emission will

occur between hνmin ≡ 1 eV and hνmax ≡ 10 keV.

Now, the question is to determine what the frequency limit ν1 between the two

energy groups should be.

First, we want to have the energy mostly injected in the fast group so that the

filtering is mainly needed therein. The curve corresponding to T = 0.3 keV on

Fig. B.1 actually also represents the emission profile imposed at the left entrance of

the pipe.

Second, we of course need the Planckian re-emission inside the pipe to have some

contribution to the thermal group (otherwise, we might as well run a one-group

calculation). The curve corresponding to T = 0.05 keV and T = 0.1 keV on Figure

B.1 gives us a good idea of what the re-emission profile will look like at early times.

Therefore, if we want to have most of the re-emission corresponding to T < 0.1

keV and to T = 0.3 keV to occur mostly in the thermal and fast groups, respectively,

a good trade-off could be:

hν1 ≡ 0.3 keV. (B.8)

2The temperature can actually go slightly below 50 eV near the boundaries of the domain and
in particular near the right entrance of the pipe. This, however, happens far from the main regions
of interest, which are located after the first elbow in the pipe.
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Figure B.1: Value of B(ν, T ) as a function of hν for several values of T . The curves
for T = 0.05 keV and T = 0.1 keV have been respectively been multiplied by 100
and 20.

In summary, our energy structure is chosen to be:

(hνmin, hν1, hνmax) = (0.001 keV, 0.3 keV, 10 keV). (B.9)
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B.2.2 Initial and Boundary Conditions

For the one-group – or gray – calculation, we imposed the following incoming

Dirichlet boundary condition at the left entrance of the pipe:

Ψd =
acT 4

L

4π
, TL = 0.3 keV. (B.10)

In other words, we enforced that the radiation field and the material internal energy

in the region for x < 0 are at equilibrium.

Similarly, for a multigroup calculation, we then have (from the transport equation

in steady-state and infinite medium):

Ψd
g = Bg(TL) =

∫ νg

νg−1

B(ν, TL)dν. (B.11)

Likewise, the initial conditions should be given by:

Ψg(t = 0) = Bg(T0) =

∫ νg

νg−1

B(ν, T0)dν, (B.12)

where T0 = 0.05 keV is the initial temperature.

B.2.3 Temperature-Dependent Cross-Sections

We choose σ0 in Eq. B.1 such that the initial (i.e. for T = 0.05 keV) cross-section

for the thermal group is equal to the one-group cross-sections of the Crooked Pipe.

Table B.1 then gives the values for the fast and thermal groups in the thick and thin

regions and different values of the temperature.

Using a power interpolation, we obtain:

σa,thick, thermal(T ) = 41.00T−0.5163, (B.13)
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Thin region Thick region
T (keV) Thermal group Fast group Thermal group Fast group Ratio

0.05 0.2000 2.576E-2 200.0 25.76 7.76
0.06 0.1734 1.980E-2 173.4 19.80 8.76
0.07 0.1577 1.515E-2 157.7 15.15 10.4
0.08 0.1472 1.162E-2 147.2 11.62 12.7
0.09 0.1392 8.989E-3 139.2 8.99 15.5
0.1 0.1328 7.026E-3 132.8 7.03 18.9
0.11 0.1274 5.557E-3 127.4 5.56 22.9
0.12 0.1226 4.447E-3 122.6 4.45 27.6
0.13 0.1183 3.601E-3 118.3 3.60 32.8
0.14 0.1143 2.949E-3 114.3 2.95 38.8
0.15 0.1106 2.440E-3 110.6 2.44 45.3
0.16 0.1072 2.039E-3 107.2 2.04 52.6
0.17 0.1040 1.719E-3 104.0 1.72 60.5
0.18 0.1010 1.461E-3 101.0 1.46 69.1
0.19 0.0981 1.251E-3 98.1 1.25 78.4
0.2 0.0954 1.079E-3 95.4 1.08 88.4
0.21 0.0928 9.371E-4 92.8 0.937 99.1
0.22 0.0904 8.185E-4 90.4 0.818 110
0.23 0.0881 7.188E-4 88.1 0.719 123
0.24 0.0859 6.346E-4 85.9 0.635 135
0.25 0.0838 5.629E-4 83.8 0.563 149
0.26 0.0818 5.015E-4 81.8 0.502 163
0.27 0.0799 4.487E-4 79.9 0.449 178
0.28 0.0780 4.030E-4 78.0 0.403 194
0.29 0.0763 3.632E-4 76.3 0.363 210
0.3 0.0746 3.285E-4 74.6 0.329 227

Table B.1: Rosseland-averaged temperature-dependent cross-sections for the 2-group
Crooked Pipe test problem in cm−1. The last column shows the ratio of the thermal
to fast cross-sections (for either the thin or the thick region).

σa,thick, fast(T ) = 0.01702T−2.564, (B.14)

where T is expressed in keV and σa in cm−1 and with the coefficients of determination

being R2
thermal = 0.996 and R2

fast = 0.993, respectively, These are used as definitions

for σa in the thick region in Section 3.4.4. The values in the thin regions are 1000
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times less.

B.2.4 Implementation

From an implementation point of view, it was noticed that lagging the temper-

ature dependency of the cross-sections (i.e. computing them with the value of the

temperature from the previous time step) accelerated the solver convergence and

minimally changed the results.
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APPENDIX C

USEFUL MATRIX PROPERTY FOR THE EQUIVALENCE OF THE

EVEN-PARITY PN AND THE ’EVEN’ SAAF–PN FORMULATIONS

In this appendix, we consider Eq. 4.4 where we disregard – for simplicity – the

fission terms. As a reminder, it can then be written:

~Ω · ~∇Ψ + σt(~r)Ψ(~r, ~Ω) =
Ns∑
`=0

σs,`(~r)
∑̀
m=−`

Φm
` (~r)Rm

` (~Ω) + S(~r, ~Ω) = HΨ + S. (C.1)

We attempt to prove Eq. 4.79, although it would not be surprising if a more

concise proof could be derived. First, we define some operators that can be used to

derive Eq. 4.74 in a different way. Second, we use those operators to prove Eq. 4.79.

C.1 Alternative Derivation

We define the following operator1, for any function f = f(~Ω):

Ḡ−1 (~Ω) ≡ σtf −Hf. (C.2)

In particular,

Ḡ f = (σtI−H)−1f =
∞∑
`=0

∑̀
m=−`

1

σt − σs,`
Rm
` (~Ω)

∫
S2
Rm
` (~Ω′)f(~Ω′) dΩ′. (C.3)

Therefore, further defining:

Gf(~Ω) ≡ Ḡ f(~Ω)− 1

σt

f(~Ω), (C.4)

1Part of this derivation comes from a personal communication with Dr. Yaqi Wang.
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and using the fact that:

f(~Ω) =
∞∑
`=0

∑̀
m=−`

Rm
` (~Ω)

∫
S2
Rm
` (~Ω′)f(~Ω′) dΩ′, (C.5)

we have:

Gf(~Ω) =
Ns∑
`=0

∑̀
m=−`

σs,`
(σt − σs,`)σt

Rm
` (~Ω)

∫
S2
Rm
` (~Ω′)f(~Ω′) dΩ′, (C.6)

since σs,` = 0 for ` > Ns. Yet, Eq. 4.61 can then be expressed as:

Ψo = (σt −H)−1
(
So − ~Ω · ~∇Ψe

)
= ḠSo − Ḡ ~Ω · ~∇Ψe,

= ḠSo −G ~Ω · ~∇Ψe −
1

σt

~Ω · ~∇Ψe.
(C.7)

Besides, since ~Ω · ~∇Ψe is odd,

G ~Ω · ~∇Ψe =
Ns∑
`=0
` odd

∑̀
m=−`

σs,`
(σt − σs,`)σt

Rm
` (~Ω)

∫
S2
Rm
` (~Ω′) ~Ω′ · ~∇Ψe dΩ′,

=
N∑
`=0
` odd

∑̀
m=−`

σs,`
(σt − σs,`)σt

Rm
` (~Ω)

∫
S2
Rm
` (~Ω′) ~Ω′ · ~∇

(
RT
e Φe

)
dΩ′,

= RT
o diag
` odd
{ σs,`

(σt − σs,`)σt

, 0 ≤ |m| ≤ ` ≤ N ; } ~DT
e · ~∇Φe.

(C.8)

It follows:

∫
S2

RoG ~Ω · ~∇Ψe dΩ = diag
` odd
{ σs,`

(σt − σs,`)σt

, 0 ≤ |m| ≤ ` ≤ N ; } ~DT
e · ~∇Φe. (C.9)
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Similarly, it yields:

∫
S2

Ro

(
G~Ω · ~∇Ψe +

1

σt

~Ω · ~∇Ψe

)
dΩ = diag

` odd
{ 1

(σt − σs,`)
, 0 ≤ |m| ≤ ` ≤ N} ~DT

e ·~∇Φe.

(C.10)

In other words:

∫
S2

Ro Ḡ ~Ω · ~∇Ψe dΩ = (σtI− σs,o)
−1 ~DT

e · ~∇Φe. (C.11)

Likewise: ∫
S2

Ro Ḡ So dΩ = (σtI− σs,o)
−1 So, (C.12)

which means that (using Eq. C.7 multiplied with Ro and integrated over S2):

Φo =

∫
S2

Ro Ψo dΩ = (σtI− σs,o)
−1
(

So − ~DT
e · ~∇Φe

)
. (C.13)

This is another way of deriving Eq. (4.74).

C.2 Property

In addition, we have:

−
(
~Ω · ~∇Ψ∗e,Ψo

)
D

= −
(
~Ω · ~∇Ψ∗e, ḠSo −G ~Ω · ~∇Ψe −

1

σt

~Ω · ~∇Ψe

)
D
,

=

(
~Ω · ~∇Ψ∗e,

1

σt

~Ω · ~∇Ψe

)
D
−
(
~Ω · ~∇Ψ∗e, ḠSo

)
D

+
(
~Ω · ~∇Ψ∗e, G ~Ω · ~∇Ψe

)
D
,

=

(
~Ω · ~∇Ψ∗e,

1

σt

~Ω · ~∇Ψe

)
D
−
(
~Ω · ~∇Ψ∗e, ḠSo

)
D

+

(
~Ω · ~∇Ψ∗e,R

T
o diag
` odd
{ σs,`

(σt − σs,`)σt

}~DT
e · ~∇Φe

)
D
.

(C.14)
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Expanding Ψe and Ψ∗e respectively as RT
e Φe and RT

e Φe, we have:

(
~Ω · ~∇Ψ∗e, ḠSo

)
D

=

∫
D

(
~∇Φ∗e

)T (∫
S2
~Ω ReR

T
o dΩ

)
(σtI− σs,o)

−1 So dr. (C.15)

It follows:

−
(
~Ω · ~∇Ψ∗e,Ψo

)
D

=

(
~∇Φ∗e,

1

σt

He
~∇Φe

)
D
−
(
~∇Φ∗e,

~De (σtI− σs,o)
−1 So

)
D

+

(
~∇Φ∗e,

~De diag
` odd
{ σs,`

(σt − σs,`)σt

}~DT
e · ~∇Φe

)
D
.

(C.16)

Yet, expanding Ψo as RT
o Φo and using Eq. 4.74 on the left hand-side, it reads:

(
~∇Φ∗e,

~De (σtI− σs,o)
−1 ~DT

e · ~∇Φe

)
D
−
(
~∇Φ∗e,

~De (σtI− σs,o)
−1 So

)
D

=

(
~∇Φ∗e,

1

σt

He
~∇Φe

)
D
−
(
~∇Φ∗e,

~De (σtI− σs,o)
−1 So

)
D

+

(
~∇Φ∗e,

~De diag
` odd
{ σs,`

(σt − σs,`)σt

}~DT
e · ~∇Φe

)
D
,

(C.17)

i.e.:

(
~∇Φ∗e,

~De (σtI− σs,o)
−1 ~DT

e · ~∇Φe

)
D

=

(
~∇Φ∗e,

1

σt

He
~∇Φe

)
D

+

(
~∇Φ∗e,

~De diag
` odd
{ σs,`

(σt − σs,`)σt

}~DT
e · ~∇Φe

)
D
.

(C.18)
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Thus, because:

(
~∇Φ∗e,

1

σt

He
~∇Φe

)
D
,

=
(
~∇Φ∗e,

~De (σtI− σs,o)
−1 ~DT

e · ~∇Φe

)
D
−
(
~∇Φ∗e,

~De diag
` odd
{ σs,`

(σt − σs,`)σt

}~DT
e · ~∇Φe

)
D
,

=

(
~∇Φ∗e,

~De diag
` odd
{ 1

(σt − σs,`)
− σs,`

(σt − σs,`)σt

}~DT
e · ~∇Φe

)
D
,

=

(
~∇Φ∗e,

1

σt

~De
~DT
e · ~∇Φe

)
D
,

(C.19)

we indeed have:

He = ~De
~DT
e , (C.20)

which is Eq. 4.79. It can also be rewritten:

He,u,v = De,u DT
e,v, (C.21)

for any u, v ∈ {1, ..., d}.
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APPENDIX D

SAAF–LS METHOD

In this section, we present the variational formulation for the SAAF–LS method

whose results are shown on Figures 5.1 and 5.2. It is noted that this method is only

mentioned for comparison purposes and to highlight why the conservative correction

yielding is so necessary.

D.1 Variational Formulation

D.1.1 LS on D0

As a reminder, the LS formulation applied to D0 is given by (see Eq. 4.23):

(LΨ?, LΨ)D0
+ 〈cΨ?, (Ψ−Ψinc)〉−∂D0

= (LΨ?, Hψ + S)D0
, (D.1)

which gives, in void:

(
~Ω · ~∇Ψ?, ~Ω · ~∇Ψ

)
D0

+ 〈cΨ?, (Ψ−Ψinc)〉−∂D0
= 0. (D.2)

Assuming continuity of Ψ across Γ (i.e. Ψ = Ψinc for any incoming direction), it

implies:

〈cΨ?, (Ψ−Ψinc)〉−Γ = 0, (D.3)

So the LS formulation on D0 simply reduces to:

(
~Ω · ~∇Ψ?, ~Ω · ~∇Ψ

)
D0

+ 〈cΨ?, (Ψ−Ψinc)〉−∂D0 = 0, (D.4)

where, as a reminder, ∂D0 = ∂D0 ∩ ∂D.
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D.1.2 SAAF on D1

Likewise, the SAAF formulation applied to D1 is given by (see Eq. 4.8):

(
~Ω · ~∇Ψ?,

1

σt

~Ω · ~∇Ψ

)
D1

+ (σtΨ
?,Ψ)D1

+ 〈Ψ?,Ψ〉+∂D1
− 〈Ψ?,Ψinc〉−∂D1

=

(
1

σt

~Ω · ~∇Ψ? + Ψ?, HΨ + S

)
D1

.

(D.5)

The boundary terms can be split between the terms on ∂D and the terms on Γ:

(
~Ω · ~∇Ψ?,

1

σt

~Ω · ~∇Ψ

)
D1

+ (σtΨ
?,Ψ)D1

+ 〈Ψ?,Ψ〉+∂D1 − 〈Ψ?,Ψinc〉−∂D1

+ 〈Ψ?,Ψ〉+,1Γ − 〈Ψ?,Ψinc〉−,1Γ =

(
1

σt

~Ω · ~∇Ψ? + Ψ?, HΨ + S

)
D1

.

(D.6)

In this expression, we have used the notation 〈·, ·〉±,1Γ to indicate that the angular

integration half-range ±~Ω · ~n(~r) > 0 is determined with ~n being the outward unit

vector normal to Γ with respect to D1 (i.e. locally pointing towards D0).

Again, assuming that Ψ is continuous across Γ, the terms on Γ are such that:

〈Ψ?,Ψ〉+,1Γ − 〈Ψ?,Ψinc〉−,1Γ = 〈Ψ?,Ψ〉1Γ (D.7)

where 〈·, ·〉1Γ means that the unit normal vector is pointing towards D0.
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D.1.3 Hybrid SAAF-LS Weak Formulation

Scaling the LS terms with 1/σ, we end up with the following hybrid SAAF-LS

weak formulation: find Ψ ∈ V such that for all Ψ∗ ∈ V ,

(
~Ω · ~∇Ψ?,

1

σt

~Ω · ~∇Ψ

)
D1

+

(
~Ω · ~∇Ψ?,

1

σ
~Ω · ~∇Ψ

)
D0

+ (σtΨ
?,Ψ)D1

+ 〈 c
σ

Ψ?, (Ψ−Ψinc)〉−∂D0 + 〈Ψ?,Ψ〉+∂D1 − 〈Ψ?,Ψinc〉−∂D1 + 〈Ψ?,Ψ〉1Γ

=

(
1

σt

~Ω · ~∇Ψ? + Ψ?, HΨ + S

)
D1

.

(D.8)

D.2 Properties

Although the resulting bilinear form is symmetric, it lacks global conservation –

even if we choose c = σ, which is the main reason why this method is pretty poor. In

particular, it does not even preserve the infinite solution presented in Section 4.6.1.
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