
AN INTELLIGENT TUTORING SYSTEM FOR

COMPUTER NUMERICAL CONTROL

A Thesis

by

QINBO LI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE

Chair of Committee, Yoonsuck Choe
Co-Chair of Committee, Sheng-Jen “Tony” Hsieh
Committee Members, Frank M. Shipman
Head of Department, Dilma Da Silva

August 2016

Major Subject: Computer Science

Copyright 2016 Qinbo Li

ABSTRACT

In recent years, the use of Intelligent Tutoring Systems (ITS) in classrooms and com-

munities has increased and they proved to be very effective.

For the domain of Computer Numerical Control (CNC), however, existing ap-

proaches in ITS are not applicable or will not work well. CNC programming is differ-

ent from computer programming languages, and students fail to solve CNC programming

problems mainly due to two reasons: (1) lack of problem solving skills and (2) misconcep-

tions or missing facts. CNC programming requires that students master a lot of facts and

concepts before they try to write a program.

We built an ITS for CNC called the “CNC-Tutor” and proposed a data-driven ap-

proach that can generate proper hints and feedback during the students’ problem solving

process. This approach is based on finding the most similar past submissions with the cur-

rent student’s solution. The similarity is measured by the proposed “Behavior & Machine

state distance” metric. Experiments show that the generated hints can help the students

solve the CNC programming problem and the generated feedback can help the students

to find their misconceptions. A survey on the effectiveness of our CNC-Tutor shows a

positive impact on the students.

ii

To my family

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Yoonsuck Choe, for letting me join

the Neural Intelligence Laboratory, and for his continuous guidance and advice throughout

my entire Master of Science degree research.

I would also like to thank my co-chair, Dr. Sheng-Jen “Tony” Hsieh, for offering

me the opportunity to work as a graduate assistant in the Rockwell Automation Laboratory

and for guiding me throughout this research.

I am also grateful to my committee member Dr. Frank M. Shipman. His guidance

and advice have been very helpful to me.

Finally, I would like to thank my mother and father for their love and encouragement.

iv

NOMENCLATURE

AST Abstract Syntax Trees

BITS Bayesian Intelligent Tutoring System

CBT Computer-Based Training

CNC Computer Numerical Control

CPD Conditional Probability Distribution

CTAT Cognitive Tutor Authoring Tools

DAG Directed Acyclic Graph

ITS Intelligent Tutoring System

MDP Markov Decision Process

NC Numerical Control

NCG Next Generation Controller

NIST National Institute of Standards and Technology

NLG Natural Language Generation

QG Question Generation

NDCG Normalized Discounted Cumulative Gain

XAIDA the Experimental Advanced Design Advisor

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xii

1 INTRODUCTION . 1

1.1 Introduction . 1
1.2 Introduction to ITS . 2

1.2.1 Domain model . 5
1.2.2 Tutoring model . 6
1.2.3 Student model . 6
1.2.4 User interface . 7

1.3 ITS authoring tools . 7
1.4 Introduction to CNC . 8

1.4.1 Industrial applications and economic benefits 8
1.4.2 Machine functions . 9
1.4.3 CNC programming language . 10

1.5 Thesis organization . 12

2 LITERATURE REVIEW . 14

2.1 ITS for related domains . 14
2.2 ITS for computer programming . 14
2.3 Hint generation . 16

3 THE ARCHITECTURE OF THE CNC-TUTOR 18

vi

3.1 The learning module . 18
3.2 The quiz module . 20
3.3 The exercise module . 22

4 THE CNC INTERPRETER AND SIMULATOR 24

4.1 The CNC interpreter . 24
4.1.1 The preprocess stage . 25
4.1.2 Read the code and check the syntax 26
4.1.3 Execution . 26

4.2 The CNC simulator . 27

5 PROPOSED METHOD FOR HINT AND FEEDBACK GENERATION 30

5.1 The difficulties of hint generation for CNC code 30
5.1.1 The choice of cutting paths . 31
5.1.2 The choice of settings . 31
5.1.3 One line vs. multiple lines . 32
5.1.4 The order of the code . 32

5.2 The behavior & machine-state distance 33
5.3 Hint generation . 35
5.4 Feedback generation . 38

6 SYSTEM EVALUATION . 41

6.1 Pre-test and post-test . 41
6.2 Writing CNC code by hand vs. writing CNC code in CNC-Tutor 43
6.3 The accuracy of the generated hints . 43
6.4 The accuracy of the generated feedback 47
6.5 Learning style analysis . 50
6.6 The survey . 51

7 DISCUSSION AND CONCLUSION . 53

7.1 Contributions . 53
7.2 Limitations . 53
7.3 Future works . 54

REFERENCES . 55

APPENDIX A PRE-TEST AND POST-TEST 60

vii

A.1 The result of the pre-test and post-test . 60

APPENDIX B HINT GENERATION . 63

B.1 Hint generation templates . 63

viii

LIST OF FIGURES

FIGURE Page

1.1 The two layer structure of an ITS . 3

1.2 The four main components of an ITS 4

1.3 A typical CNC machine center . 9

1.4 An example of hole operation . 10

1.5 An example of the movement of a CNC machine 11

1.6 An example of one block in a part program 12

1.7 The execution sequence of a part program 13

3.1 The system architecture of the CNC-Tutor 19

3.2 Part of the DAG . 20

3.3 User interface for the learning module 21

3.4 User interface for the quiz module . 22

3.5 An example of the exercise description page 23

3.6 The problem solving environment . 23

5.1 The blueprint for the example exercise 31

5.2 The options for circular profiles: the IJK word or the R word 32

5.3 Two equivalent CNC code: (a) is written in one line and (b) is written in
multiple lines . 33

ix

5.4 Two equivalent CNC code written in different orders 33

5.5 CNC code example and one of its machine states 35

5.6 An example of behavior alignment. 36

5.7 The hint generation template for the deep hole operation (G83) 37

5.8 An example of how hints are generated 38

5.9 The feedback lists . 39

6.1 The paired box plot of the pre-test (1) and post-test (2) score,
where (a) and (c) are the first population group, and (b) and

6.2 The exercise problems used in the evaluation: (a) shows the
problem used in the pre-test and post-test; (b) shows the
problem used in CNC-Tutor 44

6.3 An example of a meaningful hint generated by the system 45

6.4 A failed case of generated hints . 45

6.5 The blueprint for the two more complicate exercises 47

6.6 An example of the students’ submission 48

6.7 The blueprint of the exercise problem used for the feedback evaluation . 49

6.8 An example in the dataset: (a) shows a program in dataset and (b) shows
the execution result of the program . 50

6.9 An example of the learning styles survey result 51

6.10 The survey of the first group (limited CNC knowledge) 52

x

(d) are the second population group 42

6.11 The survey of the second group (basic CNC knowledge) 52

xi

LIST OF TABLES

TABLE Page

1.1 Addresses in the part programming language 12

4.1 A partial list of the information in the “Block” [1] 26

4.2 A partial list of the error code and error messages [1] 27

4.3 G code groups [1] . 28

4.4 M code groups [1] . 28

4.5 Example of the machine functions provided by the CNC simulator [1] . 29

5.1 The machine states that are used to calculate the machine state distance
[1] . 34

xii

1 INTRODUCTION

1.1 Introduction

Intelligent tutoring systems (ITS) are computer-based teaching environments that

incorporate mathematics, cognitive science, natural language processing, human-computer

interaction, etc [2]. In recent years, the use of ITS in classrooms and communities has

increased and they proved to be very effective. For example, the Cognitive Tutor developed

by Carnegie Learning which aims to help students learn algebra was used by more than

1,700 schools in 2004 [3].

For the domain of Computer Numerical Control, however, existing approaches in

ITS are not applicable or will not work well. Students fail to solve a CNC programming

problem usually for two reasons: (1) lack of problem solving skills and (2) misconcep-

tions or missing facts. The ITS for computer programming focus mainly on improving the

students’ problem solving skills by providing the next-step hint. Different from computer

programming, CNC programming requires that students master a lot of facts and concepts

before they try to write the program. Such concepts and facts include, for example, the

physical characteristics of the machine, the usage of CNC programming terminology, the

correct spindle and feed rate, etc.

We built an ITS for CNC called the “CNC-Tutor” and proposed a data-driven ap-

proach that can generate proper feedback and hints during the students’ problem solving

process. This approach generates hints and feedback based on similar correct solutions

1

from an archive of programs by former students. The similarity is measured by the pro-

posed “Behavior & Machine state distance” metric. Experiments show that the generated

hints can help the students solve the CNC problem and the generated feedback can help

the students to find their misconceptions. A survey on the effectiveness of our CNC-Tutor

shows a positive impact on the students.

1.2 Introduction to ITS

The history of ITS is believed to have started from the book “Intelligent Tutoring

Systems” by Sleeman and Brown (1982) [4]. During the 30-year development following

the publication of the book, many ITSs have been built and several of them have been

adopted in classrooms and communities. Cognitive Tutor, developed by Carnegie Learn-

ing, is now used in more than 2,000 schools. The main distinction between ITS and tradi-

tional computer-based training (CBT) is that ITS knows what to teach and how to teach.

The learning content presented to the students is determined dynamically. When a stu-

dent gets stuck somewhere, the system can provide appropriate hints and explanations as

needed. The student can then ask further questions.

Before researchers started to investigate ITS, there were already many Computer-

based Training (CBT) systems. ITS go beyond traditional CBTs in that they incorporate

mathematics, cognitive science, and human-computer interaction to incorporate deep do-

main knowledge and pedagogy. Recently, a dozen of successful ITS have been built, in-

cluding systems for the field of algebra, geometry, physics, electronics, and information

2

technology.

Many ITSs follow a two-level structure, such as cognitive tutors, constraint-based

tutors, and case-based tutors. The two-level structure refers to the outer loop and the inner

loop. The outer loop is responsible for the selection of learning content to be presented, the

need to give a test, the judgment of mastery of a concept, and other global aspect during

the teaching. The inner loop, on the other hand, focuses on tracking the individual steps

during the problem solving process. If the student has some questions or got stuck, the

inner loop of an ITS can give responses such as hints and explanations. Figure 1.1 shows

the two-level structure of an ITS (adapted from Koedinger et al., 2013 [3]).

Figure 1.1: The two layer structure of an ITS [3]

There are four main components in an ITS: (1) domain model (knowledge base), (2)

3

tutoring model (teaching model), (3) student model, and (4) user interface (student inter-

face). The domain model contains the representations of curriculum knowledge, problem

solving expertise, and all other domain dependent knowledge. The tutoring model con-

tains teaching strategies, for example, what is the sequence in which the learning content

is presented, when to give a test, what type of feedback to give, etc. The student model

encodes the status of the current student, such as the mastery of a concept and so on. The

user interface determines how to present the content to the students and how to give feed-

back and other interactive content. Figure 1.2 shows the four main components of an ITS

(adapted from Nkambou et al., 2010 [5]).

Figure 1.2: The four main components of an ITS [5]

4

1.2.1 Domain model

Domain model can represent different types of knowledge in the specified domain.

There are mainly three categories of knowledge that can be represented by the domain

model: (1) curriculum knowledge and structures, (2) simulation models, and (3) domain

expertise.

Curriculum knowledge illustrates the relationships between curriculum elements

such as concepts, topics, and modules. For example, XAIDA (The Experimental Advanced

Design Advisor) uses semantic networks to represent the curriculum structure. Pedagog-

ical properties, such as the importance and difficulty of a topic, can also be incorporated

into the curriculum knowledge.

Simulation models provide a simulation of the world, a device, or a component. This

feature is important in some ITSs, for example, RIDES [6], an application for authoring

and delivering simulation-centered tutorials, models device component behavior, provid-

ing students opportunities to learn by doing.

Domain expertise includes problem solving skills, procedural skills, and domain

concepts. Different systems usually have different types of domain expertise knowledge

through different representations, based on the domain they are tutoring. The methods for

representing knowledge include production rules, semantic networks, conceptual graphs

and so on [7]. For example, XAIDA uses semantic network for maintenance proce-

dures, causal reasoning schemes for theory of operation, and fault tree for troubleshooting.

Demonstr8 [8] system uses production rules to create arithmetic cognitive tutors.

5

An alternative approach is Constraint-Based Modeling (CBM) [9]. Rather than mod-

eling the procedural steps of a good solution, CBM models the declarative structure of a

good solution. For example, for the problem of subtraction, the following constraints must

be satisfied: “Increments and corresponding decrements must occur together”. ITS that

uses constraint-based modeling includes SQL-Tutor [10], ERM-Tutor [11], etc.

1.2.2 Tutoring model

Tutoring model contains teaching strategies, for example, what is the sequence in

which the learning content is presented, when to give a test, and what type of feedback

to give. Many ITSs encode the tutoring model in the student model or the domain model

[12].

1.2.3 Student model

Student model represents the status the student is currently in. The status can be

progress, mastery, or learning achievement. There are various forms to represent the stu-

dent model, for example, a numeric score of the topic, or a list of misconceptions, etc.

Many ITS use “overlay” student model. For “overlay” student model, the structure

is the same with the curriculum structure in the domain model, and the difference is that

there is a score assigned to each concept that represents how much mastery the student has

of a concept.

6

1.2.4 User interface

The user interface of an ITS usually cannot compare to most computer-based train-

ing and employee training frameworks created by multimedia authoring tools. However,

behind the multimedia authoring tools is a shallow representation of pedagogy and domain

knowledge. Building a user friendly interface of an ITS can take more than 50% of the

development time.

1.3 ITS authoring tools

Building an intelligent tutor is difficult and time-consuming, because it usually re-

quires the cooperation between developers and domain experts. Multimedia authoring

tools are widely available for building computer aided instruction and the authored learn-

ing sequences, and teaching strategies are somehow fixed. Many authoring tools for ITS

has been built since the begining of the development of ITS [13].

One of the most well-known authoring tools for ITS is Cognitive Tutor Authoring

Tools (CTAT). The Cognitive Tutor is based on a cognitive model called ACT-R (adap-

tive control of thought - rational) [14]. ACT-R has a model to solve the problem, and it

traces the students’ actions while they try to solve the problem so that it can provide hints

and explanations as necessary. The model that ACT-R uses is in the form of production

rules. The production rule follows the format: “IF [STATE S] THEN [ACTION A]”. AS-

TUS is another domain-independent ITS authoring tool that focuses on problem solving

tasks. There are two types of knowledge that can be represented in ASTUS: declarative

7

knowledge and procedural knowledge. For well-definited domains, ASTUS can provide

feedback or next-step hints.

SIMQUEST [15] and RIDES [6] are authoring tools for simulation-based ITS.

Simulation-based learning environment is desired where the natrual environment is un-

available, expensive, or dangerous. REDEEM [16] and Eon [17] are the authoring tools

for ITS that focus on teaching strategies.

1.4 Introduction to CNC

Numerical control refers to an approach of operating a manufacturing machine by a

code and it has been used in industry for over 40 years [18]. Numerical control systems

usually have four components: tape punch, tape reader, controller, and NC machine. Tape

punch is used to punch the written instructions into tape. Tape reader reads the tape and

converts to an electrical signal code. Controller takes the code as input and then causes

the NC machine to respond. NC machines execute motions encoded in the signal code to

manufacture parts. Computer numerical control (CNC) refers to a NC machine with an on-

board computer. Figure 1.3 shows a typical CNC machine center (adapted from Valentino

and Goldenberg, 2012 [18]).

1.4.1 Industrial applications and economic benefits

The industrial applications of CNC include machining, fabrication and welding,

presswork, inspection and measurement, assembly, etc. The economic benefits of adopting

CNC includes: (1) CNC provides flexible automation where changeover from one job to

8

Figure 1.3: A typical CNC machine center [18]

another is rapid; (2) CNC can produce components with repeatable accuracy; (3) repeat

orders require no additional work; and (4) CNC makes short production runs economical

where high volume production is not required.

1.4.2 Machine functions

There are three categories of operations in CNC: (1) hole operations, (2) linear op-

erations, and (3) circular operations. Figure 1.4 (adapted from Overby, 2010 [19]) shows

a simple drilling hole operation: the tool end moves on the z-axis only and then retracts in

the z-axis to clear z [19]. These operations are implemented by machine functions, which

are encoded in the ROM (Read-only memory) of the on-board computer at the time of

manufacture.

9

Figure 1.4: An example of hole operation [19]

CNC machines execute machining functions by performing linear motion and rotary

motion. The implementation can vary from machine to machine. Figure 1.5 shows an

example of the movement of a CNC machine (adapted form Valentino and Goldenberg,

2012 [18]). The table can move in the XY-axis plane and the spindle in the Z-axis plane.

These movements are encoded in the machine functions and the programmers only need

to program the tool end location.

1.4.3 CNC programming language

The programming language for CNC is called the part programming language (or

CNC programming language). A complete part program is a set of instructions that de-

scribe the movement of the tool end. The basic element of the part programming language

is a “word”. A “word” consists of a programming character following by a number. The

words encode important information such the coordination of the tool end or the motion

to be executed. The programming character is also called “address”, which explains the

10

Figure 1.5: An example of the movement of a CNC machine [18]

meaning of the number followed. For example, the address “X” indicates the x-axis coor-

dinate, and the word “X5” means “the coordinate of x-axis is 5 in the current length unit”.

Table 1.1 describes the Addresses in the part programming language.

Each line of code can contain one word or multiple words, and such line of code is

also called a “block”. A sequence of blocks forms a complete part program. The execution

sequence of a part program is one block by another. Figure 1.6 illustrates an example of

one block and Figure 1.7 explains the execution sequence (adapted form Valentino and

Goldenberg, 2012 [18]).

11

Table 1.1: Addresses in the part programming language

Address Description
N sequence number
G preparatory function

X, Y, Z dimension words
I, J, K dimension words

U, V, W dimension words
A, B, C dimension words
P, Q, R dimension words

F feed rate
S spindle function
T tool function
M miscellaneous function

H, D auxiliary input function

Figure 1.6: An example of one block in a part program [18]

1.5 Thesis organization

The rest of this thesis is organized as follows.

The 2nd chapter is the literature review.

The 3rd chapter explains the overall system architecture of the CNC-Tutor.

The 4th Chapter introduces the CNC interpreter that is used by our system.

The 5th Chapter details the proposed hint and feedback generation approach.

The 6th Chapter is the evaluation of our CNC-Tutor.

12

Figure 1.7: The execution sequence of a part program [18]

The 7th Chapter is the contributions, limitions at and future works.

13

2 LITERATURE REVIEW

2.1 ITS for related domains

To the best of our knowledge, by the time of this thesis there is no ITS for Computer

Numerical Control. Perhaps the most related work in terms of the domain is XAIDA –

an ITS authoring tool for equipment maintenance [13]. XAIDA uses semantic networks

to represent the physical characteristics of equipments and procedures; causal reasoning

schemes to represent theory of operation; and fault trees to represent troubleshooting.

XAIDA uses the “overlay” student model. That is, the structure of the student model

is the same as the domain model, and the difference between the domain model and the

student model is that each node in the semantic network of the student model has a label

representing whether the student has mastered the concept or not. In addition, the student

model has a list of misconceptions. When a student gives a wrong response to a question,

a misconception is inserted into the list. However, there is still a great difference between

equipment maintenance and CNC. In addition, XAIDA does not involve the problem solv-

ing procedure.

2.2 ITS for computer programming

BITS [20] is a Bayesian intelligent tutoring system for computer programming. It

uses Bayesian network to represent the structure of the problem as well as the students’

knowledge. A Bayesian network consists of a directed acyclic graph (DAG) and a condi-

14

tional probability distribution (CPD) table. Each node in the DAG is related to a concept in

the domain. A directed link from a node to another node, say, node A to node B, indicates

that node A is the prerequisite to learn node B. The DAG is constructed manually and the

CPD table is obtained by previous exams in that course. The main functions that BITS pro-

vides are navigation support, prerequisite recommendations, and learning sequence gener-

ation. The navigation support function classifies each node into three categories: already

known, ready to learn, and not ready to learn, based on the students’ feedback and the pre-

defined CPD table. Next, the student can start to learn the recommended “ready to learn”

nodes. Prerequisite recommendations provide recommended concepts when the student

gets stuck on the current node. The last function enables students to choose a particular

lecture they want to learn without learning all the lectures before it. This is done by finding

the minimum prerequisite based on the CPD table and the students’ knowledge and then

generating the learning sequence.

Another tutoring system for programming, QuizJET [21], is a system that supports

authoring, delivery and assessment of parameterized questions for Java programming. Pa-

rameterized questions are a pattern of questions that are created initially by domain experts,

and the pattern is replaced by randomly generated parameters at the presentation time. This

way, a lot of similar questions can be used to evaluate the students’ performance. The

questions can cover critical topics in Java such as objects, classes, interfaces, inheritances,

and exceptions. The advantage of this approach is that the authoring cost is significantly

reduced and the possibility of plagiarism is also reduced. Students who solved more ques-

15

tions using this system showed better overall performance in the final exam. QuizPACK

(Quizzes for Parameterized Assessment of C Knowledge) [22], is a similar system for the

C programming language.

JO-Tutor [23] is another ITS for JAVA. It can generate problems automatically based

on randomly instantiated templates. The topics of the problem include functions, classes,

inheritance, polymorphism, and so on. It also has an expert module to solve these problems

so as to judge the response and provide feedback.

2.3 Hint generation

Automatically generating hints is another area in programming tutors [24, 25, 26].

Computer programming is known to be ill-defined [27] because the solution space is too

large or even infinite, especially when incorrect solutions are taken into consideration.

Rivers et al. proposed a data-driven approach to generate programming hints automatically

[28]. They use abstract syntax trees (ASTs) [25] to reduce the solution space: different

programs with the same semantics can reduce to the same abstract syntax tree using copy

propagation. The next step is to find the AST in prior student data that has the closest

distance to the AST of the current program. The final step is generating hints based on

the difference between the AST of the current program and the ASTs of a prior correct

program.

Jin et al. proposed a hint generation approach that can generate hints automatically

based on the completed solutions [26]. They used the linkage graph to represent the solu-

16

tion space. In the linkage graph, the nodes are the program statements while the edges are

the order dependencies. To generate hints, the algorithm first compares the linkage graph

of the student’s program with the linkage graph from the past completed programs. It will

then find the closest one in the markov decision process (MDP) and generates hints based

on the next best state in the MDP. Then the new linkage graph will be added to the dataset.

Their experiment shows that among 16 submissions, the approach can generate meaningful

hints for 14 of them.

17

3 THE ARCHITECTURE OF THE CNC-TUTOR

In the domain of computer numerical control, there are two types of knowledge the

students need to learn. One is the concepts and facts, and the other is the problem solving

skills. Our CNC tutoring system called CNC-Tutor consists of a learning module, a quiz

module, and an exercise module. The learning module and the quiz module are focused on

teaching concepts and facts, while the exercise module focuses on improving the students’

problem solving skills. Under these three modules are two data models: one is the domain

model and the other is the student model. The domain model manages all the data related

to the domain knowledge, for example, what is the prerequisite of a lesson, how to generate

questions for a lesson, what are the answers and feedback for a question, and so on. The

student model traces the students’ state, for example, whether a student has passed a quiz,

how many facts a student already knows, and so on. In addition, in order to evaluate

the students’ CNC code and generate hints and feedback, there is a model called CNC

interpreter under the exercise module. Figure 3.1 illustrates the overall system architecture

of the CNC-Tutor. The rest of this section describes in detail the learning module, the quiz

module, and the exercise module.

3.1 The learning module

The learning content module contains all the knowledge the student needs to know. If

the student is new to the domain, he or she may follow the suggested learning sequence pre-

18

Figure 3.1: The system architecture of the CNC-Tutor

defined by domain experts. If students already has some knowledge in this domain, they

can choose to learn whatever they want to. When they have difficulties in understanding

the content, it is very likely that they missed some prerequisite for the content they chose.

At this point, the system can recommend the prerequisite for the current learning content.

We use directed acyclic graph (DAG) to represent the curriculum structure knowl-

edge (domain model). In the DAG, each node represents a piece of learning content. An

edge from a source node to a destination node indicates that the source node is a prerequi-

site to learn the destination node. Currently, the system has 49 nodes and 65 edges. Figure

19

3.2 shows a portion of the DAG and Figure 3.3 shows the user interface for the learning

module.

Figure 3.2: Part of the DAG

3.2 The quiz module

The second module of the system is the quiz module. Although students can choose

any sequence to learn the content, they need to follow a fixed sequence to pass the quizzes.

The fixed sequence is predefined based on the DAG such that students have to pass the

easier quizzes to get access to more challenging ones.

The quiz module uses the student model to generate questions. The student model

basically is a copy of the DAG with an additional attribute for each node, whether the

20

Figure 3.3: User interface for the learning module

student has mastered the learning content or not. There are many questions for each piece

of learning content, and the system will randomly select one or more questions. If the

student answers all the questions correctly, the system will mark the learning content as

learned. Otherwise, if the student answers one of the questions incorrectly, the node will

be marked directly as unlearned.

The quiz module generates questions in the following way. If the student already

learned the content, questions related to that content will not be asked, otherwise, it will

randomly pick some questions relate to that content. In such a way, the student will always

get questions that they have not seen before, or the questions that they answered incorrectly.

If a student answered a question incorrectly, the system will not generate the same question

again, instead, similar questions will be presented to the student. Figure 3.4 shows the user

21

interface for the quiz module.

Figure 3.4: User interface for the quiz module

3.3 The exercise module

The exercise module mainly focuses on improving the students’ problem solving

skills. It provides a part’s blueprint and a list of parameters to cut the part, and asks the

students to write CNC code to solve the problem. Figure 3.5 and Figure 3.6 show the

exercise description page and the problem solving environment, respectively.

22

Figure 3.5: An example of the exercise description page

Figure 3.6: The problem solving environment

23

4 THE CNC INTERPRETER AND SIMULATOR

Different from computer programming languages such as C++ and Java, CNC pro-

gramming does not have variables, complex mathematic operations, functions and so on.

However, evaluating CNC code is not necessarily easier than judging C++ code. Judging

a C++ code, in most cases, is to run the program and compare the output with the desired

output. This is not applicable for judging a CNC code, because a CNC program is run on

CNC machine and the output goes directly to the part in the real world. Therefore, we built

a CNC program interpreter and simulator to run the programs and judge the code. Since

the CNC interpreter is developed in PHP and it is heavily based on the National Institute

of Standards and Technology (NIST) “RS274NGC” project [1], we named this interpreter

as “RS274NGC-PHP”. RS274 is a CNC programming language standard from NIST and

“NGC” means the Next Generation Controller.

4.1 The CNC interpreter

Our CNC program interpreter follows the RS274 standard. It is designed for a three

axes CNC machine. The axes are X, Y and Z axes which form a right-handed coordi-

nate system of orthogonal linear axes. The rest of this section describes the detail of the

interpreter.

Algorithm 1 describes the overall process of the CNC interpreter and simulator.

There are mainly three stages during the whole process of the interpreter and simulator:

24

(1) preprocess, (2) read the code into Block and check the syntax, and (3) execution, de-

tailed below.

Algorithm 1

CNC_interpreter_simulator(code)

Pre -process(code)

for each line of code

Read the code and save the information into Block

if there exists syntax errors

return the error code

end

Call CNC simulator to execute

return the trajectories and the machine states

end

4.1.1 The preprocess stage

In the preprocess stage, a list of meaningless character is removed, which includes:

whitespace, tab, new line, carriage return, NULL-byte, and vertical tab. Then, the inter-

preter will check whether the comments in the code are closed. If it finds any unclosed

comments, it will generate a syntax error and report it. Otherwise, all the comment will

be removed from the code. The last step is to turn the code into lowercase, since the CNC

code is case-insensitive.

25

4.1.2 Read the code and check the syntax

The interpreter will then read the code and save the information to a data structure

called “Block”. The information in the “Block” contains all the information for the CNC

simulator to execute the code. Table 4.1 shows a partial list of the information in the

“Block” [1].

Table 4.1: A partial list of the information in the “Block” [1]

Block element Description
f number the feed rate
x number the x axis coordination of the machine
y number the y axis coordination of the machine
z number the z axis coordination of the machine
g modes the entered G code in the current block
m modes the entered M code in the current block

While the interpreter reads the code, it checks the syntax of the CNC code. If it

detects a syntax error in a function, it will save the error message and its function name

in a stack for debuging purpose and return the error code to the calling function, and the

calling function will recursively record the function name and return the error code. The

interpreter will then report the error message and stop. Table 4.2 shows some typical error

code and its corresponding error messages. In total, there are 197 error code messages [1].

4.1.3 Execution

After the interpreter finished reading one Block and no syntax error is reported, it will

call the Application Program Interface (API) provided by the CNC simulator to execute

26

Table 4.2: A partial list of the error code and error messages [1]

Error code Error message
Error 5 All axes missing with G92

Error 84 G code out of range
Error 88 I word with no G2 or G3 or G87 to use it

Error 101 Mixed radius ijk format for arc
Error 120 Must use G0 or G1 with G53

the Block.

In CNC, some commands remain in effect once they are set until they are canceled or

replaced by other commands. These commands are called modal commands, while other

commands are non-modal commands.

In CNC, the G code and the M code are arranged in groups. The commands in the

same group usually have similar function, so they cannot be in effect at the same time. The

code in the same group are either all modal or all non-modal. Table 4.3 describes G code

groups and Table 4.4 describes M code groups [1].

4.2 The CNC simulator

The CNC simulator simulates a CNC machine with all the key functions and all the

key machine states. Table 4.5 shows the functions provided by the CNC simulator.

While the interpreter executes the code, it generates a message about the change of

the machine state. This message will be return to the students as feedback to help them

understand the execution process of a CNC program.

The correctness of the CNC program is judged by comparing the cutting paths with

27

Table 4.3: G code groups [1]

Group G code Description Modal

0 G4, G10, G28, G30, G53,
G92, G92.1, G92.2, G92.3 none non-modal

1 G0,G1,G2,G3,G38.2,
G80,G81-89 motion modal

2 G17-19 plane selection modal
3 G90, G91 distance mode modal
5 G93, G94 feed rate mode modal
6 G20, G21 units modal
7 G40-42 cutter radius compensation modal
8 G43, G49 tool length offset modal

10 G98, G99 return mode in canned cycles modal

12 G54, G55, G56, G57, G58,
G59, G59.1, G59.2, G59.3 coordinate system selection modal

13 G61, G61.1, G64 path control mode modal

Table 4.4: M code groups [1]

Group M code Description Modal
4 M0, M1, M2, M30, M60 stopping modal
6 M6 tool change modal
7 M3, M4, M5 spindle turning modal
8 M7, M8, M9 coolant modal

9 M48, M49 enable/disable feed and
speed override switches modal

28

Table 4.5: Example of the machine functions provided by the CNC simulator [1]

Functionality Functions

Representation SET_ORIGIN_OFFSETS()
USE_LENGTH_UNITS()

Free Space Motion STRAIGHT_TRAVERSE()

Machining Attributes

SELECT_PLANE()
SET_FEED_RATE()

SET_FEED_REFERENCE()
SET_MOTION_CONTROL_MODE()

START_SPEED_FEED_SYNCH()
STOP_SPEED_FEED_SYNCH()

Machining Functions
ARC_FEED()

DWELL()
STRAIGHT_FEED()

Probe Functions STRAIGHT_PROBE()

Program Functions
OPTIONAL_PROGRAM_STOP()

PROGRAM_END()
PROGRAM_STOP()

the desired cutting paths. If all the cutting paths match with the desired cutting paths and

no syntax or run-time error is reported, the judging result of the program is set as correct.

29

5 PROPOSED METHOD FOR HINT AND FEEDBACK

GENERATION

The key feature of our CNC-Tutor is that it can generate proper hints or feedback

when the students are writing the CNC code. In the domain of ITS, the term “feedback”

represents all kinds of messages provided by the system (examples, hints, correctness,

etc.) [29]. However, in our system, hint is a message of the next-step action that leads

to the correct solution, while feedback is a list of messages about the missing facts or

misconceptions that the students might have. Feedback is provided only when the students

failed to solve the problem.

Generating hints for programs is difficult because of the large solution space. We

propose a data-driven approach to generate hints and feedback for CNC program by using

past correct solutions.

5.1 The difficulties of hint generation for CNC code

Although the complexity of CNC code cannot compare to the computer programming

code like C++, it is still very difficult to analyze and generate hints for CNC code. This is

mainly because of four characteristics of CNC code: (1) The number of paths to cut a part

is large; (2) The number of setting options is large; (3) One line of code can be written in

multiple lines; and (4) The order of the code can vary, with the same outcome.

30

5.1.1 The choice of cutting paths

There are many choices of cutting paths to cut a part, as long as the outcome matches

with the blueprint. Consider the following example: the student is asked to write a pro-

gram to cut the shape in Figure 5.1 (adapted from lab manual of MMET 181, Texas A&M

University). The student can choose any of the four key points to start the cutting, and

he/she can also choose to cut the part clockwise or counterclockwise. Actually, the student

can choose any point on the curve, as long as the outcome is the same.

Figure 5.1: The blueprint for the example exercise

5.1.2 The choice of settings

Even if the cutting paths are fixed, the students can choose different settings to cut

the part. For example, they can choose either G20 (inch mode) or G21 (millimeter mode).

For circular profiles, the options are the IJK word or the R word, illustrated in Figure 5.2

(adapted form Valentino and Goldenberg, 2012 [18]). The choice of the parameter settings

31

will affect the code that follows. For example, all the coordinates will be related to a fixed

zero point if the distance mode is G90 (absolute), while the coordinates will be related to

the last position if the distance mode is G91 (incremental).

Figure 5.2: The options for circular profiles: the IJK word or the R word [18]

5.1.3 One line vs. multiple lines

As stated in Chapter 4, if G code and M code belong to modal groups, they will re-

main in effect once it is set until it is canceled or replaced by another command. Therefore,

many NC code can be written in one line or in multiple line with the same semantics. For

example, the code in Figure 5.3 (a) and the code in Figure 5.3 (b) are equivalent.

5.1.4 The order of the code

There is no fixed order to write CNC code, as discussed in the “CNC interpreter”

section. For example, the code in Figure 5.4 (a) has the same effect with the code in Figure

5.4 (b).

32

Figure 5.3: Two equivalent CNC code: (a) is written in one line and (b) is written in
multiple lines

Figure 5.4: Two equivalent CNC code written in different orders

5.2 The behavior & machine-state distance

Because of the characteristics of CNC code, the solution space of a CNC program-

ming problem is very large. A solution space is a graph representation of how the students

try to solve the problem [28]. The node of the graph stands for the state in the problem

solving process and the edges stand for the students’ action. We notice that if the students

follow the same path in the solution space (i.e. they choose the same strategy to solve

the problem), the behavior (the cutting paths) of their programs will be the same, and the

machine states transition during the execution in the CNC simulator will be similar, re-

gardless of however their code differ from each other. Therefore, we propose an approach

33

that can compare the similarity between the current student’s solution and the past labeled

data to automatically generate proper feedback. We named the distance measurement as

“Behavior & Machine-state distance”.

The behavior distance is measured by the Euclidean distance between the cutting path

of the current student’s solution and the past solutions. If the behavior distance is smaller

than the tolerance, then these solutions follow the same cutting path. The behavior distance

is calculated before the machine state distance, because it is meaningless to compare the

machine state while the cutting paths are different.

The machine state is discussed in the CNC simulator section. For computation ef-

ficiency, only a portion of the machine state is recorded to calculate the machine state

distance. Table 5.1 lists all the machine states that participate in the calculation of machine

state distance. For example, the machine states of the code in Figure 5.5 (a) are illustrated

in Figure 5.5 (b).

Table 5.1: The machine states that are used to calculate the machine state distance [1]

Machine state Description
x the current x-axis value
y the current y-axis value
z the current z-axis value

distance distance mode: absolute or incremental
length units inch or millimeter
feed mode the current feedmode
feed rate the current feed rate in ipm

motion mode the motion to be executed
spindle the current spindle mode
flood whether the flood is on
tool the selected tool number

34

Figure 5.5: CNC code example and one of its machine states

The machine state distance is calculated by comparing the difference of each state.

Because the parameters, settings, and machine states are used to cause an effect on the

parts, so before comparing the distance between the machine state, their behavior must be

the same. That is, the current coordination of the tool end and the motion to be executed

must be the same. Therefore, each line of code in one program is aligned to the code that

has the same “behavior” of another program. This process is called “Behavior alignment”.

Figure 5.6 shows an example of behavior of “Behavior alignment”.

5.3 Hint generation

During the problem solving process, the students can request for hints by click the

“hint” button in the left-bottom column of the page. The system will then find the closest

code in the database in terms of the “Behavior & Machine-state distance”. If the behavior

and machine state of the current code is in accordance with the past code, the next line of

35

Figure 5.6: An example of behavior alignment

machine state of the past code is used to generate hint: for each different machine state, a

natural language hint is generated.

Natural language generation (NLG) is another research area that is broadly used in

question generation (QG), which generates natural language questions from unstructured

text [30]. There are three categories of methods for NLG: (1) syntax-based method, (2)

semantics-based methods, and (3) template-based methods. Syntax-based methods parse

the sentence to determine the syntactic structure, and then apply syntactic transformation

rules and question word replacement to generate questions. Semantics-based methods

change declarative sentences into questions by transformations as syntax-based methods.

However, semantics-based methods use semantic analysis instead of syntactic analysis.

36

Template-based methods, on the other hand, use question templates to generate questions,

such that the language generation can leverage human expertise.

For CNC programming hints, because it is highly domain specific, we use a template-

based method to generate natural language hints. For example, Figure 5.7 shows the tem-

plate for the deep hole operation (G83).

Figure 5.7: The hint generation template for the deep hole operation (G83)

Algorithm 2 describes the procedure of hint generation and Figure 5.8 shows an

example of how the hints are generated. In Figure 5.8, (a) and (b) are the current student’s

code and the past code, respectively; (c) is the machine state of the last line of the code in

(a); (d) is the machine state of the 9th line of the code in (b); and (e) is the generated hints

based on the machine state difference between (c) and (d).

Algorithm 2

Hint_generation(code A)

CNC_interpreter_simulator(code A)

for each current code in the database

calculate the distance with A

end

37

Find the code (B) with the smallest distance with A

Calculate the machine state difference between A and B

Generate natural language hints using the templates

Figure 5.8: An example of how hints are generated

5.4 Feedback generation

After the student submits a CNC code, the exercise model will call the CNC inter-

preter to execute the code and judge whether the result matches with the requirement. An

38

incorrect submission may be caused by syntax error or behavior error. The exercise will

generate a candidate list of learning content, which might contain the concepts or facts that

the student missed. For example, if the CNC interpreter returns a syntax error - “error 7:

arc radius too small to reach end point”, then the learning content in Figure 5.9 (a) will be

added into the candidate list. If the CNC interpreter does not return a syntax error but the

cutting path does not match with the blue print, the learning content in Figure 5.9 (b) will

be added into the candidate list.

Figure 5.9: The feedback lists

The label of an incorrect CNC code in the databse is a list of learning contents that

can help the student to fix the error in the code. Assume the database contains some labeled

data, the exercise model will then search for the past labeled data to find the most similar

code based on the “Behavior & Machine-state distance” metric and use the labels to rank

the candidate list. The goal is to rank the most related learning content as high as possible,

39

because the students might only click the items near the top. If multiple code have the same

“Behavior & Machine-state distance” to the current code, the system will vote to rank the

candidate list. Then the feedback list is returned to the student as feedback. Algorithm 3

describes the procedure of the feedback generation process.

Algorithm 3

Feedback_generation(code)

CNC_interpreter_simulator(code)

if the result is incorrect

for each incorrent code in the database

calculate distance with A

end

Find a list of code with the smallest distance

Generate the feedback list

Rank the list using the label of the closest code

return the feedback list

end

Our assumption is that the learning contents in the learning module contain all the

information the students need to master to solve the exercise problems. The students can

click on the feedback items to review the learning content and then come back to solve the

problem.

40

6 SYSTEM EVALUATION

The system is evaluated in five ways: (1) pre-test and post-test; (2) writing CNC

code by hand vs. writing CNC code in CNC-Tutor; (3) accuracy of the generated hints and

feedback; (4) learning style evaluation; and (5) the students’ opinion survey.

6.1 Pre-test and post-test

There were 93 students who participated in the evaluation of the CNC-Tutor. We

designed a pre-test and a post-test that focus on CNC concepts and facts, as well as CNC

programming. The students were asked to take the pre-test first. After they finished the

pre-test, they were asked to go through the selected topics in the CNC-Tutor, and try to

write CNC code to solve an exercise problem. The average time that they spent on the

CNC-Tutor was around one hour. In the end, they were asked to take the post-test. Based

on the students’ initial knowledge on CNC, they were divided into two population groups:

the first group had 51 students who had limited knowledge on CNC while the second group

had 42 students who had some basic knowledge on CNC.

For the first population group, the average points of the pre-test and the post-test

were 30.08 and 62.45, respectively. For the second population group, the average points

for the pre-test and the post-test were 37.45 and 62.64, respectively. The two groups had

similar post-test scores, while the second group had higher pre-test score. The gains of the

two groups were 32.37 and 25.19, respectively.

41

The paired T-test rejects the null hypothesis (no difference in pre-test vs. post-test)

at the 1% significance level on both population groups with the T value of 10.26 and 6.99,

respectively. Therefore, there is strong evidence that the CNC-Tutor leads to statistically

significant improvement. Figure 6.1 shows the box plots and the paired box plots of the

pre-test and post-test scores of the two population groups.

Figure 6.1: The paired box plot of the pre-test (1) and post-test (2) score, where (a) and (c)
are the first population group, and (b) and (d) are the second population group

For the questions that focus on CNC programming (30 points in total), the average

score of the first group increased from 1.29 to 6.12, while the average score of the second

42

group increased from 1.07 to 7.5. The gains for the programming questions are 4.83 and

6.43.

The pre-test and post-test shows that the CNC-Tutor can help the students to learn

the CNC concepts and the CNC programming effectively.

6.2 Writing CNC code by hand vs. writing CNC code in CNC-Tutor

In the pre-test and the post-test, there was one exercise problem that asks the students

to write CNC code to solve the problem illustrated in Figure 6.2 (a). When the students use

the CNC-Tutor, they were asked to solve an exercise problem illustrated in Figure 6.2 (b) in

the problem solving environment where they can get hints and feedback. The two exercise

problems are similar in terms of the difficulty: both of them contain simple linear and arc

movement, and ignore cutter compensation. Among the 93 students that parcipated in the

evaluation, all of them were asked to finish the exercise problem in the post-test, while

only 42 students attempted the exercise problem in the CNC-Tutor. There were only 3

students who solved the problem in the post-test, while 21 students solved the problem in

CNC-Tutor.

6.3 The accuracy of the generated hints

The hint generation approach is evaluated in two ways. First, we had 42 students to

use our CNC-Tutor to write code for an exercise. Every time the students request hints,

the system records their code and the generated hints. Among the 220 hints recorded, we

found 162 hints were meaningful: the accuracy of the hint generation approach was 73.6%.

43

Figure 6.2: The exercise problems used in the evaluation: (a) shows the problem used in
the pre-test and post-test; (b) shows the problem used in CNC-Tutor

Figure 6.3 shows an example of a meaningful hint generated by the system.

Most of the failed cases were due to the students choosing cutting paths or param-

eters that the database does not have yet. This can be improved as the database records

additional correct solutions. Figure 6.4 shows a failed case that not caused by this reason.

In this case, the student chose the cutting path in Figure 6.4 (b), however, the student used

G2 (clockwise circular cutting) instead of G3 (counterclockwise circular cutting). As re-

sult, the difference between the machine state and the closest program’s machine state is

the motion mode, while the end coordinates are the same. Hence, the system generates

meaningless hint: “Counterclockwise circular motion - move to.”. Figure 6.4 shows (a)

the code, (b) the generated hint, and (c) the behavior. This case failed because the code

contains behavior error. If the code has syntax error, the generated hints will include the

44

Figure 6.3: An example of a meaningful hint generated by the system

syntax error message. However, if the code does not have any syntax error, but it has be-

havior error, the student needs to submit the code to get the feedback. In the feedback page,

the message returned by the interpreter, the visualization, and the feedback message can

help the student figure out the problem.

Figure 6.4: A failed case of generated hints

Because the hint generation approach is data-driven, the more data the database has,

45

the higher accuracy of our hint generation approach can achieve. Therefore, the second

evaluation approach focuses on the adaptability of the hint generation approach. We di-

vided 38 students into two groups, each group with 19 students. The students were asked to

write CNC code to cut along a simple path. To have a better code coverage, we generated

hints for each line of their code. For the first student group, the database only contained

5 correct sample codes, which were used to generate the hints. For the second group, the

database contained the 5 sample codes as well as the codes from the first group. It is note-

worthy that the code in the first group contained both correct codes and incorrect codes.

Our approach can generate 50 meaningful hints out of 79 (65.8% accuracy) for the first

group, and 66 meaningful hints out of 74 (89.2% accuracy) for the second.

Because the students that participated in the evaluation only had basic knowledge in

CNC, and writing CNC code by hand is always difficult, the two experiments above used a

simple exercise. This exercise focuses on the basic vocabulary used in NC code and ignores

the z-axis movement and cutting compensations and so on. Therefore, we evaluated the

hint generation approach on two more complicated exercises with a synthesized dataset,

which contained 30 incomplete or problematic CNC code. The blueprint for these two

exercises are shown in Figure 6.5 (adapted form Valentino and Goldenberg, 2012 [18]):

one focuses on linear operations and the other focuses on hole operations. Our approach

generated 26 useful hints out of 30 (86.67%).

46

Figure 6.5: The blueprint for the two more complicate exercises [18]

6.4 The accuracy of the generated feedback

The feedback generation approach requires labeled data in the database. We took

60 of the students’ code to evaluate the feedback generation approach. We labeled 30

of the code and used the other 30 for evaluation. We consider the feedback generation

as a ranking problem, because our goal is to help the students find out missing facts or

misconceptions by ranking the most helpful learning content as high as possible. Therefore,

we use the normalized discounted cumulative gain (NDCG) to evaluate the performance

of our feedback generation approach. The calculation of NDCG is shown below, where p

means the number of items; reli means the importance of item i; and IDCG means ideal

DCG value.

NDCG =
DCG
IDCG

DCG =
p

∑
i=2

rel1
log2 i

We calculated NDCG@1 and NDCG@3 (NDCG@n means the NDCG value for the

first n items), because during the evaluation by the students, we observed that most of them

47

only clicked on the first three items in the feedback list. To calculate the NDCG score, we

set the importance of the first three relevant items as 3, 2, and 1. The value of NDCG@1

and NDCG@3 were 0.6 and 0.662, respectively. Figure 6.6 (a) shows an example of the

code submission. The student planned to use inch mode but forgot to set G20 (inch unit)

word, so the system will use G21 (millimeter mode) by default. The interpreter will not

report any syntax error. However, the CNC machine will cut an undersized part. Figure

6.6 (b) illustrates the execution result of this program. The feedback generated by our

approach is “Lesson 43: G20 an G21 – Length Units”.

Figure 6.6: An example of the students’ submission

The feedback generation approach is also evaluated on a more difficult exercise prob-

lem (illustrated in Figure 6.7, adapted form Valentino and Goldenberg, 2012 [18]) with a

synthesized dataset. This dataset contains 25 CNC code, which is created based on the

common mistakes the students made in the course “MMET 181 - Manufacturing and As-

48

sembly Processes” and “MMET 380 - Computer-Aided Manufacturing”. Figure 6.8 (a)

shows an example CNC code in the dataset and Figure 6.8 (b) shows the messages from

the CNC interpreter. The CNC interpreter reports a syntax error: “Syntax error 152 Radius

to end of arc differs from radius to start”. However, it is incorrect not because of the wrong

radius, but because of the wrong distance mode which causes the wrong starting point of

the arc and thus leads to the syntax error.

Figure 6.7: The blueprint of the exercise problem used for the feedback evaluation [18]

The dataset is randomly divided into two sets: one set contains 10 CNC programs,

which is stored in the database, representing the past students’ submissions, and the other

set contains 15 CNC programs, representing the new submissions. The result of NDCG@1

and NDCG@3 were 0.733 and 0.872, respectively.

49

Figure 6.8: An example in the dataset: (a) shows a program in dataset and (b) shows the
execution result of the program

6.5 Learning style analysis

Among the 93 students who participated in the pre-test and post-test evaluation, 40

students participated in the survey of learning styles [31]. The learning style have four

dimensions: (1) active (ACT) or reflective (REF), (2) sensing (SEN) or intuitive (INT), (3)

visual (VIS) or verbal (VRB), and (4) sequential (SEQ) or global (GLO). Active learners

prefer to get involved in the experiments, while reflective learners prefer to think about the

information first. Sensing learners like using well-established methods to solve a problem

and they are patient in learning new facts, while intuitive learners usually are innovative

in the problem solving process, and they dislike repetitive work. Visual learners prefer to

learn by viewing diagrams, demonstrations, and so on, while verbal learners prefer to learn

through text and dialogue. Sequential learners tend to absorb new information sequentially,

while global learners tend to choose the learning content in the order they like. Figure 6.9

shows an example of the student’s result of the survey.

50

Figure 6.9: An example of the learning styles survey result

We analyzed the correlation coefficient between the learning style and the learning

gain in the pre-test and post-test. For each dimension of the learning style, we set the value

from -11 to 11, from left to right in Figure 6.9 (11a to 11b, respectively). For the four

learning styles, the correlation coefficients were -0.21, -0.13, -0.23, and 0.09, respectively.

The result shows that active learners and visual learners tend to benefit more from our

CNC-Tutor, compared with reflective learners and verbal learners.

6.6 The survey

There were 93 students who participated in the evaluation survey of our system. De-

pending on their knowledge level on CNC, the students were divided into two groups. The

students in the first group had limited knowledge on CNC while the students in the second

group knew basic knowledge in CNC. Figure 6.10 shows the overall rating of the first group

and Figure 6.11 shows the overall rating of the second group. The major difference of the

51

ratings was on the third question: “The instructional materials were easy to understand”,

where the first group gave only 4.75 points, while the second group gave 5.09. Overall,

the survey of the CNC-Tutor shows a positive impact of the CNC-Tutor on the students’

learning experience.

Figure 6.10: The survey of the first group (limited CNC knowledge)

Figure 6.11: The survey of the second group (basic CNC knowledge)

52

7 DISCUSSION AND CONCLUSION

7.1 Contributions

We built an Intelligent Tutoring System for the domain of Computer Numerical Con-

trol. The learning module and the quiz module focus on teaching the facts and concepts,

while the exercise module focuses on improving the students’ problem solving skills. We

proposed a novel hint and feedback generation approach that can generate proper hints and

feedback based on the past data. Experiment showed that the proposed approach can be

used to generate meaningful hints over 85% of the time, and the feedback can help the stu-

dents find out missing facts and misconceptions effectively. The survey shows a positive

impact on the students’ learning experience.

7.2 Limitations

The feedback generation approach requires labeled data in the database. However,

analyzing and labeling CNC code is difficult and time consuming. In addition, the feed-

back messages are limited to the learning content that helps the students to figure out their

missing facts or misconceptions. During the evaluation, we observed that these feedback

messages are more helpful for the students in finding out missing facts. For the miscon-

ceptions, however, error-specific messages might be more helpful.

53

7.3 Future works

Currently, our CNC-Tutor only contains basic facts, concepts and CNC programming

knowledge. More lectures and exercises such as “Computer-Aided Manufacturing” can be

added to the CNC-Tutor.

Because analyzing and labeling CNC code is difficult, we consider using a crowd-

sourcing approach that allows students themselves to provide help messages.

54

REFERENCES

[1] T. R. Kramer, F. M. Proctor, and E. Messina, “The nist rs274/ngc interpreter-version

3,” National Institute of Standards and Technology (NIST), NISTIR, vol. 6556, 2000.

[2] A. C. Graesser, M. W. Conley, and A. Olney, Intelligent tutoring systems. Washing-

ton, DC: American Psychological Association, 2012.

[3] K. R. Koedinger, E. Brunskill, R. S. Baker, E. A. McLaughlin, and J. Stamper, “New

potentials for data-driven intelligent tutoring system development and optimization,”

AI Magazine, vol. 34, no. 3, pp. 27–41, 2013.

[4] D. Sleeman and J. S. Brown, Intelligent tutoring systems. London : Academic Press,

1982.

[5] R. Nkambou, J. Bourdeau, and R. Mizoguchi, Introduction: what are intelligent tu-

toring systems, and why this book?, pp. 1–12. Berlin, Heidelberg: Springer, 2010.

[6] A. Munro, M. C. Johnson, Q. A. Pizzini, D. S. Surmon, D. M. Towne, and J. L.

Wogulis, “Authoring simulation-centered tutors with rides,” International Journal of

Artificial Intelligence in Education, vol. 8, no. 3-4, pp. 284–316, 1997.

[7] R. Nkambou, Modeling the domain: an introduction to the expert module, pp. 15–32.

Berlin, Heidelberg: Springer, 2010.

55

[8] S. B. Blessing, A programming by demonstration authoring tool for model-tracing

tutors, pp. 93–119. Dordrecht: Springer, 2003.

[9] A. Mitrovic, K. R. Koedinger, and B. Martin, A comparative analysis of cognitive

tutoring and constraint-based modeling, pp. 313–322. Berlin, Heidelberg: Springer,

2003.

[10] A. Mitrovic, “An intelligent sql tutor on the web,” International Journal of Artificial

Intelligence in Education, vol. 13, no. 2-4, pp. 173–197, 2003.

[11] N. Milik, M. Marshall, and A. Mitrovic, “Teaching logical database design in erm-

tutor,” in Proceedings of the 8th International Conference on Intelligent Tutoring

Systems, pp. 707–709, 2006.

[12] J. Bourdeau and M. Grandbastien, Modeling tutoring knowledge, pp. 123–143.

Berlin, Heidelberg: Springer, 2010.

[13] T. Murray, An overview of intelligent tutoring system authoring tools: updated anal-

ysis of the state of the art, pp. 491–544. Dordrecht: Springer, 2003.

[14] J. R. Anderson and C. Lebiere, The atomic components of thought. Mathway, NJ:

Lawrence Erlbaum, 1998.

[15] W. R. V. Joolingen and T. D. Jong, Simquest, pp. 1–31. Dordrecht: Springer, 2003.

56

[16] S. Ainsworth, N. Major, S. Grimshaw, M. Hayes, J. Underwood, B. Williams,

and D. Wood, REDEEM: simple intelligent tutoring systems from usable tools,

pp. 205–232. Dordrecht: Springer, 2003.

[17] T. Murray, Eon: authoring tools for content, instructional strategy, student model

and interface design, pp. 309–339. Dordrecht: Springer, 2003.

[18] J. Valentino and J. Goldenberg, Introduction to computer numerical control. Upper

Saddle River, NJ: Pearson, 2012.

[19] A. Overby, CNCmachining handbook: building, programming, and implementation.

New York, NY: McGraw-Hill, Inc., 2010.

[20] C. J. Butz, S. Hua, and R. B. Maguire, “A web-based intelligent tutoring system for

computer programming,” in Proceedings of International Conference on Web Intel-

ligence, pp. 159–165, IEEE, 2004.

[21] I.-H. Hsiao, P. Brusilovsky, and S. Sosnovsky, “Web-based parameterized ques-

tions for object-oriented programming,” in Proceedings of World Conference on E-

Learning, E-Learn, pp. 17–21, 2008.

[22] P. Brusilovsky and S. Sosnovsky, “Individualized exercises for self-assessment of

programming knowledge: An evaluation of quizpack,” Journal on Educational Re-

sources in Computing, vol. 5, no. 3, p. 6, 2005.

57

[23] S. Abu-Naser, A. Ahmed, N. Al-Masri, A. Deeb, E. Moshtaha, and M. AbuLamdy,

“An intelligent tutoring system for learning java objects,” International Journal of

Artificial Intelligence and Applications, vol. 2, no. 2, 2011.

[24] W. Jin, T. Barnes, J. Stamper, M. J. Eagle, M. W. Johnson, and L. Lehmann, Program

representation for automatic hint generation for a data-driven novice programming

tutor, pp. 304–309. Berlin, Heidelberg: Springer, 2012.

[25] K. Rivers and K. R. Koedinger, A canonicalizing model for building programming

tutors, pp. 591–593. Berlin, Heidelberg: Springer, 2012.

[26] T. Lazar and I. Bratko, Data-driven program synthesis for hint generation in pro-

gramming tutors, pp. 306–311. Cham: Springer International Publishing, 2014.

[27] N.-T. Le and W. Menzel, “Using weighted constraints to diagnose errors in logic

programming–the case of an ill-defined domain,” International Journal of Artificial

Intelligence in Education, vol. 19, no. 4, pp. 381–400, 2009.

[28] K. Rivers and K. R. Koedinger, “Automatic generation of programming feedback: A

data-driven approach,” in The First Workshop on AI-supported Education for Com-

puter Science (AIEDCS 2013), p. 50, 2013.

[29] S. Gross, B. Mokbel, B. Hammer, and N. Pinkwart, “Feedback provision strategies

in intelligent tutoring systems based on clustered solution spaces,” in DeLFI 2012:

Die 10. e-Learning Fachtagung Informatik (J. Desel, J. M. Haake, and C. Spannagel,

eds.), pp. 27–38, Köllen, 2012.

58

[30] D. Lindberg, F. Popowich, J. Nesbit, and P. Winne, “Generating natural language

questions to support learning on-line,” in Proceedings of the 14th European Work-

shop on Natural Language Generation, pp. 105–114, Association for Computational

Linguistics, 2013.

[31] R. M. Felder and L. K. Silverman, “Learning and teaching styles in engineering ed-

ucation,” Engineering education, vol. 78, no. 7, pp. 674–681, 1988.

59

APPENDIX A

PRE-TEST AND POST-TEST

A.1 The result of the pre-test and post-test

Table A.1: The result of the pre-test and post-test

Population group Pre-test score Post-test score Learning gain
1 40 50 10
1 12 42 30
1 44 34 -10
1 0 60 60
1 20 30 10
1 70 70 0
1 10 62 52
1 20 72 52
1 40 72 32
1 62 64 2
1 10 52 42
1 32 32 0
1 10 52 42
1 30 50 20
1 2 44 42
1 20 50 30
1 0 70 70
1 44 40 -4
1 10 70 60
1 40 40 0
1 24 40 16
1 30 84 54
1 30 40 10
1 30 90 60
1 24 76 52
1 32 66 34
1 36 70 34
1 16 50 34
1 42 26 -16

60

Table A.1 continued

Population group Pre-test score Post-test score Learning gain
1 32 70 38
1 34 50 16
1 22 60 38
1 30 64 34
1 20 94 74
1 36 52 16
1 10 60 50
1 22 64 42
1 67 85 18
1 36 75 39
1 85 85 0
1 32 85 53
1 0 54 54
1 32 59 27
1 20 85 65
1 32 65 33
1 40 60 20
1 24 85 61
1 30 85 55
1 20 65 45
1 40 85 45
1 90 100 10
2 54 75 21
2 40 45 5
2 42 61 19
2 42 26 -16
2 10 46 36
2 70 85 15
2 24 26 2
2 44 83 39
2 36 75 39
2 30 40 10
2 30 64 34
2 49 100 51
2 60 85 25
2 60 75 15
2 50 75 25
2 32 44 12

61

Table A.1 continued

Population group Pre-test score Post-test score Learning gain
2 32 85 53
2 34 70 36
2 42 42 0
2 30 42 12
2 85 85 0
2 22 75 53
2 30 52 22
2 32 60 28
2 30 70 40
2 66 85 19
2 20 6 -14
2 22 60 38
2 30 79 49
2 46 75 29
2 10 100 90
2 22 50 28
2 30 85 55
2 22 60 38
2 20 32 12
2 30 65 35
2 81 36 -45
2 54 70 16
2 26 50 24
2 60 70 10
2 2 62 60
2 22 60 38

62

APPENDIX B

HINT GENERATION

B.1 Hint generation templates

Rapid positioning: G0

<template >

Rapid positioning (G0) - move to (_x, _y)

</template >

Linear interpolation: G1

<template >

Linear motion (G1) - move to (_x, _y)

</template >

Circular interpolation: G2 and G3

<template >

Clockwise circular motion (G2) - move to (_x,_y)

</template >

<template >

Counterclockwise circular motion (G3) - move to (_x,_y)

</template >

63

Hole operation

<template >

Simple drilling at (_x,_y)

</template >

<template >

Counterbore cycle at (_x,_y)

</template >

<template >

Deep hole operation at (_x,_y)

</template >

Length Unit

<template >

Change length unit to: (_length_unit)

</template >

Distance mode

<template >

Change distance mode to: (_distance_mode)

</template >

Feed rate

64

<template >

Set feed rate (F) at (_feed_rate) ipm

</template >

Spindle speed

<template >

Set speed (S) at (_speed) rpm

</template >

Spindle

<template >

Turn spindle off

</template >

<template >

Turn spindle on (clockwise) - M3

</template >

<template >

Turn spindle on (counterclockwise) - M4

</template >

Tool number

<template >

Select tool number (T): (_tool_number)

65

</template >

Program end

<template >

Check program end (M2 or M30)

</template >

Correct

<template >

Looks good , you can submit it.

</template >

66

