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ABSTRACT

A robust technique for handling parameter and strategy uncertainty in a pursuit-

evasion framework is developed. The method is a receding horizon controller valid for

problem classes with singularly perturbed trajectories that approximates the optimal

feedback solution with small loss in optimality. The receding horizon method is used

to ensure the controller is robust to incorrect or extraneous information about an

opposing player’s dynamics or strategy. A simple analytic pursuit-evasion game

motivates the method by demonstrating that the receding horizon solution closely

approximates the optimal solution and may be solved much faster. Simulations of a

nonlinear game show that the receding horizon controller is especially useful when it

is unknown whether the opposing player is performing an active or passive maneuver.

In several cases, the receding horizon controller is shown to become more effective

than a game-optimal controller acting with an incorrect strategy estimate. The

major limitation of the technique for a nonlinear system is the expensive solution

time; therefore, the optimal control problem is translated to a nonlinear programming

problem and the test cases are repeated. Finally, the test cases are run on hardware

to validate the method for real-time practical operation.

The singular-perturbation algorithm applied herein is valid only for a small

subset of all pursuit and evasion games. Nonetheless, the methods developed here

can in theory be used for any generic game scenario, given that sufficient computing

power is available to find the numerical solutions.
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NOMENCLATURE

ACADO Automatic Control and Dynamic Optimization

CPU Central Processing Unit

HC Homicidal Chauffuer

HWIL Hardware-in-the-Loop

LASR Land Air and Space Robotics (laboratory)

LO Loss in Optimality

LOS Line of Sight

LSQ Least-Squares

MC Monte Carlo

MoCap Motion Capture

NASA National Aeronautics and Space Administration

NLP Nonlinear Programming

OCP Optimal Control Problem

PE Pursuit-Evasion

R Set of Real Numbers

RHC Receding Horizon Control

ROS Robot Operating Software

SPT Singular(ly) Perturbed Trajectory

SQP Sequential Quadratic Programming

ZOH Zero Order Hold
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CHAPTER I

INTRODUCTION

I.A. Motivation

Differential game theory and pursuit-evasion (PE) game theory have existed

since 1951, when Rufus Isaacs published his fundamental work for RAND corporation

[1]. Differential game theory is a special class of optimal control that employs a

game-theoretic approach. It becomes differential theory when the modeled systems

have dynamics governed by differential equations. Pursuit-Evasion problems are

differential games where some pursuer attempts to intercept or capture an evader by

minimizing a chosen performance index, or cost function, while the evader acts to

prevent that outcome. A zero-sum game is one in which a gain in performance for

one player translates to an equivalent loss in performance for the other.

Traditionally, pursuit-evasion theory considers a one-to-one player mapping with

a zero-sum formulation, but has expanded to cover many scenarios like cooperative

capture and nonzero-sum solutions [2, 3]. Today PE theory can be used to model

interactions between competing aerospace vehicles, missile defense systems, or satel-

lite relative motion, capture, and rendezvous. The standard PE approach to these

problems assumes a deterministic, idealized encounter; however, we know the reality

to be susceptible to disturbances, sensor noise, and model, parameter, and strategy

uncertainty.

For minimum-time PE games, the ‘final-time-free’ optimal control is found over

an infinite horizon with terminal constraints. An excellent treatment of optimal con-
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trol theory is available in [4]. Most nonlinear systems require numerical minimization

to solve for the optimal control over the infinite horizon; analytic solutions do not

often exist. One problem inherent to solving the numerical infinite-horizon optimal

control is the computation complexity. Many solvers use interior point or sequential

quadratic programming (SQP) approaches to numerically solve for the control law

that minimizes the chosen cost function. These solutions may recover the optimal

control and trajectory, but often after heavy computation that cannot be reliably run

on hardware in real-time. Because of these limitations to the general pursuit-evasion

solution, a better approach is required. The solution presented herein is a receding

horizon control (RHC) that approximates the optimal solution with minimal loss in

optimality (LO).

Receding horizon control is an approach based on the idea of solving an optimal

control problem repeatedly over short fixed horizons. During each fixed horizon

period, a feedback approach can be implemented which corrects for errors from the

previous finite period. Two important parameters of the receding horizon approach

are the planning horizon length tH and the execution time tE. At the start of

each horizon, the optimal control over the interval [t0, t0 + tH ] is determined, and

the first term of the control sequence u = {ut0 , ut0+1, ...ut0+tH} is applied and held

for the duration of the execution time (execution time is synonymous with control

bandwidth here). This is depicted in Fig. I.1. This is by no means the first use of

RHC to solve PE games. In [5], it is used extensively to solve nonlinear PE games

of a certain model structure. In [6] and [7], a robust RHC, or model predictive

controller (MPC), control law is developed that ensures successful game completion
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Figure I.1: Graphic of a typical RHC scheme

of nonlinear systems by playing conservatively and assuming a worst-case strategy. A

real-time solver is written and validated for this approach. In [8] and [9], linear model

PE problems are solved by utilizing behavior learning laws to estimate the strategy

and parameters of the opposing player’s model. All are valuable contributions to the

field, but the goal of this work is to apply and validate a control structure that not

only (a) closely mimics the optimal solution and (b) is valid for nonlinear systems

and control but also (c) is not overly conservative, and (d) can be run online in

real-time.

I.B. Outline

The structure of this thesis is organized as follows: in Chapter II a simple

pursuit-evasion problem with a closed-form analytic solution is solved. Properties of

both the problem and its solution give insight to the benefits and limitations of the

receding horizon approach, and motivate RHC use for more general nonlinear and
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complex examples with uncertainty. In Chapter III, the homicidal chauffeur problem

is used as the dynamic model for higher-fidelity investigation and validation of the

receding horizon approach. A control is developed to return nearly the same solu-

tion as the numerical optimal control problem to within one percent difference. It is

both simulated in MATLAB and solved in real-time, and proper control approxima-

tions and assumptions are discussed. Chapter IV details the implementation of the

controller on actual hardware and the accompanying experimental results. For this,

the Land, Air, and Space Robotics (LASR) laboratory is utilized. The LASR lab

has a central focus toward the development and evaluation of guidance, navigation,

and control techniques on a variety of hardware-in-the-loop (HWIL) platforms and

is well equipped for this implementation and experimentation. Finally, Chapter V

contains a summary of all results and concludes with lessons learned and potential

future work and applications of this method.
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CHAPTER II

MOTIVATING PROBLEM: ONE-DIMENSIONAL RENDEZVOUS

II.A. Problem Statement

To introduce and motivate the use of the RHC method for pursuit-evasion games

with strategy uncertainty, a simple one-dimensional PE game is solved. Solution of

the game using both a closed-form feedback and a RHC method show that the

methods’ results differ only very slightly. By introducing an uncertainty or dynamic

change to the problem, it is shown that the RHC method closely approximates the

optimal feedback solution but never exceeds its performance. It is also shown that

the RHC algorithm can trade accuracy for speed and thus is a good candidate for

systems with numerical solutions that must be solved in real-time. The kinematic

model chosen for the simple example is of two double integrators, where only one

has constrained acceleration-level control. In a one-dimensional space, the goal of

the game is to match speed and position along an infinite line. This is shown in

Fig. II.1. The relative dynamics are written with respect to the pursuer such that a

negative relative position means that x1 < 0 and the evader is leading the pursuer.

The pursuer’s objective Jp is to minimize rendezvous time tf , where the subscript f

P E
x

Figure II.1: Double-integrator PE game illustration
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denotes the final time and rendezvous is defined as (x1(tf ), x2(tf )) = (0, 0).

ẋ1 = (vp − ve) = x2 (2.1)

ẋ2 = (u− 0) = u (2.2)

− 1 ≤ u ≤ 1 (2.3)

Jp = (tf − t0) =

∫ tf

t0

dt (2.4)

II.B. Analytical Solution

The double integrator problem is a classic literature example and its optimal

control solution can be found in several well-known texts [4, 10]. In the case where

the control is constrained to some admissible region u ∈ U , as is often physically

realistic, Pontryagin’s Minimum Principle defines the optimal value of u that mini-

mizes the Hamiltonian. For this class of linear minimum-time problems, the optimal

control is a bang-bang sequence [10]. The closed-form solution to the double integra-

tor problem presented here is a switching function dependent on the value of x1 [4].

When x1 > 0

u =


−1, x1 ≥ −1

2
x22 · sgn(x2)

1, otherwise

(2.5)

When x1 < 0

u =


1, x1 ≤ −1

2
x22 · sgn(x2)

−1, otherwise

(2.6)
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In Eqs. 2.5 and 2.6, sgn is the signum function. The analytical solution is plotted

in Fig. II.2 for a case where the evader begins ahead of the pursuer with an initially

larger velocity. As shown in the third subfigure, the minimum-time optimal control

is bang-bang. It is assumed that both players have full and correct knowledge of the

other’s state.
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Figure II.2: Analytical feedback controller for 1D-rendezvous example

II.C. Receding Horizon Solution

A receding horizon approach to this problem cannot employ a minimum-time

objective function Jp to find a solution, since the solution is found on repeated

finite-time horizons. Instead, the objective Jp and optimal control sequence u∗ can

be rewritten in terms of the relative states along each finite trajectory. For a finite
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planning horizon tH , the cost is evaluated over the range [t0, t0 + tH ] where t0 is

the time at the start of the current horizon. In Eqs. 2.7 and 2.8, h is the least-

square function to minimize over, which is the relative state vector [x1 x2]
T . A

terminal penalty m may be included, and weighting matrices Q and S may be used

to penalize individual contributions more heavily.

Jp =
1

2

t0+tH∑
t0

‖h‖2Q +
1

2
‖m‖2S (2.7)

u∗ = argmin
1

2

t0+tH∑
t0

‖h‖2Q +
1

2
‖m‖2S

= argmin(Jp) (2.8)

Of the optimal control sequence u∗ = {u∗t0 , u
∗
t1
, ...u∗t0+tH}, only the first term u∗t0

is applied and held constant during the execution period tE until the algorithm

repeats. Further details of the RHC method including tuning and choice of planning

and execution periods tH and tE are left for Chapter III.

II.D. Performance with Uncertainty

The behavior of a target may change at any time during a PE scenario, which

is why it is dangerous and naive to assume a constant model and strategy. For

example, an evader may be moving passively at the start of an encounter, then sud-

denly switch to an optimal course. For a one-dimensional game with unlimited fuel

quantity and constant velocity, the evader’s strategy and motion is fully determined.

However, a simple way to simulate this dynamic uncertainty for performance com-

parison purposes is to allow the evader to instantaneously increase or decrease its

speed within some range. As shown in Fig. II.3, both the analytical feedback and

8



RHC methods adjust control/trajectory as soon as the change in evader speed is

sensed, since it is assumed that the velocity ve is continuously and correctly sensed

by the pursuer. A more comprehensive comparison of the controllers’ performance is

done by varying the amount that the speed changes ∆ve, as well as the time t1 that

it occurs. A batch of test cases was run by varying ∆ve ∈ [−2, 2] m/s at increments

of 0.1 m/s, at intermediate times t1 ∈ [4.0, 8.5] s at increments of 0.50 s. It can be

seen in Figs. II.4 and II.5 that the RHC method performs equal to or slightly worse

than the analytical solution, but without meaningful loss in optimality. The very

few results that appear to lie below zero are due only to numerical tolerance. The

worst instantaneous possible LO across the test cases is less than five percent, and

the average across all cases is 1.57%.
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Figure II.3: Performance with instantaneous evader speed jump at t1 = 6.5 s; The solution

is almost equivalent between methods
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II.E. Real-Time Considerations

MATLAB is an effective and straightforward way to write up scripts and simu-

late PE games, but the true test of these algorithms’ practical usefulness can only be

validated on hardware. Before compiling and testing on hardware, it is also impor-

tant to have an idea of real-time performance. The MATLAB compiler and run-time

environments cannot perform the computations for RHC coupled with fast system

dynamics, and CPU times often exceed simulation times. This is shown in Fig. II.6.

For the double integrator PE problem, a RHC solution that performs within 1% of

the analytical requires an execution time of tE = 0.005 s. At 200 Hz, the required

CPU time per step is often longer than the simulated step size. This is particularly

noticeable at the initialization of the game and minimization routine, and toward

the end of the game where the minimization gradient decreases and optimization

grows more taxing. On hardware, with added communication latency, this becomes

a bigger problem as the computation and control commands will lag the sensed cur-

rent states. A common design process is to move from MATLAB simulation to a

real-time simulation, and then from the real-time simulation to hardware implemen-

tation. For real-time simulation, several open-source and commercial tools exist.

The chosen tool for implementing the simulations in C++ is the ACADO toolkit,

which includes a code generation tool for translation from simulation to executable

run-time software [11,12]. Using ACADO to solve the RHC with a cost function de-

rived from Eq. 2.7 returns a result very close to the optimal infinite-horizon solution.

Figure II.7 shows the RHC solution to the double integrator rendezvous problem.

Note that the solution is almost identical to Fig. II.2, but that the bandwidth of the
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controller in a real-time implementation (i.e. the effect of tE) and the change in cost

function Jp both affect the solution and u∗ only closely approximates bang-bang.

For this simple 1D example, ACADO offers a speedup over MATLAB routines and

improved performance at slower sampling rates. With an average computation time

of 27 ms1, implementation using ACADO allows the algorithm to be run real-time

in the loop.
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Figure II.6: Simulation time vs. computation time at each step; MATLAB simulation of

the double integrator example

1Computation times given for a planning horizon tH = 2.0 s and execution period tE = 0.10 s
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II.F. Summary

In this chapter, a one-dimensional example problem was shown in order to mo-

tivate the use of the RHC method. The loss in optimality of the RHC solution for

this simple example is roughly 1 percent of the analytical solution capture time. Ad-

ditionally, it appears that RHC handles strategic uncertainty and dynamic changes

as well as a feedback solution if the execution period tE is sufficiently short. Finally,

the fast numerical solution of a repeated finite-horizon solution using NLP methods

shows that the approach may be more viable for real-time operation on hardware

than others that require repeated numerical minimization over an infinite horizon.

These results promote the investigation of a numerically approximated RHC for more

complex and uncertain systems. This is the subject of Chapter III.
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CHAPTER III

THE HOMICIDAL CHAUFFEUR

In Chapter II, properties and performance of a suboptimal RHC solution were

examined for a simple one-dimensional example. Here, it is desired to extend the

results and observations to higher-dimensional models with more interesting dynam-

ics. The logical next step is to apply the RHC method to a two-dimensional planar

system with nonlinear dynamics. It should be simple enough that the dynamics

themselves are well understood and focus can be put toward control strategies and

optimality. To this end, the homicidal chauffeur is used as the game model for the

remainder of this work.

III.A. Problem Statement

The homicidal chauffeur is a PE game traditionally played with one pursuer

and one evader. It is a model with several properties that make it illuminative for

game-theoretic controls development. The system is nonlinear in both the pursuer

and evader dynamics. The evader may instantaneously change its heading θe, while

the pursuer is constrained by a dynamic equation and control constraint −1 ≤ u ≤ 1.

The velocities and initial conditions can be chosen to ensure capture in finite time,

so that the game has a solution. Commonly, the velocities are held constant to

lend further insight to variation of other model parameters. The dynamics of the

system can be written as a set of first order differential equations in either the inertial

frame or the pursuer’s body frame. The inertial representation is given in Eqs. (3.1) -
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Figure III.1: Homicidal chauffeur reference frame

(3.5), and Eqs. (3.6) - (3.7) define the relative equation forms. Table III.1 defines and

describes the referenced variables, and Fig. III.1 depicts a possible initial condition

of the game.

ẋp = vp cos(θp) (3.1)

ẏp = vp sin(θp) (3.2)

θ̇p = −vp
rp
u (3.3)

ẋe = ve cos(θe) (3.4)

ẏe = ve sin(θe) (3.5)

ẋ1 = (−vp
rp
u)x2 + ve cos(θe) (3.6)

ẋ2 = (
vp
rp
u)x1 + ve sin(θe)− vp (3.7)

where (x1, x2) are the evader coordinates and the system is in the pursuer’s reference

frame with the x2 axis along its velocity direction.
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Table III.1: Variables and default values for homicidal chauffeur simulation

Variable Value Description

vp 1.0 Pursuer velocity; constant

ve 0.4 Evader velocity; constant

rp 0.5 Minimum pursuer turning radius

Rcap 0.8 Capture radius

xe0 2.0 Initial evader position

ye0 1.0 Initial evader position

R0

√
x2e0 + y2e0 Initial range

ψ0 tan−1(ye0/xe0) Initial line of sight

θp0 π/2 Initial pursuer heading

III.A.1. Assumptions

For the homicidal chauffeur simulations, several assumptions are made:

1. Velocities of each player are constant, and ve < vp

2. R0 > Rcap

3. R0 is sufficiently large such that εp ,
rp
R0
� 1

4. The game is played on an open plane with zero obstacles

5. Measurements are of range and bearing and are deterministic, such that all
states can be extracted from each measurement

III.B. Feedback Solution

Unlike the 1D example in Chapter II, an analytic control solution to the homici-

dal chauffeur game does not exist. A solution must be found by numerically solving

the OCP as a set of constrained nonlinear multivariable equations. This can be done

using direct transcription and collocation with cubic Hermite interpolating polyno-

mials according to the methods of Hargraves and Paris [13]. The problem is then

solved using MATLAB’s fmincon routine for constrained minimization [14,15]. The

result is an open-loop optimal control sequence. It is shown in the comprehensive
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HC literature that for the minimum-time capture of this game, the optimal control

sequence of the pursuer is either a bang-bang sequence with saturated controls or a

bang-off sequence with a singular trajectory [16]. Further, for problem classes with

sufficiently small ratios of rp/R0, the optimal control is of the second type. With a

bang-off control sequence, the pursuer’s trajectory is an initial turn toward its final

heading followed by a straight segment.

However, direct transcription using fmincon can become computationally pro-

hibitive and is sensitive to initial guesses. For problems where the initial pursuer

heading may be clockwise or counter-clockwise, the time of capture can vary sub-

stantially. This makes it hard to accurately estimate capture time and populate

the solver with good initial guesses. Instead, a feedback control that relies on the

existence of a singularly perturbed trajectory (SPT) is used.

III.B.1. Singular Perturbation Technique

Singular perturbation theory is an energy-based method making use of a two-

timescale phenomenon. When a system of differential equations can be split into

two subsystems with a small parameter ε multiplying the second, it will be such that

the second reaches some equilibrium state much faster than the first, and can be

approximated as steady-state [17]. For example, consider Eqs. 3.8-3.9.

ẋ1 = f1(x) + εg1(x) (3.8)

εẋ2 = f2(x) + εg2(x) (3.9)

If the perturbation parameter ε� 1, they can be approximated by Eqs. 3.10-3.11.

ẋ1 = f1(x) (3.10)

f2(x) = 0 (3.11)
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SPT methods are applied to aerospace interception problems in [18] and [19]. A

well-known use is the steady-state approximation of an aircraft phugoid mode using

the time-scale separation of the short-period dynamics.

III.B.2. SPT Application to HC

In the HC game model, the assumptions include that the pursuer’s minimal

turning radius rp is much smaller than the initial range between players R0. In this

scenario the angular velocity of the pursuer evolves on a faster timescale than the

inter-vehicle range. The perturbation parameter for SPT here is εp , rp/R0. Since

the optimal control for small εp is an initial turn toward the final line of sight (LOS),

the solution is known as soon as ψf is known. Using the reduced order model as in

[18], the final line of sight (LOS) ψf between the two players can be approximated

by ψ̄f using a geometric construction. The approximate optimal control becomes

a function of ψ̄f and does not require numerical minimization or an initial guess

of capture time. Note that when the current LOS ψ equals the evader bearing,

(ψ − θe) = 0 and Eq. 3.13 is negated and the game-optimal trajectories become a

straight “chase”, i.e. θp = ψf = θe.

u∗ = sign(θp − ψf ) (3.12)

∆ψ ∼= tan−1
(ve/vp)sin(ψ − θe)

(R/Rcap)− (ve/vp) cos(ψ − θe)
(3.13)

ψ̄f = ψ + ∆ψ − sin−1[(ve/vp) sin(ψ + ∆ψ)] (3.14)

u = sign(θp − ψ̄f ) (3.15)

The SPT feedback solution is compared to solutions found using both the MAT-

LAB direct transcription routine fmincon and the nonlinear equality solver fsolve.

Both MATLAB routines determine local minima only, but with well-informed initial
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guesses about the solution should converge to the global minimum. Table III.2 shows

the variation in capture time according to each method. The direct OCP solution

yields the lowest capture time for each case. The average LO of the feedback ap-

proach using ψ̄f is 0.117%. Additionally, the feedback approach performs on average

0.438% better than the equality solver fsolve. Due to its performance quality, faster

computation, and insensitivity to poor initial guesses, the feedback control method

using SPT analysis is implemented henceforth.

Table III.2: Capture times for homicidal chauffeur using various solution methods; Times

are in seconds

ve/vp Evader Heading θe tf (fmincon) tf (feedback with ψ̄f ) tf (fsolve)

0.10 0 1.7296 1.730 1.7443

0.10 π/4 1.7181 1.720 1.7521

0.10 −π/6 1.6816 1.685 1.6938

0.40 0 2.5565 2.560 2.5576

0.40 π/4 2.4861 2.490 2.4873

0.40 −π/6 2.2734 2.275 2.2734

III.B.3. Uncertain Player Behavior

The evader may not be playing as expected. An additional decision the pursuer

may have to make is what strategy to play, based on an estimated strategy of the

evader. There are several ways of doing this. Behavior learning techniques can be

used to estimate and learn the strategy of an opponent, then transform the PE game

into a one-sided optimal control problem [8]. This framework has been shown to

be successful for several applications when combined with linearized system models

[8, 9]. Unfortunately, behavior learning adds a layer of complexity to the player’s

computations and, like nonlinear numerical minimization problems, has not yet been
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demonstrated on simple hardware.

An approach to handling uncertainty without behavior learning augmentation

is to make a simple guess of the other player’s strategy. The differential zero-sum

solution does this by assuming both players are playing their best strategy. A surface

map of capture times can be generated according to independent control variables.

If both players are playing optimally, some ceiling for the time of capture can be

established as the surface’s saddle point. This is illustrated on the simple saddle

surface z = x2 − y2 shown in Fig. III.2. If the evader plays anything other than its

optimal strategy, the pursuer gains performance. This is a robust and effective way

to handle strategic uncertainty.

A second guess one could make is that of a passive evader. Here, “passive

evader” means the evader enacts a zero order hold (ZOH) on its control until the

next sample instant. During a ZOH in the homicidal chauffeur game, the dynamics

of the evader continue evolving but there is no directional or speed change permitted.

In this sense, the evader is behaving passively with regard to its chaser. Regardless

of which strategy is assumed, an incorrect guess decreases performance and possibly

(in some cases) results in capture failure.

To this end, four extremal cases were examined. In two cases the evader enacts a

ZOH (ue = 0) and does not alter or optimize its heading θe. In the other two cases it

plays the game-optimal solution (ue = u∗e) and the optimal heading θ∗e is chosen. For

each evader strategy, the pursuer either plays the traditional zero-sum game strategy,

assuming ue = u∗e, or an optimal control strategy assuming that ue = 0. In the latter,

the problem ceases to be a typical PE game and is better described as a single OCP

against a moving target with known dynamics. The optimal evader heading θ∗e is

determined a priori as the heading θe ∈ [0, 2π] that maximizes the capture time tf

of the pursuer. For the initial conditions in Table III.1, θe = θ∗e = 0.33 rad. Table
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III.3 shows that there is less potential performance loss associated with the pursuer

playing the optimal strategy, as opposed to the pursuer playing the game-optimal

zero-sum strategy. This matches previous literature results for a similar SPT problem

class [5].

Table III.3: Capture times for homicidal chauffeur with various pursuer and evader strate-

gies; (ve/vp) = 0.40

up = ūp up = u∗p LO %

ue = 0 2.557 s 2.566 s 0.352%

ue = u∗e 2.616 s 2.607 s 0.269%

To confirm this somewhat unintuitive result, a closer look at the zero-sum solu-

tion is required. Consider the saddle point solution to a zero-sum game based on the

homicidal chauffeur model. One could model the saddle surface as a function of two

variables, tf = f(θe, ts). Here, the downward-inflection of the surface is mapped by

constant contours of evader heading θe. The optimal θ∗e will be the highest point on

any contour. The upward-inflection of the surface is mapped by constant contours

of what can be referred to as the switching time ts. This is the time at which the

pursuer switches its control authority from a saturated point (±1) to zero. It has

already been shown that the bang-off control law is optimal for the HC problem class

with the given assumptions [16]. The optimal switch time for a deterministic zero-

sum game t∗s will minimize the upward-inflection surface of the saddle and guarantee

a capture time ceiling.

At this point one still is not considering any specific game scenarios, but simply

forming the solution surface and observing its geometry. If the evader and pursuer

both play optimally, the solution point tf will lie at the stationary point, or saddle
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Figure III.2: A simple saddle surface model

point. If the pursuer or evader deviate from their best control, the solution will

deviate from the saddle point. So, one should naturally believe that if it can be

proven that the zero-sum strategy repeated in Eq. 3.16 yields a different ts than

the optimal strategy in Eq. 3.17 for the same problem, one strategy could indeed

outperform the other depending on θe and ts.

uzs = min
up

max
ue

(

∫ tf

t0

dt) (3.16)

u∗ = min
up

(

∫ tf

t0

dt) (3.17)

The actual contour surface for tf = tf (θe, ts) is shown in Fig. III.3. Only a subset of

the whole surface is shown: θe ∈ [−0.4, 0.4] rad captures both passive and optimal

evader bearings for the initial conditions given earlier. ts is discretized on ts ∈

[0.5, 1.0] seconds. Figure III.4 is a finer grid of the area showing extremal results

that agree with Table III.3. Discretization across an even finer grid could be done

but it is computationally expensive to do so for purely illustrative purposes, hence

the tf values differ quantitatively only. The results of this section also highlight one

other important note about game-theoretic approaches to controls: it is very unwise
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Figure III.3: Contour surface for homicidal chauffeur problem

to play a game scenario with an open-loop control. Although capture still occurs for

each case shared in Table III.3, an open-loop control based on ts would usually fail

to yield capture if the evader changed its behavior partway through the encounter.
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III.C. Receding Horizon Control

It has been shown that the evader ZOH assumption is a superior approach when

evader behavior is uncertain. Regardless of the strategy chosen, augmentation with

a receding horizon controller offers additional benefits. Full determination of the

infinite horizon solution at each sample point is too computationally heavy to do in

the loop, but a single open-loop solution or perturbation control about a nominal

trajectory is also a bad idea if the reference trajectory is uncertain or changes partway

through the game. A RHC scheme with short execution times tE to correct for

erroneous information further improves the performance of a controller operating on

the evader ZOH assumption.

The optimal finite-horizon control can be found during each planning horizon

by minimizing against a set of relative states like in Chapter II. For minimum-time

capture or rendezvous, the minimization of relative states (with no control penalty)

is aligned with minimal time. However, it is known that a SPT approximation to the
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infinite-time problem exists and yields extremely accurate results. Even better, it

does not require an accurate (or any!) initial guess. If a similar SPT approximation

can be made for the finite-time problem, one could determine ψ̄(T ) and express u

directly without numerical minimization. Eq. 3.18 does just that; the approximation

for ψ is made for the known final time T = t0 + tH . Subscripts 0 indicate the state

or time at the start of the current planning horizon.

ψ̄(T ) = ψ̄(t0 + tH) ∼= tan−1(
R0 sinψ0 + ve(T − t0) sin θe0
R0 cosψ0 + ve(T − t0) cos θe0

) (3.18)

u = sign(θp − ψ̄(T )) (3.19)

III.C.1. Controller Bandwidth

The RHC-SPT approximation of ψ̄(T ) allows us to bypass typical cost function

minimization and significantly reduce on-board computation. Eqs. 3.15 and 3.19

indicate that the approximate optimal control is bang-bang or bang-off. However,

controller bandwidth considerations lead one to modify the implemented controller

slightly. At infinite bandwidth (tE −→ 0), the controller can easily reach θp = ψ̄f

or ψ̄(T ). Yet, at a realistically limited bandwidth of 10-100 Hz, the heading θp

will almost always pass the desired LOS heading ψ between control instances. This

results in an oscillatory behavior around ψ̄(T ), as shown in Fig. III.5a. To eliminate

this undesirable behavior, a controller modification is made. A tolerance ξ is first

defined to introduce a control deadband. Then, the bang-off control law is further

modified by adding a scaled control term that is applied whenever the heading error

falls between ξ and the maximum heading change per sample. The resulting control

structure given in Eq. 3.20 is applied in simulation and Fig. III.5b shows the

improvement in heading convergence and the decrease in control effort. While there

is little performance gain realized in simulation with this modification, the trajectory
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is smoothed and the significant decrease in control effort would be beneficial in

hardware.

u =



0, | (θp − ψ̄(T )) |≤ ξ

(θp − ψ̄(T )) rp
vptE

, ξ <| (θp − ψ̄(T )) |< vp
rp
tE

sign(θp − ψ̄(T )), | (θp − ψ̄(T )) |≥ vp
rp
tE

(3.20)
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Figure III.5: Comparison of the original bang-off RHC controller using sign-based control

only and the modified controller given in Eq. 3.20; Sampled at 10 Hz

III.C.2. Controller Stability

Stability analysis is an important part of controller design, especially for non-

linear systems where the output behavior is not easily predicted for arbitrary sys-

tem configurations and initial conditions. An extensive investigation of the stability

and robustness of various nonlinear receding horizon controllers exists in the liter-
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ature. In [20] and [21], the stability of unconstrained nonlinear RHC controllers

with quadratic cost functions are examined. [22] investigates constrained RHC con-

trol and its robustness. [23] considers the stabilization and robustness of RHC and

dual-mode RHC controllers with terminal constraint regions, and [24] proves the

stability of a sampled-data RHC controller that is derived from a stable continuous

RHC controller. In [25] it is shown that when terminal constraints are coupled with

short planning horizons, systems may lose any guarantee of robustness. Finally, [26]

demonstrates examples where naive sampled-data RHC control may actually desta-

bilize a model that is stable under continuous-time control. The theme of these

papers is the potential destabilizing nature of a RHC cost function without terminal

constraints, and its lack of robustness when coupled with naive planning horizon and

control bandwidth selection.

The homicidal chauffeur control algorithm is a nonlinear receding horizon, sampled-

data controller with control constraints. However, each of the cited works make as-

sumptions about the existing stability or conditions of the system and/or controller,

and the results are not directly applicable to the problem at hand. Instead, stability

and robustness is evaluated numerically and used to show a practical robustness of

the controller.

The approach taken to show practical stability and robustness of the controlled

system is to perform several large Monte Carlo analyses on the homicidal game sim-

ulation with the SPT-RHC controller. Practical asymptotic stability is considered as

successful capture within a time t ∈ (0, tlimit] where tlimit may be set to a large upper

expected value of capture, given the distribution of possible initial conditions. Prac-

tical robustness is considered as practical asymptotic stability under appropriately

characterized Gaussian disturbances d ∼ N(0, σd).

Several Monte Carlo analyses show with 100% confidence that the algorithm

27



returns a robust asymptotically stabilizing controller under assumptions A-1 to A-3.

The Monte Carlo simulation parameters and results are presented in the Appendix.

Assumption A-1. The planning horizon tH may be arbitrarily small > 0 provided

that it is greater than or equal to the length of the execution time tE. That is,

0 < tE ≤ tH .

Assumption A-2. The initial state of the evader (xe(0), ye(0)) ∈ S, where S is

defined as the open set bounded only by the pursuer’s initial line of sight, LOS ψ ∈

[−π
2
, π
2
].

Assumption A-3. The control period tE is ‘short enough’ to reasonably control the

pursuer vehicle without consideration of the PE game.

What is meant by A-3 is that very slow controls at tE = {2, 5, 10...} s do not

result in successful capture and game completion within tlimit, but they are not

reasonable or practical control rates for the pursuer vehicle to begin with. For the

homicidal chauffeur time-scale, a control rate of at least 2 Hz is reasonable, and

slower controllers should be considered with caution.

III.C.3. Numerical Controller Comparison

To this point, three methods for finding a control law to achieve minimum-

time capture have been presented. The SPT “feedback” algorithm which recursively

estimates the infinite-horizon line of sight ψ̄f is shown to be successful to within 1% of

the optimal solution and computationally superior. Additionally, the receding SPT

algorithm is presented as a finite-horizon alternative that recursively and quickly

estimates ¯ψ(T ). To compare the two SPT methods, a numerical study is performed.
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The aim of the study is to investigate a wider range of initial conditions and

evader behavior and to confirm that the RHC-SPT solution does not degrade sig-

nificantly under non-ideal conditions. Evader speed jumps ∆ve between -0.20 and

+0.40 m/s at 0.025 m/s increments are applied at four different times t1, each for

three different evasive strategies. The first strategy is that of a purely optimal evader

that does not change its heading θ∗e during the simulation. The second changes from

a passive ZOH at θe = 0 deg to the optimal heading θ∗e at t1. The third begins at

an optimal heading θ∗e but changes heading to θe = −45 deg at t1. Figures III.6 and

III.7 show the resulting capture times under each condition and the associated LO.

Figure III.7 illuminates several important differences between the SPT feedback

and RHC-SPT approaches. When ∆ve ∈ [−0.1, +0.1], the first approach performs

4-5% better. As the magnitude of ∆ve increases and the maneuvers become more

dramatic, the RHC-SPT approach starts to outperform the previous. In these cases,

the difference between the current time and the end of the horizon (t, T ) is smaller

than between the current time and estimated capture time (t, t̄f ) and the faster

corrective nature of the RHC-SPT algorithm is more effective at adjusting to the

maneuvers. In the more drastic sample cases, the RHC-SPT algorithm significantly

outperforms the SPT feedback method. An example is illustrative: for an optimal

to suboptimal evasive maneuver with a ∆ve = +0.40 m/s and maneuver time t1 =

0.50 s, the optimal control law yields tf = 3.675 s. The RHC-SPT algorithm yields

tf = 3.750 s with only 2% LO, while the SPT feedback law results in capture at

tf = 4.935 s and 34% LO. Clearly, the RHC method pays dividends during quickly

evolving and unpredictable game scenarios.
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III.D. Simulation Results

Finally, some simulation results are presented. The full simulation of the un-

certain homicidal chauffeur PE game with two players allows for any instantaneous

evasive maneuver to be applied by the user. The results given here are for the

RHC-SPT controller and were found using a planning horizon tH = 2 seconds and

an execution time or control rate of tE = 0.05 seconds (20 Hz). Theoretically, a

RHC law will always perform better as tH is increased1, as the longer finite-horizon

length better approximates the infinite-horizon solution. With the SPT solution it

can be seen that since ψ̄(T ) is calculated using the states at the start of the horizon,

some long horizons will actually start to degrade the approximation. Through trial

and error, tH = 1 − 2 seconds was found to best match the optimal capture time.

All sampled-data controllers should perform best at high bandwidth, so a small tE

is ideal. Practically, tE is limited by computing power and how much CPU one is

willing to spend integrating each simulation run.

The simulation results shown in Figs. III.8 and III.9 were done initially in

MATLAB, then repeated using the ACADO toolkit in C++ to incorporate the real-

time computation. Plots show the terminal constraint in the upper left subfigure.

This measures the inter-vehicle distance and the terminal condition R ≤ Rcap. The

control u is shown in the upper right subfigure to transition between saturated

controls and singular arcs. Finally, each has a lower subplot showing the phase plane,

or aerial view, of the two vehicles’ chase path and the pursuer’s capture radius.

In Fig. III.8, evader dynamics are constant and either passive or optimal. In Fig.

III.9, the evader applies an instantaneous ∆ve and ∆θe at some intermediate time.

These changes represent a switch to or from the optimal heading at arbitrary times.

1Assuming the evader behavior is known
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In each case, successful capture in minimum time is demonstrated. Any change to

evader parameters is a deterministic measurement made by the pursuer at the start

of its next planning horizon.

The results of these simulations strongly support the performance benefits of

the developed RHC law and the validity of the SPT approach. The next step to-

ward real-time validation is implementation and experimentation on hardware. This

progression extends the results of [27] and is the subject of Chapter IV.
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CHAPTER IV

HARDWARE IMPLEMENTATION

IV.A. Motivation

Much can be learned from the work done in Chapter III. Simulated results show

the efficacy of the receding horizon approach for uncertain pursuit-evasion games,

especially for those with singularly perturbed trajectories. Further, simulation of the

real-time algorithm in C++ demonstrates a drastic speedup compared to numerical

simulation in MATLAB, and presents a viable way to compute receding horizon

control laws online during actual scenarios.

However, to truly validate the approach for hardware use, there can be no better

method than testing the code on actual hardware. This introduces physical realiza-

tions and limitations, integrates the computation with lower-level motor controls,

and communicates with internal (IMU, Gyro, etc.) or external (motion capture)

data for localization. Any of these factors may introduce real system disturbances,

measurement noise, and communication latency. A successful experiment on test-bed

hardware that continues to successfully approximate the optimal solution is stronger

evidence of the method’s effectiveness. To do the hardware validation, a laboratory

test space is required.

The Land, Air, and Space Robotics laboratory at Texas A&M is well and

uniquely suited to many of the guidance, control, and navigation problems that

are currently relevant to aircraft and space systems research. NASA defines nine

technology readiness levels (TRL) to measure the maturity level of a particular tech-

nology, as shown in Fig. IV.1. At TRL 1, only basic principles of the phenomena

have been observed and reported. At TRL 9, an actual system has been field proven
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through successful mission operations [28]. University and student research often lies

within TRL 1-2 and sometimes 3. At Texas A&M, several laboratories are uniquely

suited to progress toward TRL 4: component validation in a laboratory environ-

ment. LASR Lab is one such space and several project partnerships with industry

have done component validation in a simulated space environment using actual sen-

sors or hardware.

The work in this thesis is an application of existing theory, extended by new real-

time implementation and testing of the methods using a classical problem. Therefore

this characteristic proof-of-concept testing falls under TRL 3, but the RHC approach

and uncertainty treatment could be applied to other problems on higher-fidelity

vehicles and sensors at LASR lab in the future to continue satisfying NASA’s path

to technological readiness.

The LASR lab test space is shown in Fig. IV.2.

Figure IV.1: NASA Technology Readiness Level definitions
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Figure IV.2: LASR Lab experiment space

IV.B. Vehicles

For HWIL testing, the pursuer vehicle is an iRobot R© Create ground vehicle. The

robot is a commercial hobbyist platform and is essentially a programmable ground

robot with odometry, bump and cliff sensors, and serial communication port. The

Create has a maximum speed of 0.50 m/s and a diameter of roughly 0.30 m. It can

turn in place, but by artificially limiting its turn radius, one can use it to model any

simple differentially-driven forward flight vehicle. Of course, it is a wheeled ground

vehicle so its dynamics and the motion that it can emulate must be planar.

The Suspended Target Emulation Pendulum (STEP) is a custom-built platform

at the LASR Lab that simulates free “space-like” motion in 5 degrees of freedom. The

pendulum has a free-response mode that allows for contact dynamic and proximity

operation experiments. The STEP also has a velocity-tracking mode, which allows

it to simply follow commanded motor speeds. By specifying individual motor speeds

along each axis, trajectories to simulate a translating body can be created. By using

this velocity-tracking mode and affixing a small rigid body to the pendulum tip,

evader motion with instantaneous velocity changes can be replicated; this makes use
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(a) (b)

Figure IV.3: Rigid suspension assembly for hardware validation using the STEP

of the omni-directional motion capability of the pendulum.

However, the standard STEP system utilizes a long pendulum arm constructed

of thin, flexible carbon fiber rod. When subjected to the dynamics of a quickly-

turning evader, the swinging of the pendulum arm and the low-frequency oscillations

of the rod result in oscillatory velocity at the STEP tip. To prevent this, a new rigid

assembly was constructed. Since the crane along the top of the STEP correctly tracks

with constant velocity and instantaneous directional capability, a new assembly was

attached to it at the old hinge location. The assembly model is depicted in Fig. IV.3a

and a close-up image of its attachment to the STEP crane is shown in Fig. IV.3b.

The rigid assembly is comprised of aluminum bar and channel and a suspended 1/2”

threaded steel rod. The thick rod has a larger modulus than carbon fiber, has high-

frequency modes that are minimally excited by the low speeds of the tests, and is not

hinged. As a result, the evader body can thread into the steel rod and very closely

mimic the crane’s behavior while inside the experiment space.
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IV.C. System Communications

LASR Lab is equipped with several motion capture (MoCap) systems for sens-

ing and reporting truth data both in real-time during experiments and for post-

processing. One system is the c©Vicon motion tracking system. Vicon is extensively

used in the entertainment and video recording industry to capture and record motion

of human and other subjects. The MoCap system provides 1-millimeter resolution

at up to 120 Hz using 16 megapixel infrared cameras. In the LASR laboratory space,

six Vicon cameras are mounted above and outside the test area to get full coverage of

experiments. To render an object trackable by Vicon, small retro-reflective beacons

are mounted on the object. These markers are used to define a rigid body within

the Vicon software and are then tracked together once the body is registered and

recognized. This provides location and orientation tracking capability to the MoCap

system.

The Vicon system measures seven states in real time: three translational states

[x, y, z]T and the quaternion [β0, β1, β2, β3]
T . If one assumes that each vehicle is lo-

calized in its own frame and has sensors to measure the other vehicle’s position and

orientation, then these measurements represent what is realistically sensed. How-

ever, additional parameters of the evader motion, used in computation of the pursuit

control law, may be required. In the RHC algorithm the evader speed ve is required.

This is treated as a known variable in simulation, but must be estimated in a labora-

tory frame. To do this, a simple tracking filter is implemented that filters real-time

Vicon position data and predicts velocity components [vex , vey , vez ]. The filter is a

g-h-k filter (equivalently: α-β-γ or zero-jerk filter) [29]. Under the assumption of

zero jerk, the discrete equations of motion of the tracked target are given in Eqs. 4.1
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- 4.3. The update and prediction steps are given in Eqs. 4.4 - 4.10.

xk+1 = xk + ẋk∆t+ ẍk
∆t2

2
(4.1)

ẋk+1 = ẋk + ẍk∆t (4.2)

ẍk+1 = ẍk = ẍ0 (4.3)

x̄k,k = x̄k,k−1 + g(yk − x̄k,k−1) (4.4)

˙̄xk,k = ˙̄xk,k−1 +
h

∆t
(yk − x̄k,k−1) (4.5)

¨̄xk,k = ¨̄xk,k−1 +
2k

∆t2
(yk − x̄k,k−1) (4.6)

(4.7)

x̄k+1,k = x̄k,k + ˙̄xk,k∆t+
1

2
¨̄xk,k∆t

2 (4.8)

˙̄xk+1,k = ˙̄xk,k + ¨̄xk,k∆t (4.9)

¨̄xk+1,k = ˙̄xk,k (4.10)

For models with non-zero jerk, a small bias exists. The g-h-k gains are determined to

minimize the discounted least-square error for a constant-acceleration target given

in Eq. 4.11, where y is the measurement and p∗(r) is a fitted polynomial. This

performance index may be referred to as a “fading memory” filtering scheme. A

tuning parameter θ ∈ [0, 1) determines the weight of receding measurements and the

update gains. A large θ weights past measurements more heavily than a small θ.

For testing of the homicidal chauffeur problem where the evader has mostly constant
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speed, a value of θ = 0.75 is used.

en =
∞∑
0

{yn−r − [p∗(r)]n}2θr (4.11)

g = 1− θ3 (4.12)

h = 1.5(1− θ2)(1− θ) (4.13)

k = 0.5(1− θ)3 (4.14)

The choice of the STEP to represent the evader is twofold. First, it can achieve

the same dynamics as the evader, which the iRobot R© Create cannot do. To achieve

instantaneous heading changes with Create robot, the experiment run-time and the

simulation run-time must be two separate domains, where the simulation time effec-

tively stops and starts to accommodate the true turn of the robot. This was tested

early on and demonstrated as a sufficient if somewhat convoluted way to achieve

instantaneous heading change on a non-holonomic vehicle. The STEP can change

direction of motion instantly, so there is no need to accommodate special behavior

or timing.

Secondly, for the purpose of the demonstration and capture within a small ra-

dius, the STEP is again the better platform. Using the STEP, a small evader plate

can be mounted at the bottom of the pendulum at any height above the ground.

Since the PE game is played on an open 2D plane, only x and y coordinates are

required and any z offset in the evader plate is ignored by any algorithm or sensing.

The two vehicles can simulate a capture or rendezvous within a smaller physical

region by being at this different height, whereas two identical ground robots can get

no closer than 2r, where r is the radius of the robot.

The pursuer vehicle (Create robot) has two computers on board. The first is an

internal black box hardware driver. This computer recognizes pre-defined function

41



(a) Raspberry Pi 2 (b) Connected to the iCreate robot

Figure IV.4: Raspberry Pi 2 integration with the iCreate robot ground vehicle

commands and passes them to the robot’s motors. The interface between serial and

USB that the robot provides allows commands from an external source to be defined

and communicated as well. The second computer used is the Rasberry Pi
TM

2 Model

B. The Rasberry Pi (RasPi) is a low-cost ARM linux platform featuring a single-

board CPU developed and marketed for educational use and outreach. Here, it is

useful as a simple and easily-programmable computer that can be integrated well

with the Create robot. The RasPi 2 Model B has a Broadcom BCM2836 processor

which runs ARMv7 at 900MHz. Other features of the board include a dual core

graphics card, 1 Gb memory, SD-card boot capability, several USB sockets, ethernet

connection, and a dedicated 40-pin GPIO board. Details of these specifications can

be found online and are comparable to other similar single-board computers like the

Odroid [30, 31]. Figure IV.4 depicts the RasPi 2 with a WiFi dongle and bootable

SD card inserted.

All coding for the hardware experimentation and real-time solution of the work
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herein was done in C++. The RasPi computer was installed with a lightweight

version of Ubuntu, Xubuntu, which runs on a simple linux architecture. This was

done largely to facilitate the incorporation and use of the Robot Operating System

(ROS). ROS is an open-source and open-contribution C++ software suite. It consists

of many packages created specifically for simplifying the control of basic hardware

test-beds and commercial robots. ROS is frequently used in academia to seamlessly

transfer from simulation to testing of hobbyist ground vehicles such as the Create or

Turtlebot.

For this work, several ROS packages were written and used. The unique contri-

bution of ROS is a simple communication protocol that works by managing “pub-

lishers” and “subscribers” - objects that want to send or receive messages containing

various specific data types. ROS is used as the handler to broadcast these messages.

For example, when a Vicon measurement is taken by the MoCap system, it needs

to be read by the various vehicles trying to access that measurement. To do this, a

ROS subscriber object is created that subscribes to the IP address of the Vicon data

stream. In this manner, measurements, states, and other commands can be shared

from sensing devices to the vehicles and even between the vehicles.

IV.D. System Integration

The proposed integrated system is shown in Fig. IV.5. In the diagram, Vicon

streams truth data about each vehicle’s state to its computer. This data can be man-

ually corrupted to include noise, or can be used to replicate knowledge of one’s own

state. Noisy measurements of another vehicle’s state can be sent between vehicles.

As each vehicle’s computer receives state information, it computes the guidance and

control laws required and passes those commands to the desired actuator or motor.
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The experiment, or game, will end when the Vicon truth data indicates that the

terminal condition has been reached.

Pursuer

RasPi

VICON

STEP PC

Evader

Feedback algorithm & 
control logic

Open-loop motor commands 
to ground vehicle

Closed-loop feedback 
control of STEP

True Vicon position 
and bearing (P)

True Vicon position 
and bearing (E)

Noisy Measurement of 
Position and Bearing (E)

STEP 
Assembly

Figure IV.5: System diagram of homicidal chauffeur demo

IV.E. Experiment

For HWIL experimentation, it was desired to replicate the same scenarios as

were presented in Chapter III inside the laboratory space. The four test scenarios

are repeated here1.

1. A passive ZOH evader runs at a heading of 0.00 rad

2. An optimal ZOH evader runs at a heading of 0.31 rad

1For real-time testing, initial conditions differ from earlier simulation due to spatial and vehicle

constraints. Given the new initial conditions, the optimal ZOH evader heading becomes θ∗e = 0.31

rad
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3. A passive evader runs at a heading of 0.00 rad, then increases speed and

switches to an optimal heading of 0.31 rad

4. An optimal evader runs at a heading of 0.31 rad, then switches to a suboptimal

heading of −0.80 rad with no speed change

To accommodate the physical constraints of the test space and vehicles, the values

of several simulation variables were changed. Further, the planning horizon and

control bandwidth were both decreased to improve speed on hardware. These changes

had little to no effect in simulation. See Table IV.1 for details. To evaluate the

Table IV.1: Variables and their simulation and experiment values

Variable Simulation Value Experimented Value

vp 1.00 0.25

ve 0.40 0.10

rp 0.5 0.25

R0

√
5

√
1.25

Rcap 0.8 0.6

tH 2.0 1.0

tE 0.05 (20 Hz) 0.10 (10 Hz)

performance of the controller on hardware, two metrics were used. First, the time

of capture tf was compared between simulation and the laboratory. Second, the

trajectory difference was calculated as a relative error in the distance (R) and heading

(θp) of the pursuer.
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IV.F. Experiment Results

IV.F.1. ZOH Evader Heading

In case 1, the test replicates a ZOH evader heading at θe = 0. In case 2, the

experiment replicates a ZOH evader heading at θ∗e = 0.31. Figures IV.6-IV.9 showing

trajectory comparisons, position-based error, and heading error of the pursuer are

below.

It is seen that the relative error in R grows over time. This can be explained by

the lack of modeling of vehicle inertias, disturbances, and simplifying assumptions.

If there is a small constant error in R, then as the reference value decreases, the

relative error will increase. Since the duration of the scenarios in the scope of this

work is short and the capture radius is relatively large, the position error stays

within about 5% of simulation values. Similarly, the capture time differs by about

5-6% from simulation to experiment. Again, this is very good agreement considering

the model and environment ignorance. The biggest contributor to error and LO is

the heading error of the pursuer vehicle during the experiment, which is caused by

controller tolerance, real-time effects, and vehicle fidelity. The Create is a simple

COTS vehicle, and neither its model nor controller account for inertias, wheel slip

or friction. The controller tolerance could also be tuned better, so that less heading

error is allowable or oscillatory controls are eliminated.
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IV.F.2. Dynamic Evader Heading

In case 3, the test replicates an evader heading initially at θe = 0 rad, then

switching to an optimal trajectory and speeding up. In case 4, the experiment

replicates an evader heading initially at θ∗e = 0.31, then switching to a suboptimal

heading. Again, Figs. IV.10-IV.13 show trajectories and relative errors. As seen in

Fig. IV.10, contributors to error are the true STEP heading and the RHC controller

tolerance ξ. Figure IV.12 indicates that ξ and a bad prediction cause error in case 4.

Once again, the relative error in R grows over time. The position error stays

within 1-3% of simulation values, and heading error varies more dramatically. The

LO from simulation to hardware is roughly 8% in cases 3 and 4. This is still good

agreement considering the model and environment ignorance. The capture times for

all four cases are given in Table IV.2.

Table IV.2: Capture times

Case (Run) Simulation tf Experimental tf LO

1 4.885 s 5.177 s 5.98%

2 4.170 s 4.420 s 6.00%

3 4.813 s 5.215 s 8.35%

4 3.452 s 3.750 s 8.63%
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CHAPTER V

CONCLUSION

V.A. Summary

In this thesis a receding horizon controller was developed for nonlinear pursuit-

evasion games with uncertainty. The RHC approach with an assumption of a pas-

sive evader was shown to be more effective with incorrect strategy estimates than

the game-optimal control method. The RHC algorithm can be solved for nonlinear

systems using numerical minimization over a finite horizon or by making numerical

approximations. The homicidal chauffeur game was used as an example system for

control implementation and testing. The game dynamics exhibit time-scale separa-

tion in the pursuer’s motion and so a singular perturbation approach can be taken

to approximate the optimal minimum-time solution. This SPT approach was shown

to yield performance equal to the numerically minimized solution at each time step.

With practical sampling and planning horizons, the RHC algorithms yielded results

within 1% LO of the optimal full-knowledge solution, even with incorrect estimates

of the evader’s behavior.

The receding horizon algorithms were validated both in real-time simulation

and on simple hardware. An online autonomous version of the homicidal chauffeur

game was played out for several test cases and matched simulation results well. The

cost function Jp = tf differed by < 9% and other performance metrics indicated

equally good agreement. All hardware testing was done without modeling vehicle

inertias or frictions and without explicitly accounting for disturbances that are always

present in real scenarios. With added modeling and consideration of disturbance

characteristics, the alignment between results would likely be even better. Much of
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the error seen in hardware testing can be attributed to vehicle control precision and to

noise characteristics of the rigid STEP assembly. It may be possible to better cancel

the oscillatory modes of the assembly with additional suspension support. This is

the first known online/onboard implementation of the homicidal chauffeur game in

hardware, and the method yields a system that is stable and robust to unmodeled

additive disturbance.

Although the SPT is based on the assumption that rp/R0 � 1, it may not hold

true as the game is played out. As the vehicles approach each other, rp/R0 will

continue to increase. There is certainly LO present due to this characteristic, but

the algorithm still performs extremely well and total LO remains within 1-5%. It

is unlikely it would continue to do so if the terminal inequality constraint (capture

region) became a terminal equality constraint (point capture).

V.B. Future Work and Applications

The RHC presented in this work avoids behavior-learning techniques that can

be a computational burden, especially for nonlinear systems. However, it would be

useful to implement an adaptive estimator (filter) to tune the length of the planning

horizon tH in real time. For example, an adaptive tH could vary in length based on

the opposing vehicle’s most recent states and a calculated likelihood of a ZOH. The

idea is that if a target is rapidly maneuvering, the estimator would determine that

the likelihood of a long duration of straight flight (ZOH) is small, and hence decrease

the planning horizon length. Conversely, if the target has not maneuvered in several

samples, the confidence in a passive or ZOH control strategy would increase and

the controller may begin to increase the planning horizon of the RHC algorithm.

This estimator could run in parallel to the control law and simply return running
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estimates of the best tH to use with optimization.

To increase the fidelity of the results given here, additional nonlinearities, dis-

turbances, and actuators could be incorporated into the vehicle models and game.

The game could also become more interesting if played in a higher-dimensional space

rather than on a planar surface with ground vehicles. By using a stochastic problem

formulation and output feedback, one could continue to make strides toward realistic

hardware scenarios.

Finally, the RHC approaches here may be applied to more application-based

scenarios. For example, a current research interest at the LASR Lab is rendezvous

between a chaser vehicle and defunct space debris for debris-removal purposes. After

reformulating the cost function to account for spacecraft fuel and proper positioning

of capture mechanisms, a receding horizon approach could be employed to estimate

a simplified tumbling motion of the debris body and optimize an online approach

and capture path.
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APPENDIX A

CONTROLLER STABILITY RESULTS

Investigation I

The initial Monte Carlo batch considers n = 10000 runs with the requirement

that tH > tE (fixed) and the initial evader positions are uniformly distributed in

the vicinity of the pursuer’s initial position at (0,0) according to Table A.1. In this

and the following investigations, a Gaussian additive disturbance is applied to the

pursuer’s angular velocity. As shown in Fig. A.1a, the horizon length tH has no

statistical significance on capture time, provided that it is longer than tE. Figure

A.1b shows the failures under these conditions, as defined when the game simulation

time exceeded tlimit = 10 s. Failure occurrences are skewed to long prediction horizons

coupled with late maneuvers, where the evader makes a “last-ditch” velocity change.

Table A.1: Variables and distributions for MC simulation I

Variable Distribution Description

x1e(0) ∼ U(1, 2) Evader initial x1 position

x2e(0) ∼ U(−2, 2) Evader initial x2 position

θe0 ∼ N (0, π/3) Initial evader heading

θe1 ∼ N (θe0 , π/2) Evader heading after time t1

t1 ∼ U(0.25, 2.25) Evader maneuver time (switch heading and velocity)

∆ve +0.10 (constant) Evader velocity change after time t1

tH ∼ U(0.11, 1) Controller optimization or planning horizon

tE 0.10 (constant) Control period or bandwidth

dθ̇p ∼ N (0, 0.01) Gaussian additive disturbance on pursuer angular velocity
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Figure A.1: MC simulation 1; (a) Capture time as a function of prediction horizon and (b)

Failure cases

Investigation II

The second Monte Carlo batch considers n = 10000 runs with the allowance

that tE may be greater than tH . Again, the distributions are given in Table A.2.

The velocity increase after time t1 was increased from +0.10 m/s to +0.25 m/s. The

failure time tlimit was increased to 15 s to account for the larger ∆ve. A large tE

has much more effect on the capture time and possible failure of the game. A linear

correlation between tE and tf can be seen in Fig. A.2b. The linearity comes from

the discrete measurement and interpolation of capture times, nonetheless, the true

trend is indeed that longer execution times decrease performance in a linear manner.

It is also seen that all failures occur when tE > tH , and that many more failures

occur at slow sampling (large tE). This is shown in Fig. A.3.
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Table A.2: Variables and distributions for MC simulation II

Variable Distribution Description

x1e(0) ∼ U(1, 2) Evader initial x1 position

x2e(0) ∼ U(−2, 2) Evader initial x2 position

θe0 ∼ N (0, π/3) Initial evader heading

θe1 ∼ N (0, π/2) Evader heading after time t1

t1 ∼ U(0.25, 2.25) Evader maneuver time (switch heading and velocity)

∆ve +0.25 (constant) Evader velocity change after time t1

tH ∼ U(0.01, 1) Controller optimization or planning horizon

tE ∼ U(0.10, 3) Control period or bandwidth

dθ̇p ∼ N (0, 0.01) Gaussian additive disturbance on pursuer angular velocity
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Figure A.2: MC simulation 2; Capture time as a function of (a) prediction horizon and (b)

execution time
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Figure A.3: MC simulation 2; Failure cases are skewed primarily toward longer execution

times tE and only occur when tE > tH

Investigation III

The final Monte Carlo investigation considers two batches of n = 5000 runs each

with the allowance that tE may again be greater than tH . Here, the initial location

of the evader relative to the pursuer is distributed differently to draw conclusions

about capture dependence on initial LOS. In the first batch, [xe1 , xe2 ]
T ∈ S, where S

is the set of points (x1, x2) that lie along an initial LOS ψ ∈ [−π
2
, π
2
]. In the second

batch, [xe1 , xe2 ]
T ∈ SC , where S + SC = R.

In both batches, tf again depends on tE. No explicit dependence is shown

through tH . While both batches show similar correlation between tE and tH , the

failure cases differ between the two. When the initial evader position belonged to set

S, zero failures out of 5000 runs (0.00%) occured with tE shorter than 1 s. Further,

the total success of capture within tlimit was 98.52%. When the initial evader position

belonged to SC , 47 failures occured with tE shorter than 1 s (0.94%). The total failure

count is more than twice that of the first batch, with an overall capture success of
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95.42%. Therefore, one can conclude with confidence that at reasonable control

bandwidth and an initial target position in set S, capture is guaranteed.

Table A.3: Variables and distributions for MC simulation III

Variable Distribution Description

x1e(0) ∼ N (0, 1) Evader initial x1 position

x2e(0) ∼ N (±3, 2/3) Evader initial x2 position

θe0 ∼ N (0, π/3) Initial evader heading

θe1 ∼ N (0, π/2) Evader heading after time t1

t1 ∼ U(0.25, 2.25) Evader maneuver time (switch heading and velocity)

∆ve +0.25 (constant) Evader velocity change after time t1

tH ∼ U(0.01, 1) Controller optimization or planning horizon

tE ∼ U(0.10, 2) Control period or bandwidth

dθ̇p ∼ N (0, 0.01) Gaussian additive disturbance on pursuer angular velocity
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Figure A.4: MC simulation 3, batch 1; Capture time as a function of (a) prediction horizon

and (b) execution time
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Figure A.5: MC simulation 3, batch 2; Capture time as a function of (a) prediction horizon

and (b) execution time
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Figure A.6: MC simulation 3; Failure cases

69




