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ABSTRACT 

 

 

 It is not unusual for digital collections to degrade and suffer from problems 

associated with unexpected change. In previous analyses, I have found that categorizing 

the degree of change affecting a digital collection over time is a difficult task. More 

specifically, I found that categorizing this degree of change is not a binary problem 

where documents are either unchanged or they have changed so dramatically that they 

do not fit within the scope of the collection. It is, in part, a characterization of the intent 

of the change. In this dissertation, I present a study that compares change detection 

methods based on machine learning algorithms against the assessment made by human 

subjects in a user study. Consequently, this dissertation focuses on two research 

questions. First, how can we categorize the various degrees of change that documents 

can endure? This point becomes increasingly interesting if we take into account that the 

resources found in a digital library are often curated and maintained by experts with 

affiliations to professionally managed institutions. And second, how do the automatic 

detection methods fare against the human assessment of change in the ACM conference 

list? 

The results of this dissertation are threefold. First, I provide a categorization 

framework that highlights the different instances of change that I found in an analysis of 

the Association for Computing Machinery conference list. Second, I focus on a set of 

procedures to classify the documents according to the characteristics of change that they 
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exhibit. Finally, I evaluate the classification procedures against the assessment of human 

subjects. Taking into account the results of the user evaluation and the inability of the 

test subjects to recognize some instances of change, the main conclusion that I derive 

from my dissertation is that managing the effects of unexpected change is a more serious 

problem than had previously been anticipated, thus requiring the immediate attention of 

collection managers and curators. 
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CHAPTER I  

INTRODUCTION 

 

Bush’s Memex and its associative trails offered a vision of how digital 

collections could take form [1]. As We May Think has become an iconic essay that 

introduced many concepts that were ahead of its time such as hypertext systems and 

associative trails. Because of its novelty, it is understandable that this essay failed to 

foresee some of the challenges that digital collections will bring with time. 

Curating a digital collection is not an easy task. Selecting, organizing and 

presenting the documents in a collection are laborious tasks that require significant 

resources from a curator. Moreover, and contrary to popular belief, a curator’s efforts do 

not cease once the documents have been ingested into a particular collection: a curator 

must also look after the documents to ensure that the collection remains consistent over 

time. 

To make matters worse, there is a specific type of digital collection where 

looking after the consistency in its documents has a more crucial role. These collections 

are known as distributed, which means the administrative control of information related 

to a topic may be spread across other digital collections maintained by multiple scholars 

in multiple institutions. This administrative decentralization leads to changes that are 

unexpected by the maintainer of a collection, or in this case, a “meta-resource”— a 

resource created by tying together the existing resources. 
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These unexpected changes can be caused by different factors or circumstances. 

Changes can occur because of deliberate actions on part of the collector – for example, 

reorganization of the structure of the collection, switching to a different content 

management system, or changing jobs and institutions.  Changes might also be due to 

unexpected events – earthquakes, power outages, disk failures, – or may be due to other 

uncontrollable factors – death, seizure of computers by law enforcement, or termination 

of the services from an Internet Service Provider [2]. 

Over time, great strides have been made to characterize and manage change 

within collections of documents. Klein and Nelson argued that digital documents do not 

disappear from the Web, but leave artifacts that can be used to reconstruct them [3]. 

Bar–Yosseff et al. carried out experiments to measure the decay of the Web [4]. 

SalahEldeen determined that nearly 11% of shared resources will be lost one year after 

being published and that this decay will continue at a 0.02% rate per day [5]. 

Nevertheless, and despite these previous efforts, managing and characterizing change in 

a collection is inherently difficult. I will elaborate on the reasons behind this difficulty 

with three points. 

First, documents from the Web are not static resources and a certain degree of 

change is expected from them [6]. For example – and taking into account the specific 

infrastructure of Walden’s Paths [7] where decentralized collections are stored and 

represented as traversable paths containing multiple nodes and documents – Web 

resources suffer from changes in content, layout, presentation and location. However, as 

members of a larger assembly, these documents are expected to either change little over 
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time or mutate harmoniously and accordingly with the other documents in order to 

preserve the semantic meaning and systematic order of the collection. 

Second, distributed collections that are hosted in institutional repositories operate 

under the assumption that they are more resilient and able to withstand change. Because 

of their focus on long-term storage, these repositories have different attributes and 

operate under different principles when compared to the Web as a whole. By definition, 

a digital repository must include procedures and tools for curating, organizing, storing, 

and retrieving the documents and media contained in the collection. Surprisingly, I have 

found that these features – which are often found in digital repositories emphasizing in 

long-term storage – do not foster the use of procedures to actively curate the metadata 

and preserve the referenced documents to make them more impervious to change. For 

example, the ACM Digital Library has 15 unique links referencing the different sites in 

the JCDL conference series and 8 of them report errors or point to the wrong content. 

Figure 1 shows a screenshot of http://www.jcdl2011.org – which now displays 

information about diets and weight loss. 
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Figure 1: Screenshot of http://www.jcdl2011.org. Accessed on 9/27/2014. 
 

Finally, categorizing the degree of change affecting the documents referenced in 

a distributed digital collection over time is a complex task. More specifically, I found 

that categorizing this degree of change is not a binary problem where documents are 

either unchanged or they have changed so dramatically that they do not fit within the 

scope of the collection. Previous work on this topic has relied on methods based on 

response codes, monitoring the fluctuation in file sizes and analyzing the documents’ 

content. However, previous approaches do not take into account the fluid nature of the 

Web [8] and that some degree of change is normal and expected in documents over time. 

Therefore, and because of its complexity, a single solution that can be applied to 

mitigate and manage the effects of unexpected change in a distributed collection does 

not exist. Nonetheless, previous work has shown that some measures and procedures are 

more successful than others when applied to different types of resources. Thus, 
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mitigating the effects of unexpected change can be viewed as a multiple step process 

where first, the characteristics and the types of resources in the collections are identified; 

and second, the appropriate measures and procedures are applied.  

Therefore, the purpose of the investigation that I will describe in this dissertation 

is to focus the attention of curators on potentially problematic resources. In this 

dissertation I will describe a procedure that can be used to detect documents that have 

been affected by unexpected change in distributed digital collections. I will also address 

several of the implications that this procedure introduces. More specifically, I will 

address two research questions in this dissertation. First, which attributes and methods 

can be used to effectively detect unexpected changes in a distributed collection? This 

point becomes increasingly interesting when taking into account that the resources found 

in distributed digital repositories are often curated and maintained by experts with 

affiliations to professional institutions. And second, how do these detection methods fare 

against the assessment of change made by human subjects? I will address these research 

questions in the following chapters of this dissertation. 
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CHAPTER II  

PROBLEM 

 

At the present time, the preservation and curation of digital collections falls 

under the responsibility of archival institutions, which translates into archives and 

libraries investing a considerable amount of effort into maintaining the consistency of 

their collections. Nowadays, three preservation approaches are commonly used: 

refreshing, migration and emulation. The first two are somewhat similar: refreshing 

deals with replicating files in different system, whereas migration is concerned with 

moving documents to a newer and more current environment. On the other hand, 

emulation is concerned with replicating the functionality of obsolete hardware and 

systems while utilizing modern equipment [9, 10].  

Refreshing, migration and emulation are approaches that follow a “just in case” 

philosophy – preserving data just in case it is needed in the future. On the other hand, the 

World Wide Web [11] provides its own preservation methods. “Just in time” 

preservation manifests itself in the Web when users create, copy and move content [12]. 

Because of its passive nature and characteristics, which stem from being a by-product of  

search engines and web archives, “just in time” preservation is disorganized and lacks 

any centralized quality control. Nevertheless, this passive preservation approach allows 

digital documents in the Web to be preserved in some form because of the information 

habits and the ubiquitous nature of users of the Web. 
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Assigning different degrees of urgency to mitigate the impact of unexpected 

changes can be done by determining the parts of a collection that require immediate 

attention from a curator. However, determining which documents in a collection require 

immediate attention is a complex task, and this complexity stems from the different 

characteristics of the change that can affect the different resources. For instance, the 

documents in distributed collections can be categorized into four tiers or meta groups 

which are shown in figure 2. In turn, each of these meta groups reveals a certain degree 

of divergence from the original state of each document and its metadata when they were 

originally ingested into in a collection. 

 

Figure 2: Categorization of the documents in distributed collections. 
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The first tier deals with stable documents. This tier constitutes an ideal scenario 

in many cases, as the documents and metadata reflect the original state when they were 

ingested into the collection. However, a document that remains unchanged for a 

significant period of time can indirectly suggest that it has been abandoned and  

becoming a problematic resource.  

The second, third and fourth tiers contain instances when documents suggest the 

existence of errors; and some documents indicate errors more explicitly than others. The 

second tier deals with server timeouts and failed redirects, while the third tier deals with 

error pages. These cases require special attention as they can be caused by 

uncontrollable factors and circumstances – such as misconfiguration of a Web server, 

hard disk failures and power outages – or by negligence from a Webmaster by letting the 

domain name registration lapse. In some cases, error pages can be easily identified with 

the first digit of the status code from the server’s HTTP response. However, some Web 

servers do not report errors explicitly by masking them with a different status code, thus 

introducing the notion of a Soft 404 error page. Soft 404 error pages are difficult to 

identify using automated methods. 

Finally, the fourth tier deals with cases when a document has been affected by 

change to some degree and has diverged from its initial state. In this tier the contents of a 

document haven’t changed triggering explicit errors from their Web server, but the 

nature of their change affects the semantic integrity of the collection as a whole. 

Examples of documents in this tier include: abandoned pages and sites that change their 
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topic, hyperlinks that point to the wrong content, and sites that have been taken over to 

manipulate search engine results.  

The research problem of detecting the effects of unexpected changes in a digital 

document collection has been previously addressed [6, 13]. However, my dissertation 

has a very defined scope – which is focused on distributed collections. Additionally, the 

procedure that I will describe in the following chapters has some key differences that set 

if apart from previous efforts. For example, Bogen [6] focused on change in the Web as 

part of the natural life cycle of a document and determined the difference between what 

a maintainer expects a page to do from what it actually does using Kalman filters; 

whereas Francisco-Revilla et al. [13] focused on monitoring the structural changes and 

presentation characteristics of a document. Despite these key differences, I use these 

previous studies and their conclusions as inspiration and as a partial foundation for my 

work. 

This dissertation is organized as follows: chapter III provides an overview of 

previous work in related areas. Chapter IV deals with the background needed for 

identifying unexpected change in the form of Soft 404 errors. Chapter V describes the 

importance of methods for dealing with change in documents by restoring the semantic 

integrity of collections that have been affected by unexpected change. Chapter VI 

describes a categorization system for documents that have been affected by unexpected 

change in their content. Chapter VII describes the results I obtained; while chapter VIII 

provides an overview of the evaluation methods that I used. Finally, chapter IX is 

dedicated towards discussion, conclusions and ideas for future work.  
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CHAPTER III  

BACKGROUND 

 

This chapter is divided into three sections. First, I will present several concepts 

that are used throughout this dissertation. I will elaborate on the details that form the 

underlying infrastructure of the Web and how it is tied to my motivation for studying 

unexpected change in the distributed digital collections. Second, I will describe the 

methods that are used to evaluate the performance of information retrieval algorithms in 

the Web. I will use these methods in the following chapters of this dissertation. 

Understanding them will ultimately help the reader get a better understanding of my 

work. Finally, I will describe the previous work that lays the foundation for this 

dissertation. The previous work that I will describe focuses in three areas: finding 

missing resources, link persistence and identifying Soft 404 error pages. 

 

3.1 Web Infrastructure 

Part of the underlying infrastructure of the Web that is relevant to my dissertation 

is made up of search engines (e.g., Google [14], Yahoo! [15], Bing [16]), non profit 

archives (the Internet Archive [17] and the European Archive [18]), and large-scale 

academic digital preservation projects (such as CiteSeer [19] and the National Science 

Digital Library [20]). The underlying infrastructure of the web is discussed in detail by 

Jatowt et al. in [21]. 
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McCown et al. investigated the factors that contribute towards the reconstruction 

of websites [22]. Their work indicated that the PageRank [23] and the age of the missing 

page are the two factors that can influence the outcome of the reconstruction. 

Additionally, McCown and Nelson formally defined flat and deep repositories [24]. 

According to their framework, a repository is flat if it only stores the last version of a 

document. On the other hand, deep repositories store multiple versions of a given 

document – in which different versions of a resource are distinguished by their 

timestamp.  

 

3.2 Search Engines  

A Web search engine is computer software designed to search information on the 

Internet. Search results, which consist of a mixture of web pages, images and surrogates 

for other types of documents, are generally presented as numbered sets and results 

ranked higher indicate a greater relevance towards the search terms. Search engines 

gather and aggregate pages into their search indices using an automated web crawler. 

All the major search engines offer APIs that are open to the public to access their 

services – sometimes for a fee. These APIs allow users and researchers to write 

programming scripts that can retrieve results circumventing the need to access a 

traditional Web interface.  One of the main advantages of accessing search engines 

through their API is that results can be retrieved systematically and at a faster rate. Users 

can also specify the range of the desired results and their granularity: for example 

retrieving results from a specific website and that sit above or below a ranking threshold.  
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Search engines and their APIs are very important in the scheme of research 

related to the Web, thus making them the subjects of performance evaluations. Previous 

studies have found discrepancies between the results obtained from Web user interfaces 

and APIs [25]. More specifically, the results obtained from querying directly the APIs 

seemed to point to older Web indices. At the time that this study took place (2007), the 

search results that were retrieved from Microsoft Network (MSN – renamed to Bing) 

had the greatest overall similarity between its API and Web interfaces when compared to 

other Google and Yahoo! [25]. Additionally, the time it takes for top search results is not 

standardized across search engines. Top results for popular queries can remain in place 

for up to 18 months in Google and Yahoo! [25]. However, refreshing results took 2 to 3 

months in MSN. 

 

3.3 Information Retrieval Measures 

Term frequency (known as TF) expresses the number of occurrences of a 

particular term in a given document and thus represents the importance of a term. On the 

other hand, inverse document frequency (known as IDF) expresses the number of 

documents that contain a given term in a document corpus [26]. Therefore, IDF indicates 

the rareness of a term. Consequently, a TF-IDF score provides a measure of the 

importance of a term within a specific document and a corpus. Equations 1 and 2 show 

the formulas for calculating TF and IDF respectively. 

𝑇𝐹 𝑡,𝑑 =
𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑
𝑇𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑  (1) 



 

 13 

𝐼𝐷𝐹 𝑡,𝐷 = log 
𝐷

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐷 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑡  (2) 

 

Precision and recall are ubiquitous measures to quantify the retrieval 

performance of a system [27, 28]. Precision is a measure of the fraction of retrieved 

documents that are relevant to a query, whereas recall is a measure of the fraction of the 

documents that are relevant to the query that are successfully retrieved. This distinction 

between the two measures implies that there is a trade-off between them. Systems with 

high precision often exhibit low recall; on the other hand, it is possible to obtain a high 

recall by simply returning all documents on any query. Equations 3 and 4 show that 

precision is a measure of how good the system is at rejecting documents that are not 

relevant, and recall measures the performance of a system when returning all the 

relevant documents. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 ∩ 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠  (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 ∩ 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠  (4) 

   

F-measure is a measure that helps reveal the accuracy of a system. More 

specifically, F-measure is the harmonic mean between precision and recall values [28, 

29]. One of the advantages of using F-measure to measure the performance of a system 

is that it conveys the performance of a system in a single value. However, it has the 
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drawback of hiding some of the nuances that can be expressed using precision and recall. 

Equation 5 shows how the traditional F-measure is calculated. 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  (5) 

 

Cosine similarity is one of the most widely used similarity measures. Cosine 

similarity is a measure of similarity between two vectors of an inner product space that 

measures the cosine of the angle between them in N-dimensional space [30]. In general, 

a vector represents each document where the value of each dimension corresponds to the 

number of times that a given term appears in the document. Given the representations for 

documents A and B, the similarity of these two documents is defined as: 

𝑠𝑖𝑚(𝐴,𝐵) =  
𝑣(𝐴) ∙ 𝑣(𝐵)
𝑣(𝐴) 𝑣(𝐵)  (6) 

 

where the numerator of equation 4 is the dot product of the vector representations of the 

documents and the denominator is the product of their Euclidean lengths. 

  Shingling is a technique for identifying and detecting near-duplicates of web 

pages [31, 32]. Given a sequence of terms in a document D, the N-shingles of D is a set 

of all the consecutive contiguous subsequences of N terms that can be extracted from D.  

Therefore, for a given shingle size, equation 7 shows the degree to which two documents 

A and B resemble each other as a measure of their resemblance. 

𝑟𝑒𝑠𝑒𝑚𝑏𝑙𝑎𝑛𝑐𝑒 𝐴,𝐵 =
𝑆(𝐴) ∩ 𝑆(𝐵)
𝑆(𝐴) ∪ 𝑆(𝐵)  (7) 
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3.4 Lexical Signatures 

A lexical signature of a document is a set of terms that expresses (to a certain 

degree) the subject and “aboutness” of a document. In other words, the lexical signature 

of a document is a representation of the most significant terms its the textual content. 

Lexical signatures are generated following an arrangement where the terms of the 

documents are ranked in decreasing order according to their TF-IDF weights. The top N 

terms from this arrangement are the resulting lexical signature of the document. Stop 

words, which occur frequently in a language but do not contribute towards the semantic 

meaning of a document [33, 34], are filtered before the TF-IDF calculation. 

Additionally, removing the stop words in a document has the advantage of reducing the 

complexity of computing the lexical signatures. 

 

3.5 Distributed Collection Manager 

The original version of the Distributed Collection Manager (DCM) was created 

as a successor to the Walden’s Paths Path Manager [35]. The first implementation of the 

DCM was created to observe the fluidity of web pages and collections while taking into 

account that the web as a whole was also changing. Although it was useful in detecting 

instances of abnormal change, the first implementation of the DCM had the shortcoming 

that a single method of detection could only be used. The current implementation of the 

DCM, which I will refer to as version 2, addresses this shortcoming by employing a 

system architecture where pluggable components can be used for testing different 

detection approaches.  
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Like its predecessor, the current version of the DCM can be broadly defined as 

an ecosystem of computational tools that share a common repository and database. More 

specifically, the current DCM is composed of four layers that communicate between 

each other using JSON [36]. The first layer is the user interface, which is the point of 

interaction between the users and the system. The user interface layer also includes 

functionality for the management of user accounts and their authentication. The second 

layer is the document harvester. The document harvester is a threaded service that wakes 

up periodically and retrieves pages at a given interval of time. To avoid errors and 

instances associated with retrieving pages at the same time periodicity, this interval is set 

to 20 hours – which also means that some documents will be retrieved twice in a given 

day. The third layer is the storage layer, which stores the documents in flat file system 

and logs all the interactions between the layers a MySQL database. Additionally, the 

storage layer is capable of storing multiple versions of the retrieved documents by 

creating a random hash of the retrieved URL, which is then used to store each resource. 

Finally, the fourth layer consists of the components and procedures used to detect 

unexpected change. Two of these components – that are used to identify Soft 404-error 

pages and restore incomplete collections – will be described with more detail in chapters 

IV and V. Figure 3 shows a system diagram for the architecture of the DCM. 
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Figure 3: System diagram for the architecture of the DCM. 
 

3.6 Finding Missing Resources 

Previous work on finding missing resources is based around the premise that 

documents and information are not lost but simply misplaced [37] as a consequence of 

the lack of integrity in the Web [38, 39]. Reconstruction tools can be used to recover a 

website when it is lost and backups are not available [40]. Other studies have also 

focused on analyzing content and link-based methods to rediscover missing pages [41], 

finding the longevity of documents in the Web [42] and also in distributed collections 

[43, 44].  
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Douglis et al. studied the rate of change in a corpus of Web pages [45]. Their 

research found that HTML documents changed at a faster rate when compared to more 

static resources – such as images or similar resources. Their research also showed that 

the most frequently accessed resources undergo frequent modifications. Given that 

embedded resources are archived at different intervals from the rest of the linked 

resources, the presentation of archived Web document might appear coherent. Previous 

studies have shown that only 1 out of 5 documents reconstructed from archives are 

temporally coherent and complete – meaning that their presentation matches how they 

looked when they were ingested into the archive [46]. Archival crawlers can also 

produce results that differ from what the user expects, especially when dealing with 

interactive features of HTML and Javascript [47]. 

Characterizing the amount of change on the Web has been studied previously. 

Cho and Garcia-Molina studied how sites change depending on their domain suffix [48]. 

They found that it took approximately 11 days for 50% of the .com domains in their 

sample to change. However, .gov sites were updated less frequently – taking 4 months 

for 50% of the sites in this domain to exhibit some form of change. As a conclusion of 

their study, Cho and Garcia-Molina also stated change can be expected in a Web page 

every 4 months approximately. In a later study, Cho and Garcia-Molina introduced a 

model to estimate the frequency of change in Web documents [49]. In terms of size and 

scale, Fetterly et al. conducted one of the largest studies of focused on Web page change. 

They crawled 150 million pages once a week for 11 weeks and carried out a study that 

compared the changes across pages while focusing on features such as page size [50]. 
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When comparing sizes in bytes, Fetterly et al. found that larger pages change more often 

than smaller ones.  

Ntoulas, Cho, and Olston studied how Web pages can change using weekly 

snapshots of 150 websites that were collected over a year [51]. They found that most 

pages did not change according to traditional measures of similarity (most notably bag-

of-words). They also found that how frequently the documents changed was not a good 

predictor for their degree of change, but the degree of change was a good predictor of 

future degrees of change. Additionally, Adar et al. found that the amount of change in a 

Web document is dependent of the domain and structure of the page [52]. However, they 

found that 65% of the pages in their corpus exhibited some form of change after a period 

of five weeks.  Olston and Pandey crawled 10,000 random Web pages and 10,000 pages 

sampled from the Open Directory every two days for several months [53]. Their 

analyses measured both change frequency and information longevity. As a result of this 

study, new crawl policies that are sensitive to information longevity were developed.  

Phelps and Wilensky pioneered the use of lexical signatures to locate missing 

content in the Web [54]. They claimed that if a Web request returned a 404 error, 

querying a search engine with five terms describing the document could retrieve the 

missing content. However, it is known that search engines are dynamic entities and their 

results can change over time [55]. Park et al. used Phelps and Wilensky’s previous 

research to perform an evaluation of nine lexical signature generators that incorporated 

term frequency measures [56]. Additionally, Klein and Nelson have extracted lexical 

signatures from titles and backlinks to find missing Web resources [3]. 
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Finding replacements complements the problem of finding missing resources. 

Furthermore, finding replacements shares some similarities with identifying near–

duplicate documents. Near–duplicate documents are identical in terms of content, but 

have differences in their formatting, minor corrections, advertisements, logos and 

timestamps. Finding near–duplicate documents is difficult because single web resources 

usually convey many semantic components. Despite the inherent difficulty associated 

with this problem, the Shingling [31] and Simhash [57] algorithms are considered the 

state of the art in near–duplicate document detection.  The similarity measure used in the 

Shingling algorithm was previously described in chapter III.  

Another approach used to identify near–duplicates is based on creating a digital 

fingerprint for a document. A digital fingerprint is a stream of bits that uniquely 

identifies the original contents of a document. Early proponents of this approach include 

Manber [58]; along with Shivakumar and Garcia–Molina [59]. Along the same lines, 

Brin, Davis and Garcia–Molina also proposed a system that detected documents that 

overlapped in “significant ways” [60]. 

Forman et al. identified near–similar technical support documents [61]. 

Interestingly, they chose to rely only on the contents of the documents because of 

missing and corrupted metadata. Their approach was defined by the document corpus, as 

support documents can contain illustrations and diagrams and cannot be broken into 

semantic sections. Instead they chose to break the documents in a consistent way that 

was not dictated by semantics and then detect collisions between near–duplicates.  
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Although detecting near–duplicates shares some similarities with my research, 

my methods have a different scope. Near–duplicates are documents that share the same 

content but have different presentation characteristics. The purpose of my research is 

finding documents that can serve as replacements for missing items to restore the 

integrity and continuity of a path. Moreover, finding near–duplicates of missing 

documents would require a cached or archived copy of the lost document – which for 

practical purposes I am assuming that I don’t have – and a very specific crawl of the web 

that is also beyond the scope of my approach.  

More specifically, my previous research aimed to enhance and complement the 

methods used by Dalal et al. to find appropriate replacements for missing resources from 

the web that belonged to a collection in the Walden’s Paths Project [62]. Their approach 

was based on a two–step process. First, metadata was extracted when the path was 

created thus preserving the author’s intent and vision. Second, the extracted metadata 

was used to find pages when they cannot be retrieved. In the specific case of collections 

such as Walden’s Paths, each node in a path is destined to make a contribution towards 

the overall concept and the continuity in the narration. Therefore, finding replacements 

becomes a critical factor to maintain the integrity of the collections and preserve their 

semantic meaning. 

 

3.7 Link Persistence 

On the other hand, previous work on link persistence has focused on 

characterizing the availability of resources over time. Nelson and Allen measured the 
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persistence and availability of documents in a digital library [63]. Based on the premise 

that objects placed in a digital library should persist longer than an average Web Page, 

they analyzed 50 random objects from twenty digital repositories and found that 3% of 

these objects were no longer available. Koehler found that specialized document 

collections – such as legal, educational and some scientific citations – tend to stabilize 

over time [64]. However, citations in some domains have higher rates of failure [65]. 

McCown et al. also explored other factors that might cause a resource to fail by 

examining its age, path depth, top-level domain and file extension [66]. Similar studies 

have also focused on distributed science education resources, where 16.5% of the URLS 

in the collection have ceased to function or had their content changed over a period of 14 

months [67]. Obviously, maintaining the contents of documents in the Web has been 

identified as an urgent problem. Knowledge-based approaches have been employed to 

properly verify the contents of Web sites using semantic markup to formulate rules and 

constraints that must hold according to the information contained in a document [68]. 

Furthermore, my research attempts to extend previous work on this area as a whole by 

examining a distributed collection as part of an institutional digital library. Additionally, 

I will describe the types of issues found in the collection, and examine the potential to 

automatically identify these issues when they surface. 

 

3.8 Identifying Soft 404 Errors 

Some websites are known to mask a "not found" error by returning a standard 

web page with a "200 OK" response code. This type of response is known as a Soft 404 
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error page. Soft 404s present a problem for automated detection methods because they 

hinder the nature and purpose of a document. As is expected, the problem of identifying 

Soft 404 pages has been attempted before. Bar-Yossef et al. created an algorithm that 

analyzed the behavior of web servers to predict the occurrence of Soft 404 error pages 

[4]. Their approach was based on creating a request for a document that does not exist on 

server, thus triggering a 404 error. As webservers usually share similar rules for each 

hosted site, Soft 404s can be predicted by extending the response patterns to a larger set 

of documents within the same host.   

My approach (which I will describe in chapter IV) differs from previous efforts 

in its scope and application: I use the lexical signatures of Web documents to identify 

Soft 404 errors. Additionally, previous research has relied heavily on HTTP status codes 

(mainly 404s) and server responses to identify error pages. However, these status codes 

do not always represent the nature and content of the retrieved document. Consequently, 

my work presents an approach to identifying errors not reported by status codes. 
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CHAPTER IV  

IDENTIFYING SOFT 404 ERRORS1 

 

I base my methods and procedures for collection management on the results of 

two studies, which are described in chapters IV and V. The first study explores methods 

for identifying patterns of abnormal change in Web documents in the form of Soft 404 

errors, while the second examines methods for restoring collections where its documents 

have been altered due to unexpected changes. These studies expanded my understanding 

of unexpected change in the Web and provided the foundation for the methods for 

categorizing change.  

A 404 or “Not Found” error in the Web hints that the requested content is not 

available in the given server. These errors are very common on the Web and have 

become part of the user browsing experience. Because of this and as an effort to make 

the Web more tractable, 404 error pages have changed over time. Figures 4, 5 and 6 

illustrate three common examples of 404 error pages: Figure 4 shows a default error 

page that states that the requested URL and its corresponding Web page could not be 

found in the file structure of the server. Next, figure 5 is more customized and polished 

in an effort to appear more pleasant than a standard error page (It shows the logo of the 

site and the text is centered and highly formatted). Finally, figure 6 displays a highly 

————— 
1 Part of this chapter is reprinted with permission from "Identifying “Soft 404” Error 
Pages: Analyzing the Lexical Signatures of Documents in Distributed Collections" by L. 
Meneses, R. Furuta, and F. M. Shipman, 2012, in Proceedings of Theory and Practice of 
Digital Libraries 2012. Copyright 2012 by Springer Berlin Heidelberg. 
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customized error page, where the user is provided suggestions based upon what he was 

probably looking for and links to resume browsing the site (if he chooses to do so).  

 

Figure 4: Default 404 error page - http://www.jcdl.org/archived-conf-
sites/jcdl2001/foo. Accessed on 6/1/2015. 
 

 

Figure 5: Customized 404 error page - http://atariage.com/foo. Accessed on 
6/1/2015. 



 

 26 

 

Figure 6: Highly customized 404 error page - http://www.microsoft.com/en-ca/foo. 
Accessed on 6/1/2015.  

 

The three examples that I have shown are easily identifiable by analyzing their 

response headers and their HTTP response codes: in particular because they all return a 

404 HTTP response code.  On the other hand, there are more sophisticated and 

problematic cases in which a Web server reports change in a human-readable, but not 

machine-readable format These sophisticated and problematic cases can occur 

intentionally (for example, attempting to provide a “friendly” or “soft” way to allow the 

reader to continue by redirecting failed pages to the site’s index page), without 

knowledge of the original site (for example, the landing page provided by some ISPs 

when an address is given that refers to a host that is no longer available), or deceptively 

(for example, the registration of lapsed domain names and uploading a different Web  

site as an attempt to sell the domain name back to its original holder). Collectively, these 

error pages are called “friendly” or “soft” 404s as they mask the return code of 404 
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normally returned when there is a failure to access a Web resource.  Soft 404s also 

hinder the task of monitoring the changes in the structure and content of a Web 

document. Figure 7 shows an example of a Soft 404 taken from http://badoo.com, while 

figure 8 and 9 show the differences in the HTTP headers for a 404 and Soft 404 error 

page. 

 

Figure 7: Soft 404 error page from http://badoo.com. Accessed on 4/3/2012. 
 

As a general rule, Soft 404s errors return pages that the user is not expecting - 

making the difference between the expected and the returned document very significant. 

Consequently, search engines have identified Soft 404 errors as undesirable results and 

consider them not useful to the user. Google has professed a farewell to 404s [69] and 

announced that their crawling mechanisms are able to detect Soft 404 and notify network 

administrators about their occurrence [70]. As desirable as this procedure might seem, 

their results have been inaccurate and known to include server side errors [71]. 
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Figure 8: HTTP headers from a 404 error page. Taken from 
http://www.atariage.com/foo. Accessed on 6/2/2015 
 

 

Figure 9: HTTP headers from a Soft 404 error page. Taken from 
http://www.symantec.com/errors/notfound.jsp. Accessed on 6/2/2015 
 

Thus, detecting Soft 404 pages is important to maintain semantic integrity among 

the documents in a distributed collection. More specifically, Soft 404 pages hinder the 
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task of monitoring the changes in content of a Web resource by masking its purpose 

behind an HTTP response code that does not correspond with its contents.  

 

4.1 Initial Assessment 

I started the first study by analyzing the commonness of Soft 404 errors in two 

collections of documents: resources that return an OK HTTP response (with a 200 code) 

and those returning Soft 404 pages. For this purpose, I obtained a dataset for pages with 

OK responses by analyzing a random subset of 166,103 websites taken from the Open 

Directory Project database (https://www.dmoz.org). Out of this sample, 147685 URLs 

returned OK responses when queried, which accounts for 88.91% of the sample. Only 

206 returned a 404 error, which accounts for 0.12% of the sample. However, 404 errors 

in the web are very common. For instance, 475 out of 1000 sites in the sample were 

already “dead” (returning a soft or hard 404) when Bar-Yossef et al. ran their first 

experiment to measure the decay in the Web [4]. Thus, at this point I hypothesized that 

the low number of 404 errors in the sample served as an indicator of the prevalence of 

Soft 404 errors in the Web. 

Then I tested the validity and correctness of the sample for the OK responses, 

which consisted of 147685 URLs. For this purpose, I forced a 404 error by appending a 

random sequence of 25 characters to each URL (i.e.: 

http://www.youtube.com/8q07a24ildpy3sbjmwnkgl0vs) and analyzed the response codes 

from the servers. 5,017 requests still returned an OK response, which accounts for the 

3.41% of the subsample. 131,529 URLs returned a 404 error code, which accounts for 
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89.35% of the subsample. After conducting this cross-reference for validation purposes, 

I computed that Soft 404 errors could be found when accessing 3.41% of the documents 

in the web.  

 

4.2 Experiment Parameters 

Following this initial assessment, I used a different sample for the next phase in 

my experiment, which included the development and testing of a classification system. I 

used a snapshot of Alexa’s daily 1,000,000 Top Sites taken on 3/22/2012. This dataset is 

freely available from Alexa.com and it is provided in CSV format. I used the sites listed 

in Alexa’s classification because of the increased certainty that the list would contain 

valid and up to date Web addresses. 

Coincidentally, my study has some degree of similarity in the parameters used by 

Bar-Yossef et al [4]. I will summarize the parameters used in four points. First, I 

attempted to fetch the “absolute URL” for each given website. It is a common practice 

nowadays for websites to use redirects depending on specific content, location, language 

or other factors. For example: nokia.com actually redirects to http://www.nokia.com/us-

en/. For this study I only allowed up to 10 redirects for each URL. 

Second, to produce a Soft 404 response from an actual working URL, I forced 

each Web server to return an error page by concatenating a random combination of 25 

letters (a to z) and numbers (0 to 9) to the requested entry. The probability of a page 

actually existing in the server to fulfill the request is trivial: N/(36R) where N is the 

number of documents in the actual file path and R=25. To ensure that the server would 
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return a Soft 404, the random sequence of characters was appended to an absolute URL 

and file path. This ensured that the retrieved document would be a Soft 404 instead of a 

“hard” 404 error page. 

Third, the content of the Web pages was retrieved using Python’s HTTP protocol 

client with a timeout value of 10 seconds. The HTML cleanup, key term extraction and 

analysis was carried out with Python’s Natural Language Toolkit (NLTK) [72] and 

Beautiful Soup libraries [73].  

Finally, using the analysis tools from the NLTK package, I found that the 

average Soft 404-error page in the resulting collection contains 173 words; 24 of which 

are stop words. As expected, the lexical signatures of the Soft 404s provided indications 

of error responses: page, not, found, 404, requested, sorry, error. In the case of Soft 404 

error pages, these error terms synthesize the subject and purpose of the documents. With 

these characteristics, I created methods to identify Soft 404 pages in collections of 

documents from the Web. 

 

4.3 Identifying Soft 404 Error Pages   

For this experiment, I applied the characteristics extracted from Soft 404 pages 

towards building a text classifier to analyze the contents of Web documents.  I used a 

Naïve Bayes classifier that looked for specific lexical signatures in the content of the 

pages. I ran the text classifier against a dataset of 1000 random URLs from Alexa’s daily 

1,000,000 Top Sites snapshot for 10 iterations. Additionally, I used the classifier against 

two corpuses of data: complete HTML documents and metadata extracted from the title 
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tags.  Each run was completely independent from each other and the data for the 

experiment was extracted at run time. 

In the case of the HTML documents, I took into account the commonness of 

finding the lexical signatures and the overall term length of the documents. In the case of 

the title metadata, I only used the lexical signatures because the number of terms was 

trivial. On the other hand, I concentrated on the titles embedded in the contents of Web 

documents based on the premise that titles synthesize the contents of the documents 

[74]. 

To evaluate my approach, the classifier used different sets of Web documents for 

training and testing. The training set was constituted with 100 documents: 50 Soft 404 

pages and 50 normal (not soft 404) responses. The documents in the training set were 

selected randomly from the top-sites corpus obtained from Alexa.com. Additionally, I 

implemented features for the classifier to minimize false positives: pages with OK 

responses that were predicted as 404 errors. For these specific cases, I ran the Naïve-

Bayes classifier for a second time using a different Web address constructed randomly 

with the same URL to compare the document titles and their corresponding predictions. 

Consequently, this second pass of the classifier increased the precision of the predictions 

of the classifier by approximately 10%. 

For the first document corpus, dealing with full HTML documents, the text 

classifier was able to predict on average Soft 404s with a precision of 95% and a recall 

of 87%. For the second corpus, which focused on the title metadata, the classifier was 

able to predict on average Soft 404 pages with a precision of 99% and a recall of 92%. 
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Using the titles as surrogates for the documents allowed the text classifier to make more 

reliable and accurate predictions. Figures 10 and 11 illustrate the individual precision 

and recall values obtained identifying Soft 404s on each of the ten iterations. Figure 12 

shows the average values for Soft 404 identification using complete HTML documents 

and the title metadata. 

 

Figure 10: Precision and recall measures per iteration for Soft 404 identification 
using complete HTML documents. 
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Figure 11: Precision and recall measures per iteration for Soft 404 identification 
using the extracted title metadata. 

 

 

Figure 12: Average precision and recall values for Soft 404 identification using 
complete HTML documents and title metadata. 
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4.4 Discussion and Implications 

Identifying Soft 404 responses is not trivial. My initial methods, which precede 

the results outlined in this dissertation chapter, were based on an approach that allowed a 

text classifier to extract the most important features. This approach dealt with generating 

a large term concordance where weights and probabilities were assigned to each 

occurrence. This approach returned varied and inconsistent measures of precision and 

recall. There are two reasons for these results. First, the variability in the sample: Web 

pages vary greatly in content and layout across the Web. Second, the combined 

probabilities of occurrence from the terms in a Web page introduced noise into the 

classifier. More so, a similar approach would work better in a specialized domain where 

a concordance built from the textual content of the documents has a smaller number of 

key terms. 

A central obstacle for this research was obtaining valid and reliable datasets. 

Nowadays, Web pages change constantly and their lifespan is limited. As expected, text 

classifiers are only as good as the training data. If the data fed into the training set of the 

classifier contains errors, false positives or false negatives, the classifier will not be 

accurate in its predictions. The continuous change in content and availability of 

documents in the Web created difficulties when I attempted to evaluate alternate 

approaches for the extraction of patterns and features. Thus, expanding the corpus of 

Soft 404s allows identifying additional unique features of Soft 404 pages and will 

improve the overall accuracy of the classifier. 
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The classifier was able to achieve a high level of precision with complete HTML 

documents because of the combination of two features: the analysis of lexical signatures 

and the overall term count of the documents. When each feature is isolated, the classifier 

achieved lower levels of precision when detecting Soft 404 pages. However, I found the 

lexical signatures to be a better classifying feature than the overall term count. Factoring 

only the lexical signatures returned a precision value of 82% with the corpus of HTML 

documents. I obtained higher precision values when analyzing the lexical signatures 

from the title metadata.  

Despite obtaining good levels of precision and recall, analyzing large numbers of 

terms in the complete HTML document corpus introduced noise into the classifier. 

Consequently, these fluctuations had the potential to make the classifier produce 

erroneous results. For the second approach, which synthesized the titles of documents, 

the text classifier was less prone to noise by analyzing only document surrogates. The 

boost in performance was a consequence of the synthesized lexical signatures in the 

extracted data. 

However, I found that the classifying procedure by itself favors 404 predictions. 

This perceived bias towards the predictions increased the number of false positives. In 

these specific cases, I addressed the problem by running the classifier again which 

ultimately increased the precision measure. Alternatively, I could have implemented 

additional classification features into the algorithm, which in turn could have further 

increased the complexity of the experiments and analysis. Additionally, by performing a 
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second pass on individual documents with the text classifier, I addressed the problematic 

case where two different documents from the same site could share the same title. 

I also found that page redirects in sites caused inaccurate predictions as false 

negatives. This issue was prevalent with sites whose content was different for different 

countries or audiences. For example, a request to “http://skype.com” originated within 

the United States will redirect the user to “http://www.skype.com/intl/en-us/home”. I 

ultimately addressed this issue by fetching and “absolute” URL and path. However, the 

number of redirects caused inaccurate predictions and ultimately affected the overall 

recall value of the algorithm in the early stages of the study. 

Although somewhat similar, the two procedures I have described can have 

different application areas. Corpora of Web documents can benefit from using lexical 

signatures and overall term count, which yields a more thorough analysis but has a 

slightly lower precision and recall. Scenarios where only the title metadata is available 

can expect higher precision and recall values under the assumption that the title metadata 

contextualizes the contents from Web documents. Specific cases where higher precision 

and recall values are crucial should use the analysis of lexical signatures synthesized 

from the title metadata.  

Given that identifying Soft 404s was previously attempted in 2004 by Bar-Yossef 

et al [4], two questions still need to be answered. First, How do the methodologies 

compare? And second, which one is better? The two methodologies have great 

differences. The method presented by Bar-Yossef et al. relied on server response codes 

to “learn” how websites react to different requests. On the other hand, my approach 
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analyzes the contents of Web documents and relies on lexical signatures. I purposely 

used similar parameters and procedures in the experiments to facilitate comparisons and 

analysis. The similarities include: number or iterations (10), sample size per iteration 

(1000 URLs), retrieval timeout (10 seconds). Also, the algorithms for fetching the 

relevant data from each URL share some principles. For example: how to determine the 

absolute URL, how to circumvent redirects, and how to force a Soft 404 error. 

Ultimately, the two methods (mine and Bar-Yossef’s) have different applications. 

Decentralized collections where documents are stored and cached can benefit from the 

approach using lexical signatures, while environments with network bandwidth 

limitations can utilize the approach from Bar-Yossef et al. that relies on response server 

codes.  

Answering which methodology is better is complicated because of two reasons. 

First, Bar-Yossef et al. do not provide precision and recall measures; and second, there 

are differences in the samples that were used in the experiments. Additionally, it must be 

taken into account their method for identifying Soft 404s was not intended as an end 

result as they were ultimately attempting to measure the decay in the Web. However, my 

approach presents some advantages given that it analyzes the lexical signatures of 

documents retrieved from the Web. 
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CHAPTER V 

RESTORING INCOMPLETE COLLECTIONS2 

 

Despite the previous efforts that I have described in the background chapter of 

this dissertation, managing missing resources in a digital collection can still be 

problematic. This is due mostly to the dynamic nature of the Web, which allows 

documents and Web pages to change and disappear without notice. Taking into account 

the infrastructure of Walden’s Paths as an example, decentralized collections can be 

stored as traversable paths containing multiple nodes and documents. Adopting this 

architecture metaphor does not spare decentralized collection and its documents from 

changing unexpectedly. The degree of change that these collections endure is not 

homogeneous: in some cases documents might exhibit Soft 404 errors, while in others 

change is manifested in variations in content and in presentation. As I have discussed in 

previous chapters, changes in content can be minimal or have a huge impact in the 

semantic meaning in the collection. Thus, when documents change unexpectedly I can 

foresee two possible scenarios occurring when resources cannot be found. First, we have 

access to a copy of the missing document or to its lexical signatures – which are defined 

as a set of key identifying terms. Previous research by Dalal et al. has already addressed 

this case [62], which makes finding the missing resource a trivial scenario. The second 

————— 
2 Part of this chapter is reprinted with permission from " Restoring Semantically 
Incomplete Document Collections Using Lexical Signatures" by L. Meneses, H. 
Barthwal, S. Singh, R. Furuta, and F. M. Shipman, 2013, in Proceedings of Theory and 
Practice of Digital Libraries 2013. Copyright 2013 by Springer Berlin Heidelberg. 
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scenario is more interesting to me at this point: What happens if we don’t have any 

metadata associated to the missing resource? A missing document is of grave 

importance, because each resource contributes to the overall meaning of the collection 

and to the continuity of the narration. Therefore, a missing document can potentially 

interrupt the flow of the collection and make it semantically incomplete. Figure 13 

shows an example of a “Soft 404” error, where a server masks a “404: not found” HTTP 

response with a standard page and a different response code, which in turn causes a 

collection in Walden’s Paths to become semantically incomplete. Given that the URL of 

the resource is part of the metadata describing the node, gathering the documents that 

point to the missing resource could be proposed to solve this problem [3]. However, this 

solution would not render adequate results when taking into account that some of the 

URLs point to outdated resources that are no longer included in search indexes or 

harvested by preservation services such as the Internet Archive. 
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Figure 13: Example of a “Soft 404” error viewed through the Walden’s Paths user 
interface. This missing document makes the collection semantically incomplete. 
 

As a solution to this problem, similar documents for the missing resources can 

be found in the Web. These documents are known as “duplicates” (or “near-duplicates”). 

Although the detection of duplicates has focused on techniques to optimize Web 

crawling, finding these duplicate documents can be used to preserve distributed 

collections. For example, the procedure for calculating the contiguous subsequences of 

tokens in a document introduced by Broder et al. [31, 32] can be used to cluster 

documents according to their contents to provide suitable replacements for missing or 

unstable documents. Charikar introduced a hashing function that hashes changes relative 

to changes in a given input set [57]. As a consequence, entire Web pages or a subset of 

pages can be compared to their hash values. Later on, Henzinger compared the two 
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techniques introduced by Broder and Charikar and found that they perform equally well 

in identifying near duplicates from different sites [75]. 

More importantly, research has been carried out that directly supports the notion 

that a lost page can often be replaced (or similarly restored) by another page which can 

be found in the Web. Fetterly et al. created clusters of near duplicates Web pages and 

measured their similarity using shingles and other procedures [76]. They found that 28% 

of their documents were duplicates and 22% were identical. Additionally, Baeza-Yates 

et al. analyzed genealogical trees from Web pages and found that a portion of the web is 

created based on existing content [37]. 

To address the problem of restoring incomplete collections, I used the lexical 

signatures of the other “valid” documents (i.e. that are not missing) within the collection 

to find a suitable replacement for the absent resource. In the best–case scenario, I was 

able to find the actual resource that is missing. However, my main focus was on finding 

similar resources that can act as surrogates (or placeholders), contribute towards the 

continuity of the narration and restore the semantic completeness of the collection.  

Thus, restoring incomplete collections deals with analyzing the original user’s 

intent, cognition and the Web search patterns that were utilized when creating a 

collection. Jansen et al. conducted a study that analyzed search engine query patterns 

[77]. As a result, they found that 35% of the queries were unique; whereas 22% of the 

queries exhibited slight variations and 43 were duplicates from the original set. Jansen 

and Spink compare nine studies that provided insights about the patterns found in Web 

searches from 1997 to 2002 [78]. As a result of this study, the researchers found that the 
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length in the query strings was decreasing and that nearly half of the queries were tied to 

people, places and things.  

Studies have also examined the demographics, session statistics and query types. 

Weber and Jaimes carried out an analysis of the logs from Yahoo! Search to determine 

who searches for what and how they do it [79]. Baeza-Yates et al. conducted a study that 

utilized supervised and unsupervised learning techniques to indentify the user’s intent in 

a search engine query [80]. On the other hand, Zaragoza et al. investigated if the 

problem of web searching was ultimately solved and if the rankings across search 

engines were the same [81]. As a result of their inquiry, they found that Google, Yahoo! 

and Bing exhibit good performance with commonly-issued queries and for navigational 

queries. However, differences in performance surfaced with non-navigational queries. 

Additionally, Pass et al. found in their study that queries have an average length of 3.5 

terms, 28% of queries are a reformulation of a previous one and that between 12% and 

28% of queries include a local aspect (i.e.: Texas Aggies) [82].  

Finally, Adar et al. explore the relationship between the number of changes in the 

content of page and the visitation patterns of its users [83].  The conclusions from their 

study support the known belief that pages that change frequently are visited more often 

when compared to pages that exhibit a more static behavior. However, the amount of 

change that sites exhibit across the web varies – which led the researchers to conclude 

that the action of users returning to a given site is correlated to the information that is 

changing in a particular document. Additionally, sites that exhibited some degree of 

change within shorter periods of time were revisited more frequently as well. 
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5.1 Experiment Setup 

At its backend, the Walden’s Paths project uses a MySQL database. This 

database stores the metadata for each path and its nodes. Title, abstract and language 

describe each path; while metadata for the nodes includes the resource URL and general 

notes. Given that users of Walden’s Paths created all the paths in the database, it is safe 

to assume that the nodes share semantic ideas and follow a similar cognitive pattern. For 

this experiment, a replacement was considered suitable if it shared similarities with the 

missing resource and it conveyed the semantic meaning of the rest of the path. I initially 

considered paths that fulfilled three requisites: First, they must contain at least one node. 

Second, the nodes must have links to web resources; and third, the paths must be in 

English. Thus, the initial sample from the collection consisted of 948 paths that fit these 

criteria.  

The documents from the resource URLs for each node were retrieved using a 

similar procedure to the one I used in chapter IV. The procedure consisted of seven 

steps. First, I attempted to fetch the “absolute URL” for each given URL allowing 10 

redirects per URL entry: if it exceeds 10 redirects the URL entry was discarded and not 

used in the study. Second, the web resources were downloaded using Python’s HTTP 

protocol client with a timeout value of 10 seconds. Third, and because of the diversity of 

documents in the web, I decided to focus only on HTML files. Thus, the retrieved 

documents were then identified as HTML files using Python–magic and non–HTML 

files were discarded. Fourth, I checked the HTML documents for “Soft 404” errors using 

the procedure based on lexical signatures that I will described in chapter IV and in [84]. 
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Fifth, I removed the HTML elements using Python’s Beautiful Soup libraries. Sixth, I 

used functions and procedures found in Python’s Natural Language Toolkit (NLTK) to 

eliminate stop words, remove punctuation using string translation functions, convert to 

lowercase and stem each term using a Lancaster stemmer. Finally, the resulting lexical 

signatures were stored as individual documents in a folder structure, where each folder 

represented a different path. 

To carry out this experiment, I assumed that the paths were “incomplete” 

meaning that one of the resource URLs from the nodes could not be retrieved. I did this 

by pretending that the document referenced in the metadata from one of the nodes was 

“missing” and could not retrieved. The node that referenced the missing resource was 

randomly selected from each path. This allowed me to compare the original missing 

document and its replacement.  

The replacements for the missing resources in the nodes were found using a 

search engine. I used the Microsoft Bing Search API because it allowed 5000 queries per 

month for free. Also, Bing is based on MSN Search and its document index was known 

to be updated more frequently when compared to other search engines [25]. I gathered 

the five most significant lexical signatures – which describe and characterize each 

incomplete path – which I used to create a query string taking into account Phelps and 

Wilensky’s previous work [54]. Then I retrieved the resources from the URLs of the five 

top results. This retrieval was done at run time and followed the seven–step procedure 

that was used for the resource URLs in the path nodes. 
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5.2 Results 

For this analysis, I restricted the analysis using the paths in the sample that 

contained at least three nodes with retrievable HTML documents. This condition was 

enforced to provide contextual information to the retrieval algorithms for my 

experiment. However, it further reduced the sample to a working set of 447 paths. Paths 

with three and four nodes were the most common cases. I hypothesized that a better 

notion of context, provided by a larger number of nodes and documents, would allow my 

processes to obtain better replacements for missing resources.  

I validated the assumption that the nodes within a path share semantic ideas and 

follow a stream of thought. For this purpose, I calculated the cosine similarity between 

the resource in the incomplete node and the rest of the documents in the path. I found 

that the vectors formed with the documents within a same path are not identical, but they 

do share some similarities. Figure 14 shows the average cosine similarity between a 

missing document and the other valid documents within the path. I also calculated the 

link similarity between the missing and the valid documents, but this measure did not 

provide any statistical evidence of similarity.  
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Figure 14: Average cosine similarity between a missing document and the other 
valid documents within the path.  
 

I selected the replacements using two procedures. In the first, I used the top–

ranked result from the search engine API. For convenience, I will refer to this method as 

“top–ranked”. For the second procedure, which I will refer to as the “top–similar” 

method, I evaluated if the most similar documents from the search results could be used 

as suitable placeholders. For this method, I calculated the cosine similarity between the 

documents in the top five search results and selected the two that had the shortest 

distance between them. I then chose the topmost–ranked result from the resulting pair. I 

evaluated my algorithms using the resemblance measure, which was defined in the 

Shingling algorithm [31], and the cosine similarity between the original document and 

its surrogate. The cosine similarity was calculated using NumPy.  

The average resemblance and cosine similarity were very close for both methods. 

For resemblance, the average values were 0.735 for “top–ranked” and 0.738 for the 

“top–similar” method. With resemblance, optimal cases are closer to one. Likewise, the 
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average values for calculated the cosine similarity were 0.148 for “top–ranked” and 

0.166 for the “top–similar” method. For cosine similarity, optimal values are closer to 

zero. Given the magnitude of these values, using resemblance as a similarity measure 

was more accurate when expressing the relationships and common ground between 

documents. However, the results vary greatly when considering that the number of 

documents in each path that were used for the calculations. Figure 15 and 16 show the 

distribution of the average resemblance and cosine similarity when grouped by the 

number of nodes in each path. Thus, the analysis of the data represented in these figures 

reveals that they do not truly represent the relationship between the number of 

documents used to extract the lexical signatures and the replacements obtained and that 

further analysis was needed.  

Figure 15: Average resemblance grouped by the number of nodes in each analyzed 
path. 
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Figure 16: Average cosine similarity grouped by the number of nodes in each 
analyzed path. 

Next, I calculated the quadratic mean between the similarity matrix of the 

original documents in the path and the similarity matrix of the original documents with a 

replacement resource in place. I calculated the quadratic mean between the similarity 

matrices to determine how the surrogates would fit among the original documents and 

their capability to restore the semantic meaning of the path. I performed this calculation 

for the “top–ranked” and the “top–similar” methods. Taking into account that these are 

two similarity matrices, the best–case scenario is found with values closer to zero. Figure 

17 shows the Average Quadratic Mean between the original and modified similarity 

matrices grouped by the number of nodes on each analyzed path. 
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Figure 17: Average quadratic mean between the original and modified similarity 
matrices grouped by the number of nodes on each path. 

Using the quadratic mean between the two matrices, I observed that there is 

correlation between the number of nodes in the path and the quality of the document 

surrogates. If a path has more nodes, the extraction algorithm has more information 

available and it is able to obtain more significant lexical signatures, thus retrieving better 

document surrogates in the end. Figure 16 shows that there is a tendency leaning towards 

zero as more nodes are present in a path collection. However, figure 16 also shows an 

irregular spike in the group of paths that contained 13 nodes. In this case, the algorithm 

was unable to find any suitable replacements, which caused the quadratic measure to 

augment drastically. Looking closely at the source documents, the lack of a main theme 

in these paths caused the algorithm to be unable to extract relevant lexical signatures 

from these documents. 
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5.3 Discussion and Implications 

Finding documents that can semantically restore a document collection is a 

complicated task. Thus, I faced three obstacles for this task. First, the variability in the 

documents served as Web pages makes content fluctuate greatly across the Web. 

Second, the combined probabilities of occurrence from the terms in a Web page can 

have a tendency to introduce false positives. Although I minimized this tendency by 

stemming and streamlining the contents of the documents, my approach would work 

better in a specialized domain.  And third, capturing user intent can be problematic when 

dealing with a diverse corpus of documents. 

I relied on resemblance and cosine similarity to quantify the relationship between 

the original document and its possible replacement. Likewise, I also aimed to quantify 

the relationship between the surrogate and the rest of the documents in the path. 

Calculating the determinant of the similarity matrices was an obvious choice, but it was 

not a good option. I looked at the determinant as a measure that represents the volume 

formed by the vectors in n dimensions, where n is the number of nodes in the path. 

However, I found cases where the determinant had a value of zero. This was caused 

because the algorithm retrieved a document with the same lexical signatures as one 

already present in the path; thus causing rows and columns in the matrix to be equal. 

Therefore, I used the quadratic mean instead between the original similarity matrix and 

the one derived from the modified document set. 

An important result from my work was the realization that traditional similarity 

measures were not adequate to quantify the relationships between documents in the 
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collections and their replacements. I can point out two cases. First, the link similarity 

between the assumed missing document and the other valid resources in the collection 

did not provide any statistical evidence of similarity. This was caused by the high 

variability in the documents’ structural markup and their associated metadata. And 

second, my analyses showed that cosine distance as a similarity measure made it 

difficult to fully express the associations and connections between a missing document 

and its replacement. More so, this difficulty stems from the fact that a missing document 

in a narrative–based collection not only depends on the resource that it is replacing, but 

also depends on its neighboring documents. On the other hand, using resemblance as a 

similarity measure gave us a better idea of the relationships between documents because 

it is based on the combined probability of occurrence of n–grams. 

I must also address if using a different search engine could have changed the 

outcome of my study. I believe a different search engine could have probably shifted the 

results on the paths with fewer nodes. However, the resemblance and cosine similarity 

measures would not have varied significantly for more populated paths. 
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CHAPTER VI  

CATEGORIZING CHANGE IN AN INSTITUTIONALLY MANAGED 

REPOSITORY3 

 

Categorizing the degree of change affecting the documents in a digital collection 

over time is a complex task. As I have stated previously in the several chapters of this 

dissertation, categorizing this degree of change is not a binary problem where documents 

are either unchanged or they have changed so dramatically that they do not fit within the 

scope of the collection. Therefore, there is growing need for a taxonomy that will allow 

curators and scholars to classify documents according to the amount of change that they 

exhibit. In this chapter, I will describe a categorization system for documents that have 

been affected by unexpected changes in content. Furthermore, this categorization system 

lays the groundwork and foundation for detecting unexpected changes in content within 

the boundaries of a digital collection. 

 

6.1 A Distributed Collection within an Institutional Digital Library 

I harvested the metadata for the conference proceedings found in the Association 

for Computing Machinery Digital Library, which I used as a document corpus. The 

ACM Digital Library stores and maintains the “Full text of every article ever published 

————— 
3 Part of this chapter is reprinted with permission from "Analyzing the Perceptions of 
Change in a Distributed Collection of Web Documents" by L. Meneses, S. Jayarathna, 
R. Furuta, and F. M. Shipman, 2016, in Proceedings of the 27th ACM Conference on 
Hypertext and Social Media - Hypertext 2016. Copyright 2016 by ACM. 
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by ACM and bibliographic citations from major publishers in computing”, which 

includes the links to the actual conference sites as distributed resources hosted externally 

and therefore more prone to be affected by unexpected change. 

The ACM maintains a list of the conference proceedings 

(http://dl.acm.org/proceedings.cfm), which I retrieved on 9/27/2014 and used as a 

starting point. Then I followed each hyperlink to a metadata page that displayed basic 

information for each corresponding conference and workshop, which in turn allowed me 

to extract the external URLs. As a result of this procedure, I extracted 6086 URLs – out 

of which 2001 were unique. The reason for the large number of duplicates in the group 

of URLs is that the ACM Digital Library displays the related and upcoming conferences 

in each of the series.  

The Web pages corresponding to the unique external conference URLs were 

retrieved using three steps. First, I attempted to fetch the “absolute URL” for each given 

URL. My methods allowed 10 redirects per URL entry; if it exceeded 10 redirects the 

URL entry was discarded and not used in the study. Second, the Web resources were 

downloaded using Python [85] and its HTTP protocol client with a timeout value of 10 

seconds. Finally, I stored the resulting HTML file as an individual document in a folder 

structure, where each individual filename consisted of a string of random length 

(between 15 and 36 characters) that I generated by concatenating a random combination 

of 25 letters (a to z) and numbers (0 to 9). The probability of generating a filename that 

already exists is minimal: N/(36R) where N is the number of documents in the actual file 

path and R=15 in the worst case. Additionally, I also stored the metadata associated with 



55 

each retrieved page in an XML file. This metadata included the anchor text, URL 

requested, URL retrieved, HTTP headers and response code. Table 1 shows the 

frequency distribution of the retrieved pages according to their HTTP response codes. 

Approximately 75% of the page requests resulted in a response code indicating success 

(200), which means that no problems were found when trying to fulfill the request.  The 

remaining pages were mostly divided among page not found (404) responses and 

timeouts. 

Table 1: Frequency distribution of the retrieved pages according to their HTTP 
response codes. 

Response Code Count % 
200 1492 74.56% 
300 2 0.10% 
404 276 13.79% 
403 20 1.00% 
401 1 0.05% 
410 3 0.15% 
504 1 0.05% 
503 2 0.10% 
500 4 0.20% 

Timeout 200 10.00% 

Then I proceeded to inspect and categorize the 1492 pages that were retrieved 

with a 200 HTTP response code. I categorized these pages into three categories by 

evaluating the relationship between the anchor text and the corresponding retrieved 

page. As a result of this categorization, I found that 917 pages with contents that were 

“clearly correct” and 531 were incorrect. Additionally, I was unable to evaluate 44 pages 

because their contents didn’t provide enough information to make an accurate 

assessment. These pages could have been placed into the “incorrect” category, but I 
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decided to use an additional category to make the experiment as transparent as possible. 

Figure 18 shows this classification. 

Figure 18: Distribution of the pages that were retrieved with a 200 (OK) HTTP 
response code. 

6.2 Categorization of the Types of Change 

The 531 pages that were reported by the HTTP server as being correctly retrieved 

but were clearly not the original contents were then analyzed in an effort to understand 

how conference sites degrade over time. The coding scheme evolved through 

examination of the particular collection rather than using a pre-defined classification 

scheme. 

In the end, nine categories were used to classify the “incorrect” pages, which I 

list in (approximate) order of severity. These nine groups provide insight regarding the 

different stages that conference pages go through until they are ultimately abandoned: 
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1. Kind of correct: (197 entries) Pages that contain related content, but they do 

not fully match the semantic concept encapsulated in the anchor text. When 

taking into account conference proceedings, these pages often link to a 

different year in the conference series. For example: Anchor text “Conference 

X 2006” references the Conference X 2009 site. 

2. University/institution pages: (36 entries) This case that surfaces when a site 

has been taken down, but the server configuration redirects the user to its 

parent institution. In cases dealing with conference sites, servers would 

usually redirect the user to the website of the University that hosted the 

conference or to a related professional organization. 

3. Directory listings pages: (18 entries) Pages displaying a listing of files or a 

“Hello World” page. Probably caused by an error in the server configuration. 

Figure 19 shows a screenshot corresponding to the ASPLOS 98 conference 

site that displays an example of this case. Here the original content looks to 

still be available but the new web server does not recognize homepage.html 

as a default page to view for this URL. 

4. Blank pages: (141 entries) pages that returned no content. 

5. Failed redirects: (30 entries) 

6. Error pages: (17 entries) Pages that specifically state that an error has 

occurred. 
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7. Pages in a different language: (32 entries) Pages that didn’t match the

language found in the anchor text. Most of these pages were in a language

different than English.

Figure 19: Screenshot of the ASPLOS 98 site showing an example of a “directory 
listing page”. Accessed at http://arch.cs.ucdavis.edu/ASPLOS98/ on 9/27/2014. 

8. Domain for sale pages: (17 entries) Pages that indicated that the domain

name registration has lapsed and it is being sold by a registrar, or taken over
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by a third party in order to profit from the sale. Figure 20 shows a screenshot 

corresponding to the DGO 2010 conference site that displays an example of 

this case. 

Figure 20: Screenshot of the DGO 2010 site showing an example of a “domain for 
sale page”. Accessed at http://www.dgo2010.org on 9/27/2014. 

9. Deceiving pages: (43 entries) Pages that have been taken over by a third

party. The content displayed in these pages is totally unrelated to the original

purpose of the site. I believe that these pages were not created to deceive

users, but as an attempt to manipulate the PageRank algorithm [23]. Figure

21 shows a screenshot corresponding to the IDC 2004 site that displays an

example of this case. On the other hand, figure 22 shows an example of a
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subcategory among these entries, where the content or presentation of the 

page is related to the original content but the links are unrelated. 

Figure 21: Screenshot of the IDC 2004 site showing an example of a “deceiving 
page”. Accessed at http://www.idc2004.org on 9/27/2014. 
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Figure 22: Screenshot of  a “deceiving page” where the layout is related to the 
original content, but the links are unrelated. Accessed at http://www.cikm .org on 
9/27/2014. 

Figure 23 shows the overall distribution of the incorrect pages. Many of these 

links still lead to information related to the original purpose but clearly not to the 

originally intended materials. There are a number of categories that result when no 
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content is available depending on how the servers are configured – blank pages, failed 

redirects, some directory listings, error pages, and university/institutional pages. The 

remaining pages are perhaps the most problematic, when the web address has been taken 

over and is either for sale or being used for other purposes. 

Figure 23: Distribution of the incorrect pages. 

Developing techniques to categorize these different issues with web resources 

will enable the development of tools that focus collection manager attention on the more 

egregious problems. 

6.3 Classification Features 

To develop classifiers for the types of issues identified in chapter V, I explored 
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Kind of 
correct 
37% 

Blank 
27% 

Different 
language 

6% 

Redirects 
6% 

Directory 
listings 

3% 

University 
pages 
7% 

Domain for 
sale 
3% 

Error 
pages 
3% 

Deceiving 
pages 
8% 

Incorrect Pages 



 

 63 

request (the base node) and the contents and links returned by traversing the links in the 

base node.  This analysis did not examine the potential of the broader network topology 

to facilitate the classification, as I wanted to limit the number of HTTP requests required 

for classification to the number of links in the original resource. 

 

6.3.1 Link-based Features 

Taking into account that the links on a Web page can be a major factor for 

determining the relevance of a site within a set of results from a search engine, I decided 

to use twelve link-based features. These features are divided into topology features, 

content-type features, anchor-text features and child-node features. Most of the link-

based features were computed for the base-node and are based on the number of out-

links in a page. In addition, I calculated some of the features for child-nodes that are the 

valid out-links in these base-nodes. Additionally, I did not differentiate between links to 

embedded content (e.g. the content of frames, divs, etc.) and navigational links in order 

to keep the traversal logic as simple as possible and the number of requests required low.  

 

Topology: The local topology of the base node may provide evidence about 

whether the resource is being used to convince readers to go to another web location or 

is being used to inflate the ranking of other resources in search results. There are five 

topology features included. 

1. Out degree: The number of links in the base node. 
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2. Reciprocal link degree: The number of links from child nodes that point back 

to the base node. 

3. Edge-reciprocity: The ratio of reciprocal links to outbound links. 

4. Host links: The number of links in the base node that point to the same (host) 

server. 

5. External links:  The number of links in base node that point to other (non-

host) servers. 

 

Link-type: The type of content, or the lack of content, at the end of links may 

also be evidence of the goals of a resource. Thus, there are four features that provide 

information about the type of content (but not what content) is found at the end of links 

in the base node. 

6. Broken links: The number of broken links in the base node. 

7. Multimedia links: The number of links to sound, image, and video content. 

8. Import links: The number of links to CSS, text/plain and text/richtext content. 

9. Working non-multimedia links: The number of outbound links minus the 

number of broken and multimedia links.  

 

Anchor text: When a page links to another, the anchor text shows the relevant 

information of the target page or summarizes this information in a way to persuade a 

user to visit this link. While text analysis could be used to provide insight into this intent, 

here I include a single, easy to compute feature.  
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10. No anchor text links: The number of links without any anchor text. 

 

Child-node related measures: The types of links found in the child nodes (those 

at the end of the links in the base node) may also characterize a resources purpose. I 

included two such features.  

11. Sum of child out-links: Sum of the number of outbound links across all 

children. 

12. Sum of child import links: Sum of the number of links to CSS, text/plaintext 

and text/richtext across all children. 

 

6.3.2 Content-based Features 

The content of resources is generally highly indicative of their purpose. Eight 

quantitative measures related to the content of the resources were included as features 

for developing classifiers. 

Six of these involved quantifying the similarity in topics for two sets of terms. 

 

Image features: The number of images embedded in a resource can be 

indicative of its type or role. 

13. Base images: The number of embedded images in the base node. 

14. Child images: Sum of the number of embedded images in child nodes. 
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Text-content features: The text associated with resources is the most obvious 

feature for determining the topics.  While a deep understanding of the domain of 

conference web sites could have been used to develop a domain-oriented expectation 

model (e.g. a discussion of content submission, organizing committees, schedule, 

keynotes, travel, and hotels), instead I focused on generating quantitative measures 

based on the text content that could be potentially valuable across domains. 

In particular, I used topic modeling to examine the similarity among the metadata 

and the contents of the base node and the metadata and the contents of the child nodes. 

To do this the textual content of the base node is collected into a base-content 

text.  I combined the text from the “description”, “keywords” and “title” metadata for the 

base node into a single base-header text. Similarly, the content of the child nodes are 

aggregated into a child-content text and description, keywords, and titles of the child 

nodes are aggregated into a child-header text.  

I used Latent Dirichlet Allocation (LDA) to model the content of the four sets of 

text [86] and I used KL-divergence similarity to measure and compare them pairwise 

[87]. All six pairs of the text are examined and are the remaining six features, which are: 

15. Base-content text and base-header text similarity. 

16. Base-content text and child-content text similarity. 

17. Base-content text and child-header text similarity. 

18. Base-header text and child-content text similarity. 

19. Base-header text and child-header text similarity. 

20. Child-content text and child-header text similarity. 
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6.4 Discussion and Implications 

I found it particularly interesting (and alarming) that 36% of the resources 

referenced in the ACM Digital Library were actually incorrect. These alarming numbers 

hint that not all is lost: curators in the ACM are focusing their efforts in maintaining the 

articles and research papers that constitute the main items in the collection. However, 

some of these efforts are unnecessary as most digital repositories nowadays already 

emphasize and provide methods for the long-term preservation of documents. In 

perspective, their preservation efforts fall short as they have neglected to curate the 

descriptive metadata of the items in the collection. In the specific case of the ACM I am 

advocating for implementing an additional level of curation to deal with the descriptive 

metadata of the documents in the collection.  

In this case, there are two possible approaches that could ensure the correctness 

of the descriptive metadata. First, create and ingest a snapshot of the conference websites 

— which also brings forth a set of issues that are beyond the scope of this study. Or 

second, periodically look into the correctness of the metadata and distributed resources 

using manual or automated methods. Both approaches are theoretically correct; their 

implementation and use is very dependent on the type and scope of the collection. In this 

dissertation, I am focusing on the later by describing methods to ensure the correctness 

of the external resources. 

Additionally, the classification that I am describing in this chapter is not 

definitive. I do not discard that additional types of documents might surface when 

analyzing a different collection. However, the main purpose of the taxonomy and 



 

 68 

characterization that I presented in this chapter is to illustrate the complexities of change 

in the Web and that documents in distributed collections can change in ways that are 

unexpected by collection managers.   
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CHAPTER VII  

RESULTS4 

 

Analysis of the rate of conference web site decay shows this collection is 

consistent with that found in previous work. Although previous work has focused on 

calculating the age of resources on the Web [88], we estimated the amount of time a 

conference site has been valid or invalid by using the date found in the anchor text found 

in the ACM Digital Library and the last modified date from the server response. For 

example, the JCDL 2011 conference site with an anchor text of “JCDL '11” (from Figure 

1) and a last modified date of “01 Oct 2014” was valid for at most 3 years. We ignored 

the pages that did not report a last modified date, so we ended up with 1267 conference 

pages. Consequently, we found that the half-life of the corpus – the amount of time that 

it takes for half of the collection to disappear (in this case 633 pages) – is approximately 

5 years, which aligns with previous work that reported the link decay of Information 

Science journals [65]. We also found that the decay of the collection stabilizes over time, 

as it is shown in Figure 24. 

————— 
4 Part of this chapter is reprinted with permission from "Analyzing the Perceptions of 
Change in a Distributed Collection of Web Documents" by L. Meneses, S. Jayarathna, 
R. Furuta, and F. M. Shipman, 2016, in Proceedings of the 27th ACM Conference on 
Hypertext and Social Media - Hypertext 2016. Copyright 2016 by ACM. 
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Figure 24: Accumulated page lifespan histogram. 
 

The problem of classifying resources in the ACM conference website dataset can 

be viewed as a two-phase process.  In the first phase, resources can be classified as either 

correct or not-correct. In the second phase, resources identified as incorrect are further 

classified into the different incorrect categories. I explored the success of different 

classifiers in both phases. 

To improve the reliability of my results, each evaluation of the learning schemas 

was performed by a stratified ten-fold cross-validation [89]. For each evaluation, the 

dataset is divided into ten equal folds and is trained ten times. Each fold is evaluated 

with a classifier that was trained with the other nine folds.  

The testing corpus consisted of a subset of the overall corpus, removing the 

resources that did not return a resource (e.g. blank pages, failed redirects, error pages, 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

N
um

be
r 

of
 p

ag
es

 

Number of years 

Accumulated Page Lifespan 

Correct Incorrect 



 

 71 

and directory listings). I also removed the domain for sale pages as these represent a 

category that can be identified based on the resulting content that is independent of the 

topic of the original collection. I added the 44 resources in the unsure category that were 

not included in the categorization scheme described in chapter VI.  The resulting 

categories and their sizes are shown in figures 25 and 26. 

 
Figure 25: Binary classification of the “clearly correct” category with the 
“incorrect” and “unsure” categories combined to "not-correct".  
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Figure 26:  Classification of the "not-correct" category combining the “incorrect” 
and “unsure” categories. 
 

The kind of severe imbalance in a dataset shown in figures 25 and 26 will lead to 

poor classification results without any data rebalancing [90, 91]. Under sampling of the 

majority category is preferred compared to over sampling of minority categories because 

over sampling leads to over fitting [90]. However, under sampling has the drawback of 

under fitting for the majority category (in this case, the correct category) due to possible 

loss of valuable information. This is not a serious problem in this case as the priority is 

to identify the pages in the incorrect categories. To train the classifiers, random sampling 

was used to select a number of data instances of the majority class to balance the dataset. 

I choose precision, recall and F-measure as the evaluation measures for this 

work. Prior studies [92, 93] have shown that these measures are independent of category 

distributions provided that precision and recall are measured at the same time. 
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7.1 Classification Algorithms 

I performed the binary and category classification with 71 algorithms that are 

implemented in the Weka toolkit [94]. This section will report on the best classification 

results based on the F-measures from the following classifiers: K*, Decorate, Random 

Committee, Rotation Forest, Bagging, Boosting (e.g., LogitBoost) and decisions trees 

(e.g., Random Forest). The algorithmic details of these classifiers are beyond the scope 

of this dissertation and interested readers are referred to [94, 95]. 

To finalize the topic model, I explored how varying the number of topics in the 

LDA model affected classifier performance. As part of these experiments, I varied the 

number of topics K between 5 and 25.  The F-measure of seven classifiers when given 

the 20 features from chapter VI to classify the incorrect and unsure categories varied 

between 0.54 and 0.64. After training and testing the category classification data and 

performing this evaluation, I found that the classifiers reached their optimal performance 

using 5 topics (K=5). Therefore, I used 5 topics for the remainder of these experiments 

involving the training and testing datasets and the analysis of the classifier results. 

The results of the experiments for the "clearly correct", "incorrect" and "unsure" 

categories as a binary classification problem, and the performance metrics for the 7 most 

effective classifiers from the evaluation are presented in Table 2. The majority of the 

classifiers consistently perform with a precision value of 0.62; Random Forest was the 

best performer for the binary classification. Decorate and Random Committee both 

exhibit a slightly higher F-measure for "correct" category, but Random Forest offers a 

substantially better F-measure for the "not correct" category.   
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To investigate the performance of the classifiers in the "not correct" category, I 

divided the category classification using the same set of classifiers that were used in the 

binary classification problem.  As Table 3 shows, Random Forest, Rotation Forest and 

Decorate all perform in the vicinity of a precision value of 0.65.  

Table 4 illustrates the comparison of category classification using only Link-

based and Content-based features. This result shows that Content-based features 

(Random Forest 0.48) are not as efficient on their own when compared to Link-based 

features (Random Forrest 0.613). On the other hand, this result suggests that combining 

the Content-based features with the Link-based features improves classification 

performance.  

Two categories of pages in the “incorrect/unsure” dataset, the “unsure” and 

“different language” groups, are the result of the inability to classify the contents 

returned for a resource as being either correct or incorrect. As I discussed in chapter VI, 

I originally grouped these two categories into the same "not correct" group — making it 

possible that some of these pages might contain valid or "correct" pages. The results 

displayed in table 5 and table 6 show the performance of the classifiers when just the 

“different language” group and both groups are removed from the training/testing 

corpus. 

Table 2: Binary classification using link and content based features. 
  Accuracy

y 
MAE TP FP Precision Recall F-Measure 

      C N C N C N C N C N 
Decorate 63.62% 0.478

4 
0.64

1 
0.63

2 
0.36

8 
0.35

9 
0.63

5 
0.63

7 
0.64

1 
0.63

2 
0.63

8 
0.63

5 RandomCommitte
e 

61.74% 0.494
4 

0.67
2 

0.56
2 

0.43
8 

0.32
8 

0.60
6 

0.63
2 

0.67
2 

0.56
2 

0.63
7 

0.59
5 RotationForest 62.75% 0.455

2 
0.63

2 
0.62

3 
0.37

7 
0.36

8 
0.62

6 
0.62

9 
0.63

2 
0.62

3 
0.62

9 
0.62

6 RandomForest 64.78% 0.295
7 

0.66
4 

0.63
2 

0.36
8 

0.33
6 

0.64
3 

0.65
3 

0.66
4 

0.63
2 

0.63
5 

0.64
2 K* 63.19% 0.368

9 
0.62

9 
0.63

5 
0.36

5 
0.37

1 
0.63

3 
0.63

1 
0.62

9 
0.63

5 
0.63

1 
0.63

3 Bagging 63.04% 0.438
5 

0.64
1 

0.62 0.38 0.35
9 

0.62
8 

0.63
3 

0.64
1 

0.62 0.63
4 

0.62
7 LogitBoost 61.30% 0.452

1 
0.62

9 
0.59

7 
0.40

3 
0.37

1 
0.61 0.61

7 
0.62

9 
0.59

7 
0.61

9 
0.60

7 



 

 75 

Table 3: Classification of only the “incorrect” categories. 
 Accuracy MAE TP FP Precision Recall F-Measure 
Decorate 66.38% 0.1904 0.664 0.262 0.633 0.664 0.632 
RandomCommittee 62.03% 0.1825 0.62 0.271 0.576 0.62 0.59 
RotationForest 67.25% 0.1851 0.672 0.281 0.641 0.672 0.637 
RandomForest 67.25% 0.1916 0.672 0.299 0.662 0.672 0.624 
K* 61.45% 0.1555 0.614 0.275 0.583 0.614 0.589 
Bagging 62.61% 0.2093 0.626 0.357 0.575 0.626 0.562 
LogitBoost 63.19% 0.2008 0.632 0.302 0.58 0.632 0.589 
 

Table 4: Link-based and content-based features performance comparison. 
 F-Measure 
 Link-based Content-based 
Decorate 0.600 0.471 
RandomCommittee 0.604 0.471 
RotationForest 0.577 0.476 
RandomForest 0.613 0.48 
K* 0.603 0.511 
Bagging 0.566 0.457 
LogitBoost 0.583 0.475 

 

Table 5: Classification of only the “incorrect” categories by removing the “pages in 
a different language” category. 

 Accuracy MAE TP FP Precision Recall F-Measure 
Decorate 70.70% 0.2116 0.707 0.33 0.684 0.707 0.677 
RandomCommittee 70.70% 0.1946 0.707 0.335 0.685 0.707 0.68 
RotationForest 71.02% 0.2144 0.71 0.347 0.668 0.71 0.668 
RandomForest 72.29% 0.2167 0.723 0.35 0.714 0.723 0.69 
K* 64.97% 0.1756 0.65       0.334       0.637      0.65       0.632 
Bagging 68.79% 0.2338 0.688      0.395       0.664      0.688      0.636 
LogitBoost 67.83% 0.2213 0.678 0.383 0.639 0.678 0.637 
 

Table 6: Classification of only the “incorrect” categories by removing the “pages in 
a different language” and “unsure” categories. 
 Accuracy MAE TP FP Precision Recall F-Measure 
Decorate 83.33% 0.1832 0.833 0.27 0.824 0.833 0.824 
RandomCommittee 78.15% 0.1849 0.781 0.329 0.759 0.781 0.765 
RotationForest 82.59% 0.1850 0.826 0.321 0.82 0.826 0.813 
RandomForest 80.74% 0.1916 0.807 0.341 0.798 0.807 0.793 
K* 78.52% 0.1497 0.785 0.344 0.767 0.785 0.767 
Bagging 78.15% 0.2153 0.781 0.42 0.778 0.781 0.758 
LogitBoost 80.00% 0.1872 0.8 0.367 0.79 0.8 0.784 
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7.2 Features Analysis 

I used Principal Component Analysis (PCA) to analyze the internal structure of 

the documents and the features that were used to classify them. PCA is multivariate 

technique that uses an orthogonal transformation to convert a set of statistically 

correlated variables into a set of uncorrelated variables, which are defined as the 

principal components. As a result of the transformation applied to the data, the first 

principal component becomes a representation of the maximum allowed variance in the 

sample while fulfilling the requirement of being orthogonal to all the other components. 

In other words, principal components are ordered according to the amount of variance in 

the sample that they represent. Thus, each subsequent principal component will contain a 

lesser amount of variance than its predecessor.  

The importance of PCA as a multivariate technique is that it can reveal the 

internal structure of the data by analyzing its variance. Thus, PCA provides a 

representation for the correlation between different variables, which can be viewed as a 

representation of the data from its most informative viewpoint.  

In both cases concerning the binary and error pages classification there is a clear 

separation in the features forming the eigenvectors. The first eigenvector is mostly 

constituted by link-based features (35-40% of the variance in the data), whereas features 

extracted from the text found in the pages constitute the second eigenvector (14% of the 

variance). Tables 7 and 8 show the results from the principal components analysis for the 

binary and error page classification respectively. However, the rest of the eigenvectors 

are constituted by a combination of link and text-based features and each vector accounts 
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for less than 10% of the total variance in the sample. Why is this analysis important? In 

this case, summarizing the existing classification attributes can create more 

representative features. Additionally, there is the added benefit of using a classification 

algorithm with a reduced number of features – which can eliminate potential noise and 

confusion during the classification phase – bringing the potential to produce better 

results.  

Table 7: Principal components for the features in the binary classification. 
Eigenvalue Proportion Cumulative Variables 

7.00154 0.3685 0.3685 
0.362Internal_links+0.355valid_links+0.352out_degree+ 
0.335Empty_anchor_links+0.326External_links 

2.67827 0.14096 0.50946 

0.463baselinkheader_outlinksheader_similarity+ 
0.46baselink_outlinks_similarity+0.441baselink_outlinksheader_similarity+0.43
6baselinkheader_outlink_similarity0.179Imports_of_outlinks 

2.01409 0.106 0.61547 
0.343Number_of_images_of_outlinks+0.31 Number_of_images- 
0.306Broken_links-0.299External_links+0.274Imports 

1.22712 0.06459 0.68005 

0.553outlinks_outlinksheader_similarity+0.357Number_of_images- 
0.322baselinkheader_outlink_similarity-0.283Imports- 
0.28baselink_outlinks_similarity 

1.14241 0.06013 0.74018 

-0.599baselink_baselinkheader_similarity-0.412MIME_links+ 
0.349Number_of_images-0.328baselink_outlinksheader_similarity+ 
0.282Number_of_images_of_outlinks 

1.03933 0.0547 0.79488 
0.592Imports-0.5in_degree-0.35Total_Number_of_outlinks+ 
0.332Number_of_images-0.236baselink_baselinkheader_similarity 

0.88156 0.0464 0.84128 

-0.605baselink_baselinkheader_similarity+ 
0.362baselinkheader_outlinksheader_similarity+ 
0.354MIME_links-0.301baselink_outlinks_similarity+ 
0.292outlinks_outlinksheader_similarity 

0.83466 0.04393 0.88521 
-0.753MIME_links+0.408Imports-0.314Number_of_images+ 
0.265Imports_of_outlinks-0.152Empty_anchor_links 

0.66665 0.03509 0.9203 

-0.608outlinks_outlinksheader_similarity+ 
0.556baselinkheader_outlinksheader_similarity+ 
0.307Number_of_images+0.252baselink_outlinksheader_similarity- 
0.24baselinkheader_outlink_similarity 

0.4305 0.02266 0.94295 

0.657Number_of_images_of_outlinks-0.454Number_of_images- 
0.301Imports_of_outlinks+0.246Empty_anchor_links- 
0.226Total_Number_of_outlinks 

0.31305 0.01648 0.95943 

0.573baselink_outlinksheader_similarity- 
0.502baselinkheader_outlinksheader_similarity- 
0.329baselinkheader_outlink_similarity+ 
0.317baselink_outlinks_similarity- 
0.232baselink_baselinkheader_similarity 
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Table 8: Principal components for the features in the classification of error pages. 
Eigenvalue Proportion Cumulative Variables 

7.47609 0.39348 0.39348 
0.343valid_links+0.332Internal_links+ 
0.328out_degree+0.325Total_Number_of_outlinks+0.319in_degree... 

2.66283 0.14015 0.53363 

0.454baselink_outlinks_similarity+ 
0.451baselinkheader_outlinksheader_similarity+ 
0.442baselink_outlinksheader_similarity+ 
0.425baselinkheader_outlink_similarity-0.262External_links... 

1.65673 0.0872 0.62082 

-0.492Broken_links-0.404Imports-0.373External_links- 
0.26Imports_of_outlinks- 
0.242baselinkheader_outlinksheader_similarity... 

1.22067 0.06425 0.68507 
0.527MIME_links+0.523Imports-0.368Broken_links-
0.347External_links+0.262Imports_of_outlinks... 

1.03507 0.05448 0.73955 

-0.51outlinks_outlinksheader_similarity-0.417MIME_links-
0.37baselink_outlinksheader_similarity- 
0.363baselink_baselinkheader_similarity+ 
0.326baselinkheader_outlink_similarity... 

1.00719 0.05301 0.79256 

0.546baselink_baselinkheader_similarity- 
0.399Broken_links+0.384External_links+ 
0.361baselinkheader_outlink_similarity+ 
0.264baselink_outlinks_similarity... 

0.87123 0.04585 0.83841 

-0.569MIME_links-0.395Broken_links+ 
0.379outlinks_outlinksheader_similarity+ 
0.289Imports_of_outlinks-0.261baselink_outlinks_similarity... 

0.73608 0.03874 0.87715 

0.64 baselink_baselinkheader_similarity-0.409External_links-
0.318outlinks_outlinksheader_similarity+ 
0.293Broken_links-0.292MIME_links... 

0.51853 0.02729 0.90444 

0.624Imports-0.462Imports_of_outlinks- 
0.305Total_Number_of_outlinks+ 
0.273Empty_anchor_links-0.25MIME_links... 

0.48176 0.02536 0.9298 

-0.736baselinkheader_outlinksheader_similarity+ 
0.39 outlinks_outlinksheader_similarity+ 
0.343baselink_outlinks_similarity+0.253Broken_links-
0.143baselink_baselinkheader_similarity... 

0.34457 0.01814 0.94793 

0.477baselinkheader_outlink_similarity+0.422Number_of_images-
0.418baselink_outlinksheader_similarity- 
0.401baselink_outlinks_similarity+ 
0.252outlinks_outlinksheader_similarity... 

0.27295 0.01437 0.9623 

0.706Number_of_images-0.383baselinkheader_outlink_similarity+ 
0.284baselink_outlinks_similarity+ 
0.274Imports_of_outlinks-0.222Broken_links... 

 

7.3 Classifying Documents using Principal Components 

Next, I used the PCA to create new features in an attempt to improve the 

classification results. Table 9 shows the classification results using the eigenvectors 

representing 95% of the variance as features. Random Forest still provides the best 

classification results although its performance is marginally improved after using the 

results from the PCA.  
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Table 9: Binary classification using the features from the principal components 
analysis. 

  Accuracy
y 

MAE TP FP Precision Recall F-Measure 
      C N C N C N C N C N 

Decorate 62.79% 0.483
4 

0.63
3 

0.62
3 

0.37
7 

0.36
7 

0.62
7 

0.62
9 

0.63
3 

0.62
3 

0.63 0.62
6 RandomCommittee

e 
67.27% 0.386

4 
0.72

5 
0.62 0.38 0.27

5 
0.65

7 
0.69

2 
0.72

5 
0.62 0.68

9 
0.65

4 RotationForest 67.81% 0.442
9 

0.65
7 

0.69
9 

0.30
1 

0.34
3 

0.68
6 

0.67
1 

0.65
7 

0.69
9 

0.67
2 

0.68
5 RandomForest 69.89% 0.445

9 
0.69

4 
0.70

4 
0.29

6 
0.30

6 
0.70

1 
0.69

7 
0.69

4 
0.70

4 
0.69

8 
0.7 

K* 66.50% 0.344
7 

0.6 0.73 0.27 0.4 0.69 0.64
6 

0.6 0.73 0.64
2 

0.68
5 Bagging 66.56% 0.420

5 
0.67

4 
0.65

8 
0.34

2 
0.32

6 
0.66

3 
0.66

8 
0.67

4 
0.65

8 
0.66

8 
0.66

3 LogitBoost 60.90% 0.456
4 

0.65 0.56
8 

0.43
2 

0.35 0.60
1 

0.61
8 

0.65 0.56
8 

0.62
4 

0.59
2  

On other hand, the classification of the error pages did not improve using the 

features from the PCA. As it is shown in table 10, the performance of the classifier was 

diminished when using the eigenvectors representing 95% of the variance as features.  

Table 10: Error page classification using principal components. 
  Accuracy MAE TP FP Precision Recall F-Measure 
Decorate 76.66% 0.2398 0.767 0.382 0.748 0.767 0.75 
RandomCommittee 79.52% 0.1849 0.759 0.399 0.74 0.759 0.742 
RotationForest 79.62% 0.203 0.796 0.409 0.792 0.796 0.773 
RandomForest 79.25% 0.209 0.793 0.418 0.789 0.793 0.768 
K* 76.66% 0.159 0.767 0.39 0.746 0.767 0.747 
Bagging 76.66% 0.223 0.767 0.456 0.745 0.767 0.73 
LogitBoost 75.93% 0.2151 0.759 0.416 0.74 0.759 0.74 

 

However, I was able to improve the classification of the error pages by viewing it 

as a binary problem. I did this by removing from the classification the pages in the 

unsure category, thus focusing on classifying the pages in the “deceiving” and “kind of 

correct categories”. As before, I viewed the error page classification as a binary problem. 

I also discarded some categories from the classification: blank pages, redirects, directory 

listings, error pages and university/institutional pages can be detected to some extent 

using previous work on identifying Soft 404 error pages [4, 84]. Table 11 shows the 

results obtained by evaluating the performance of the classifiers, where Random 

Committee and Random Forest obtained the best results. 
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Table 11: Error page classification for the “deceiving” and “kind of correct” 
categories. 

  Accuracy
y 

MAE TP FP Precision Recall F-Measure 
      D K D K D K D K D K 

Decorate 90.79% 0.116
5 

0.92
1 

0.89
5 

0.10
5 

0.07
9 

0.89
7 

0.91
9 

0.92
1 

0.89
5 

0.90
9 

0.90
7 RandomCommittee

e 
94.47% 0.092

1 
0.95

8 
0.93

2 
0.06

8 
0.04

2 
0.93

3 
0.95

7 
0.95

8 
0.93

2 
0.94

5 
0.94

4 RotationForest 92.89% 0.109
2 

0.92
6 

0.93
2 

0.06
8 

0.07
4 

0.93
1 

0.92
7 

0.92
6 

0.93
2 

0.92
8 

0.93 
RandomForest 94.74% 0.110

2 
0.94

7 
0.94

8 
0.05

2 
0.05

3 
0.94

7 
0.94

8 
0.94

7 
0.94

8 
0.94

7 
0.94

8 K* 90.53% 0.064
5 

0.85
2 

0.95
8 

0.04
2 

0.14
8 

0.95
3 

0.86
7 

0.85
2 

0.95
8 

0.89
9 

0.91 
Bagging 89.21% 0.136

2 
0.92

6 
0.85

9 
0.14

1 
0.07

4 
0.86

6 
0.92

1 
0.92

6 
0.85

9 
0.89

5 
0.88

9 LogitBoost 87.63% 0.123
8 

0.87
3 

0.88 0.12 0.12
7 

0.87
8 

0.87
5 

0.87
3 

0.88 0.87
5 

0.87
7  

7.4 Discussion and Implications 

It is hard to determine the features that are more significant when classifying the 

documents into different categories. As I have shown previously in this chapter, the best 

results were achieved when using a combination of features. In this specific study that 

dealt with identifying the “correctness” of the Web documents in a distributed collection, 

individual features were not strong indicators on their own to correctly classify the 

documents. I believe this was caused by the diversity and heterogeneous nature of the 

data in the collection. In the end, the classification process in this study was far from an 

ideal case, which would have been to rely on a limited number of features to accurately 

perform the classification of the documents in the collection.  

The use of PCA also presented an interesting scenario. In an optimistic case, the 

first PCA eigenvector would ideally represent 90% of the data. However, the first 

eigenvector provided a representation of 40% of the documents in the collection using 

mostly link-based features. Using this analysis as a baseline, it can be stated from a 

statistics-based standpoint that the link-based features were more relevant in the 

classification. The analysis that I presented in this chapter showed that link-based 

features were not strong indicators to classify the documents on their own. After I 
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completed the analysis for this study, I was inclined towards studying the classification 

results obtained from combining link-based features with features extracted from the 

layout and presentation of Web documents. However, analyzing the presentation of Web 

documents falls beyond the scope of my dissertation and constitutes a possible direction 

for future work.    
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CHAPTER VIII  

EVALUATION5 

 

One of the main difficulties of the type of research that I am conducting in this 

dissertation is finding a way to compare the results I obtained using machine learning 

algorithms against the assessment made by humans. A dataset created specifically for 

this purpose does not exist. In order to evaluate my findings, I carried out a user study 

where human subjects were asked to analyze the contents of web documents and assess 

if these documents belonged to a specific category. 

 

8.1 Experiment Setup 

The user study was administered through the Web and used Python and Django 

as its backend. The user study consisted of two sections. The first section of the study 

prompted the participants for their demographic data, which included questions 

regarding their gender, age and educational level. The second section was the main part 

of the study: participants were asked to go over fifty documents from the ACM corpus 

that I described in Chapter VII. The fifty documents were randomly selected for each 

session and consisted of 25 correct and 25 incorrect documents. The data gathered from 

each participant was then stored in an XML file. The identity of each participant 

————— 
5 Part of this chapter is reprinted with permission from "Analyzing the Perceptions of 
Change in a Distributed Collection of Web Documents" by L. Meneses, S. Jayarathna, 
R. Furuta, and F. M. Shipman, 2016, in Proceedings of the 27th ACM Conference on 
Hypertext and Social Media - Hypertext 2016. Copyright 2016 by ACM. 
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remained anonymous, which means that the XML files didn’t contain any sensitive data 

or any information that could possibly reveal the identity of the study participants.  In 

the end, I collected data from 62 participants – mostly upper-level Computer Science 

undergraduates – and assessed the validity of 2875 pages. Table 12 shows information 

about the population regarding their gender, age distribution and educational level. 

Table 12: Gender, age distribution and educational level of the population. 
Gender Age Distribution Level of Education 

Male 53 18 - 24 54 High School Graduate 4 
Female 9 25 - 29 6 Some College 55 
    30 - 34 1 College Graduate 2 
    35 - 39 1 Postgraduate Degree 1 

 

In the second part of the study, participants were presented with a questionnaire 

regarding each random Web document in order to assess their degree of degradation. 

More specifically, participants were shown a screenshot of the Web document along 

with its corresponding anchor text – which was extracted from the ACM Digital Library 

– and a brief questionnaire that consisted of two questions. The questions were answered 

using a Likert scale and selecting between multiple choices. The two questions and their 

possible answers were:  

1. Does this Web page show signs of change or degradation? 

5- Very Much 

4- Somewhat 

3- Undecided 

2- Not Really 

1- Not At All 
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2. What is the reason for your answer?   

1- The content of the page 

2- Layout and presentation 

3- Images 

4- Language of the text 

5- Error codes 

 

Figure 26 shows a screenshot of a questionnaire used to assess the degradation of 

a random document in the second part of the user study 



 

 85 

 

Figure 27: Screenshot of a sample questionnaire regarding a document in the user 
study.   
 

8.2 Results 

Interestingly, the participants of the study did not have difficulties identifying 

documents in the correct category. However, this was not the case in the all the other 

categories. Table 13 shows a summary of the user responses for the document 

classification. Documents in the correct category were correctly identified in 71% of the 

cases, but users were not able correctly identify the documents that were incorrect. 



 

 86 

Surprisingly, documents in the “error page” category were incorrectly identified in 98% 

of the cases. Similar scenarios occurred with documents were it was evident that the 

documents are incorrect, such as in the “domain for sale” and “hello world” categories. 

The identification did marginally improve in less evident cases, for example in the 

“deceiving”, “kind of correct” and “not correct” categories. Tables 14 and 15 detail the 

reasons behind the user classification of the documents. The language of the text and 

explicit error codes did not influence the user responses.  On the other hand, layout, 

presentation and content of the documents were significant factors in the classification. I 

also analyzed the amount of time users took to classify documents, but I could not find 

any statistical evidence that would shed insights to support their choices and decisions.  

Table 13: User responses for the document classification in the user study by 
categories.  Shaded: Correct – Not shaded: Incorrect. 

  Correct Error Deceiving Hello World Kind of Correct Not Correct Domain for Sale University 
Very Much 456 54 99 54 242 56 59 59 
Somewhat 567 5 32 7 299 80 5 37 
Undecided 74 0 10 7 45 17 3 10 
Not Really 178 0 21 0 75 13 5 14 
Not At All 163 1 29 4 63 13 6 13 
Total 1438 60 191 72 724 179 78 133 
Correctly Identified 0.71 0.02 0.31 0.15 0.25 0.24 0.18 0.28 
Incorrectly Identified 0.29 0.98 0.69 0.85 0.75 0.76 0.82 0.72 

 

Table 14: Reasons for the documents that were correctly identified. 
Correctly Identified Correct Error Deceiving Hello World     Kind of Correct Not Correct Domain for Sale University 
Content of the page 134 1 18 8 69 14 4 10 
Layout & presentation 296 0 37 1 85 19 8 23 
Images 568 0 1 0 25 9 0 3 
Language of the text 10 0 4 2 3 1 0 1 
Error codes 15 0 0 0 1 0 2 0 
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Table 15: Reasons for the documents that were incorrectly identified. 
Incorrectly Identified Correct Error Deceiving Hello World Kind of Correct Not Correct Domain for Sale University 
Content of the page 162 16 53 28 181 24 46 35 
Layout & presentation 149 11 33 7 163 43 4 29 
Images 88 3 21 3 175 64 2 29 
Language of the text 12 0 17 0 18 3 1 2 
Error codes 4 29 7 23 4 2 11 1 

 

The question that remains to be answered is: do the classification algorithms 

perform better than the human subjects? The answer is that the algorithms in the end 

were far more consistent. Human subjects were able to identify pages in the correct 

category slightly better than the algorithms, but failed when asked to identify pages in 

the incorrect categories.  On the other hand, the machine learning algorithms 

outperformed human subjects when identifying incorrect.  Table 16 shows a comparison 

between the classification by humans and the algorithms. The algorithms outperformed 

humans with a 2 to 1 ratio (F-measures of 0.64 and 0.32), which for me is a clear 

indication that managing the effects of unexpected changes in digital collection is more 

serious problem than I had originally anticipated.   

Table 16: Comparison between the classification made by human subjects and the 
classification algorithms. 

Classification Human Subjects   Algorithms   
  Correct Incorrect Correct Incorrect 
Precision 0.71 0.24 0.70 0.69 
Recall 0.48 0.46 0.69 0.67 
F-measure 0.58 0.32 0.69 0.70 

 

8.3 Discussion and Implications 

The decision of delivering the survey over the web was done intentionally. 

Allowing the participants to complete the survey at a time and location of their choosing 

was convenient for them and allowed me to obtain a larger number of test subjects. The 
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alternative would have been to conduct on-site sessions followed by a structured 

interview, but this alternative would have required a significant investment of resources  

– which was ultimately unnecessary. The obvious advantage using the alternative 

evaluation would have resulted in a greater amount of data collected through video 

recording and the later analysis of all the aspects of the interaction with the system. 

However, this larger amount of data would have brought along a tradeoff, which would 

have translated into a greater amount of time to interpret and analyze the results. In the 

end I made the conscious decision to invest more time designing and fine-tuning the 

framework for the user study in order to achieve a more streamlined analysis stage 

against the alternative of spending extended periods of time and resources interpreting 

the results. 

The survey was initially conceived in a way that the subjects would classify 100 

documents (50 correct and 50 incorrect). However, upon carrying a preliminary run of 

the experiment I discovered that classifying 100 documents in one session was 

overwhelming. Consequently, at that point the test subjects would either start giving 

erroneous answers or abandon the study altogether. I had to make a decision: decrease 

the number of documents to classify obtaining more truthful results vs. gaining a greater 

degree of statistical significance in the study because of the larger number of documents, 

but with erroneous and biased results. I obviously chose the former alternative, which 

resulted in the users analyzing 50 documents (25 correct and 25 incorrect) in each 

session. This decision proved to be the right one, as all the users that agreed to 
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participate in the user study ultimately completed their assessment of Web pages and 

provided the evidence that I needed to carry out this evaluation. 
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CHAPTER IX  

CONCLUSIONS 

The analysis of the conference website links within the ACM Digital Library 

shows that institutional archives are not immune to the challenges of distributed 

collection management.  Knowing when changes to a resource require human attention 

is not a simple problem. This assessment was necessary, especially since the problem 

areas must be identified in order to apply techniques to recover or replace a broken 

resource. 

As I have stated before, some of my findings align with previous work.  Upon 

my initial assessment, 404 HTTP errors were more prevalent in the corpus. However, 

upon further inspection I found that 36% of the pages that were allegedly correct 

(according to their HTTP response codes) were actually incorrect. This is a clear 

indication that the correctness of a web page is relative and that there is a growing need 

for methods to categorize and locate likely problematic resources that might require the 

attention of collection managers. 

As the categorization of changes to the collection shows, determining the degree 

of change affecting a digital collection over time is a difficult task. A web resource may 

gradually degrade from being correct to one that is still of some use by providing access 

to related information or information about the institution to contact for more 

information. Changes in web servers, directory structures, etc. may cause requests to still 

result in a successful 200 code from the server yet provide no information to the 
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requestor.  A number of these categories were purposely left out of the evaluation of the 

classification algorithms as these cases can be handled by previous work. More 

specifically, detecting “blank pages”, “failed redirects”, “directory listings”, “domain for 

sale” and “error pages” are handled with previous work on identifying Soft 404 error 

pages [4, 84].  

Along the same lines, being able to distinguish between the “kind of correct” and 

“deceiving” pages is important to collection managers. A contribution of my research is 

detecting when documents change unexpectedly and fall into more problematic 

categories such as “kind of correct” and “deceiving pages”.  

This last point lead me to investigate the purpose of the documents in the 

“deceiving pages” category. Although the pages in this category are very diverse in 

content and presentation, they do share two characteristics. First, the number of links 

that point to other pages within the site is much greater than the number of out-links. On 

average, pages in the “deceiving” category had 66 links, which is more than twice the 

average in the “correct” and “kind of correct” categories (20 and 27 links respectively). 

And second, the domain names that host these pages once belonged to a reputable 

institution for number of years (i.e., a conference series) before being abandoned. 

Consequently, these abandoned domain names have value –not necessarily due to 

current network traffic but in the perception of their authority/validity. I could 

hypothesize that these pages are created to manipulate pageRank scores by utilizing a 

large number of links from a page that once had a high PageRank, but have been taken 

over by a third party. This problem becomes increasingly interesting when considering 
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that the cost of creating a web page is small and that some search engines (most notably 

Google) do not share the overall rankings for their indexed sites, which can lead some 

parties to abuse these malicious techniques. Examining the variation of other features 

across categories of change may provide additional insight into the motivations and 

characterizations of change. 

Another potential source of information for identifying the severity of change is 

web archival services studies. I explored the use of such archives, but chose to leave 

them out of the current approach. In the specific case of the ACM conference list, some 

conference sites were not crawled at all. Thus, archival services would have provided an 

incomplete index that would not have helped me to fully answer my research questions 

in this dissertation. Additionally, irregular crawling intervals and data embargoes can 

reduce the value of information from such archives for timely identification of change. 

More so, the questions that I have explored in this dissertation allow future directions to 

be explored involving variations of the classification features that will require more 

computationally expensive operations. 

It was not surprising that the documents in the “correct” category were more 

consistently identified during the user study – especially when considering that human 

subjects can be biased [96].  However, now that data collection phase of the study is 

over and its results are analyzed, I believe that the premises established beforehand were 

influential towards its outcome. In this study, subjects were operating under the 

assumption that they were identifying and categorizing conference websites. Therefore, I 

hypothesize that the nature of these sites – being institutional and backed up by 
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professional and academic organizations – might have led the subjects to believe that the 

documents were in the “correct” category despite showing explicit symptoms of change. 

This effect could potentially explain the incorrect classification of some of the 

documents the “incorrect categories”; most notably the ones in the “domain for sale”,  

“hello world” and other categories that displayed explicit error codes and content in 

different languages – which were clear indications of their incorrectness.  

The fact that human subjects were unable to identify incorrect pages in the user 

study brings forth some alarming issues. For instance, is managing the effects of 

unexpected changes in digital collection a more severe problem than what was originally 

anticipated? I believe it is. Taking into account that the study participants for the most 

part identified incorrect pages as false positives (pages that belonged in the collection 

because their content was correct) is an indication that there is a need for computer-

based methods to identify the validity of documents in digital collections. However, 

there are two questions that remain to be answered regarding the user study. First, did 

the way that the study was formulated introduce bias that could have influenced the 

outcome of the study? And second, did the study participants have the necessary 

background and experience to correctly assess the validity and correctness of the 

documents? The study was designed to use the common sense in participants when 

associating the anchor text of a page with its actual contents, thus eliminating any 

preconceived bias and the need to be familiar with notions about related to digital 

collections. More so, the majority of the study participants had a computer science 

background, which made them more than capable of assessing the correctness of the 
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documents – especially when taking into account their familiarity with error codes and 

messages.  

It is important to highlight that different levels of preservation and curation are 

needed among different digital collections. Historically, preservation efforts have been 

primarily concerned with maintaining the primary artifacts in collections; relegating 

descriptive metadata to a lesser level of importance. There is an underlying notion that 

descriptive metadata is static: requiring minimal resources to maintain and consequently 

making it easier to preserve. However, the document collection that I analyzed in this 

dissertation describes a case study that proves that this is not the always the case. In the 

case of the ACM digital library, the metadata and the external documents are important 

components of the collection as they provide context and help situate the conference 

papers. As I have stated in the previous chapters of this dissertation, it is inherently 

difficult for curators to keep track of external resources. Thus, the case study involving 

the distributed documents in this institutional repository serves to illustrate the need for 

automated methods to determine when resources are changing in potentially 

unexpectedly ways that can disrupt the semantic meaning of the collection as a whole.  

There is a wide range of follow-on work related to the classification problem 

explored here. I limited my approach to features that could be computed quickly with a 

minimal number of http requests per collection resource. How would variations of these 

features or more computationally expensive features perform?  A pragmatic direction of 

future work is to develop a software package that combines approaches for determining 

when http error-codes are likely temporary or permanent, recognizing Soft 404 
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responses, detecting Web spam, and categorizing the remaining changed pages as 

described here.  

I am also interested in assessing the need for a framework to analyze how current 

tools affect the management of personal digital collections. Furthermore, people develop 

personal digital collections consisting of distributed web resources as both reminders 

that specific resources exist and as a mean to gain reliable access to them. Thus, 

managing collections of this type is necessary to preserve their value – specially when 

taking into account that unexpected changes can cause them to become outdated, 

requiring revisions and needing the removal of no-longer-appropriate resources or 

replacements for lost resources. I believe that my current findings in categorizing 

unexpected changes and the possibility of automating these detection methods will 

ultimately afford tools that support distributed collection management efforts more 

efficiently. 

Another possible direction for future work is developing a framework that deals 

with unexpected changes in layout and preservation of Web documents. There are 

possible applications for machine learning algorithms that can detect certain changes in 

presentation, which in turn can point curators towards potentially problematic resources 

as the content of the documents are changing over time. 

Finally, the research that I have outlined in this dissertation focuses on methods 

to detect unexpected changes in Web documents within a collection. However, the 

degree of change that I am focusing on varies depending on the current state of the 

resource: some documents might not display errors explicitly while others express 
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changes in content that diverge from the main focus of the collection. More so, my 

analyses are focused on some of the facets of unexpected change, which are 

characterized by their problematic detection using traditional methods –thus requiring 

the assistance of a classification system and automated detection methods such as the 

ones that we have described in this dissertation. 
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