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ABSTRACT 

 

This study develops a framework to conceptualize and measure multiple urban patterns 

and examines their relationship with flood damage in Texas coastal watersheds.  

Development and flood damage impacts are analyzed over a ten year period in 916 

watersheds that overlap Texas’ 41 coastal watershed counties using the USGS National 

Hydrography Dataset.  A cross sectional time series regression model is used to 

determine how changes in these patterns influence the amount of flood damage that 

occurs in the study area. 

 

Results from the study provide clarity on how different dimensions of urbanization are 

related to flood damage.  Using six landscape metric measurements for three different 

levels of urban land cover and two measures of residential property location in relation 

to the rest of the watershed, regression analyses conclude that most urban pattern metrics 

are significant in influencing the degree of flood damage at a watershed scale.  

Specifically, increases in percentage of impervious surface increases flood damage, as 

do most other metrics as they pertain to expansiveness of impervious surface across the 

landscape.  Two metrics (Mean Shape and Average Distance of Residential Property to 

Water) did not behave as hypothesized; it is believed that mean patch shape was 

incorrectly hypothesized, and the metric representing average distance to water was 

measured inappropriately. 

 

The results of the models and the significance and direction of the independent and 

control variables all provide evidence of the need to take urban form and environmental 

factors into consideration and an ecosystem-based approach should be taken when 

engaging in policy and planning activities to reduce residential property damage from 

flood events.  
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1. INTRODUCTION  

 

1.1. The Problem 

Floods are one of the most expensive and lethal hazards in the United States (U.S.), and 

the impact they have on the economy and society indicates a lack of progress in 

determining where and how humans choose to live and place property. From 1996 to 

2007, flooding caused almost $2 billion damage annually to insured residential 

properties in the U.S. (Brody, Peacock and Gunn 2012) and 987 people were killed 

(National Weather Service 2016).  In Texas, higher amounts of flood damage were 

recorded than in any other U.S. state partly because of the frequency and intensity of 

flooding along the Texas coast (Zahran et al. 2009).  Also, Texas has consistently ranked 

as the state with the highest number of flood fatalities annually and has the highest total 

number of flood fatalities from 1959 to 2005 (Ashley and Ashley 2008).  The damage 

due to flooding along the Texas coast necessitates further investigation into how 

development decisions contribute to flood damage.   

 

The rapid development that has occurred in coastal areas over the past 40 years has led 

to increased levels of flood damage due to placement of property in flood-prone areas 

and alterations to natural hydrology.  The human population in U.S. coastal counties 

increased by 34.8 million people (39 percent) from 1970 to 2010, and is projected to 

increase by another 10 million people by 2020 (Crossett et al. 2013).  Currently, 23 of 

the 25 most populated counties in the U.S. are found in coastal areas (Crosset 2005).  In 

Texas, the population found within coastal counties doubled to over 6 million people 

from 1970 to 2010, and this same region is projected to exceed 7 million people by 2020 

(Crossett et al. 2013).  To accommodate this growth, a large number of homes have and 

will be built along the coast.  Approximately 65,000 building permits for residential 

properties were issued annually in coastal parts of Texas between 1999 and 2003 

(Crosset 2005).  The rapid rate of expected growth coupled with the historical flood 

losses observed along the Texas coast indicates that flood damage can be expected to 
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increase if current trends in construction remain unchanged.  To prevent future flood 

losses, a better understanding of how urban development patterns are related to flood 

damage within coastal watersheds is needed. 

 

Flooding is a function of how much water enters a landscape area relative to how 

efficient the landscape is at either storing or releasing the water.  Factors that determine 

efficiency include topography, soil type, land cover type, and other natural landscape 

features.  When more water enters a landscape area than the landscape can store or 

release, flooding occurs.  Smith and Ward (1998) identify four different ways flooding 

can occur from a landscape perspective:  Flooding due to poor drainage of the landscape 

area (low relief), overspill from small streams/artificial channels into adjacent areas, 

large rivers flooding into adjacent floodplains, and coastal flooding (storm surge, 

extreme high tides, and deltaic flooding) (Smith and Ward 1998, Douglas et al. 2008).   

 

Regardless of the type of flood, if lives and property are located in landscape areas prone 

to flooding, flood damage can occur.  While the risks and costs associated with flooding 

may or may not be known by those that live in flood-prone areas (Kreibich et al. 2005), 

the economic and social benefits of living in the flood plain have long since been 

realized (White 1937), and these benefits precipitate the development of residential 

homes so people can live in the areas where they work and play (Burton, Kates and 

White 1968).  

 

Despite all evidence that living in flood-prone areas can cause damage to lives and 

property, human occupancy in flood prone areas continues because perceived benefits 

outweigh the perceived risks (Loucks and Stedinger 2007).  Riverine and coastal areas 

provide access to food, water and transportation that has sustained both small 

communities as well as large regions that depend on these resources to support 

agriculture and manufacturing industries.  In all likelihood, people will continue to 

inhabit flood prone areas for the foreseeable future and flood reduction strategies will 
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have to be employed to mitigate damage.  A better understanding of how different urban 

development patterns influence flood damage can guide future planning efforts that 

allows the benefits of living near these areas to be maintained while simultaneously 

reducing risks from flooding and flood damage. 

 

1.2. Research Purpose and Objectives 

Different fields of research have approached the problem of flooding and flood damage 

differently.  Some approach the problem by attempting to clarify how natural and man-

made features influence flood variables like height, volume and rate of change; while 

others approach the problem by analyzing how land use and policy decisions influence 

flood damage.  There are potential gaps in both these methods because land use 

decisions influence both flooding and flood damage, and identifying how urban 

development patterns are related to both can be difficult to conceptualize and measure 

when conducting analyses. 

 

This dissertation provides a review of the literature on how urbanization influences 

flooding and flood damage, and presents a research methodology guided by the literature 

that utilizes landscape ecology methods to better understand how different dimensions of 

urbanization influence flood damage in Texas coastal watersheds.  A suite of “urban 

pattern metrics” are applied to conceptualize several different aspects of urbanization 

and are incorporated in 18 regression analyses to identify how each metric is related to 

flood damage.  Results of the regression analyses provide a better understanding of the 

numerous ways urbanization has modified the Texas Coast, provides evidence for 

differentiating between urban land cover and urban land use when considering how 

development is related to socio-ecological processes, and estimates the contribution of 

different dimensions of urban development to flood damage in Texas coastal watersheds. 
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From a spatial perspective, the field of landscape ecology provides a robust number of 

metrics that can successfully measure dimensions of urban patterns as well as other 

environmental variables that influence flooding; including land cover, land use, 

precipitation, soil characteristics, basin morphometry, and many others (Leitão et al. 

2006).  Many of these variables are utilized to gain a better understanding of how 

urbanization influences the socio-ecological process that results in flood damage.   

 

There are two ways urban patterns can influence flood damage; indirectly through the 

alteration of hydrology, and directly through the placement of lives and property in 

flood-prone areas.  To date, there has been little to no research conducted that 

operationalizes these dimensions of urbanization and estimates their respective 

contributions to flood damage.  By utilizing existing urban pattern metrics identified in 

the literature, as well as developing new ones, this study answers the research question, 

“How are urban patterns related to flood damage in Texas coastal watersheds?” 

 

1.3. Dissertation Structure 

This dissertation is structured in the following manner.  This first section provides an 

introduction to the issue of flooding in the U.S.  The second section provides a review of 

the literature as it relates to studies that have analyzed how different aspects of 

urbanization are related to flooding and flood damage; how urbanization has been 

conceptualized and quantified spatially; and a brief introduction to landscape ecology 

and spatial analysis with a specific overview of several landscape metrics that have been 

applied to urban landscape measurement as it relates to flood damage.  The third section 

provides an overview of the research framework, which includes the conceptual model, 

overview of dependent, independent and control variables, and presents the research 

hypotheses.  The fourth section presents the research methodology, which includes 

information on the study area and sample selection, how variables were conceptualized 

and measured, model selection and diagnostics, and known validity threats.  Section five 

presents the results from the regression analyses and provides a summary of how the 
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variables behaved compared how they were hypothesized, and presents four example 

watersheds in the study period to compare and contrast specific urban pattern metrics 

and their change over time.  The sixth section provides a discussion of the results, 

comparisons across models, and implications for policy, planning, and the application of 

the results that support environmental literacy efforts.  Finally, the last section of the 

dissertation provides concluding thoughts and suggestions for future research.  
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2. LITERATURE REVIEW 

 

Due to the interdisciplinary nature of this study, a thorough review of the literature on 

how urbanization is related to flooding and flood damage is presented, pulling from 

several different fields of study and ranges from theory and research that focus on 

imperviousness and hydrology, to how urban patterns have been measured and 

correlated to social and ecological processes. Additionally, this review provides a brief 

overview of several metrics that may be useful at capturing different dimensions of 

urbanization that are related to flooding and flood damage.  The first section focuses on 

literature from diverse fields of study that have sought to identify how urbanization is 

related to flooding and flood damage.  This includes studies that focus on how 

impervious surface and stormwater management are related to flooding from a 

hydrologic modelling perspective, as well as several fields related to urban studies 

(economics, planning, natural hazards, etc.) that have provided a diversity of studies that 

look at the spectrum of how and why people live in flood-prone areas, as well as the 

various consequences of living in these areas. 

 

Next, this literature review discusses how urban patterns have been conceptualized, 

operationalized, and categorized in the recent urban studies and landscape ecology 

literature.  The multiple studies from various fields also provide an excellent overview of 

the different definitions of urbanization, as well as specific aspects of it (specifically, the 

concept of sprawl). 

 

Finally, this review describes several landscape and spatial metrics that have the 

potential to effectively measure aspects of urbanization that are related to flooding and 

flood damage.  Few of these have been utilized for the purposes of measuring 

urbanization as a land cover, and fewer still have been used to directly analyze the 

relationship between urbanization and flood damage. 
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2.1. Influence of Urbanization on Flooding and Flood Damage 

Different aspects of urbanization can influence both flooding and flood damage.  This 

section provides a review of the literature on how 1) flooding and flood damage have 

been defined, 2) urbanization has influenced flooding, and 3) urbanization has 

influenced flood damage.  For the purposes of this section, urbanization has been 

broadly defined as not only the land cover or land use, but also as policies and strategies 

that may guide land cover and land use conditions (planning, insurance schemes, low 

impact development and smart growth techniques, etc.).  A more detailed review of how 

urbanization has been defined in terms of its operationalization, measurement, and 

classification can be found in the next section of this literature review. 

2.1.1. Defining Flooding and Flood Damage 

From a landscape ecology perspective, flooding is a natural phenomenon influenced by 

topographical, climatic, and other environmental variables, and only results in damage 

when humans attempt to occupy areas prone to flooding (White 1937, Mileti 1999).  

While flooding can be quantified by height, volume, rate, and other measurements, flood 

damage can be calculated in terms of costs and is often quantified in terms of lives lost 

and damage to property.  Costs can also include monetary and non-monetary damages 

that are the result of both direct and indirect impacts (Smith and Ward 1998, Gall, 

Borden and Cutter 2009). 

It is challenging to identify precisely how human occupancy of flood-prone areas is 

related to flood damage because methods quantifying flooding are not standardized.  

This is due to the fact that “flooding” can be measured and defined differently depending 

on context (Pielke 1999).  For example, flooding, flood risk, and flood damage have 

different meanings in different fields of study, and policy or decision-makers may use 

these terms differently than scientists.  Green, Tunstall, and Fordham (1991) examined 

groups of engineers, planners, citizens, and researchers to identify whether there was a 

significant difference in their perception of flood risk.  The authors concluded that there 
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is a significant difference in the colloquial definition of terms among the groups, which 

can be problematic when collaboration and transfer of information is required to identify 

flood problems and develop solutions.  

Flooding in terms of hydrologic response can be measured numerous ways; including 

flood volume and rate, frequency of events, efficiency of the watershed to move 

stormwater downstream, how quickly a hydrologic system can fill with water, and 

numerous other measurements.  In their review of the literature, Olden and Poff (2003) 

examined flood variables used in 20 different studies and found there were only four 

principal components of the 171 variables that accounted for 75% of the variability.  

This indicates that even though there are numerous different ways to measure flooding, 

there are only a few key measurements that effectively represent what exactly a flood is. 

Flood damage can be more difficult to define than flooding, as there are numerous ways 

flooding can impact human lives and property.  Monetary costs can include direct 

damage to property, and non-monetary costs may include how the health of individuals 

is impacted by a flood (both mental and physical health), as well as loss of non-monetary 

goods like memorabilia (Green and Penning-Roswell 1989).  Additionally, direct and 

indirect costs can be both economic and non-economic; indirect monetary costs could 

include the cost to evacuate a storm and stay at a hotel, to the loss of income from not 

being able to return to work after a storm (Gall et al. 2009).  Indirect non-monetary costs 

can include the long-term emotional impacts caused by the experience (Green and 

Penning-Roswell 1989). 

2.1.2. Urbanization and Flooding Studies 

Impervious Surface 

Impervious surface can influence different measures of flooding, including the 

magnitude, frequency, duration, timing, and rate of change (Richter et al. 1996).  

Additionally, patterns of impervious surface relative to the watershed landscape and 
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hydrologic features can exacerbate or ameliorate flooding, and are dependent on spatial 

factors like how far upland the impervious surface is, or whether or not the impervious 

surface is directly connected to hydrologic channels (Jacobson 2011).  Channelization 

can simultaneously reduce flooding for adjacent properties while increasing downstream 

flooding (White 2008).  Shallow, small-scale channelization like neighborhood 

stormwater ditches can quickly exceed their capacity during extreme or long periods of 

rainfall, or when they are not properly maintained (Smith and Ward 1998, Center for 

Neighborhood Technology 2013).  Flood control structures like dams, dikes, and levees 

can reduce flood damage, but run the risk of having additional lives and property placed 

in flood-prone areas in the event these devices fail or encounter a rainfall event beyond 

the level anticipated and incorporated in to the design (Burby et al. 1999, Brody, 

Highfield and Kang 2011). 

 

The effects of urbanization on flood pulses have been understood for quite some time.  

Urbanization of catchments can result in increased flood peaks and decreased lag time to 

reach those peaks (Leopold 1968, Seaburn 1969).  Urbanization can result in hydrologic 

alteration by increasing amounts of impervious surface (Shuster et al. 2005, Jacobson 

2011) inadvertently fragmenting hydrologic networks by placing patchy development 

outside of urban areas (Brody, Carrasco and Highfield 2006), or through the use of 

purposeful and engineered structures (Hopkinson and Day 1980). 

 

When landscapes become urbanized, pervious natural areas are replaced with impervious 

ones (Shuster et al. 2005).  The two most significant ways impervious surfaces influence 

flooding is through decreasing infiltration rates and increasing surface runoff (Ogden et 

al. 2011).  Increases in impervious surface are also related to decreased levels of rainfall 

infiltration into the soil (Dunne and Leopold 1978, White and Greer 2006) as well as 

increased surface runoff rates from the lower frictional resistance compared to natural 

landscapes (Paul and Meyer 2001, Kousky and Zeckhauser 2006).  These changes have 
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the potential to increase peak discharge levels (Brezonik and Stadelmann 2002) as well 

as cause peak discharge points to be reached more rapidly (Hirsch et al. 1990).   

 

The impacts of urbanization on landscapes can be very significant as modifications to 

hydrology are made to support population growth.  Zhang and Wang (2007) studied a 

heavily urbanizing 3800 square kilometer area in China and found that between 1988 

and 2003, almost 58% of the water area had been converted to other land use types and 

almost 43% of other land use types had been converted to water, indicating significant 

modifications to the hydrology of the region. 

 

Different patterns of impervious surface can influence hydrologic parameters differently.  

The total impervious area (TIA) of a catchment has been found to influence hydrology 

differently than the effective impervious area (EIA) or the directly connected impervious 

area (DCIA) (Alberti et al. 2007).  Lee and Heaney (2003) compared total 

imperviousness and DCIA to flood variables in a small basin using data over a 52 year 

period.  They found that even though DCIA only accounted for 44% of the land cover 

for the site, it contributed to 72% of the total runoff over the 52 year period.  In almost 

57% of the rainfall events, DCIA was the singular source of runoff, meaning that during 

the smaller storms, the landscape was able to adequately handle precipitation by 

allowing it to infiltrate into the soil, be stored as surface water, or evaporate. 

 

Hood, Clausen, and Warner (2007) examined how low impact development (LID) 

strategies can reduce flooding when compared to traditional residential development.  

They defined LID as development that allows soil infiltration to occur, as opposed to 

traditional strategies where the goal is to move stormwater rapidly away from a site. 

Hood and colleagues also found that LID strategies reduced overall peak flows, as 

lengthened the time it took to reach peak flows.  However, the impact LID had on peak 

flows was greatly diminished during extreme events (rainfall over 25 mm or an event 
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lasting longer than four hours), but was still found to be more efficient at ameliorating 

flooding when compared to traditional development.  

There are other studies that signify the complexity of measuring the relationship between 

impervious surface and flood regimes.  Rose and Peters (2001) compared flooding in 

watersheds that had varying levels of urbanization and discovered that topography 

played a much more significant role in determining runoff coefficients than impervious 

surface.  They also found that watersheds with higher elevations and higher reliefs had 

higher runoff coefficients than lower watersheds with lower reliefs.  Additionally, runoff 

coefficients did not vary significantly among watersheds of varying urbanization.  

However, they did find that for the largest streamflow events, peak flows were 30% -

100% higher in urbanized watersheds when compared to less-urbanized watersheds, and 

the stormwater receded between one and two days quicker in urbanized watersheds 

when compared to less-urbanized watersheds (Rose and Peters 2001).  Saghafian and 

colleagues (2008) found that there are hydrologically significant areas in watersheds 

such as upland subwatersheds and hillslopes where land use changes influence 

hydrology more than others, which indicates that watersheds with the same amount of 

impervious surface located in different areas will influence hydrology differently. 

Stormwater Management 

Increases in the size of urban areas result in increased levels of stormwater runoff 

(Arnold and Gibbons 1996).  Anthropogenic modification of topography can be used to 

construct simple artificial waterways like ditches, canals and channels; or can create 

complex and elaborate stormwater conveyance systems that mimic natural hydrologic 

features like lakes and wetland networks.  Channelization can be used to quickly move 

large amounts of stormwater downstream until it connects with streams or rivers, but 

may result in overall increases in downstream flooding (Rose and Peters 2001).  More 

sophisticated stormwater conveyance systems can also be used to divert water into 

natural landscape areas that either trap or store and slowly release water so it does not 
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contribute to downstream flooding, but these systems may be limited in the amount of 

water they are able to effectively divert (Cohen and Brown 2007).  However, it is 

important to understand how both of these methods regulate flooding in context with the 

urban pattern metrics that are utilized in this study. 

 

Anthropogenic channelization represents one way humans modify the topography of a 

watershed.  Graf (1977) identified the creation of artificial drainage as an important 

factor to consider beyond impervious surface when looking at how urbanization 

influences surface runoff and downstream flooding.  Artificial drainage channels are 

oftentimes created to manage the incredible amount of stormwater runoff that is 

generated in urban areas (White 2008).  Channelization within a watershed is often 

characterized as drainage density, which is the ratio of length of streams to the area of 

the catchment (Paul and Meyer 2001).  Similar to impervious surface area, drainage 

density may also influence flooding at different scales.  While the use of artificial 

drainage may reduce flooding in some urban areas by quickly moving stormwater 

downstream, it may also contribute to flooding in areas farther down the watershed 

(Meyer et al. 2001).  

 

Anthropogenic channelization and impervious surface area have been linked to changing 

flood regimes.  Ogden and colleagues (2011) examined an urbanized catchment near 

Baltimore, Maryland to understand how urbanization variables like drainage density and 

impervious surface were related to flood peaks, runoff volumes, and runoff efficiency.  

They concluded that increased drainage density significantly increased peak discharges.  

Also, they found that peak flows are highly sensitive to rainfall rates in watersheds with 

high levels of imperviousness. 

 

More complex stormwater management systems can mimic natural hydrologic features 

for the purpose of storing and regulating the release of stormwater back into the natural 

hydrology of a watershed.  This can include retention or detention basins that behave 
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similar to small lakes or ponds, as well as distributed stormwater conveyance systems 

that function similar to wetland networks.  Constructed stormwater conveyance systems 

are part of a suite of distributed stormwater management practices (DSMPs) that can be 

employed to create an “absorbent city” and reduce flooding by mimicking natural 

hydrologic patterns (White 2008).  There is evidence that these DSMPs can reduce 

flooding. 

Cohen and Brown (2007) found that constructed stormwater conveyance systems could 

mimic the function of a hierarchical wetland system.  They determined that such a 

system could improve both water quantity and quality; where flows would be reduced by 

31%; and 36% and 27% of sediment and phosphorus could be removed through the 

system, respectively. 

The aforementioned hierarchical stormwater system and other DSMPs have been 

proposed as the key to solving stormwater issues that have increased from growning 

amounts of urban impervious surface (Freni and Oliveri 2005).  In their study, Freni and 

Oliveri (2005) identified how DSMPs influence several hydrologic parameters to 

determine their effectiveness at reducing flooding.  They found that disconnecting 

impervious area from larger drainage systems and handling it locally was the most 

effective means to reducing flood peak flows.  They surmise that in locations where 

disconnection was not possible, detention ponds could be used to slowly release 

stormwater into larger drainage systems. 

2.1.3. Urbanization and Flood Damage Studies 

Urbanization can influence flooding through increased levels of impervious surface and 

alterations to natural hydrology, but urbanization can also result in flood damage 

directly.  Damage to property caused by floods are the result of the way societies choose 

where development occurs and how it is designed (Mileti 1999, Freeman, Keen and 

Mani 2003, Benson and Clay 2004).  As such, numerous studies that analyze the 
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connection between urbanization and the extent of flood damage focus on property 

located in flood-prone areas.  Property in low-lying areas, near rivers and streams, or 

downstream of water bodies are at greater risk of flooding than property in other parts of 

a watershed.  In coastal areas, flooding is especially a concern due to the potential 

impact of storms that can cause damage by creating tidal surges as well as by releasing 

large quantities of precipitation onto areas with naturally poor drainage (Costanza et al. 

2008).  In many cases, these flood-prone areas are delineated using FEMA’s designated 

special flood hazard areas (SFHA), but recent work has begun to look at urban flooding 

outside of these areas (Center for Neighborhood Technology 2013).   

Without structural controls in place, properties located in flood-prone areas are 

susceptible to flooding; and unless flood-proofing strategies have been implemented, 

flood damage of some sort can occur (Lind 1967, Birkland et al. 2003, Hansson, 

Danielson and Ekenberg 2008). Planned, high-density development can improve quality 

of life and protect the environment (Calthorpe 1993), but high-density development in 

flood-prone areas can increase a community’s exposure to flood hazards (Stevens, Song 

and Berke 2010, Burby 2001).  Land use policies that prevent development in flood-

prone areas or restrict it to low density development and require flood-proofing 

strategies can reduce the overall exposure of properties to flood damage (White 2008).   

Flooding due to Location 

It is estimated that there are over six million buildings located within the FEMA Special 

Flood Hazard Area (Burby 2001; p. 111).  Research indicates that even properties 

outside of these areas are at risk for severe and repetitive flooding (Brody et al. 2012b).  

The presence of these properties in flood-prone areas has not only resulted in property 

damage, but has also resulted in reductions in property values and other financial losses. 
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Using a hedonic price model to estimate the effects of flood hazards on residential 

property values, Bin and Polasky (2004) found that homes in flood-prone areas had 

lower property values than those outside of flood-prone areas.  Additionally, the price of 

homes sold after major storm events was lower in flood-prone areas than comparable 

homes located outside of flood-prone areas.  Bin, Kruse, and Landry (2008) also used a 

hedonic price model to estimate the effect of flood hazards on coastal property values, 

and concluded that even when controlling for amenities available nearby (measured as 

distance to coastal water), homes in flood-prone areas had lower values than homes 

outside of flood-prone areas.  Daniel, Florax, and Rietveld (2009) conducted a meta-

analysis of data from 19 different studies and found that in a given year, a one-percent 

increase in probability of flooding resulted in a .06 decrease in property value. 

 

The amenity that Bin, Kruse and Landry (2008) identify in their analysis is supported by 

information found in a Congressional Budget Office (2007) study that concluded overall 

property values of homes in SFHAs was contingent on the value of the land independent 

of the value of the structure placed on the land.  In other words, property values in 

coastal areas are high because of their location on the coast and regardless of whether the 

home is flood-prone.  Conversely, in inland areas properties that have incurred flood 

damage have lower values than inland properties that have not had flood damage 

(Congressional Budget Office 2007).   

 

Holoway and Burby (1990) studied how  flood hazard variables were related to 

residential property values by examining a sample of properties located in floodplain 

areas.  They found property protected by flood control structures had a higher value than 

property not protected.  Additionally, the value of properties located in cities that had 

experienced a recent flood event was lower than the value of properties located in cities 

that had not experienced a recent flood event.  Another important finding was that the 

land use regulations required by the National Flood Insurance Program were found to 

affect property value.  Lots zoned for larger parcels were found to be of less value per 
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unit area than lots zoned for smaller ones.  Lots located in communities that required 

building homes one foot above the base flood level were less expensive than lots built in 

communities that did not require it.   

 

The Center for Neighborhood Technology (2013) conducted one of the few studies 

related urban development to flood damage with a focus on the failure of stormwater 

conveyance and drainage systems.  From 2007 to 2011, flood damage data from 

FEMA’s National Flood Insurance Program and sewer and drain backup claims from 

other insurance providers was analyzed at the zip code level for Cook County, Illinois.  

This data was then paired with social survey data to better understand the prevalence of 

urban flooding.  Summary statistics showed that on average, one out of every six 

properties flooded during the study period.  Residents self-reported supplementary 

survey data that revealed 70 percent of respondents had flooded three or more times in 

the past five years, and twenty percent had flooded at least 10 or more times (Center for 

Neighborhood Technology 2013). 

 

One of the most important findings of the study is that of the 96 zip code areas studied, 

the areas with the highest amount of claims paid out had little to no federally-designated 

floodplain area present within their boundaries (Center for Neighborhood Technology 

2013).  This is strong evidence that urban flooding can be a chronic problem regardless 

of whether or not it is located in flood-prone areas. 
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Policies and Planning that Reduce Flood Damage 

Throughout the history of floodplain management in the U.S., there are several strategies 

that have been adopted at different levels of government that have been implemented in 

an attempt to reduce flood damage.  These strategies include: 

1. structural controls like dams, dikes and levees (managing the water to prevent

encroachment into floodplain areas);

2. land use/building restrictions (elevating homes, flood-proofing, and zoning);

3. insurance and disaster relief assistance (damage still occurs but the financial cost

to the individual is minimized); and

4. stormwater and land use strategies that maintain or create natural hydrologic

features that reduce flood damage to the surrounding urban and suburban areas

(White 2008).

There is disagreement in the literature on the effectiveness of these strategies, as many of 

them have had unintended consequences.  For example, structural controls and insurance 

and disaster relief assistance can reduce perceived risks and increase encroachment into 

floodplain areas (Brody et al. 2011b). 

In 1958, White and colleagues studied 17 cities in the U.S. to analyze the change in 

occupancy of floodplains after flood control structures were put in place and found that 

there was an increase in properties located in these areas.  In 1986, Montz and Gruntfest 

looked at nine of these same cities to determine whether federal floodplain regulations 

had further influenced development in these areas.  They found that although 

participation in the NFIP has occurred, actual adoption of many of the requirements has 

not occurred in the communities that have seen high levels of population growth.  

(Montz and Gruntfest 1986). 

Holoway and Burby (1993) studied how NFIP requirements and floodplain boundaries 

influence patterns of development.  They argued that NFIP requirements may reduce 
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flood damage by requiring buildings to be constructed to a certain elevation, but will not 

necessarily drive development outside of the floodplain.  They proposed that low impact 

development strategies should be employed in floodplains to ensure that encroachment 

into these areas is limited. 

 

Patterson and Doyle (2009) tested whether NFIP policies led to reduced development in 

floodplains.  By looking at temporal and spatial changes to development in three regions 

of North Carolina, the authors found evidence that two of the regions had some success 

in reducing exposure of property within the 100 year floodplain, and the coastal region 

was very successful at reducing exposure.  However, a spatial analysis indicated that 

exposure of property immediately outside of the 100 year floodplain increased 

significantly. 

 

Brody and colleagues (2007) identified how planning and development patterns were 

related to flood damage caused by hurricanes along the Florida coast.  They found that 

planning for flood hazards reduced flood damage (as seen through higher community 

rating system scores), and development that altered wetlands and hydrologic networks 

resulted in increased flood damage. 

 

Policies that regulate urban design standards can ensure that development in flood-prone 

areas is kept to a minimum.  In a study of 318 New Urbanist developments in the United 

States, Stevens, Song and Berke (2010) found that the probability of these developments 

being placed in flood-prone areas decreased as the presence of floodplain development 

restrictions increased.   

 

Burby (2005) looked at how planning was related to insured flood losses for the United 

States between 1994 and 2000, and found that states that required hazard mitigation 

planning of their communities had significantly lower weather-related insured losses 

than states that did not require it, even though the effect was minimal when looked at 
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from an actual dollar value.  The author notes that one possible reason this effect was 

minimal was that planning does not mean that activities were actually implemented; and 

although a plan was in place, it does not account for the pre-existing built environment 

characteristics of the landscape. 

2.2. Urbanization from a Spatial Perspective 

2.2.1. Quantification of Urban Patterns 

The process of how urbanization occurs from a spatial perspective has evolved over the 

past 70 years.  Once thought of as simply the location and concentration of human 

populations, our understanding of urbanization has expanded as numerous fields of study 

have sought to identify the causes, consequences, and conditions of urbanization 

(Tisdale 1942, Galster et al. 2001).    

From a spatial perspective, urbanization is related to both flooding and flood damage.  

Urbanization can influence flooding because it frequently results in increases in 

impervious surface which can alter the hydrology of a watershed (Arnold and Gibbons 

1996, Shuster et al. 2005).  Urbanization can also result in direct modification of 

hydrology through the creation of artificial channels used for stormwater management or 

structures utilized in large-scale floodplain management strategies (White 2008).  These 

two aspects of urbanization influence where and to what degree flooding occurs in a 

watershed, but are only indirectly related to flood damage. 

Flood damage only occurs when lives or property are placed in flood-prone areas.  As 

opposed to land cover which influences flooding, Urbanization as land use represents the 

exposure of lives and property to damage if it is located in areas where flooding can 

occur (Brody et al. 2011a).   

Identifying how urbanization is related to flood damage requires measuring different 

dimensions of urbanization spatially to differentiate what degree of flood damage is due 
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to alterations in hydrology versus how much is due to exposure.  These spatial 

measurements of urbanization can be described as urban patterns (Alberti 1999).  Urban 

patterns can be classified into three categories (adapted from Alberti et al. 2007):  

 

1. those that represent quantity of a particular land cover type; 

2. those that represent the spatial arrangement of a particular land cover type 

relative to itself and to other landscape features; and  

3. those that represent land use intensity 

These three components of urbanization provide a framework for which urban pattern 

variables can be related to flood damage.  Quantity of land cover type measures 

urbanization as impervious surface, and as well as the location of impervious surface 

relative to itself and other landscape features which influence how urbanization alters the 

hydrology of a watershed.  Land use intensity represents the density of lives and 

property in urban areas that are located in areas prone to flooding.  Utilizing all three of 

these categories of urban patterns allow for the generation of urban pattern metrics that 

are based on previous research.  However, this study expands on previous research by 

creating new measures that are based on the literature from two different fields; those 

found in hydrology, and those found in hazard analysis and management. 

 

Urban patterns have been quantified and measured in several academic fields, including 

landscape ecology and urban studies.  While some studies have looked at urbanization as 

one of many land cover types across a landscape, others look at more specific land cover 

or land use patterns that are specific to the problem being studied.  This section 1) 

provides a brief introduction to terminology in landscape ecology and the use of 

landscape metrics; 2) describes how urban patterns have been defined, measured and 

categorized; and 3) explains how urban patterns have been linked to ecological and 

socio-ecological processes.   
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2.2.2. Studies Measuring Sprawl and Classifying Urban Patterns 

Landscape ecology is the study of linking patterns to processes at various landscape 

scales (Turner, Gardner and O’Neill 2001).  Successful linking of patterns to processes 

requires both an understanding of the landscape or spatial metrics being used to measure 

landscape structure as well as an understanding of the ecological phenomenon being 

studied.  Researchers that employ landscape and other spatial metrics from numerous 

fields of study have called for context to be provided to determine the appropriateness of 

metrics used to correlate patterns to processes (Corry and Nassauer 2005, O'Neill et al. 

1988, Galster et al. 2001, Turner 2005, Li and Wu 2004, Jaeger et al. 2010b, Herold, 

Goldstein and Clarke 2003, Gustafson 1998).  It is therefore important to understand not 

only how urbanization is linked to flooding and flood damage, but also how urban 

patterns have been conceptualized, measured, and categorized in the existing literature 

prior to determining which urban pattern metrics may be most appropriate. 

Although not ubiquitous in the literature, many studies in quantitative geography have 

approached the measurement of urban patterns from a perspective of efficiency, where 

there is a continuum of development patterns that, when efficient, provide some sort of 

economic, social, or environmental benefit.  When measuring urbanization, inefficient 

patterns can be classified as sprawl (Ewing 2008) or an undesirable pattern of growth 

(Theobald 2005).  Torrens (2008) identifies several categories that sprawl may refer to, 

including:  costs and benefits; growth, decentralization, and density, social/quality of life 

aspects, and environmental aspects.  While sprawl is a difficult concept to conceptualize 

and measure, theoretical and empirical articles discussing sprawl are a major cornerstone 

to the larger body of research that looks at urbanization as a spatial science. 

Jaeger and colleagues (2010b) outline 13 suitability criteria that should be used when 

determining how to operationalize and measure sprawl.  After identifying several unique 

dimensions of sprawl, they applied these suitability criteria to determine the 

appropriateness of current measurement methods.  In a following article, the authors 
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applied the suitability criteria to four proposed measures of sprawl and surmised that 

these new measurements were more robust due to the validation tests they applied to 

them.  The four metrics they proposed included: 1) degree of urban dispersion, 2) total 

sprawl, 3) degree of urban permeation of the landscape, and 4) sprawl per capita (Jaeger 

et al. 2010a).    

 

Galster and colleagues (2001) bring context to the argument of what is and is not sprawl 

by operationalizing eight different dimensions of sprawl as defined by the literature and 

then proceeded to test these measures on 13 urbanized areas in order to determine 

whether lower scores would represent less sprawl and higher scores would indicate 

higher amounts of sprawl.  By measuring the eight dimensions and comparing to maps 

of the study sites, the authors validated their metrics and concluded that specific aspects 

of urbanization being captured included land use density, concentration, continuity, 

clustering, centrality, nuclearity, mixed uses, and proximity.  Cutsinger and colleagues 

(2005) expanded Galster and colleagues’ (2001) study to operationalize 12 different 

dimensions of land use patterns and utilized 16 different metrics to measure land use 

patterns for 50 of the largest cities’ extended urban area (EUA).  After analyzing 

descriptive statistics and conducting a factor analysis, they found that there were seven 

factors that explained 94% of the variation in the indices.  The authors identified these 

categories as containing metrics that represented density/continuity, proximity (both 

housing to housing and housing to jobs), job concentration, mixed use, housing 

centrality, nuclearity, and housing concentration. 

 

Jaret and colleagues (2009) summarized several studies that attempted to conceptualize 

and measure sprawl, but focused on studies that viewed sprawl as a land use issue and 

failed to incorporate numerous studies that also conceptualize sprawl as land cover.  

Alberti (1999) identified four different aspects of urbanization, including urban form, 

density, grain, and connectivity.  Alberti and colleagues (2007) later built upon this 

framework to propose that the four aspects of urban patterns that are linked to ecological 
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health in different ways include land use intensity, land cover composition, landscape 

configuration, and connectivity of impervious area.  Herold, Goldstein, and Clarke 

(2003) looked at 72 years of spatial data to develop several urban pattern metrics and 

found that both topography as well as planned urban growth boundaries influenced 

spatial patterns of development.  These measures of urbanization can also be used to 

predict future urban growth scenarios and estimate future resource needs (Sudhira, 

Ramachandra and Jagadish 2004, Herold et al. 2003).  

 

One of the most comprehensive reviews of the quantification of urban form was 

conducted by Clifton and colleagues (2008) who, after reviewing the literature from 

several disciplines, determined there were five categories that effectively classified 

different perspectives across disciplines when quantifying urban form.  These include: 

landscape ecology, economic structure, surface transportation, community design, and 

urban design.  From their review they also determined that while there has been major 

technological advances that allow for more detailed quantification of urbanization, 

standardizing how different components are operationalized and measured could further 

allow comparison across study sites and research disciplines. 

 

Depending on the situation, many urban pattern metrics or a single metric may be useful 

at answering a specific research question.  To generally describe urbanization across a 

landscape, Lu and Weng (2006) incorporated land cover data and population density 

data to describe five different types of urbanization within their study area: low-, 

medium-, high-, and very high-residential urban areas; and commercial/ industrial/ 

transportation urban areas.  In contrast, Theobald (2005) proposed a single urban sprawl 

metric that summarizes numerous levels of development densities present on a landscape 

while also accounting for the edge contrast among each density level.  Using this metric, 

the author measured residential housing density change from 1980 to 2000 and estimated 

that while urban and suburban housing densities (parcels .68 hectares and smaller) will 
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increase to 2.2% per year by 2020, exurban development (parcels larger than .68 

hectares) will expand by 14.3% for the same time period. 

 

Tsai (2005) proposed four different measurements that quantify urban form on a 

continuum of compactness versus sprawl.  These four measurements characterize 

different dimensions of urbanization and include: metropolitan size, activity intensity, 

distribution of activities across urban area, and how well high-density areas are clustered 

among one another.  While Tsai’s (2005) study does not go into the validity assessment 

that others do for the proposed variables, it does utilize a Moran’s I function to address 

the spatial dependence that occurs when analyzing landscapes. 

 

Impacts of urbanization on land cover and hydrology can be significant.  In Zhang and 

Wang’s (2007) study of an urbanizing landscape, almost 58% of the water area had been 

converted to other land use types and almost 43% of other land use types had been 

converted to water.  Burchfield and colleagues (2003) converted aerial photographs from 

1976 and 1992 to raster grids in order to measure and understand changes in urban 

patterns between the two time periods for the entire continental U.S.  They found that 

while residential land increased by 47.3% during the study period, the population only 

grew 17.1%.  In their study on the form and growth of cities, (Schneider and Woodcock 

2008) found that there were four ways urbanization occurred; low levels of growth that 

included infilling, high levels of growth with rapid infilling, sprawling growth with high 

levels of dispersion and low population densities, and extremely rapid and haphazard 

growth represented by high levels of land use conversion and high density levels. 

 

Burchfield and colleagues (2003) identified how potential differences in how 

urbanization is defined and measured can lead to different calculations and ultimately 

different conclusions on the composition of the urban area.  The authors compared their 

findings to other studies that have estimated the total percentage of urbanization for the 

continental U.S. and found that their estimate of 1.9% total urban area was slightly lower 
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than the U.S. Census estimate of 2.5% in 1990, as well as the 2.9% estimate made in the 

U.S. Department of Agriculture’s Natural Resource Inventory for 1992.  Burchfield and 

colleagues articulate that the difference between their estimate and the one made by the 

U.S. Census is that the U.S. Census Urbanized Area and Urban Place designations can 

include open space within their boundaries.  The authors explain the difference between 

their estimate and the one made in the Natural Resources Inventory is due to a similar 

issue, where fragmented development adjacent to an urban area may be included in the 

analysis, which also includes the open space in between the two patches. 

 

There are a number of studies that have analyzed the spatial configuration of 

urbanization to better understand different types of urban patterns.  Ji and colleagues 

(2006) calculated landscapes at the county, metropolitan, and city levels to assess how 

land cover change had occurred.  They found that over a 30 year period, much of the 

urban area had been converted from non-forested rangeland areas.  While metric focus 

was on vegetative cover, the metrics did lead the authors to believe that landscape 

metrics of larger spatial units (county and metropolitan areas) were more effective at 

measuring land use change than metrics calculated of smaller units of analysis. 

 

Seto and Fragkias (2005) studied four cities in southern China over an 11 year period 

using landscape metrics at three levels of analysis.  The authors concluded that using 

landscape metrics at different buffer zone levels is a superior method to understanding 

urban expansion rather than just looking at urban growth rates.  Additionally, the use of 

metrics can provide clarity to the underlying social, economic and political processes 

that drive development.  The authors also concluded that urban patterns metrics can 

successfully quantify rapid changes to urbanization over short temporal periods, which 
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can be important in places like China where many cities are undergoing this type of 

rapid transformation (Schneider and Woodcock 2008). 

Within urban areas, urban patterns can change as spatial scale and distance from the 

urban core changes.  Luck and Wu (2002) used several landscape metrics to measure 

urban form and found that not only were most of them robust to changing spatial scales, 

they were also able to effectively measure different urban patterns as land cover 

diversified and distance from the urban core increased. 

2.3. Landscape and Spatial Metrics 

2.3.1. Landscape and Spatial Metrics Background 

A brief overview of the terms associated with landscape ecology and the measurement of 

spatial patterns is necessary in order to better understand how urban patterns have been 

measured and correlated to social and ecological phenomenon.  These terms deal with 

the format of the spatial data, ways in which different spatial data are described, as well 

as the components of a landscape. 

Land cover can be represented as different class types.  For example, there can be one or 

several types of vegetation, depending on how and for what purpose the classes are 

generated.  Each class type can be represented as patches that differ by size, location, 

and spatial arrangement; and the together create the mosaic for a given landscape being 

analyzed (Turner et al. 2001, McGarigal, Cushman and Ene 2012).  The quantity, 

location, and spatial arrangement of land cover classes can be quantified using landscape 

metrics that are specific to measuring a particular patch, the pattern of a single land 

cover class, or the relationship of all classes found on a given landscape.  Landscape 

metrics that calculate quantities are considered compositional metrics and do not change 

based on the spatial location of the class types.  Configurational metrics are used to 
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quantify spatial relationships relative to other patches, class types, or other landscape 

features (Leitão et al. 2006). 

 

The suite of landscape metrics available makes it difficult to determine which may be 

most appropriate, and may compel researchers to attempt to use all of them without fully 

understanding the underlying mathematics (Li and Wu 2004).  Cushman, McGarigal and 

Neel (2008) recognized that multiple landscape metrics may be necessary in landscape 

analysis due to the numerous dimensions they may measure.  To select the correct type 

and number of landscape metrics to be used in an analysis, validity tests should be 

conducted to ensure metrics are conceptually linked to ecological patterns or processes, 

analyses are conducted at the appropriate scale, and that unnecessary metrics are not 

included in the analysis (Cushman et al. 2008). 

 

Landscape analysis in landscape ecology and related fields has sought to answer 

multiple questions on how landscapes are structured and how this structure is related to 

ecological processes or other social and environmental variables.  In their meta-analysis 

of 478 articles that discussed landscape metrics or landscape indices, Uuemaa and 
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colleagues (2009) found that there were seven categories of research being conducted in 

the field.  These include the following:  

 

1. the selection/use/misuse of metrics;  

2. biodiversity/habitat analysis;  

3. water quality studies;  

4. temporal analyses of landscapes;  

5. quantification of urban landscapes;  

6. landscape aesthetic; and  

7. planning/management/monitoring of landscapes.   

 

While the authors provide evidence that the publication of articles quantifying urban has 

increased over the past decade, there is still notably an absence articles of linking 

patterns to socio-ecological processes. 

 

Landscape ecology emerged as a field of study to better understand the implications of 

changing landscape patterns on ecological processes (Turner et al. 2001).  Urban 

ecology has recently emerged as a sub discipline that explicitly looks at how landscape 

changes due to urbanization are related to ecological processes, but have primarly 

focused on ecosystem condition and function (see Alberti 1999, Alberti 2005 for a 

summary of studies).  Few have sought to link urban patterns to socio-economic 

consequences, and fewer still have attempted to identify how urban landscape patterns 

are related to flood damage. 

 

Use of landscape metrics to measure urban patterns has been attempted in both 

conceptualizing urban patterns, as well as the linking of these patterns to flood damage.  

Herold, Scepan, and Clarke (2002) used several Fragstats metrics to characterize urban 
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landscapes including fractal dimension, patch density, standard deviation of patch size, 

edge density, area weighted mean patch fractal dimension, and contagion.  They used 

these metrics on pre-defined urban landscapes to measure the dominant urban class 

(commercial, high-density residential, and low density residential).  They found that 

most of the metrics were distinct from one another on different landscapes, and that the 

metrics were especially useful at analyzing land use change over time. 

 

When analyzing insured flood loss data from 2001-2004 for 144 coastal counties in the 

Gulf of Mexico, Brody and colleagues (2011a) found that landscape metrics that 

calculated Total Area/Proportion of high intensity development and low intensity 

development were significantly related to flood damage.  As the proportion of high-

intensity development increased, flood damage was found to decrease.  Conversely, as 

proportion of low-intensity development increased, flood damage was found to increase.  

(Brody et al. 2011a) 

 

Brody, Kim and Gunn (2012a) studied specific landscape metrics calculated in Fragstats 

(Total Class Area, Number of Patches, Patch Density, Proximity, and Connectance) of 

different intensities of development to determine their relationship to flood damage.  

They found that the total amount of high intensity development was inversely related to 

flood damage, while total amount of low intensity development was positively related to 

flood damage.  Increased numbers of low intensity and medium intensity development 

patches led to greater amounts of flood damage.  Additionally, high intensity 

development that was highly connected led to increased amounts of flood damage. 

 

One of the greatest limitations of these two studies is the measurement of urban patterns 

does not allow for the distinction of whether these patterns represent impervious surface 

or exposure of property.  Without utilization of metrics that capture these distinct 

dimensions or urbanization, it is difficult to understand what level of damage is due to 
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increasing amounts and complexity of patterns of impervious surface, and how much 

damage is due to the placement of property in flood-prone areas. 
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3. RESEARCH FRAMEWORK 

 

3.1. Conceptual Model 

Urbanization is related to both flooding and flood damage.  Modification of the 

landscape can impact natural hydrologic functioning of a watershed, which can alter 

flood regimes.  Additionally, urbanization that occurs in flood-prone areas can result in 

property being exposed to flooding.  Property in low-lying areas, near rivers and 

streams, or downstream of water bodies are at greater risk of flooding than property in 

other parts of a watershed (Brody, Highfield and Kang 2011).   

 

This research sought to identify how various urban patterns are related to residential 

property flood damage across the Texas coast.  Urban patterns have multiple 

dimensions; in the case of flood damage, land cover patterns that measure the amount 

and spatial arrangement of impervious surface relative to hydrology can measure the 

influence these patterns can have on flooding, which is indirectly related to flood 

damage.  Other urban pattern metrics measure land use, and these measurements capture 

the intensity of development as the amount of property located in a particular area, as 

well as the spatial location and whether the property is located in a flood-prone area.   

 

Land cover urban pattern metrics selected for this study measure impervious surface and 

reflect their use in the literature as they are related to influencing flood regimes and 

stormwater runoff.  The primary measurement in the literature is TIA which has been 

shown to increase flood peaks and reaching those peaks more rapidly (Leopold 1968, 

Seaburn 1969, Alberti et al. 2007).   

 

Configurational metrics utilized in this study help differentiate TIA and EIA/DCIA in 

each watershed (see Lee and Heaney 2003).  The less contiguous impervious surface 

area is, the more natural area will be able to slow runoff and provide opportunity for 

absorption into the soil (Ogden et al. 2011).  The literature provides evidence of such 
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patterns being included in process-based hydrologic models and evidence that such 

patterns are important contributors to altering flood regimes.  Additional metrics that 

capture the fragmentation, expansiveness and uniformity of patches of impervious 

surface, as well as the distance between patches, provide the opportunity to see if there 

are other impervious surface configurations that influence flood damage.  Six urban land 

cover metrics are utilized in this analysis. 

 

Land use metrics utilized in this study also reflect findings from the literature.  Height 

and distance are the two spatial dimensions that reflect exposure of property to flooding. 

Two simple but critical metrics that capture the relationship of where residential 

properties are located relative to flood-prone areas of the watershed include the average 

distance of residential property to flood-prone areas (streams, outlets, coastline, etc.), 

and the average elevation of residential properties.  These simple metrics allow for the 

measurement of urban land use intensity and spatial configuration relative to each 

unique watershed. 

 

These eight urban pattern metrics that reflect land cover and land use were used to 

determine the influence of urbanization of flood damage in Texas coastal watersheds.  

As seen in Figure 1, land cover urban patterns influence hydrology directly, and flood 

damage indirectly.  Urban land use metrics that represent residential property exposure 

are directly related to flood damage.  Table 1 presents the dependent and independent 

variables and their hypothesized relationship to residential property flood damage.   
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Figure 1: Conceptual Model     

 

3.2. Dependent Variable 

Flood damage occurs when there is flooding in locations where there is something to 

damage like lives or property.  There are four ways to mitigate such impacts; either 

avoid the impact by preventing lives and property from being placed in flood-prone 

areas, reduce the potential for impact through design modifications intended to manage 

the hydrology (like engineered structures), modify built features (like raised homes), or 

offset the impact through monetary relief (like insurance or government relief) (Randolf, 

2004).  As mentioned in Section 2.1.1., there are numerous ways to quantify the impacts 

of flooding, and even damage in dollars is difficult to quantify because of the lack of 

uniformity across geography and time.  For the purposes of this research, data from 

FEMA’s National Flood Insurance Program (NFIP) is utilized for the purposes of 

quantifying residential property damage in dollars.  NFIP was established in 1968 and is 

one of many methods the U.S. government attempts to offset damage from flooding.  

Participation in NFIP occurs at the community level, and eligibility of individuals is 

dependent on the community adopting a minimum set of development standards within 
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the identified flood risk boundary.  Individual policy and claim data can be scaled up to 

the watershed for the purposes of measuring total insured annual flood damage.    

 
Table 1: Independent Variables and Expected Relationship with Dependent 

Variable 

 

  Variable Name Expected Relationship 
with Flood Damage 

Urban 
Patterns 

Percent of Developed Area (High, Medium and 
Low Intensity) + 

Mean Gyrate Value of Developed Area Patches 
(High, Medium and Low Intensity) + 

Patch Density of Developed Area (High, 
Medium and Low Intensity) + 

Mean Shape Value of Developed Area Patches 
(High, Medium and Low Intensity) - 

Mean Proximity Value of Developed Area 
Patches (High, Medium and Low Intensity) + 

Mean Patch Size of Developed Area (High, 
Medium and Low Intensity) + 

Average Distance of Homes to Water - 

Average Elevation of Homes - 

Control 
Variables 

Mean Slope - 
Drainage Density - 

Percent Upland Vegetation - 
Percent Wetland - 

Precipitation + 
Mean KSAT Value of Soil - 

Mean Hydrologic Capacity of Soil + 
Residential Property Age + 

Number of Policies + 
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3.3. Independent Variables 

Urban patterns have multiple dimensions; depending on the context, patterns that 

measure how urban land cover and urban land use intensity are spatially arranged over a 

landscape may or may not be useful in determining how urban patterns are related to 

socio-ecological processes (Alberti et al. 2007, Galster et al. 2001).  To understand the 

impact of urbanization on flood damage at a landscape scale, urban patterns can be 

conceptualized two ways.  Urban land cover that represents patterns of impervious 

surface across a landscape influence hydrology, and urban land use intensity that 

represents development density influences exposure of property to flooding.  For the 

purposes of this study, Landscape metrics that are traditionally used to measure land 

cover are used exclusively to measure patterns of impervious surface.  Based on the 

literature, the intensity of land use in either flood-safe or flood-prone areas determines 

whether lives and property are exposed to floods.  Two urban land use intensity metrics 

that measure degree of exposure are also reviewed. 

 

There are two difficulties with selecting landscape metrics that may contribute to 

flooding and flood damage.  First, there are very few landscape metrics that have been 

used to measure urban patterns, and even fewer of these have been used to relate urban 

patterns to flood damage.  Second, there are countless landscape metrics available for 

use.  While many of these metrics may be successful at completely explaining a land 

cover pattern, many also only measure distinct dimensions and require the combination 

of multiple metrics to paint a clear picture of the pattern across a landscape.  This 

combination of multiple metrics can lead to confusing and confounding results that can 

often only be explained after the measurement has already occurred.  The following 

eight land cover metrics presented and discussed on how they are related to flood 

damage based on existing literature. 

 

Total Class Area (TCA) measures the area of a particular land cover type, and is used to 

determine the Percent Area by dividing CAP by total area of the landscape (watershed).  
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This metric has been used to estimate the impact of intensity development on flood 

damage, where it was found that increases in CAP of high intensity development 

resulted in reductions in flood damage, while increases in CAP of low intensity 

development resulted in increases in flood damage (Brody et al. 2011a).  However, when 

used to measure imperviousness, TCA and CAP/Percent Area essentially measure total 

impervious area (TIA), which has been shown to increase flood peaks as well as reduce 

the time it takes to reach those peaks (Leopold 1968, Seaburn 1969, Alberti et al. 2007). 

 

Leitao and colleagues (2006) argue that CAP/Percent Area is one of the most important 

variables when describing landscapes, as it provides basic information about the 

composition of the landscape and can also provide context when used in conjunction 

with configurational landscape metrics.   

 

 
Figure 2:  Example of Percent Class Area 

 

Percent Area can be calculated both by summing the area of a given class type within a 

landscape and dividing it by the area of the landscape.  In Figure 2, the patch in the 

landscape to the right adjacent to water has a greater value than the patch in the 

landscape on the left. 

 

Patch number (PN) is the total number of patches of a given land cover type on a 

specified landscape.  By itself, PN of impervious surface land cover does not have any 

predicted relationship with flooding or flood damage.  However, when combined with 
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Percent Area, it could provide clarification for how broken up impervious surface land 

cover is on a given landscape, which may indicate that there are pervious land covers in 

between impervious surface patches.  PN may distinguish the TIA from directly 

connected impervious area (DCIA) or effective impervious area (EIA), which have been 

shown to contribute to runoff more significantly than TIA.  If this is the case, then 

increased PN would indicate decreased DCIA and EIA and result in overall reductions to 

stormwater runoff (Lee and Heaney 2003). 

 

To further understand how “broken up” impervious surfaces are across a landscape, two 

other metrics may be used. Mean Patch Size is the total area of all patches of a given 

class type, divided by the total number of patches of that class type.  Patch Density (PD) 

is the number of patches per unit area within a given landscape.  It is difficult to estimate 

how these metrics would interact with one another in an analysis, but each could be used 

to measure patches of impervious surface to determine whether they will behave more 

like TIA or like DCIA or EIA.   

 
It is recommended that PN and PD are combined with other metrics like Mean Patch 

Size, Class Proportion, Radius of Gyration, and Patch Shape to provide a clearer picture 

of the connectivity, complexity and overall distribution of patches of a given class type 

across a landscape (Leitão et al. 2006).  

 

 
Figure 3: Example of Patch Number 
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Patch Number is simply the number of patches on a landscape.  Although the patches are 

all the same size, the Patch Number for the landscape on the right in Figure 3 than the 

Patch Number on the landscape to the left. 

 

 
Figure 4: Example of Mean Patch Size 
   

As seen in Figure 4, while both the landscapes above have the same Patch Number, the 

Mean Patch Size of the landscape to the right is larger than the Average Patch Size of the 

landscape to the left.  With a single patch, it is easy to see that the Total Class Area is 

also larger in the landscape to the right.  As the Patch Number increases, Mean Patch 

Size becomes a better descriptor of how large patches are of a given class type across the 

landscape. 

 

 
Figure 5: Example of Patch Density 

 



 

39 

 

Patch Density takes into account the total area of the landscape.  As seen in Figure 5, the 

Patch Number and Mean Patch Size are the same, but because the landscape to the right 

is smaller, the Patch Density value is higher. 

 

Shape is a standardized measure of how complex a patch is, or how far it stretches across 

a landscape relative to its size.  This allows Shape to provide information on the 

compactness of a patch or patches of a given land cover type where compact patches will 

have values close to 1.0, and more complex patches will have higher Shape values  

(Leitão et al. 2006).  Mean Shape is the result of averaging all Shape values across a 

landscape. 

 

If Mean Shape is used to calculate impervious surface, then as Mean Shape complexity 

increases, the amount of perimeter that is connected to pervious land cover would also 

increase, which would allow for stormwater runoff to be absorbed.  Mean Shape could 

also identify transportation networks on the landscape with adjacent artificial stormwater 

conveyance systems designed to quickly move water downstream. 

 

 
Figure 6: Example of Shape 

 

While both patches in the two landscapes in Figure 6 have the same amount of area (nine 

cells), the patch to the right has a much higher perimeter to area ratio, indicating that its 
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shape is more complex.  (12 cell sides exposed in the patch to the left versus 20 sides 

exposed in the patch to the right). 

 

Gyrate (or Radius of Gyration) is a measure of how expansive or compact a patch is.  As 

seen in Figure 7, the center of a patch can be found and used to measure and average the 

distance between the centroid and all cells within the patch.  Fragstats can calculate an 

Area-weighted Mean Gyrate value, which sums Gyrate values for all patches of a given 

class type and divides it by the area of the given class type.  When Gyrate measures 

impervious surface land cover, increases in Gyrate are expected to increase stormwater 

runoff.  Mean Gyrate is calculated by taking the average Gyrate value for all patches of a 

particular land cover type within the landscape. 
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Figure 7: Example of Gyrate 

 

The patch in the landscape to the right of Figure 7 has a larger Gyrate value because it 

covers more total area than the patch to the left, and the distal cells in the patch to the 

right are farther away  from the patch centroid (orange diamond) than the distal cells of 

the patch to the left. 

 

Proximity is a measurement that describes the size of patches within a landscape, as well 

as the distance of these patches from one another.  Typically, the metric is used to 

estimate patch isolation from a focal patch where larger patches closer to the focal patch 

would yield a higher value, and smaller patches further away from would yield a lower 

value (Leitão et al. 2006).  When Proximity measures impervious surface land cover, 

increases would indicate that patches are “broken up” which would reduce stormwater 

runoff.  Mean Proximity is calculated by taking the average Proximity value for all 

patches within a landscape. 
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Figure 8: Example of Proximity 

 

Landscapes with a single focal patch and no surrounding patches have a value of zero, as 

additional patches enter the landscape and are found closer to the focal patch, Proximity 

increases.  In Figure 8, the landscape to the left has a higher Proximity value than the 

landscape to the right. 

 

Property in low-lying areas, near rivers and streams, or downstream of water bodies are 

at greater risk of flooding than property in other parts of a watershed (Brody, Highfield 

and Kang 2011).  Other metrics that estimate exposure of property to flood impacts need 

to be included to effectively capture other dimensions of urban patterns in order to 

determine the impact of urbanization on flood damage.  Urban pattern metrics that 

represent the level of exposure for residential properties in the watershed can be 

calculated using the density-weighted distance of residential property to flood-prone 

areas (streams, outlets, coastline, etc.), as well as a density-weighted calculation of the 

average relative elevation of properties within the watershed.   
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(a) (b) (c)  

Figure 9: Example to Conceptualize Average Distance to Water and Average 

Elevation 

 

The three watersheds in Figure 9 have identical perimeters, streams, and amount of area 

blacked out representing presence of property.  However, while (a) has an equally 

distributed pattern, (b) and (c) are both aggregated in flood prone areas, which means 

they may be more susceptible to flooding and incur flood damage.  Due to the elevation 

differences in a watershed, (b) would indicate properties are located in low-lying areas 

and result in more flood damage.  The properties in (c) would have low values for 

distance to water, which would also lead to higher amounts of flood damage. 
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3.4. Control Variables 

3.4.1. Basin Morphometrics  

There are numerous studies that have quantified basin morphometrics and stream 

characteristics for the purpose of classifying basin types regionally and estimating 

different aspects of flooding in ungauged locations (Helsel and Hirsch 2002).  These 

metrics have roots in quantitative geography but have been adopted into the field of 

hydrologic analysis and many have shown to be fairly accurate in estimating flooding.  

These metrics make ideal control variables for this research and can only be utilized due 

to the units of analysis being conducted at the watershed scale.  Additionally, there are 

several environmental, policy, and structural variables that can be used as control 

variables. 

Horton (1945) was the first to attempt the quantification of key basin characteristics that 

could be used to estimate surface runoff.  These basin morphometrics often utilized 

simple measures like channel length to basin area ratio or number of streams as a proxy 

when estimating stream flow characteristics.  This work is some of the first in 

quantitative geography, and despite it not having a direct link to landscape ecology, the 

use of metrics to look at hydrological processes is very similar to the use of landscape 

metrics that are used to look at other ecological processes.  Other important basin 

metrics include average slope and drainage density.  Average slope determines how 

quickly water flows down the watershed.  Drainage density is the length of all streams in 

a watershed divided by the total area of the watershed and has been positively correlated 

with increased rates of runoff and reducing local impacts from flash flooding, but could 

increase flood waters in downstream areas (Patton 1988, Youssef, Pradhan and Hassan 

2011). 

3.4.2. Wetlands 

In the hydrologic cycle, vegetation can slow the accumulation of runoff into downstream 

areas during moderate all events. While upland vegetation can reduce runoff efficiency 
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of surface flows, wetlands are important to consider as a distinct vegetation type due to 

their adjacency to stream networks and coastal areas which allows them to store and 

absorb large quantities of water that might otherwise flood into developed areas. 

This service, however, is influenced by many other variables.  For example, wetlands 

may play an important role in regulating flooding, but this may be dependent of the 

season, amount of precipitation, and available storage capacity of the wetland.   

Wetlands regulate flooding and potentially reduce flood loss by storing excess rainfall 

which may slow stream flow rates enough to allow for absorption into the ground and 

evapotranspiration to occur before the water reaches developed areas.  In a given 

watershed, the two locations where wetlands are most efficient at conducting this 

process is in the headwaters of the watershed, which can capture initial rainfall; and in 

floodplains, which can capture stream flows as they accumulate further down the 

watershed (Bullock and Acreman 2003). 

 

There is evidence to suggest that the type of wetland may not matter in determining how 

effective it is in regulating flooding.  Macreadie and colleagues (1982) found that 

increases in wetland area (regardless of type) resulted in in lower base flows and lower 

flood peaks.  However, location of the wetland and the storage capacity may be 

significant.  Burke (1969) that found drained peatlands reduced flooding to a greater 

extent than undrained peatlands.  Ogawa and Male (1986) sought to identify the level of 

flood reduction capability based on wetland size, number, and location upstream or 

downstream, and came up with conflicting results.  This irregular estimation of 

wetland’s ability to reduce flooding is due to the fact that wetlands in different locations 

may provide different levels of service (Mitsch and Gosselink 2007).   

 

3.4.3. Precipitation 

Precipitation is one of the most critical variables to consider when looking at flooding 

and flood damage because flooding cannot occur without precipitation that eventually 

turns into runoff.  Indeed, Pielke and Downton (2000) found that both precipitation 
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duration and depth are related to flood loss.  In Pielke and Downton (2000), ten different 

measurements of precipitation were compared to determine which ones best explained 

flood damage in the U.S.  It was found that rainfall duration far exceeded all other 

precipitation measurements in its ability to explain flood damage to different regions of 

the U.S. 

 

There are four elements of precipitation that are directly related to the hydrology of a 

basin; depth (quantity), duration (length of time that rainfall occurs), intensity (rate of 

quantity over duration), and the spatial distribution (in relation to the catchment) (Bras 

1990).  It is evident how each element is related to the different types of flood events 

mentioned above.  Large quantities of rainfall can overwhelm a channel, leading to 

overspill.  A long duration of rainfall can increase groundwater levels and fill ponds, 

contributing to water-table flooding.  Rainfall intensity can cause rainfall ponding, 

sheetwash flooding, failure of stormwater systems, or other flash flood events. 

 

Precipitation may result in flood damage due to the placement of property in flood prone 

areas, but it has also been shown to influence where urban patterns emerge.  

Parthasarathy and colleagues (1987) explain that flooding occurs in a given geography 

when the rainfall exceeds the climatic average rainfall for the area, which will influence 

social and economic patterns that result in the evolution of urban form that adjusts to 

these patterns. 

 

3.4.4. Soil 

Infiltration of rainfall into the ground can alleviate flooding until either the rainfall rate 

exceeds the absorption rate into the soil, or until the soil becomes saturated entirely from 

the surface level to the groundwater level.  Determinants of infiltration rates include soil 

texture and the level of moisture present prior to a rainfall event (Saxton and Shiau 

1990).  In addition to type of soil and moisture levels, infiltration rates can vary based on 

different rainfall, but this effect may be negated during heavy rainfall events 
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(Moldenhauer and Long 1964).  Absorption of rainfall is ultimately determined by the 

constancy of precipitation, infiltration capacity of the soil type, and depth of soil until 

water table is reached (Morel‐Seytoux 1978). 

 

3.4.5. Residential Property Age 

Residential property age is included to control for design standards that have evolved 

over time, including being built at higher elevations as well as improved materials that 

may reduce amount of building damage. Age of homes has been shown to be 

significantly related to flood damage, albeit in a non-liner fashion (Highfield, Peacock 

and Van Zandt 2010).   

 

3.4.6. Number of Insurance Policies  

Including the number of insurance policies in this analysis provides multiple benefits to 

the analysis.  The inclusion of the number of policies per watershed provides a control 

for the total amount of damage based on claims, where watersheds with more policies 

may have higher counts of claims than watersheds with lower number of policies.  Also, 

number of insurance policies was found to be highly correlated to number of residential 

properties in each watershed, so number of policies serves as a proxy and number of 

residential properties was not included to prevent multicollinearity issues. 
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3.5. Research Hypotheses 

1. Urban patterns that represent impervious surface are significantly related to flooding

and flood damage; specifically:

a. Increases in Percent Area of impervious surface will result in significant

increases in flood damage.

b. Increases in the Radius of Gyration of impervious surface will result in

significant increases in flood damage.

c. Increases in Patch Density of impervious surface will result in significant

increases in flood damage.

d. Increases in Shape complexity of impervious surface will result in

significant decreases in flood damage.

e. Increases in the Proximity value of impervious surface will result in

significant increases in flood damage.

f. Increases in Mean Patch Size of impervious surface will result in

significant increases in flood damage.

2. Urban patterns that represent the level of exposure of housing units to flooding

are significantly related to flood damage; specifically:

a. Increases in the average distance of housing units to hydrology will result

in significant decreases in flood damage.

b. Increases in the average elevation of housing units will result in

significant decreases in flood damage.
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4. RESEARCH METHODOLOGY 

 

4.1. Study Area 

The Texas Coast is an ideal study area for several reasons.  First, flooding is arguably a 

greater problem here than most other places due to the high amounts of monetary 

damage and lives lost on a regular basis (Ashley and Ashley 2008).  Additionally, this 

study area provides a great representation of both urban and rural watersheds; as well as 

variability in topography, soil type and average precipitation.   

 

The Texas Coast has a diversity of development levels ranging from highly urbanized 

areas within Harris and Galveston Counties, to sparsely populated areas like Kennedy 

and Kleberg Counties.  The entire study area can be classified as having a subtropical 

climate (Angelovic 1976), and due to its proximity to the Gulf of Mexico and Atlantic 

Ocean, is frequently impacted by atmospheric patterns that result in the formation of 

tropical storms and hurricanes.  These storms can bring large amounts of precipitation to 

flood-prone areas, and can exacerbate coastal flooding with heavy winds that contribute 

to storm surge (Smith and Ward 1998).   

 

Texas has vastly different average annual rainfall levels ranging from less than 22 inches 

per year at the southern part of the state, to over 54 inches per year at the eastern part of 

the Gulf Coast (Oregon State University, 2011).  Additionally, much of this precipitation 

comes from extreme events like tropical storms and hurricanes.  On average, a storm hits 

the Texas Coast every 1.5 years.   

 

The frequency and intensity of storms and rainfall events has caused Texas to 

consistently rank as the state with the highest number of flood fatalities annually and 

have the highest total number of flood fatalities from 1959 to 2005 (Ashley and Ashley, 

2008).  In terms of insured flood damage, Texas ranks second in the nation for the state 
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for both the largest number of closed NFIP claims and total NFIP payments (in dollars) 

between January 1978 to August 30 2012 (FEMA, 2013). 

 
Figure 10: Study Area with 12th Order Watersheds 

 

4.2. Sample Selection 

The units of analysis include 12th order watersheds (based on the USGS Hydrological 

Unit Code (HUC)) found within or connected to Texas’ 41 coastal watershed counties, 

as defined by the National Oceanic and Atmospheric Administration (NOAA) (Crossett 

et al. 2013), and exclude watersheds that are adjoining to Mexico or Louisiana.  Figure 

10 displays the 916 12th order watershed in the study area.  Several of the watersheds 

have no flood insurance policies, which means they cannot have flood insurance claims.  
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However, as flood insurance is required on homes located in designated flood zones with 

mortgages from federally insured lenders (FEMA, 2011).  The lack of policies indicates 

that there are either no homes in these watersheds, or there are homes that are owned 

outright.  These watersheds are included in the analysis because they are believed to still 

contain important information that should be considered in modelling.  In total, the 916 

watersheds over the ten year period result in a total of 9,160 observations. 

 

4.3. Concept Measurement 

4.3.1. Dependent Variable – Flood Damage 

The dependent variable, estimated damage to buildings with flood insurance, is from 

FEMA’s National Flood Insurance Program and contains parcel level residential 

property data for the study area from January 2000 to December 2009.  Data used for 

this study is limited to estimated damage to buildings (not contents).  This was used 

instead of the amount paid out in claims, which is limited to $250,000 for residential 

properties.  This data was aggregated yearly to the 12th order watershed level to generate 

the total amount of estimated building damage per year per watershed.  This variable 

was then log transformed to better approximate a normal distribution.  Table 2 presents 

an overview of average annual damage per watershed, as well as total annual damage for 

the study area.  For context, Figure 11 displays the number of claims per watershed for 

the entire study period. 
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Table 2: Descriptive Statistics for Total Flood Damage in Dollars by Year 

Year Mean 
Standard 

Deviation 
Max 

TOTAL BUILDING 

DAMAGE 

2000 $12,851.65 $113,148.30 $2,056,493.00 $5,595,477.00 

2001 $1,562,335.00 $8,038,872.00 $91,500,000.00 $689,000,000.00 

2002 $186,668.70 $1,101,373.00 $16,800,000.00 $83,500,000.00 

2003 $75,081.12 $492,986.00 $7,715,395.00 $37,700,000.00 

2004 $25,565.12 $111,698.60 $1,356,786.00 $13,100,000.00 

2005 $71,740.25 $627,951.50 $10,700,000.00 $37,300,000.00 

2006 $113,787.20 $766,109.60 $16,200,000.00 $60,900,000.00 

2007 $56,508.44 $476,556.80 $9,937,265.00 $29,500,000.00 

2008 $3,093,744.00 $27,800,000.00 $532,000,000.00 $1,590,000,000.00 

2009 $250,414.00 $2,621,618.00 $54,900,000.00 $125,000,000.00 
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Figure 11: Total Number of Claims for Study Area from 2000-2009 

 

4.3.2. Independent Variables – Land Cover Pattern Metrics 

The Coastal Change Analysis Program (CCAP)’s Land Cover Classification Scheme 

provides raster layer data for land cover types derived through remote sensing.  Land 

cover data is available for 1996, 2001, 2006, and 2011 and provides consistent land 

cover classification schemes over all four time periods that allows for comparison across 

time. 
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Land cover data was used in Fragstats version 4 (McGarigal, Cushman and Ene 2012) to 

derive land cover metrics for multiple land cover types.  Independent variables that 

represent different aspects of urban patterns utilized high, medium and low intensity 

development land covers.  High intensity development (HID) land cover includes areas 

covered by concrete, asphalt and other constructed materials that account for 80 to 100 

percent of the land cover.  Medium intensity development (MID) land cover includes 

landscapes covered by 50 to 79 percent constructed materials, and low intensity 

development (LID) land cover includes landscapes covered by 21-49 percent constructed 

materials.  Fragstats was also used to calculate metrics for other natural land cover types, 

and are described below in appropriate sections. 

 

Six landscape metrics were calculated to calculate different dimensions of urban pattern 

for the three different intensity development land cover types; percent area, mean patch 

area, mean gyrate, patch density, proximity and shape.  These 18 metrics were calculated 

for 1996, 2001, 2006 and 2011 for 916 landscapes using polygons representing 

watersheds at the twelve-digit Hydrologic Unit Code (HUC) from the National 

Hydrography Dataset (NHD).  Between years were imputed assuming a consistent 

annual change between years of available data. 

 

Percent Class Area 

Percent Class Area (Percent) creates a ratio of total area of a particular class type to the 

total area of the landscape.  Increases in impervious surface reduce infiltration and 

increase surface runoff, which can cause flood waters to accumulate more rapidly and 

increase flood peaks.  When controlling for flood exposure using other variables, 



 

55 

 

increased quantities of impervious surface are expected to increase flood magnitudes 

which will lead to increased flood damage.  Fragstats calculates Percent Class Area as: 

A

a
ssAreaPercentCla

n

j
ij∑

== 1  
Where i is the land cover type, j is the patch number, aij is the area of patch j for the ith 

land cover type, and A is the total landscape area (Leitão et al. 2006).  It is hypothesized 

that as percent urban area increases, flood damage will increase (H1a). 

 

Mean Gyrate 

Mean Gyrate (or Radius of Gyration) is a measure of how expansive or compact a patch 

is.  Fragstats can calculate the Mean Gyrate value, which is the average Gyrate value for 

all patches of a given class type.  When Gyrate measures impervious surface land cover, 

increases in Gyrate are expected to increase stormwater runoff.  Fragstats calculates 

Mean Gyrate as: 
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Where hijr is the distance in meters between cell ijr and the centroid of patch ij based on 

cell-center to cell-center distance, z is the number of cells in parch ij and n is the number 

of patches in the landscape (Leitão et al. 2006).  Mean Gyrate is measured in meters.  It 

is hypothesized that as Mean Gyrate increases, flood damage will increase (H1b). 
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Patch Density 

Patch Density is simply the number of patches of a particular class divided by the area of 

the landscape.  By itself, patch density of impervious surface land cover does not have 

any predicted relationship with flooding or flood damage.  However, when combined 

with Percent Area, it could provide clarification for how broken up impervious surface 

land cover is on a given landscape, which may indicate that there are pervious land 

covers in between impervious surface patches.  PN may distinguish the TIA from 

directly connected impervious area (DCIA) or effective impervious area (EIA), which 

have been shown to contribute to runoff more significantly than TIA.  If this is the case, 

then increased PN would indicate decreased DCIA and EIA and result in overall 

reductions to stormwater runoff (Lee and Heaney 2003). 

 

To further understand how “broken up” impervious surfaces are across a landscape, two 

other metrics may be used. Average Patch Size (APS) is the total area of all patches of a 

given class type, divided by the total number of patches of that class type.  Patch Density 

(PD) is the number of patches per unit area within a given landscape.  It is difficult to 

estimate how these metrics would interact with one another in an analysis, but each 

could be used to measure patches of impervious surface to determine whether they will 

behave more like TIA or like DCIA or EIA.  Fragstats calculates Patch Density as: 

 

A
PNtyPatchDensi =  

 

Where PN is the Patch Number, A is the landscape area (Leitão et al. 2006).  It is 

hypothesized that as Patch Density increases, flood damage will increase (H1c). 
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Mean Shape

Mean Shape is a standardized measure of how complex a patch is, or how much of its 

perimeter is adjacent to other land cover types relative to its size.  As patch shape 

becomes more complex, the amount of perimeter that is connected to pervious land 

covers increases, indicating that increasing shape would result in reductions to 

stormwater runoff.  Fragstats calculates Shape as: 

n

p
p

MeanSHAPE
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=

Where i is the patch type, j is the patch number, pij is the current perimeter of patch ij 

and min pij is the minimum perimeter of patch ij if all cells were perfectly clustered. 

Mean Shape is a unitless measurement (Leitão et al. 2006).  It is hypothesized that as 

Mean Shape increases, flood damage will decrease (H1d). 

Mean Proximity

Mean Proximity is a measurement that describes the size of patches within a landscape, 

as well as the distance of these patches from one another.  Typically, the metric is used 

to estimate patch isolation from a focal patch where larger patches closer to the focal 

patch would yield a higher value, and smaller patches further away from would yield a 

lower value (Leitão et al. 2006).  When Mean Proximity measures impervious surface 

land cover, increases would indicate that patches are “broken up” which would reduce 

stormwater runoff.  Fragstats calculates Mean Proximity as: 
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Where i is the patch type, j is the patch number, and hijs is the distance from patch ij to 

another patch ij within the landscape (Leitão et al. 2006).  Higher values of Mean 

Proximity indicate patches are closer together.  Mean Proximity is dimensionless.  It is 

hypothesized that as Mean Proximity increases, flood damage will increase (H1e). 

 

Mean Patch Size 

Mean Patch Size is the area of all patches summed for each watershed, and then divided 

by the number of patches.  Fragstats calculates Mean Patch Size as: 

n
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Where i is the patch type, j is the patch number, aij is the area of patch ij, ni is the number 

of patches in the landscape of patch type i.  Mean Patch Size is measured in square 

meters (Leitão et al. 2006).  It is hypothesized that as Mean Patch Size increases, flood 

damage will increase (H1f). 

 

4.3.3. Independent Variables – Land Use Exposure Metrics 

There are two spatial metric variables proposed that may estimate the level of property 

exposed to flooding at the watershed scale; average distance of residential property to 

flood features (AV_DIST) and average elevation of residential property (AV_ELEV).  

Block-level U.S. Census data were used to identify the number of housing units in a 

given block.  Using tools within Arc Toolbox, as well as hydrology and elevation data 

from the National Hydrography Dataset (NHD), the following metrics were calculated 

for each watershed. 
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Proximity of Residential Property to Hydrology 

Distance to flood features are calculated as: 

N
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== 1
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Where Pn is the number of residential properties at point n, Dnf is the distance between 

point Pn and the target flood feature.  The points within the landscape are numbered 

1,2,…,n,…,N.  This equation will be used to determine distance to multiple exposure 

factors, including distance to watershed mouth/shoreline, distance to stream, and 

distance to any water feature.  Increasing AV_DIST is expected to result in decreased 

exposure to flooding.  As AV_DIST increases, flood damage is expected to decrease. 

While most landscape metrics only utilize two-dimensional measurements, there is 

opportunity to expand the field into three dimensions as well as increasing the use of 

functional metrics that assign values based on other landscape features like elevation, 

soil, etc. that can better capture the different dimensions of watersheds (Blaschke and 

Strobl 2003, Ward 1989). Flood damage can also occur beyond simple distance from 

flood-prone features.  On a three-dimensional landscape, landscape metrics can also be 

calculated to estimate flood exposure of residential properties where properties at lower 

elevations are more exposed to flooding than properties at higher elevations.  Average 

distance of residential property to water is measured in meters.  It is hypothesized that as 

averaged distance of residential property to water increases, flood damage will decrease 

(H2a). 
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Elevation of Residential Property

Average Elevation of Property are calculated as: 

N

EP
ELEVAV

N

n
nn∑

== 1
*

_

Where Pn is the number of residential properties at point n that occupies the same space 

as En which is the elevation.  The points within the landscape are numbered 

1,2,…,n,…,N.  Increasing AV_ELEV results in decreased exposure to flooding.  It is 

hypothesized that as AV_ELEV increases, flood damage will decrease (H2b). 

For both AV_DIST and AV_ELEV, P was calculated for each census block by 

calculating the number of homes per unit area, clipping the census block polygons to 

within HUC 12 polygons, and then recalculating the number of homes based on the new 

are of the polygon.  This essentially only effected census blocks that bordered HUC 12 

boundaries; all census blocks completely contained within HUC 12 boundaries retained 

original number of properties.  Centroids of the new census block polygons were 

generated for the purpose of identifying n points.  For AV_DIST, distance from each 

centroid to water features from all water features in the NHD dataset (in meters) was 

calculated to populate Dnf.  For AV_ELEV, elevation (in feet) was calculated by 

overlaying census block centroid points on the digital elevation model data available in 

the NHD dataset and values were assigned to En. 

All urban pattern metrics were derived from datasets that only had data from specific 

years.  Land cover data was available for 1996, 2001, 2006 and 2011, and block-level 

housing data was available from the U.S. Census from 2000 and 2010.  Due to this 

limitation, between years data was imputed assuming a constant annual rate of change to 

each variable. 
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4.3.4. Control Variables  

There are several environmental variables that influence watershed hydrology and 

flooding.  The proposed environmental control variables all measure two basic aspects of 

watershed hydrology; how much water enters a watershed (precipitation), and where and 

how long it stays before leaving the watershed.  While there are several other ways that 

water can leave a watershed (evaporation, etc.), the proposed control variables primarily 

focus on absorption into soil and morphometric features that regulate movement of water 

downstream to the next watershed or to open ocean. 

 

Average Slope 

Average slope was calculated using digital elevation model (DEM) data from the 

National Hydrography Dataset and ArcGIS software to create a layer that represented 

the angle of slope in degrees.  This layer was aggregated at the watershed level to 

calculate the average slope in degrees.  Higher Average Slope values would result in 

runoff moving quicker down the watershed.  It is hypothesized that as average slope 

increases, flood damage will increase. 

 

Drainage Density 

Drainage density was calculated using polyline data and watershed boundary data from 

the National Hydrography Dataset and ArcGIS software to measure the total length of 

streams (in kilometers) as well as the watershed area (in square kilometers). Increases in 

Drainage Density are rates of runoff and reducing local impacts from flash flooding, but 

could increase flood waters in downstream areas.  It is hypothesized that as Drainage 

Density increases, flood damage will decrease. 

 

Soil Water Capacity 

Soil water capacity was calculated using data from the Natural Resources Conservation 

Service (NRCS)’s Digital General Soil Map of the United States (STATSGO2) and 

NRCS’s Soil Data Viewer.  Soil water capacity values were calculated for the different 
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soil types in each watershed and averaged based on the proportion of each soil type in a 

given watershed.  The resulting variable is the average available water capacity value in 

inches.  This value represents quantities of soil that can store water, which would 

represent areas that are more prone to flooding.  Increased soil storage capacity may 

indicate water being held within the landscape instead of infiltrating into groundwater or 

flowing downstream.  It is hypothesized that as AWC increases, flood damage will 

increase. 

 

Hydrologic Conductivity 

Hydrologic Conductivity was calculated using data from the Natural Resources 

Conservation Service (NRCS)’s Digital General Soil Map of the United States 

(STATSGO2) and NRCS’s Soil Data Viewer.  KSAT values were calculated for the 

different soil types in each watershed and averaged based on the proportion of each soil 

type in a given watershed.  The resulting variable is the average KSAT value in inches 

per second representing infiltration rate.  The slower water infiltrates into the soil, the 

more it has the potential to pool and cause flooding.  It is hypothesized that as KSAT 

increases, flood damage will decrease. 

 

Precipitation 

Precipitation was calculated using Oregon State University PRISM Climate Groups data 

that contained raster data at the 30 m resolution of annual rainfall amounts.  These 

values were averaged for each watershed to calculate the average annual rainfall in 

millimeters.  It is hypothesized that as precipitation increases, flood damage will 

increase. 
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Upland Vegetation 

Upland vegetation is an aggregated percent of land cover that is described by the CCAP 

Land Cover Classification scheme that includes Grassland and Forest land cover types 

that have vegetation that accounts for greater than 20 percent of the total vegetation 

coverage.  Vegetation types include Grassland/Herbaceous, Deciduous Forest, Evergreen 

Forest, and Mixed Forest.  These land cover types were aggregated and the percentage of 

these land covers consisted of the total area of each watershed was calculated.  It is 

hypothesized that as percent upland vegetation increases, flood damage will increase. 

 

Wetlands 

Wetlands, as described by the CCAP Land Cover Classification Scheme, includes 

multiple wetland types that account for at least 20 percent of the total vegetation 

coverage.  Wetland types include Palustrine Forested Wetland, Palustrine Scrub/Shrub 

Wetland, Palustrine Emergent Wetland, Estuarine Forested Wetland, Estuarine 

Scrub/Shrub Wetland, and Estuarine Emergent Wetland.  These land cover types were 

aggregated and the percentage of these land covers consisted of the total area of each 

watershed was calculated.  It is hypothesized that as percent wetland area increases, 

flood damage will increase. 

 

Average Age of Homes 

Average age of homes was calculated using the National Flood Insurance Program’s 

Policy Dataset.  Point level data were aggregated to the watershed scale to calculate 

average age homes covered by a flood insurance policy.  It is hypothesized that as 

Average Age of Homes increases, flood damage will increase. 

 

Number of Flood Insurance Policies 

Number of flood insurance policies was calculated using the National Flood Insurance 

Program’s Policy Dataset.  Point level data were aggregated to the watershed scale to 

calculate the total number of policies per watershed.  Watersheds with zero policies were 
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excluded from the regression analyses.  It is hypothesized that as Number of Flood 

Insurance Policies increases, flood damage will increase. 

 
4.4. Data Analysis 

Data analysis to test the relationship between urban patterns and flood damage in Texas 

coastal watersheds consisted primarily of the use of multivariate regression analyses, 

after analyzing the data statistically and visually (see Table 3 for summary statistics and 

Appendix 1 for Figures 20-59 which are maps showing change of urban patterns over 

study area).  Justification for analytic approach, model selection, and diagnostics is 

discussed in the next section, and is followed by identification of known threats to the 

interpretability and generalizability of this study. 

 

4.4.1. Statistical Analysis of the Relationship between Urban Patterns and Flood 

Damage 

Due to the availability of annual data throughout the study period, a cross-sectional time 

series regression analysis was chosen.  However, there were several potential issues that 

were addressed through model selection and regression diagnostics to determine whether 

basic regression assumptions were met and ensure models provide reliable results.  The 

following includes information on the model selection and diagnostic criteria. 
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Table 3: Summary Statistics for Independent Variables 

Variable Source Mean Std. Dev. Min Max 

Percent HID CCAP 1.213286 3.692091 0 29.9179 

Percent MID CCAP 3.016324 7.154743 0 45.4069 

Percent LID CCAP 3.65418 5.595132 0.00906 39.1009 

Gyrate HID CCAP 24.48826 18.5768 0 435.6562 

Gyrate MID CCAP 27.59226 9.038397 0 86.2631 

Gyrate LID CCAP 29.4085 8.126735 15.625 84.19839 

Proximity HID CCAP 11.08399 47.88308 0 542.1953 

Proximity MID CCAP 31.50651 103.8411 0 1265.247 

Proximity LID CCAP 27.99658 179.8943 0.0026 3417.354 

Shape HID CCAP 1.041675 0.360446 0 3.3722 

Shape MID CCAP 1.214418 0.144801 0 1.8586 

Shape LID CCAP 1.248642 0.101354 1 1.886 

Mean Patch Size HID CCAP 0.543888 0.634765 0 8.4724 

Mean Patch Size MID CCAP 0.632669 0.707017 0 5.5168 

Mean Patch Size LID CCAP 0.59052 0.590356 0.1133 6.5411 

Patch Density HID CCAP 1.090301 2.306753 0 14.91492 

Patch Density MID CCAP 2.369795 3.405064 0 19.07696 

Patch Density LID CCAP 5.206582 5.827601 0.04862 34.4842 

Average Elevation US Census 3489.521 3355.741 0 18906.49 

Av. Distance to Water US Census 414.2382 213.9089 0 1805.128 

Mean Slope NHD 0.550779 0.576391 0.033981 3.699681 

Drainage Density NHD 0.545188 0.235798 0 2.09515 

Soil Water Capacity USGS 0.266354 0.162393 0 1.266795 

KSAT USGS 9.114925 15.14483 0 229.3172 

Precipitation PRISM 1131.215 378.302 322.7832 2160.662 

Percent Upland Veg. CCAP 56.94348 24.637 .0103 98.2366 

Percent Wetland CCAP 14.06645 16.18545 0.0263 83.5503 

Age FEMA 24.66714 10.35409 0 108 

Total Number Policies FEMA 707.7175 2275.289 1 28757 
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Multicollinearity among Landscape Metrics  

Landscape metrics, like many ecological measurements, can be highly correlated due to 

different measurement of the same (or similar) construct being quantified (Leitão et al. 

2006, Smith et al. 2009).  Use of such variables in a single regression model can result in 

incorrect model parameterization and reduce statistical power of the overall model as 

well as otherwise significant predictor variables (Graham 2003).  While there are several 

options for addressing this issue, the simplest method that has been employed in the 

literature is to isolate collinear variables and analyze them in separate models (Brody et 

al. 2012a).  This method was employed in the current study to examine six different 

landscape metrics for three different land cover classes, resulting in 18 regression 

models. The two proposed urban pattern metrics that measured land use intensity and 

spatial location (not land cover) were in all 18 models, as they were not correlated with 

any of the urban land cover metrics.  Collinearity diagnostics on each of the 18 models 

found no multicollinearity issues present. 

 

Spatial Autocorrelation 

Spatial autocorrelation can occur when measurements of variables are taken for each 

unit and values are similar or otherwise related to nearby or adjacent units (Dale and 

Fortin 2014).  When observations are not independent spatially, regression assumptions 

are violated and can bias standard errors and reduce efficiency of estimated coefficients 

(Anselin 2007).  Shehata and Mickaiel (2012) developed a routine for use in Stata 

statistical software package (StataCorp 2011) to determine the presence of spatial 

autocorrelation in cross-sectional time series data.  Results indicated that there was 

spatial autocorrelation was not a concern (see Appendix 3).  Due to the computational 

intensity of running the program on the data, only one “example” regression analysis 

was used (percent area of High Intensity Development). 
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Serial Correlation 

Serial correlation in regression models that utilize cross sectional time series datasets can 

bias standard errors and cause overall results to be less efficient (Drukker 2003).  This is 

due to error terms of observations being dependent over time, which violates model 

assumptions (Wooldridge 2015).  Drukker (2003) developed a routine for use in Stata 

statistical software package version 11 (Statacorp 2011) to execute the Wooldridge 

(2002) test for serial correlation.  The test was run on all 18 models, and results indicated 

the models were absent of serial correlation. 

 

Cross-sectional Dependence 

Cross-sectional dependence is a third type of correlation issue that is similar to spatial 

autocorrelation, but more general in that it looks for correlations between observations in 

a given time period due to the presence of unobserved common factors, which may or 

may not be related to spatial dependence (De Hoyos and Sarafidis 2006).  The presence 

of cross-sectional dependence may also lead to biased standard errors (Driscoll and 

Kraay 1998).  For panel datasets, where the number of observations is larger than the 

number of time periods (N>t), three tests are proposed by Hoyos and Sarafidis (2006) 

who developed a statistical routine using Stata statistical software version 11 (StataCorp 

2011) to implement the Pearson’s (2004) test, Friedman’s (1937) test, and Frees’ (1995) 

test to determine the presence of cross-sectional dependence in time series models.  

Results from all three tests for the 18 models indicated that cross-sectional dependence 

was present in all models which led to the use of robust standard errors in the regression 

analyses. 

 

Heteroskedasticity 

Heteroskedasticity violates the assumption that there is constant variance in the error 

terms, and is doubly of concern in cross sectional time series models due to the potential 

for non-constant variance across observations, as well as within the same observation 

over time (Baltagi, Song and Kwon 2009).  Visual analysis and the Breusch-Pagan / 
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Cook-Weisberg test for heteroscedasticity available in the Stata version 11 (StataCorp 

2011) indicated that the error terms in all 18 regression models lack constant variance 

across observations, which further supported the use of robust standard errors in the final 

regression models. 

4.5. Validity Threats  

There are many threats to the validity of the results from the regression analyses 

presented in Section 5.  Most of these pertain to the nature of spatial data the use of 

existing and available datasets.  This section provides a brief overview of many of the 

known validity threats that can only be recognized and were not able to be addressed in 

the research design. 

4.5.1. Dependent Variable – Flood Damage 

While flooding can be quantified by height, volume, rate, and other measurements, flood 

damage can be calculated in terms of costs and is often quantified in terms of lives lost 

and damage to property.  These can include monetary and non-monetary damages and 

can be the result of both direct and indirect impacts (Smith and Ward 1998, Gall et al. 

2009). 

It is challenging to identify precisely how human occupancy of flood-prone areas is 

related to flood damage because methods quantifying flooding are not standardized.  

This is due to the fact that “flooding” can be measured and defined differently depending 

on context (Pielke 1999).  For example, flooding, flood risk, and flood damage have 

different meanings in different fields of study, and policy or decision-makers may use 

these terms differently than scientists.  Green, Tunstall, and Fordham (1991) examined 

groups of engineers, planners, citizens, and researchers to identify whether there was a 

significant difference in their perception of flood risk.  The authors concluded that there 

is a significant difference in the colloquial definition of terms among the groups, which 
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can be problematic when collaboration and transfer of information is required to identify 

flood problems and develop solutions.  

 

Flooding in terms of hydrologic response can be measured numerous ways; including 

flood volume and rate, frequency of events, efficiency of the watershed to move 

stormwater downstream, how quickly a hydrologic system can fill with water, and 

numerous other measurements.  In their review of the literature, Olden and Poff (2003) 

examined flood variables used in 20 different studies and found there were only four 

principal components of the 171 variables that accounted for 75% of the variability.  

This indicates that even though there are numerous different ways to measure flooding, 

there are only a few key measurements that effectively represent what exactly a flood is. 

 

Flood damage can be more difficult to define than flooding, as there are numerous ways 

flooding can impact human lives and property.  Monetary costs can include direct 

damage to property, and non-monetary costs may include how the health of individuals 

is impacted by a flood (both mental and physical health), as well as loss of non-monetary 

goods like memorabilia (Green and Penning-Roswell 1989).  Additionally, direct and 

indirect costs can be both economic and non-economic; indirect monetary costs could 

include the cost to evacuate a storm and stay at a hotel, to the loss of income from not 

being able to return to work after a storm (Gall et al. 2009).  Indirect non-monetary costs 

can include the long-term emotional impacts caused by the experience (Green and 

Penning-Roswell 1989). 

 

There are numerous issues with utilizing FEMA insured flood damage data that limits 

the results of the analysis.  For example, only insured homes are included which means 

that there are numerous other homes that may have been impacted by flooding whose 

property damage will not be included in the analysis.   

  



70 

There are also potential data quality issues with the FEMA data.  A study conducted by 

the Congressional Budget Office (2007) found that when looking at FEMA’s NFIP data, 

many of the addresses (41 percent) were unable to be matched to corresponding property 

value data.  The company that provided the property value data estimated that incorrect 

coding of the data could lead to up to a 50% matching failure rate (Congressional Budget 

Office 2007). 

4.5.2. Independent and Control Variables – Spatial Data 
There are threats to validity due to the use of spatial land cover data as well, and can be 

categorized as either data quality problems or unit selection problems.  Data quality 

problems include issues with the data before measurement takes place, like how the data 

is stored (vector vs. raster), the grain size of the data, or how the aerial imagery is 

converted into different class types.  Unit selection problems include how the researcher 

chooses to measure the landscape features/patterns, which are entirely dependent on how 

features within a landscape are aggregated or zoned, how the measurement of the 

landscape occurs within the geographic information system, and landscape scale choice.  

There are also concerns with spatial autocorrelation and inference of the data.  Another 

way to think of this is that data quality pertains to the reliability of the measures, the unit 

selection problems relate to the validity of the measures.  Reliability may only be noted 

as a limitation to this study as all of the data comes from pre-existing datasets. However, 

recognizing the validity issues can improve the measurement and the inference of the 

metrics.  When paired with statistical tests that assist with determining validity, 

knowledge of the processes that the metric is supposed to represent, as well as a firm 

understanding of how the variable is measured can guide decision-making on how to 

measure, as well as what scale should be used.   

While many of these are related to both the reliability and validity of landscape 

measures/geographic metrics, some are inherent in how the data is made available 
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publicly, and some are related to how the data are analyzed.  By understanding these 

issues, many of the validity issues can be addressed, even if the reliability ones can only 

be mentioned as limitations to the study. 

 

When measuring landscape metrics, grain (cell) size can have a significant effect.  In a 

study that looked at the same landscape with artificially increased grain size, it was 

found that some metrics (configurational) changed significantly, while others 

(compositional) did not have a major change (Wickham and Rhitters 1995).  Another 

study found there were three different categories of metrics that had either a predicted 

change as grain size changed, no change as grain size changed, or an unpredicted change 

as grain size changed (Wu, Shen, Sun and Tueller (2002). Based on the results of both 

studies, it seems it is extremely difficult to make any generalizations on how grain size 

has any consistent effect on metric measurement. 

 

Another issue with using existing datasets is the thematic resolution, which refers to the 

conversion process that occurs when an aerial image is converted into a raster dataset.  

Classes are determined by color interpretation, and based on the thematic resolution 

selected, an aerial photo may be classified into any number of classes.  This “spatial 

filtering” can have significant implications on landscape metrics.  Grain size may have a 

similar effect as changing the number of classes (Buyantuyev, Wu, and Gries 2010).  

NOAA CCAP provides documentation of this process and claims that data from 1996, 

2001, 2006 and 2011 have all undergone the same data conversion procedures which 

should provide consistency across the study period. 

 

Another threat to validity is the issue of the Modifiable Areal Unit Problem (MAUP).  

Statisticians have dealt with MAUP long before landscape ecology and quantitative 

geography emerged as their own fields.  Simply stated, the MAUP is error that may exist 

due to a choice of units of analysis that are selected.  MAUP poses a threat to the validity 

of the measurements taken, as they may not accurately represent the construct intended.  
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Jelinski and Wu (1996) and Dark and Bram (2007) both provide detailed reviews of the 

MAUP in the fields of landscape ecology and quantitative geography, respectively.   

 

There are some options to addressing the MAUP, including selecting appropriate units of 

analysis (Openshaw 1984, Hay et al. 2001), and conducting analyses at different spatial 

scales and comparing the results to determine an appropriate spatial scale (Jelinski and 

Wu 1996, Dark and Bram 2007).  Ecological analyses where hydrologic function is a 

primary factor may benefit from a watershed scale approach as this is a natural 

landscape unit that encloses many ecosystem functions as well as the fact that there are 

numerous methods existing in the literature to measure hydrologic functions of basins 

that may be used as control variables (Brody, Highfield and Thornton 2006, 

Montgomery, Grant and Sullivan 1995).   
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5. ANALYSIS OF URBAN PATTERNS IN TEXAS COASTAL WATERSHEDS 

 

5.1. Regression Analysis of Urban Patterns on Flood Damage 

Using the variables and model selection and diagnostics presented in the previous 

section, a total of 18 regression models were run to isolate the unique contribution to 

flood damage of each urban land cover metric.  The results can be classified into three 

different sets of models where six landscape metrics were calculated for high-intensity, 

medium-intensity and low-intensity development land cover types.  Average distance of 

residential property to water and average elevation of residential property were included 

in all eighteen models as they are not correlated with the 18 urban land cover metrics, 

and allow urban patterns that measure land use to be differentiated between land cover.  

Table 4 presents summary results of how each urban landscape metric behaved in its 

respective model.  For the purposes of explaining how the models support or reject the 

eight hypotheses in this dissertation, the first six that are related to urban land cover 

metrics are presented first, and the last two are discussed briefly along with control 

variables for each group of models.  This section concludes with a summary of all 

models and general trends identified. 
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Table 4: Significance of Land Cover Urban Patterns and Flood Damage 

Metric Type 

High Intensity 

Dev. 

Medium Intensity 

Dev. 

 Low Intensity 

Dev. 

Percent Area .2162*** .2192***  .3425*** 

Mean Patch Size .893*** 1.5846***  1.5936*** 

Mean Gyrate .0194* .06***  0.02237 

Mean Shape .8613*** 3.613***  3.867*** 

Mean Proximity 0.0016 .0044**  .0017* 

Patch Density .8019*** .6099***  .3184*** 

Notes: *** p<.01; **p<.05; * p<.1.  

Control variables not included in table.  

 

 

 

5.1.1. Overall Significance of Urban Patterns and Flood Damage  

All but two of the land cover urban pattern metrics were significant in their respective 

models and behaved consistently across low, medium and high intensity development 

land cover types, which contrasts with previous research that have used similar metrics 

to determine how urbanization is related to flood damage.  Additionally, all but one of 

the metrics behaved as hypothesized; indicating that the metrics are in-fact 

representative of the dimensions of urbanization that were presented in Section 3.  

However, one of the variables, mean patch shape, was statistically significant across all 

three land cover types and had the opposite relationship as hypothesized.  Initially, it was 

thought that increases in mean patch shape signified increased adjacency to natural land 

cover types which were thought to result in reduced flood damage, but it more likely 

represents the overall diffusion of urban patches across the landscape regardless to what 

is other nearby.   

 

There were two independent variables representing urban patterns that did not behave as 

hypothesized; Mean Shape and Average Distance of Residential Property to Water.  It is 

believed that Mean Shape was incorrectly conceptualized in Section 3, which led to an 

incorrect hypothesis on the relationship between the metric and flood damage.  While 
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increases in the value of Mean Shape may indeed represent greater adjacency to natural 

area (which could lead to decreased flood damage), it is believed that the metric by itself 

represents an overall diffusion of urbanization across the landscape which is why it is 

positively related to flood damage. 

 

The relationship between Average Distance of Residential Property to Water and flood 

damage was inconsistent among the 18 models, and was not always significant.  There is 

no doubt that distance to water must be related to flood damage, but due to the behavior 

of this metric across all models may indicate that the variable was measured 

inappropriately.  The water features that were used to measure distance included rivers, 

ocean, and lakes/ponds.  It may be that this was an incorrect method, as there may be 

many water features that despite their proximity to residential property, have no 

hydrologic connection. 

 

Two variables, Mean Gyrate and Mean Proximity, did not have statistically significant 

results across all three urban land cover types, indicating that these patterns may be 

ecologically significant for some types of urban land cover, but not others. 

 

In summary, the results of the 18 regression models support Hypotheses 1a, 1b, 1c, 1e 

and 1f.  When controlling for where residential properties are located relative to the 

hydrology of the watershed, the models show that regardless of urban land cover 

intensity, increases in Percent Area, Mean Gyrate, Mean Proximity, Mean Patch Size, 

Mean Shape, and Patch Density all result in increased flood damage. 

 

5.1.2. Urban Patterns and Flood Damage for High Intensity Development  

The first group of models include the six metrics as they measure High Intensity 

Development, which is characterized as developed area that is 80% - 100% impervious 
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surface.  All six models had Wald χ 2 values that indicated the models were significant, and 

explained between 39.9% and 43.5% of the variance in flood damage (see Table 5). 

 

Average Elevation of Residential Property had a negative and statistically significant 

relationship (p<.01) with flood damage in all six models, which supports the hypothesis 

that increased elevation of residential property results in reduced flood damage (H2a).  

Surprisingly, Average Distance of Residential Property to Water had a positive 

relationship that was statistically significant in five of the six models, meaning there was 

no evidence to support the hypothesis that increased distance from water results in 

reduced flood damage (H2b). 

  

Almost all control variables were statistically significant in the model, except for 

Drainage Density and Percent Wetland Area, which were not significant in the models 

that included Patch Density.  KSAT was not statistically significant in any of the models.  

In the models where Drainage Density was statistically significant, it did not behave as 

hypothesized and indicated that increased Drainage Density resulted in increased flood 

damage.  As the variable is used in hydrological studies, it represents the ability of a 

basin to shed runoff and take it downstream, which would reduce flooding adjacent to 

streams.  The unexpected relationship may be due to water being carried quickly 

downstream but results in flood damage in low-lying areas. 
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Table 5: Urban Patterns and Flood Damage for High Intensity Development Model Results 
  Model 1 Beta Model 2 Beta Model 3 Beta Model 4 Beta Model 5 Beta Model 6 Beta 
Average Elevation -0.0000788*** -.0000823*** -.0000897*** -0.0000843*** -.0000989*** -.0000517*** 
Average Distance to Water .0005462* .0006208** .0007767*** .0007887*** .0008109*** .0002778 
Drainage Density .7247746* .6905499** .8360754** .904937*** .8564902** .2937147 
Mean Slope -.6671163*** -.6224565*** -.6179397*** -.6634136*** -.6211789*** -.6441542*** 
Soil H20 Capacity 3.535359*** 3.939757*** 4.28765*** 4.274824*** 4.414332*** 2.510036*** 
KSAT .0076134 .0077067 .0068079 .0065081 .0063827 .0067394 
Precipitation .002191*** .002192*** .0022043*** .0022077*** .0022436*** .0021024*** 
Total Number Policies .0004682*** .0005692*** .0005956*** .0005878*** .0005956*** .0001994* 
Age of Homes .0292481*** .0279605*** .0286515*** .0267802*** .0315922*** .0270579*** 
Percent Upland Veg. -.0361313*** -.0412901*** -.0440906*** -.044343*** -.0438976*** -.0259978*** 
Percent Wetland -.0215532*** -.0296154*** -.0314814*** -.0329876*** -.0305543*** -.0094644 
Percent Area HID .2162***      
Mean Patch Size HID  .893***     
Mean Gyrate HID   .0194*    
Mean Shape HID    .8613***   
Mean Proximity HID     0.0016  
Patch Density HID      .8019*** 
Constant .6536493** .7127151* .6547115 0.320277 .8997368** .238305 
       
R-squared .4046 0.4087 .4054 0.4092 .3992 .4351 
Wald χ 2 948.69*** 1081.26*** 1054.65*** 1110.15*** 1033.33*** 1260.19*** 
Notes: *** p<.01; **p<.05; * p<.1.      
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5.1.3. Urban Patterns and Flood Damage for Medium Intensity Development  

The second group of models include the six metrics as they measure Medium Intensity 

Development, which is characterized by development that is 50% to 79% impervious 

surface cover.  All six models had Wald χ 2 values that indicated the models were 

significant, and explained between 40.2% and 46.2% of the variance in Flood Damage 

(see Table 6). 

 

As with the first group of models, Average Elevation of Residential Property had a 

negative and statistically significant relationship with flood damage in all six models, 

which provides additional support to Hypothesis 2a.   Average Distance of Residential 

Property to Water did not indicate consistent relationship across the metrics, as five of 

the six had a positive relationship, one had a negative relationship, and only three of the 

models were statistically significant at the p<.1 level. 

 

Also similar to the first set of models, almost all control variables were statistically 

significant except for KSAT which was again not significant in any of the models.  In 

this set of models, Drainage Density and Wetlands was not statistically significant in the 

Patch Density model, and Wetlands was also not significant in the Percent Medium 

Intensity Development model.  Drainage Density was again positively related to flood 

damage, opposite of how the variable was hypothesized. 
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Table 6: Urban Patterns and Flood Damage for Medium Intensity Development Model Results 
  Model 1 Beta Model 2 Beta Model 3 Beta Model 4 Beta Model 5 Beta Model 6 Beta 
Average Elevation -0.0000608*** -.000065*** -.0000836*** -.0000821*** -.0000917*** -.0000419*** 
Average Distance to Water .0003467 .0003742 .0006656** .0006639** .0006743** -.0000807 
Drainage Density .4523807 .6002163* .8451657** .7743822** .8213399** -.0172183 
Mean Slope -.6455901*** -.5872697*** -.5746023*** -.6013098*** -.6298708*** -.6339043*** 
Soil H20 Capacity 2.852825*** 3.653409*** 4.157429*** 4.180018*** 4.23124*** 1.976165*** 
KSAT .0078647 .008161 .0081684 .007609 .0067157 .0104676* 
Precipitation .0021531*** .0021878*** .0022071*** .0021983*** .0022502*** .0021001*** 
Total Number Policies .0002723** .0004234*** .0005682*** .0005651*** .0005146*** .0002744*** 
Age of Homes .0281402*** .028215*** .0278645*** .0267721*** .0308282*** .023648*** 
Percent Upland Veg. -.0286542*** -.0351929*** -.0403599*** -.039485*** -.0418575*** -.0161887*** 
Percent Wetland -.010485 -.0176036** -.0251492*** -.0251639*** -.0272552*** -.0015202 
Percent Area MID .2192***      
Mean Patch Size MID  1.5846***     
Mean Gyrate MID   .06***    
Mean Shape MID    3.613***   
Mean Proximity MID     .0044**  
Patch Density MID      .6099*** 
Constant .2637986 -.15991 -.7422311 -3.427797*** .7952579** -.5395698 
       
R-squared .4226 .4254 .4145 0.4147 .4018 .4619 
Wald χ 2 1102.62*** 1193.15*** 1129.19*** 1141.22*** 994.32*** 1822.16*** 
Notes: *** p<.01; **p<.05; * p<.1. 
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5.1.4. Urban Patterns and Flood Damage for Low Intensity Development 

The third and final set of models include the six metrics as they measure Low Intensity 

Development, which is characterized by development that is 21% to 49% impervious 

surface cover.  All six models had Wald χ 2 values that indicated the models were 

significant, and explained between 40.12% and 45.8% of the variance in Flood Damage 

(see Table 7). 

 

As with the first two groups of models, Average Elevation of Residential Property had a 

negative and statistically significant relationship with flood damage in all six models, 

meaning all 18 models provide support to Hypothesis 2a.   Similar to the second set of 

models, Average Distance of Residential Property to Water did not indicate consistent 

relationship across the metrics, and four of the models were statistically significant at the 

p<.1 level. 

 

Also similar to the first two sets of models, almost all control variables were statistically 

significant except for KSAT which was again not significant in any of the models.  

Again, the variables Drainage Density and Percent Wetland Area was not statistically 

significant in all models, including the Patch Density model. Only one of the models had 

the variable Drainage Density behave as hypothesized (Patch Density), and in that model 

the variable was not statistically significant.
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Table 7: Urban Patterns and Flood Damage for Low Intensity Development Model Results 
  Model 1 Beta Model 2 Beta Model 3 Beta Model 4 Beta Model 5 Beta Model 6 Beta 
Average Elevation -.0000469*** -.000075*** -.0000938*** -.0000873*** -.0000964*** -.0000473*** 
Average Distance to Water -.000028 .0004606* .000789*** .0006972** .0007377*** .0001563 
Drainage Density .1901577 .8136365** .9192363*** .9757701*** .8437059** .1627321 
Mean Slope -.6598262*** -.6368883*** -.6286834*** -.6704827*** -.6270867*** -.7352352*** 
Soil H20 Capacity 2.781968*** 4.406019*** 4.554562*** 4.486233*** 4.530876*** 2.309741** 
KSAT .0080028 .0092051 .0077469 .009609 .0067279 .0089517 
Precipitation .0019371*** .0020401*** .0021954*** .0021513*** .0022196*** .0021714*** 
Total Number Policies .0003082*** .0005793*** .0006099*** .0005973*** .0005949*** .0002657*** 
Age of Homes .0259469*** .0276317*** .031162*** .0292292*** .03727*** .0266217*** 
Percent Upland Veg. -.0233359*** -.0365318*** -.423377*** -.0387384*** -.0432955*** -.0225736*** 
Percent Wetland -.0146053** -.0337753*** -.0330439*** -.0343937*** -.0306811*** -.0055913 
Percent Area LID .3425***      
Mean Patch Size LID  1.5936***     
Mean Gyrate LID   0.02237    
Mean Shape LID    3.867***   
Mean Proximity LID     .0017*  
Patch Density LID      .3184*** 
Constant .0542098 .0569298 .1789061 -4.032054*** .8760479** -.6691641* 
       
R-squared .4582 .4228 .4012 .4078 .4020 .4503 
Wald χ 2 1326.37*** 1108.11*** 1035.68*** 1074.82*** 1030.28*** 1498.45*** 
Notes: *** p<.01; **p<.05; * p<.1.      
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5.2. Control Variables 

Almost all of the control variables behaved as hypothesized, and most were statistically 

significant across all models.  Basin metrics (mean slope and drainage density) behaved 

as hypothesized in all models. Mean slope was statistically significant in all models.  As 

mean slope increased (signifying increased runoff) flood damage decreased.  Drainage 

Density was statistically significant in 13 of the 18 models.  As drainage density 

increased (indicating a larger stream network relative to the watershed area), flood 

damage increased. 

Soil variables were not as effectives as expected in the regression models.  Although 

KSAT did behave as hypothesized, it was not statistically significant in any of the 

models.  In contrast, Soil AWC behaved as hypothesized, was statistically significant in 

all 18 models, and was by far the most influential variable in all the models.  

Precipitation also behaved as hypothesized, was statistically significant in all models, 

and indicated that increased in precipitation indeed result in increased in flood damage. 

Vegetation variables (percent Upland Vegetation and percent Wetlands) both behaved as 

hypothesized, indicating that increases in these types of vegetation result in reduced 

flood damage.  Percent upland vegetation was statistically significant in all models, and 

Percent wetlands was significant in 14 of the 18 models. 

Lastly, Age of Homes behaved as hypothesized and results from all 18 models indicated 

that older homes had more damage than newer homes.  Age of Homes was statistically 

significant in all 18 models. 

5.3. Urban Land Cover Pattern Examples from Houston 

The world’s population continues to grow especially in coastal areas.  If future 

development mimics existing population density trends, there will be three times as 

much urban area as there was in 2000 by 2030 (Seto, Güneralp and Hutyra 2012).  As of 
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2010, the Houston-Galveston region had 5.7 million residents, and is expected to 

increase to 9.8 million people by 2040 (Houston Galveston Area Council 2014).  In U.S. 

Census statistics show that in 2010 Houston had a population density of 3, 371.7 people 

per square mile, and ranked as the fourth largest incorporated place in the U.S., while 

ranking 171st in population density.  The growth experienced during the study period 

covered in this research provides an opportunity to look at urban land cover change.  

Although the study area stretches across the Texas coast, growth in Houston has been 

pronounced and provides context for the measurement and change of urban land cover 

metrics.  Four example watersheds are discussed, and data is provided in Tables 9 and 10 

on actual urban land cover metric measurements, as well, policy, demographic and flood 

damage data from 2001 and 2008, which were the two years in the study period that had 

the greatest amount of damage (see Table 2).  Although there were other flood events 

during these years, the majority of damage occurring in these two years is due to the 

impact of tropical storms/hurricanes; Tropical Storm Alison in 2001, and Hurricane Ike 

in 2008.  Due to the limited years of visual data, maps are provided for each of the 

watersheds from years 2001 and 2011.  The maps of 2011 are not representative of 

change from 2001 to 2008; they are being used due to a lack of visual data from 2008, 

and should only be used as a comparison to the 2001 maps to provide clarity on overall 

urban land cover change within each of the watersheds. 

 

It should also be noted that differences in flood damage are likely more related to the 

climatological differences between the two storms, and not differences in the urban 

pattern metrics.  The differences between Tropical Storm Allison and Hurricane Ike can 

be seen in the data from those years.  In 2001, the study area experienced $689 million in 

insured flood damage to residential properties, and had an average 1194.8mm in annual 

precipitation among the watersheds.  In contrast, 2008 experienced $1.59 billion in 

insured flood damage to residential properties, and watersheds had an average 790mm 

fall within their boundaries.  The primary difference between the two storms was that 

flooding due to Tropical Storm Allison in 2001 was largely precipitation-based, and 
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much of the flood damage from Hurricane Ike in 2008 was due to storm surge in 

watersheds adjacent to the coast.   

5.3.1. Upper Greens Bayou 
Upper Greens Bayou watershed is north of Houston, spanning the northern part of 

Beltway 8 and has part of the George W. Bush International Airport in its northern 

section.  The watershed experienced modest growth in urban land cover between 2001 

and 2008, with HID increasing from 12.83% to 14.92%, MID increasing from 16.16% to 

19.4% and LID increasing from 16.19% to 18.57%.  There were 21,674 homes in the 

watershed in 2001, and aproximately 4700 homes were added to the watershed by 2008.  

However, the number of NFIP flood policies decreased from 3472 to 1821, resulting in 

the number of policies per home dropping from .16 to .07.   

In 2001, Upper Greens Bayou had $36.2 million in damage, which was the second 

highest amount among the four watersheds and contains roughly 5.3% of the total 

damage for the study area that year.  There was 1787.7 mm of rainfall in the watershed 

that same year, about 593 mm more than the average across the study area.  In 2008, the 

watershed had $4.3 million in damage, only .2% of the total damage that occurred across 

the study area that year.  There was 1257 mm of rainfall in 2008, about 468 mm more 

than the average across the study area that year.  The amount of damage per home was 

$1,668.54 for 2001 and $163.38 per home in 2008. 

There are similar quantities of MID and LID in the Upper Greens Bayou watershed, with 

MID growing at a slightly higher rate from 2001 to 2008.  Despite the increases in area 

for these two land cover types, Mean Gyrate and Mean Shape stayed relatively the same.  

However, Mean Gyrate actually decreased for HID land cover, and at the same time 

Mean Shape for HID stayed fairly similar to previous measurement.  This is likely due to 

the addition of separate HID patches on the landscape, as exemplified by the increase of 

HID Patch Density from 6.08 to 8.2  At the same time, Patch Density for MID and LID 
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increased indicating additional patches were being created as opposed to existing patches 

getting larger.  The only change in Mean Proximity worth noting is that HID patches 

changed from 126.13 to 105.212, indicating that HID patches are located closer to one 

another in the 2008 landscape. 

 

Figure 12 presents the land cover for the watershed in 2001, and you can see changes in 

land cover in Figure 13 with visible changes highlighted in yellow circles.  There are 

four locations in the watershed where significant development occurs.  Of particular 

concern is the large circle at the easternmost part of the watershed which is where all 

water from the watershed flows towards as it exits the watershed mouth and enters the 

next downstream watershed.  As such, this area may be particularly prone to flooding as 

stormwater and runoff accumulates and potentially overspills or expands into the 

floodplain.  The other two lower circles in Figure 13 highlight other areas where large 

patches of vegetation have been replaced with various amounts of HID, MID and LID 

land cover.  The fourth circle in the upper-left part of the watershed point out where 

Other, Wetland, and Upland Vegetation land covers have been replaced with MID and 

LID development.  The Other land cover classification is actually various types of 

agricultural land covers that have been reclassified. 
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Figure 12: Upper Greens Bayou (North Houston) Land Cover in 2001 
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Figure 13: Upper Greens Bayou (North Houston) Land Cover in 2011 
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5.3.2. Country Club Bayou 

Country Club Bayou is located just south Downton Houston, and provides a good 

representation of a highly urbanized watershed.  Overall, the watershed experienced only 

slight changes to the amount of development contained within its boundaries, with HID 

increasing from 28.94% to 29.92%.  MID and LID both decreased, from 45.4% to 

45.07% and 15.85% to 15.65%, respectively.  These numbers provide a good 

comparison among the three different Urban Land Cover types, with HID having a 2:1 

ratio with LID, and MID having a 3:1 ratio with LID. Aproximately 12,500 additional 

homes were added to the watershed from 2001 to 2008, resulting in a total 124,328 

homes.  The number of policies per home increased during this time resulting an 

estimated number of homes covered growing from 9.52% to 10.17%. 

 

In 2001, Country Club Bayou had $79.9 million in insured residential property damage, 

was the watershed with the most losses among the four examples and accounted for 

approximately 11.6% of the total damage for the study area that year.  The watershed 

experienced 1850.7 mm of rainfall, about 655 mm more than the average for the study 

area, and observed approximately $714.25 of damage per home.  There was about $3.2 

million in flood damage to insured residential buildings in 2008, and the watershed 

experienced precipitation levels about 435 mm higher than the average for the study area 

that year. 

 

Similar to Percent Area, MID patches had higher values of Mean Patch Size, Mean 

Gyrate and Mean Shape than HID or LID patches.  This trend makes sense as larger 

patches will have greater distances from the center of the patch to the perimiter 

(expansiveness) as well as potential for greater patch complexity due to patch size 

increase while grain size of the patches stays the same.  Despite these differences, the 

changes from 2001 to 2008 were relatively modest for these variables.  There was 

significant changes to Mean Proximity, as MID patches decreased from 898.34 to 

858.78, and HID patches increased from 519.3 to 540.89.  This means that at the 



 

89 

 

landscape scale, MID patches across the landscape grew closer together, and the average 

distance among all HID patches grew further apart. 

 

Through visual analysis qualitative patterns emerge, and some of the quantifiable 

metrics are demonstrated.  Figure 14 presents the land cover for the watershed in 2001, 

and you can see changes in land cover in Figure 15 with visible changes highlighted in 

yellow circles.  Country Club Bayou provides an excellent representation of typical 

urban patterns in a heavily urbanized watreshed with HID land cover spiderwebbing 

across the landscape, both connecting other HID areas as well as cutting through larger 

MID land cover patches.  Within each of the MID patches, there are numerous smaller 

LID patches scattered about.  There is actually little land cover change in the watershed, 

except for the two areas circled in yellow in Figure 15 where there is evidence of 

converting upland vegetation to urban land cover.  In the larger vegetation patch in the 

southwest part of the watershed, the top right portion of that patch was converted to HID 

and MID area.  In the second smaller circle, there is MID and other developed open 

space replacing what once was another small patch of upland vegetation.  In the larger 

circle, there is also evidence of the removal of MID land cover that has been replaced by 

a large patch of developed open space. 
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Figure 14: Country Club Bayou (South Downtown Houston) Land Cover 2001 
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Figure 15: Country Club Bayou (South Downtown Houston) Land Cover 2011 
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5.3.3. Frontal Galveston Bay 

Frontal Galveston Bay watershed is located further south of Houston than Country Club 

Bayou, and spans a large part of the southernmost part of Beltway 8.  The watershed 

experienced fairly significant increases in development from 2001 to 2008, with HID 

nearly doubling from 2.7% to 4.48%, MID growing from 13.24% to 18.38%, and LID 

increasing from 12.93% to 16.54%.  During this same time, the number of homes 

increased by nearly 14,500; from 25,208 to 39,641.  Policies per home decreased, with 

an estimated 29.2% of homes having flood insurance policies in 2001 and 23.93% of 

homes having policies in 2008. 

 

During the year of Tropical Storm Allison the watershed had $30.5 million in flood 

damage to insured residential buildings, and 1962.8 mm of precipitation; aproximately 

768 mm more than the average for the study area.  Average damage per home in 2001 

was $1,210.48.  In 2008, residental buildings suffered 2.23 million in insured property 

damage caused by floods and 475 mm more precipitation than the average for the study 

area.  Average damage per home in 2008 was only $56.19.  

 

The changes in urban land cover metrics for Frontal Galveston Bay provide an example 

of how to determine whether growth is occurring due to existing patches growing larger 

or through the development of new patches.  Mean Gyrate values of HID, MID and LID 

all decrease, while Mean Proximity all increase, which at first provides evidence that 

existing patches of all three types are getting larger, and growing closer together.  

However, Mean Patch Size and Patch Density tell the other part of the story.  Mean 

Patch Size decreases from 2001 to 2008 for all three Urban Land Cover types, and Patch 

Density increases.  This is strong evidence that there are more patches per unit area for 

each of the urban land cover types, which is also reducing the average size of all urban 

patches across the landscape. 
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Figure 16 presents the land cover for the watershed in 2001.  There are four locations 

highlighted in Figure 17 that show how land cover is evolving in the Frontal Galveston 

Bay watershed.  The easternmost (smallest) and westernmost (largest) circles show 

where vast quantities of Other (agricultural) land cover have been converted to various 

amounts of HID, MID, LID and developed open space.  The topmost circle shows where 

previous developed open space has been converted to mostly MID and some areas of 

HID.  Development in the centermost circle is the result of converting Wetland and 

Upland Vegetation land covers to MID and LID land covers. 

 

 

 

 
Figure 16: Frontal Galveston Bay (South Houston) Land Cover 2001 



 

94 

 

 
Figure 17: Frontal Galveston Bay (South Houston) Land Cover 2011 
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5.3.4. Dickinson Bayou 

Dickinson Bayou watershed is located southeast of Houston, approximately halfway 

between Houston and Galveston Island.  Although it is adjacent to the westernmost 

shores of Galveston Bay, its hydrology actually drains southeast towards Texas City.  

The watershed had fairly significant increases in development from 2001 to 2008, with 

HID increasing from 1.19% to 2.13%, MID nearly doubling from 4.78% to 8.08%, and 

LID increasing from 10.28% to 12.84%.  The number of homes grew from 12,308 to 17, 

906.  The number of policies per home decreased, from .338 to .268. 

 

In 2001, there was about $21.2 million in flood damage to insured residential buildings 

in Dickinson Bayou.  The watershed had nearly twice as much rainfall as the average 

across the study area, with a total of 2025 mm.  There was an estimated $1,724.31 of 

damage per home that same year.  In 2008, there was over $69.47 million in flood 

damage to insured residential buildings, aproximately 4.4% of the total damage that 

year.  There was 1193.8 mm of rainfall in the watershed, about 404 mm above the 

average for the study area. 

 

Medium Intensity Development metrics had the most interesting changes between 2001 

and 2008.  The amount of MID area doubled, and due to MID Patch Density almost 

doubling from 5.56 to 9.08, it would seem that it was due to separate MID patches being 

developed.  However, Mean Patch Size increased, meaning that old and new MID 

patches were larger in 2008 than just the patches found in 2001.  Mean Proximity for 

MID patches increased, indicating that even though overall Patch Size was larger, the 

new patches were developed in other parts of the landscape away from existing MID 

patches. 

 

Figure 18 presents the land cover for the watershed in 2001. All yellow circles Figure 19 

point out areas that were once vegetation or agriculture that have been replaced mostly 

with MID or LID suburban developments.  The rightmost circle has what can visibly be 
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seen as a large-scale LID suburban development.  In the same circle, there is a small 

patch of HID land cover is a part of Clear Creek Independent School District’s 

Education Village, a 144 acre PK-12 facility that was developed in 2009 after the 

flooding that occurred in the watershed the previous year.   

 

 

 
Figure 18: Dickinson Bayou Land Cover 2001 
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Figure 19: Dickinson Bayou Land Cover 2011 
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5.3.5 Patterns across Watersheds and Time 

Comparison of the metrics from the four example watersheds across time allows us to 

make some generalizations about the evolution of urban form in cities with large urban 

footprints that are experiencing continued growth.  For reference, Table 8 presents 

Urban Land Cover metrics from all four watersheds for 2001 and 2008, with 2008 

numbers either being in blue or red indicating increases or decreases in the metric, 

respectively.  Generally speaking, Percent Area increased in all four watersheds, except 

in Country Club Bayou which is located in the center of the city and was already 

significantly developed.  As cities and regions grow, this increase in impervious surface 

is expected.  In many of the watersheds, especially where there is already lower levels of 

High Intensity Development, Medium and Low Intensity Development seem to be the 

preferred style of development. 

 

Mean Gyrate and Mean Shape decreased for nearly all Urban Land Cover types in all 

four watersheds from 2001 to 2008.  As a measure of how expansive and complex the 

patches are, these decreases initially indicates that patches are becoming more compact 

and uniform over time.  However, when you look at other metrics, specifically Mean 

Patch Size and Patch Density, another story is told.  Patch Density, which measures the 

number of patches divided by the area of the watershed, consistently increases in nearly 

all land cover types in all watersheds indicating that existing patches are not growing, 

but new patches are being added.  This can heavily influence metrics like Mean Gyrate 

and Mean Shape.  Mean Patch Size also suffers from this fate, as most of the metrics for 

each land cover type gets smaller due to new smaller patches being included in the 

analysis on the landscape. 
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Table 8: Urban Land Cover Metrics for Example Watersheds in Houston Area 

Name 

Urban 
Land 
Cover 
Type 

Percent Area Mean Gyrate Mean Shape Mean Proximity Mean Patch 
Size Patch Density 

2001 2008 2001 2008 2001 2008 2001 2008 2001 2008 2001 2008 

Country 
Club 

Bayou 

HID 28.940 29.917 34.819 34.821 1.120 1.251 519.295 540.888 2.142 2.218 13.511 13.489 
MID 45.407 45.073 40.095 39.779 1.448 1.443 898.341 858.782 4.028 3.819 11.272 11.802 
LID 15.849 15.651 28.145 27.897 1.276 1.272 13.775 13.523 0.556 0.546 28.512 28.677 

Upper 
Greens 
Bayou 

HID 12.828 14.921 44.738 40.822 1.308 1.278 126.134 105.212 2.110 1.806 6.080 8.271 
MID 16.162 19.397 36.503 36.210 1.380 1.381 45.118 44.406 1.020 1.032 15.853 18.795 
LID 16.185 18.574 31.717 31.078 1.324 1.315 23.653 24.073 0.772 0.740 20.967 25.081 

Frontal 
Galvest
on Bay 

HID 2.697 4.475 26.946 25.800 1.154 1.146 4.437 5.472 0.562 0.549 4.799 8.130 
MID 13.240 18.378 38.323 36.998 1.373 1.377 46.422 76.084 1.664 1.597 7.955 11.512 
LID 12.929 16.539 35.135 33.701 1.374 1.363 23.488 27.393 0.854 0.813 15.133 20.315 

Dickins
on 

Bayou 

HID 1.193 2.133 27.727 25.681 1.185 1.167 4.550 4.059 0.530 0.461 2.252 4.602 
MID 4.775 8.083 35.265 34.569 1.381 1.375 11.150 17.726 0.858 0.888 5.564 9.083 
LID 10.282 12.840 32.823 31.812 1.342 1.340 47.964 40.961 0.849 0.758 12.116 16.922 
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One of the most significant patterns that emerge from examining the four example 

watersheds is the relationship between precipitation and damage.  Three of the 

watersheds (Country Club Bayou, Upper Greens Bayou and Frontal Galveston Bay) are 

all located relatively inland, and flood damage can be seen to increase with annual 

precipitation.  However, in Dickinson Bayou watershed in 2001, the watershed had the 

most amount of precipitation out of the four watersheds, and resulted in the smallest 

amount of damage that year.  Also, in 2008 Dickinson Bayou had the least amount of 

precipitation that year, but resulted in over 15 times as much damage as any of the other 

example watersheds.  This exemplifies how precipitation can play an important role in 

flood regimes in inland watersheds, but watersheds adjacent to the coast have additional 

variables to consider when linking urban patterns to flood damage.  
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6. DISCUSSION

6.1. Discussion of Regression Analysis 

The results from the 18 regression models provide a great deal of opportunity to discuss 

several topics.  This section will go into further detail about how each of the six urban 

land cover metrics and two urban land use metrics behaved, and how this may be 

interpreted for real-world application.  A brief discussion then occurs about the results 

from many of the control variables.  This section concludes with a discussion of how the 

results could be incorporated into planning and policy decision-making, as well as their 

application in education and outreach activities focused on increasing environmental 

literacy and systems thinking. 

6.1.1. Interpretation of Percent Urban Land Cover 

Many of the landscape metrics are unitless and dimensionless, which means that 

understanding their relationship to flood damage is limited to only the directionality and 

significance of their regression coefficients.  However, the overall composition of urban 

land cover across the watershed, measured by the percentage of area covered by a given 

land cover type, does allow for marginal effects to be estimated.  While controlling for 

exposure of property to flooding, a one percent increase in high intensity development 

results in a 24.14% increase in residential property damage.  One percent increase in 

medium intensity developed area results in a 24.5% increase residential property 

damage.  Finally, a one percent increase in area of low intensity development results in a 

40.85% increase residential property damage.   

These effects indicate that despite controlling for placement of property in flood-prone 

areas, increases in impervious surface still contribute to increases in flood damage.  

However, it is important to point out that as land cover type increases in imperviousness, 

(low intensity development to high intensity development), there is an increased 

marginal effect on flood damage.  One percent of High Intensity Development results in 
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a much lower increase in flood damage as does a one-percent increase in Low Intensity 

Development.  From a practical standpoint, this is an important finding.  High and 

Medium Intensity Development typifies a more efficient urban design, where homes are 

located in closer proximity and can reduce costs related to municipal services, as well as 

reduce potential flood impacts on a greater number of homes by placing these structures 

in ecologically-sound places relative to a watershed’s hydrology. 

6.1.2. Interpretation of Mean Patch Size 
Where Percent Area measures the overall quantity of urban land cover, Mean Patch Size 

looks at the average size of urban land cover across the watershed.  While marginal 

effects are not easily inferred from the models, there are general trends that have 

important implications.  Increases in Mean Patch Size for Low, Medium and High 

Intensity Development all resulted in increases in flood damage.  However, the 

coefficients for Medium Intensity Development and Low Intensity Development were 

almost twice the amount as the High Intensity Development, indicating that increases in 

size for Medium and Low Intensity Development patches increase flood damage much 

greater than increases in Mean Patch Size for High Intensity Development.  Similar to 

Percent Area, the coefficients for Mean Patch Size across the three levels of impervious 

surface suggest that when considering how urban areas grow, that more efficient urban 

design may be the best option when trying to reduce flood damage for communities. 

6.1.3. Interpretation of Mean Gyration 
Mean Patch Gyration is an average of how expansive or compact urban land cover 

patches are in each watershed.  Although the unit is dimensionless, comparing the 

coefficients across the three different urban land cover types again provides clarity on 

how the configuration of urban land cover can influence flood damage.  The coefficient 

for Mean Gyrate of Medium Intensity Development patches is three times as much as 

the coefficient for Mean Gyrate of High Intensity Development patches, indicating that 

increases the areas that typify this type of land cover (i.e. suburbs) increase flood 
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damage to a greater degree than increases in a more compact design pattern.  Mean 

Patch Gyration of Low Intensity Development land cover was not significant. 

6.1.4. Interpretation of Mean Shape 
Mean Patch Shape is conceptually similar to Mean Patch Gyration, but in its calculation 

it measures adjacency to other patch types.  It was incorrectly hypothesized that 

increases in Mean Patch Shape of urban land cover would result in decreases in flood 

damage because as Mean Patch Shape increases, it indicates that the patch shares a 

longer amount of perimeter with other land cover types.  There are two possibilities for 

why the variables did not behave as hypothesized.  First, Mean Patch Shape like Mean 

Patch Gyration measures expansiveness, but does so by calculating cell perimeters that 

are adjacent to non-similar land covers instead of averaged distance to the center of the 

patch.  So utilizing Mean Patch Shape without controlling for Mean Patch Gyration may 

have resulted in the metric behaving how Gyrate was predicted to.  Another possibility is 

that, especially for High Intensity Development, the non-similar land cover that it was 

adjacent to was not open space, but instead other levels of development (Medium or 

Low) which would mean increases in Mean Patch Shape would not lead to decreases in 

flood damage due to adjacency to open space. 

All three coefficients for Mean Patch Shape were positive and significantly related to 

flood damage.  However, the coefficients for Medium and Low Intensity Development 

were about four times as large as the coefficient for High Intensity Development.  This 

was not similar to the results from Mean Patch Gyration, indicating that Mean Patch 

Shape was measuring something else beyond how expansive the patch was.  The 

coefficients further support the use of compact, efficient design to minimize the potential 

for flood damage. 
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6.1.5. Interpretation of Mean Proximity 
Mean Proximity of urban land cover patches indicates how far apart all patches of a 

given land cover type are to one another within the specified landscape.  It is another 

dimensionless metric and so its interpretation is also limited.  Mean Proximity was only 

significant when measuring Medium and Low Intensity Development, indicating that the 

measure may not be important when looking at how distance between patches of High 

Intensity Development can influence flood damage.  A potential reason for this could be 

that High Intensity Development patches seldom occur near one another, because instead 

they are connected as a single patch.  This is in contrast to patches of Medium and Low 

Intensity Development, which represents suburban and rural areas that are typically 

associated with leapfrogging and disjointed, unplanned development (Brody, Kim and 

Gunn, 2012).    

6.1.6. Interpretation of Patch Density 
Patch Density is a ratio of the number of patches to the area within a landscape.  In 

contrast to Mean Patch Size, Patch Density measures nothing about the size of individual 

patches, but instead represents the overall patchiness of a landscape.  Patch Density of 

urban land cover was positively related to flood damage and significant in all models, 

and the coefficients suggest that patches of increased imperviousness have increased 

effects.  This seems in contrast to the other variables that indicate compact urban form 

may not increase flood damage as much as suburban or rural types of development.  By 

itself, there is limited ability to interpret why the models behaved this way.  Combining 

it with other metrics like Percent Area or Mean Patch Size might have provided greater 

insight into how it is related to flood damage when measuring urban land cover, and 

future research designs should attempt to look at such relationships while avoiding 

issues with multicollinearity. 
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6.1.7. Interpretation of Urban Land Use Metrics 
Inclusion of urban pattern metrics that quantify land use provided a control that allowed 

urban land cover metrics to perform consistently across different levels of land cover.  

Average Elevation of Residential Properties was negatively related to flood damage and 

significant in all models.  The use of such a metric does not necessarily provide new 

insights into how flood damage occurs; it is already well-documented that properties at 

lower elevations are more susceptible to flood damage than properties at higher 

elevations.  However, the inclusion of such a variable does allow for a better conceptual 

understanding of how urbanization is related to flood damage.  In contrast to previous 

research that found increases in High Intensity Development resulted in reduced flood 

damage and increases in Low Intensity Development resulted in increased flood damage 

(Brody et al. 2011), the inclusion of a separate urban land use variable allowed analyses 

to distinguish between effects from urban land cover (imperviousness) and urban land 

use (location of property relative to the watershed). 

Unfortunately, Average Distance of Residential Property to Water did not behave as 

expected.  It had varying relationships to flood damage across the 18 models, and some 

were significant and some weren’t.  This may be due to incorrect measurement, where 

distance was determined to the closest water feature, regardless of type.  This means that 

if there was a large pond or any other water feature in the National Hydrography 

Dataset, distance to this feature is given the same importance as distance to a river or the 

open ocean.  Examples of this would be proximity to stormwater detention basins and 

artificial drainage channels, which may explain why increased distance from these 

features resulted in increases in flood damage.  Proximity to such features may actually 

be reducing damage due to stormwater management measures. 

Potentially related and similarly curious is that Drainage Density, which indicates the 

overall ability of the watershed to carry runoff downstream, was also incorrectly 

hypothesized.  Increased Drainage Density was found to result in increases in flood 
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damage in many of the models, which runs counter to the literature.  There could 

perhaps be some relationship between the two variables that is not visible through 

statistical diagnostics, or it could be that efforts should have been made to distinguish 

artificial versus natural water features from NHD dataset was used to measure both 

variables. Future research could measure distance to specific water feature types to 

determine why this occurred and would also provide additional land use metrics for 

representing urban patterns at the watershed scale. 

6.1.8. Missing Relationships among Independent Variables 
While there was much success with the inclusion of urban land use variables to better 

demonstrate the relationship between urban land cover patterns and flood damage, due to 

statistical limitations, the analysis was conducted as a separate 18 regression models and 

therefore failed to identify if and how urban land cover metrics might have interacted 

with one another.  The issue of multicollinearity is already an identified problem in 

statistical analysis of landscape metrics (Graham 2003), but statistical options for 

allowing several of these variables to be included in the same model would have made 

interpretation of each of the models even more difficult.  Now that there is a better 

understanding of how these metrics are related to flood damage, key metrics should be 

selected and included in statistical modeling efforts that attempt to explain interactions.  

A prime example of this is the Percent Area urban land cover variable which has been 

identified as the foundation for which other metrics should be related to due to it being a 

compositional metric that allows for a better interpretation of metrics that measure land 

cover configuration. 

Where land cover metrics of a particular type (High, Medium or Low Intensity 

Development) may interact with one another, the analysis selected for this dissertation 

also fails to account for the interactions across levels of impervious surface.  Looking at 

descriptive statistics of the variables and maps displaying change of different urban land 

cover metrics over the study period, there is evidence of some sort of an urban evolution 
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where Low Intensity Development evolves into Medium Intensity Development, 

Medium Intensity Development evolves into High Intensity Development, and High 

Intensity Development can only grow larger.  This process deserves further analysis as 

how these transitions occur is also important in understanding how urban patterns are 

related to flood damage. 

6.1.9. Interpretation of Control Variables 

There were a number of variables that performed as hypothesized that are worth noting 

as they should be considered when using watershed-scale planning and management.  

This section is divided into metrics that can be classified as basin metrics and 

precipitation, and other land cover metrics that represent vegetation. 

Basin Characteristics and Precipitation 
Drainage density, which is the ratio of length of streams to the watershed area, describes 

the extent of the stream network over the watershed and has been shown to increase 

flooding (Giannoni et al. 2003, Hollis 1975).  While drainage density is used in models 

to estimate flood risk (Youssef et al. 2011), this study is unique as it identifies drainage 

density as also being positively related to observed flood damages.  Mean slope also 

behaved as hypothesized, and similar to drainage density, it has a rich history in the 

literature as being negatively related to flooding and is used frequently in hydrologic 

modeling (Carpenter et al. 1999).  Its use in this study provide additional support for 

analyzing flood damage at the watershed scale while utilizing multiple basin metrics. 

Precipitation was positively related to flood damage and statistically significant in all 

models.  While this may seem to be obvious, there are flooding and flood damage 

studies that have found it difficult to utilize total annual precipitation as a control for 

rainfall and instead utilize other methods like counts of number of months average 

rainfall for the study area was exceeded (Brody et al. 2011a, see Pielke and Downton 

2000 for a review of several different methods for measuring precipitation).   
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Vegetation and Wetlands 
The use of other land cover variables like upland and wetland vegetation in the analyses 

provide additional evidence of the benefits of utilizing social, economic and 

environmental variables in landscape analysis of socio-ecological systems.  This author 

has found in previous research that wetlands significantly reduce flood damage (Brody 

et al. 2012a), and has expanded such models to demonstrate how upland vegetation can 

also play a role in reducing flood damage.  Amount of upland vegetative land cover may 

represent how as a land cover it influences hydrology related to flooding, or it might 

represent patterns of land use where increases in amount of vegetation may signify 

reduced urbanization of the overall watershed.   

6.2. Implications of Example Watersheds from Houston Area 
One of the reasons that watersheds around the Houston area were selected was to 

examine changes in urban patterns in an area that is known for its low population density 

and would assumingly have patterns that typified this type of development.  From a 

metric standpoint, Patch Density combined with Percent Area are probably the two 

metrics that can best be utilized as early predictors for landscape-scale sprawl.  In the 

four examples, all but one of the urban land cover classes experienced increases in Patch 

Density, and with Percent Area also increasing for almost every urban land cover type, 

indicates that while there is growth, it is not occurring adjacently to existing urban land 

cover. 

Another important finding is the metrics from the highly urbanized watershed of 

Country Club Bayou.  The ratio of 2:3:1 regarding HID, MID and LID land cover is a 

good baseline for comparing existing or future growth scenarios in different areas.  If 

you want a watershed like one in downtown Houston, then these ratios can be the target.  

If you want a different type of watershed, then you might consider different ratios of 

urban land cover types. 
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The difference between flooding from precipitation and flooding from storm surge, and 

the implications for resulting flood damage is exemplified between the three Houston 

watersheds and the Dickinson Bayou watershed located closer to the coast.  Some of the 

urban land cover patterns in the Dickinson Bayou watershed resulted in lower flood 

damages due to precipitation, but did not help reduce damage from storm surge.  This is 

important to consider when developing watersheds as there may not be one single 

preferred landscape urbanization method to adopt when trying to reduce flood damage. 

6.3. Application of Findings 

Both the findings of this research as well as the methods utilized to measure different 

components of urbanization may be applied to real-world activities.  These include 

changes to state and federal policy, local-level land use decision-making, and 

educational efforts that increase understanding of social, ecological, and economic 

phenomenon so people can make more-informed decisions. 

6.2.1. Policy and Planning 

One of the clearest ways the results from this study could be applied to policies is 

through the FEMA’s NFIP.  As mentioned in Section 3.4, while flood insurance policies 

and claims come from individuals, ability to participate occurs at the community level.  

In 1990, FEMA developed the Community Rating System (CRS), which provides 

insurance discounts of up to 45% as incentives to residents of communities that conduct 

additional flood risk reduction activities (Brody et al. 2011b). Existing flood risk 

reduction measures in CRS include preserving open space in the floodplain, maintaining 

drainage systems, and either relocating or modifying existing flood-prone structures to 

reduce their exposure to future flood events.  The results of this study both support 

existing design standards but could also inform additional ones that address overall 

configuration of urban area within a watershed.  This is especially relevant in Texas as 

many localities are limited in their ability to effectively plan from a regulatory 
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standpoint (Brody et al. 2012a), and the CRS program may provide the impetus for 

creative solutions at the community level to overcome these obstacles. 

 

There are three main findings from this research that could guide CRS design standards.  

First, increases in impervious surface result in increases in flooding, so attempts should 

be made to minimize the ratio of impervious area to watershed area.  Such a standard 

would not only reduce flood damage, but could improve water quality and ecosystem 

health which have been found to be negatively correlated to increases in impervious 

surface (Schueler, Kumble and Heraty 1992).  In many areas where there is already high 

levels of imperviousness or demand for urbanization, a separate set of standards may be 

appropriate.  As indicated in this study, increases in flood damage are smaller from a 

percent increase in high intensity development than a percent increase in low intensity 

development, so such watersheds identified as urban should limit low intensity 

development, while ensuring adequate development and maintenance of artificial 

drainage systems.  Additionally, limiting hydrologic connectivity of landscape patches in 

such watersheds has the potential to protect water quality and minimize flooding as well 

(Jackson and Pringle 2010).  

 

Another design standard supported by this research is placing development in areas of 

higher relative elevation within the watershed.  While erroneous measurement prevented 

distance to water from being negatively correlated to flood damage, development in 

higher parts of the watershed will frequently result in development away from 

hydrologic features.  Burton, Kates and Snead (1969) provide a sensible framework for 

determining where to construct property that is adapted here to address flood risk 

reduction of all property within a watershed.  Three categories of development include 

water-based, water-oriented and footloose; where water-based development requires 

direct connection to water or the floodplain, water-oriented development requires 

proximity to water or the floodplain which may in order to provide an economic or other 

benefit, and footloose development that is coincidentally located near water or the 
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floodplain but provides no benefit, and perhaps even results in an increased cost of some 

sort.  Businesses located on or near water may have an economic reason to do so, and 

arguably residences located on or near water may be justified by improving quality of 

life.  However, there is much development that occurs at lower elevations either in or 

near the floodplain that is “footloose” and only located there because the flood-prone 

land is less expensive than land in other locations.  Zoning in flood-prone areas could be 

adopted that takes the residence or business intent into consideration.  

 

The third recommended design standard is related to the existing standard of protecting 

open space.  Specifically, this research demonstrated the importance of preserving 

natural space in key hydrological areas.  A one-percent increase in upland vegetation or 

wetlands reduced flood damage anywhere from 2-6% in the models, and preserving such 

areas protects normal hydrologic function and preserving wetlands especially ensures 

development does not occur in low-lying flood-prone areas.  A prime example of this 

occurring was in Figure 12 and 13 in Upper Greens Bayou where a large amount of 

upland vegetation located on the east side of the watershed near its outlet was converted 

to Medium and Low Intensity Development. 

 

Outside of CRS activities, local planning at the watershed scale may provide assistance 

land use decision-making due to the nature of watershed planning being inherently 

community-driven that requires interjurisdictional coordination and input from diverse 

stakeholders and interests groups.  While this may make for a more complicated process, 

it does provide an opportunity for science-based decision-making through learning and 

consensus-building activities.  Watershed-based planning may also overcome some of 

the regulatory obstacles found in Texas, where watershed planning is seemingly being 

embraced there are numerous watershed protection plans being implemented or 

developed, with 28 watershed protection plans being sponsored by  Texas State 

agencies, and 12 plans being sponsored by third-parties (Texas State Soil and Water 

Conservation Board 2016).  
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The above strategies for adopting landscape designs that result in reduced flood damage 

(and other ecological benefits) should be pursued, but there is a larger policy issue that 

also needs to be addressed.  There are underlying policies at different levels of 

government that are indirectly responsible for the existing urban patterns present in 

coastal watersheds (Burby 1998).  Federally-subsidized flood insurance and disaster 

relief may provide financial relief from the impacts of floods, but it also subsidizes risk 

which prevents more appropriate (less exposed) urban patterns from emerging should 

those incentives not be in place.  At the local level, a greater focus is placed on economic 

development rather than infrequent flooding events that may only impact isolated 

pockets of the community.  This results in businesses and homes being developed in 

low-value, flood-prone areas, betting immediate economic gains against unforeseen 

future economic losses.   

 

One solution that addresses both issues is presented by Burby (2006) is to provide flood 

insurance at the community level, which would then cause municipal and state 

governments to pick up a portion of the flood damage costs.  This would then incentivize 

municipal and state governments to adopt hazard mitigation strategies.  Another option 

would be to require everyone to obtain flood damage.  When paired with basing 

premiums on the risk of flooding within a given watershed, such a policy would result in 

communities sharing risk locally and may increase community participation in local 

planning efforts.  Examples of such potential costs can be seen in Table 9 in Appendix 2 

with the amount of damage per home in the four example watersheds.   

 

There are other crude solutions that range from a pure market perspective (abolishing 

subsidized flood insurance and financial relief) to a strong state perspective (outlawing 

development in flood-prone areas completely) that are not feasible due to the economic 

and social justice issues that plague them.  Providing education and increasing awareness 

are of flooding and strategies for reducing impacts is another potential solution.  While 

there is incredible debate on the effectiveness of such strategies and strong arguments 
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why limits to human rationality prohibits knowledge gain from resulting in action, it is 

still a commonly employed strategy for attempting to reduce flood impacts. 

 

6.2.2. Education 

The watershed scale planning approach, as well as the use of metrics that are correlated 

to complex socio-ecological processes can be used to increase literacy and foster 

informed decision-making by community members who engage in participatory 

planning activities.  Urban pattern metrics, like landscape and other spatial metrics, have 

the potential for conveying complex socio-ecological processes that can then be utilized 

in participatory planning activities (Leitão et al. 2006).  While the metrics utilized in this 

study need to undergo additional validation tests, they do have the potential to convey 

concepts to a non-technical audience who nevertheless need such information to support 

science-based decision-making.  In combination with case studies that describe the 

effectiveness of low-impact development and other best management practices, such 

metrics could make the science easier to understand how to plan in ways that reduce 

flood damage and achieve other planning objectives. 

 

Using such metrics to explain and represent complex socio-ecological processes does not 

need to occur only within a planning framework.  There is opportunity to utilize such 

metrics in existing formal and informal watershed education activities that are already 

being conducted by formal educators in the classroom environment, as well as by 

informal educators who work for state agencies and non-profit organizations across the 

U.S.  While many of these trainings discuss anthropogenic influences on water quality, 

utilizing such metrics to explain other economic and social impacts should be just as 

important.  Geographic Information Systems are being increasingly used in such efforts 

(Ramasubramanian 2010, Lo, Affolter and Reeves 2002), and there is incredible 

opportunity to include the principles of holistic landscape ecology that seek to 

acknowledge humans as key players in both the causes and consequences regarding 

landscape transformation.    
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7. CONCLUSIONS

7.1. Research Summary 

This research has confirmed that urban patterns are significantly related to flood damage 

in Texas coastal watersheds.  Further, it confirms that metrics that represent patterns of 

impervious surface are consistent regardless of low, medium or high intensity 

development when urban patterns that represent flood exposure are included in the 

analysis.  These results are based on a ten year period of rapid development across the 

study area. 

Seven of the eight research hypotheses were confirmed utilizing cross sectional time 

series regression models that looked at six distinct landscape metrics hypothesized to 

represent land cover patterns on three different intensities of impervious surface, and two 

metrics that measured the relative placement of residential properties within a given 

watershed.  These metrics can be used to further policy and planning activities that lead 

to flood resilient designs of urban areas, and educational efforts that increase literacy on 

how landscape variables and urbanization influence flooding in various types of 

watersheds. 

7.1.1. Use of Metrics in Flood Damage Studies 

This research built upon previous studies that looked at how urban development patterns 

are related to flood damage by including more explicit variables that not only measured 

land cover, but also land use intensity.  The results of the study show that it is more than 

just urban land cover that influences flood damage, and that while land cover may 

represent some aspect of land use, more spatially-explicit metrics are available and 

should be used in analysis and planning. 
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7.1.2. Use of Metrics in Planning and Policymaking  

This research also showed the benefits of utilizing watershed scale variables in the 

analyses, which is arguably a more appropriate unit of analysis and allows for basin 

morphometrics to be utilized.  Multijurisdictional planning at the watershed scale has 

gained traction over the past decade, as it allows for ecological processes to be taken into 

consideration as well consensus being built through collaboration and participatory 

planning input.  This research supports the use of both urban pattern metrics as well as 

other watershed-scale metrics in planning and policy activities that take flood damage of 

residential property into consideration. 

7.1.3. Use of Metrics in Education and Environmental Literacy 

The use of urban land cover and land use metrics in education activities could be 

expanded in an effort to increase understanding of social, economic and ecological 

principles as they pertain to urban environments.  Simple measurements of the landscape 

have the potential to convey complex processes, and applying this concept to the human 

development of the landscape may facilitate understanding of the impacts human have 

on the environment. 

7.2. Future Research 

This research contributes to both the theory of urban landscape ecology and practice of 

ecosystem-based planning and management, but there are still avenues that need to be 

explored in future research.  First, there is a need to continue correlating urban patterns 

to social, economic and ecological processes.  Validity testing needs to be conducted to 

ensure metrics are indeed measuring what we think they are measuring if they are to be 

used when considering the design of communities and cities.  This validity testing also 

needs to occur at different spatial scales, both with the size of the land cover data, as 

well as the size of the watershed as changes in both have ecological implications, and 

valid metrics at one scale may lead to inappropriate development patterns if employed at 

a different scale.  
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Second, the analyses used in this study were selected to address the issue of 

multicollinearity that is common among regression models that consider multiple 

landscape metrics.  This difficulty of analyzing multiple urban pattern metrics in a 

combined prevented this research from fully understanding how different metrics may 

relate to one another as the each account for similar but subtle differences in urban 

design.  The most obvious example of this is the combination of both compositional and 

configurational metrics.  In this study, percent urban land cover may account for the 

amount of impervious surface, but combining this metric with others like Gyrate or 

Shape would allow it to serve as a control variable and may provide a better 

understanding of how the configuration of land cover influences flood damage.  In fact, 

the incorrect hypothesis of the relationship between Mean Shape and flood damage is a 

perfect example of why combining metrics would be beneficial.  In this research, Mean 

Shape was shown to have a positive relationship with flood damage, which contradicted 

hypothesis 1d.  With the inclusion of a metric that accounted for the overall diffusion of 

urban land cover, Mean Shape may have indeed behaved as hypothesized.  Future 

research should seek to better understand how these metrics relate to one another to 

achieve a more nuanced understanding of how land use patterns are related to socio-

ecological processes. 

 

Finally, this research discussed the potential for the use of such metrics in improving 

literacy and understanding of complex socio-ecological processes that occur at a 

landscape scale, but future human dimensions research should be conducted that tests the 

viability of this claim.  Such tests should not be undertaken until several other validity 

issues are addressed and a suite of urban pattern metrics have been verified scientifically 

so there is confidence that the metrics are indeed related to hypothesized socio-

ecological processes. 
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APPENDIX 1 

 
Figure 20: Percent High Intensity Development in Year 2000 

  

 
Figure 21: Change in Percent High Intensity Development from 2000 to 2009 
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Figure 22: Percent Medium Intensity Development in Year 2000 

 
Figure 23: Change in Percent Medium Intensity Development from 2000 to 2009 
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Figure 24: Percent Low Intensity Development in Year 2000 

 
Figure 25: Change in Percent Low Intensity Development from 2000 to 2009 
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Figure 26: Mean Gyrate Value of High Intensity Development Patches in Year 2000 

 
Figure 27:  Change in Mean Gyrate Value of High Intensity Development Patches 

from 2000 to 2009 



 

135 

 

 
Figure 28: Mean Gyrate Value of Medium Intensity Development Patches in Year 

2000 

 
Figure 29: Change in Mean Gyrate Value of Medium Intensity Development 

Patches from 2000 to 2009 
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Figure 30: Mean Gyrate Value of Low Intensity Development Patches in Year 2000 

 
Figure 31: Change in Mean Gyrate Value of Low Intensity Development Patches 

from 2000 to 2009 
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Figure 32: Mean Proximity Value of High Intensity Development Patches in Year 

2000 

 

 
Figure 33: Change in Mean Proximity Value of High Intensity Development 

Patches from 2000 to 2009 
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Figure 34: Mean Proximity Value of Medium Intensity Development Patches in 

Year 2000 

 
Figure 35: Change in Mean Proximity Value of Medium Intensity Development 

Patches from 2000 to 2009 
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Figure 36: Mean Proximity Value for Low Intensity Development Patches in Year 

2000 

 
Figure 37: Change in Mean Proximity Value for Low Intensity Development 

Patches from 2000 to 2009 
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Figure 38: Mean Patch Area Value for High Intensity Development Patches in Year 

2000 

 
Figure 39: Change in Mean Patch Area Value for High Intensity Development 

Patches from 2000 to 2009 
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Figure 40: Mean Patch Area Value for Medium Intensity Development Patches in 

Year 2000 

 
Figure 41: Change in Mean Patch Area Value for Medium Intensity Development 

Patches from 2000 to 2009 
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Figure 42: Mean Patch Area Value for Low Intensity Development Patches in Year 

2000 

 
Figure 43: Change in Mean Patch Area Value for Low Intensity Development 

Patches from 2000 to 2009 
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Figure 44: Patch Density Value for High Intensity Development in Year 2000 

 
Figure 45: Change in Patch Density Value for High Intensity Development from 

2000 to 2009 
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Figure 46: Patch Density Value for Medium Intensity Development in Year 2000 

 
Figure 47: Change in Patch Density Value for Medium Intensity Development from 

2000 to 2009 
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Figure 48: Patch Density Value for Low Intensity Development in Year 2000 

 
Figure 49: Change in Patch Density Value for Low Intensity Development from 

2000 to 2009 
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Figure 50: Mean Shape Value for High Intensity Development Patches in Year 

2000 

 
Figure 51: Change in Mean Shape Value for High Intensity Development Patches 

from 2000 to 2009 
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Figure 52: Mean Shape Value for Medium Intensity Development Patches in Year 

2000 

 
Figure 53: Change in Mean Shape Value for Medium Intensity Development 

Patches from 2000 to 2009 
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Figure 54: Mean Shape Value for Low Intensity Development Patches in Year 2000 

 
Figure 55: Change in Mean Shape Value for Low Intensity Development Patches 

from 2000 to 2009 
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Figure 56: Average Elevation of Residential Property in Year 2000 

 
Figure 57: Change in Average Elevation of Residential Property from 2000 to 2009 

 



 

150 

 

 
Figure 58: Average Distance of Residential Property to Water in Year 2000 

 
Figure 59: Change in Average Distance of Residential Property to Water from 2000 

to 2009 
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APPENDIX 2 

Table 9: Damage and Policy Data for Example Watersheds in Houston Area 

Name Country Club 
Bayou 

Upper Greens 
Bayou 

Frontal 
Galveston Bay 

Dickinson 
Bayou 

HUC 120401040403 120401040603 120402040101 120402040202 
Total Bldg. 

Damage 
2001 $79,904,726.00 $36,163,929.00 $30,513,902.00 $21,222,794.00 
2008 $3,204,856.00 $4,298,459.00 $2,227,491.00 $69,474,508.00 

Number 
Homes 

2001 111872 21674 25208 12308 
2008 124328 26309 39641 17906 

Number 
Claims 

2001 1905 898 1345 275 
2008 458 234 493 548 

Number 
Policies 

2001 10656 3472 7360 4164 
2008 12647 1821 9486 4795 

Policies per 
Home 

2001 0.095251716 0.160191935 0.291970803 0.338316542 
2008 0.101722862 0.069215858 0.239297697 0.267787334 

Damage per 
Home 

2001 $714.25 $1,668.54 $1,210.48 $1,724.31 
2008 $25.78 $163.38 $56.19 $3,879.96 

 

 



 

152 

 

APPENDIX 3 
 

  

  Ho: Error has No Spatial AutoCorrelation 

  Ha: Error has    Spatial AutoCorrelation 

 

- GLOBAL Moran MI            =  -0.0037     P-Value > Z(-0.576)   

0.5645 

- GLOBAL Geary GC            =   0.9747     P-Value > Z(-2.663)   

0.0078 

- GLOBAL Getis-Ords GO       =   0.0208     P-Value > Z(0.576)    

0.5645 

- Moran MI Error Test        =   0.0705     P-Value > Z(11.334)   

0.9438 

- LM Error (Burridge)        =   0.2824     P-Value > Chi2(1)     

0.5951 

- LM Error (Robust)          =   0.0329     P-Value > Chi2(1)     

0.8560 

 

  Ho: Spatial Lagged Dependent Variable has No Spatial 

AutoCorrelation 

  Ha: Spatial Lagged Dependent Variable has    Spatial 

AutoCorrelation 

 

- LM Lag (Anselin)           =   0.2675     P-Value > Chi2(1)     

0.6050 

- LM Lag (Robust)            =   0.0179     P-Value > Chi2(1)     

0.8935 

 

  Ho: No General Spatial AutoCorrelation 

  Ha:    General Spatial AutoCorrelation 

 

- LM SAC (LMErr+LMLag_R)     =   0.3004     P-Value > Chi2(2)     

0.8605 

- LM SAC (LMLag+LMErr_R)     =   0.3004     P-Value > Chi2(2)     

0.8605 
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APPENDIX 4 
. xtreg  log_totdmgbld pct_HID av_elev_new av_distH20 drain_dens mean_slope SoilH2OCap 

ksat Precip_ tot_nu 

> m_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0290                         Obs per group: min =        10 

       between = 0.6592                                        avg =      10.0 

       overall = 0.4046                                        max =        10 

 

                                                Wald chi2(12)      =    948.69 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     pct_HID |   .2162206    .058611     3.69   0.000     .1013451    .3310961 

 av_elev_new |  -.0000788   .0000141    -5.58   0.000    -.0001065   -.0000511 

  av_distH20 |   .0005462   .0002741     1.99   0.046     8.96e-06    .0010835 

  drain_dens |   .7247746   .3511013     2.06   0.039     .0366287     1.41292 

  mean_slope |  -.6671163    .092349    -7.22   0.000     -.848117   -.4861157 

  SoilH2OCap |   3.535359   .5943735     5.95   0.000     2.370409     4.70031 

        ksat |   .0076134   .0073185     1.04   0.298    -.0067305    .0219573 

     Precip_ |    .002191   .0001469    14.92   0.000     .0019031    .0024789 

 tot_num_pol |   .0004682   .0001169     4.01   0.000     .0002391    .0006972 

         age |   .0292481   .0036314     8.05   0.000     .0221308    .0363654 

pct_upland~g |  -.0361313    .003998    -9.04   0.000    -.0439672   -.0282954 

 pct_wetland |  -.0215532   .0071756    -3.00   0.003     -.035617   -.0074893 

       _cons |   .6536493   .3793572     1.72   0.085    -.0898772    1.397176 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.6360363 

     sigma_e |  2.7575473 

         rho |  .26035382   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld pct_MID av_elev_new av_distH20 drain_dens mean_slope SoilH2OCap 

ksat Precip_ tot_nu 

> m_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 
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Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0308                         Obs per group: min =        10 

       between = 0.6873                                        avg =      10.0 

       overall = 0.4226                                        max =        10 

 

                                                Wald chi2(12)      =   1102.62 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     pct_MID |   .2192165   .0276614     7.93   0.000     .1650013    .2734318 

 av_elev_new |  -.0000608   .0000134    -4.55   0.000     -.000087   -.0000346 

  av_distH20 |   .0003467   .0002585     1.34   0.180    -.0001599    .0008533 

  drain_dens |   .4523807   .3355032     1.35   0.178    -.2051934    1.109955 

  mean_slope |  -.6455901   .0887368    -7.28   0.000     -.819511   -.4716692 

  SoilH2OCap |   2.852825   .5999662     4.75   0.000     1.676913    4.028737 

        ksat |   .0078647   .0069172     1.14   0.256    -.0056928    .0214223 

     Precip_ |   .0021531   .0001438    14.97   0.000     .0018712    .0024349 

 tot_num_pol |   .0002723   .0001087     2.50   0.012     .0000592    .0004855 

         age |   .0281402   .0035448     7.94   0.000     .0211926    .0350878 

pct_upland~g |  -.0286542   .0037874    -7.57   0.000    -.0360775   -.0212309 

 pct_wetland |   -.010485   .0069292    -1.51   0.130     -.024066    .0030961 

       _cons |   .2637986   .3740214     0.71   0.481      -.46927    .9968672 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.5569252 

     sigma_e |  2.7572678 

         rho |  .24175994   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld pct_LID av_elev_new av_distH20 drain_dens mean_slope SoilH2OCap 

ksat Precip_ tot_nu 

> m_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0315                         Obs per group: min =        10 

       between = 0.7458                                        avg =      10.0 

       overall = 0.4582                                        max =        10 

 

                                                Wald chi2(12)      =   1326.37 
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corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

     pct_LID |   .3425344   .0409977     8.35   0.000     .2621804    .4228883 

 av_elev_new |  -.0000469   .0000123    -3.82   0.000    -.0000709   -.0000228 

  av_distH20 |   -.000028   .0002335    -0.12   0.904    -.0004857    .0004296 

  drain_dens |   .1901577   .2933579     0.65   0.517    -.3848133    .7651287 

  mean_slope |  -.6598262   .0811093    -8.14   0.000    -.8187975   -.5008549 

  SoilH2OCap |   2.781968   .5335015     5.21   0.000     1.736324    3.827612 

        ksat |   .0080028   .0061109     1.31   0.190    -.0039743      .01998 

     Precip_ |   .0019371   .0001396    13.88   0.000     .0016635    .0022107 

 tot_num_pol |   .0003082    .000079     3.90   0.000     .0001533    .0004631 

         age |   .0259469    .003451     7.52   0.000     .0191831    .0327107 

pct_upland~g |  -.0233359   .0034812    -6.70   0.000     -.030159   -.0165128 

 pct_wetland |  -.0146053   .0059978    -2.44   0.015    -.0263607   -.0028499 

       _cons |   .0542098   .3606321     0.15   0.881    -.6526162    .7610358 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.3545733 

     sigma_e |  2.7558624 

         rho |  .19458512   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  AREA_MNHID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ to 

> t_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0280                         Obs per group: min =        10 

       between = 0.6672                                        avg =      10.0 

       overall = 0.4087                                        max =        10 

 

                                                Wald chi2(12)      =   1081.26 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 
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  AREA_MNHID |   .8930567   .2596498     3.44   0.001     .3841525    1.401961 

 av_elev_new |  -.0000823   .0000144    -5.71   0.000    -.0001105    -.000054 

  av_distH20 |   .0006208   .0002806     2.21   0.027     .0000709    .0011707 

  drain_dens |   .6905499   .3392269     2.04   0.042     .0256775    1.355422 

  mean_slope |  -.6224565   .0925028    -6.73   0.000    -.8037586   -.4411545 

  SoilH2OCap |   3.939757   .5606309     7.03   0.000     2.840941    5.038573 

        ksat |   .0077067   .0074208     1.04   0.299    -.0068378    .0222512 

     Precip_ |    .002192   .0001476    14.86   0.000     .0019028    .0024812 

 tot_num_pol |   .0005692   .0001127     5.05   0.000     .0003483    .0007902 

         age |   .0279605   .0036993     7.56   0.000     .0207099    .0352111 

pct_upland~g |  -.0412901   .0039884   -10.35   0.000    -.0491073   -.0334729 

 pct_wetland |  -.0296154   .0069662    -4.25   0.000    -.0432689   -.0159619 

       _cons |   .7127151   .3813887     1.87   0.062     -.034793    1.460223 

-------------+---------------------------------------------------------------- 

     sigma_u |   1.623582 

     sigma_e |   2.757678 

         rho |  .25740341   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  AREA_MNMID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ to 

> t_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0280                         Obs per group: min =        10 

       between = 0.6946                                        avg =      10.0 

       overall = 0.4254                                        max =        10 

 

                                                Wald chi2(12)      =   1193.15 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  AREA_MNMID |   1.584616   .2011167     7.88   0.000     1.190435    1.978798 

 av_elev_new |   -.000065    .000014    -4.63   0.000    -.0000926   -.0000375 

  av_distH20 |   .0003742   .0002687     1.39   0.164    -.0001524    .0009008 

  drain_dens |   .6002163   .3208696     1.87   0.061    -.0286767    1.229109 

  mean_slope |  -.5872697   .0886483    -6.62   0.000    -.7610171   -.4135223 

  SoilH2OCap |   3.653409   .5289206     6.91   0.000     2.616744    4.690074 

        ksat |    .008161     .00682     1.20   0.231    -.0052059     .021528 
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     Precip_ |   .0021878   .0001453    15.06   0.000     .0019031    .0024725 

 tot_num_pol |   .0004234   .0001071     3.95   0.000     .0002134    .0006333 

         age |    .028215   .0035749     7.89   0.000     .0212083    .0352218 

pct_upland~g |  -.0351929   .0037724    -9.33   0.000    -.0425866   -.0277992 

 pct_wetland |  -.0176036   .0068385    -2.57   0.010    -.0310069   -.0042003 

       _cons |   -.015991   .3826283    -0.04   0.967    -.7659286    .7339467 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.5403035 

     sigma_e |  2.7576614 

         rho |  .23779491   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  AREA_MNLID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ to 

> t_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0273                         Obs per group: min =        10 

       between = 0.6905                                        avg =      10.0 

       overall = 0.4228                                        max =        10 

 

                                                Wald chi2(12)      =   1108.11 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  AREA_MNLID |   1.593586   .3210227     4.96   0.000     .9643934    2.222779 

 av_elev_new |   -.000075   .0000137    -5.48   0.000    -.0001018   -.0000482 

  av_distH20 |   .0004606   .0002774     1.66   0.097     -.000083    .0010043 

  drain_dens |   .8136365   .3193804     2.55   0.011     .1876624    1.439611 

  mean_slope |  -.6368883   .0917313    -6.94   0.000    -.8166784   -.4570981 

  SoilH2OCap |   4.506019   .4946518     9.11   0.000     3.536519    5.475519 

        ksat |   .0092051   .0072745     1.27   0.206    -.0050527    .0234629 

     Precip_ |   .0020401   .0001484    13.75   0.000     .0017493    .0023309 

 tot_num_pol |   .0005793   .0001062     5.45   0.000     .0003711    .0007874 

         age |   .0276317   .0035892     7.70   0.000     .0205969    .0346665 

pct_upland~g |  -.0365318   .0038187    -9.57   0.000    -.0440163   -.0290474 

 pct_wetland |  -.0337753   .0070283    -4.81   0.000    -.0475504   -.0200002 

       _cons |   .0569298   .3852967     0.15   0.883    -.6982378    .8120975 

-------------+---------------------------------------------------------------- 
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     sigma_u |   1.548739 

     sigma_e |   2.757688 

         rho |  .23977688   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  GYRATE_MNHID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_  

> tot_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0273                         Obs per group: min =        10 

       between = 0.6625                                        avg =      10.0 

       overall = 0.4054                                        max =        10 

 

                                                Wald chi2(12)      =   1054.65 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

GYRATE_MNHID |   .0194094   .0110428     1.76   0.079    -.0022342    .0410529 

 av_elev_new |  -.0000897   .0000153    -5.85   0.000    -.0001197   -.0000596 

  av_distH20 |   .0007767   .0002869     2.71   0.007     .0002143     .001339 

  drain_dens |   .8360754   .3417994     2.45   0.014      .166161     1.50599 

  mean_slope |  -.6179397   .0938221    -6.59   0.000    -.8018277   -.4340518 

  SoilH2OCap |    4.28765   .5334103     8.04   0.000     3.242185    5.333115 

        ksat |   .0068079   .0076133     0.89   0.371    -.0081139    .0217296 

     Precip_ |   .0022043   .0001478    14.91   0.000     .0019145     .002494 

 tot_num_pol |   .0005956   .0001154     5.16   0.000     .0003695    .0008217 

         age |   .0286515   .0040186     7.13   0.000     .0207752    .0365278 

pct_upland~g |  -.0440906   .0040463   -10.90   0.000    -.0520213   -.0361599 

 pct_wetland |  -.0314814   .0071252    -4.42   0.000    -.0454464   -.0175163 

       _cons |   .6547115   .4075161     1.61   0.108    -.1440053    1.453428 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.6373491 

     sigma_e |  2.7576541 

         rho |  .26064793   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  GYRATE_MNMID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_  
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> tot_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0274                         Obs per group: min =        10 

       between = 0.6775                                        avg =      10.0 

       overall = 0.4145                                        max =        10 

 

                                                Wald chi2(12)      =   1129.19 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

GYRATE_MNMID |   .0599965   .0123334     4.86   0.000     .0358234    .0841695 

 av_elev_new |  -.0000836   .0000152    -5.50   0.000    -.0001134   -.0000538 

  av_distH20 |   .0006656    .000281     2.37   0.018     .0001148    .0012163 

  drain_dens |   .8451657   .3291088     2.57   0.010     .2001243    1.490207 

  mean_slope |  -.5746023    .092732    -6.20   0.000    -.7563537   -.3928509 

  SoilH2OCap |   4.157429   .5164154     8.05   0.000     3.145273    5.169584 

        ksat |   .0081684   .0073779     1.11   0.268     -.006292    .0226288 

     Precip_ |   .0022071   .0001452    15.20   0.000     .0019226    .0024916 

 tot_num_pol |   .0005682   .0001115     5.10   0.000     .0003497    .0007867 

         age |   .0278645   .0036386     7.66   0.000     .0207329    .0349961 

pct_upland~g |  -.0403599   .0040715    -9.91   0.000      -.04834   -.0323798 

 pct_wetland |  -.0251492   .0069488    -3.62   0.000    -.0387687   -.0115298 

       _cons |  -.7422311   .4898482    -1.52   0.130    -1.702316    .2178538 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.5934154 

     sigma_e |  2.7574724 

         rho |  .25032694   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  GYRATE_MNLID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_  

> tot_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0274                         Obs per group: min =        10 

       between = 0.6555                                        avg =      10.0 
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       overall = 0.4012                                        max =        10 

 

                                                Wald chi2(12)      =   1035.68 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

GYRATE_MNLID |   .0223659   .0155552     1.44   0.150    -.0081216    .0528535 

 av_elev_new |  -.0000938   .0000147    -6.39   0.000    -.0001227    -.000065 

  av_distH20 |    .000789   .0002971     2.66   0.008     .0002066    .0013714 

  drain_dens |   .9192363    .341625     2.69   0.007     .2496636    1.588809 

  mean_slope |  -.6286834   .0976559    -6.44   0.000    -.8200855   -.4372813 

  SoilH2OCap |   4.554562   .5270377     8.64   0.000     3.521587    5.587537 

        ksat |   .0077469   .0078021     0.99   0.321    -.0075449    .0230387 

     Precip_ |   .0021954   .0001492    14.71   0.000     .0019029    .0024878 

 tot_num_pol |   .0006099   .0001173     5.20   0.000       .00038    .0008397 

         age |    .031162   .0037826     8.24   0.000     .0237483    .0385757 

pct_upland~g |  -.0423377   .0041465   -10.21   0.000    -.0504646   -.0342108 

 pct_wetland |  -.0330439   .0076585    -4.31   0.000    -.0480544   -.0180334 

       _cons |   .1789061   .5373455     0.33   0.739    -.8742718    1.232084 

-------------+---------------------------------------------------------------- 

     sigma_u |   1.646592 

     sigma_e |  2.7576959 

         rho |   .2628175   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  PROX_MNHID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ to 

> t_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0276                         Obs per group: min =        10 

       between = 0.6524                                        avg =      10.0 

       overall = 0.3992                                        max =        10 

 

                                                Wald chi2(12)      =   1033.33 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 
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             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  PROX_MNHID |   .0016288   .0027753     0.59   0.557    -.0038106    .0070682 

 av_elev_new |  -.0000989   .0000152    -6.50   0.000    -.0001287    -.000069 

  av_distH20 |   .0008109    .000293     2.77   0.006     .0002367    .0013852 

  drain_dens |   .8564902   .3528358     2.43   0.015     .1649448    1.548036 

  mean_slope |  -.6211789    .095261    -6.52   0.000    -.8078871   -.4344708 

  SoilH2OCap |   4.414332   .5529303     7.98   0.000     3.330608    5.498055 

        ksat |   .0063827   .0075917     0.84   0.400    -.0084967    .0212621 

     Precip_ |   .0022436   .0001483    15.13   0.000     .0019529    .0025342 

 tot_num_pol |   .0005956   .0001186     5.02   0.000     .0003631    .0008281 

         age |   .0315922   .0037742     8.37   0.000      .024195    .0389895 

pct_upland~g |  -.0438976   .0042891   -10.23   0.000     -.052304   -.0354911 

 pct_wetland |  -.0305543   .0074061    -4.13   0.000      -.04507   -.0160387 

       _cons |   .8997368   .3918131     2.30   0.022     .1317971    1.667676 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.6494785 

     sigma_e |  2.7576322 

         rho |  .26350571   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  PROX_MNMID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ to 

> t_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0282                         Obs per group: min =        10 

       between = 0.6560                                        avg =      10.0 

       overall = 0.4018                                        max =        10 

 

                                                Wald chi2(12)      =    994.32 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  PROX_MNMID |   .0043848   .0021121     2.08   0.038     .0002452    .0085244 

 av_elev_new |  -.0000917   .0000168    -5.47   0.000    -.0001245   -.0000589 

  av_distH20 |   .0006743   .0003045     2.21   0.027     .0000776     .001271 

  drain_dens |   .8213399    .357044     2.30   0.021     .1215464    1.521133 
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  mean_slope |  -.6298708   .0943912    -6.67   0.000    -.8148741   -.4448675 

  SoilH2OCap |    4.23124   .5643191     7.50   0.000     3.125194    5.337285 

        ksat |   .0067157   .0074432     0.90   0.367    -.0078727    .0213041 

     Precip_ |   .0022502   .0001481    15.19   0.000     .0019599    .0025406 

 tot_num_pol |   .0005146   .0001012     5.08   0.000     .0003163     .000713 

         age |   .0308282   .0037738     8.17   0.000     .0234317    .0382247 

pct_upland~g |  -.0418575   .0047789    -8.76   0.000    -.0512239   -.0324912 

 pct_wetland |  -.0272552   .0079296    -3.44   0.001    -.0427969   -.0117135 

       _cons |   .7952579   .4033603     1.97   0.049     .0046862     1.58583 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.6443653 

     sigma_e |  2.7576915 

         rho |  .26229408   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  PROX_MNLID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ to 

> t_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0275                         Obs per group: min =        10 

       between = 0.6571                                        avg =      10.0 

       overall = 0.4020                                        max =        10 

 

                                                Wald chi2(12)      =   1030.28 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  PROX_MNLID |   .0016548   .0008883     1.86   0.062    -.0000863     .003396 

 av_elev_new |  -.0000964   .0000146    -6.61   0.000     -.000125   -.0000679 

  av_distH20 |   .0007377   .0002822     2.61   0.009     .0001846    .0012908 

  drain_dens |   .8437059   .3472639     2.43   0.015     .1630811    1.524331 

  mean_slope |  -.6270867   .0947889    -6.62   0.000    -.8128695    -.441304 

  SoilH2OCap |   4.530876   .5276109     8.59   0.000     3.496778    5.564974 

        ksat |   .0067279   .0075863     0.89   0.375     -.008141    .0215968 

     Precip_ |   .0022196   .0001474    15.06   0.000     .0019308    .0025084 

 tot_num_pol |   .0005949   .0001144     5.20   0.000     .0003707    .0008192 

         age |   .0313292    .003727     8.41   0.000     .0240244    .0386341 

pct_upland~g |  -.0432955   .0040321   -10.74   0.000    -.0511983   -.0353926 



 

163 

 

 pct_wetland |  -.0306811   .0071966    -4.26   0.000    -.0447862    -.016576 

       _cons |   .8760479   .3854671     2.27   0.023     .1205463     1.63155 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.6424494 

     sigma_e |  2.7575912 

         rho |  .26185725   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  SHAPE_MNHID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ t 

> ot_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0278                         Obs per group: min =        10 

       between = 0.6684                                        avg =      10.0 

       overall = 0.4092                                        max =        10 

 

                                                Wald chi2(12)      =   1110.15 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 SHAPE_MNHID |   .8613019   .0884868     9.73   0.000      .687871    1.034733 

 av_elev_new |  -.0000843   .0000145    -5.83   0.000    -.0001126   -.0000559 

  av_distH20 |   .0007887   .0002857     2.76   0.006     .0002288    .0013486 

  drain_dens |    .904937   .3375417     2.68   0.007     .2433673    1.566507 

  mean_slope |  -.6634136   .0946721    -7.01   0.000    -.8489675   -.4778597 

  SoilH2OCap |   4.274824   .5190708     8.24   0.000     3.257464    5.292184 

        ksat |   .0065081   .0077343     0.84   0.400    -.0086508    .0216669 

     Precip_ |   .0022077   .0001464    15.08   0.000     .0019208    .0024946 

 tot_num_pol |   .0005878   .0001139     5.16   0.000     .0003646     .000811 

         age |   .0267802   .0034989     7.65   0.000     .0199224    .0336379 

pct_upland~g |   -.044343   .0039994   -11.09   0.000    -.0521817   -.0365044 

 pct_wetland |  -.0329876   .0070576    -4.67   0.000    -.0468202    -.019155 

       _cons |   .3207277   .3759666     0.85   0.394    -.4161533    1.057609 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.6268514 

     sigma_e |  2.7576635 

         rho |  .25817522   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 
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. xtreg  log_totdmgbld  SHAPE_MNMID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ t 

> ot_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0281                         Obs per group: min =        10 

       between = 0.6771                                        avg =      10.0 

       overall = 0.4147                                        max =        10 

 

                                                Wald chi2(12)      =   1141.22 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 SHAPE_MNMID |   3.612976    .534552     6.76   0.000     2.565273    4.660678 

 av_elev_new |  -.0000821   .0000144    -5.69   0.000    -.0001104   -.0000539 

  av_distH20 |   .0006639   .0002723     2.44   0.015     .0001302    .0011977 

  drain_dens |   .7743822   .3350955     2.31   0.021     .1176071    1.431157 

  mean_slope |  -.6013098    .091892    -6.54   0.000    -.7814149   -.4212048 

  SoilH2OCap |   4.180018   .5137551     8.14   0.000     3.173076    5.186959 

        ksat |    .007609   .0073259     1.04   0.299    -.0067495    .0219676 

     Precip_ |   .0021983   .0001451    15.15   0.000     .0019139    .0024827 

 tot_num_pol |   .0005651   .0001107     5.11   0.000     .0003481     .000782 

         age |   .0267721   .0035077     7.63   0.000     .0198971     .033647 

pct_upland~g |   -.039485    .003927   -10.05   0.000    -.0471818   -.0317881 

 pct_wetland |  -.0251639   .0069925    -3.60   0.000     -.038869   -.0114587 

       _cons |  -3.427797   .7171677    -4.78   0.000     -4.83342   -2.022174 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.5965969 

     sigma_e |  2.7576298 

         rho |  .25105486   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  SHAPE_MNLID av_elev_new av_distH20 drain_dens mean_slope 

SoilH2OCap ksat Precip_ t 

> ot_num_pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 
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R-sq:  within  = 0.0279                         Obs per group: min =        10 

       between = 0.6657                                        avg =      10.0 

       overall = 0.4078                                        max =        10 

 

                                                Wald chi2(12)      =   1074.82 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

 SHAPE_MNLID |   3.866982   .9743478     3.97   0.000     1.957295    5.776669 

 av_elev_new |  -.0000873   .0000141    -6.17   0.000    -.0001151   -.0000596 

  av_distH20 |   .0006972   .0002903     2.40   0.016     .0001284    .0012661 

  drain_dens |   .9757701   .3303426     2.95   0.003     .3283105     1.62323 

  mean_slope |  -.6704827   .1004027    -6.68   0.000    -.8672683   -.4736971 

  SoilH2OCap |   4.486233   .5144668     8.72   0.000     3.477897     5.49457 

        ksat |    .009609   .0078181     1.23   0.219    -.0057141    .0249322 

     Precip_ |   .0021513    .000146    14.73   0.000     .0018651    .0024376 

 tot_num_pol |   .0005973    .000114     5.24   0.000     .0003738    .0008208 

         age |   .0292292   .0037246     7.85   0.000     .0219291    .0365292 

pct_upland~g |  -.0387384   .0039162    -9.89   0.000    -.0464141   -.0310627 

 pct_wetland |  -.0343937   .0074503    -4.62   0.000     -.048996   -.0197914 

       _cons |  -4.032054   1.135815    -3.55   0.000    -6.258211   -1.805897 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.6221611 

     sigma_e |  2.7572779 

         rho |  .25712427   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  pdHID av_elev_new av_distH20 drain_dens mean_slope SoilH2OCap 

ksat Precip_ tot_num 

> _pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0323                         Obs per group: min =        10 

       between = 0.7070                                        avg =      10.0 

       overall = 0.4351                                        max =        10 

 

                                                Wald chi2(12)      =   1260.19 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 
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                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       pdHID |   .8019101   .0877249     9.14   0.000     .6299725    .9738477 

 av_elev_new |  -.0000517    .000013    -3.98   0.000    -.0000772   -.0000263 

  av_distH20 |   .0002778   .0002499     1.11   0.266     -.000212    .0007677 

  drain_dens |   .2937147   .3238038     0.91   0.364    -.3409291    .9283586 

  mean_slope |  -.6441542   .0868286    -7.42   0.000    -.8143352   -.4739731 

  SoilH2OCap |   2.510036   .5896598     4.26   0.000     1.354324    3.665748 

        ksat |   .0067394   .0064263     1.05   0.294    -.0058559    .0193347 

     Precip_ |   .0021024   .0001428    14.72   0.000     .0018225    .0023822 

 tot_num_pol |   .0001994   .0001016     1.96   0.050     3.12e-07    .0003984 

         age |   .0270579   .0034722     7.79   0.000     .0202526    .0338632 

pct_upland~g |  -.0259978   .0035759    -7.27   0.000    -.0330065   -.0189891 

 pct_wetland |  -.0094644   .0066237    -1.43   0.153    -.0224466    .0035178 

       _cons |    .238305   .3658158     0.65   0.515    -.4786808    .9552908 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.4941173 

     sigma_e |   2.756816 

         rho |  .22704343   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  pdMID av_elev_new av_distH20 drain_dens mean_slope SoilH2OCap 

ksat Precip_ tot_num 

> _pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0323                         Obs per group: min =        10 

       between = 0.7517                                        avg =      10.0 

       overall = 0.4619                                        max =        10 

 

                                                Wald chi2(12)      =   1822.16 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       pdMID |   .6099323   .0421672    14.46   0.000     .5272862    .6925785 
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 av_elev_new |  -.0000419   .0000132    -3.17   0.002    -.0000679    -.000016 

  av_distH20 |  -.0000807   .0002264    -0.36   0.722    -.0005245    .0003631 

  drain_dens |  -.0172183   .2848598    -0.06   0.952    -.5755333    .5410967 

  mean_slope |  -.6339043   .0821101    -7.72   0.000    -.7948372   -.4729714 

  SoilH2OCap |   1.976165   .5209977     3.79   0.000     .9550283    2.997302 

        ksat |   .0104676   .0061073     1.71   0.087    -.0015025    .0224376 

     Precip_ |   .0021001   .0001384    15.18   0.000     .0018289    .0023713 

 tot_num_pol |   .0002744   .0000767     3.58   0.000     .0001241    .0004247 

         age |    .023648   .0033595     7.04   0.000     .0170635    .0302325 

pct_upland~g |  -.0161887   .0035707    -4.53   0.000    -.0231871   -.0091903 

 pct_wetland |  -.0015202   .0063175    -0.24   0.810    -.0139022    .0108618 

       _cons |  -.5395698   .3762029    -1.43   0.152    -1.276914    .1977744 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.3477218 

     sigma_e |  2.7571012 

         rho |  .19286065   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

 

. xtreg  log_totdmgbld  pdLID av_elev_new av_distH20 drain_dens mean_slope SoilH2OCap 

ksat Precip_ tot_num 

> _pol age pct_uplandveg pct_wetland, vce(robust) 

 

Random-effects GLS regression                   Number of obs      =      9160 

Group variable: UID                             Number of groups   =       916 

 

R-sq:  within  = 0.0315                         Obs per group: min =        10 

       between = 0.7331                                        avg =      10.0 

       overall = 0.4503                                        max =        10 

 

                                                Wald chi2(12)      =   1498.45 

corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000 

 

                                  (Std. Err. adjusted for 916 clusters in UID) 

------------------------------------------------------------------------------ 

             |               Robust 

log_totdmg~d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       pdLID |   .3183937   .0280613    11.35   0.000     .2633946    .3733929 

 av_elev_new |  -.0000473   .0000142    -3.33   0.001    -.0000751   -.0000195 

  av_distH20 |   .0001563   .0002568     0.61   0.543     -.000347    .0006595 

  drain_dens |   .1627321   .3150673     0.52   0.606    -.4547885    .7802527 

  mean_slope |  -.7352352   .0873382    -8.42   0.000    -.9064148   -.5640555 

  SoilH2OCap |   2.309741   .5221321     4.42   0.000     1.286381    3.333101 

        ksat |   .0089517   .0062515     1.43   0.152    -.0033011    .0212044 

     Precip_ |   .0021714   .0001425    15.24   0.000     .0018921    .0024507 
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 tot_num_pol |   .0002657   .0000992     2.68   0.007     .0000713      .00046 

         age |   .0266217   .0035318     7.54   0.000     .0196995    .0335438 

pct_upland~g |  -.0225736   .0038357    -5.89   0.000    -.0300914   -.0150558 

 pct_wetland |  -.0055913   .0065713    -0.85   0.395    -.0184709    .0072883 

       _cons |  -.6691641   .4045276    -1.65   0.098    -1.462024    .1236955 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.4097744 

     sigma_e |  2.7574233 

         rho |  .20722506   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 
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