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ABSTRACT 

 

 Many applications in agriculture and environmental sciences rely on high-quality 

spatially explicit soils data.  Due to the costs of sample collection, preparation, and 

laboratory analysis, traditional techniques for collection of new soils data are often 

expensive.  In this study, we developed the framework for a novel soil measurement 

technique; a penetrometer-mounted visible near infrared (VisNIR) spectrometer.  The 

penetrometer-mounted VisNIR probe is capable of measuring soil properties of in situ 

soils at high-depth resolutions (i.e. 5-cm vertical spacing).  A fully functional in situ 

VisNIR probe could reduce the cost of soil measurement by supplementing or replacing 

traditional soil measurement techniques.  For in situ VisNIR to be a viable tool, in situ 

VisNIR needs to be compatible with existing spectral modeling techniques designed for 

spectra collected from air-dried and ground soils in the laboratory.  One issue with in 

situ VisNIR is that, unlike spectra collected under laboratory conditions, in situ spectra 

are altered by in situ effects (e.g soil moisture, structure, field temperatures, etc.) and 

therefore are incompatible with existing laboratory approaches.   Using soils from 

central Texas, we tested two methods for mitigating in situ effects; direct standardization 

(DS) and external parameter orthogonalization (EPO).  Our tests indicate that EPO was 

more effective than DS.  We further tested EPO on tropical soils from Brazil.  The EPO 

performed well on these soils demonstrating that EPO can be applied to a wide variety of 

soil types.  Finally, we tested the EPO on in situ spectra collected using the 

penetrometer-mounted VisNIR probe and again, the EPO performed satisfactorily.  By 
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coupling the EPO with a penetrometer-mounted VisNIR probe we have demonstrated 

the viability of in stiu VisNIR.  The penetrometer-mounted system can utilize existing 

laboratory-based spectral modeling tools for prediction of soil properties at high-depth-

resolutions and is a viable tool for rapid, cost effective soil measurement.           
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1. INTRODUCTION 

 

 Soil is intimately involved in many ecological and earth system processes.  

Processes such as water and nutrient cycling, crop growth, and land-atmosphere 

interactions, are regulated or controlled by soil.  Understanding these processes requires 

knowledge on the physical and chemical properties of soils.  For many users, soil maps 

are their first and sometimes only source of soil information. 

While soil maps provide useful soil information, the maps often lack appropriate 

detail on the spatial variability of soil properties.  For example, in the United States, 

maps in the USDA NRCS SSURGO database are available at a scales ranging from 

1:12,000 to 1:63,360 or roughly 24 to 126-m resolutions, respectively (Soil Survey Staff, 

1993).  Many applications such as precision agriculture or hill-slope hydrological 

modeling, require soil information at a 5 to 10-m horizontal resolution and a cm-scale 

vertical resolution. Existing soil maps lack the spatial resolution needed for these 

applications (Alphen and Stoorvogel, 2000; Blöschl and Sivapalan, 1995). 

 Refining the spatial resolution of soil maps has been the topic of much research 

of the past two decades.  Advances in pedometrics and digital soil mapping have 

provided new tools to generate high quality, finer resolution soil maps. Yet despite the 

sophistication of these tools, the ultimate accuracy and resolution of soils maps will be 

limited by the availability of quality soil data (Lagacherie and Mcbratney, 2007; 

McBratney et al., 2003).  Finer-resolution soil maps require more soil measurements.   
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  Despite the current need for fine-resolution soil measurements, these 

measurements are often unavailable or unattainable through traditional soil survey and 

monitoring approaches.  This is due in large part to the expense associated with the 

collection of soil data.  Traditional soil measurement approaches rely on laboratory-

based analysis and are expensive, as well as time consuming, which makes their use for 

collecting finer resolution soil data impractical (Bouma et al., 1999).  To provide cost-

effective fine resolution soil data, new techniques and methods for measuring soil 

properties are needed.  

Proximal soil sensing has emerged as a tool to fulfill the need for fine-resolution 

soil data.  Proximal sensing utilizes non-destructive in-field sensors to collect large 

volumes of soil data.  One class of such sensors, henceforth known as survey-style 

sensors, are used to collect fine-resolution spatial data over large spatial extents.  

Examples of such sensors include electromagnetic induction (EMI) sensors (Corwin and 

Lesch, 2005) and passive gamma-ray detectors (Viscarra Rossel et al., 2007).  In 

practice, data from these sensors is mainly used as an environmental covariate for digital 

soil mapping.  Sensor output is correlated with point measurements of soil properties, 

and sensor output is then used as an empirical predictor of soil properties across the 

measurement extent.    

 Survey-style sensors provide data over large spatial extents providing data on the 

horizontal variability of soils.  Survey style sensors have two main limitations.  Firstly, 

survey-style sensors provide limited data on the on the vertical or depth-wise variability 
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of soils.  Secondly, these sensors require empirical calibration.  These empirical 

calibrations are often site-specific and require collection and analysis of soil samples.   

To overcome the limitations of survey-style sensors, a second class of proximal 

sensors is needed.  This class of sensors, so-called profile-style sensors, should be 

capable of measuring vertical changes in soil properties at fine depth resolution (~2 cm).  

These profile-style sensors could overcome some of the limitations of survey-style 

sensors by providing data on the depth-wise or vertical variability of soils.  Additionally, 

profile-style sensors could be used in lieu of traditional soil sampling thus negating the 

need for soil sample collection and laboratory analysis.  By supplementing data from 

survey-style sensors with data from profile-style sensors, fine-resolution soil surveys 

could be conducted with little to no traditional soil sampling.  

1.1 VISNIR SPECTROSCOPY 

 One method that can provide a low-cost alternative to traditional soil sampling 

and laboratory methods is visible near-infrared spectroscopy (henceforth referred to as 

VisNIR) (Viscarra Rossel et al., 2006; Chang et al., 2001).  In VisNIR spectroscopy, a 

spectrometer is used to measure the intensity of light reflecting from soil samples.  As 

the name would suggest, VisNIR spectroscopy focuses only on light in the visible and 

near-infrared regions (i.e. wavelengths between 350 to 2500 nm).  The intensity of this 

reflected light varies with wavelength (Fig. 1.1) and these wavelength-dependent 

variations can be correlated with soil physical and chemical properties (Stenburg et al., 

2010).  
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Figure 1.1  Example VisNIR reflectance spectra for a soil. 

 

 Researchers have used VisNIR for predicting a myriad of soil properties.  These 

properties include: clay content (e.g. Chang et al., 2001; Shepard and Walsh, 2002), 

organic and inorganic carbon content (e.g. Shepard and Walsh, 2002; McCarty et al., 

2002), cation exchange capacity (e.g. Chang et al., 2001; Shepard and Walsh, 2002), and 

water content (Mouazen et al., 2006; Slaughter et al., 2002).  Stenburg et al. (2010) and 

Viscarra Rossel et al. (2006) provide thorough reviews of the many published uses of 

VisNIR spectroscopy in soil science.  

In VisNIR spectroscopy, users collect spectra from soils of unknown properties 

and using multivariate prediction models, estimate properties of the soil from the 

spectra.  Commonly used models include regression-style models such as principle 
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component regression (e.g. Chang et al., 2001) and partial least-squares regression (e.g. 

McCarty et al., 2002)  as well as tree based models such as random forest (e.g. Viscarra 

Rossel and Behrens, 2010) or cubist models (Minasny and McBratney, 2008).   

Regardless of model type, models must be calibrated prior to use.  For 

calibration, users must generate a calibration dataset consisting of a collection of spectra 

from soils of known physical or chemical properties.  Models are calibrated by 

estimating model parameters that minimize prediction errors on spectra within the 

calibration dataset.  The size and diversity of the calibration dataset can have a profound 

effect on model performance (Brown et al., 2005).  If an unknown sample has 

absorbance features and physical properties that are not represented by soils in the 

calibration dataset, the model is in essence extrapolating and often are prone to error.   

Collecting a sufficiently large and diverse calibration dataset is time-consuming 

and expensive.  To minimize this expense, many users collect a single large calibration 

dataset referred to as a “spectral library” (Sequeira et al., 2014; Brown, 2007; Shepard 

and Walsh, 2002).  Spectral libraries typically contain in excess of 2,000 spectra.  In 

theory, a spectral library is one-time investment.  After an institution has created a 

spectral library, it can be used for calibration of all subsequent prediction models thus 

minimizing the need for further collection of calibration data.     

A major limitation of VisNIR spectroscopy is that the measured data are 

sensitive to sample preparation.  Variation in water content (e.g. Chang et al., 2005; 

Slaughter et al., 2001) and particle size (Viscarra Rossel et al., 2006) are known to 

strongly influence VisNIR spectral reflectance.  To control for these effects, the majority 
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of users conduct VisNIR spectroscopy on prepared soils in the laboratory where these 

effects are controlled for (Stenberg et al., 2010).  Typically, soils for VisNIR analysis are 

dried, ground to pass a 2-mm sieve, and scanned at a controlled laboratory temperature.   

In addition to sample preparation effects, VisNIR spectral data are also affected 

by the equipment and laboratory protocols used for spectral collection (Ben-Dor et al., 

2015).  This has important implications for the transferability of spectral libraries 

between laboratories.  Prediction models calibrated using a spectral library collected by 

one laboratory may not be useful for predictions of unknown spectra collected by other 

users (Ge et al., 2011).   

In a study comparing spectra collected by three different laboratories, Ge et al. 

(2001) found that the lack of transferability of spectral libraries has been linked largely 

to sample preparation and spectral collection techniques.  When instrumentation, sample 

collection, and spectral collection and processing are kept constant, spectral models 

showed increased transferability.  However, the authors found that even when 

laboratories used the same equipment and protocols, spectral post-processing was still 

needed to achieve acceptable model performance.   

1.2 IN SITU VISNIR  

Several researchers have experimented with using VisNIR on in situ soils.  In situ 

VisNIR spectroscopy has advantages over laboratory-based spectroscopy.  Unlike 

laboratory-based spectroscopy, there is no need for sample collection and preparation for 

in situ VisNIR spectroscopy.  This can substantially decrease analysis cost and time.   
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In the simplest applications of in situ VisNIR no new equipment is needed; 

laboratory spectrometers equipped with a contact probe are used for spectra collection.  

This method has been used on soil from intact surface samples (Ji et al., 2015a; Ji et al., 

2015b), intact soil cores (Morgan et al., 2009; Waiser et al., 2007), or intact pedons 

exposed in a soil pit (Viscarra Rossel et al., 2008).  While these methods proved 

effective, they were limited in their applicability.  In the case of measurements made at 

the soil surface, data is only collected from the small portion of the soil profile, greatly 

limiting the applicability of the method for detailed soil survey.  For core and pit-based 

methods, data can be collected from the entire soil profile, but at the cost of collecting a 

soil core or excavating a soil pit. 

To alleviate the need for sample extraction (i.e. collection of soil cores), several 

researchers have experimented with novel techniques for collecting in situ spectra.  One 

such method was developed by Mouazen et al. (2006).  The system consisted of a 

VisNIR optical unit embedded in a subsoil chisel.  The instrument could be pulled 

through a field, imbedding the chisel in the soil.  VisNIR spectra could be collected in 

real time via an onboard VisNIR spectrometer.  This type a system has been used to 

estimate soil organic matter (Christy, 2008), soil organic carbon content (Mouazen et al., 

2007; Bricklemyer and Brown, 2010), soil moisture (Mouazen et al., 2007), and clay 

content (Bricklemyer and Brown, 2010).  While this design allowed for rapid sampling 

over a large areal extent, measurements are restricted to the surface 10 cm of soil.     

While in situ VisNIR spectra from surface soils are useful, many applications 

would benefit from information from deeper in the soil profile. To this aim, Ben-Dor et 
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al. (2008) developed a method for collecting VisNIR spectra from a complete soil 

profile.  In their method, a bore-hole is augured and a VisNIR-equipped probe is inserted 

into the hole. The probe can then collect spectra from the side wall of the bore-hole.  

Several authors have expanded on this idea by developing penetrometer-mounted 

VisNIR probes (Poggio et al., 2015; Chang et al., 2011).  These probes can be inserted 

into the ground using standard soil coring equipment (i.e. Giddings Machine) and used 

for rapid in-situ collection of VisNIR spectra.  Penetrometer-mounted VisNIR probes 

can collect spectra at high depth resolution (2 cm intervals) without the need for 

extraction of soil samples.  While penetrometer-mounted VisNIR probes look promising, 

they have yet to be thoroughly field tested. 

1.3 LIMITATIONS OF IN SITU VISNIR 

 One of the major challenges for in situ VisNIR is that in situ spectra are affected 

by soil moisture, temperature, and soil structure (Bricklemyer et al., 2010).  Henceforth, 

these effects will be collectively referred to as in situ effects.  Of particular concern is 

water content which has a nonlinear effect on soil spectral reflectance (Fig. 1.2a). Due to 

in-situ effects, application of laboratory-generated prediction models to in situ spectra 

can lead to large modeling error (Fig. 1.2b). If in situ effects are not accounted for, in 

situ VisNIR is of little practical use. 
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Figure 1.2  Reflectance spectra from a single soil at multiple water contents (Fig. 1.2a).  
Clay content predictions for spectra at multiple water contents made using prediction 
models calibrated with spectra from dried, ground soils (Fig. 1.2b). 

 

One approach for dealing with in situ effects is to generate prediction models 

specifically for in situ spectra.  In order to apply this approach, users must collect a new 

in situ spectral library.  This new calibration dataset not only needs to cover the expected 

range of soil properties but also the expected range in water contents.  This approach has 

been implemented with varying degrees of success.  Bricklemyer and Brown (2010) 

found the approach unsatisfactory for predicting soil organic carbon but satisfactory for 

predicting clay content. Waiser et al. (2007) and Morgan et al. (2009) showed the 

approach was effective for estimating clay and carbon content, respectively. 

While in situ-specific calibrations have been used with some success this 

approach is limited by the fact that it requires collection of a new in situ spectral library.  

This is an expensive prospect and may not be practical for large-scale implementation of 

in situ VisNIR.  An alternative to in situ-specific calibrations is to mitigate in situ effects 
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through spectral preprocessing.  Preprocessing would allow for prediction models 

generated using existing laboratory spectral libraries to be applied to in situ spectra.  By 

utilizing existing spectral libraries, this approach saves users the expense of generating 

new, in-situ specific spectral libraries. Two preprocessing techniques have been used, 

external parameter orthogonalization (EPO) and direct standardization (DS).   

EPO was initially developed as a method for removing the effects of temperature 

from spectra collected from fruit juices (Roger et al., 2003). EPO has been successfully 

used on VisNIR spectra from soil for re-wetted ground soils (Minasny et al., 2011) as 

well as spectra from intact moist soil cores (Ge et al., 2014).   During EPO, a projection 

matrix is estimated which is used to rotate the spectra orthogonally to the in situ effects.  

This rotation essentially creates “new spectra” that is insensitive in situ effects (Fig. 

1.3b).  Both the in situ spectra and spectra from the spectral library are rotated using the 

projection matrix and the new rotated spectra are used for analysis.   

In addition to EPO, DS has also been used to correct in situ effects from VisNIR 

spectra.  DS was initially developed as a transfer function to allow spectra collected on 

one spectrometer to be used with spectral libraries collected on a different spectrometer 

(Ge et al., 2011).  While EPO generated “new” spectra, DS attempts to transform in situ 

spectra into air-dry or laboratory spectra (Fig. 1.3c).  Unlike EPO, DS does not require 

that the spectral library be transformed and therefore existing laboratory calibration 

models can be applied to DS-transformed in situ spectra without DS-transformation of 

the spectral library.   
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Figure 1.3  VisNIR spectra from a single soil at three water contents before correction 
(Fig. 1.3a), after EPO correction (Fig. 1.3b), and after DS correction (Fig. 1.3c).  Solid, 
dashed, dotted lines represent 0%, 2 and 20% gravimetric water content, respectively. 
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Ji et al. (2015a) successfully applied DS to in situ spectra collected from rice 

paddy soils near saturation.  The authors also used EPO on the same spectra and 

concluded that DS outperformed EPO.  Their results were generated from a very narrow 

range of water contents and therefore may not applicable to datasets of soils with a wide 

range in water contents and textures.  More work is needed in order to determine which 

method, DS or EPO, is best suited to removal of in situ effects. 

1.4 RESEARCH GOALS 

 In situ VisNIR has the potential to help fill the demand for high-resolution, low-

cost soils data.  A complete and effective in situ VisNIR system should be capable of 

collecting VisNIR spectra with minimal effort and should utilize existing spectral 

libraries for prediction.  Equipment such as penetrometer-mounted VisNIR probes allow 

collection of in situ soil data with less soil disturbance than collection of soil data 

through traditional sampling approaches (e.g. soil coring).  Spectral processing 

techniques such as EPO and DS have been used to remove in situ effects from in situ 

spectra allowing for prediction models calibrated with existing dried, ground spectral 

libraries to be applied to in situ spectra.  These spectral processing techniques have yet 

to be used in conjunction with a penetrometer-mounted VisNIR probe as part of a 

complete in situ VisNIR system. 

 This dissertation highlights some of our efforts to develop a complete and 

effective in situ VisNIR system. The system consists of two components; the VisNIR 

collection component and the spectral modeling component.  For collection of in situ 

VisNIR data, we will use a penetrometer-mounted VisNIR probe.  The penetrometer 
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probe was developed by Cristine Morgan, Yufeng Ge, and David Brown. For data 

processing and model building, we will utilize EPO and DS techniques to prepare in situ 

spectra for prediction using models calibrated with existing dried, ground spectral 

libraries.  

  Our work in the development the in situ VisNIR system is summarized in three 

major research goals: 

1) Identification of the most appropriate spectral processing techniques for 

correcting in situ effects from VisNIR spectra.  We compared the effectiveness 

of the two most common spectral processing techniques; direct standardization 

(DS) and external parameter orthagonalization (EPO) for removing in situ effects 

from spectra.  Using in situ spectra processed with both techniques, we predicted 

soil clay and organic carbon content.  Comparisons between the two methods on 

the basis of the accuracy of these predictions were then made.  Additionally, we 

assessed the sensitivity of each method to variability in calibration data and 

model parameterization.  

2) Demonstration that spectral processing techniques can be applied to soils 

with a broad range of mineralogies. We evaluated the effectiveness of spectral 

processing techniques on soils of heretofore unstudied mineralogies.  

Specifically, we tested the effectiveness of these techniques on tropical soils 

from Brazil with mineralogies dominated by 1:1 layer silicates and iron and 

aluminum oxides.        
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3) Demonstrated that in situ VisNIR data collected using a penetrometer-

mounted probe can accurately predict soil properties using models 

calibrated by existing dried, ground spectral libraries.  Using the 

penetrometer-mounted VisNIR probe, we collected a dataset of in situ VisNIR 

spectra from soils in central Texas.  After we applied the spectral processing 

techniques identified in Research Goal 1 to the in situ spectra, we used models 

developed using an existing dried, ground spectral library to predict soil clay and 

organic carbon content. 

The following three sections will highlight each of these research goals.  Each 

section has been prepared for publication and will serve as a stand-alone manuscript. 
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2. REMOVING THE EFFECTS OF SOIL WATER AND INTACTNESS FROM IN 

SITU VISNIR SPECTRA USING EXTERNAL PARAMETER 

ORTHOGONALIZATION AND DIRECT STANDARDIZATION: A 

COMPARATIVE APPROACH 

 

2.1 SUMMARY 

 The utility of VisNIR for soil property predictions on in situ soils has been 

limited by the effects water content and heterogeneity have on in situ spectra.  If these in 

situ effects are unaccounted for, VisNIR models calibrated using existing libraries of 

spectra from air-dried and ground soils are ineffective on in situ spectra.  Two promising 

methods that remove in situ effects on VisNIR spectra have been introduced and 

successfully applied; however, it’s unclear if implementing a field VisNIR campaign if 

one method is preferable to another and under which conditions. In this paper we 

compared two methods for removing in situ effects from spectra, direct standardization 

(DS) and external parameter orthogonalization (EPO).  We compared the effectiveness 

of each algorithm for predicting soil clay and organic C (OC) content across a range of 

calibration sample sizes.  For OC predictions, EPO outperformed DS across all 

calibration sample sizes.  Median root mean-squared error (RMSE) of OC predictions 

from EPO and DS were 6.5 and 7.6 g kg-1, respectively.  For clay content predictions, 

DS had a lower RMSE than EPO at calibration sample sizes less than 80.  However, at 

sample sizes greater than 100, RMSE values of DS predictions were greater than that of 

EPO predictions.  Residuals of the DS models were correlated to soil water content, 
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while EPO residuals were not. Bootstrapping results demonstrated that both DS and EPO 

algorithms were sensitive to variability in calibration data.  To make justifiable 

comparisons between EPO and DS algorithms, research needs to account for the 

combined effects of calibration sample size and calibration variability on algorithm 

performance.      

2.2 INTRODUCTION 

 High-quality, and spatially explicit soil data are needed for many applications in 

soil science and agriculture.  Tools such as precision agriculture, crop-growth modeling, 

and digital soil mapping all require high-quality soil data both across landscapes and 

with depth.  However, this type of soil data can be expensive to gather.  The high cost of 

soil data often limits the resolution and coverage of soil sampling.  Recent advances in 

proximal sensing, such as visible near infrared spectroscopy (VisNIR) have lowered the 

costs, thereby facilitating soil data collection at finer spatial resolutions and larger spatial 

extents (Viscarra Rossel et al., 2006; Chang et al., 2001).  

 VisNIR has been used in soil science for many years to predict a myriad of soil 

properties including clay content (e.g. Chang et al., 2001; Shepard and Walsh, 2002), 

soil organic carbon (SOC) and inorganic carbon content (e.g. Shepard and Walsh, 2002; 

McCarty et al., 2002), and cation exchange capacity (e.g. Chang et al., 2001; Shepard 

and Walsh, 2002).  Typically in VisNIR studies, soil is sampled in the field and returned 

to the laboratory where samples are air-dried and ground before collection of VisNIR 

spectra.  Predictions on laboratory VisNIR spectra are made using multivariate models 

calibrated on spectral libraries.  Spectral libraries contain laboratory data (eg. clay 
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content, CEC, SOC) and the corresponding VisNIR spectra from air-dried and ground 

soil samples (Brown, 2007; Shepard and Walsh, 2002).  Spectral soil libraries represent 

a significant investment in soil laboratory and spectral data from thousands of soils 

(Viscarra Rossel et al., 2016).   

While, laboratory-based VisNIR predictions of soil data are cheaper and more 

rapid than traditional laboratory methods, it still requires the collection and preparation 

of soil samples.  Recent advances in VisNIR have provided tools for collecting VisNIR 

spectra in the field under in situ conditions (e.g. Poggio et al., 2015; Mouazen et al., 

2007).  By collecting spectra under in situ conditions, measurements of soil properties 

can be made without the need for sample collection and preparation.   

Due to the effects of soil moisture and intactness, existing air-dried and ground 

spectral libraries do not work when applied to spectra collected under in situ conditions 

(Chang et al., 2005; Viscarra Rossel et al., 2006).  Developing new in situ spectral 

libraries would be cost prohibitive.  Therefore, tools and techniques are needed that can 

account for and remove in situ effects from in situ spectra.  After removal of in situ 

effects, models calibrated using existing air-dried and ground spectral libraries can be 

applied to in situ spectra. 

Researchers have suggested two main approaches for removing in situ effects 

from VisNIR spectra, external parameter orthogonalization (EPO) (Wijewardane et al., 

2016; Ackerson et al., 2015; Ge et al., 2014; Minasny et al., 2011) and direct 

standardization (DS) (Wijewardane et al., 2016; Ji et al., 2015a; Ji et al., 2015b).  While 

both techniques have been used successfully, direct comparison of the techniques has 
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been limited.  Ji et al. (2015a) compared the EPO and DS on in situ spectra from paddy 

soils and concluded that DS outperformed EPO.  Their study contained soils from a 

narrow range of water contents (0.4-to0.5 m3m-3) as well as clay content (range) and 

their conclusions may not hold for soils under more diverse range of water contents or 

physical properties. 

In this study we will compare the performance of DS and EPO on soils with a 

diverse range in water contents (0.05-to-0.45m3m-3) clay contents (81-578 g kg-1), and 

organic C contents (0 – 55.9 g kg-1) .  Specifically we aim to: 1) determine which 

method, EPO or DS, is more accurate when predicting clay and SOC content of in situ 

VisNIR spectra, 2) compare the stability of DS and EPO performance due to variability 

in calibration data.  Our results will demonstrate reliability of each method for removing 

the effects of water content and intactness from in situ VisNIR spectra and provide 

evidence to assess which method is better suited for future in situ VisNIR applications. 

2.3 MATERIALS AND METHODS 

2.3.1 Spectral datasets 

 For this study we used two spectral datasets.  The first dataset, the Texas Soil 

Spectral Library (TSSL) consists of VisNIR spectra of 2093 dry-ground soils from 44 

counties in the state of Texas, USA.  All spectra in the TSSL were collected using soils 

that had been air-dried and ground to pass through a 2-mm sieve.  The TSSL was used 

exclusively for Partial Least Squares (PLS) model calibration for predicting desired soil 

properties. 
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 The second dataset we used was the Central Texas Dataset (CT).  The CT dataset 

consists of spectra from 72 soil cores from Erath and Comanche counties in Texas.  

From each core we collected VisNIR spectra while the cores were intact and at field 

moist conditions (i.e. prior to drying and grinding).  The intact and field-moist spectra 

are the best approximation of in situ VisNIR spectra and will henceforth be referred to as 

in situ spectra.   

After collection of in situ spectra, cores were air-dried and subsamples from each 

core were ground to pass through a 2-mm sieve.  A second set of spectra was then 

collected on air-dried and ground samples.  The final CT dataset contained in situ and 

dry-ground spectra from 270 soils.  The CT dataset was used for calibrating and 

validation of the DS and EPO algorithms.  For further details on the CT dataset, readers 

are directed to Waiser et al. (2007) and Morgan et al. (2009). 

For the TSSL and CT datasets, reflectance spectra were measured using an ASD 

AgriSpec spectroradiometer (Analytical Spectral Devices Inc., Boulder, Colorado, USA) 

and an ASD FieldSpec Pro FR VNIR spectroradiometer (Analytical Spectral Devices 

Inc., Boulder, CO), respectively.  Both instruments have a spectral range of 300-2500 

nm.  All spectra were filtered using the Savitzky-Golay transformation with a second 

order filter and a window size of 11 nm (Savitzky and Golay, 1964). Spectra were 

resampled at 10-nm intervals between 500 and 2450 nm.  Finally, the filtered reflectance 

spectra were transformed to absorbance spectra (log 1/reflectance). 

For samples in TSSL and CT, clay content and SOC content were measured.  

Clay content was measured using the pipette method (Gee and Or, 2002).  Soil organic 
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carbon was calculated as the difference between total carbon and inorganic carbon 

measurements.  Total carbon was measured using dry combustion (Soil Survey Staff, 

1996; Nelson and Sommers, 1982) and inorganic carbon was determined via the 

modified pressure-calciminer (Sherrod et al., 2002).  Summary statistics of clay and 

organic carbon content can be found in Table 2.1. 

For each in situ sample, water potential was measured using a Decagon SC-10 

thermocouple psychrometer (Decagon Devices, Pullman WA).  Water potential was then 

converted to volumetric water content using the pedotransferfunction of Rawls et al. 

(1982).    

From the CT dataset, we subsampled roughly 30% of the samples using a 

stratified random sampling.  Stratification was based upon the first principle component 

of the dried and ground spectra from the CT dataset.  This subsample, henceforth 

referred to as EPO-val, was used for model validation.  The remaining 70% of the data, 

referred to as EPO-cal, was used for calibration of the DS and EPO algorithms.  During 

subsampling, care was taken to ensure that samples collected from the same core were 

allocated to the same dataset.   
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Table 2.1 Summary statistics for the three VisNIR datasets.  TSSL is the Texas Soil Spectral Library.  CT-cal is the Central 
Texas calibration dataset.  CT-val is the Central Texas validation dataset. 

Dataset Dataset Use n Minimum Median Mean Maximum Inter-quartile 
Range 

Standard 
Deviation 

------------------------------------------------------ -----------------------------------------g kg-1----------------------------------------- 
  Clay Content 

TSSL PLS model calibration 2022 0 245 277 882 315 200 

CT-cal 
EPO and DS 
calibration 189 12 259 254 578 224 148 

CT-val Model Validation 81 28 261 272 525 146 121 
   Organic Carbon Content 
TSSL PLS model calibration 1987 0 3.1 5.7 79.7 5.8 7.3 

CT-cal 
EPO and DS 
calibration 189 0 7.5 11.1 55.9 11.6 11.3 

CT-val Model Validation 81 0.4 7.8 9.5 47.7 9.4 8.0 
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2.3.2 External parameter orthogonalization (EPO) 

 External parameter orthogonalization (EPO) is a spectra projection first 

developed to remove temperature effects from VisNIR spectra collected from fruit juice 

(Roger et al., 2003).   In EPO, first a projection matrix is estimated.  This matrix is then 

used to project spectra into a portion of spectral space orthogonal to the in situ effects.  

The resulting projected spectra are uninfluenced by in situ effects.  The following 

section contains a brief introduction to the EPO algorithm.  For more detailed derivation 

see (Roger et al., 2003; Minasny et al., 2011). 

For the EPO, the unprojected VisNIR spectra,  𝑿𝑿 , can be represented in matrix 

form as the sum of three variables: 

𝑿𝑿 =  𝑿𝑿𝑿𝑿 +  𝑿𝑿𝑿𝑿 + 𝑹𝑹 

where 𝑿𝑿𝑿𝑿 represents the useful portion of the VisNIR spectra and 𝑿𝑿𝑿𝑿 represents the 

portion of the VisNIR spectra that is distorted by in situ effects.   The variable 𝑹𝑹 is the 

portion of the spectra that contains no meaningful information (i.e. spectral residual or 

noise).  Ultimately, the EPO attempts to remove 𝑿𝑿𝑿𝑿 from  𝑿𝑿 leaving only the useful 

portion of the spectra, 𝑿𝑿𝑿𝑿.  Removal of 𝑿𝑿𝑿𝑿  is achieved projecting 𝑿𝑿 with the projection 

matrix 𝑷𝑷.  

 To estimate 𝑷𝑷, a projection calibration dataset is needed.  This dataset consists of 

VisNIR spectra from the same soil under two different conditions; field-moist and intact 

spectra (denoted as 𝑿𝑿𝒊𝒊) and air-dried and ground spectra (denoted as 𝑿𝑿𝟎𝟎  ).  For this 

paper, we will use the dataset CT-cal, as the projection calibration dataset. To estimate 

P, a difference matrix 𝑫𝑫 is calculated as: 
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𝑫𝑫 =  𝑿𝑿𝒊𝒊 − 𝑿𝑿𝟎𝟎  . 

From 𝑫𝑫, we select the first c principal components from the p by p matrix 𝑫𝑫𝑻𝑻𝑫𝑫.  Next, 

we construct the matrix 𝑽𝑽𝒔𝒔.  The columns of  𝑽𝑽𝒔𝒔 containthe c principal components of  

𝑫𝑫𝑻𝑻𝑫𝑫 (i.e. the first column of 𝑽𝑽𝒔𝒔 corresponds to the first principal component of 𝑫𝑫𝑻𝑻𝑫𝑫).  

Finally, we can estimate P using the equation: 

𝑷𝑷 =  𝑰𝑰 − 𝑽𝑽𝒔𝒔𝑽𝑽𝒔𝒔𝑻𝑻 

where 𝑰𝑰 is the identity matrix.  After estimation of 𝑷𝑷, in situ effects spectra in the 

validation dataset CT-val can be removed using the projection: 

𝑿𝑿𝑬𝑬𝑬𝑬𝑬𝑬 = 𝑿𝑿𝒊𝒊′𝑷𝑷 

where 𝑿𝑿𝑬𝑬𝑬𝑬𝑬𝑬 is the EPO-projected spectra and 𝑿𝑿𝒊𝒊′ is the in situ spectra from the dataset 

CT-val.  

2.3.3 Direct standardization (DS) 

 As with the EPO algorithm, the DS algorithm was developed to correct for 

differences in the conditions under which VisNIR spectra are collected.  Primarily, DS 

was used to correct for intra-laboratory differences in spectra collection protocol and 

equipment (Wang et al., 1995).  In soil science, DS has been used to harmonize spectra 

collected by different laboratories (Ge et al., 2011) and to remove the effects of water 

content from in situ spectra (Ji et al., 20016).  Following the procedure outlined by 

Wang et al., 1995, the DS algorithm first assumes the model: 

𝑿𝑿𝟎𝟎   =  𝑿𝑿𝒊𝒊𝑩𝑩 + 𝜆𝜆𝒅𝒅𝑠𝑠
𝑇𝑇 
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where 𝑩𝑩 is the p by p transfer matrix of unknown parameters, 𝜆𝜆 is a  p by one column 

vector where all elements are equal to one, and 𝒅𝒅𝑠𝑠 is the column vector that describes the 

baseline difference between air-dried and ground and in situ spectra.  

 To estimate 𝑩𝑩, first the spectra in the projection calibration dataset are mean 

centered producing the matrices 𝑿𝑿�𝒊𝒊 and 𝑿𝑿�𝟎𝟎 for the mean-centered in situ and air-dry and 

ground spectra, respectively. Next, 𝑩𝑩 is estimated via least-squares using: 

𝑩𝑩 =  𝑿𝑿�𝒊𝒊
+𝑿𝑿�𝒊𝒊 

where + denotes the generalized inverse of 𝑿𝑿�𝒊𝒊.  Next, 𝒅𝒅𝑠𝑠 can be estimated using: 

𝒅𝒅𝒔𝒔 = 𝒙𝒙�𝟎𝟎𝑻𝑻 − 𝑩𝑩𝑻𝑻𝒙𝒙�𝒊𝒊𝑻𝑻 

where 𝒙𝒙�𝟎𝟎 and 𝒙𝒙�𝒊𝒊 are 1 by p row vectors of the averaged column elements of 𝑿𝑿𝟎𝟎  and 𝑿𝑿𝒊𝒊 , 

respectively.  Finally, the DS algorithm can be applied to the in situ spectra from the 

validation dataset: 

𝑿𝑿𝑫𝑫𝑫𝑫 = 𝑿𝑿𝒊𝒊′𝑩𝑩 +  𝜆𝜆𝒅𝒅𝑠𝑠
𝑇𝑇 

where 𝑿𝑿𝑫𝑫𝑫𝑫 is the DS-transformed spectra. 

The effectiveness of the EPO and DS algorithms can be influenced the diversity 

and size of the dataset used for algorithm calibration.  If the soils in the calibration 

dataset are not reflective of the soils used in the validation dataset, there is little hope 

that the algorithm can properly account for in situ effects.  Increasing the sample size of 

the calibration dataset increases the diversity of the soils for which the algorithm is 

capable of correcting in situ effects.  Ji et al. (2015a) suggest that ideal performance of 

the DS algorithm is achieved at calibration sample sizes of 60 or greater. Minasny et al. 

(2011) suggest that optimum EPO performance is not achieved until calibration datasets 
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contain at least 80 samples.  In this study we explored how changing the calibration 

samples size effects the effectiveness of both the DS and EPO algorithms.  

2.3.4 Bootstrapping 

 One concern when comparing the performance of chemometric techniques, is 

that performance metrics such as RMSE and bias are random variables.  As such, any 

single value of a performance metric needs to be considered as a random sampling from 

a population of such values.  Therefore, when comparing the performance of any two 

models or algorithms, comparisons should not be made on the basis of any single value 

but rather based upon samples or populations of values.  Stated differently, the RMSE of 

a model has an unknown variance and when comparing the RMSE of multiple models, 

this variance needs to be quantified and accounted for to make justifiable comparisons. 

 In the context of this study, we attempt to quantify the variance of RMSE bias, 

and concordance correlation using a bootstrapping procedure.  Bootstrapping was used 

to generate multiple realizations of the EPO and DS calibration dataset (i.e. CT-cal).  For 

a bootstrapped calibration sample consisting of  n  spectra,  n spectra from CT-cal were 

randomly sampled with replacement.  Both algorithms were then calibrated on the 

bootstrap sample.  The calibrated algorithms were then applied to the original CT-val 

dataset and the performance of each model was evaluated.  For further information on 

the uses and applications of bootstrapping readers are directed to Efron and Tibshirani 

(1993).  We used the following bootstrapping procedure; adapted from Ackerson et al. 

(2015): 
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1. For a calibration sample size n, n spectra from CT-cal were sampled randomly 

with replacement.  This sample contains in situ paired with air-dried and ground 

of spectra for each soil.  This sample is refered to as a bootstrap sample.  

2. Using the bootstrap sample, DS and EPO projections were calibrated. 

3. The EPO projection was applied to the TSSL, and the EPO and DS projections 

were applied to CT-val. 

4. Using the EPO-projected TSSL, a partial-least squares (PLS) model was 

calibrated.  

5. Using the model calibrated in step 4, clay and organic carbon contents of the 

EPO-projected spectra in CT-val were estimated.  

6. Using the un-projected TSSL, a PLS model was calibrated. 

7. Using the model calibrated in step 6, clay and organic carbon contents of the 

EPO-projected spectra in CT-val were estimated. 

 For PLS modeling, the PLS package in the statistical software R was used (R 

Core Team, 2013).  The PLS model was calibrated using the TSSL dataset containing 

spectra from air-dried and ground soils.  To identify the number of latent variables for 

PLS models, the number of latent variables with the lowest cross-validated RMSE was 

selected.  Cross-validation was performed for each bootstrap iteration using the DS and 

EPO projected in situ spectra from the bootstrap sample (i.e. the projection calibration 

data).   

 To evaluate accuracy and precision of both algorithms, three main chemometric 

metrics were used.  The first metric is the root mean squared error of RMSE: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2 

where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the ith paired observations from populations 𝑋𝑋 and 𝑌𝑌 of measured 

and predicted values, respectively and 𝑛𝑛 is the number of observation pairs.  Second, 

model bias, the average difference between measured and predicted values, was used.  

Positive and negative bias indicates over-prediction and under-prediction respectively. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖) 

 The concordance correlation between measured and predicted values was 

calculated to reflect the level of agreement or reproducibility between two values.  

Concordance ranges from negative to positive one, with perfect agreement between 𝑋𝑋 

and 𝑌𝑌 yielding a concordance of 1. 

𝜌𝜌𝑐𝑐 = 2𝑆𝑆𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥2+𝑆𝑆𝑦𝑦2+(𝑥̅𝑥+𝑦𝑦�)2 , 

with 𝑆𝑆𝑥𝑥2  =  1
𝑛𝑛
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 ; 𝑆𝑆𝑦𝑦2  =  1

𝑛𝑛
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2; and 𝑆𝑆𝑥𝑥𝑥𝑥 = 1

𝑛𝑛
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�) .  

For any calibration sample size n, 500 bootstrap samples were generated 

resulting in 500 separate realizations of the EPO and DS projections. This procedure 

resulted in 500 realizations of RMSE and bias for the model performance on the dataset 

EPO-val.  Additionally, because the EPO and DS algorithms were calibrated using the 

same spectra for each bootstrap iteration, each realization can be treated as a paired 

sample with a unique value of RMSE and Bias for both EPO and DS.  To test for 

differences between RMSE and bias, the nonparametric paired Wilcoxon rank sum test 

was employed.  
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2.4  RESULTS AND DISCUSSION 

2.4.1 Adsorption spectra of dried-ground and field-moist spectra 

 Under air-dry and ground condition the TSSL and CT datasets have similar 

VisNIR absorbance patterns (Fig. 2.1a/b).  These absorbance spectra show a pronounced 

absorbance feature at 1900 nm and two smaller absorbance features at approximately 

1400 and 2200 nm respectively.  These absorbance features are associated with the 

presence of smectite clays (Stenberg et al., 2010), the dominant clay mineralogy of soils 

in this dataset (Wasier et al., 2007). The air dried ground spectra from the TSSL and CT 

datasets also cover a similar range in absorbance values with maximum and minimum 

absorbance of approximately 2.7 and 0.5, respectively.  

 The field moist and intact spectra from the CT datasets differ in several key ways 

from the air-dry and ground spectra of the CT and TSSL datasets (Fig. 2.1c).  Firstly, 

field moist absorbance data is much more variable, with larger 95% quantiles than the 

dry-ground spectra.  This is likely due to the diverse range of water contents found under 

field-moist conditions. The second difference between field-moist and dry-ground 

spectra is that field-moist spectra have much higher maximum and minimum absorbance 

values of approximately 3.2 and 0.75, respectively.    
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Figure 2.1  Visible near-infrared absorbance spectra for the air-dried ground spectral 
library (Fig. 2.1a), air-dried spectra from the Central Texas (CT) dataset (Fig. 2.1b) 
and in situ spectra from the CT dataset (Fig. 2.1c).  Black lines represent the mean 
absorbance spectra and shaded regions correspond the 5 to 95 percentile of absorbance. 
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 A final difference between field moist and dry-ground spectra is that the 

absorption features seen at 1400 and 1900 nm are much more pronounced in the field-

moist spectra.  These adsorption bands are associated with water in the clay interlayer 

and adsorbed to particle surfaces (Bishop et al., 1994) and are likely more pronounced 

due the increased water content of field moist samples.  In contrast, the absorption band 

at 2200 nm, which is not directly linked to bound water is markedly less pronounced.   

2.4.2 Model performance on unprojected spectra 

 Before we discuss the performance of DS and EPO algorithms, it is important to 

quantify PLS model performance on unprojected spectra.  To do this, PLS models were 

calibrated using unprojected spectra from dry-ground soils in the TSSL database. Two 

models were calibrated, one for predicting clay content and one for predicting SOC 

content.  These models were then applied to spectra from dry-ground and field-moist 

soils in the CT-val database (Fig. 2.2, Table 2.2).   

 

Table 2.2 VisNIR model performance on unprojected spectra (i.e. before application of 
External Parameter Orthogonalization or Direct Standardization). 

Validation 
Dataset 

Clay Content Organic Carbon Content 
RMSE Bias Concordance RMSE Bias Concordance 

------------ ------g kg-1-----
- ------ ------g kg-1-----

- ------ 

TSSL 94 1 0.76 4.9 0.1 0.51 
CT-val, air-dry  
and ground 68 -27 0.82 4.8 -3.2 0.79 

CT-val, field-
moist and intact 296 259 0.30 11.1 9.8 0.44 
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Figure 2.2 VisNIR model performance for spectra from in situ validation dataset (CT-
val).  Results for clay content and organic C content predictions are shown in Figs. 2.2a 
and 2.2b, respectively.  Filled and unfilled circles represent predictions for in situ and 
air-dried and ground spectra, respectively.  The solid line represents the 1:1 
correspondence line. 
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 Model performance on spectra from dry-ground soils can be considered the “best 

case scenario” (i.e. we expect VisNIR to perform best on soils collected in the dry-

ground state).  Models generated through the EPO and DS algorithms using transformed 

field-moist spectra, cannot be expected to perform better the models on dry-ground 

spectra.   

 Model performance on unprojected field-moist spectra can be considered the 

“worst-case scenario”.  If dry-ground models are applied to field-moist spectra, we 

would expect model performance to be significantly worse than model performance on 

dry-ground spectra.   

 During calibration of unprojected models, five-fold cross-validation was used.  

Results for cross validation show that unprojected models had low RMSE, near-zero 

bias, and high concordance for clay and organic C predictions (Table 2.2). This indicates 

that models calibrated with the TSSL are capable of estimating clay and organic C 

content.   

When the unprojected models are applied to dry-ground spectra from CT-val, 

model performance for clay content prediction is similar to cross validation results.  For 

organic C content prediction, RMSE and concordance were similar to cross-validation 

results however, bias was significantly poorer.  

 When unprojected models were applied to spectra from field-moist soils in the 

CT-val database, model performance was poor.  For both clay and organic carbon 

content predictions RMSE and bias were much larger than cross-validation results and 

concordance was much lower than cross-validation results,   
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2.4.3 EPO and DS performance comparison – clay content 

 Compared to model performance on unprojected spectra (Table 2.2), application 

of DS and EPO algorithms improves performance of clay content predictions for in situ 

spectra.  Across all projection sample sizes, median RMSE of DS and EPO algorithms 

were between 90 and 99 g kg-1 (Table 2.3). This is a significant improvement over 

unprojected model performance (RMSE of 296 g kg-1) and similar to performance of 

cross-validated models (RMSE 94 g kg-1).  As noted in previous studies, when predicting 

clay content on in situ spectra, EPO and DS algorithms improve performance of models 

calibrated to dry-ground spectra (Ji et al., 2015a). 

Table 2.3 External Parameter Orthogonalization (EPO) and Direct Standardization 
(DS) model performance for clay and SOC content predictions at four selected 
projection calibration sample sizes. 

Sample 
Size 

EPO DS 
RMSE Bias Concordance RMSE Bias Concordance 

---------- ------g kg-1------ ---------- ------g kg-1------ ---------- 
Clay Content 

60 94 (22) 7 (17) 0.71 (0.06) 91 (16) 3 (27) 0.64 (0.12) 
80 92 (23) 7 (16) 0.71 (0.06) 94 (15) -1 (25) 0.60 (0.13) 
100 91 (17) 8 (14) 0.71 (0.04) 96 (15) -7 (26) 0.56 (0.12) 
120 91 (14) 8 (11) 0.72 (0.04) 99 (16) -14 (26) 0.54 (0.13) 

Organic Carbon Content 
60 6.5 (1.0) -1.3 (1.2) 0.60 (0.03) 7.4 (0.7) -3.3 (1.0) 0.36 (0.15) 
80 6.5 (0.9) -1.3 (1.2) 0.60 (0.03) 7.6 (0.6) -3.5 (0.8) 0.31 (0.13) 
100 6.5 (0.9) -1.4 (1.3) 0.60 (0.03) 7.8 (0.5) -3.5 (0.8) 0.28 (0.12) 
120 6.5 (0.9) -1.4 (1.2) 0.60 (0.02) 7.9 (0.6) -3.7 (0.7) 0.26 (0.11) 

1numbers in parenthesis represent the inter-quartile range of each performance metric 
across all bootstrap iterations. 
 

Considering that both DS and EPO algorithms improve the performance of 

VisNIR on in situ spectra, determining whether one algorithm performs more 
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consistently or superior to another requires direct comparison of DS and EPO model 

performance.  As noted in a previous section, an issue with such direct comparison is 

that performance metrics developed for any algorithm are random variables and 

comparison between such random variables requires that the spread or variance in 

performance metrics be quantified.  To quantify this variability, we used the 

bootstrapping procedure outlined previously. 

An additional complication for direct comparison between DS and EPO is that 

each method can be sensitive to the size of the dataset used to calibrate each algorithm.  

This is particularly true for EPO which is known to be sensitive to changes in sample 

size (Minasny et al. 2011).  Minasny et al. (2011) showed that EPO should ideally be 

calibrated using 100 spectra. Ji et al. (2015a) chose 50 spectra to calibrate their EPO and 

DS algorithms.  To account for any effects due to changes in projection calibration 

sample size, bootstrapping was performed on sample sizes ranging from 60 to 120 

spectra.   
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Figure 2.3  External Projected Orthogonalization (EPO) and Direct Standardization 
(DS) model performance for clay content predictions as a function of projection 
calibration sample size.  Results for RMSE, bias, and concordance correlation are 
shown in Figs. 2.3a, 2.3b, and 2.3c, respectively. Thick lines correspond with results 
from DS projections, while thin lines correspond to results from EPO.  Solid and dashed 
lines represent the median and 25 to 75 percentiles, respectively.  Shaded regions denote 
sample sizes where no difference between DS and EPO results is detected at α = 0.05 
using a paired Wilcox rank sum test. 
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Bootstrapping results for clay content predictions for both EPO and DS algorithm 

show that each algorithm is sensitive to the effect of projection sample size (Fig. 2.3, 

Table 2.3).  As sample size increases, the DS algorithm generally performs more poorly.  

For example, as sample size increases from 60 to 120, median RMSE of DS results 

increases from 91 to 99 g kg-1.  Additionally, as sample size increases, bias of the DS 

results gets more negative while concordance decreases.   

With EPO the opposite is true; in general, increasing samples size improves 

model performance.  For example, median RMSE of EPO results decreases from 94 to 

91 g kg-1 as sample size decreases from 60 to 120.  Unlike DS results, median bias and 

concordance of EPO results are unaffected by changes in sample size.  

 While increasing sample size has little effect on median bias and concordance for 

the EPO results, increasing sample size does influence the consistency of model 

performance across bootstrap iterations.  This changing consistency or spread can be 

observed in changing inter-quartile range of RMSE, Bias and concordance.  As sample 

size increased from 60 to 120, inter-quartile range decreased by 8 and 6 g kg-1 for RMSE 

and bias, respectively.  Similar changes in the IQR of performance metrics with 

changing sample size were not observed for the DS algorithm. This result suggests that 

EPO is more sensitive to changes in calibration data than the DS algorithm and that as 

sample size increases the EPO algorithm converges upon an ideal projection. 

 It is important to note that although statistically significant differences between 

the median RMSE and Bias of EPO and DS algorithm performances were detected, 

these differences may be of little practical significance.  The repeatability of clay content 



 

37 

 

measurement using the pipette method is considered to be around 20 g kg-1.  The largest 

observed difference between median RMSE and bias for the two algorithms was 8 and 

22 g kg-1, respectively.  For the majority of bootstrapping iterations, the observed 

differences between EPO and DS RMSE and bias were less than the error of the 

laboratory data used for PLS model calibration and validation. 

 Across all sample sizes, median concordance for EPO results is greater than that 

of the DS algorithm (Table 2.3).  This indicates than the correlation between measured 

and EPO-predicted clay content is higher than the correlation between measured and 

DS-predicted clay.  This difference in concordance can be attributed to a systematic 

error in DS predictions (Fig. 2.4b).  Direct standardization is systematically over and 

under-predicting clay content at low and high clay content, respectively.   

The systematic error in DS predictions is likely the result of incomplete removal 

of the effects of water content from the VisNIR spectra.  The DS algorithm is a linear 

transformation and as such, cannot account for the non-linearity of the interactions 

between soil water and VisNIR spectra.  DS applies an adjustment to all spectra that is 

represents optimum adjustment for a spectra at the average water content in the 

projection calibration dataset (i.e. CT-cal).  As a consequence DS over adjusts spectra at 

low water content and under adjust spectra at high water content.  If the range in water 

contents of in situ samples is small (i.e. Ji et al., 2015) this behavior is likely negligible.  

In the data used in this study where water content ranges between 5 and 40% volumetric, 

these effects can be large (Fig. 2.4b).     
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Figure 2.4 Median External Parameter Orthogonalization (EPO) and Direct Standardization (DS) model residuals for 
projection calibration samples size of 100 plotted as a function of water content for clay content (Figs. 2.4a-b) and for organic 
C (Figs. 2.4c-d).  EPO results are plotted in Figs. 2.4a and 2.4c. DS results are plotted in Figs. 2.4b and 2.4d.   Error bars 
correspond to the 95% percentile across all bootstrap iterations. 
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2.4.4 EPO and DS performance comparison – soil organic carbon content 

 After projection with EPO and DS algorithms, model performance for SOC 

prediction using in situ spectra was improved (Table 2.3) over model performance on 

unprojected in situ spectra ( Table 2.2).  Median RMSE for EPO and DS algorithms 

were roughly 6.5 and 7.6 g kg-1, respectively.  While these RMSE values are lower than 

those found for unprojected spectra, they are still 30 to 60 % higher than RMSE for 

model performance on dry-ground spectra.  Neither algorithms is achieving prediction 

performance with the same accuracy and precision as dry-ground VisNIR spectroscopy.     

  When comparing results of EPO and DS bootstrapping, for SOC predictions, the 

EPO algorithm consistently outperformed DS.  EPO had a smaller RMSE, less negative 

bias, and higher concordance across all samples sizes (Fig. 2.5, Table 2.3).  These results 

are contrary to the results of Ji et al. (2015a) that showed DS out performed EPO.    

EPO performance for SOC predictions was stable across changes in sample sizes.   

Median RMSE, bias, and concordance for SOC predictions using EPO did not 

significantly change as projection sample size increased.  These results differ from those 

found when using EPO algorithm to estimate clay content which showed that as 

projection sample size increased, not only were median RMSE, bias, and concordance 

improved, but the IQR of these metrics was also reduced indicating increased stability of 

model performance with increasing sample size.  Similar increases in model 

performance and stability are not observed when EPO is used for SOC content 

estimation. 
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Figure 2.5 External Projected Orthogonalization (EPO) and Direct Standardization 
(DS) model performance for soil organic C content predictions as a function of 
projection calibration sample size.  Results for RMSE, bias, and concordance 
correlation are shown in Figs. 2.5a, 2.5b, and 2.5c, respectively. Thick lines correspond 
with results from DS projections, while thin lines correspond to results from EPO.  Solid 
and dashed lines represent the median and 25 to 75 percentiles, respectively. 

 



 

41 

 

Direct standardization performance of SOC predictions showed that as projection 

sample size increased, model performance generally became worse.  Model RMSE 

increased, bias became more negative, and concordance decreased as projection sample 

size increased.  This behavior is similar to that observed in DS predictions of clay 

content where model performance became worse as projection sample size increased.  

2.4.5 Implications for model evaluation 

 The bootstrapping analysis we used for this study provided several insights that 

would have been overlooked without the use of bootstrapping.  Firstly, bootstrapping 

results show that model performance metrics can have substantial variation (Table 2.3).  

If this variation is unaccounted for, model comparisons can be misleading.   

As an example, we can look at model performance for clay content predictions.  

For a single bootstrap iteration with projection calibration sample size of 60, we 

observed a clay content RMSE of 78 and 90 g kg-1 for EPO and DS, respectively.  If this 

was the only sample used for model evaluation, a researcher might conclude that EPO 

has a lower RMSE that DS.  However, if we look at the RMSE of all bootstrap iterations 

for calibration sample size 60, we see that DS in fact has a RMSE lower than EPO on 

approximately 60% of all bootstrap samples (Fig. 2.6).  If we use bootstrapping to 

evaluate our models, we see that in fact, for sample size 60, DS will on average have a 

better RMSE than EPO.  This more nuanced comparison of the algorithms is only 

possible through bootstrapping.   
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Figure 2.6 Proportion of bootstrap samples where RMSE, bias, and concordance of 
External Parameter Orthogonalization (EPO) are greater than Direct Standardization 
(DS) as a function of projection calibration sample size.  Solid, dashed, and dotted lines 
represent results for RMSE, bias, and concordance, respectively. 

 

Our analysis also demonstrates that model performance can be influenced by 

projection calibration sample size.  This is important for model comparison and 

evaluation because comparing DS and EPO performance at a single projection sample 
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size may lead to misleading results.  Again, as an example we will use model results for 

clay content predictions.  At a sample size of 60, DS had a lower RMSE than EPO in 

approximately 60% of all bootstrap realizations (Fig. 2.6).  If this were the only sample 

size evaluated, it would be reasonable to conclude that on average DS would outperform 

EPO in terms of RMSE.  However, if we double the sample size to 120 spectra, we see 

that DS has a lower RMSE than EPO for only 40% of bootstrap iterations (Fig. 2.6).  For 

a sample size of 120, we see that the interpretation of the results is opposite of the 

interpretation for a sample size of 60; at sample size of 120 EPO on average outperforms 

DS in terms of RMSE. 

We can expand the scope of this analysis to include model absolute bias and 

concordance correlations in addition to RMSE.  For a sample size of 60, absolute bias of 

clay content predictions for DS results are less than the absolute bias of EPO results in 

roughly 45% of all bootstrap realizations.  As sample size increased to 120, this 

proportion decreased to roughly 40% (Fig. 2.6).  For concordance correlation, EPO had a 

higher concordance in roughly 80 and 100% of bootstrap realizations for sample sizes of 

60 and 120, respectively.   

This analysis may explain why the results of this study contrast with the work of 

Ji et al. (2015a).  In their work, Ji et al. calibrated EPO using 70 spectra.  They observed 

that DS outperformed EPO for both clay content and SOC prediction.  Our results 

demonstrate that at low sample sizes (i.e. less than 80), DS will have a lower clay 

content prediction RMSE than EPO in a majority of bootstrap realizations.  At small 

sample sizes there is a higher chance that DS will outperform EPO than at higher sample 
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sizes where EPO performance is improved.  By restricting their analysis to low sample 

sizes, Ji et al. (2015a) may not have observed the optimum performance of the EPO 

algorithm and therefore may have wrongly concluded that DS is superior to EPO.  

2.5 CONCLUSIONS   

 Our results showed that both EPO and DS algorithms were effective at removing 

in situ effects from spectra.  For clay content predictions EPO and DS algorithms 

performed better than predictions made without EPO or DS correction and had RMSE 

and bias nearing that of dry-ground predictions.   For SOC predictions, both algorithms 

performed better than predictions made without DS or EPO corrections.  However, SOC 

predictions for both algorithms never reached the precision of air-dry and ground 

predictions.   

 In this paper we investigated the effect of two variables on the performance of 

each projection; projection calibration sample size and variability of projection 

calibration dataset.  To investigate the effect of variability in projection calibration data 

on model performance, we implemented a bootstrapping procedure.  Bootstrapping 

generated multiple realizations of the projection calibration dataset.  By evaluating each 

model on multiple realizations of the calibration dataset, we were able to quantify the 

variability of model performance metrics.  By altering the size of each bootstrap sample, 

we were able to estimate the effect that changing calibration sample size had on the 

performance of each algorithm. 

   For clay content predictions, DS showed lower RMSE than EPO for small 

sample sizes.  As sample size increased however, RMSE for EPO predictions decreased 
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and RMSE for DS predictions increased.  At higher sample sizes (i.e greater than 100) 

EPO outperformed DS with lower RMSE, improved bias, and higher concordance 

correlation.  Additionally, DS predictions showed systematic trend in model residuals, 

over predicting clay content at low water content and over predicting clay content at 

high water content. For SOC content predictions, EPO outperformed DS at all projection 

calibration sample sizes exhibiting lower RMSE, less negative bias and higher 

concordance correlations.  

Our results suggest that for instances where soil water contents span substantial 

ranges (i.e. 0 -0.4 m3m-3) EPO typically outperforms DS for clay and SOC content 

predictions.  From the analysis we performed, it appears that DS does not fully correct 

for in situ effects when the soils are under a diverse range of soil water contents.  When 

water content is constrained to a narrow range (i.e. Ji et al., 2015a) DS may function as 

well if not better than EPO.  Alternatively, individual DS-projections could be used for 

specific ranges in water-contents.  In this way, DS projections could be applied to soils 

under a narrow range in water contents.  This method was adopted by Wijewardane et 

al., 2016 with good success.  One limitation to this method however is that it requires a 

priori information on the soil water content of the soil.  

 EPO appears to be the optimal technique for removal of in situ effects from in 

situ spectra for soils of variable moisture content.  By applying EPO to in situ spectra, 

spectral models calibrated using existing libraries of spectra from air-dry and ground 

soils can be used for VisNIR predictions on in situ spectra.  This method requires no a 

priori knowledge of the water content of in situ soils.  By combining the EPO algorithm 
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with emerging techniques for collecting in situ VisNIR spectra (e.g. Mouzen et al., 2007; 

Poggio et al., 2015), rapid near-real-time prediction of soil properties using VisNIR may 

be possible. 
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3. PREDICTING CLAY CONTENT ON FIELD-MOIST INTACT TROPICAL 

SOILS USING A DRIED, GROUND VISNIR LIBRARY WITH EXTERNAL 

PARAMETER ORTHOGONALIZATION* 

3.1 SUMMARY 

The effect of variable soil moisture, which is found in natural field conditions, is 

the single most limiting aspect that limits proximal implementation of VisNIR 

spectroscopy for predicting soil properties using dried-ground spectral libraries. Though 

the external parameter orthogonalization algorithm (EPO) has shown promise in 

removing the effect of soil moisture on soil spectra of intact-field moist soils without 

having to know the soil moisture, EPO  has not been widely tested and has not been 

tested on soils with highly weathered mineralogy (oxides and kaolinite).  Thus, the 

objective of this work was to test the effectiveness of EPOon intact field moist soil 

spectra and a dried-ground spectral library from highly weathered soils located in Brazil 

and to use this diverse dataset to assess the sensitivity of the EPO-PLS parameterization 

and performance to changes in the structure of the calibration spectral dataset.  A dried-

ground spectral library of 1515 soils collected from Piracicaba and Sao Paulo State, 

Brazil was transformed using the EPO P-matrix from 80 surface and subsurface soils 

collected independently of the library and scanned at field-moist intact and at dried-

ground condition.  Results show that EPO can remove the effect of soil water from field-

moist spectra for tropical soils with kaolinitic and ferittic minerologies.  Predicted clay 

                                                 
* Reprinted from Geoderma, 259, Jason P. Ackerson, José A.M. Demattê, Cristine L.S. Morgan. Predicting 
clay content on field-moist intact tropical soils using a dried, ground VisNIR library with external 
parameter orthogonalization, 196-204, 2015, with permission from Elsevier. 
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content improved from 320 to 120 g kg-1 for spectra before and after EPO, respectively. 

Bootstrapping analysis was performed to assess the sensitivity of the EPO-PLS 

procedure to changes in the structure of the calibration spectral dataset.  All EPO-PLS 

parameterizations were constrained to a small set of values and small changes to EPO-

PLS parameterization had little observed effect on model performance.  Large spectral 

libraries, those developed at the national or continental level, will contain soils of 

varying mineralogy.  While research has shown that EPO is effective on smectitic soils 

as well as on kaolinitic soils, it is still unclear to what extent mineralogy controls EPO 

effectiveness. 

3.2  INTRODUCTION 

The availability of soil spatial information (i.e. soil maps) varies across the globe.  

For some countries, highly detailed soil maps have been published.  For example, the 

Netherlands has published a national soil map at a scale of 1:50,000 (Hartemink and 

Sonneveld, 2013).    However, in much of the world including South America and 

Africa, soil information is unknown or mapped at a scale that is unsuitable for 

management at the watershed or farm scale.   For example, only 0.25% of the area of 

Brazil is mapped with a 1:100,000 scale (Mendonça-Santos & Santos, 2006), which is 

still not suitable for soil management.  Development and refinement of coarse-scale soil 

maps has been slow primarily due to the large expense associated with obtaining soil 

information (McBratney et al. 2003). 

 Visible near-infrared (VisNIR) spectroscopy offers a viable tool  for 

quantification of many soil properties (Chang et al., 2001; Viscarra Rossel et al., 2006).  
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By replacing traditional laboratory analysis with VisNIR, the costs of soil survey and 

mapping can be reduced (Waiser et al., 2007).  The success of VisNIR has led to 

considerable investment in large spectral libraries (Brown et al., 2006; Shepard and 

Walsh, 2002)   as well as portable VisNIR equipment for collection of in-situ spectra 

(Ben-Dor et al., 2008; Bricklemyer and Brown, 2010; Chang et al., 2011; Christy, 2008; 

Mouazen et al., 2007; Sudduth and Hummel, 1993; Viscarra Rossel et al., 2009).  In situ 

VisNIR has been used for successful prediction of clay content (Waiser et al. 2007) and 

soil organic carbon (Morgan et al., 2009).  

 Multivariate modeling of many soil properties from VisNIR spectra is possible 

due to the interaction between soil water and the soil minerals (Demattê et al., 2006).  

However, the non-linear effect of variable soil moisture in in-situ spectra interferes with 

VisNIR model predictions (Bricklemyer and Brown, 2010; Minasny et al., 2009).  Due 

to the effects of soil water, spectral libraries collected on dry-ground soils are ineffective 

when applied to in-situ spectra.  To correct for the effects of soil moisture, Minasny et al. 

(2011) applied the External Parameter Orthogonalization (EPO) algorithm (Roger et al., 

2003) to VisNIR spectra from moist soil.  Their results showed that EPO could remove 

the effect of water content from VisNIR spectra allowing for successful predictions of 

soil organic carbon using partial least squares (PLS) models calibrated with air-dried 

spectra.  The EPO-PLS method was also used for predicting clay content and soil 

organic carbon of intact and field-moist soil cores (Ge et al. 2014).  

 EPO removes the effect of soil water from spectra by projecting spectra into a 

portion of spectral space orthogonal to the effect of water content on the spectra.  This 
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projection is essentially a rotation in spectral space that reorients the spectra so that 

water content has no influence on the spectra.  The projection is a rotation rather than a 

re-scaling; the success of the projection relies on correctly identifying the direction, in 

spectral space, of the soil water content effect rather than quantifying the magnitude of 

the effect.  Because of this, no knowledge of the soil water content of individual samples 

is needed in order to use the EPO.  Additionally, a single EPO projection can be applied 

to soils covering a wide range of soil water contents.  It is well known that 

different soil minerals present unique VisNIR reflectance patterns (Demattê et al., 2004; 

Mulder et al., 2013).  The uniqueness of these features stems, in part, from the fact that 

physical integrations between soil minerals and soil water are mineral dependent. When 

used to correct for the effects of soil moisture on VisNIR spectra, EPO-PLS relies on 

identifying the nature of the interactions between soil water and soil minerals.  It is 

currently unclear to what extent mineralogy determines the effectiveness of EPO-PLS.  

Both Minasny et al. (2011) and Ge et al. (2014) showed that EPO could effectively 

remove the effects of soil water from VisNIR spectra of soils with predominantly 

smectitic mineralogy and minor components of 1:1 clays and mixed mineralogy.  To be 

regarded as an effective tool, the effectiveness EPO-PLS needs to be demonstrated for 

soils where mineralogy is dominated by minerals other than smectites and silicate clays. 

 This research aims to show that EPO-PLS is an effective tool for VisNIR 

spectroscopy of tropical soils with mineralogy consisting of a mixture of kaolinite and 

iron-aluminum oxides.  First, we demonstrate that EPO can effectively remove the effect 

of water content from field-moist spectra for tropical, mixed mineralogy soils.  
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Additionally, we show that after EPO-projection, dry-ground spectral libraries can be 

used for PLS prediction of clay content from field-moist spectra.   

One concern with EPO-PLS is that parameterization of the EPO projection may 

be unstable and sensitive to changes in the calibration dataset.  Minasny et al. (2011) 

began to address this issue and showed that accuracy of EPO-PLS was sensitive to the 

size of the calibration dataset.  They determined that a minimum of 60 spectra were 

needed for EPO-PLS parameterization.  In this paper we elaborate on the work of 

Minasny et al. (2011) and investigate how variability in the EPO-PLS calibration dataset 

influences the parameterization and accuracy of EPO-PLS. To achieve this, we 

conducted a bootstrapping exercise to generate multiple realizations of an EPO 

calibration dataset.   Using these bootstrapped datasets, we observed effects of dataset 

variability on EPO-PLS parameterization and performance.  

3.3 MATERIALS AND METHODS 

3.3.1 VisNIR datasets 

A collection of 1515 soil samples from São Paulo state in Brazil (Dataset A), 

were collected  from Piracicaba and Sao Paulo State, Brazil (longitude 47° 31’ 00’’ W ; 

latitude 22° 39’ 00’’S). Soils in this dataset are old and highly weathered containing soils 

classified as Ferrasols, Nitisols, Lixisols, and Arenosols (IUSS, 2014). The time-scale 

required for development of Ferrasols is large.  Estimates from Africa indicate that it 

takes about 75,000 years to develop one meter of an Ferrasols (Aubert, 1960). The true 

age of Ferrasols is quite difficult to determine. Estimates place the age of Brazilian 

Ferrasols between 1 and 50 million years (Buol, 2009; Richter and Markewitz, 2007).  
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The climate of this area is a humid subtropical climate according to Köppen and Geiger, 

with dry winters and rainy summers (Peel et al., 2007). Annual average of temperature is 

21.6°C, and annual precipitation ranges from 1400-1600 mm. Parent materials from this 

area are broad and contain shales, sandstones, and basalts, all derived from the São 

Bento Group (Botucatu, Serra Geral and Pirambóia formations). The soils are highly 

weathered with mineralogy constituted by kaolinite and gibbsite, while few samples also 

have montmorillonite. The weathering indexes used to measure these soils are silt:clay 

ratio and Ki (1.7SiO2/Al2O3). The Ki  index indicates the soil weathering degree, where 

Ki > 2 indicates less weathered soils (2:1 silicate clays, vermiculite and 

montmorillonite); Ki between 2 and 0.75 indicates intermediate weathered soils (1:1: 

silicate clays, kaolinite);; and Ki ≤ 0.75 indicate highly weathered soils (gibbsitic and 

kaolinitic soils) (Embrapa, 2013). In general, the soils in this library have silt:clay ratios 

less than 0.7, which indicates highly weathered soils (Embrapa, 2013). As well, the Ki 

indexes are mostly less than 2.0.  Approximately, 20% of the samples were collected in 

complete profiles, and the other 80% were collected with an auger in three depths (0-20, 

40-60, 80-100 cm).   

Spectra for the library (Dataset A) were obtained in the laboratory with an ASD 

FieldspecPro (Analytical Spectral Devices, Boulder CO) with a spectral range from 350 

to 2500 nm. Scanning was completed using a fiber optic placed 8 cm above the sample.  

For lighting,  two halogen lamps (50 w) placed 35 cm from the sample with a zenith 

angle of 35° were used. For each sample, three spectra consisting of 100 spectral 

acquisitions were collected.  The three spectra were then averaged to yield the final 
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spectra. Spectra for Dataset A were collected on soil that had been dried and ground to 

pass through a 2-mm sieve. 

 To test the EPO, intact field-moist soil samples from 58 locations within São 

Paulo State (Fig. 3.1), were collected. Site selection was based on locations that were 

likely to represent the soils within the area of Dataset A. Relief was used to determine 

sampling locations that would represent soils from the area of the library. Findings by 

Behrns et al. (2014) indicate that relief is effective for this type of site selection in this 

area.  At each location, soil samples were collected with auger at two depths (0 to 20 and 

80 to 100 cm). Soil samples were inserted into plastic bags and brought directly into 

laboratory.  In total, the dataset consisted of 116 soil samples. Using the same 

spectrometer and geometry used to collect Dataset A, two sets of reflectance spectra 

were collected on these samples. The first set of spectra was collected immediately after 

samples were returned to the laboratory while the soils were in the field moist state.  

This set of spectra is assumed to be similar to the condition of spectra collected on in-

situ soils.  Soils were then air-dried and ground to pass through a 2-mm sieve after which 

spectra were again collected.  This second set of spectra was collected under the same 

condition as Dataset A.   
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Figure 3.1 The study region (Piricicaba) showing the sampling locations of the library 
soils (Dataset A) and the intact soils (Datasets B and C).  
 

 The collection of soils mentioned in the preceding paragraph, consisting of the 

116 soil samples scanned in the field-moist and air-dry condition, was divided into two 

separate datasets.  Using stratified random sampling by clay content, roughly 75% of 

soils from the EPO test dataset were assigned to Dataset B, which was used for 

estimation of the EPO.  The remaining 25% of soils were assigned to Dataset C and used 

to assess the performance of the EPO.  Stratified random sampling by clay content was 

used to ensure that Dataset B and Dataset C covered similar ranges of clay contents.  

During stratified random sampling, soils were selected by location so that surface and 
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subsurface samples from each location were assigned to the same dataset insuring 

independence of the two datasets.    

 For all three datasets (A, B, and C), spectra were filtered using the Savitzky-

Golay transformation with a second order filter and a window size of 11 nm (Savitzky 

and Golay, 1964).  Spectra were then resampled at 10-nm intervals between 500 and 

2450 nm.  Resampling decreased the size of the spectra and removed portions of the 

spectra where the signal to noise ratio was poor (i.e. reflectance less than 500 nm and 

greater than 2450 nm).  Finally, spectra were transformed to absorbance spectra (log 

1/reflectance).  Additionally, for all soils in each dataset, clay content was determined by 

the hydrometer method, using 0.1m calcium hexametaphosphate and 0.1m sodium 

hydroxide as dispersing agents (Gee & Bauder, 1986). Summary statistics for each 

dataset are shown in Table 3.1. 

 

Table 3.1 Clay content summary statistics for soils used in each VisNIR dataset 
    Clay Content 

Dataset Use n Minimum Mean Maximum 
Standard 
Deviation 

---------------------------------------- ----------------------- g kg-1 ----------------------- 

A PLS model 
calibration 1515 41 312 811 169 

B EPO 
Development 80 51 415 765 195 

C Model 
Validation 36 50 393 738 211 
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3.3.2 EPO development and PLSR modeling 

 When soils are wet or in the intact condition, their VisNIR spectra are distorted 

relative to the air-dry and ground condition and therefore unsuitable for use with 

multivariate models calibrated to air-dry and ground soil spectra.  To remove the effect 

of water content from VisNIR spectra collected in the field-moist and intact condition, 

an external parameter orthogonalization (EPO) was applied to the data.  This section 

contains a brief outline of the EPO procedure.  For details on the EPO algorithm, readers 

are directed to Minasny et al. (2011) and Roger et al. (2003).   

To estimate the EPO projection, spectra are collected from the same soils in the 

air-dry and ground condition as well as in the field-moist and intact condition. Next the 

difference between the air-dry and field-moist spectra is calculated. From these 

difference spectra, it is possible to determine what direction in spectral space soil water 

and intactness distorts the spectra.  Once the direction of the distortion is known, spectra 

can be orthagonalized to the effects of soil water and intactness by rotating the spectra 

away from the direction of distortion.  This rotation effectively dampens or removes 

distortions due to soil water or sample preparation while preserving the useful portion of 

the VisNIR spectra (i.e. the useful signal associated with soil properties). 

 Consider the matrix of VisNIR spectra 𝑿𝑿 where each row contains the spectra 

from a single soil 𝒙𝒙𝒕𝒕.  Field-moist spectra can considerer to be the sum of three 

components: 

𝑿𝑿 =  𝑿𝑿𝑿𝑿 +  𝑿𝑿𝑿𝑿 + 𝑹𝑹 
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where 𝑿𝑿𝑿𝑿 is the component containing useful spectral information on the properties of 

interest (e.g. clay content), 𝑿𝑿𝑿𝑿 is the component which distorts the signal (eg. the 

component of the spectra affected by water content) and  𝑹𝑹 is the spectral residuals or 

noise.  The goal of EPO it to isolate only the useful component, 𝑿𝑿𝑿𝑿. This is achieved by 

estimating the projection matrix 𝑷𝑷. 

Using the spectra from Dataset B, spectra were separated into two matrices 𝑿𝑿𝟎𝟎  

and 𝑿𝑿𝒊𝒊.  Spectra in air-dry or reference condition are denoted as 𝑿𝑿𝟎𝟎, whereas spectra in 

the field moist condition are denoted as 𝑿𝑿𝒊𝒊.  Using 𝑿𝑿𝟎𝟎 and 𝑿𝑿𝒊𝒊, the EPO algorithm 

proceeds as follows.           

1. Calculate the difference matrix, 𝑫𝑫 =  𝑿𝑿𝒊𝒊 − 𝑿𝑿𝟎𝟎  . 

2. Determine the first c principal components of 𝑫𝑫𝑻𝑻𝑫𝑫.  This can be achieved either 

from single value decomposition of 𝑫𝑫 or principal component decomposition of 

𝑫𝑫𝑻𝑻𝑫𝑫. 

3. Construct 𝑽𝑽𝒔𝒔 , the columns of which contain the c principal components 

estimated in step 2.  

4. Estimate 𝑸𝑸 from 𝑸𝑸 =  𝑽𝑽𝒔𝒔𝑽𝑽𝒔𝒔𝑻𝑻. 

5. Estimate the projection matrix 𝑷𝑷 from 𝑷𝑷 =  𝑰𝑰 − 𝑸𝑸, where 𝑰𝑰 is the identity 

matrix. 

Once the projection matrix is estimated, spectra can be projected into a subspace of 𝑿𝑿 

which is orthogonal to the effects of soil water on VisNIR spectra.  When EPO is used, 

the spectral library for PLS model calibration (Dataset A) and model evaluation (Dataset 

C) are both projected using 𝑷𝑷.   
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 To translate VisNIR spectra into information on soil clay content, Partial Least 

Squares (PLS) modeling was used.  PLS models were estimated using the PLS library in 

the R statistical package (R Core Team, 2013).  For spectra before and after application 

of EPO, PLS models were estimated using Dataset A and evaluated using Dataset C.  

Models were evaluated using the following metrics: 

• Root mean squared error (RMSE) is a measure of the average error of the model 

prediction. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2 𝑛𝑛� , 

where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the ith paired observations from populations 𝑋𝑋 and 𝑌𝑌 of 

measured and predicted clay content respectively and 𝑛𝑛 is the number of 

observation pairs.   

• Model bias is the average difference between measured and predicted values.  

Positive and negative bias indicates over-prediction and under-prediction 

respectively. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  ∑(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖) /𝑛𝑛 . 

• The ratio of performance to deviation (RPD) which is commonly used in NIR 

spectroscopy to assess model usefulness.  While some ad-hoc guidelines exist for 

assessing RPD (Chang et al., 2001), as with any model performance metric, users 

must consider the restraints and need of their particular application when 

assessing RPD.  In general RPD values less than one are unacceptable while 

values greater than 3 are considered excellent. 



 

59 

 

𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑆𝑆𝑆𝑆𝑥𝑥
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 , 

where  𝑆𝑆𝑆𝑆𝑥𝑥 is the sample standard deviation of  𝑋𝑋.  

• The concordance correlation which measures the agreement between paired 

predictions and observations.  Concordance scales between -1 and 1 with 1 

representing a perfect positive correlation between measured and observed pairs.   

𝜌𝜌𝑐𝑐 = 2𝑆𝑆𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥2+𝑆𝑆𝑦𝑦2+(𝑥̅𝑥+𝑦𝑦�)2 , 

with 𝑆𝑆𝑥𝑥2  =  1
𝑛𝑛
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 ; 𝑆𝑆𝑦𝑦2  =  1

𝑛𝑛
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2;and 𝑆𝑆𝑥𝑥𝑥𝑥 = 1

𝑛𝑛
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�) . 

 For the combined EPO-PLS procedure, two parameters c and k are estimated.  

The parameter c is the number of principal components of 𝑫𝑫𝑻𝑻𝑫𝑫 and is used to estimate 

P.  The parameter k is the number of latent variables used in PLS modeling.  Following 

Roger et al. (2003), the parameters were determined by minimizing the RMSE of an 

internal cross validation of the EPO calibration dataset.  Internal cross-validation was 

performed by applying the EPO-PLS procedure to predict clay content of spectra from 

Dataset B for all combinations of c and k.  RMSE was lowest when c and k were set to 3 

and 24, respectively.  These parameter values were used in the subsequent analysis and 

evaluation of EPO-PLS performance.  

3.3.3 EPO parameter sensitivity 

 With the EPO-PLS routine, a concern is that the parameters c and k are sensitive 

to the peculiarities of the sample population used in their estimation.  If different 

calibration samples result in different parameter estimations, performance of EPO-PLS 
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may be sensitive to differences in the selection of the calibration dataset.  To assess this 

sensitivity, a bootstrapping analysis was conducted.   

With bootstrapping, new realizations of sample population are generated by 

resampling new populations from the original sample population with replacement.  The 

underlying assumption of bootstrapping is that the original sample population is 

representative of the true population (i.e. is a non-biased sample).  Each subset taken 

from this sample population will vary slightly from the sample population.  Because the 

sample population is assumed to be representative of the true population, variations 

between subsets of the sample population should be similar to variations between sample 

populations taken from the true population.  Any effect caused by differences between 

subsets of the sample population will be similar to effects generated by differences 

between samples from the true population.  For a more thorough introduction to the 

bootstrap procedure and its uses, readers are directed to Efron and Tibshirani (1993).   

 For this study the population of interest was the set of soils with both air-dried 

and field moist spectra (i.e. Datasets B and C) and bootstrapping was performed on 

Datasets B and C combined.  For a single bootstrap sample, 116 spectra were selected 

with replacement from the combined dataset.  Each bootstrap sample was then split into 

a calibration and validation dataset.  As with the original Datasets B and C, stratified 

random sampling was used to segregate the bootstrap sample into calibration and 

validation datasets (25% validation, 75% calibration).  The EPO-PLS procedure was 

applied to each bootstrap sample.  In total, 1000 bootstrap samples were generated.  An 

outline of the bootstrapping procedure is shown in Fig. 3.2.    
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Figure 3.2 Outline of the bootstrapping procedure. 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 Analysis of soils and VisNIR spectra 

 Datasets B and C had slightly higher clay content that Dataset A (Table 3.1).  

Dataset A covered a larger range in clay content with a lower minimum and higher 

maximum clay contents than either Dataset B or Dataset C.  A similar trend is apparent 

in the absorbance spectra of each dataset (Fig. 3.3) where Dataset A has a higher 
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maximum and lower minimum absorbance than either Dataset B or C.  These results 

suggest that Dataset A may contain soils that are not represented in Datasets B or C.   

Spectra in Dataset A cover a larger range of spectral characteristics than spectra 

from Datasets B or C.  This is apparent when spectra from all datasets are plotted in 

principal component space (Fig. 3.4).  The convex hull of Dataset A is much larger than 

the convex hulls of air-dried spectra from Datasets B or C indicating that some spectra in 

Dataset A occupy a portion of spectral space that is not represented in Datasets B and C. 

 In principal component space the differences between field-moist and air-dry 

spectra are clear (Fig. 3.4).  The convex hulls of the dry spectra (Datasets B and C) are 

contained within the convex hull of Dataset A.  The convex hulls of field-moist spectra 

only overlap slightly with the convex hull of the air-dry datasets.  The centroids of the 

field-moist spectra are not contained within the convex hulls of their air-dry 

counterparts.  This suggests that field-moist spectra occupy a different portion of spectral 

space than air-dry spectra.  Because air-dry and field-moist spectra occupy different 

regions of spectral space, multivariate models that are calibrated on air-dry soils (such as 

PLS), cannot be expected to work on field-moist spectra.             
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Figure 3.3 Absorbance spectra of dry soil for datasets A, B, and C (black, blue, and red 
lines respectively).  Figures 3.3a, 3.3b and 3.3c, represent the maximum, mean, and 
minimum spectra respectively for each dataset. 
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Figure 3.4 Spectra from each dataset before External Parameter Orthogonalization 
(EPO) plotted in principal component space.  Lines represent convex hulls and plus 
signs represent centroids of each dataset. 

 

3.4.2 Effectiveness of EPO-PLS 

 After projection with the EPO, spectra from each dataset are much closer in 

principal component space (Fig. 3.5).  The centroids of air-dry and field-moist spectra all 
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lie within the convex hull of the PLS calibration dataset (Dataset A).  When compared to 

the same spectra before EPO projection, there is an increased coincidence of the convex 

hull of Dataset A and those of the field-moist spectra.  This increased coincidence 

suggests that models calibrated to air-dry spectra will perform better with EPO-projected 

field-moist spectra than their non-projected counterparts.   

 

Table 3.2 Partial least squares (PLS) model performance for predicting clay content 
before and after application of the external parameter orthogonalization (EPO) 

Before EPO 
Dataset n RMSE† Bias RPD† ρc † 
-----------------------------------------------

----- 
------------g kg-1------------

- 
--------------------

-- 
A‡ 1515 67 0 2.52 0.92 
C      
Air Dry + Field-Moist 72 318 152 0.55 0.37 
Air-Dry 36 127 -67 1.55 0.79 
Field-Moist 36 431 370 0.40 0.24 
      

After EPO 
Dataset n RMSE† Bias RPD† ρc † 
-----------------------------------------------

----- 
-------------g kg-1-----------

--- 
--------------------

-- 
A‡ 1515 69 0 2.45 0.91 
C      
Air Dry + Field-Moist 72 120 -49 1.58 0.82 
Air-Dry 36 117 -40 1.67 0.83 
Field-Moist 36 123 -57 1.51 0.81 

†RMSE is root mean squared error, RPD is ratio of prediction to deviation, ρc is the 
concordance correlation coefficient 
‡Results for dataset A were generated using a five-fold cross-validation of the PLS 
model 
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Figure 3.5 Spectra from each dataset after projection of all spectra with External 
Parameter Orthogonalization (EPO) plotted in principal component space.  Lines and 
crosses represent convex hulls and centroids of each dataset, respectively. 

 

Using the air-dried spectra from Dataset A, PLS models were generated to 

predict clay content.  Five-fold cross-validation within Dataset A showed that PLS could 

predict clay content with an average error of 67 g kg-1(Table 3.2), nearing the precision 

of laboratory methods(Ge and Or, 2002).  Cross-validation also showed that the model 

was unbiased and predicted and measured clay contents were nearly perfectly correlated 

(ρc = 0.92).    
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When the same model was applied to samples from Dataset C, model 

performance was significantly worse on field-most spectra than air-dried spectra (Table 

3.2, Fig. 3.6a).  RMSE for field-moist was more than three times that of air-dried 

spectra; 431 versus 127 g kg-1 for field-moist and air-dried spectra, respectively.  Poor 

model performance on field-moist spectra is unsurprising considering the deleterious 

effect soil moisture has on VisNIR spectra (Bricklemyer and Brown, 2010; Minasny et 

al., 2009: Rodionov et al., 2014).  The effect of moisture is supported by the fact that 

field-moist spectra occupy a separate region of principal component space from air-dry 

spectra (Fig. 3.4).     

 

 

Figure 3.6 Partial least-squares (PLS) predicted clay content versus measured clay 
content for dataset C before (Fig. 3.6a) and after External Parameter Orthogonalization 
(Fig. 3.6b). Circles and plus signs represent field-moist and air-dry spectra respectively.  
The solid line represents the 1:1 line. 
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While cross-validation of the PLS model yielded results reaching the precision of 

laboratory techniques, similar accuracy was not achieved on the air-dried spectra from 

Dataset C.  This is likely due to the fact that Dataset A covers a slightly different set of 

soils than those found in Dataset C (Table. 3.1, Fig. 3.4).  Prediction accuracy for air-

dried spectra may be improved by segregating the library using nearest neighbor 

techniques (Araújo et al., 2014) or tree-based modeling techniques such as Cubist or 

Random Forests (Minasny and McBratney, 2008).  These techniques can generate 

models using only spectra from the spectral library that are similar to spectra in the test 

dataset.  While use of such techniques may have improved model performance, highly 

accurate model predictions were not the main goal of this study.  The goal of this study 

is to evaluate the effectiveness of the EPO procedure on soils that are pedogenically 

different than those tested by Minasny et al. (2011) and Ge et al. (2014).  To achieve this 

we need only show an improved performance of models for soils before and after EPO.  

EPO can be coupled with other multivariate modeling techniques and investigations of 

future users of EPO for in situ spectroscopy will be needed to determine, on a case-by-

case basis, which modeling technique is appropriate for their application.      

Datasets A and C were projected with EPO and a new PLS model was calibrated 

using EPO-projected Dataset A.  Model cross validation shows no significant change in 

model performance within Dataset A compared to before EPO-projection (Table 3.2).  

EPO-projection had a significant impact of PLS model performance for spectra in 

Dataset C (Fig. 3.6b).  The RMSE of clay content predictions for field-moist spectra 

improved from 431 to 123 g kg-1 for field-moist spectra before and after EPO, 
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respectively.  After EPO, PLS model performance for field-moist and air-dried spectra 

were similar with RMSE of 117 and 123 g kg-1 for air-dried and field-moist spectra, 

respectively.  Results strongly support the conclusion that EPO projection removes the 

effect of water content from VisNIR spectra.  This finding corroborates the results of 

Minasny et al. (2011) and Ge et al. (2014).  Unlike previous studies where EPO was 

applied to soils dominated by smectitic mineralogy, our results show that EPO can 

effectively remove the effects of soil water from mixed and kaolinitic mineralogies.  

3.4.3 EPO parameter sensitivity 

 Using the calibration Dataset A for each bootstrap sample from Datasets B and 

C, the optimum values for parameters c and k were selected using the same procedure 

outlined in section 2.2.  This analysis yielded 1000 sets of optimum parameters; one for 

each bootstrap iteration.  Optimum values of parameter c ranged from 1 to 17 and were 

concentrated with approximately 54 % of all iterations showing an optimum value of 3 

(Fig. 3.7a).  Optimum values of parameter k covered a larger range with values from 8 to 

35.  Values of k were concentrated with approximately 29 % of iterations having an 

optimum value of 24 (Fig. 3.7b).  The most frequent parameter combination, occurring 

in 28 % of all bootstrap samples, was 3 and 24 for c and k respectively.  Optimum 

parameterizations were concentrated around the most frequent parameterization with 46 

% of all bootstrap samples having optimum parameterizations within one cell from this 

parameter value (Fig. 3.8a).   
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Figure 3.7 Distribution of optimal parameters from External Parameter 
Orthogonalization (EPO) parameterization of 1000 bootstrap iterations for c, the 
number of EPO principal components (Fig. 3.7a), and k, the number of PLS latent 
variables (Fig. 3.7b). 
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Figure 3.8 Results from External Parameter Orthogonalization (EPO) bootstrapping showing the distribution of optimized 
parameters selected from the 1000 iterations of the EPO calibration dataset (Fig. 3.8a) and the average and standard 
deviation (SD) of model root mean squared error (RMSE) for all 1000 iterations of the validation dataset (Fig. 3.8b and 3.8c, 
respectively).  Note the color scale in Fig. 3.8a is logarithmic.  Dashed lines denote the final parameterization used in this 
study.  
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Concentration of selected parameter values c and k for optimum 

parameterizations shows that small perturbations to the EPO calibration data set can lead 

to differences in the optimum parameterization as suggested by internal cross-validation.  

However, across bootstrap samples, there is a clear convergence onto a globally 

parameterization mode of 3 and 24 for c and k, respectively.  Given any random sample 

of spectra used for EPO calibration, there is almost a 50% probability that the optimum 

parameterization for that sample will be within a value of 1 from this global mode.  

Parameterization of the EPO-PLS algorithm is shown to be robust against changes to the 

EPO calibration dataset and minor changes to the sample used to calibrate EPO-PLS will 

likely have only small effects on parameter selection.   

Using the validation datasets from each bootstrap sample, the EPO-PLS 

algorithm was applied using all possible parameterizations of c ranging between 1 and 

20 and k ranging between 1 and 35.  This resulted in 646 sets of EPO-PLS model 

predictions for each bootstrap sample.  The average RMSE for all bootstrap samples is 

shown in Fig. 3.8b.  Model accuracy was highest when parameter c was small, between 

3 and 6.  Provided parameter k was greater than 7 and parameter c was less than 6, 

average RMSE was relatively insensitive to changes in parameter k (Fig. 3.8b).   

Figure 3.8 suggests that the most important parameter in EPO-PLS performance 

is the number of EPO principal components used in estimation of the projection matrix 

(i.e. parameter c).  For EPO-PLS to be effective, the EPO must remove the effects of 

water content from the spectra, requiring an EPO developed using the appropriate 
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number of principal components. The EPO is the most important aspect of EPO-PLS and 

users should focus on estimating the correct number of EPO principal components (c).   

In terms of EPO-PLS parameter selection, these results are promising and 

demonstrate some stability in the EPO-PLS method.  Across all bootstrap samples, 78% 

of samples had optimum parameterizations with values of c between 3 and 6 and values 

of k greater than 7 (Fig. 3.8a).  Given a random sample of spectra used from EPO-PLS 

calibration, there is a high probability the parameterization suggested by internal cross-

validation will yield well performing models with error less than 130 g kg-1.  To guard 

against poor parameterizations, parameterization could be performed on multiple 

permutations or bootstrap samples of the EPO calibration dataset, choosing the best 

performing parameterization from all datasets.  This procedure would only have to be 

performed with a small number of samples.  From the data shown in this study, selecting 

the best parameterization from three permutations of the EPO-calibration dataset would 

have only a 1% chance of yielding an RMSE greater than 130 g kg-1.  

RMSE of PLS models from the bootstrapping analysis (Fig. 3.8b) was lower for 

all parameter combinations than PLS predictions of spectra without EPO (Table 3.2, Fig. 

3.6).  This suggests that even under the poorest parameterizations, EPO-PLS will 

perform better than spectra with no transformation.  If a user happens to calibrate their 

EPO algorithm using a rare sample set that yields poor parameterization, their results 

will still be better than if they had not applied the EPO. 
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3.5 CONCLUSION 

 Application of VisNIR spectroscopy to in-situ spectra has been limited largely 

due to the lack of in-situ spectral libraries and models.  Previous studies have shown that 

the EPO-PLS algorithm can be used to apply air-dry spectral libraries to field-moist soils 

(Ge et al., 2014; Minasny et al., 2011).  The studies of previous EPO investigations 

focused on soils with smectitic mineralogy and the effectiveness of EPO had not been 

established for non-smectitic soils.  Our results show that EPO can remove the effect of 

soil water from field-moist spectra for tropical soils with kaolinitic and ferittic 

minerologies.  PLS predicted clay content improved from 320 to 120 g kg-1 for spectra 

before and after EPO, respectively.  

Bootstrapping analysis was performed to assess the sensitivity of the EPO-PLS 

procedure to changes in the structure of the calibration spectral dataset.  Across all 1000 

random permutations of the calibration dataset, EPO-PLS parameterizations were 

constrained to a small set of values.  Furthermore, small changes to EPO-PLS 

parameterization had little observed effect on model performance.  Provided that 

calibration dataset is representative of the validation dataset, parameterization and 

performance of EPO-PLS is robust to random variation within the calibration dataset.   

Large spectral libraries, those developed at the national or continental level, will 

contain soils of varying mineralogy.  To use these libraries with in-situ spectra, 

processing techniques such as EPO will be needed to remove the effects of soil moisture 

and intactness.  While research has shown that EPO is effective on smectitic soils as well 

as on kaolinitic soils, it is still unclear to what extent mineralogy controls EPO 
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effectiveness.  Further testing of the EPO is needed to determine the role of mineralogy 

on EPO effectiveness and develop techniques for EPO application to datasets containing 

spectra from soils with diverse mineralogy.  
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4. PENETROMETER-MOUNTED VISNIR SPECTROSCOPY: APPLICATION OF 

EPO-PLS TO IN SITU VISNIR SPECTRA  

 

4.1 SUMMARY 

Visible near-infrared spectroscopy (VisNIR) has been used to measure many soil 

properties.  Typically, VisNIR is used on air-dried and ground soils in the laboratory.  

Recent developments VisNIR instrumentation have allowed for the collection of VisNIR 

spectra from in situ soils.  In this study, we demonstrate the viability of an in situ 

VisNIR system.  VisNIR spectra were collected using a penetrometer-mounted VisNIR 

probe.  The penetrometer-mounted VisNIR system has several advantages in that it: 1) 

allows for measurement of soil properties without sample collection, preparation, and 

laboratory analysis and 2) can provide soil measurement at high-depth-resolutions 

(2cm).  We applied an external parameter orthogonalization (EPO) to the in situ spectra 

to remove the effects of soil moisture and other in situ effects from the spectra.  We 

calibrated partial least-squares (PLS) models using spectra from an existing library of 

air-dried and ground spectra.  PLS models were then used to predict clay content of the 

EPO-transformed in situ spectra.  Model results showed good predictive ability for in 

situ spectra with RMSE, bias, and R2 of 88 g kg-1, -15g kg-1, and 0.76, respectively.  A 

site-wise hold of EPO calibration demonstrated that EPO calibrations were robust to 

changes in soil characteristics and parent materials between study areas.   These results 

show that by using the EPO-PLS method, in situ VisNIR is a viable tool for rapid, 

minimally invasive collection of soil data.    
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4.2 INTRODUCTION 

 Despite the continued demand for soil data in applications such as digital soil 

mapping and precision agriculture, these applications are still limited by the availability 

of reliable soil measurements.  Soil data is typically limiting due to the high cost of soil 

sample collection and laboratory analysis.  Laboratory-based spectroscopy systems such 

as visible near-infrared spectroscopy (VisNIR) can reduce the cost of laboratory analysis 

by replacing or supplementing traditional analytical approaches.  Laboratory-based 

VisNIR has been used for prediction of many soil properties including clay content (e.g. 

Chang et al., 2001; Shepard and Walsh, 2002), organic and inorganic carbon content 

(e.g. Shepard and Walsh, 2002; McCarty et al., 2002), cation exchange capacity (e.g. 

Chang et al., 2001; Shepard and Walsh, 2002), and properties primarily related to clay 

content.  Despite the success of laboratory-based VisNIR the method still requires 

collection and preparation of soil samples.  

 To reduce the need for sample collection, several researchers have been 

investigating the use of VisNIR for measurement on in situ soils.  In the most elementary 

approaches, spectrometers are used to measure soils collected from sections of soil cores 

(Ge et al., 2014; Morgan et al., 2009; Waiser et al., 2007) or on soil profiles exposed 

during sampling pit-excavation(Viscarra Rossel et al., 2008).  While these methods were 

successful, the methods still require collection or disturbance of the soil.    

An alternative approach is to build an instrument that can be inserted into the soil 

where VisNIR spectra can be collected for the undisturbed in situ soils.  Ben-Dor et al. 

(2008) developed such an instrument that could be inserted into soil bore-hole.  Once 
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inside the pre-excavated bore-hole, the instrument could collect VisNIR spectra.  The 

basic idea behind this instrument was further refined by equipping soil penetrometers 

with optical instruments capable of measuring the VisNIR reflectance of soil in situ 

(Poggio et al., 2015; Chang et al., 2011).  Penetrometer-mounted VisNIR probes can be 

inserted into the soil without excavation of a soil bore-hole.  Penetrometer-mounted 

VisNIR probes can collect VisNIR spectra at high-depth-resolutions (i.e. 2 to 5 cm) with 

minimal soil disturbance.  If successful, VisNIR-equipped penetrometers could greatly 

reduce the need for expensive traditional soil sampling and laboratory approaches.   

Typically, in VisNIR modeling, prediction models are calibrated using the 

collection of spectra measured from soils of known properties.  These spectral 

collections, referred to as spectral libraries, can contain thousands to tens of thousands of 

soil spectra (Viscarra Rossel et al., 2016; Brown 2007) and represent a substantial 

financial investment.  The vast majority of reference spectra in spectral libraries are 

collected from soils that have been air-dried and ground.  As major challenge for in situ 

VisNIR is that in situ spectra are altered by the effects of soil moisture, ambient 

temperatures, and soil structure (Bricklemyer et al., 2010).  These effects, henceforth 

referred to as in situ effects, alter the spectra enough that models calibrated with existing 

spectral libraries (i.e. calibrated with spectra from air-dried and ground soils) cannot be 

used successfully on in situ spectra (Ge et al., 2014). 

One approach for VisNIR modeling with in situ spectra is to generate new 

spectral libraries specifically for in situ spectra.  While this approach has been 

implemented (Morgan et al., 2009; Waiser et al., 2007), it costly and can still result in 
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errors due to the effects of differential soil moisture (Waiser et al., 2007).  An alternative 

approach is to remove the in situ effects from the spectra using a spectral projection (Ji 

et al., 2015; Ackerson et al., 2015; Ge et al., 2014; Minasny et al., 2011).  In this study 

we used a projection called an external parameter orthogonalization (EPO).  The EPO 

rotates spectra in such a way the in situ effects are removed from the spectra (Roger et 

al., 2003).  EPO has been used to remove soil-moisture effects from ground soil samples 

(Minasny et al., 2011) and spectra from intact soil cores (Ackerson et al., 2015; Ge et al., 

2014).  By removing in situ effects from spectra using the EPO, we can used models 

calibrated with an existing library of spectra from air-dried and ground soils.        

In this study we will attempt to demonstrate that penetrometer-mounted VisNIR 

probe is a viable tool for measuring in situ soil properties.  To do this, we collected two 

sets of VisNIR spectra. One set of spectra was collected from in situ soils using a 

penetrometer-mounted VisNIR probe.  The second set of spectra was collected from the 

same soils in the air-dried and ground condition.  Using this data we test: 1) that the EPO 

can remove the in situ effects from in situ spectra and 2) that after application of EPO, 

clay content of in situ spectra can be estimated with models calibrated using a spectral 

library of air-dried and ground spectra.  We will compare the performance of predictions 

made from in situ spectra with the performance made using spectra from the same soils 

in the air-dried and ground condition.   



 

80 

 

4.3 MATERIALS AND METHODS 

4.3.1 Instrumentation for collection of in situ VisNIR spectra 

 A penetrometer-mounted VisNIR probe was used to collect in situ VisNIR 

spectra.  The probe is similar to that used by Poggio et al. (2015).  The probe consists of 

a stainless steel outer case, 32 mm in diameter (Fig. 4.1).  The probe is attached to a 

hollow 25-mm diameter steel tube 1.2 meters in length.  This tube is then attached to a 

hydraulic soil probe (Giddings Machine, Fort Collins CO) which is used to insert the 

probe into the soil.  The tube is hollow to allow power supply cables and optical fibers to 

extend from the soil surface to the probe inside the tube itself.   

Inside the stainless steel case is a lamp which generates the initial light source for 

the probe.  This light is reflected via a mirror across a sapphire window mounted on the 

side-wall of the spectrometer (Fig. 4.1).   The light then interacts with soil and is 

reflected back into the probe where it is intercepted by an optical fiber.  The optical 

fiber, housed inside the hollow steel tube, connects the probe to the spectrometer located 

on the soil surface.  The optical fiber transmits light reflected from the soil to the 

spectrometer.  We used an ASD AgriSpec spectroradiometer (Analytical Spectral 

Devices Inc., Boulder, Colorado, USA) for collection of all spectra used in this study.  

After initial setup, collection of VisNIR spectra using the penetrometer-mounted 

VisNIR probe is straight-forward.  The probe is first calibrated by placing a spectralon 

panel against the sapphire window and following typical VisNIR spectroradiometer 

calibration procedures (i.e. instrument optimization and standardization).  Next, using 

the hydraulic soil probe, the instrument is inserted 5 cm into the soil and a spectra is 
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collected.  The probe is then inserted an additional 5 cm into the soil and a second 

spectra is collected.  This procedure is repeated on 5-cm intervals until the probe has 

traveled the maximum distance of 120 cm.    

 

 

Figure 4.1 Schematic of the penetrometer-mounted VisNIR pope.  The upper photograph 
shows the probe exterior and the lower diagram shows the internal structure of the 
probe.  White arrows represent the path of light inside the probe.   

 

4.3.2 Soil sampling 

 The penetrometer mounted VisNIR probe was tested at four sampling areas in 

Burleson and Brazos counties in the state of Texas, United Sates (Fig. 4.2).  The 

sampling areas consist of a floodplain, a stream terrace, and two upland locations.  These 

sampling locations were chosen because they offer a diverse range of parent materials 

and geologic ages.  Soils on the floodplain and stream terrace were developed in alluvial 

materials dating from the Holocene and Pleistocene epochs, respectively.   Soils from the 
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upland areas were developed in coastal plain sediments of the Eocen-aged Yegua 

formation (Soil Survey Staff, 2002).       

 

 

Figure 4.2  Map of the sampling areas where soil samples and in situ spectra were 
collected.  The inset map shows the location of the sample areas within the state of 
Texas.  The map on the right shows the location of each sampling location using white 
circles.  The color of the map background represents the elevation of the sampling area 
in m.  

 

 The soil moisture and temperature regimes of the sampling area are Usitic and 

Thermic, respectively.  The clay minerology of the soils in the stream terrace and 

uplands is often smectitic, although soils located in the floodplain generally have mixed 
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minerologies (e.g mica, smectite, and kaolinite).  In the floodplain, soils are mapped 

predominantly as Vertisols and Inceptisols.  On the stream terrace and upland, soils are 

mapped as Alfisols, Vertisols, and their respective intergrades (Soil Survey Staff, 2002).         

        Within each sampling area, we chose several sampling locations, in a fashion that 

maximized the diversity of soil properties observed within each study site.  At the stream 

terrace, where soils exhibited the largest range in physical and morphological properties, 

20 locations were sampled.  At the floodplain and uplands where soils were less 

morphologically and physically diverse, fewer locations were sampled.  Seven locations 

were sample at the floodplain and six locations were sampled at each of the upland sites. 

 At each sampling location, we collected in situ VisNIR spectra using the 

penetrometer-mounted VisNIR probe.  Spectra were collected on 5-cm intervals between 

5 and 120 cm, and two profiles of spectra were collected at each sampling location.  

These profiles were separated by a horizontal distance of no more than 10 cm.  Spectra 

at each depth were averaged across both profiles.  In addition to collection of in situ 

VisNIR spectra, a soil core was also collected. 

We divided soil cores into 5-cm segments corresponding to the depths at which 

in situ VisNIR spectra were collected.  Segments were air-dried and ground to pass 

through a 2-mm sieve.  From every distinct horizon from each core, a representative 5-

cm segment was selected.  Clay content and particle size class of each selected segment 

was measured using the pipette method (Gee and Orr, 2002).   A summary of the results 

for particle size analysis for each sample area is shown in Table 4.1.  
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For all the sampled areas combined, every USDA soil textural class is 

represented (Fig. 4.3).  In general, the stream terrace and upland sites tended to be sandy, 

while the floodplain sites tended to be silty.  Each area represented a large range in clay 

contents with all areas having samples with clay contents greater than 40 percent and 

less than 10 percent.  

 

 

Figure 4.3 Soil texture of each study area plotted on a USDA textural triangle.  Solid 
lines represent the boundaries of USDA textural classes. 
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For each soil sample where clay content was measured, VisNIR spectra were 

collected from air-dried and ground soils in the laboratory.  Spectra were collected using 

the same spectrometer that was used for collection of in situ spectra (i.e. ASD 

AgriSpec).  These spectra, collected from air-dry and ground soil, represent the VisNIR 

reflectance from soils collected under laboratory conditions.  Spectra collected from air-

dried and ground soil in the laboratory will henceforth be referred to as laboratory 

spectra.  For each laboratory spectra, there is a corresponding spectra collected from the 

same soil collected under in situ conditions.  The resulting dataset consisted of a series 

of 155 pairs of VisNIR spectra from in situ and air-dried and ground soils.   

4.3.3 Spectral datasets 

 As outlined in the previous section, we collected VisNIR spectra from soil under 

in situ and laboratory conditions.  This collection of paired spectra were used to test the 

effectiveness of the penetrometer-mounted VisNIR for predictions of clay content.  The 

data were divided into four separate datasets by sampling area.  Clay content of soils 

from each dataset are summarized in Table 4.1.   

 Partial least squares modeling (PLS) was used to translate spectral data in to 

predictions of clay content.  Partial least squares models were calibrated using the PLS 

package in the stastical software R (R Core Team, 2015).  To calibrate PLS models, we 

used the Texas Soil Spectral Library (TSSL), which consists of spectra from over 2,000 

soils collected across the state of Texas.  Spectra in the TSSL were collected from soil 

under laboratory conditions (i.e. air-dried and ground soils).  For further details on the 

TSSL readers are directed to Ge at al. (2014) and Ackerson et al. (2016).    
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Prior to analysis, we filtered all spectra using the Savitzky-Golay transformation 

with a second order filter and a window size of 11 nm (Savitzky and Golay, 1964). To 

order to remove the regions of poor signal to noise ratio, reflectance from wavelengths 

below 500 nm and above 2450 nmwere removed.  To reduce the size of the data, spectra 

were resampled on 10-nm intervals. Finally, the filtered reflectance spectra were 

transformed to absorbance spectra (log 1/reflectance). 

 

Table 4.1 Clay content summary statistics for the partial least squares (PLS) calibration 
spectral library (Texas Soil Spectral Library, TSSL) and each study area. 

Dataset Number of 
Spectra Minimum Median Maximum Standard 

Deviation 
----------- -------- ------------------------------g kg-1------------------------------ 
TSSL† 2022 0 276 882 200 
Terrace 83 27 245 531 152 
Floodplain 25 93 322 636 144 
Upland1 24 67 285 537 130 
Upland2 23 34 294 681 172 

 

4.3.4 External parameter orthogonalization (EPO) 

 As mentioned in previous sections, the major limitation to the use of in situ 

VisNIR is that in situ spectra are altered by the effects of soil moisture, ambient 

temperatures, and soil structure.   By correcting for these in situ effects, we can use 

spectral models calibrated on existing laboratory spectral libraries to make predictions 

on in situ spectra.  To remove in situ effects from the spectra collected using the 

penetrometer-mounted VisNIR probe, used an External Parameter Orthogonalization 

(EPO).  
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 The EPO, developed by Roger et al. (2003), can be used to remove unwanted 

effects from VisNIR spectra.  While Roger et al. (2003) used the EPO to remove 

temperature effects from VisNIR spectra of fruit juices, EPO has been used to 

standardize between VisNIR instruments (Amat-Tosello et al., 2009) and remove soil 

moisture effects form soil spectra (Minasny et al., 2009).  External parameter 

orthagonalization has been used to correct for in situ effects for soil spectra in soils from 

the United States (Ge et al., 2014) and tropical soils (Ackerson et al., 2015).  The EPO 

has yet to be tested on spectra collected using a penetrometer-mounted VisNIR probe.   

EPO removes unwanted spectral effects by rotating or projecting VisNIR spectra 

in a way that orthogonalizes the spectra to the effects of interest.  Essentially, the EPO 

removes in situ effects by repositioning spectra in such a way that in situ effects are no 

longer apparent in the spectra.  The orthogonalization is achieved by multiplying the 

spectra by a projection matrix and estimation of the projection matrix is the critical step 

in the EPO procedure.   

To estimate the EPO projection matrix, a spectral transfer dataset is needed.  The 

spectral transfer dataset consists of spectra from the same soil measured under in situ 

and laboratory condition.  Estimation of the projection matrix is achieved by first 

calculating difference matrix, 𝑫𝑫,  between in situ and laboratory spectra from the 

spectral transfer dataset: 

𝑫𝑫 =  𝑿𝑿𝒊𝒊 − 𝑿𝑿𝟎𝟎  , 
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where 𝑿𝑿𝒊𝒊 and  𝑿𝑿𝟎𝟎  are the in situ and laboratory spectra, respectively.  𝑿𝑿𝒊𝒊,  𝑿𝑿𝟎𝟎, and  𝑫𝑫 

have dimensions of n by p where n is the number of samples in the dataset and p is the 

number of wavelengths.   

Next, the first c Eigen vectors the matrix 𝑫𝑫𝑻𝑻𝑫𝑫 are selected.  The parameter c is 

the only parameter that needs to be calibrated for the EPO.  Details of the EPO 

calibration are discussed in section 4.5. Using these Eigen vectors, we construct the p by 

c dimensioned matrix 𝑽𝑽𝒔𝒔, the columns of which consist of the c Eigen vectors.  Lastly, 

we can estimate the projection matrix 𝑷𝑷 via:  

𝑷𝑷 =  𝑰𝑰 − 𝑽𝑽𝒔𝒔𝑽𝑽𝒔𝒔𝑻𝑻 , 

where 𝑰𝑰 is the p by p identity matrix.  The EPO projection is applied to the in situ data 

and to the laboratory data by multiplying each set of spectra by the matrix 𝑷𝑷.  A major 

benefit of the EPO method is that removal of in situ effects is accomplished without a 

priori information on the soil water content of in situ spectra.  Clay content can be 

estimated from EPO-projected in situ spectra using PLS models calibrated using EPO-

projected laboratory spectra from the TSSL.  EPO-PLS predictions can be made without 

auxiliary information on the soil water content of the soil or water content-specific PLS 

calibrations.   

4.3.5 EPO calibration and testing 

 Calibration of the EPO required estimation of the parameter c, the number of 

Eigen vectors used for estimation of the projection matrix.  In addition, to calibrating the 

EPO, PLS model also need to be calibrated.  Calibration of PLS models requires 

estimation of the parameter k, optimum number of latent variables in the PLS model.  To 
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determine the values of c and k, a cross validation procedure was used.  The cross 

validation was performed using a single set of transfer spectra.   Below is a brief outline 

of the cross-validation procedure: 

1. An EPO projection matrix is estimated using the spectra from the transfer dataset 

with the parameter c equal to one. 

2. The TSSL and spectra from the transfer dataset are projected using the projection 

estimated in step 1.  

3. Using the EPO-projected TSSL, a PLS model is calibrated for k equal to one. 

4. The PLS model from step 3 is used to predict the clay content of EPO-projected 

spectra from the transfer dataset. 

5. The root-mean squared error of PLS predictions in step 4 is calculated.     

6. Steps 4 through 5 are repeated for values of k ranging from 1 to 15. 

7. Steps 1 through 6 are repeated for values of c ranging from 1 to 10. 

Based on the cross validation procedure, the values of c and k that minimize the RMSE 

of the transfer dataset are then used in subsequent EPO and PLS modeling.  

 To test the effectiveness of the EPO on in situ spectra collected using the 

penetrometer-mounted VisNIR probe, a site-wise holdout validation process was used.  

For site-wise holdout, the EPO-PLS algorithm is calibrated using spectra from all but 

one of the sampling areas.  The EPO-PLS algorithm is then tested using the remaining 

sampling area.  For example, all spectra from the floodplain area would be reserved and 

the EPO-PLS algorithm would be calibrated using spectra from the remaining sites (i.e. 
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stream terrace, and upland 1 and upland 2).  The calibrated EPO-PLS algorithm would 

then be tested on spectra from the floodplain.   

 Site-wise holdout validation is a rigorous validation procedure.  By calibrating 

the EPO-PLS algorithm on soils that are dramatically different from the soils used to 

validate the algorithm, there is little change of EPO-PLS performance being linked to 

site-specific interactions.  In other words, site-wise holdout gives us the most confidence 

that the performance of the EPO-PLS algorithm is the result of a true orthogonalization 

rather than a site-specific correlation.   All the EPO-PLS results shown in this paper 

were the result of site-wise validation.  

 The effectiveness of the EPO-PLS algorithm was assessed in terms of root-mean 

squared error (RMSE), bias, and the coefficient of determination (R2).  RMSE was 

calculates via: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑛𝑛
∑(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2, 

where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the ith paired observations from populations 𝑋𝑋 and 𝑌𝑌 of measured 

and predicted values, respectively and 𝑛𝑛 is the number of observation pairs.  A RMSE 

value represents the accuracy of the EPO-PLS algorithm. 

Bias, which represents the systematic over or under prediction of the EPO-PLS 

algorithm, was calculated via: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  1
𝑛𝑛
∑(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖). 

And R2 was calculated via: 

𝑅𝑅2 = 1 − ∑(𝑦𝑦𝑖𝑖−𝑓𝑓𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖−𝑦𝑦�)2 , 
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where 𝑓𝑓𝑖𝑖 is the value of the least squares regression line between 𝑋𝑋 and 𝑌𝑌.  The value of 

R2 used in this discussion does not represent the R2 of the EPO-PLS predictions per se, 

but rather represents the R2 of a least-squares regression line between EPO-PLS 

predicted clay content and the measured clay content.  In this way, the values of R2 used 

in this analysis are not effected by any bias in EPO-PLS predictions and therefore can 

represent the precision or the EPO-PLS algorithm.    

4.4 RESULTS AND DISCUSSION 

4.4.1 Principle component analysis  

 We performed principle component analysis (PCA) on the laboratory VisNIR 

spectra from all five datasets (Fig. 4.4).   The first two principle components (PCs) 

summarized the majority of the variability in the data, accounting for 94% of the total 

variance.  The dataset covering the largest extent in PC space was the TSSL.  This is not 

surprising as the TSSL contains spectra from a large number of soils covering a large 

geographic area.  The centroid of the TSSL lies outside the convex hull of each of the 

four remaining datasets of laboratory spectra indicating that majority of spectra in the 

TSSL are unlike spectra from the other datasets.  PLS models calibrated with the TSSL 

will be optimized for spectra represented in the TSSL and therefore PLS models 

calibrated with the TSSL may show less than optimal performance for other datasets.  

This is a common problem with using large regional-scale spectral libraries such as the 

TSSL; the spectral diversity of regional models may lead to impaired model 

performance (Viscarra-Rossel et al., 2016).        
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Figure 4.4 Principle component biplots for laboratory spectra for each study area and 
the Texas Soil Spectral library (TSSL).  Lines represent the convex hull of each dataset 
and circles represent the centroids of each dataset. 

 

The four datasets used for EPO testing, the stream terrace, floodplain, and upland 

1 and 2, covered a much smaller region of PC space than the TSSL.  These datasets were 

constrained to a relatively confined region of PC space with all four datasets overlapping 



 

93 

 

somewhat.  The stream terrace, and upland datasets overlapped the most in PC space 

with the convex hull of each dataset containing the centroids of each other dataset.  

Of the four datasets for EPO testing, the floodplain dataset is the most spectrally 

unique.  The centroid of the floodplain dataset lies outside the convex hull of the other 

datasets in the PC.  Additionally, the floodplain dataset covers a much smaller region of 

PC space than the remaining three EPO test datasets.  These factors indicate that the 

soils in floodplain dataset are slightly different than the other datasets.  Observed 

differences are likely due to the fact the floodplain soils are much younger than the other 

datasets and are therefore less weathered. Floodplain soils contain relatively large 

proportion of silt and very little sand (Fig. 4.3).  Typically, soils in the Brazos river 

floodplain are classified as having mixed minerologies while on the surrounding terraces 

and uplands, minerologies are typically classified as smectitic (Soil survey staff, 2002).  

When evaluating the EPO and PLS models, differences in the spectral properties of soils 

from the floodplain site may cause the EPO-PLS algorithm to behave differently than for 

spectra from the remaining study areas. 

 A second PCA on the in situ and laboratory spectra from the four study areas 

prior to application of the EPO was also performed (Fig. 4.5).  For each study area, the 

in situ spectra are separated from laboratory spectra in PC space.  In only the stream 

terrace (Fig. 4.5a) and upland 1 areas (Fig. 4.5b) do the convex hulls of the in situ and 

laboratory spectra overlap.  This overlap however, is quite small consisting of one or two 

spectra.  Without the EPO, the differences between in situ and laboratory spectra will 

likely result in differing PLS model performance for the in situ and laboratory spectra.   
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Figure 4.5 Principle component biplots of in situ and laboratory spectra for each study 
area prior to application of External Parameter Orthogonalization (EPO).  Solid and 
dashed lines represent the convex hull of laboratory and in situ spectra, respectively.  
The centroids of laboratory and in situ spectra are represented by the “X”, and “+” 
signs, respectively.  Data from the stream terrace, floodplain, upland 1, and upland 2 
areas are represented in Figs. 4.5a, 4.5b, 4.5c, and 4.5d, respectively. 

The first and second PCs of the in situ and laboratory spectra prior to 

transformation with the EPO represent 84 and 15% of the variance in the spectra, 
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respectively.  The in situ and laboratory spectra span the same range in the first 

component, with component scores ranging from -20 to 40.   However the in situ and 

laboratory spectra occupy different ranges in the second PC with scores ranging from -

15 to 5 and 5 to 10 for the laboratory and in situ spectra, respectably.  This difference in 

the range of component score is why the second PC appears to be a superior 

discriminator of in situ and laboratory spectra.  The second PC contains mostly 

information on the in situ effects on the spectra and this component comprises 15% of 

the variability in the spectra.  

     After application of the EPO, we performed a final PCA on the EPO-

transformed laboratory and in situ spectra from all four study areas (Fig. 4.6).  As 

opposed to the PCA prior to application of the EPO (Fig. 4.5), there is little discernable 

difference between EPO-transformed laboratory and in situ spectra in PC space.  For 

each study area, the convex hulls of the in situ and laboratory spectra overlap.  The 

floodplain is the only study area where the centroid of the laboratory data is not 

contained within the convex hull of the in situ data.  This discrepancy may be due to the 

fact that the laboratory spectra from the floodplain site inherently different from the 

laboratory spectra of the remaining sites (Fig. 4.4) and the EPO is not fully accounting 

for in situ effect on spectra from the floodplain area.  
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Figure 4.6 Principle component biplots of in situ and laboratory spectra for each study 
area after application of External Parameter Orthogonalization (EPO).  Solid and 
dashed lines represent the convex hull of laboratory and in situ spectra, respectively.  
The centroids of laboratory and in situ spectra are represented by the “X”, and “+” 
signs, respectively.  Data from the stream terrace, floodplain, upland 1, and upland 2 
areas are represented in Figs. 4.6a, 4.6b, 4.6c, and 4.6d, respectively. 

 

 The first and second PC of the EPO-transformed spectra account for 99 and 1 % 

of the variability of the spectra, respectively.  The fact that the first PC accounts for the 
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majority of the variability is due to the orthogonalization performed by the EPO.   One 

way to conceptualize the EPO is that the EPO removes or subtracts the portion of the 

spectra effected by in situ effects.  In the case of the spectra prior to EPO-transformation, 

this portion of the spectra would be analogous to the second PC which accounted for 

15% of the variability in the spectra.  If we were to remove this 15% of spectral 

variability, the remaining components would account for larger proportions of the total 

variability.  For example, the first PC prior to EPO covered 84% of the variability, after 

EPO (i.e. removal of the second PC) the same component covered 99% of the variability 

of the spectra (i.e. 84/(100-15) = 99).    

4.4.2 Partial least-squares (PLS) performance on laboratory and in situ spectra 

without EPO 

We tested the performance of PLS for predicting clay content on laboratory and 

in situ spectra prior to application of the EPO (Fig. 4.7, Table 4.2).  The PLS model, 

henceforth referred to as the non-EPO model, was calibrated using the laboratory spectra 

from TSSL that had not been transformed using the EPO.  The non-EPO model 

consisted of 15 PLS latent variables.  We selected this number of latent variables by 

minimization of clay content prediction RMSE from a five-fold cross-validation using 

only the TSSL data.  During cross-validation, the non-EPO model had an RMSE and 

bias of 92 and 1 g kg-1 and an R2 of 0.87 (Table 4.2).  While this number of latent 

variables is high, models of similar size have been used previously (e.g. Ge at al., 2015).  
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The high number of latent variables needed for adequate prediction likely reflects the 

spectral diversity in the TSSL.   

 

Figure 4.7 Partial least squares predictions of clay content of laboratory and in situ 
spectra prior to application of the External Parameter Orthogonalization (EPO).  
Prediction for laboratory and in situ spectra are represented by the circles and X’s, 
respectively.  The solid line represents the 1:1 correspondence line.  Data from the 
stream terrace, floodplain, upland 1, and upland 2 are represented in Figs. 4.7a, 4.7b, 
4.7c, and 4.7d; respectively. 
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Table 4.2 Partial least squares model performance for clay content predictions prior to 
application of the external parameter orthogonalization.. 

Sample Area 
Laboratory spectra In situ spectra 

RMSE† Bias R2 RMSE† Bias R2 
------------- ----g kg-1---- ------ ----g kg-1---- ------ 
TSSL‡ 92 1 0.87 - - - 
Terrace 81 -36 0.77 374 305 0.29 
Floodplain 116 -104 0.97 418 382 0.55 
Upland1 41 -18 0.93 252 185 0.37 
Upland2 42 -12 0.94 317 282 0.59 

†RMSE is the root mean squared error 
‡TSSL is the Texas soil spectral library.  Results for the TSSL were generated using a 
five-fold cross-validation. 
 

We tested the effectiveness of the non-EPO model on both the laboratory and in 

situ spectra from each sample area.  In general predictions made using the laboratory 

spectra were good (Fig. 4.7, Table 4.3).  For all sample areas except the floodplain, 

RMSE of laboratory spectra was less than that of the TSSL cross-validation.  The study 

area with the poorest model performance on laboratory spectra was the floodplain.  

Despite having the highest R2 (0.93) of all study locations, the floodplain area had the 

highest RMSE (116 g kg-1).  This elevated RMSE is the result of the large bias in model 

predictions; -104 g kg-1.  We were unable to determine any concrete source of this 

systematic error, however these results are not wholly unsurprising given that floodplain 

spectra were slightly separated from spectra at the other sites in PC space (Fig. 4.4).  

This separation in PC space suggests that some underlying spectral variation at the 

floodplain sites is unaccounted for in the non-EPO model thus, generating a systematic 

error in clay content predictions.  The underlying source of spectral variation deviation 

from the TSSL be due to the relative paucity of sand in the floodplain soils (Fig. 4.3).   
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While performance of the non-EPO model on laboratory spectra was generally 

good, the model performed more poorly on untransformed in situ spectra.  RMSE for in 

situ spectra ranged from 252 to 418 g kg-1 and bias ranged from 185 to 382 g kg-1.  This 

result is consistent with other results were untransformed models were applied to in situ 

spectra (Ji et al., 2016; Ge at al., 2015, Minasny et al., 2009).  Without the EPO or other 

transformation techniques, successfully predicting the clay content from in situ spectra is 

unlikely.    

 
Table 4.3 Partial least squares model performance for clay content predictions after 
application of the external parameter orthogonalization. 

Sample Area 
Laboratory spectra In situ spectra 

RMSE† Bias R2 RMSE† Bias R2 
------------- ----g kg-1---- ------ ----g kg-1---- ------ 
Terrace 72 -9 0.78 97 4 0.60 
Floodplain 196 -176 0.92 86 -53 0.82 
Upland1 85 69 0.85 70 -14 0.74 
Upland2 63 30 0.92 98 3 0.72 

† RMSE is the root mean squared error. 
 

4.4.3 PLS performance for in situ spectra with EPO 

 We tested the performance of the EPO by evaluating the accuracy and precision 

of clay content predictions of PLS on EPO-transformed spectra (Fig. 4.8, Table 4.3).  As 

mentioned in section 4.5, a whole-site holdout was used for EPO evaluation.  Because a 

separate cross-validation was used for each study area, the EPO projection and 

accompanying PLS models were calibrated for each cross validation.  The EPO and PLS 

calibrations required estimation of the appropriate number of EPO Eigen vectors, and 
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PLS latent variables; parameters c and k, respectively.   For all cross-validations, 

parameter optimization resulted in the same values for c and k: 1, and 5, respectively.    

 
 
Figure 4.8 Partial least squares predictions of clay content of laboratory and in situ 
spectra prior to application of the External Parameter Orthogonalization (EPO).  
Prediction for laboratory and in situ spectra are represented by the circles and X’s, 
respectively.  The solid line represents the 1:1 correspondence line.  Data from the 
stream terrace, floodplain, upland 1, and upland 2 are represented in Figs. 4.8a, 4.8b, 
4.8c, and 4.8d; respectively. 
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 When the EPO-PLS algorithm was applied to in situ spectra, the prediction 

accuracy and precision improved compared to predictions for untransformed in situ 

spectra (Fig. 4.8, Table 4.3).  For each study area, the RMSE, bias, and R2 of EPO-PLS 

predictions were improved compared to predictions for the same in situ spectra without 

application of the EPO.  RMSE for EPO-transformed in situ spectra ranged from 98 to 

70 g kg-1 and R2 ranged from 0.60 to 0.82.   In general, the performance of EPO-PLS 

algorithm was similar the performance of the cross-validation of the laboratory spectral 

model.  For two out of four sites, RMSE of EPO-PLS predictions for in situ spectra was 

less than that of the cross-validated TSSL predictions.   

 In general, EPO-PLS predictions for in situ spectra (Fig. 4.7, Table 4.3) were not 

as accurate or precise as PLS predictions for non-EPO-transformed laboratory spectra of 

the same soils (Fig. 4.6, Table 4.2).  This is not wholly surprising as the laboratory 

spectra were unadulterated by in situ effects and were not subjected to any extraneous 

transformations (i.e. EPO).  However, for spectra collected from the floodplain area, the 

bias of EPO-PLS predictions for in situ spectra in significantly lower than that of 

laboratory spectra.  This result suggests, that under some circumstances, spectral 

projection can improve model performance.    

If the EPO is an effective tool it must remove enough of the in situ effects from 

the spectra to make accurate and precise predictions possible.  However, whenever 

transforming or rotating a spectra, there is a chance that useful information may be lost.  

This loss of useful information would result in loss of predictive power for spectral 

models.  One way to assess the possible loss of such information is to apply the EPO 
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transformation to laboratory spectra.  Because the laboratory spectra are unaffected by in 

situ effects, any decrease in PLS performance on EPO-transformed laboratory spectra 

relative to non-EPO transformed laboratory spectra can be attributed to over correction 

by the EPO. 

 To test whether the EPO is over-correcting spectra we applied the EPO-PLS 

algorithm to laboratory spectra for each of the study areas (Fig. 4.8, Table 4.3).  With the 

exception of the stream terrace site, where performance did not change, there is a general 

pattern of slightly decreasing model performance for prediction on laboratory spectra 

after application of the EPO.  It should be noted that while accuracy and precision of 

predictions for laboratory spectra did decrease after application of the EPO, the 

performance at these sites still exceeded the performance of the spectra library during 

internal cross-validation.  This suggests that, even if the EPO is removing some spectral 

information critical to clay content prediction, the resulting decrease PLS performance 

does not significantly degrade model performance.  EPO-transformed models are 

performing as well as we could expect given the performance of TSSL model cross-

validation. 

4.4.4 High-depth-resolution profiles of clay content 

 One advantage of the penetrometer-mounted VisNIR probe is that the instrument 

allows collection of VisNIR spectra at high-depth-resolutions.  Spectra can be collected 

at depth resolutions of 2 to 5 cm.  These high-depth-resolution spectral datasets can be 

used to construct depth-profiles of soil properties (Fig. 4.9).  High-depth-resolution 

profiles of soil clay content can be used to identify morphological features in a soil 
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profile.  For example, the soil profile shown in Fig. 4.9a, was collected from a location 

that had been mapped as Silawa fine sandy loam;  a soil classified as a Ultic Paleustalf.  

The VisNIR profile exhibits two distinct horizons; an upper horizon with low clay 

content, and a lower high-clay argillic horizon.   

 

Figure 4.9 Example high-resolution-depth profiles of soil clay content.  Open circles 
represent clay content predictions made using the laboratory spectrta without external 
parameter orthogonalization (EPO) and solid circles represent clay content predictions 
made using in situ spectra with the EPO.  Measured values for clay content are 
represented by the X’s. 
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Typically in soil sampling, soils are sampled on fixed intervals or by horizon.  

Soil from within a horizon or depth interval is homogenized and analyzed as a discrete 

unit.   One disadvantage of this approach is that analysis of a homogenized layer 

provides no data on the variability of soil properties within a layer.  High-depth-

resolution soil data from the penetrometer-mounted VisNIR probe can provide data on 

the variability of soil within a defined depth-interval.  Coupling high-depth-resolution 

VisNIR with traditional soil sampling could provide a more comprehensive 

measurement of soil profile properties; supplying heretofore unavailable data on within 

layer variability of soil properties. 

4.5  CONCLUSIONS 

 In this study we assessed the efficacy of a penetrometer-mounted VisNIR probe 

for collection of VisNIR spectra from soils in situ.  Samples were collected from 38 

sampling locations dispersed across four study areas in central Texas.  For each 

sampling location, VisNIR spectra were collected in situ using the penetrometer-

mounted probe and from air-dried and ground soil cores.  An EPO was applied to in situ 

VisNIR spectra to remove the effects of soil moisture and intactness from the spectra.  

After application of the EPO, PLS models calibrated using a spectral library containing 

only spectra from air-dried and ground soils were used to predict clay content from in 

situ spectra.   

 The PLS models performed well for air-dried and ground spectra with average 

RMSE and R2 across all sampling areas of 70 g kg-1 and 0.86, respectively.  Prior to 

application of the EPO, PLS was unable to accurately predict clay content from in situ 
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spectra.  After application of the EPO, PLS performance on in situ spectra was quite 

good with average RMSE and R2 across all sampling areas of 88 g kg-1 and 0.76, 

respectively.  While PLS performance for in situ spectra was slightly poorer than that of 

air-dried and ground spectra, the performance of in situ predictions is comparable to that 

of the performance of the spectral library under cross-validation.   

 These results demonstrate that, with application of the EPO, in situ spectra 

collected using a penetrometer-mounted VisNIR probe can be used for prediction of clay 

content.  The EPO has two distinct advantages.  Firstly, EPO correction does not require 

information on the water content of the soil and the EPO can therefore be applied 

without collecting additional measurements from the soil (i.e. soil water content).  

Secondly, because the EPO removes the effect of soil water and other in situ effects 

from the spectra, PLS models calibrated using spectra from air-dried and ground soils 

can be applied to in situ data.  This allows for the utilization existing spectral libraries 

for PLS model calibration, thus negating the need for collection of additional calibration 

data specifically for in situ spectra. 

 By combining the penetrometer-mounted VisNIR probe with the EPO, we have 

established a system capable of in situ measurements of soil clay content along a profile 

at high-depth-resolutions.  While further research is needed to assess the ability of the 

system to measure other soil properties (e.g. organic carbon content, cation exchange 

capacity, etc.), the current system represents a strong forward step in soil proximal 

sensing.  In situ VisNIR diminishes the need for traditional soil sampling and laboratory 

analysis and therefore greatly reduces the operational costs of soil survey applications.  
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By combining an in situ VisNIR system with existing proximal and remote sensors, 

high-resolution soil maps for precision agriculture will be easier and cheaper to develop.  
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5. CONCLUSIONS 

 

In this study we demonstrated the viability of a penetrometer-mounted VisNIR 

system for in situ measurement of soil properties.  The penetrometer-mounted system is 

capable of collecting VisNIR spectra for in situ soils at high-depth-resolutions.  These 

spectra can be used for predicting soil properties of the in situ soils.  The penetrometer-

mounted system can be used to measure soil properties without the need to collect, 

prepare, and analyze soil samples.  The in situ VisNIR system can be used in 

conjunction with or in lieu of more costly and time-intensive soil measurement 

techniques.  

In order to use in situ spectra for prediction of soil properties, we needed 

multivariate models that could translate the spectral data into soils information.  

Typically these multivariate models are calibrated using a spectral library consisting of 

VisNIR spectra collected from soil of known properties.  Existing spectral libraries 

however, were developed for laboratory spectroscopy where soils have been air-dried 

and ground.  Because in situ spectra are influenced by in situ effects resulting from the 

presence soil moisture and structure, in situ VisNIR spectra were incompatible with 

existing spectral libraries.  If we could remove these in situ effects from in situ spectra 

we could utilize existing spectral libraries for prediction on in situ spectra.  

To remove in situ effects from in situ spectra, we evaluated two spectral 

projection techniques, direct standardization (DS) and external parameter 

orthogonalization (EPO).  We tested the ability of each of these techniques to remove in 
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situ effects from VisNIR spectra.  We also tested the performance of model predictions 

made using spectra transformed using both techniques.  EPO out performed DS in all 

respects and was a superior technique.  

If in situ system is to be widely adopted, the system needs to be effective on a 

myriad of soil types.  Because the spectral projection techniques such as the EPO are 

integral to the success of the in situ VisNIR system, we need to test the effectiveness of 

the EPO on multiple soil types.  Our previous experience demonstrated that the EPO 

worked well on smectitic soils, however, it was unclear how well the EPO would work 

with soils of different moinerologies. To this aim, we test the EPO on in situ spectra 

collected from tropical soils with oxic and kaolinitic minerologies. These tests showed 

once again that the EPO was capable of removing in sit effects from VisNIR spectra and 

the EPO-projected spectra could be utilized for prediction of soil properties.   

With a suitable projection technique (i.e. the EPO), we directed our attention to a 

field test of the penetrometer-mounted VisNIR probe.  Using the probe, we collected in 

situ VisNIR spectra from four study areas in Brazos and Burleson counties, Texas.  

These spectra were used to calibrate and test the EPO.  To calibrate partial least-squares 

models, we utilized an existing spectral library of spectra from air-dried and ground 

soils, the Texas Soil Spectral Library (TSSL).  By using the EPO to remove in situ 

effects from the in situ spectra, we were able to use models calibrated with the TSSL to 

predict the clay content of soils from in situ spectra.  The success of this field-test 

demonstrated that, provided the EPO is used to remove in situ effects from spectra, the 

penetrometer-mounted VisNIR probe is an effective tool for in situ VisNIR.   
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