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ABSTRACT 

 

Chemical process design requires mathematical models for predicting 

thermophysical properties. Those models, called equations of state (EoS), need 

experimental data for parameter estimation and validation. This work presents a detailed 

description of a vibrating tube densimeter, which is an alternative technique for 

measurement of p-ρ-T data in gases at critical conditions. This apparatus can measure 

fluids in a temperature range of 300 K to 470 K and pressures up to 140 MPa. This work 

calibrates the vibrating tube using a physical-based methodology with nitrogen, methane 

and argon measurements. Carbon dioxide and ethane p-ρ-T data validate calibration 

procedures covering a wide range in density and pressure. The vibrating tube densimeter 

performs density measurements for nitrogen + methane mixtures for pressures up to 140 

MPa.   

This work also presents a new equation of state (EoS) having a rational form that 

can describe properties with accuracy comparable to the best multi-parametric equations 

with less mathematical complexity. This EoS presents the Helmholtz residual energy as 

a ratio of two polynomial functions in density (no exponential terms in density are 

included), which can describe the behavior of pure components. The EoS can be 

transformed to describe other thermophysical properties as pressure, compressibility 

factor, heat capacity and speed of sound. Also this equation can calculate saturated 

liquid-vapor properties with 20 times less computational time. This work presents 
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rational EoS for nitrogen, argon and methane applicable in wide ranges of pressure and 

temperature.  

Finally this work proposes a new mixing rule for binary mixtures of gases based 

upon a quadratic combination of residual Helmholtz energy. This approach divides the 

energy contribution between interactions of same species and interaction of different 

species molecules. A rational form is proposed for description of energy interaction 

between molecules of different species. The mixing rule is applied to nitrogen + methane 

data. 



 

iv 

 

DEDICATION 

 

To my family 

 

“There is nothing impossible to him who will try” 

       Alexander the Great 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my graduate advisors, Dr. James Holste and Dr. Kenneth 

Hall for their guidance throughout the course of this research and the wonderful 

opportunity to be part of this group and research area. Thanks to Dr. Diego Cristancho 

from Dow Chemical for his advice and collaboration during this research process. Also I 

thank my committee members, Dr. Perla Balbuena and Dr. Maria Barrufet, for their 

advice and comments. 

I want to extend my gratitude to Dr. Mark McLinden and Stephanie Outcalt from 

NIST for their recommendations in the development of experimental methodologies and 

techniques. Also I want to thank Dr. Eric Lemmon and Dr. Ian Bell from NIST for their 

support and collaboration on the development of a new equation of state. Thanks to 

Randy Marek and Jason Caswell for their collaboration in this project. 

Thanks also go to my teammates and colleagues Robert Browne, Diego Ortiz, 

Hugo Acosta, Andrea Tibaduiza and Ivan Mantilla for all the lessons, experiences and 

guidance during my time in graduate school. Also thanks to Mauricio Carvajal, 

Catherine Sampson, Pilar Suarez, William Prieto, Monica Longoria and Shashank 

Kamdar for their support and contribution in this work.  Thanks to the Chemical 

Engineering Department faculty, students and staff for making my time at Texas A&M 

University a great experience. 

Finally, thanks to my family for their love and to Tatiana Flechas for her patience 

and support. 



vi 

TABLE OF CONTENTS 

Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

TABLE OF CONTENTS .................................................................................................. vi 

LIST OF FIGURES ........................................................................................................ viii 

LIST OF TABLES ............................................................................................................ xi 

1. INTRODUCTION .......................................................................................................... 1

1.1 Experimental methods for density measurements .................................................... 1 
1.1.1 Magnetic suspension densimeter ....................................................................... 2 
1.1.2 Isochoric apparatus ............................................................................................ 9 
1.1.3 Vibrating tube densimeter ............................................................................... 10 

1.2 Nitrogen + methane data sets ................................................................................. 26 
1.3 Modern functional for equations of state ............................................................... 27 

1.4 Objective ................................................................................................................ 30 

2. VIBRATING TUBE DENSIMETER APPARATUS .................................................. 32

2.1 Apparatus description ............................................................................................. 32 
2.1.1 Apparatus design .............................................................................................33 
2.1.2 Density measurement ...................................................................................... 41 
2.1.3 Pressure measurement ..................................................................................... 42 

2.1.4 Temperature measurement .............................................................................. 44 
2.1.5 Labview data acquisition programs ................................................................. 46 
2.1.6 Sample preparation .......................................................................................... 47 

2.2 Calibration methodology ........................................................................................ 49 

3. DENSITY MEASUREMENTS ................................................................................... 52

3.1 Calibration results .................................................................................................. 53 
3.2 Uncertainty analysis ............................................................................................... 56 

3.3 Pure components: Carbon dioxide and ethane ....................................................... 58 
3.3.1 Carbon dioxide ................................................................................................ 58 
3.3.2 Ethane .............................................................................................................. 60 



vii 

3.4 Nitrogen and methane mixtures ............................................................................. 61 
3.4.1 25% Methane + 75% nitrogen ......................................................................... 62 
3.4.2 50 % Methane + 50 % nitrogen ....................................................................... 62 
3.4.3 75% Methane + 25% nitrogen ......................................................................... 63 

4. RATIONAL EQUATION OF STATE ........................................................................ 65

4.1 Equations of state based in Helmholtz free energy ................................................ 66 
4.2 Rational function for residual Helmholtz energy ................................................... 69 
4.3 Fitting procedures ................................................................................................... 71 
4.4 Equation of state for nitrogen ................................................................................. 79 

4.4.1 Data sets .......................................................................................................... 79 

4.4.2 Nitrogen results ............................................................................................... 83 
4.5 Equation of state for argon ..................................................................................... 90 

4.5.1 Data sets .......................................................................................................... 90 
4.5.2 Argon results ................................................................................................... 93 

4.6 Equation of state for methane................................................................................. 98 
4.6.1 Data sets .......................................................................................................... 98 
4.6.2 Methane results .............................................................................................. 102 

4.7 Computational speed analysis .............................................................................. 106 
4.8 Conclusions .......................................................................................................... 108 

5. MIXING RULE BASED UPON HELMHOLTZ FREE ENERGY .......................... 109

5.1 Classical definition of mixing rule ....................................................................... 109 
5.2 Mixing rule in GERG – 2008 ............................................................................... 111 
5.3 Binary interaction based upon a rational form ..................................................... 116 

6. CONCLUSIONS AND RECOMMENDATIONS ..................................................... 121

REFERENCES ............................................................................................................... 124 

APPENDIX A ................................................................................................................ 133 

APPENDIX B ................................................................................................................ 137 

APPENDIX C ................................................................................................................ 152 

APPENDIX D ................................................................................................................ 155 

APPENDIX E ................................................................................................................. 163 



 

viii 

 

LIST OF FIGURES 

 Page 

Figure 1. Magnetic suspension assembly of a single – sinker densimeter. 

Acknowledgment: [4], [5]. .................................................................................. 4 

Figure 2. Operation of the MSD using weight changing device (a) suspension 

control off, Ti and Ta both raised (b) zero point (ZP) position, Ta 

lowered, Ti raised (c) measurement point (MP) position, Ta raised, Ti 

lowered. Acknowledgment: [4], [5]. ................................................................... 5 

Figure 3. Diagram of the vibrating tube densimeter using drive coil and pick-up 

coil. Acknowledgment: [16] .............................................................................. 12 

Figure 4. Oscillation of a spring and mass system ........................................................... 13 

Figure 5. Schematic diagram of vibrating tube apparatus ................................................ 34 

Figure 6. Piston sampler for pressurization of gas samples ............................................. 35 

Figure 7. Isothermal shield for temperature control ......................................................... 37 

Figure 8. FOAMGLAS insulation inside a PVC cylinder and secured with 

metallic clamps ................................................................................................. 38 

Figure 9. Diagram of a PID temperature controller in a feedback loop ........................... 40 

Figure 10. DMA HPM cell (bottom), interface module (upper right) and display 

unit (upper left) provided by Anton Paar. Acknowledgement: Anton 

Paar website ...................................................................................................... 41 

Figure 11. Schematic diagram of aluminum block that provides isothermal 

environment to the pressure transducers ........................................................... 44 

Figure 12. Top: Picture of Fluke 1594A Super-Thermometer Bottom: schematic 

representation of thermometer connection ....................................................... 45 

Figure 13. Schematic of gravimetric mixture preparation apparatus ............................... 48 

Figure 14. Density estimation using Refprop as EOS ...................................................... 53 

Figure 15. Absolute error for densities from equation of state ( EoS ) and 

densities from experimental measurements with the VTD ( calc ). 

(Nitrogen ✶, Argon ○, Methane □) ................................................................. 56 



 

ix 

 

Figure 16. Carbon dioxide density measurements for this work ● (304 K, 400 K, 

470 K) and Mantilla et al. □ [40] (310 K, 400 K, 450 K) ................................. 59 

Figure 17. Ethane density measurements for this work ● (304 K, 400 K, 470 K) 

and Cristancho et al. □ [41] (298 K, 400 K, 450 K) ......................................... 60 

Figure 18. Density measurements for the 25/75 methane + nitrogen sample at 

304 K, 350 K, 400 K and 470 K ....................................................................... 62 

Figure 19. Density measurements for the 50/50 methane + nitrogen sample at 

304 K, 350 K, 400 K and 470 K ....................................................................... 63 

Figure 20. Density measurements for the 75/25 methane + nitrogen sample at 

304 K, 350 K, 400 K and 470 K ....................................................................... 64 

Figure 21. Relative deviations of p-ρ-T nitrogen data from Nowak and Klimeck ........... 84 

Figure 22. Relative deviations of Rational Equation of State from the p-ρ-T 

nitrogen data of Straty and Robertson .............................................................. 85 

Figure 23. Relative deviations of saturated liquid and vapor densities (left), and 

vapor pressure (Right) for Nowak .................................................................... 85 

Figure 24. Second virial coefficient (left) and third virial coefficient (right) from 

Nowak et al. [47] .............................................................................................. 86 

Figure 25. Percent deviation of speed of sound for nitrogen calculated with the 

REOS ................................................................................................................ 87 

Figure 26. Relative error of isochoric heat capacities from REOS .................................. 88 

Figure 27. Characteristic curves calculated from rational equation of state .................... 89 

Figure 28. Comparison of p-ρ-T Argon data sets from Gilgen and Klimeck and 

rational equation of state ................................................................................... 94 

Figure 29. Relative deviations of rational equation of state from Robertson et al. 

high-pressure data ............................................................................................. 95 

Figure 30. Relative deviations for saturated vapor and liquid densities (left) and 

vapor pressure (right) ........................................................................................ 95 

Figure 31. Comparison of speed of sound data with rational equation ............................ 97 

Figure 32. Relative error from isochoric heat capacities data and rational 

equation ............................................................................................................. 97 



 

x 

 

Figure 33. Comparison of accurate p-ρ-T methane data sets and rational 

equation of state .............................................................................................. 103 

Figure 34. Relative error of p-ρ-T methane data sets up to 40 MPa and rational 

equation of state .............................................................................................. 103 

Figure 35. Relative error of high pressure p-ρ-T methane data sets and rational 

equation of state .............................................................................................. 104 

Figure 36. Liquid and vapor saturated densities (left) and vapor pressure (right) 

for methane ..................................................................................................... 104 

Figure 37. Second virial coefficient data and predicted values from rational 

equation (-) ...................................................................................................... 105 

Figure 38. Comparison of speed of sound data and rational equation. .......................... 106 

Figure 39. Relative error of isochoric heat capacity data from the REOS ..................... 106 

Figure 40. Overview of the 210 binary mixtures implemented in GERG-2008. 

Acknowledgment: [37]. This EoS includes 21 natural gas components. ........ 115 

Figure 41. Relative deviations between the experimental compressibility factors 

and the rational equation of state values for nitrogen + methane 

mixtures. (○xCH4=0.75,□xCH4=0.50 and✶xCH4=0.25) ..................................... 120 

 



 

xi 

 

LIST OF TABLES 

 Page 

 

Table 1. Values of calibration equation for Vibrating tube densimeter without 

outlier data ........................................................................................................ 55 

Table 2. Experimental uncertainty estimates ................................................................... 58 

Table 3.  Methane + nitrogen mixture compositions ....................................................... 61 

Table 4. Thermodynamic properties as function of Helmholtz free energy .................... 67 

Table 5. Coefficients for Rational equations of nitrogen, argon and methane ................. 77 

Table 6. Physical properties of nitrogen ........................................................................... 79 

Table 7. Summary of selected p-ρ-T, vapor pressure, second and third virial, 

speed of sound and isochoric heat capacities experimental data used to 

develop the rational EoS for nitrogen ............................................................... 82 

Table 8. Ideal curves definition ........................................................................................ 89 

Table 9. Physical properties of argon ............................................................................... 90 

Table 10. Summary of selected p-ρ-T experimental data for argon ................................. 92 

Table 11. Physical properties of methane ........................................................................ 98 

Table 12. Summary of selected p-ρ-T experimental data for Methane .......................... 101 

Table 13. Binary interaction parameter for methane-nitrogen mixtures from 300 

K to 470 K and up to 140 MPa ....................................................................... 119 

 

 

 



 

1 

 

1. INTRODUCTION  

Natural gas is one of the most important energy sources in the world. It is a fossil 

fuel formed deep below the surface of the earth, but production and consumption have 

increased rapidly because of global demand. Natural gas is an attractive alternative to 

coal and oil because it burns cleaner. 

Total energy demand in the United States in 2013 was 5.6 quadrillion BTU with 

natural gas composing 27 %. Production in the United States increased by 35 % from 

2005 to 2013. In total, the USA produces approximately 25 trillion cubic feet of dry 

natural gas each year [1]. It is necessary to know natural gas physical properties to 

produce and process it, and small errors in properties could result in losses of millions of 

dollars per year.  

Process design and modeling require correlations for thermodynamic properties 

for fluids. The correlations, notably equations of state (EoS), depend upon measurements 

of physical properties.  Development of EoS requires accurate p-ρ-T data.  

 

1.1 Experimental methods for density measurements 

Many methods exist to measure fluid densities. One of the most important is the 

buoyancy or hydrostatic method based upon the Archimedes principle [2].  It states that 

the difference between the true and the apparent weight of a body immersed in a fluid is 

related to volume displaced and density by 

T A

S

m m

V



           [1] 
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 In equation 1,    is the true weight,    is the apparent weight,    is the volume of the 

body and ρ is density of the fluid. 

Different types of apparatus exist for density measurements based upon 

Archimedes principle; some are: hydrostatic densimeter balances, magnetic float and 

magnetic suspension densimeters. In a hydrostatic balance densimeter, a cylinder of 

metal or glass is suspended in a fluid by a thin platinum wire. The wire is attached to an 

analytical balance, which records the weight of the total system. Then, the cylinder is 

immersed in the liquid whose density is desired. Using the apparent weight and the 

Archimedes principle, the density of the fluid results from equation 1. This method 

provides liquid densities at ambient pressure over moderate temperature ranges [2].  

Natural gas process and production properties may involve extreme pressure and 

temperature values. For deep water gas production pressures can reach 200 MPa 

(~30,000 psi) and temperatures can exceed 150 
°
C [3]. A magnetic suspension 

densimeter can operate at these conditions with good accuracy.  

 

1.1.1 Magnetic suspension densimeter 

The magnetic suspension densimeter (MSD) uses the Archimedes principle but 

introduces a magnetic suspension coupling mechanism. This arrangement physically 

separates the balance from the sample fluid. The MSD lends itself to highly accurate 

measurements of fluids at extreme conditions. The components of the magnetic 

suspension coupling are: an electromagnet, a permanent magnet, a sinker, a position 

senor and a control system [2].  
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The electromagnet hangs from an analytical balance, which is at ambient 

pressure. The permanent magnet resides in a high-pressure coupling housing situated 

under the electromagnet that creates a physical barrier between the two magnets. The 

permanent magnet contacts the measured fluid at the experimental pressure and 

temperature. A small current through the electromagnet generates a magnetic field that 

couples with the permanent magnet.   

A sinker attached to the permanent magnet is a reference volume for the density 

calculation. A position sensor and control systems fix the position of the permanent 

magnet and sinker. Figure 1 presents a representation of a single–sinker magnetic 

suspension densimeter showing the permanent magnet, the electromagnet, the balance 

and the sensor position.  

To avoid errors caused by non-linearity of balance measurements, the device 

contains two compensation weights (tare and calibration). Those weights are located on 

mechanical arms, which can place them on or remove them from the balance. Accurate 

density measurements using a magnetic suspension densimeter include at least 2 mass 

readings with different configurations. Figure 2 shows the positions required in a single-

sinker operation: off position, zero point (ZP) and measurement point (MP).  

At the Off position the permanent magnet (PM) is not coupled to the 

electromagnet and the compensation weights do not contact the balance. For ZP 

measurements, the suspension coupling is activated creating interactions between the 

two magnets but the PM does not lift the sinker at this position. Also, one of the 

compensation weights (calibration mass) is placed on the balance. ZP measurement 
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includes PM mass (p-mag), PM buoyancy effect (ρV), EM mass, calibration mass (CM) 

and their buoyancy effects.  Equation 2 includes all components for a ZP mass 

measurement. Because the PM contacts the measured fluid, the buoyancy effect uses 

density of the fluid. 

 

 

Figure 1. Magnetic suspension assembly of a single – sinker densimeter. 

Acknowledgment: [4], [5]. 
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Figure 2. Operation of the MSD using weight changing device (a) suspension control 

off, Ti and Ta both raised (b) zero point (ZP) position, Ta lowered, Ti raised (c) 

measurement point (MP) position, Ta raised, Ti lowered. Acknowledgment: [4], [5]. 

 

At the MP, the PM lifts the sinker and the calibration mass is replaced with the 

tare mass on the balance. The MP contains some of the ZP factors, but it adds the mass 

of the sinker (ms), buoyancy of the sinker, tare mass and its buoyancy. Equation 3 shows 

factors in a mass MP measurement. Equations 2 and 3 include the balance calibration 

factor (α) and a coupling factor (φ) known as the force transmission error [6]. 
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   ZP p mag fluid p mag e mag cal air e mag calM m V m m V V      
      
 

  [2] 

 

    MP s p mag fluid s p mag e mag tar air e mag tareM m m V V m m V V      
        
 

 [3] 

 

Calibration fluids are not necessary in this technique, but sinker mass and volume 

are essential. An independent procedure must provide accurate values for sinker 

dimensions. This technique is not appropriate for fluids that can react with the sinker. 

Normally, the compensation weights have similar volumes, thus minimizing air 

buoyancy effects. In addition, this technique requires accurate values the for calibration 

and tare masses.  

Subtracting equation 2 from equation 3 and solving for the fluid density gives 

equation 4, which is an expression for density as function of ZP, MP measurements and 

reference masses 

 

    / ( )s tare cal MP ZP air tare cal

fluid

s

m m m M M V V

V

  




     
       [4] 

 

  The only unknowns in equation 4 are the balance calibration factor (α) and the 

force transmission error (φ). McLinden [6] estimates the calibration factor (α) to be 

approximately 0.0015 for this configuration.  

Patil et al. [4] used a single-sinker MSD to measure a simulated natural gas 

mixture containing nine components including 91 % methane. The measurements ranged 

from 270 K to 340 K at pressures up 35 MPa. The authors claimed an uncertainty of 

±0.12 % with 95 % confidence level. 
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Later, Atilhan et al. [7] performed measurements for three synthetic gas mixtures 

up to 150 MPa. They used tantalum (Ta) and titanium (Ti) compensation weights and a 

Ti sinker. These authors kept balance reading values close to zero using a calibration 

mass value (Ta) equal to the tare mass (Ti) plus the sinker mass (combined). The 

mixtures had up to 9 nine components with concentrations of methane close to 90 %.   

The core of this technique is the measurement of the apparent mass of a sinker 

using an accurate balance. Factors such as the magnetic behavior of the cell, the 

suspension coupling and measured fluid can affect the balance readings. This effect is 

the force transmission error (FTE) [8]. The factor (φ) corrects FTE, but it depends upon 

apparatus configuration. The apparatus used by Atilhan et al. [7] had a titanium sinker 

inside a beryllium-copper cell that operated up to 200 MPa (29,000 psia) within a 

temperature range from 190 K to 520 K.  Cristancho et al. [8] estimated the FTE for this 

MSD over the entire range of pressures. They found that temperature is the main factor 

in the FTE analysis, and that pressure values do not have appreciable effects for natural 

gas components. They proposed a methodology for estimating FTE values for each 

temperature using MSD measurements at vacuum conditions. Equation 5 shows the 

simplified method to calculate the FTE. 

 

    / ( )tare cal MP ZP air tare cal

s

m m M M V V

m

 


    
        [5] 

 

This FTE is part of a complete uncertainty analysis presented by Ortiz-Vega et 

al. [9]. This analysis included pressure, temperature and composition effects. The FTE is 
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the main contribution in total uncertainty for an MSD. Corrections for the apparatus 

effect are around 186 ppm for pressures up to 200 MPa.  

Kleinrahm and Wagner [10] designed a two–sinker magnetic suspension 

densimeter. The two-sinker version includes a second sinker measurement as a 

reference. This additional value allows calculation of FTE directly for every pressure 

point. McLinden et al. [6] proposed an empirical methodology to estimate values of FTE 

for two-sinker densimeters. They found an FTE of approximately 16 ppm. Additionally, 

they found that the density of the fluid can affect the values of FTE when the fluid has 

magnetic susceptibility. Some of main factors in FTE corrections are the pressure cell 

dimensions, materials of construction and maximum allowable working pressure 

(MAWP). The McLinden densimeter has a lower FTE, but its MAWP is 40 MPa.  

The MSD technique also can perform measurements in saturated vapor-liquid 

systems, and it has good accuracy for extreme conditions in temperature and density. 

However, the sample fluid needs a residence time of 4 to 8 hours per pressure reading 

for a complete characterization, which becomes an issue for samples that decompose 

with time. 

Some fluids have particular characteristics that make them difficult to measure, 

such as hydrogen sulfide (very toxic, reactive and corrosive), which is present in natural 

gas. Corrosive fluids can attack the MSD materials and affect their properties. As 

equation 4 shows, the sinker mass and volume must be known accurately. Changes in 

those values affect measurement results and increase errors.  
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1.1.2 Isochoric apparatus 

Other authors have used isochoric techniques for density measurements. 

Classically, they determine the volume and mass of a sample cell under vacuum. Then, 

they place a sample in the cell and weigh it again to establish the mass and density of the 

fluid in the cell at the loading conditions. An experimental run commences after 

changing the temperature of the cell to a predetermined value. When the system reaches 

equilibrium, temperature and pressure are measured and recorded. Temperature variation 

results in a new pressure. A run consists of changing the temperature over a selected 

range and recording the pressures at each temperature. This technique produces p-ρ-T 

data sets along pseudo-isochores (constant density), because the mass remains constant 

during the experiments and measure hazardous fluids. However, it is a time consuming 

technique, because the system equilibration times are long. Also, the density calculations 

require complex corrections, because truly isochoric experiments require a constant cell 

volume. Thermal expansion and mechanical deformation of the cell dimensions change 

the volume during the experiment. Using the volume of the cell at a reference 

temperature and pressure, the volume of the cell at each experimental condition results 

from a calculation using the volumetric thermal expansion and mechanical deformation 

properties of the material of construction.  

The mass inside the cell remains constant during the experiment, but the mass 

measurement occurs after filling the cell. This requires removing the cell from the 

apparatus to measure the mass. Holste et al. [11] suggested using experimental density 

measurements from another apparatus, such as a Burnett apparatus or a pycnometer for 
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estimating isochoric densities. The Burnett apparatus or pycnometer provides isothermal 

densities that intersect the pseudo-isochores, thus supplying accurate densities at selected 

points along the pseudo-isochores. Zhou et al. [12] performed isochoric measurements 

for natural gas-like samples using densities obtained using a magnetic suspension 

densimeter (MSD).  

A MSD provides accurate density measurements, but in combination with 

isochoric experiments more information becomes available from p-ρ-T data. Atilhan et 

al. [13] used isochoric data for experimental determination of phase equilibrium for 

synthetic natural gas samples.  They used a method developed by Acosta-Perez [14] for 

measuring experimental phase boundaries and determining  uncertainties. This method 

uses the change in slope of an isochore when it crosses into the two-phase region.  

Isochoric data also provides important information about other thermodynamic 

properties. For example, residual entropy is a function of the derivative of pressure with 

temperature at constant density         .  Tibaduiza et al. [15] use pressure and 

temperature values at constant density for experimental estimation of energies and 

entropies in a ternary mixture.  

 

1.1.3 Vibrating tube densimeter 

A vibrating tube densimeter (VTD) is a hollow metallic or glass tube bent in a 

“U” or “V” shape that is attached to a large mass. The resonant frequency of vibration of 

the tube varies with the mass of the tube and any fluid contained therein. The dimensions 

of the tube can vary with the pressure range of the system. Usually, the length of the tube 
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is 5 to 10 cm with an outer diameter of about 1.5 mm. For high-pressure VTDs, the 

diameter can be 3 mm [2]. The sample of interest enters the tube, which vibrates 

perpendicular to its plane. 

An accurate measurement with a VTD relies upon determination of the resonant 

frequency. To obtain the resonance values, the system controls a magnetic field and 

quantifies the tube oscillation. In commercially available instruments, two methods exist 

for driving and measuring the tube frequency. Figure 3 illustrates one of the commercial 

methods available. In this configuration, two permanent magnets are mounted on the 

free end of the tube. A current source, connected to a driving coil, is located 

perpendicular to one of the magnets. It induces a variable magnetic field producing 

vibration of the tube. Oscillation of a second magnet induces a current on a 

perpendicular pick-up coil. A frequency counter, attached to the pick-up coil, analyzes 

and measures the signal. A feedback loop optimizes frequency to obtain values at 

resonance [16]. This work uses a measurement cell provided by Anton-Paar that uses the 

configuration shown in figure 3.  

The second commercial method involves two wires attached across the tube, with 

a permanent magnet focused on the wires [17]. For this method, a low level current is 

supplied to one wire (pick–up wire) creating a perpendicular motion of the wire. Later 

this current is amplified and sent to the second wire (drive). The tube is driven into 

vibration by alternating current in the magnet field.  Using a control loop, the system 

obtains the resonance frequency. 
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Figure 3. Diagram of the vibrating tube densimeter using drive coil and pick-up coil. 

Acknowledgment: [16] 

 

1.1.3.1 Principal of operation 

The motion of a mass coupled to a spring provides an appropriate model for a 

vibrating tube. A U-shape tube, attached to a magnet, oscillates at the mechanical 

resonant frequency that is related to the mass of the system (tube + fluid in tube). A 

simple harmonic oscillator describes the VTD oscillation using some assumptions. 
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Simple harmonic oscillator 

A vibrating tube can be assumed to be a simple harmonic oscillator composed of 

a spring and mass system with a driving force and viscous damping. Figure 4 is a 

representation of the vibrating tube densimeter as a spring and mass system. 

m

k c

F

 

Figure 4. Oscillation of a spring and mass system 

 

Assuming a single viscous damper and Hooke’s law for spring forces, the force 

balance for the system is: 

Hooke damperf ma F F kx cv            [6] 

 

In this case, m is mass, k represents spring constant, x is tube displacement from 

reference position, c is the damping constant, v is velocity and a is acceleration.  

Velocity and acceleration are the first and second derivatives of displacement 

with respect to time, respectively. The equation of motion for a spring-mass system as a 

function of displacement, mass, damping and spring constant is: 
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2

2
0

d x dx
m c kx

dt dt
            [7] 

 

The assumptions used for modeling the vibrating tube as a spring-mass system are:  

 Mass of the vibrating tube base is infinite 

 The vibrating tube distorts elastically 

 The elastic constant is independent of the fluid in the tube 

 System damping is a single, lumped viscous damper 

Using a solution for homogenous second order differential equations, McGregor [17] 

shows that the resonance frequency is a function of mass, spring constant and damping 

constant.  

2

2 1

2
r

k c

m m


 
   

 
           [8] 

 

Simplification of the relationship between fluid density and the resonance 

frequency requires an undamped system. In this case c equals zero, and the resonance 

frequency is a function of mass and spring constant. Because the mass of the system is 

the combined mass of the tube and the fluid inside the tube, the relationship between 

mass of the fluid (mf), the mass of the tube (mT), and the undamped resonant frequency 

is: 

2T f

u

k
m m


             [9] 

 

This equation provides the basis for calibrating vibrating tube densimeters. The 

resonant phenomenon occurs when the system oscillates at the maximum amplitude 

caused by the interaction of an external force or vibrating system. This occurs at a 
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specific value of frequency called the undamped resonance frequency or the natural 

frequency. Currently, commercial vibrating tube densimeters contain automatic control 

systems that maintain the frequency at resonance.  

  

1.1.3.2 Classical calibration methods 

The classic calibration method requires two fluids (a calibration fluid and a 

reference fluid) for solving an equation with two unknowns. In following equations, 

subscripts o and c denotes the reference and calibration fluids respectively. Measuring 

two different fluids at the same conditions of temperature and pressure and subtracting 

equation 9 provides: 
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The mass of the tube cancels because it is independent of the fluid, but the 

volume of the tube is necessary to calculate the mass of the fluid from its density. The 

volume of the tube (
tv ), is the same for the reference and calibration fluids because the 

temperature and pressure conditions are similar, so that Equation 10 becomes: 

 2 2

f fo u uoK               [11] 

 

where    f is the density of the calibration fluid, fo  is the density of the reference 

fluid,    is the period of oscillation( t = 2p /w ) and K (
  
= k / 4p 2v

t
) is a modified spring 

constant. 
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This simple model relates linearly the square of the resonant period and the 

density of the fluid. However, temperature and pressure affect the spring constant and 

the internal volume of the tube. Thus, the model must estimate temperature and internal 

pressure effects via calibration measurements at different conditions. Measuring the 

resonant period of oscillation for reference fluids with well-known values of density, 

allows calculation of the modified spring constant at specific temperatures and pressures 

using:  

2 2
( , )

f fo

o o

u uo

K T P
 

 





          [12] 

 

Rearranging equation 11 using alternate variables provides the working form 

    2 2, ( , )o o uo o oA T p B T p             [13] 

 

where the parameters A(To,po) and B(To,po) come from the calibration 

measurements. 

Galicia-Luna et al. [18] used nitrogen and water as reference fluids to measure 

binary and ternary mixtures of carbon dioxide, methanol and propane. They covered 

pressures up to 39 MPa and claimed an uncertainty of ±0.18%. 

Accurate measurements over wide ranges of pressure and temperature exist for 

only a few pure fluids. Inaccuracies in reference values are sources of errors with the 

vibrating tube technique. Also, calibration fluids must be stable, not hazardous, and with 

density values close to the desired samples. In 1992, Sousa et al. [19] used resonant 
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period at vacuum conditions as reference, reducing errors caused by calibration fluids. 

Using Sousa’s approach, equation 14 eliminates one of the parameters in equation 13.  

      2 2 2 2
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A T p
 

     
 

 
    

 
      [14] 

 

Sousa et al. [19] collected density measurements for liquid and vapor phases for 

R-142b and R-22 + R -142 b binary mixture.  

 

1.1.3.3 Previous work 

In 1969 Kratky et al. [20] used a VTD to measure gas and liquid densities with a 

sample of only 6 cm
3
. This VTD had a configuration with magnets attached to the tube, 

which is the base for the modern commercial model produced by Anton Paar. In 1974, 

Picker et al. [21] used a VTD as a flow densimeter for liquids. In 1989, McGregor [17] 

designed a semi-automated vibrating tube densimeter for operation between 100 K and 

700 K at pressures up to 70 MPa. His design used a design based on two wires attached 

across the tube to achieve high temperature operation. McGregor performed density 

measurements for toluene, ethylbenzene and 2,2,4 - trimethylpentane using a classical 

calibration equation as in equation 11. 

Early VTD calibrations used classical methods, but given additional 

understanding of the system empirical, semi-empirical and physically-based equations 

have resulted for calibration. Many of the modern calibration models use the work of 

Holcomb and Outcalt [16]. They assumed the vibrating tube to be a vibrating rod with 
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both ends clamped. Assuming negligible damping effects, Newton’s equation of motion 

for a vibrating rod is: 
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where A is cross-sectional area, E is Young’s modulus, I is the second moment of 

inertia,  
 
r

R
is the rod density, Y is the vertical displacement at position Z and time t. 

 To establish boundary conditions for equation 15, Holcomb and Outcalt took 

vertical displacements equal to zero at both ends of the rod, because the ends are 

clamped. They found a generalized solution applying separation of variables. The first 

nonzero solution constant for the vibrating system is:  
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This equation is a function of the same parameters as equation 15, but it adds a 

new variable, the resonant frequency (ωn(T,p)). 

Equation 17 presents an expression for density of the fluid as function of physical 

parameters (Young’s modulus and moment of inertia), a constant (β1) and tube 

dimensions (mass, volume and length). 
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 To simplify calculation and find a solution for constant β1, it is convenient to 

evaluate equation 17 at vacuum at a reference temperature. The resonant frequency at 

vacuum is:  
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Combining equations 17 and 18 yields a relationship for density of the fluid.  

 
 

     
       

3 2

3 2

,0 , ( ,0)
, 1

, , ,0 ,

o n oT
F

i o o n

L T E T I T p Tm
T P

V T p L T p E T I T T p






 
   

 
    [19] 

 

Semi-empirical and empirical calibration 

 Equation 19 is a physical representation for VTDs that is a starting point for 

many calibration models. Various authors have used different assumptions for describing 

physical parameters, such as moment of inertia, Young’s modulus and tube volume. 

Holcomb and Outcalt [16] worked in a moderate temperature (290 K to 395 K) and 

pressure range (up to 14 MPa). Their final calibration model is a semi-empirical 

approach based upon equation 19, using a first order approximation for thermal 

expansion and deformation effects that leads to a simplified calibration model  
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They performed calibration measurements with nitrogen, water, ethane, propane, 

n-Butane and HFC-152a, finding an average uncertainty of ±0.3 kg·m
-3

 for liquid 

densities and ±1.0 kg·m
-3

 for vapor densities. 
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 In 2007, Outcalt and McLinden [22] proposed an empirical approach for 

calibration measurements that is similar to the Holcomb model, but which includes 

second-order pressure-temperature interactions and third-order for temperature 

contributions  

   

 

2
2 3 2

1 2 3 4 5 6 7 2

2 3 2

1 2 3 4 5 6

( , )
,

( ,0)
F

o

T p
T p A A T A T A T A p A p A Tp

T

B B T B T B p B p B Tp





      

     

    [21] 

 

Their model (equation 21) has 13 constants divided in two groups: interactive 

with (A) or independent (B) of tube vibration. Also, their model uses the resonant period 

of oscillation  2 /    instead of resonant frequency. 

Outcalt and McLinden use an empirical quadratic function in temperature to 

describe the resonance period of oscillation at vacuum (τo) 

2

1 2o oc c T c T             [22] 

 

where the parameters in equation 22 come from resonance measurements at 

vacuum for various temperatures. 

Outcalt and Mclinden performed calibration measurements with propane and 

toluene over a range of 270 K to 470 K at pressures up to 50 MPa. Also, they presented a 

detailed uncertainty analysis, including effects from equation of state errors, resonant 

period of oscillation at vacuum, and pressure and temperature sensors. Their analysis 

showed that major error contributions stem from the equations of state for the calibration 

fluids and the repeatability of vacuum measurements. The overall uncertainty for this 
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methodology was ±(0.64 – 0.81) kg·m
-3

. Errors due to repeatability of vacuum 

measurements are equivalent to ±0.6 kg·m
-3

. This VTD can characterize industrial fluids 

rapidly and make measurements with this accuracy over wide pressure ranges. 

 

Forced path mechanical calibration (FPMC) 

 In 2001, Bouchot and Richon [23] developed a calibration methodology based 

entirely upon physical properties behavior, thereby reducing calibration fluid 

dependences. They used equation 19 as the starting point of the model, but replaced the 

internal volume of the tube with the internal transversal area and length. The variation of 

length with temperature and pressure is:  

        00, ,0 1o o TL T p L T T T pT L L            [23] 

 

where α (T) is the linear expansion coefficient and γT is the linear pressure 

distortion coefficient. The variation of the internal and external radii with temperature at 

zero pressure then is: 

  ( ,0) 1 ( )ko koo o or r T T T T           [24] 

 

where, rkoo represents radius values at reference conditions, rko radius at a 

selected temperature, and k is internal (i) or external (e) radius.  

The Lamé equations, which contain the Poisson coefficient and Young’s 

modulus, correct the radii values for pressure effects.  Because the vibrating tube is a 
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hollow cylinder, the external and internal radii depend upon each other. The relationship 

for a given radii (internal or external) is:  
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where ν  is the Poisson coefficient and E is Young’s modulus. 

Replacing the internal volume of the tube with the inner radius and length of the 

tube in the density yields. 
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 According to Bouchot and Richon [22], for a U-shaped thick-walled tube with its 

two branches in the same vertical plane, the ratio of internal and external radii is a good 

substitute for the second moment of inertia, so that:  
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Similarly they replaced the relative inverse cube length with an expression 

containing the linear pressure expansion coefficient (γT), yielding: 
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 For same reference temperatures the ratio E/Eo in equation 19 equals unity 

because an only thermal change affects the Young’s modulus. Finally, substituting 

equations 26, 27 and 28 into equation 19, produces the FPMC working equation. 
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As in Outcalt and Mclinden, Bouchot and Richon [23] use a quadratic empirical 

correlation in temperature (equation 22) for the resonance period at vacuum.  

The FPMC model requires a calibration fluid for fitting two parameters: mT/Loo 

and γT. They test the model with an Anton Paar DMA 512 cell for temperatures between 

253 K and 333 K, using dichlorodifluoromethane (R-12) as the calibration fluid. They 

claim an uncertainty of ±0.15 kg·m
-3

 for pressures up to 40 MPa.  

In 2015, Iglesias-Silva et al. [24] performed a calibration using the FPMC model 

with water and n-heptane as calibration fluids. The apparatus was a vibrating tube DMA 

512P provided by Anton Paar, and the operating limits were temperatures between 

283.15 K and 363.15 K at pressures up to 65 MPa. They proposed a modification in the 

FPMC, including a reference pressure in equation 25. Also, they corrected the resonant 

period of oscillation at vacuum by making vacuum measurements before every isotherm. 

They claimed an uncertainty equivalent to ±(0.2 – 0.4 kg·m
-3

), where the main 

contributions result from apparatus resolution and pressure uncertainty. In conclusion, 

the FPMC reduces errors associated with calibration fluids, however it requires accurate 

reference values for internal and external radii. 
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Physical based calibration model for high pressure VTDs 

The force path calibration method provided a good representation of vibrating 

tube behavior for pressures up to 65 MPa. In 2014, May et al. [25] developed a physical 

calibration model for high pressure vibrating tubes. This model is an extended version of 

Holcomb and Outcalt [16] with some similarities to the FPMC model. Equation 19 

describes the relationship of the fluid density and period of resonant oscillation, but 

description of physical properties and assumptions vary.  

May et al. proposed a relationship in temperature and pressure for the second 

moment of inertia (I),  

 2 2
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               [30] 

For Young’s modulus (E) they used a quadratic temperature dependence, 

2

1 21
o

E
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E
             [31] 

The length and volume corrections are 

 2

00 1 21 LL L T pT              [32] 

and 

  2 2

00 1 1 21 3 3i vT pV V T               [33] 

 

where α1 and α2 are the first and second order linear temperature coefficients, and 

βL and βv are the linear and volumetric mechanical deformations respectively. The 

measuring tube in the high pressure Anton Paar VTD is constructed of Hastelloy C-276. 

From the physical properties of Hastelloy, May et al. [25], conclude that second order 
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variations with temperature are negligible in equations 30 – 33 for this temperature 

range, but the pressure dependence of the elastic properties of the tube is significant for 

high-pressure measurements. They also conclude that explicit linear thermal corrections 

in Young’s modulus are not necessary because such effects are incorporated into the 

temperature dependence of the vacuum resonant period (
0 ). The resulting working 

equation for high pressure VTD’s is:  
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Following Outcalt and McLinden [22], May et al. used a quadratic function to 

describe the temperature dependence of the period of resonant oscillation at vacuum, 

resulting in an alternate working equation 
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 Three coefficients (
00 1,     and 

2
) in equation 35 come from a separate fit of τ0 

to vacuum resonant period data, and the remaining four parameters (αv, βv, βτ and ρ00) 

come from fits to measurements on one or more calibration fluids.  

May et al. [25] performed calibration measurements with water and toluene to fit 

the parameters in equation 35. They validated their calibration model by comparing 

physical values for Hastelloy from the literature to the fit parameters αv, βv and βτ. This 

physically-based model reduces influence of calibration fluids and reproduces data 

within ±(0.4 – 0.8 kg·m
-3

).  

 



 

26 

 

1.2 Nitrogen + methane data sets 

Many authors have performed accurate density measurements for pure fluids 

using different techniques. Mantilla et al. [8] measured nitrogen over a wide range of 

temperatures using a MSD, and Cristancho et al. [26] did same for methane with 

pressures up to 180 MPa. However, development of equations of state requires accurate 

mixture data as well. Density data for binary mixtures allow calculation of parameters 

that describe molecular interactions. Some authors have studied the mixture methane + 

nitrogen, but the high-pressure region lacks accurate data. 

In 2006, Chamorro et al. [27] used a single-sinker MSD to measure some 

methane + nitrogen mixtures at temperatures between 240 K and 400 K at pressures up 

to 20 MPa. They claimed an uncertainty of ±0.02 % for densities covering compositions 

of approximately 0.1 and 0.2 nitrogen mole fractions. These are accurate p-ρ-T data for 

the single phase, but they are at low pressure. In 1980, Straty and Diller [28] measured 

liquefied and compressed nitrogen + methane samples at 0.3, 0.5 and 0.7 methane mole 

fractions. They covered temperatures from 75 K to 300 K at pressures up to 30 MPa, 

using a gas expansion technique with uncertainties between 0.1 % and 0.3 % in density.  

In 1996, Seitz et al. [29] used a VTD to measure densities for nitrogen + methane 

mixtures with 0.1 to 0.9 methane mole fractions. They covered a temperature range from 

240 K to 500 K at pressures up to 100 MPa. Because of apparatus limitations and 

calibration methodology, authors claimed an uncertainty no lower than ±1 kg·m
-3

. These 

data offered an idea of the behavior of the binary interactions, but errors in prediction 

might occur because high uncertainty in the high-pressure region. Additionally, no data 
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are available for pressures higher than 100 MPa. To improve predictions in the 

supercritical region, it is necessary to conduct experiments with lower uncertainties and 

at higher pressures.  

 

1.3 Modern functional for equations of state  

Density measurements are essential for development of thermodynamic 

correlations. However, accurate equations of state also must predict accurately other 

thermophysical properties such as energies and entropies. While no direct methods exist 

for measuring energies or entropy directly, a combination of p-ρ-T data, speed of sound 

data, calorimetric data and other experimental measurements describe the behavior of 

pure fluids and mixtures.  

Many equations of state have appeared over the years. Process modeling uses 

modified versions of cubic equations of state because they offer a good representation of 

fluid behavior with a simple mathematical form. However, some applications require 

more accurate representation of the fluid properties. Currently, some multi-parametric 

equations of state are an alternative for accurate predictions of thermophysical 

properties. 

The multi-parametric equations of state are highly accurate thermodynamic 

correlations covering wide ranges of pressure and temperature. These equations have 

empirical forms and fitted parameters. Developing these correlations requires accurate p-

ρ-T data, speed of sound data and isochoric heat capacities.  
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Historically, equations of state described pressure as a function of temperature 

and density. However, equations of state based upon fundamental properties such as 

internal energy, u(s,ρ), enthalpy, h(s,p), Helmholtz energy, a(T,ρ) and Gibbs energy, 

g(T,p), contain all thermodynamic information required using their derivatives. This 

approach makes energy calculations easier and produces stable predictions. Moore, et al. 

[30] used Helmholtz energy for developing a multi-parametric equation of state in 1969.  

The Helmholtz energy can be described as a combination of an ideal and a 

residual contribution. The ideal term in Helmholtz energy has a theoretical form based 

upon the ideal gas, but the residual part requires an accurate description of the real 

substance. In 1985, Schmidt and Wagner [31] proposed an empirical form for the 

residual Helmholtz energy as a function of the reduced density (δ) and temperature (1/τ).  
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Different authors have developed equations of state for pure fluid components 

using this functional with remarkable results. Some examples are the nitrogen EoS from 

Span et al. [32], carbon dioxide EoS from Span et al. [33], argon EoS from Tegeler et al. 

[34], propane EoS from Lemmon et al. [35] and methane EoS from Setzmann and 

Wagner [36]. This modern functional can describe thermophysical properties for 

saturated and homogeneous phases. 

The modern equation has three kinds of mathematical functions: polynomial 

functions in density and temperature, polynomials and exponentials terms combined and 
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Gaussian bell shaped terms. This mathematical function can predict the behavior of 

fluids in liquid + vapor, single-phase and critical regions with high accuracy. The 

Gaussian bell-shaped terms improve the predictions near critical point by adding 

empirical parameters φk and β. However, a different number of terms exist for each 

summation, which also varies for each component. According to Span et al. [31] the 

bank of possible terms in the optimization procedure contains a total of 838 terms.  

In 2012, Kunz and Wagner [37] presented the GERG-2008 equation of state. 

This equation uses modern equations of state developed for pure fluids, and proposes a 

mixing rule methodology for 21 components. Some of the components are: methane, 

ethane, propane, butane, carbon dioxide, nitrogen and hydrogen sulfide. GERG-2008 

makes remarkable predictions for natural gas samples. Atilhan et al. [7] and Patil et al. 

[4] showed that for synthetic natural gas samples rich in methane, GERG-2008 predicts 

density values within ±0.25 %. In general, the modern form makes outstanding 

predictions. However, this mathematical form requires significant computational time 

because of its complexity. GERG-2008 is a remarkable tool for reference but is not 

recommended in process design, because the computational time required for complex is 

excessive. A different mathematical form for the residual Helmholtz energy can offer 

similar predictions with lower computational requirements.  
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1.4 Objective  

This work seeks to contribute new experimental data and new thermodynamic 

correlations. The contributions fall into four specific topics: 

1. Design of a vibrating tube apparatus for accurate measurement of gases 

at elevated pressures.  

2. Perform density measurements for pure components and nitrogen + 

methane mixtures for pressures up to 140 MPa. 

3. Development of a new equation of state based upon a rational 

functional form for the residual Helmholtz energy. 

4. Development of a mixing rule based upon Helmholtz energy and a 

rational equation of state. 

Section 2 offers a brief description of a new vibrating tube apparatus that 

includes uncertainties of sensors and operational limits. This section also presents the 

calibration methodology. Finally, it contains a brief explanation of a mixture preparation 

procedure.  

Section 3 presents calibration results for the VTD using methane, argon and 

nitrogen including an uncertainty analysis for the measurements. In addition, this section 

contains accurate VTD measurements of fluid densities. The data include carbon dioxide 

and ethane density measurements for temperatures from 300 to 470 K at pressures up to 

140 MPa. Section 3 also presents density measurements for three nitrogen + methane 

mixtures containing nominal methane mole fractions of 0.25, 0.50 and 0.75.  
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Section 4 presents a new functional for the residual Helmholtz energy using a 

rational polynomial form in density and temperature. This new equation of state can 

predict various properties with accuracies similar to existing reference equations of state, 

while requiring much less computational time. The section presents equations of state 

based upon the new form for nitrogen, argon and methane to demonstrate accuracy of 

the results.  

Section 5 proposes a new mixing rule for gas mixtures. This mixing rule uses a 

rational form for Helmholtz energy interactions similar to the equation in Section 4. This 

new strategy is applied to nitrogen + methane density data.  
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2. VIBRATING TUBE DENSIMETER APPARATUS

A fast and accurate method to measure densities in gas mixtures and corrosive 

fluids over wide ranges of pressure and temperature is desirable. One available method 

is the VTD, which can perform density measurements with reasonable accuracy. 

Previous works have developed apparatus and methodologies for measuring densities of 

liquid and gases at low pressure. Few previous works measure gases at supercritical 

conditions. 

This section focuses upon experimental procedures and design for the VTD 

apparatus to make accurate measurements of gas densities up to 140 MPa. The apparatus 

includes a compression system, vacuum system, manifold, pressure measurement, data 

acquisition system and temperature control. This section also contains a brief description 

of the apparatus used to prepare mixtures of accurately known composition. Finally, this 

section reveals a calibration methodology based upon the work of May et al. [25]. 

2.1 Apparatus description 

The principal components of the VTD are the measuring cell (Anton Paar
®
 DMA

HPM), an interface module, and an evaluation unit (mPDS). The auxiliary instruments 

include: a gas booster for charging the test sample, pressure measurement systems, a 

hand pump, a vacuum system, a temperature control system and a computer for data 

acquisition and control. The operating limits for this apparatus are 263 K to 473 K (15 
°
F

to 400 
°
F) up to 137 MPa (20,000 psia).



33 

The vibrating tube apparatus provides density measurements in a relative short 

time using small amounts of sample. As a result this technology reduces operating risks, 

becoming an alternative for corrosive and dangerous fluids characterization. The 

apparatus resides inside a walk-in fume hood, avoiding direct exposure to the sample in 

a case of an unplanned release. Figure 5 shows a schematic diagram of the apparatus. 

2.1.1 Apparatus design 

2.1.1.1 Feed manifolds and cylinder storage 

Figure 5 includes feed manifolds for the vibrating tube apparatus. Samples and 

auxiliary gas cylinders are stored in a service hall outside of the laboratory room. The 

cylinders are connected to the apparatus using stainless steel 1/8” Swagelok tubes. 

Auxiliary gas cylinders are: low purity nitrogen for operation of the gas booster, low 

purity argon and low purity methane for piston sampler operation. 

To avoid phase separation in gas mixtures, a cylinder warmer keeps samples 

above 45 
°
C. Briskheat

®
 has supplied the cylinder warmer (8” diameter x 48” tall) that

uses 120 VAC with a total of 150 watts. It has self-regulation temperature system and 

the maximum allow working temperature is 66 
°
C. The feed manifold includes: eight

1/8” high-pressure valves provided by HiP
®
 (High Pressure Equipment Company) with

rated working pressures of 30,000 psi, two rupture disks rated at 35,000 psi, two relief 

valves rated at 2,200 (RV2) or 3,000 psi (RV1) and a mechanical pressure gauge rated 

up to 30,000 psi. All connecting lines are 1/8” diameter Type 316 stainless steel 

provided by HiP
®
 with rated working pressures of 30,000 psi.
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Figure 5. Schematic diagram of vibrating tube apparatus 

 

2.1.1.2 Compression system 

The apparatus has a versatile gas compression system that is capable of 

increasing the pressure in the vibrating tube apparatus up to 20,000 psi. The main 

instrument in the compression system is an oil-free Haskel gas booster, model AG-303. 

This compressor has a maximum outlet pressure of 39,000 psi and requires a minimum 

inlet pressure of 500 psi. It uses low purity nitrogen at 120 psi as a driving fluid. 

Increasing the drive pressure to 150 psi provides better performance for sample supply 
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pressures below 1,000 psi. The gas booster is a piston-chamber arrangement where the 

displacement of the piston decreases the volume thereby increasing pressure. Two check 

vales prevent back-flow of gas at both suction and discharge sides. At optimal 

conditions, the booster can increase the pressure up to 20 times the inlet pressure, but for 

this configuration the realized pressure ratio is about 10.  

 
Figure 6. Piston sampler for pressurization of gas samples  

 

The gas booster cannot operate with an inlet pressure lower than 500 psi, so gas 

mixtures at lower pressures require a pre-pressurization stage. A piston sampler device, 

see figure 6, with a maximum allowable working pressure of 1,800 psi serves as a 

secondary container. This device is a cylinder with a displaceable wall that moves under 

pressure differential, creating two chambers at mechanical equilibrium with variable 

volume. Also each chamber has independent gas inlet valves. After evacuation of each 

chamber and keeping VF1 and VF2 open, one of the chambers is filled with sample at 

gas cylinder pressure. Later, VF1 is closed to avoid back flow, and the other chamber is 

filled with a driving gas at the desire pressure. This driving gas can be low purity 

nitrogen, argon or methane. A pressure higher than 500 psi enables gas booster 
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operation, but an inlet pressure higher than 1,000 psi improves performance of the 

booster. 

Gas boosters are effective for gross pressure increases, but they are not reliable 

for pressure tuning. The compression system includes a manually operated piston screw 

pump (hand pump) provided by HiP
®
, with maximum allowable working pressure of 

30,000 psi. This instrument has a variable volume of 11 cc that allows pressure tuning. 

Because of the small volume of the VTD system, the hand pump can increase pressure 

from 10,000 psi to 20,000 psi in a single stroke. The hand pump is loaded with sample 

using the gas booster while fully open, then the volume is decreased to increase pressure. 

Later V1 is closed to avoid back flow and dead volumes. The process can be repeated as 

many times as required.  

 

2.1.1.3 Vacuum system 

The apparatus requires a vacuum system to remove residual gases to avoid 

sample contamination. Figure 5 shows the vacuum system connected to the VTD 

through V4. The system has a HP Varian model SD-200 mechanical pump with a free 

air displacement capacity of 10 m
3
/hr and an ultimate vacuum of 10 mTorr. A 

thermocouple gauge measures the vacuum in the system. An oil trap between the 

mechanical pump and the system absorbs any oil that migrates from the pump toward 

the system.  
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2.1.1.4 Isothermal chamber 

For accurate density measurements, the temperature in the vibrating tube 

apparatus must be stable so the measurement cell resides within a temperature control 

chamber.  Figure 7 provides a schematic of the temperature control chamber. 

Within the chamber, an aluminum cylinder provides an isothermal temperature 

shield. The isothermal shield is constructed from a piece of aluminum tubing alloy 6061 

with 5 mm wall thickness and an inner diameter of 12.5 cm. Two cylindrical plates cover 

the ends to provide a complete enclosure. 

3 1/2"

5" aluminum cylinder

2" width insulation

Insulation Box

Resistant 
Tape

 

Figure 7. Isothermal shield for temperature control 

 

The inner layer is a cellular glass insulation (FOAMGLAS
®
, manufactured by 

Pittsburgh Corning Corp) with a thermal conductivity of 0.042 W·m
-1

·K
-1

 rated up to 
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482 
°
C. It has an internal diameter of 6 inches and a wall 2 inches wide. Because 

FOAMGLAS is a fragile material susceptible to breaking under mechanical stress, then 

insulation cylinder is placed inside a PVC cylinder to reduce mechanical stress caused 

by the weight of the measurement cell. The PVC container consists of a split 11 inches 

internal diameter PVC pipe secured with two metal clamps. Figure 8 shows a picture of 

the insulation, the PCV cylinder and the metal clamps. The outer layer is a rectangular 

box made from foam sheets to minimize ambient air flow and stabilize the inlet line 

temperatures. Figure 7 is a schematic of the measurement cell inside the isothermal 

shield, including insulation box and cylinder. 

 

Figure 8. FOAMGLAS insulation inside a PVC cylinder and secured with metallic 

clamps 

 

The temperature sensor for the isothermal shield is a resistance thermometer 

(RTD) placed on the surface of the aluminum cylinder. The RTD provided by OMEGA
®

 

is a flat-shape sensor with a nominal resistance of 100 Ω at 0 
°
C. This thermometer is 
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accuracy class B, with 0.3 
°
C variation within a range of -50 °C to 500 

°
C. A heating tape 

with a resistance of 4.9 Ω·ft
-1

 and maximum output energy of 52 W·ft
-1

, provided by 

Clayborn
®
, provides energy the aluminum shield. Two sets of tape are connected in 

series. One set is placed on the upper half of the cylinder and the second on the lower 

half to allow easy disassembly of the aluminum shield for internal modifications and 

repairs. The heaters are connected to a variable AC power supply with a maximum 

voltage of 140 V. Optimal voltage values and control parameters vary with the set 

temperature. 

 

2.1.1.5 Temperature control 

The temperature control routine utilizes a PID strategy implemented in Labview
®

 

2012 to control the temperature of the isothermal shield. The RTD temperature is the 

control variable. The error or offset between observed temperature and the user specified 

set point is: 

  
e t( ) = T

RTD
t( )-T

SetPoint
(t)         [37] 

 

The PID control algorithm has three components: proportional, integral, and 

derivative. The value of the manipulated variable I for PID control is: 

 

     
0

( )
t

p i d

e t
u t K e t K e t dt K

t


  

       [38] 

 

In this application, the manipulated variable is the amount of energy supplied to 

the cylinder by the heater tape. When using a fixed voltage supply to the heaters, the 
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amount of energy using an ON/OFF strategy where the ratio of time on to time off varies 

proportionally with u(t) from equation 38.  

A National Instrument
®

 data acquisition card (DAQ, NI USB-6501) with 24 

digital input/output lines provides the interface between the computer and the heater 

power supplies. Every temperature reading cycle takes 5 s, so the maximum output 

signal from the PID controller is equivalent to 5 s on and 0 s off. The DAQ generates a 

logic digital signal alternating between 0 and 5 volts. This signal stays active for a time 

equivalent to the PID controller output. A solid-state relay receives the logical command 

and allows or stops current flow through the heater tape.  

Figure 9 represents the control loop for the isothermal aluminum cylinder. This 

includes the sensor (RTD), the controller (computer -DAQ) and the manipulated device 

(Relay).  As a safety feature, an electronic switch sensitive to temperature located on the 

cylinder surface protects against overheating beyond the working range of the measuring 

cell by opening the electric circuit when the switch temperature exceeds 220 
°
C. 

Computer

AC

T

Super Thermometer 

DAQ

RTD

Isothermal Shield

Relay

Thermo
Switch

 

Figure 9. Diagram of a PID temperature controller in a feedback loop 
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2.1.2 Density measurement 

The measurement cell is a commercial vibrating tube densimeter manufactured 

by Anton Paar
®
 (DMA HPM). This unit can perform density measurements for fluids 

(liquid or gases) at temperatures from -10 
°
C to 200 

°
C and pressures from 0 to 1400 bar 

(20,000 psi). Figure 10 is an image of the DMA HPM cell, interface module and 

evaluation unit (display). 

 

Figure 10. DMA HPM cell (bottom), interface module (upper right) and display unit 

(upper left) provided by Anton Paar. Acknowledgement: Anton Paar website 

 

The DMA HPM has a U-shaped Hastelloy C-276
®
 tube, two coils, two magnets, 

a base, an insulation block and a frequency counter [16]. This device uses the resonance 

frequency of the tube to determine fluid densities. Two small magnets at the free end of 

the vibrating tube and two coils mounted on the base create the oscillation. An external 

current source activates one of the coils (drive coil) using a pulse and it applies a force 

on one the magnets, moving the tube continuously. As the tube moves transversely, the 

second magnet moves relative to the second coil (pick-up coil), thereby inducing an 
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electric current with the same frequency as the tube vibrations. A frequency counter 

located at the bottom of the pick-up coil measures the frequency of the signal.  The cell 

uses a feedback loop to optimize time between drive pulses in first coil to the resonant 

frequency of the tube. Also, an isolation block clamps both sides of the tube and protects 

it from external vibrations. Changes in tube oscillation represent fluid density variations 

because the resonant frequency of the tube is related to the mass of the tube and fluid cd 

within. The DMA HPM measurement cell has 6 mm inlet and outlet tube connections 

with a rated working pressure of 20,000 psia.  Anton Paar also provides a temperature 

sensor located inside the measurement cell. Because this sensor has a range of -10 
°
C to 

200 
°
C with a resolution of 0.1 

°
C, it does not have sufficient accuracy to serve as the 

primary temperature measurement device. 

The DMA HPM is connected to an interface module using a metal-jacketed 

cable. This module generates and produces the pulse required in the oscillation control 

loop [38]. Also, a sensor located inside the DMA HPM cell provides internal 

temperature measurements. A display unit (mPDS 200V3) receives and sends the data 

from the interface module to the computer.  

 

2.1.3 Pressure measurement 

For pressure measurement, the apparatus uses two oil-free absolute pressure 

transducers provided by Paroscientific
®
. The transducers have ranges of 2,000 psi (13.7 

MPa) and 20,000 psi (137 MPa) with uncertainties of ±0.01 % full scale. A combination 

of two transducers allows high-pressure measurements while preserving accuracy at low 
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pressures. For pressures below 2,000 psi, the apparatus the uncertainty is ±0.2 psi 

(±0.00138 MPa), while for pressures higher than 2,000 psi, the uncertainty is ±2 psi 

(±0.01378 MPa).  

Paroscientific Pressure transducers utilize a sensing mechanism that, through 

mechanical coupling, results in the variation of the resonant frequency of a quartz crystal 

with the pressure inside the transducer.  The resonant frequency also varies with 

temperature, so the temperature must be monitored and a correction applied for 

temperature changes.  A second quartz crystal, which is not coupled to the internal 

pressure, provides a temperature measurement. The transducer output contains two 

variables, each of which is a period of resonant oscillation. One is related to pressure 

(Xp), and other to temperature (Tp). A Model 735 display receives information and 

calculates pressure and temperature. Appendix A.2 contains the calibration coefficients 

used for calculating pressure using the periods provided by transducers, and details of 

the calibration certification.  

Because temperature affects both the resonant frequency and the mechanical 

coupling mechanism, Paroscientific models offer error compensation for temperature. 

Because experience has shown that transducer performance is better when maintained at 

constant temperature, so the transducer temperatures are controlled at 50 
°
C.  This 

temperature is chosen to be near the upper end of the operating range to minimize the 

possibility of condensation or adsorption in the transducer or connecting tubing. Figure 

11 shows a schematic drawing of the aluminum block that provides an isothermal 

environment for the transducers. An Omega i-series 1/32 temperature controller with a 
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RTD input sensor controls the temperature to ±0.2 
°
C by delivering electric power to two 

cylindrical cartridge heaters located in the block. 

RTD 
Sensor

Heater 1 Heater 2

Pressure
Transducer  1

Pressure
Transducer  2

 
Figure 11. Schematic diagram of aluminum block that provides isothermal environment 

to the pressure transducers 

 

2.1.4 Temperature measurement 

The primary temperature sensor is a standard platinum resistance thermometer 

(SPRT), provided by Fluke Calibration (Model 5686-B Glass capsule SPRT, report 

number B3820054), and located in a thermometer well at the end of the measurement 

cell.  This SPRT has a nominal resistance of 25 Ω with an operating temperature range 

of -260 
°
C to 232 

°
C.  The reproducibility is ±0.001 

°
C or better with a drift of less than 

0.001 
°
C·yr

-1
. The manufacturer calibrated the SPRT on the ITS-90 thermometry scale. 

The calibration equation and parameters are given in in Appendix A.2. 

A Fluke 1594A Super-Thermometer serves as the measuring instrument for both 

the SPRT and RTD. The 1594A Super - Thermometer is capable of measuring up to four 

sensors in a four wire configuration with a resolution ±0.000015 
°
C.  The 100 Ω standard 

resistance that serves as the resistance reference has a 1-year stability equivalent to 
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±0.001 
°
C.  Figure 12 shows an image of the instrument and a schematic representation 

of the thermometer lead wire configuration. 
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Figure 12. Top: Picture of Fluke 1594A Super-Thermometer Bottom: schematic 

representation of thermometer connection 

 

The instrument measures voltage difference (V) between leads 2 and 3 that 

results from a constant current (I) that passes through leads 1 and 4. The SPRT 

resistance is given by:  

SPRT
SPRT

V
R

I
            [39] 
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The super thermometer uses an external resistor to determine the current. The 

same current goes through the reference resistor and the SPRT. Using equation 39 for 

both resistances and solving the resulting simultaneous equations produces: 

SPRT
SPRT Ref

Ref

V
R R

V
          [40] 

 

The RTD and SPRT sensors use the same methodology for measuring resistance 

values, but the conversion equations from resistance to temperature vary with each 

sensor. The SPRT uses the ITS-90 calibration equation and the RTD uses the Callendar-

Van Dusen equation. These conversion equations and the calibration parameters appear 

in Appendices A.2 and A.3. 

 

2.1.5 Labview data acquisition programs 

During an experiment, a Labview
®
 2012 program records temperatures, pressures 

and periods of vibration approximately every 5 seconds. For every experiment the 

routine creates two output text files. One file includes all experimental variables for the 

entire experiment and the other (results file) includes some selected values for use in 

subsequent calculations. The results file records pressure, temperature, vibrational 

periods, and other significant information only when the system reaches equilibrium.  

Calculation of the density of the fluid inside the apparatus requires pressure, 

temperature and period of oscillation values at equilibrium and a calibration model. The 

program also calculates the standard deviation for every experimental property using the 

last 10 minutes of measurements.  The program determines when the system reaches 
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equilibrium using stability tolerance values that are specified by the user. When the 

standard deviations of all variables satisfy the specified tolerances, the system is at 

equilibrium. The recommended values for stability tolerances usually are the sensor 

uncertainties. To avoid false positives in detecting equilibrium, the program imposes a 

20 minutes delay time after equilibrium is reached.  The program then records and 

averages all experimental properties during a specified period (10 minutes) to reduce 

errors caused by noise.  

The Labview
®

 user interface has 6 tabs, each of them with different task. The 

first tab contains values from the RTD (Resistance thermometer) that read cylinder 

temperature (in 
°
C) from the super thermometer device. This tab also includes 

parameters for temperature control loop (set point, proportional gain, integral and 

derivative constant). The second tab shows VTD temperature from the measurement cell 

sensor, temperature from the SPRT and the standard deviation of this temperature. Third 

tab includes resonance period of oscillation with its standard deviation and average. The 

fourth and fifth tabs have pressure and temperature values from two pressure 

transducers. Finally the sixth tab has a preliminary value of density calculated 

continuously.  

 

2.1.6 Sample preparation 

This work performs density calibration measurements for three pure components 

(methane, nitrogen and argon). Research-grade ultra-high purity samples reduce errors 

caused by impurities in samples. The nitrogen sample came from Airgas with a specified 
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mole fraction of 0.999995. The argon and methane came from Airgas, both with a 

specified purity of 0.99995. 

Carbon dioxide and ethane density measurements validate the calibration 

methodology. Matheson–Tri–Gas provided carbon dioxide with a specified purity of 

0.99999 and ultra-high purity ethane with 0.9995 specified purity.  

Finally, this work performs density measurements for nitrogen + methane 

mixtures at three different compositions using the VTD in the range of 303 K to 470 K at 

pressures up to 140 MPa. The mixtures are prepared in previously evacuated LP-50 

aluminum cylinders using a gravimetric procedure. A Sartorius
®
 IS64EDE-H balance 

with a resolution and repeatability of 0.1 g provides the mass measurements. The total 

amounts of sample varied from 2,500 g to 3,200 g so that the total uncertainty in 

composition is less than ±0.0004 molar fraction. Figure 13 shows a schematic of the 

mixture preparation apparatus, including the balance/cylinder enclosure and the 

temperature (T1) and pressure (P1) sensors used to calculate air buoyancy corrections. 

Balance

Pure Gas 
Cylinder

Vacuum Pump

Turbo 
pump

Mixture
Cylinder

TI

PI

 
Figure 13. Schematic of gravimetric mixture preparation apparatus 
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2.2 Calibration methodology 

The VTD requires a calibration equation to convert resonant period 

measurements into density of a fluid. The resonant period of the tube is a function of 

temperature, pressure and mass, but it is not a function of the physical properties of the 

contained fluid. Thus, a well-known fluid can be a reference for developing a calibration 

equation.  

According to some authors [16] [23], calibration methodology defines the 

accuracy of the apparatus. There are empirical, semi-empirical and physically based 

calibration models. Bouchot and Richon [23] proposed a forced path mechanical 

calibration (FPMC) model, trying to set realistic paths for mechanical properties with 

variations of temperature and pressure. This physically based model limits the influence 

of calibration measurements when estimating densities. However, this model applies to 

apparatus with limited ranges in pressure and tubes with thin walls. 

This work uses a calibration equation model similar to that of May et al. [25], 

which is an extended version of the one proposed by Holcomb and Outcalt [16] and with 

some similarities to the FPMC. May et al. describe the oscillation in the vibrating tube 

system as a freely vibrating uniform cantilever. They proposed an equation of motion 

and boundary conditions to solve system for resonance conditions. As in equation 19, 

May et al. [25] describe density of the fluid as a function of Young’s modulus (E), 

moment of inertia (I) and length of the tube (L).  
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Using the mechanical properties for Hastelloy 265C, they defined Young’s 

modulus, length of the tube and inertia moment as functions of temperature and pressure. 

Making some arrangements and simplifications, they recommended  
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for calibrating VTDs over wide pressure ranges. 

The linear (ετ1) and quadratic (ετ2) temperature response coefficients and the 

resonance period of the tube (τoo) come from an empirical quadratic correlation in 

temperature based upon experimental measurements. However Outcalt and McLinden 

[22] showed that vacuum measurements do not have good repeatability and  produce 

errors equivalent to ±0.3 kg·m
-3

.  

This work performs vacuum measurements before every isotherm, correcting 

vacuum values every time. Because small variations in temperature occur during an 

isotherm (no more than 40 mK), vacuum resonance values need corrections for 

temperature variations. The vacuum resonance values are expressed as a quadratic 

equation  

2

0 1 2( )o T c c T c T             [42] 

 

where the coefficients are determined using least squares regression of vacuum 

readings at different temperatures. A Taylor series expansion,  

          1 22o
o o o o oT T T To T c c T T To

T


  


      


   [43] 
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provides an expression to adjust the values of resonance oscillation (τo) for temperature 

variations. Iglesias et al. [24] showed that this approach can limit uncertainties to ±0.1 

kg·m
-3

. Values for c1 and c2 are 0.26259 and 0.000126 respectively for temperatures 

between 300 K and 470 K. 

When using equation 44 to calculate resonance period at vacuum, the final 

calibration model is: 
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     [44] 

where ρoo represents density at a reference state, αv is the linear temperature 

response coefficient of tube volume, βv is the pressure response coefficient and βτ is the 

pressure response coefficient or spring constant. These 4 parameters have physical 

equivalency with mechanical properties of Hastelloy C-275, but those values vary for 

every apparatus and geometrical configuration. 
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3. DENSITY MEASUREMENTS 

This VTD operates at temperatures between 300 K and 473 K at pressures 

ranging from 0 to 137 MPa. This system has low residence times and sample volumes 

compared to other accurate techniques, which reduces experimental issues associated 

with measuring data for corrosive and toxic fluids. The VTD measures densities by 

observing changes in the resonant frequency of a vibrating tube containing a specific 

fluid.  

Equation 44 in section 2 is the calibration model, but requires four parameters 

that are characteristic of each specific instrument. This section contains results of a non-

linear least squares minimization using densities of nitrogen, argon and methane as 

calibration fluids. It also includes information about equations of state used as reference 

models. Later, this section presents a detailed analysis for calculating experimental 

uncertainties.  

To validate calibration, this work performs density measurement of carbon 

dioxide and ethane for pressures up to 140 MPa. Additionally, this section presents novel 

methane + nitrogen density data for three compositions up to 140 MPa. The mixing 

apparatus presented in section 2 prepares the mixtures gravimetrically. These new data 

appear as four isotherms (300 K, 350 K, 400 K and 470 K) for each composition sample. 

This work compared experimental data to density values calculated with GERG – 2008 

[37].  
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3.1 Calibration results 

Outcalt and McLinden [22] mention that uncertainties of reference fluids 

equations of state are among the highest contributors to errors. A suitable calibration 

fluid requires accurate density values from an equation of state within the temperature 

and pressure range. Figure 14 shows pressure as a function of density at several 

temperatures within the VTD operating range for nitrogen, helium, argon, methane, 

carbon dioxide and propane using REFPROP
®

 software [39].  

 

Figure 14. Density estimation using Refprop as EOS 

 

Helium has a well-known equation of state, but it has a narrow range of density. 

Propane and carbon dioxide have critical temperatures within our calibration range, 

which can produce instability because of vapor-liquid equilibrium. Nitrogen, argon and 
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methane appear to be the best options for calibration fluids. Carbon dioxide is a useful 

alternative for future samples with density values higher than the methane-nitrogen-

argon range.  

This work uses highly accurate equations of state for pure nitrogen, argon and 

methane reducing EoS error contributions. The Span et al. [32] equation of state for 

nitrogen has an uncertainty of 0.02 % for densities between 240 K and 523 K and 

pressures up to 30 MPa. For higher pressures it claims errors less than 0.6 %. The 

Tegeler et al. [34] equation of state for argon behaves similarly to nitrogen with 

uncertainties in density of 0.03 % for pressures up to 30 MPa and less than 0.2 % for 

higher pressures. The Setzmann [36]  equation of state for methane claims uncertainties 

of 0.03 % in density for pressure below 12 MPa and 0.07 % for values up to 50 MPa.  

Reference equations of state need accurate data to achieve low uncertainties, but 

the authors did not have accurate p-ρ-T data between 40 MPa and 200 MPa during 

development of the equations for nitrogen, argon and methane. Mantilla et al. [8] used a 

MSD to show that the equation of state for nitrogen can reproduce data within 0.025 % 

up to 200 MPa. Also using same technique, Cristancho et al. [26] showed that the 

methane equation of state reproduces density values within 0.04 % for pressures up to 

200 MPa for temperatures between 300 K and 450 K. Using the MSD technique [8] [26] 

[40], this work uses unpublished argon density measurements up to 200 MPa to show 

that errors in the reference equation of state for argon are less than 0.05 %. These data 

will appear in a subsequent publication. 
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The calibration measurements for nitrogen, argon and methane cover 

temperatures between 303 K and 474 K and pressures between 10 MPa and 137 MPa. 

Table B.1, B.2 and B.3 in Appendix B contain the calibration measurements for 

nitrogen, argon and methane.  

Equation 44 describes nitrogen, argon and methane calibration data within ±0.1 

kg·m
-3

 for densities lower than 200 kg·m
-3

 and ±0.05 % for densities up to 1000 kg·m
-3

. 

Table 1 contains the values and standard deviation for parameter in equation 44. It also 

includes values reported by May et al. [25] for several different VTD’s. Figure 15 

contains absolute residuals between densities calculated using reference EoS [32] [34] 

[36] and values estimated from equation 44. 

 

Table 1. Values of calibration equation for Vibrating tube densimeter without outlier 

data  

Coefficients Values σ May et al.[25] 

00 / kg·m
-3

 16091.44 6.23  

v /K
-1

 4.348·e-5
 0.1038·e-5

 3.6·e-5 

v / MPa
-1

 3.148·e-5
 0.1735·e-5

 2.3·e-5 

 / MPa
-1

 -3.191·e-6
 0.0060·e-6

 -0.95 to 1.2·e-5 
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Figure 15. Absolute error for densities from equation of state ( EoS ) and densities from 

experimental measurements with the VTD ( calc ). (Nitrogen ✶, Argon ○, Methane □) 

 

3.2 Uncertainty analysis 

Outcalt and Mclinden [22] notes that the uncertainty in density measurements 

using VTDs depends strongly upon the reproducibility of vacuum readings and 

uncertainties in reference EoS for the calibration fluids. Overall uncertainty estimation 

needs all participant variables in the density calculation. The combined experimental 

uncertainty includes contributions from calibration errors, sensors (temperature, 

pressure), intrinsic errors caused by the technique (variation in period of oscillation) and 

composition effects as follows: 
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The DMA HPM manufacturer claims density resolution and repeatability with 

this technique as 0.1 kg·m
-3

. The measured resonance values have standard deviations of 

approximately 0.0025 μs, which is equivalent to 0.06 kg·m
-3

 for 95 % confidence level. 

Temperatures from the SPRT have standard deviations of of approximately 1.5 mK, but 

the overall uncertainty with respect to ITS-90 is ±0.01 K. There are two Paroscientific 

pressure transducers, rated to 13.7 MPa and 137 MPa respectively, with each having an 

uncertaint of ±0.01 % full scale, as specified by the manufacturer. The partial derivative 

coefficients required for equation 45 come from the EoS. 

Because the calibration technique uses three different reference fluids, it is 

complicated to estimate the influence of each fluid upon density uncertainties. However, 

the EoS for nitrogen, argon and methane do not have errors higher than ±0.05 % in 

density. Table 2 summarizes the overall uncertainty estimates and the specific estimates 

for the individual contributions. 

The uncertainties vary for different values of density. The main contributions are: 

variability in apparatus readings and calibration fluids errors. For densities lower than 

200 kg·m
-3

 the uncertainty is roughly ±0.1 kg·m
-3

 while for higher densities the errors 

are less than 0.05 % of value.   Figure 15 verifies that equation 46 provides a good 

working representation of the combined uncertainty for the VTD. 

u r( ) = ± 0.1 kg·m-3 + 0.0005r( )          [46] 
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Table 2. Experimental uncertainty estimates 

Property Uncertainty 

(k=2) 

Equivalence  Density Equivalent in 

Density (kg·m
-3

) 

Period 0.005 μsec 

,P T





 
 
 

from calibration 

equation 

0.060 

Temperature 2 mk 

,P miT

 
 
 

 from EOS 
0.0005-0.004 

Pressure 0.014 MPa* or 

0.0014 MPa* 
,T miP

 
 
 

 from EOS 
0.015-0.148 

Calibration 

Error 

Nitrogen 

Argon 

Methane 

 

0.01% -

0.02%** 

0.05%** 

0.04%** 

 

Up to 640 [kg·m
-3

] 

Up to 1000 [kg·m
-3

] 

Up to 350 [kg·m
-3

] 

 

0.128-0.55 

Overall 

uncertainty 

(k=2) 

   

0.1-0.66 

*Paroscientific Instrument provides pressure transducers within ±0.01 % at full scale. 

** MSD measurements allows to reduce uncertainties in EOS component 

 

3.3 Pure components: Carbon dioxide and ethane 

Measurements for carbon dioxide and ethane as pure fluids help to validate the 

calibration model.  This section presents the pure fluid measurements.  

 

3.3.1 Carbon dioxide  

This work contains the experimental results for carbon dioxide at three different 

temperatures (300 K, 400 K and 470 K) in the pressure range of 20 MPa to 137 MPa 

using the VTD. Table B.4 in Appendix B presents complete experimental results and 
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values of density from the Span and Wagner [33] EoS for carbon dioxide. Table B.4 also 

contains relative deviations between the experimental data and this EoS.  

Figure 16 presents relative deviation as a function of pressure for 304 K, 400 K 

and 470 K, including error bars showing experimental uncertainties. The carbon dioxide 

densities at these conditions all are larger than 200 kg·m
-3

, so that the uncertainties 

equivalent to ±0.05 %. Figure 16 also includes carbon dioxide measurements performed 

by Mantilla et al. [40] at 310 K, 400 K and 450 K.  Those measurements utilized an 

MSD, which does not depend upon calibration fluids [8] [41].  The VTD and MSD 

results agree well, proving that the calibration model is valid. The current results are the 

first at high pressures at 470 K.  

 
Figure 16. Carbon dioxide density measurements for this work ● (304 K, 400 K, 470 K) 

and Mantilla et al. □ [40] (310 K, 400 K, 450 K) 
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3.3.2 Ethane  

The ethane density measurements performed in the VTD, at 304 K, 400 K and 

470 K, from 10 MPa to 137 MPa appear in table B.5 of appendix B. Table B.5 also 

contains the relative deviations between the experimental densities and the Bucker and 

Wagner [42] EoS, which currently is the best available for ethane.  

Figure 17 presents relative errors as functions of pressure, including experimental 

error bars. Because the vibrating tube has a minimum uncertainty of ±0.1 kg·m
-3

, the 

relative deviation at 10 MPa becomes significant. Figure 17 also presents Cristancho et 

al. [41] ethane densities, measured using an MSD. The VTD results agree with the MSD 

densities, with some discrepancies at low pressure and high temperature. This region is 

problematic for both apparatus because of low pressure and density[9].   

 
Figure 17. Ethane density measurements for this work ● (304 K, 400 K, 470 K) and 

Cristancho et al. □ [41] (298 K, 400 K, 450 K) 
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3.4 Nitrogen and methane mixtures 

Nitrogen + methane mixtures were prepared using the mixture apparatus 

described in section 2. Binary mixtures help when estimating component interactions, 

for example cross virial coefficients. Eubank and Hall [43] found that the optimal 

mixture composition to determine those interactions are 0.25 and 0.75. Therefore, this 

work prepares and performs density measurements for these nominal compositions and 

an equimolar mixture. Table 3 shows the mass of each substance added to the mixture, 

the resulting mole fraction values of the mixtures, and the estimated uncertainty in the 

mixture composition.  

 

Table 3.  Methane + nitrogen mixture compositions 

Sample mCH4/g mN2/g xCH4 xN2 U(x) 

25% CH4 + 75% N2 540.1 2831 0.24989 0.75011 0.00004 

50% CH4 + 50% N2 1106.1 1934.9 0.49954 0.50046 0.00003 

75% CH4 + 25% N2 1734.6 1015.6 0.74889 0.25111 0.00002 

 

 

 

Very few accurate p-ρ-T data are available for these mixtures at pressures higher 

than 40 MPa and temperatures up to 470 K. These new data can improve methane + 

nitrogen correlations at high pressures. These data complement data from Seitz and 

Blencoe [29] who performed measurements up to 100 MPa with an uncertainty close to 

1 kg·m
-3

. 
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3.4.1 25% Methane + 75% nitrogen 

Table B.6 in appendix B presents the experimental results for 25 % methane + 75 

% nitrogen, density values calculated using the GERG-2008 EoS developed by Kunz 

and Wagner [37], and the relative differences between the experimental and EoS values. 

Figure 18 shows the relative deviations for 304 K, 350 K, 400 K and 470 K.   

 
Figure 18. Density measurements for the 25/75 methane + nitrogen sample at 304 K, 350 

K, 400 K and 470 K 

 

3.4.2 50 % Methane + 50 % nitrogen 

Table B.7 in appendix B contains experimental results for the 50 % methane + 50 

% nitrogen mixture, the GERG-2008 densities, and the relative differences between the 

experimental and EoS values. Figure 19 contains the relative differences as a function of 

pressure for several temperatures.  
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Figure 19. Density measurements for the 50/50 methane + nitrogen sample at 304 K, 350 

K, 400 K and 470 K 

 

3.4.3 75% Methane + 25% nitrogen 

Finally, Table B.8 in appendix B presents experimental results, EoS values and 

relative differences for the 75 % methane + 25 % nitrogen mixture.  Figure 20 shows the 

relative differences as a function of pressure for several temperatures. 
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Figure 20. Density measurements for the 75/25 methane + nitrogen sample at 304 K, 350 

K, 400 K and 470 K 

 

Figures 18, 19 and 20 demonstrate that relative differences between GERG -2008 

EoS [37] and the experimental results vary slightly with composition, but generally are 

quite small. For pressures below 40 MPa, the EoS describes the experimental results 

within their experimental uncertainties. The differences increase slightly at higher 

pressures, however the GERG-2008 EoS describes the experimental result within ±0.15 

%. 

 

 



 

65 

 

4. RATIONAL EQUATION OF STATE 

Chemical process modeling and design requires accurate models to predict 

energies, entropies and densities. These models, called Equations of State (EoS), can 

correlate all thermodynamic properties. Industry uses cubic EoS for many applications 

because they are simple to use and do not require massive computational capabilities for 

evaluating properties. However, cubic EoS can have large errors when predicting 

densities, and often cover limited ranges in pressure and temperature.  

In recent years, researchers have suggested EoS based upon Helmholtz energy to 

describe accurately thermodynamic properties over wide ranges of temperature and 

pressure, including vapor-liquid equilibrium. These EoS usually express Helmholtz 

energy as an ideal gas part and residual part.  The EoS GERG-2008 [37] defines the 

residual functional as an empirical combination of exponential terms that are functions 

of temperature and density, and it produces excellent results over wide ranges of 

pressure and temperature. However, this approach requires heavy computational 

capabilities, which increase calculation time for complex systems. 

 To find a balance between accuracy and computational cost, this work proposes 

an EoS based upon a rational form of the Helmholtz energy. Hard sphere theory uses a 

rational form to describe pressure [44] as function of density and temperature. In 

addition, Kumar and Starling [45] have described a completely general cubic EoS using 

a rational form. These studies suggest that residual energy could have similar form.  

This section presents the development of accurate EoS for nitrogen, argon and 

methane covering a wide range of temperature and pressures based upon a rational form 
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of Helmholtz energy. The equation does not include exponential functions, which 

simplifies calculations and reduces computational time by a factor of 20 compared to 

GERG-2008.  

4.1 Equations of state based in Helmholtz free energy 

The Helmholtz energy is a fundamental property and is function of density and 

temperature as independent variables. The following equation presents Helmholtz 

energy as a combination of ideal and residual contributions [32].  

   , , ( , )id rA T A T A T            [47] 

 

Equation 47 is transformed to a dimensionless form using reduced properties, 

where τ is the inverse of reduced temperature and δ is reduced density.  
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           [49]

 

          [50] 

 

Helmholtz energy, as function of density and temperature, can express all 

thermodynamic properties using its derivatives [35]. Table 4 shows some 

thermodynamic properties using reduced properties.  
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Table 4. Thermodynamic properties as function of Helmholtz free energy  

Properties  

Pressure   1 rP RT     

Compressibility factor 1 rZ    

Second virial coefficient 
0

lim rB 





  

Third virial coefficient 
0

lim rC 





  

Isochoric heat capacity  2  id rvC
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Ideal contributions of the Helmholtz energy have been described using ideal heat 

capacities and the ideal gas EoS. However, only an empirical based equation can 

describe the residual energy. This work uses the definitions for the ideal contributions to 

the Helmholtz energies for argon, methane and nitrogen published previously [32] [34] 

[36]. 

Reference equations of state for methane, argon and nitrogen propose an 

empirical form for residual terms based upon a combination of polynomial and 

exponential terms. Setzmann and Wagner  [36] [46] and Tegeler [34] discuss some of 

the strategies for estimating parameters by combining linear and nonlinear techniques. 

The residual forms include polynomial terms, exponential terms and Gaussian (bell-

shaped) terms as functions of reduced density and temperature. The Nitrogen EoS has a 

bank of 838 terms and the Argon EoS needs 650 terms.  

A generalized form of the modern functional for the Helmholtz energy residual is  

  

a r t ,d( ) =
k

åN
k
d

i
kt

j
k +

k

åN
k
d

i
kt

j
k exp -d

l
k( )

+
k

åN
k
d

i
kt

j
k exp(-f

k
d -1( )

2

- b t -1( )
2

)
   [51] 

 

After optimization, the nitrogen EoS has 36 coefficients plus 12 Gaussian bell-

shaped parameters. Argon needs 41 coefficients plus 12 Gaussian bell-shaped 

coefficients. Also, is noted that density exponents (i) are integers but temperature 

exponents (j) may be non-integer numbers. 
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4.2 Rational function for residual Helmholtz energy  

This work suggests a rational form in density as an empirical description of the 

residual Helmholtz energy. This form is less complex than the modern functional, thus 

reducing computational costs. Based in the fact that pressure can be described as a 

rational equation [44], the proposed functional is a ratio of 6
th

 and 3
rd

 order polynomials, 
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The coefficients N (Numerator) and D (Denominator) are functions of 

temperature. Isothermal data for nitrogen [47] and argon [48] help identify the 

mathematical forms of those coefficients as functions of temperature. While the 

temperature dependence is a work in progress, this work uses 4
th

 order polynomial 

functions of the inverse reduced temperature (τ) to define N and D coefficients.  

These functions are sufficient for simple systems, but they may fail for more 

complex systems. Although exponential or non-integer powers might provide proper 

behavior, they have the undesired effect of increasing computational costs [49]. 
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The parameters N and D, in equations 53 and 54 are functions only of 

temperature, which allows representing both the numerator and denominator as simple 

functions of reduced density at constant temperature. With this in mind, a simple 
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expression defines the residual Helmholtz derivatives as functions of reduced density (δ) 

at constant temperature (τ), simplifying evaluation of pressure. 
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The expression for pressure becomes 
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      [58] 

From this equation, it is clear that if the Helmholtz energy is expressed in rational 

form, the pressure also will have a rational form.  For the Helmholtz energy form shown 

in Equation 52, the pressure effectively is a 10
th

 order polynomial in density so that there 

are ten density solutions. 

At each temperature, the rational equation has a combination of complex and real 

roots. For temperatures above the critical temperature, eight solutions are complex and 

two are real. Only one of the real solutions is physically realistic because the other is 

either negative or greater than seven times the critical density.  For temperatures below 

the critical temperature, the rational equation has four to six real roots with the 

remainder being complex roots. 

For supercritical temperatures, numerical methods, such as those of Newton or 

Halley, can find density solutions from any initial estimate, so a crude model such as the 
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ideal gas suffices. Finding proper solutions at subcritical temperatures requires more 

accurate initial estimates in density, such as those provided cubic equations of state.  

The virial equation is a good approximation for high temperature regions. The 

virial coefficients are related to the residual Helmholtz energy (see Table 2). For the 

rational form shown in equation 52, the second (B) and third (C) virial coefficients are 

related to N1, N2 and D1 as shown in Equations 59 and 60. 
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Table 4 also shows the relations between the speed of sound, isochoric heat 

capacity and various derivatives of the residual Helmholtz energy with respect to density 

(δ) and inverse reduced temperature (τ). Appendix C contains complete expressions for 

the various first and second order derivatives. 

 

4.3 Fitting procedures 

One of the challenges in multi-parametric equations is to determine proper 

density and temperature functional forms. This work proposes a combination of 

polynomial and rational functions for describing density. This form does not involve 

high computational costs because simple operations such as multiplication and 

summation are sufficient to evaluate polynomial forms. However, the equation form 

must be capable of modeling real fluid properties. 
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   A generalized rational equation can describe residual Helmholtz energy as a 

function of density at constant temperature. The p-ρ-T data of Nowak et al. [47] for 

nitrogen present density organized as isotherms, which is convenient for evaluating 

different mathematical forms. These data allow optimizing coefficients based upon 

density at constant temperature. The Nowak isotherms for nitrogen cover the critical, 

supercritical, and subcritical vapor-liquid regions. 

  A nonlinear least-squares solver function can evaluate different rational equation 

forms using isothermal data. This routine uses a Levenberg-Marquardt algorithm which 

is part of a commercial software package (MATLAB, the MathWork inc). This 

algorithm can solve nonlinear least squares problems, such as those related to curve fits, 

but the routine does not necessarily find a global minimum. The procedure needs good 

initial coefficient values to describe real fluid behavior correctly. The rational equation 

offers advantages for finding appropriate initial values. For example, first numerator 

coefficient (
1N ) equals the second virial coefficient, which Nowak reports at different 

temperatures. Additionally, 
1 2, N N  and 

1D  comprise the third virial coefficient making 

easier to add constraints for preliminary calculations.  

According to Kozoil [50], quintic equations in pressure can describe pure fluid 

properties with a reasonable accuracy. The current work first tested a residual Helmholtz 

functional with 3
rd

 order in numerator and 1
st
 order in denominator, which generates a 

quintic function in pressure. 
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Fitting parameters with the nonlinear least-squares fitting routine, equation 63 

provides excellent results for nitrogen isotherms at high temperature (reduced 

temperatures greater than 1.3). However, density deviations are higher than desired for 

the critical region and liquid densities. This indicates that a higher order equation is 

necessary for describing pure fluids correctly. However, more parameters imply more 

degrees of freedom and higher probability of finding solutions with local minima.  

The first and second derivatives of pressure as a function of density at the critical 

temperature equal zero. These critical point constraints are useful when developing EoS. 

For the critical isotherm of nitrogen at 126.192 K, Nowak, et al. report 35 density 

measurements at different pressures.  

Eubank and Hall proposed a mathematical methodology to apply critical point 

constraints [51] which is useful with rational equations. Equation 62 shows the Eubank 

and Hall approach.  In this method, f and g represent numerator and denominator for an 

equation explicit in pressure. However, high order density polynomial functions are 

difficult to solve and a numerical approach is more convenient.  

'
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The critical constraints are related to the residual Helmholtz energy and its 

derivatives with respect to density by 
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Critical constraints reduce the degrees of freedom in the nonlinear optimization 

problem, and critical isotherm data reveal the order required for the rational equation. 

This work finds that a rational equation with 6
th

 order in the numerator and 3
rd

 order in 

the denominator works well with the critical isotherm data.  

In total, the rational equation has 9 density coefficients (6 in the numerator and 3 

in the denominator), which are functions of temperature. Equation 61 describes densities 

at high temperatures accurately, indicating that some of the coefficients go to zero with 

increasing temperature. For reduced temperatures higher than 1.3, 
4 5 6 2,  ,  , N N N D  and 

3D  should have negligible values. Using isothermal data for other temperatures, the 

mathematical form reveals values for each coefficient at different temperatures. 

Coefficient values calculated for each temperature provide initial values for a global 

optimization. 

  A modified version of the same computational routine provides the nonlinear 

least squares global optimization for the Nowak et al. data set using a 6- over 3-degree 

rational equation form. Polynomial functions in temperature with integer exponents 

describe the behavior of coefficients for rational equations when applied to simple 

systems. Exponential and non-integer power functions can have similar results, but 

polynomial functions have significantly lower computational cost [49].  

A preliminary calculation using the nonlinear least square fitting routine 

describes the Nowak et al. data within acceptable deviations. These results offer good 

initial values for further global optimizations. Observations show that nitrogen and argon 
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coefficients demonstrate similar behavior, making it possible to use the same initial 

values for an argon global optimization.  

This rational equation of state must describe thermodynamic properties of fluids 

over wide ranges of pressure and temperature. With this in mind, this work performed a 

global optimization, including p-ρ-T data sets covering the subcritical, critical and 

supercritical regions. This global optimization, based upon the Levenberg-Marquardt 

algorithm, includes statistical weights that are inversely proportional to reported 

uncertainties. EoS for nitrogen, argon and methane use a similar procedure. 

Pure fluids are complex in nature, especially in the vapor + liquid two phase 

region. The global routine requires complementary thermodynamic properties such as 

vapor pressure, and saturated liquid and vapor densities having different weights in the 

global function.  

The rectilinear diameter constraint and Maxwell equal area rule create a better 

representation for vapor liquid equilibrium. The equal area rule:  
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when applied to the residual Helmholtz energy and its derivatives, becomes 
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Equations of state with multiple parameters may have multiple local minima, 

which can lead to misinterpretations of the real pure fluid behavior. Isochoric heat 
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capacities and speed of sound data sets can complement the analysis. These properties 

include first and second derivatives in density and temperature.  

Speeds of sound and isochoric heat capacities are function of residual Helmholtz 

energy and its derivatives. The nonlinear optimization routine includes multiple data sets 

from different authors using weights inversely proportional to the data uncertainties. 

In summary, the nonlinear least squares weighted optimization routine uses a 

Levenberg-Marquardt algorithm and includes p-ρ-T data, vapor pressure data, saturated 

densities, isochoric heat capacities, speeds of sound and applicable constraints. Weights 

vary for each property and data set to incorporate the experimental uncertainties into the 

fits. This methodology produces excellent results for all properties in all regions except 

for the subcritical liquid data. In the liquid region, the derivative of pressure as a 

function of density at constant temperature (∂p/∂ρ)T is large. Thus, small errors in 

density produce large errors in pressure. A different approach is necessary to find a final 

solution. 

A common least square fitting routine takes temperature and density as fixed 

values. However, temperature and density measurements have errors that are relevant in 

the liquid region. Orthogonal distance regression is a methodology that includes errors in 

all variables. ODRPACK is a software package for weighted orthogonal distance 

regression to find the parameters that minimize the sum of squares for weighted sets of 

observations to determine coefficients [52]. Using this package, this work calculates EoS 

parameters using errors for temperature, density and pressure reported by different 

authors. Using parameter values from Levenberg-Marquardt algorithm as initial 
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estimates, ODRPACK calculates the final coefficients describing all data within the 

experimental pressure, temperature and density uncertainties.  

Table 5 presents the parameters for rational equations of state for nitrogen, argon 

and methane. The coefficients describe p-ρ-T data, isochoric heat capacities, speeds of 

sound and saturation properties within the uncertainty reported by authors.  Table 5 

presents the coefficients for equation 52. The first column shows the powers applied to 

inverse reduced temperature in equation 53 and 54. The following sections show all data 

sets used in the nitrogen, argon and methane EoS. Also, it presents deviation plots and 

discussion of results for these three pure fluids.  

 

Table 5. Coefficients for Rational equations of nitrogen, argon and methane 

N1 Nitrogen Argon Methane 

0 0.440921454 0.416925175 0.40999340 

1 -0.744789222 -0.783555867 -0.63513418 

2 -1.186842847 -1.056851105 -1.45361301 

3 0.501561416 0.383270348 0.74668505 

4 -0.161989909 -0.122881189 -0.25449607 

    N2 Nitrogen Argon Methane 

0 -0.478688238 -0.550946744 -0.96102278 

1 2.509959515 6.136062868 3.91649965 

2 -3.293978926 -17.05656731 -1.75703187 

3 0.677067618 14.11092015 -5.55471736 

4 1.929315252 -1.34847563 5.29692590 

    N3 Nitrogen Argon Methane 

0 0.06913669 0.447604333 0.04921353 

1 -0.015026845 -3.346381066 0.40266297 

2 -1.234382041 8.640473334 -4.51527044 

3 2.497264781 -5.916462755 9.66619191 

4 -2.211216163 -0.797338531 -6.38107962 
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Table 5. Continued 

N4 Nitrogen Argon Methane 

0 0.068290145 -0.07998447 -0.06436001 

1 -0.458361383 0.500984381 -0.05313680 

2 1.445287769 -0.905016697 1.96621840 

3 -1.849957326 -0.484697165 -4.60805740 

4 1.063039841 1.302235057 3.08211809 

    N5 Nitrogen Argon Methane 

0 -0.011610772 0.014143604 0.05780445 

1 0.122702717 -0.00889715 -0.24369838 

2 -0.419616359 -0.121084387 -0.05748681 

3 0.514956099 0.454949814 1.11027044 

4 -0.278322011 -0.448908692 -1.01694825 

    N6 Nitrogen Argon Methane 

0 0.001026553 -0.004936928 -0.00550612 

1 -0.006090794 0.012028566 0.03763616 

2 0.038933966 0.005182345 -0.03698095 

3 -0.049327864 -0.037524696 -0.09146431 

4 0.028851902 0.046462564 0.12798097 

    D1 Nitrogen Argon Methane 

0 -1.271672005 -1.096702216 -2.45928402 

1 3.41175686 8.813455461 5.20393643 

2 -3.136492165 -11.73014881 -2.19477173 

3 0.110410272 3.505391751 -0.89243617 

4 -0.080370166 -0.371129385 -0.18450084 

    D2 Nitrogen Argon Methane 

0 0.549880908 0.96759586 0.55754001 

1 -1.31589903 -5.573183035 -0.95673580 

2 1.259980385 7.264618787 -0.34382404 

3 -0.000809216 -2.395347432 0.99182581 

4 0.046305301 0.282094862 0.10712970 

    D3 Nitrogen Argon Methane 

0 -0.033526391 -0.198152731 0.02738641 

1 0.127632131 0.974840143 -0.15828509 

2 -0.14371306 -1.189500448 0.17423043 

3 0.010842503 0.442589979 0.01938048 

4 -0.006815818 -0.054507197 -0.02223127 
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4.4 Equation of state for nitrogen 

Nitrogen is one of the most important components in process modeling, where it 

often finds use as a calibration or reference fluid. Several authors have estimated its 

thermodynamics using various methodologies. Table 6 presents the triple point and 

critical point values for nitrogen reported in the GERG reference EoS [32]. The current 

work uses density (p-ρ-T), vapor pressure, isochoric heat capacity and speed of sound 

data and estimates empirical coefficient values for a rational residual Helmholtz energy 

function.  

 

Table 6. Physical properties of nitrogen 

 T/K p/kPa ρ/ kg·m
-3

 

Triple Point 63.151± 0.003 12.523±0.010  

Critical Point 126.192±0.010 3395.800±1.700 313.3±0.4 

 

 

 

4.4.1 Data sets 

 Many experimental studies of widely varying accuracy have been reported for 

nitrogen.  While developing the reference equation for nitrogen, Span et al. [32] 

performed an extensive review of the accuracy of the experimental data. Their work 

provides the basis for selecting the best data sets to use for developing the rational EoS.  

Table 7 provides a listing of the data sets used in this work and some general 

information about each. 
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4.4.1.1 p-ρ-T  

Density is one of the most widely studied properties for nitrogen. Several data 

sets are available covering wide ranges of temperatures and pressures. The selected sets 

are accurate density data spanning a wide range of temperatures and pressures that 

demonstrate the capabilities of the rational equation in describing pure fluids.  

Nowak et al. [47] have published density measurements using a “two-sinker 

densimeter” with an overall uncertainty between ± 0.010–0.015 % in density for 

temperatures from 66 K to 340 K and pressures up to 12 MPa.  The data cover the 

critical region, slightly super critical data and subcritical isotherms. Klimeck et al. [53] 

in 1998 used a “single sinker densimeter” to increasing the pressure range up to 30 MPa 

and the temperature range to 520 K with uncertainties up to ±0.012 % in density. 

  Straty et al. [54] present density measurements from 80 K to 300 K with 

pressures up to 34.8 MPa. These data extend the pressure range for subcritical 

temperatures. Finally, Robertson et al. [55] report data covering pressures up to 1000 

MPa with estimated uncertainties of ±0.3 %. These data improve the extrapolation 

behavior and density estimation at high pressures. Table 7 summarizes the density data 

sets and contains uncertainties.  

4.4.1.2 Vapor pressure 

Vapor pressure data complement density measurements, for EoS development. 

The fitting procedure requires vapor pressures, along with saturated vapor and liquid 

densities to apply the Maxwell equal rule constraints. Nowak et al. [56] presents vapor 

pressure data from 66 K up to the critical point. For subcritical temperatures the 
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uncertainty is ±0.01 %, but near the critical temperature and pressure the uncertainty 

increases rapidly. Exclusion of some of these points avoids misinterpretation and 

inconsistency using the most accurate data.  

 4.4.1.3 Virial coefficients 

Virial coefficients are not included in fitting routines, but they evaluate 

coefficients behavior in the EoS. Nowak et al. [47] provides virial coefficients from 98 

K to 340 K. Low temperature values have higher uncertainties, especially for third virial 

coefficients. Table 7 presents details about these data.  

4.4.1.4 Speed of sound 

Speed of sound and isochoric heat capacity measurements complement 

information provided by density data.  When fitting an empirical function describing 

residual Helmholtz energy, local minima in the objective can occur with incorrect 

coefficient values. Speed of sound is a good tool for evaluating and finding a proper 

minimum, because it includes second derivatives in density, temperature and cross 

terms. This work uses 6 data sets covering temperatures from 80 K to 350 K with 

pressures up to 30 MPa. Costa-Gomes and Trusler [57] and Ewing [58] present accurate 

measurements within uncertainties from ±0.001 % up to ±0.010 %. Table 7 presents 

speed of sound data used in this work.  

4.4.1.5 Isochoric heat capacity 

Isochoric heat capacity contains the second derivative in temperature of the 

residual Helmholtz energy. An accurate description of this thermodynamic property 

indicates an appropriate temperature function. The best calorimetric measurements have 
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uncertainties ranging from ±0.5 to 2 %. Such large errors in the experimental 

measurements present a challenge when assigning overall uncertainties.  

 

Table 7. Summary of selected p-ρ-T, vapor pressure, second and third virial, speed of 

sound and isochoric heat capacities experimental data used to develop the rational EoS 

for nitrogen 

 
Density 

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆ρ/ρ (%)  

Robertson et al. [55] 1969 308 – 573 164 – 1011    

Straty et al. [54] 1980 80 – 300 0.83 – 34.8    

Nowak et al. [47] 1997 66 – 340 0.10 – 12.0 1.5 – 3 greater of 0.04 0.01 – 0.015 

Klimeck et al. [53] 1998 240 – 520 1.11 – 30.1 4 – 10 0.006 0.012 

Vapor Pressure 

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆ρ/ρ (%)  

Nowak et al. [56] 1997 66 – 125  1.5 – 3  0.01 – 0.015 

Second Virial Coefficient 

Source Year T /K p /MPa ∆B /cm
3
·mol

-1
 

Nowak et al. [47] 1997 98 – 340  0.25 – 0.80 

Third Virial Coefficient 

Source Year T /K p /MPa ∆C /cm
6
·mol

-2
 

Nowak et al. [47] 1997 98 – 340  100 – 800  

Speed of Sound 

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆w/w (%) 

Boyes [59] 1992 250 – 325 0.05 – 6.64   0.73 

El – Hakeem [60] 1965 273 – 294 0.10 – 7.09    

Lestz [61] 1963 273 – 304 0.10 – 1.21    

Costa Gomes [57] 1998 250 – 350 0.10 – 30.1 3 4 kPa 0.001 – 0.01 

Ewing [58] 1992 80 – 373 0.00 – 0.58 3 0.02 0.001 

Younglove [62] 1980 80 – 350 0.03 – 1.51    
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Table 7. Continued 
Isochoric Heat Capacity 

Source Year T /K ρ /mol·dm
-3

  ∆T /mK  ∆p/p (%)  ∆Cv/Cv (%)  

Benedict [63] 1937 303 20.3 – 34.7    

Magee [64] 1991 66 – 307 6.09 – 31.0 30 0.2 0.5 – 2 

Weber [65] 1981 91 – 242 10.7 – 27.5    

 

 

 

4.4.2 Nitrogen results 

The rational equation of state describes density measurements within their 

uncertainties in all regions except near the critical point. For the Nowak et al. [47] [56] 

and Klimeck et al. [53] data, the equation has errors of ±0.01 % for temperatures below 

110 K and for vapor phase densities. Liquid densities have similar errors, however the 

steep slope of liquid isotherms can generate ambiguities when estimating pressure based 

upon density and temperature measurements. In the region near the critical point, 

deviation errors increase up to ±0.04 % in density and ±0.2 % in pressure. For 

temperatures higher than 150 K, deviations are ±0.01 % or lower. Figure 21 presents 

results for these data. 
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   Nowak  [47]     Klimeck [53] 

Nowak [56] 

Figure 21. Relative deviations of p-ρ-T nitrogen data from Nowak and Klimeck 

 

The Straty et al. [54] and Robertson et al. [55] data cover a wide pressure range. 

The highest deviation for the Straty data is ±0.05 %, which agrees with the uncertainty in 

density. For the Robertson data, deviations rise to ±0.07 % in density at high pressures. 

High-pressure data can improve extrapolation behavior. Figure 22 presents the 

deviations of the rational equation at different pressures and temperatures.  
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 Straty  [54]       Robertson [55] 

Figure 22. Relative deviations of Rational Equation of State from the p-ρ-T nitrogen data 

of Straty and Robertson 

 

Industrial applications require accurate EoS. The Rational EOS (REOS) 

reproduces vapor and liquid saturated densities from Nowak et al. [56] within the 

uncertainties of the experimental data. Liquid densities must include the effects of 

uncertainties in pressure. The REOS describes vapor pressures within the experimental 

uncertainties everywhere except near the critical point where deviations rise to ±0.04 %, 

which is greater than the uncertainty reported by Nowak. At temperatures below 80 K, 

vapor pressure errors have larger relative uncertainties because the pressures are very 

low.  

 

 
 Nowak [56] 

Figure 23. Relative deviations of saturated liquid and vapor densities (left), and vapor 

pressure (Right) for Nowak 
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The REOS describes second virial coefficients reported by Nowak  [47] properly 

with absolute residuals smaller than errors claimed by the author. However, the 

temperature has a limited range, and the REOS might have larger errors at higher and/or 

lower temperatures. The REOS also predicts third virial coefficients within their 

estimated errors. At lower temperatures, the values increase in error, however the REOS 

has proper theoretical behavior with values tending toward zero at high temperatures and 

toward minus infinity at low temperatures. Because the parameter estimation does not 

use virial coefficients as input data, they provide an independent test of the REOS 

behavior. Figure 24 shows that the global optimization produces a good representation of 

the virial coefficients.  

Many speed of sound data sets exist in the literature. The REOS estimates 

selected data sets within ±0.1 % relative error. These data cover from 80 K to 380 K up 

to 30 MPa. Costa Gomes and Trusler [57] and Ewing and Trusler [58] claim 

uncertainties lower than 0.01 %. The REOS reproduces those data within ±0.05 %. This 

indicates that a rational form in density can describe thermodynamic properties that 

require second derivatives in density, as shown in figure 25.  

 
   Nowak [47] 

Figure 24. Second virial coefficient (left) and third virial coefficient (right) from Nowak 

et al. [47] 
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   Boyes  [59]           CostaGomesand Trusler [57] 

   El Hakeem  [60]      Ewing and Trusler [58] 

 Lestz [61]    ◊    Youngloveand McCarty [62] 

Figure 25. Percent deviation of speed of sound for nitrogen calculated with the REOS 

 

There are few isochoric heat capacity data sets with low uncertainties. The REOS 

describes three independent data sets covering 66 K to 300 K up to 35 mol·dm
-3

. Figure 

26 demonstrates that the REOS describes these data within ±2 %.  
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    Benedict [63]      Weber [65] 

   Magee [64] 

Figure 26. Relative error of isochoric heat capacities from REOS 

 

4.4.2.1 Extrapolation behavior 

Evaluation of EoS requires different approaches and methods. There are certain 

parameters that help to identify problems or prove proper behavior. Particularly, this 

analysis helps with high pressure and high temperature tendencies. The four properties 

used to assess equations are the ideal compression factor, Joule Inversion, Boyle and 

Joule-Thomson inversion curves. Table 8 shows definition of these parameters. 

Figure 27 presents the locus of the parameters as a function of reduced 

temperature and pressure calculated using the REOS for nitrogen. These curves have 

reasonable shape, and they do not oscillate within the range of the data.  Span et al. [32] 

present the same curves with a similar shape and values. This indicates that the REOS 

can describe thermodynamic properties in real pure fluids. 
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Table 8. Ideal curves definition 

Curve Name  

Ideal 1Z   

Boyle 0
T

Z

p





 
 

 
 

Joule – Thomson Inversion 0
p

Z

T





 
 

 
 

Joule Inversion   0
Z

p






 
 

 
 

 

 

 

Figure 27. Characteristic curves calculated from rational equation of state 
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4.5 Equation of state for argon 

Argon has industrial and scientific importance. Theoretically, its molecular 

simplicity is attractive because it is a monoatomic, nonpolar and spherical molecule with 

an acentric factor of zero. Argon can be a reference or calibration fluid. Table 9 contains 

some of its physical properties.  

 

Table 9. Physical properties of argon 

 T /K p /kPa ρ/kg·m
-3

 

Triple Point 83.8058 68.891±0.002  

Critical Point 150.687±0.015 4863.000±3.000 535.6±1.0 

 

 

 

4.5.1 Data sets 

 Many experimental studies of widely varying accuracy have been reported for 

argon.  While developing the reference equation for argon, Tegeler et al. [34] performed 

an extensive review of the accuracy of the experimental data. Their work provides the 

basis for selecting the best data sets to use for developing the rational EoS.  Table 10 

provides a listing of the data sets used in this work and some general information about 

each. 

4.5.1.1 p-ρ-T  

This paper uses three accurate p-ρ-T data sets for argon. Gilgen et al. [48] present 

data with an uncertainty of ±0.02 % in density for temperatures from 90 to 340 K and 

pressures up to 12 MPa with slightly higher uncertainties in the critical region. Klimeck 
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et al. [53] extend the pressure range up to 30 MPa with similar accuracy for temperatures 

between 235 K and 520 K. The third set of data, Robertson et al. [66],  extends the 

pressure range up to 1000 MPa, but is of lower accuracy.  

4.5.1.2 Vapor pressure 

Vapor pressures and saturation densities improve behavior at the vapor-liquid 

equilibrium boundary. Gilgen et al. [67] complements his work by reporting vapor 

pressures and saturated liquid and vapor densities for temperatures between 110 K and 

148 K. The data have an average uncertainty of ±0.017 % up to 148 K. Values closer to 

the critical temperature have higher uncertainties and are not included in global fitting.  

4.5.1.3 Virial coefficients 

Gilgen et al. [67] presents values for second and third virial coefficients. Once 

again, note that these virial coefficients do not apply to optimization. For second virial 

coefficients, the range of temperatures is from 110 K to 340 K while the third virial 

coefficients range from 130 to 340 K.  

4.5.1.4 Speed of sound  

Many speed of sound data are available with a variety of uncertainties. This work 

uses 12 different data sets to include wide ranges in pressure and temperature while 

avoiding confusion caused by uncertainties. The overall range in temperature is from 90 

to 470 K at pressures up to 800 MPa. Speeds of sound data have a wide range of 

uncertainties, from as low as ±0.01 % up to ±1 %. Estrada & Trusler [68] and Ewing & 

Trusler [58] report accurate data with a claimed maximum error of ±0.03 %. 
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4.5.1.5 Isochoric heat capacities 

Some isochoric heat capacities data sets have uncertainties up to ±4 %. The 

temperature ranges from 87 K to 263 K with densities up to 1393 mol·dm
-3

.  

 

Table 10. Summary of selected p-ρ-T experimental data for argon 
Density 

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆ρ/ρ (%) 

Robertson et al. [66] 1969 308 – 673  120 – 1050 300 0.1 0.4 

Gilgen et al. [48] 1997 90 – 340  0.2 – 12.1 1.5 – 3 0.006 0.020 

Klimeck et al. [53] 1998 235 – 520  2.0 – 30.1 10 – 16  0.006 0.02 

Vapor Pressure  

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆ρ/ρ (%) 

Gilgen et al. [67] 1994 90 – 148   3 0.006 0.017 

Second Virial  

Source Year T /K p /MPa  ∆B /cm
3
·mol

-1
 

Gilgen et al. [48] 1994 110 – 340   0.25 – 1.30 

Third Virial 

Source Year T /K p /MPa/  ∆C /cm
6
·mol

-2
 

Gilgen et al. [48] 1994 130 – 340   60 – 120  
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Table 10. Continued 
Speed of Sound 

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆w/w (%) 

Beckermann 1993 250 – 350  0.5 – 1.0     

Boyes [59] 1992 252 – 350  0.05 – 10     0.015  

Carome et al. [69] 1968 90.3 – 140  0.5 – 11     

Estrada & Trusler [68] 1995 110 – 450  0.01 – 19    0.03  

Ewing & Trusler [58] 1992 90.1 – 373  0.01 – 0.6    0.003 

Hurly [70] 2003 293.15 – 373.15 1.5 – 3.3    

Kachanov [71] 1983 373 – 423  100 – 800    1 

Lacam [72] 1956 298 – 473  5.1 – 111     

Sharif [73] 1989 273.15 – 298.15 1 – 32.4    

Streett [74] 1974 90.1 – 160  0.1 – 345    0.5 

Thoen [75] 1969 100 – 150  0.8 – 52    0.6 

Van Itterbeek [76] [77]  1961 84.8 – 300  0.5 – 20     

Isochoric Heat Capacity 

Source Year T /K ρ /mol·dm
-3

  ∆T /mK  ∆p/p (%)  ∆Cv/Cv (%) 

Anisimov [78] 1975 151 – 263  295 – 693    3 

Gladun [79] 1971 87.8 – 151  738 – 1393    4 

 

 

 

4.5.2 Argon results 

The REOS describes p--T data within the claimed uncertainties except in the 

critical region. At temperatures lower than 120 K, the densities have ±0.015 % average 

deviation. Errors increase near the critical isotherm from 135 to 150 K with a maximum 

deviation of ±0.04 % in temperature and ±0.1 % in pressure. The Gilgen data [48] at 
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temperatures higher than 200 K have average deviations less than ±0.01 %. The REOS 

also reproduces Klimeck [53] densities within ±0.01 % up to pressures of 30 MPa.  

Figure 28 presents the Gilgen [48] and Klimeck [53] data organized by temperatures 

showing relative differences between experimental values and the REOS.  

 

 
   Gilgenet al  [48]         Klimeck et al [53] 

   Gilgenet al  [67] 

Figure 28. Comparison of p-ρ-T Argon data sets from Gilgen and Klimeck and rational 

equation of state 

 

The Robertson data demonstrate that the REOS behaves properly at pressures up 

to 1000 MPa. The equation reproduces densities within their uncertainties having 

maximum error values of ±0.6 %. Figure 29 presents density deviation as a function of 
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pressure for temperatures ranging from 308 K to 673 K. Errors increase at high pressures 

values, which reflects experimental inaccuracies.   

 
   Robertsonet al [66] 

Figure 29. Relative deviations of rational equation of state from Robertson et al. high-

pressure data 

 

The argon REOS describes saturation liquid and vapor densities within ±0.01 % 

from 90 K to 148K. These errors are within the experimental uncertainties for vapor 

pressures. The errors increase near the critical point, but the deviations are not more than 

±0.03 %. Figure 30 presents saturated densities and vapor pressures from Gilgen et al 

[67].  

 
     Gilgenet al  [67] 

Figure 30. Relative deviations for saturated vapor and liquid densities (left) and vapor 

pressure (right) 
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Speed of sound requires first and second derivatives of residual Helmholtz 

energy as function of temperature and density. These data can detect improper fitting 

parameters in the EoS caused by local minima. The REOS describes 12 speed of sound 

data sets within ±1 %. In some cases, errors from this EoS are higher than the 

uncertainties claimed by the authors. However, no evidence of a systematic error as a 

function of pressure is apparent. Also, the REOS describes the Estrada & Trusler 

[68]data within  ±0.2 % and the Ewing and Trusler [58] data within ±0.08 % at the 95% 

confident level. Figure 31 compares speeds of sound experimental values to the REOS.  

Figure 32 compares isochoric heat capacity data to the REOS calculations. This 

describes 95 % of the values within ±5 %. However, the discrepancy is greater at the 

critical temperature. Also, all experimental error values have a displacement from 0, 

which indicates a bias error of 2 %, but well within the experimental uncertainty. New 

experimental data of higher accuracy would be most useful for EoS development.  
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   (1993)Beckermann      Kachanov [71] 

   Boyes [59]     ▽  Lacam [72] 

*     Carome et al [69]    Sharif [73] 

   &  Estrada Trusler [68]    Streett [74] 

   &    Erwing Trusler [58]   ☆Thoen [75] 

◊ Hurly [70]     ◆  Van Itterbeek [76] [77] 

Figure 31. Comparison of speed of sound data with rational equation 

 

 
  Anisimov  [78]     Gladun [79] 

Figure 32. Relative error from isochoric heat capacities data and rational equation 
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4.6 Equation of state for methane 

Methane is the simplest compound in the group of alkanes. It also is of practical 

interest because methane is the major component in natural gas, and it is important in 

production of chemical products. Accurate predictions of thermophysical properties are 

important in optimization and design of chemical plants [36]. Additionally, liquefied 

natural gas (methane) production requires accurate predictions over wide ranges of 

pressure and temperature. Table 11 contains some methane physical properties.  

 

Table 11. Physical properties of methane 

  T /K p /kPa ρ / kg·m
-3

 

Triple Point 90.6941±0.0025 11.696±0.002  

Critical Point 190.5640±0.0120 4592.200±2.000 162.66±0.2 

 

 

 

4.6.1 Data sets 

Many experimental data are available in the literature because of its importance 

to the natural gas industry. However, data uncertainty must be known in order to develop 

accurate EoS. Also, combinations of different thermodynamic properties give an idea of 

fluid behavior over wide ranges. The development of the EoS for methane uses a similar 

approach to that for nitrogen.  Table 12 presents the selected methane data sets, which 

are based upon the assessment presented by Setzmann and Wagner [36]. 

4.6.1.1 p-ρ-T  

The EoS for methane uses 11 p-ρ-T sets that cover temperatures from 100 K to 

623 K and pressures up to 1,000 MPa. In 1964, Douslin et al. [80] measured gas 
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compressibility of methane from 0 
°
C to 350 

°
C at pressures up to 38 MPa, using a 

stainless steel pycnometer. Later, Jaeschke and Hinze [81] performed density 

measurements using a Burnett apparatus from 270 K to 353 K at pressures up to 30 MPa 

with an uncertainty of ±0.05 %. In 1988, Kleinraham et al. [82] used a two-sinker 

magnetic suspension densimeter (MSD) up to 8 MPa and temperatures from 273 K to 

323 K with uncertainties of ±0.02 % in density. Later, Pieperbeck et al. [83] used a 

modified version of that MSD to collect data up to 12 MPa with similar range in 

temperature. In 1991, Achtermann et al. [84] measured refractive index and density 

isotherms for methane from 273 K to 373 K at pressures up to 34 MPa with ±0.04 % of 

error. Additionally in 1991, Handel et al. [85] published a p-ρ-T relation for the 

homogeneous gas and liquid regions for temperatures from 100 K to 260 K at pressures 

up to 8 MPa. These are unique data with consistent measurements in the liquid region. In 

2001, Klimeck et al. [86] extended the temperature range to 520 K with uncertainties of 

±0.07 %. Kortbeek and Schouten [87] presented densities of methane at 298 K up to 

1,000 MPa. Recently, Cristancho et al. [26] used a high-pressure MSD for pressures up 

to 200 MPa and temperatures from 298 K to 450 K with a claimed experimental 

accuracy of ±0.05 %. Table 12 summarizes data information including ranges and 

uncertainties.  

4.6.1.2 Vapor pressure 

In 1986, Kleinrahm [10] measured liquid and vapor saturated densities for 

temperatures from 90 K to the critical point. His claimed uncertainty is ±0.02 %, but 

according to previous work [36] the data below 180 K data could have higher errors.  
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4.6.1.3 Virial coefficients 

Douslin et al. [80] and Kleinramn et al. [82] calculated second virial coefficients 

for temperatures from 273 K to 623 K with a claimed uncertainty of ±0.2 cm
3
·mol

-1
.  

4.6.1.4 Speed of sound  

This work uses three speeds of sound data sets covering temperatures from 150 K 

to 375 K at pressures up to 1,000 MPa.  Lemming [88] and Trusler [89] covered values 

up to 0.5 MPa and 10 MPa, respectively, with reported uncertainties between ±0.01 % 

and ±0.07 %. Kortbeek and Schouten [87] measured speeds of sound for pressures up to 

1,000 MPa and temperatures from 148 K to 298 K. These authors claim errors of ±0.5 % 

in speeds of sound, but because of extreme pressure conditions, experiments could have 

higher uncertainties.  

4.6.1.5 Isochoric heat capacities 

Younglove [90] measured isochoric heat capacities for compressed and liquefied 

methane. These data cover temperatures from 91 K to 300 K at densities from 8 to 28 

mol·cm
-3

. The author claims uncertainties of ±0.5 % with higher values at the critical 

point. However Setzmann and Wagner [36] show that the errors could be as high as ±5 

%. Table 12 shows details about the Younglove heat capacity data. 
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Table 12. Summary of selected p-ρ-T experimental data for Methane 
Density 

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆ρ/ρ (%) 

Douslin et al. [80] 1964 273-623 1.6-38 1 0.03 0.03-0.2 

Pope 1972 126-191 0.1-4.7 10 0.01 0.03-0.06 

Kleinrahm et al. [10] 1986 180-190 3.2-4.6 3 0.007 0.02 

Jaeschke & Hinze[81] 1991 269-353 0.3-30   0.05 

Kleinrahm et al. [82] 1988 273-313 0.1-8 3 0.007 0.02 

Achtermann et al. [84] 1991 273-373 1-34   0.04 

Handel et al. [85] 1991 100-260 0.1-8 3 0.007 0.02 

Kortbeek & Schouten [87] 1989 298.15 150-1000   0.1 

Pieperbeck et al. [83] 1990 273-323 0.1-12 5 0.007 0.02 

Klimeck et al. [86] 2001 240-520 2-30   0.07 

Cristancho et al. [26] 2010 298-450 1-180 2  0.05 

Vapor Pressure 

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆ρ/ρ (%) 

Kleinrahm et al. [10] 1986 90-190 0.01-4.6 3 0.08 0.08 

Second Virial 

Source Year T /K p /MPa ∆B /cm
3
·mol

-1
  

Douslin et al. [80] 1964 273-623  0.2 

Kleinrahm et al. [82] 1988 273-323  0.15 

Speed of Sound 

Source Year T /K p /MPa  ∆T /mK  ∆p/p (%)  ∆w/w (%) 

Trusler [89] 1992 150-375 0.09-10   0.01-0.07 

Lemming [88] 1989 230-350 0.1-0.5   0.01 

Kortbeek et al. [87] 1989 148-298 100-1000   0.1-0.5 
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Table 12. Continued 
Isochoric Heat Capacity 

Source Year T /K] ρ /mol·dm
-3

  ∆T /mK  ∆p/p (%)  ∆Cv/Cv (%) 

Younglove [90] 1974 91-300 8-28   1-5 

 

 

 

4.6.2 Methane results 

Figure 33 shows six p-ρ-T data sets described within their uncertainty values 

except in the critical region. For temperatures below 220 K, density predictions are 

within ±0.05 % but pressure errors can increase up to ±0.1 %. For temperatures between 

220 and 280 K predictions are within ±0.05 % in density for pressures below 12 MPa 

and ±0.07 % for higher pressures. For temperatures higher than 280 K and pressures 

lower than 12 MPa, predictions are within ±0.02 % and higher pressure errors increases 

up 0.05 %. 

Figure 34 contains relative deviations for three p-ρ-T data from 100 K to 630 K. 

The REOS predicts density values within the experimental uncertainty for Pope and 

Douslin [80] data. Handel et al. [85] data have greater errors because pressure 

uncertainties  in liquid region are significant higher.  

The REOS can predict density values for high-pressure regions as well. Figure 35 

shows predictions of density within 0.05 % for pressures below 200 MPa from the data 

reported by Cristancho et al. [26] and within 0.15 % up to 1,000 MPa for the values 

reported by Kortbeek et al. [87].   
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   Kleinrahm  [82]      Klimeck [86]

   &   Jaeschke Hinze [81]     Achtermann [84] 

◊  Pieperbeck [83]     *  Kleinrahm [10] 

Figure 33. Comparison of accurate p-ρ-T methane data sets and rational equation of state 

 

 

 
 Douslin  [80]     Pope    Handel [85]  

Figure 34. Relative error of p-ρ-T methane data sets up to 40 MPa and rational equation 

of state 

 



 

104 

 

 

 Cristancho [26]      & Kortbeek Schouten [87] 

Figure 35. Relative error of high pressure p-ρ-T methane data sets and rational equation 

of state 
 

The REOS describes saturated vapor densities within ±0.01 % for temperatures 

from 90 K to critical points, however, the saturated liquid densities have errors up 0.12 

%. The REOS describes vapor pressures within ±0.05 % except those at low 

temperatures, which may indicate problems. In liquefied region pressure errors are 

significant because of the density-pressure derivative (∂p/∂ρ)T, especially for low 

temperatures where vapor pressure values are lower than atmospheric pressure. It is 

possible that densities and vapor pressures values below 115 K are over-predicted 

causing issues, but there are not enough data to check that assumption.  

 

 Kleinrahm [10] 

Figure 36. Liquid and vapor saturated densities (left) and vapor pressure (right) for 

methane 
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Figure 37 shows REOS predictions for second virial coefficients over a wide 

range of temperature. Experimental data are available for temperatures higher than 273 

K. The REOS describes experimental second virial coefficient data and theoretical 

behavior adequately.  

Speed of sound data are organized in two pressure ranges. For speeds of sound 

below 10 MPa, the REOS predicts values within ±0.15 %, which is higher than claimed 

uncertainties. However, it predicts most of the data within ±0.05 % similar to the 

uncertainty values. The claimed uncertainty at higher pressures is ±0.5 %, The REOS 

calculates values within ±2 %, which is a reasonable prediction for this pressure range. 

Figure 38 contains speed of sound predictions using two different pressure ranges.   

 

 
 Douslin [80]        Kleinraham [82] 

Figure 37. Second virial coefficient data and predicted values from rational equation (-) 
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 Trusler [89]    Lemming [88]    Kortbeek et al [87] 

Figure 38. Comparison of speed of sound data and rational equation. 
 

Figure 39 compares REOS predictions for isochoric heat capacity with the 

Younglove data. For supercritical temperatures, the REOS calculations are within 1.5 %, 

but deviations increase rapidly for values below 190 K especially for high densities.  

 
 Younglove [90] 

Figure 39. Relative error of isochoric heat capacity data from the REOS 

 

4.7 Computational speed analysis 

Previous sections have illustrated that the REOS can describe p-ρ-T and vapor 

pressure data for pure nitrogen and argon within the uncertainty values claimed by 

authors. Also, this equation makes reasonable predictions of derivative thermodynamic 

properties such as speeds of sound and isochoric heat capacities.  The REOS has 

accuracy similar to reference EoS for nitrogen and argon with a similar number of 
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coefficients, but it does not include exponential terms. This work seeks to prove that 

similar accuracies are possible with lower computational costs. 

To do a comparative analysis of computational cost with different EoS, the 

reference equation of state for nitrogen [32] and the REOS were programmed using 

C++, presented in Appendix E. Both equations define pressure as function of Helmholtz 

energy, but each has its own residual functional. The REOS function and coefficient 

values are in equation 52 and table 5 respectively. Details about the form and coefficient 

values of the reference equation of state appear in Span et al. [32].  

The C++ code evaluates pressure using temperature and density values with both 

residual Helmholtz energy definitions, and repeats the process 1 million times. The 

program records initial and final times and later calculates time required per evaluation. 

Repeating this routine several times produced similar values every time. The REOS 

requires approximately 0.035 microseconds per evaluation compared to 0.700 

microseconds for the reference equation of state.    

The REOS computes at least 20 times faster than the reference form. It does not 

include exponential functions and uses only integer powers, which improves 

computational time significantly. According to Mathias et al. [49], evaluating a 

multiplication function is 15 times faster than evaluating an exponential. Furthermore, 

they note that multiplication is 32 times faster than power function evaluations. The 

REOS uses only power functions with integer values, because integer power functions 

can be calculated as a combination of multiplication operations (e.g., Horner’s method).  
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4.8 Conclusions 

This section has shown that an REOS based upon the residual Helmholtz energy 

is an acceptable alternative for developing an EoS to calculate densities and vapor-liquid 

equilibrium. Additionally, it presents examples of REOS for nitrogen and argon, 

including p-ρ-T, vapor pressures, speeds of sound and isochoric heat capacities up to 

1000 MPa. Ideal curves for nitrogen show that the REOS has proper behavior at high 

temperatures and pressures. Finally, a computational time analysis shows that the REOS 

is at least 20 times faster than the reference equation that incorporate exponential terms 

to achieve the same level of accuracy. 
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5. MIXING RULE BASED UPON HELMHOLTZ FREE ENERGY  

Industrial applications require predictions of thermophysical properties for 

multicomponent mixtures. Section 4 covered the development of a rational EoS for pure 

components over wide ranges of temperature and pressure. However, predictions in 

mixtures must include interactions effects among molecules of different species. A 

statistical-mechanical solution relating thermophysical properties and intermolecular 

potentials [91] does not currently exist. Empirical models do exist for predicting 

mixtures properties as function of measurable variables.  

This Section discusses some of the classical and empirical mixing rules. Also this 

Section describes the mixing rules used by GERG-2008, which has showed remarkable 

results for some multicomponent mixtures. Later, this work proposes a mixing rule 

based upon residual Helmholtz energy and a classical approach. Finally an empirical 

rational form and a least square regression routine calculate binary interaction 

coefficients for nitrogen + methane mixture using p-ρ-T data presented in Section 3. 

 

5.1 Classical definition of mixing rule 

The virial EoS describes the compressibility factor as an infinite series in density 

or pressure. Virial coefficients for pure fluids are functions of temperature and are 

related to intermolecular potentials between molecules [91] [92]. In pure fluids, 

interactions occur only between molecules of the same species, but in mixtures 

interactions occur between molecules of different species as well. The n
th

 virial 
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coefficient reflects n-body interactions [92]. Truncating Equation 67 after a few terms is 

common, but limits the applicable density range.  

21
PV

Z B C
RT

             [67] 

 

Statistical mechanics offers theoretical expressions for second (B) and third (C) 

virial coefficients for mixtures in terms of mole fraction and factors representing 2- and 

3-body interactions respectively.  

 
1 1

N N

i j ij

i j

B x x B T
 

           [68] 

 

 
1 1 1

N N N

i j k ijk

i j k

C x x x C T
  

            [69] 

 

For a binary mixture, equation 68 becomes: 

2 2

1 11 1 2 12 2 222B x B x x B x B           [70] 

 

In this equation, B11 is the second virial coefficient for pure fluid 1, which is the 

contribution from 2-body interactions between molecules of component 1, B22 is the 

second virial coefficient for pure fluid 2, which is the contribution from interactions 

between molecules of component 2, and B12 is the contribution from intermolecular 

interactions between molecules of two different species. Cross virial coefficients (B12) 

cannot be predicted exactly from pure virial coefficients, because the unique interaction 

does not contribute to either pure virial. 
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Equation 70 can be rearranged as: 

1 1 1

 
n n n

mix i ii i j ij

i i j i

B x B x x B
   

  
       [71] 

in which  

(2 )ij ij ii jjB B B B            [72] 

McGregor et al. [92] [93] showed that mixture third virial coefficients also can 

be expressed as a quadratic form  

1 1 1

 
n n n

mix i iii i j ij

i i j i

C x C x x C
   

          [73] 

based on the approximation  

  
dC

ij
@ 3C

iij
- 2C

iii
- C

jjj
@ 3C

ijj
- C

iii
- 2C

jjj
       [74] 

The errors introduced by this approximation were smaller than the experimental 

uncertainties for the mixtures considered by McGregor et al. [92]. 

 

5.2 Mixing rule in GERG – 2008 

The dimensionless Helmholtz energy of a mixture, expressed as a combination of 

ideal and residual contributions is: 

 
     

, ,
, , , , , ,o r

m m m m

A T x
x T x x

RT


               [75] 

 

The ideal contribution the Helmholtz energy for an ideal gas mixture of N components  

   0

1

, , , ln
N

o

i oi i

i

T x x T x   


           [76] 
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GERG-2008[37] uses a modern functional to describe the residual Helmholtz 

energy. This modern functional has shown remarkable results for describing pure 

components over wide ranges of density and temperature. Kunz and Wagner [37] 

described residual Helmholtz energy of mixtures as  

     
1

1 1 1

, , , Δ , ,
N N N

r r

m m i oi m m ij

i i j i

x x x        


   

       [77] 

in which 

 r

m

T x

T
            [78] 

 m

r x





           [79] 

The first sum is the mole fraction average of the residual energies of pure substances (

r

oi ) at the same reduced temperature and density as the mixture, and the second sum is a 

departure function that describes the contribution of interactions between molecules of 

different species. This departure function has a generalized form with fitted parameters 

for each binary mixture. 

In pure components, reference density (ρr) and temperature (Tr) are the critical 

point values. Because there is not a rigorous theoretical definition for critical 

temperature or density in mixtures, the reducing parameters for temperature and density 

are defined arbitrarily. GERG-2008 proposed,  
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x x
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to define the reference temperature (Tr) and density (ρr) for mixtures. Every binary 

mixture requires four fitted parameters along with the critical density and temperature of 

pure substances.  

The departure function (r
) improves the accuracy of the model describing the 

system as a non-ideal mixture. In general, the correction is minor compared to the 

contributions of the pure substance values. The form of the departure function form for 

the modern functional of free energy is 

 
1 1

1 1 1 1

Δ , ,
N N N N

r r r

m m i j ij ij i j ij gen

i j i i j i

x x x F x x F    
 

     

        [82] 

in which Fij is a unique parameter for each cross interaction and gen is a generalized 

form of the interaction energy (
r

ij ). 

The generalized form proposed by Lemmon and Jacobsen [94] for the interaction 

energy (
r

ij ) in multi-component mixtures is  

10

1

r dk tk

gen k m m

k

n  


           [83] 

They applied this generalized function to 22 binary mixtures, using same 

coefficients, but varying parameters Fij for each mixture  

Adding to Lemmon and Jacobsen [94] work, Kunz and Wagner [37] developed 

specific departure functions for some binary mixtures. The functional form for a specific 

departure function in GERG-2008 is  

   
2

, exp ( )r dk tk dk tk

ij m m k m m k m m m k k m kn n                 
     [84] 
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Similar to the residual Helmholtz energy in pure fluids, the departure function 

number and value of coefficients change with each binary mixture. The function 

includes a summation of Gaussian bell shaped-terms (ε, γ, η) and non-integer exponent 

values for temperature (tk). For the nitrogen + methane mixture, equation 87 contains 

nine linear coefficients (nk), six Gaussian bell-shaped terms and six non-integer 

exponents. 

The departure function for a multicomponent mixture is the sum of all departure 

functions (generalized or specific) for each binary mixture involved [37]. Figure 40 

shows which binary mixtures have specific or generalized departure functions. Binary 

mixtures in yellow have specific departure functions. Those in orange have generalized 

departure functions. Binary mixtures in blue, green and gray do not have departure 

functions.  

GERG-2008 [37] can predict with high accuracy some multicomponent gas 

mixtures [7]. However, the departure function requires binary data over wide ranges of 

temperature and density due to the complicated mathematical form and the large number 

of fit parameters. Figure 40 shows that only seven specific and eight generalized 

functions out of 210 possible binary mixtures are available. GERG-2008 uses reducing 

functions in residual Helmholtz energy for most of the mixtures without departure 

functions.  
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Figure 40. Overview of the 210 binary mixtures implemented in GERG-2008. 

Acknowledgment: [37]. This EoS includes 21 natural gas components. 

 

GERG-2008 evaluates Helmholtz energies at reduced conditions of the mixture, 

but the reducing parameters are not the true critical temperature and pressure for the 

mixture. Equations 83 and 84 calculate the reference temperature and density of a 

mixture using empirical forms and fitted parameters because a theoretical solution does 

not exist. This approach assumes that molecules of components behave similarly at the 

same reduced conditions. However, because pure fluid equations evaluate properties at 

reduced conditions they do not use real density and temperature values. In effect, same 

reduced conditions impose different actual conditions for the mixture under study. This 

situation violates the ideal mixture approach and would create problems for mixtures 

without data for validation.  
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5.3 Binary interaction based upon a rational form 

This work proposes a combination of classical mixing rules and an EoS based 

upon Helmholtz energy. As table 4 shows, the second virial coefficient is the zero 

density limit of the derivative of the residual Helmholtz energy with respect to density (

0
lim rB 





 ). 

 Based upon the statistical mechanics solution for mixture second virial 

coefficients (equation 70), and the McGregor et al [92] [93]approximation for third virial 

coefficients (equation 73), where both the second and third virial coefficients are 

described as quadratic functions, this work proposes a quadratic mixing rule for residual 

Helmholtz energy:  

  

A
mix

r T ,r( )
RT

= a
i, j

r x
i
x

j
j=1

N

å
i=1

N

å         [85] 

 

This equation has the same form as the second virial coefficient (see Section 5.1), 

so the same algebra applies.  Using a binary mixture as an example, and following 

equations 70, 71 and 72, provides an alternate form for the residual Helmholtz energy of 

a mixture:  

 
1 1 2 2 1 2 1,2

,
   Δ

r

mix r r r
A T

x x x x
RT


           [86] 

in which 

1,2 1,2 2 1Δ 2r r r r               [87] 
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Equation 87 shows that the departure function ( 1,2Δ r ) is a combination of pure 

component energies and the interaction energies of molecules of different species.  The 

corresponding forms for multicomponent mixtures are: 

 

1 1

,r n n
mix r

i j ij

i j

A T
x x

RT




 

         [88] 
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j

r (T ,r)( )  [89] 

An exact solution for intermolecular interaction energy between two different 

components ( 1,2

r ) does not exist. Some authors (e.g. Kreglewsky [95]) have used 

empirical equations to describe those effects. Following the rational equation of state 

model, this work proposes a rational equation in density, with temperature dependent 

parameters, 

 
2

1 2
1,2

31

r    


 

 
  

 
         [90] 

in which 

0, 1, /k k kc c T            [91] 

The coefficients may vary for each binary mixture, but the functional form should be 

similar for all binary mixtures.  

Section 3 presented p-ρ-T data for three nitrogen + methane mixtures from 300 to 

470 K at pressures up to 140 MPa. The definition of compressibility factor is  
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P
Z

RT
           [92] 

 

Equation 93 calculates an experimental value for the derivative of the Helmholtz 

energy ( ,

r

mix ) using compressibility factors. The pure component derivatives are 

expressed as functions of reduced densities, but for mixtures it is more convenient to use 

molar density because the critical parameters of mixtures usually are not known 

accurately.  The residual Helmholtz energy for the mixture is given in terms of the 

compressibility factor by: 

,
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A Z
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For the quadratic mixing rule. 
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in which the Helmholtz energy derivatives for methane and nitrogen come from 

the rational equations of state. All REOS terms are evaluated at the temperature and 

pressure of the mixture, so that for methane
  
d

1
= r

mix
/ r

c,1
, 1 ,1 /cT T  , and for nitrogen 

  
d

2
= r

mix
/ r

c,2
 and 2 ,2 /cT T  . 

The interaction energies are functions of density and temperature. The cross 

interaction energy derivative from the proposed rational form is: 
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Combining this result with equation 94 leads to a working equation for 

evaluating the parameters 
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     [96] 

Table 13 contains the parameters for obtained for the methane-nitrogen cross 

interaction energies by fitting equation 96 to the experimental compressibility factors. 

Figure 41 presents the relative deviations between the experimental compressibility 

factors from the REOS mixture model for methane + nitrogen mixtures. The agreement 

is excellent and shows that the REOS approach to the cross terms is capable of 

describing mixtures accurately for the Methane + nitrogen binary system. 

 

Table 13. Binary interaction parameter for methane-nitrogen mixtures from 300 K to 470 

K and up to 140 MPa 

cj,k j k 
 

c0,1 / kmol
-1

·m
3
 0 1 0.0528 

c1,1 / kmol
-1

·m
3
·K 1 1 -21.0427 

c0,2 / kmol
-2

·m
6
 0 2 -0.0004 

c1,2 / kmol
-2

·m
6
·K 1 2 0.4239 

c0,3 / kmol
-3

·m
9
 0 3 -0.0166 

c1,3 / kmol
-3

·m
9
·K 1 3 -0.7537 
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Figure 41. Relative deviations between the experimental compressibility factors and the 

rational equation of state values for nitrogen + methane mixtures. 

(○xCH4=0.75,□xCH4=0.50 and✶xCH4=0.25) 
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6. CONCLUSIONS AND RECOMMENDATIONS 

This work describes a vibrating tube apparatus for measuring densities from 300 

K to 470 K at pressures up to 140 MPa. This instrument provides an accurate and fast 

method for high-pressure density measurements with errors of 0.1 kg/m
3
, which is 

remarkable for high pressure vibrating devices. The calibration methodology is the main 

factor for reducing total uncertainties. Measurements for methane, nitrogen and argon 

and accurate equations of state provide the calibration information for the VTD. This 

combination of well-known fluids reduces significantly the experimental uncertainties 

over a wide range of densities. In addition, a physically-based model with only four 

parameters describes the temperature and internal pressure dependence of the VTD 

calibration, reducing overall measurement uncertainties. Repeating the vacuum resonant 

period for each isotherm improves repeatability and minimizes hysteresis effects over 

long periods of time.  

The VTD uses small volumes of sample, thus minimizing undesired 

consequences in a release scenario. It can measure hazardous fluids at high pressures 

with a reduced risk. Hydrogen sulfide is a common element in natural gas mixtures, and 

it is highly corrosive and toxic. The VTD is a good selection for studies of this 

component.  

This work validated the VTD calibration methodology using ethane and carbon 

dioxide measurements. P-ρ-T data cover pressures up to 140 MPa. This work compares 

VTD densities with previously published MSD results. The MSD technique does not 

require calibration and can perform high accuracy measurements. The VTD also 
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produced measurements of nitrogen + methane mixtures for four isotherms between 

300K and 470 K at pressures up to 140 MPa. These data cover a range of high-pressure 

data that can validate, improve and develop current and new EoS.  

Many binary mixtures lack data at high pressures. The VTD can perform fast 

measurements with good accuracy. Methane + ethane, methane + propane, ethane + 

propane, ethane + nitrogen, argon + nitrogen, argon + methane and propane + nitrogen 

are some of the mixtures that should be measured with a VTD. Also, some ternary 

mixture data would help when developing new EoS and studying intermolecular 

interactions.  

Section 4 of this dissertation presents a new equation of state based upon a 

rational form of the residual Helmholtz energy. This form describes behavior of pure 

fluids properties accurately over wide ranges of temperature and pressure. This EOS has 

similar accuracy to that of the modern functional with a more efficient mathematical 

form. According to preliminary calculations, computational time is 20 times faster 

compared to modern functional equations. Section 4 presents an REOS for nitrogen, 

argon and methane.  

More REOS for pure components should be developed using the similar 

methodologies. This work suggests the same mathematical form in density for other 

components, but temperature behavior could be modified for more complex molecules. 

The REOS can be improved using fitting software developed by NIST to improve 

behavior in regions lacking data. An alternative solution for the critical region is a 

Gaussian function near the critical temperature. It may improve predictions slightly, but 
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it will increase computational time. In the two-phase region, denominator values go to 

zero at certain temperature and density conditions creating poles. The poles do not affect 

prediction for pure components, but they could affect predictions for mixtures. The 

fitting program must include a constraint to prevent those poles. 

Section 5 presents a mixing rule for the residual Helmholtz energy of a binary 

mixture. This rule is based upon a quadratic form and statistical mechanics definitions of 

the second virial coefficient. This approach follows the ideal solution concept and 

requires a small number of coefficients to make a correction. REOS for methane and 

nitrogen provide pure component contributions. A least squares minimization calculates 

interaction parameters for the mixture nitrogen + methane using density data from the 

VTD. This mixing rule describes data within 0.1 %, which is slightly higher than 

experimental uncertainty.  

A quadratic mixing rule for the residual energy should be applied to more binary 

mixtures. The calculation of the binary parameters requires data at different temperatures 

and compositions. Other functions for the interaction parameter should be proposed and 

tested. 
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APPENDIX A  

A.1 Pressure Transducer Calibrations 

Transducer Model 420K-102 42K-101 

Pressure Range 0 to 20000 psia 0 to 2000 psia 

Serial 118253 82703 

Calibration date 06/2013 04/2012 

Calibration Source Paroscientific Paroscientific/NIST 

Temperature Coefficients 

 [ ]oU sec  5.824821 5.873541 

1  [deg / ]Y C sec  -3874.321 -3930.171 

2

2  [deg / sec ]Y C   -9116.728 -11485.22 

3

3[deg / sec ]Y C   0 0 

Pressure Coefficients 

1  [ ]C psia  -149069.2 -7273.990 

2  [ / ]C psia sec  -11428.76 346.9426 

2

3  [ / sec ]C psia   799775.9 18114.01 

1D  0.021083 0.050502 

2D  0 0 

1T  30.12706 30.18612 

2T  0.681343 1.516436 

3T  67.18435 47.20004 

4T  0 81.02094 

 

Temperature Coefficients  

       ( sec)X Temperature period   

 oU X U   

Temperature: degC 

 2 3

1 2 3Temp YU Y U YU    
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Pressure Coefficients 

      ( )T pressure period sec  

 2

1 2 3C C C U C U    

 1 2D D D U   

 2 3

1 2 3 4oT T T U TU T U     

Pressure: (psia) 

 

2 2

0

2 2
1 1 1oT T

p C D
T T
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A.2 SPRT Calibration (ITS-90 Coefficients) 

The International Temperature Scale (ITS-90) can characterize the absolute 

thermodynamic scale in the range of 0.65 K to 1358 K. It expresses the temperature in 

term of the ratio of the measure resistance of the PRT at the triple point of water (R0).  

 ( ) / oW R T R  

For the 5686-B Glass capsule SPRT with a temperature range of -260 
°
C to 232 

°
C, the ratio of resistance needs a correction as following equation shows.  

    
2

9 91 1rW W a W b W      

Following equation shows temperature expressed in Kelvin as a function of 

corrected ratio resistance using coefficients in Report no. B3820054 provided by Fluke
®
. 

 
9

90 0

1

(( 2.64) /1.64) 273.15i

i r

i

T D D W


     

ITS-90 Coefficients 

 0R  25.40652 

 9a  4.79703634e-04 

 9b  2.04471571e-05 

 0D  439.932854 

 1D  472.418020 

 2D  37.684494 

 3D  7.472018 

 4D  2.920828 

 5D  0.005184 

 6D  -0.963864 

 7D  0.188732 

 8D  0.191203 

 9D  0.049025 

 



 

136 

 

A.3 RTD Calibrations (Callendar-Van Dusen Equation) 

For temperature: 0
°
C <T<661

°
C. Following calibration information was provided 

by OMEGA
®
 by 01/2013. 

  2

0 1TR R AT BT    

RTD Omega Class B 

  [Ω]oR  100.50359 

 A  3.559852e-03 

 B  0 
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APPENDIX B  

Table B.1 Nitrogen calibration data 

T/K p/MPa τ / μs τo / μs ρEoS / kg·m
-3

 

T = 473 K 

473.353 129.846 2708.267 2666.430 489.85 

473.347 137.859 2709.526 2666.427 504.38 

473.320 129.810 2708.247 2666.417 489.81 

473.322 119.835 2706.578 2666.418 470.51 

473.318 110.044 2704.812 2666.416 450.09 

473.306 100.000 2702.850 2666.411 427.38 

473.308 89.797 2700.683 2666.412 402.17 

473.318 79.935 2698.398 2666.416 375.38 

473.322 69.893 2695.843 2666.418 345.23 

473.313 60.062 2693.003 2666.414 312.38 

473.317 49.955 2689.770 2666.416 274.48 

473.312 39.932 2686.149 2666.414 232.00 

473.308 29.900 2682.040 2666.412 183.73 

473.303 20.012 2677.448 2666.410 129.77 

473.300 10.032 2672.226 2666.409 68.40 

T = 405 K 

405.503 137.636 2687.432 2641.122 549.98 

405.503 130.049 2686.271 2641.122 536.43 

405.502 119.901 2684.612 2641.121 517.03 

405.516 109.691 2682.807 2641.127 495.79 

405.520 99.880 2680.914 2641.128 473.49 

405.519 89.850 2678.793 2641.128 448.43 

405.520 80.053 2676.513 2641.128 421.28 

405.520 69.721 2673.817 2641.128 389.18 

405.519 59.930 2670.898 2641.128 354.74 

405.518 49.922 2667.513 2641.127 314.54 

405.517 39.965 2663.636 2641.127 268.36 

405.513 29.633 2658.949 2641.125 212.51 

405.510 19.993 2653.868 2641.124 151.93 

405.504 9.617 2647.588 2641.122 77.09 
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Table B.1 Continued 

T/K p/MPa τ / μs τo / μs ρEoS / kg·m
-3

 

T = 370 K 

370.503 129.108 2675.501 2628.523 562.29 

370.507 137.578 2676.771 2628.524 577.20 

370.505 129.811 2675.608 2628.523 563.56 

370.504 120.004 2674.039 2628.523 545.09 

370.502 109.941 2672.291 2628.522 524.47 

370.500 100.028 2670.414 2628.522 502.19 

370.495 89.934 2668.305 2628.520 477.12 

370.493 79.986 2665.993 2628.519 449.53 

370.492 70.055 2663.401 2628.518 418.47 

370.490 60.002 2660.390 2628.518 382.57 

370.490 49.936 2656.912 2628.518 340.93 

370.492 39.952 2652.874 2628.518 292.48 

370.489 29.989 2648.108 2628.517 235.26 

370.484 20.070 2642.492 2628.516 167.81 

370.484 10.076 2635.908 2628.516 88.75 

T = 336 K 

335.757 129.846 2665.534 2616.246 593.99 

335.752 137.697 2666.670 2616.244 607.41 

335.751 130.072 2665.568 2616.244 594.39 

335.749 119.956 2663.999 2616.243 575.83 

335.748 110.044 2662.328 2616.243 555.99 

335.747 99.997 2660.474 2616.242 533.87 

335.746 89.946 2658.417 2616.242 509.28 

335.744 80.027 2656.146 2616.242 482.05 

335.743 69.981 2653.538 2616.241 450.71 

335.743 59.992 2650.552 2616.241 414.74 

335.750 49.990 2647.053 2616.244 372.47 

335.746 39.985 2642.874 2616.242 321.98 

335.744 29.977 2637.813 2616.241 260.74 

335.741 19.977 2631.661 2616.240 186.31 

335.743 9.999 2624.372 2616.241 98.16 
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Table B.1 Continued 

T/K p/MPa τ / μs τo / μs ρEoS / kg·m
-3

 

T = 304 K 

304.163 128.808 2656.735 2605.408 622.77 

304.163 137.857 2658.001 2605.408 637.76 

304.161 129.998 2656.908 2605.408 624.81 

304.158 120.000 2655.417 2605.407 607.08 

304.156 109.973 2653.790 2605.406 587.64 

304.154 99.985 2652.009 2605.405 566.30 

304.153 90.040 2650.042 2605.405 542.64 

304.152 80.011 2647.812 2605.404 515.75 

304.157 69.988 2645.269 2605.406 484.97 

304.155 60.031 2642.334 2605.406 449.39 

304.153 50.052 2638.846 2605.405 406.98 

304.152 39.978 2634.559 2605.405 354.80 

304.151 29.980 2629.257 2605.404 290.20 

304.149 20.001 2622.600 2605.404 209.09 

304.147 10.022 2614.471 2605.403 110.16 

 

Table B.2 Argon calibration data 

T/K p/MPa τ / μs τo / μs ρEoS / kg·m
-3

 

T = 473 K 

473.343 130.306 2734.162 2666.419 800.72 

473.342 137.586 2736.070 2666.419 823.15 

473.339 129.827 2734.030 2666.417 799.20 

473.341 119.873 2731.242 2666.418 766.38 

473.327 109.946 2728.233 2666.413 730.98 

473.322 99.889 2724.924 2666.411 691.97 

473.338 89.928 2721.351 2666.417 649.70 

473.335 79.924 2717.404 2666.416 603.05 

473.331 69.926 2713.074 2666.414 551.53 

473.357 59.961 2708.245 2666.424 494.49 

473.362 50.042 2702.897 2666.426 431.28 

473.362 39.893 2696.807 2666.426 359.12 

473.357 29.865 2690.114 2666.424 279.78 

473.338 19.841 2682.728 2666.417 192.46 

473.329 9.973 2674.846 2666.414 99.39 
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Table B.2 Continued 

T/K p/MPa τ / μs τo / μs ρEoS / kg·m
-3

 

T = 405 K 

404.629 131.421 2715.068 2640.760 891.58 

404.627 137.728 2716.653 2640.759 910.51 

404.624 129.498 2714.566 2640.758 885.63 

404.584 119.810 2711.920 2640.743 854.19 

404.580 109.949 2709.005 2640.742 819.30 

404.578 100.040 2705.797 2640.741 780.86 

404.578 89.854 2702.154 2640.741 737.11 

404.576 79.887 2698.189 2640.740 689.34 

404.573 70.049 2693.779 2640.739 636.36 

404.570 59.895 2688.620 2640.738 574.33 

404.566 49.858 2682.783 2640.737 504.18 

404.561 39.940 2676.174 2640.735 424.70 

404.557 29.913 2668.535 2640.734 332.86 

404.556 19.963 2659.987 2640.733 230.22 

404.556 10.014 2650.624 2640.733 118.12 

T = 369 K 

368.972 130.428 2705.775 2627.915 941.49 

368.974 137.821 2707.578 2627.916 963.17 

368.972 130.050 2705.680 2627.915 940.34 

368.970 120.027 2703.049 2627.914 908.63 

368.971 109.557 2700.038 2627.915 872.29 

368.974 100.053 2697.026 2627.916 835.91 

368.974 89.999 2693.497 2627.916 793.19 

368.976 80.124 2689.606 2627.917 746.04 

368.974 70.313 2685.224 2627.916 692.92 

368.973 59.995 2679.922 2627.915 628.62 

368.972 49.974 2673.921 2627.915 555.82 

368.974 39.994 2666.915 2627.916 470.87 

368.981 30.039 2658.735 2627.918 371.72 

369.001 19.861 2649.103 2627.926 255.13 

368.989 9.991 2638.780 2627.921 130.59 
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Table B.2 Continued 

T/K p/MPa τ / μs τo / μs ρEoS / kg·m
-3

 

T = 335 K 

334.635 130.069 2697.707 2615.851 997.16 

334.642 137.731 2699.495 2615.853 1018.81 

334.640 129.959 2697.682 2615.853 996.83 

334.638 119.904 2695.152 2615.852 966.15 

334.636 110.029 2692.434 2615.851 933.10 

334.635 99.982 2689.379 2615.851 895.90 

334.634 89.992 2685.985 2615.851 854.53 

334.633 80.014 2682.157 2615.850 807.76 

334.633 70.042 2677.766 2615.850 754.11 

334.634 60.084 2672.653 2615.851 691.64 

334.632 49.665 2666.288 2615.850 613.83 

334.645 39.889 2659.091 2615.854 525.75 

334.641 30.026 2650.325 2615.853 418.72 

334.637 19.963 2639.718 2615.852 289.41 

334.641 10.012 2627.971 2615.853 146.62 

T = 304 K 

303.641 130.071 2691.144 2605.231 1053.69 

303.636 137.701 2692.829 2605.229 1074.23 

303.633 137.959 2692.883 2605.228 1074.90 

303.629 129.991 2691.125 2605.227 1053.48 

303.622 119.780 2688.692 2605.224 1023.81 

303.622 109.853 2686.102 2605.224 992.09 

303.620 99.773 2683.188 2605.224 956.38 

303.618 89.899 2679.992 2605.223 917.13 

303.616 80.057 2676.380 2605.222 872.71 

303.615 69.891 2672.064 2605.222 819.61 

303.615 59.881 2667.032 2605.222 757.78 

303.613 49.907 2660.982 2605.221 683.23 

303.612 40.019 2653.552 2605.221 591.69 

303.610 30.038 2644.100 2605.220 475.35 

303.607 19.409 2631.523 2605.219 320.89 

303.607 10.012 2618.796 2605.219 165.26 
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Table B.3 Methane calibration data 

T/K p/MPa τ / μs τo / μs ρEoS / kg·m
-3

 

T = 470 K 

470.132 123.206 2689.529 2665.188 281.89 

470.124 137.782 2690.728 2665.185 295.25 

470.110 137.817 2690.725 2665.179 295.28 

470.115 120.838 2689.313 2665.181 279.57 

470.108 103.075 2687.600 2665.179 260.36 

470.114 86.372 2685.701 2665.181 238.77 

470.133 70.173 2683.487 2665.188 213.21 

470.132 55.425 2680.988 2665.188 184.34 

470.100 41.267 2677.987 2665.175 149.60 

470.089 31.472 2675.479 2665.171 120.42 

470.070 19.602 2671.913 2665.164 78.85 

470.054 9.325 2668.439 2665.158 38.33 

470.101 9.291 2668.446 2665.176 38.19 

T = 399 K 

398.975 122.339 2665.084 2638.711 310.22 

398.966 137.838 2666.267 2638.707 323.53 

398.962 121.101 2664.979 2638.706 309.09 

398.958 103.674 2663.421 2638.705 291.49 

398.953 86.506 2661.590 2638.703 270.54 

398.965 68.568 2659.214 2638.707 242.85 

398.961 55.185 2656.942 2638.706 216.24 

398.971 41.055 2653.825 2638.709 179.43 

398.970 30.993 2650.946 2638.709 145.34 

398.958 19.404 2646.793 2638.705 96.11 

398.964 10.395 2643.072 2638.707 51.89 

398.988 10.397 2643.081 2638.715 51.90 
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Table B.3 Continued 

T/K p/MPa τ / μs τo / μs ρEoS / kg·m
-3

 

T = 304 K 

304.106 121.936 2635.171 2605.402 357.43 

304.112 137.748 2636.184 2605.404 368.85 

304.110 119.972 2635.038 2605.403 355.90 

304.108 99.943 2633.529 2605.403 338.60 

304.104 79.950 2631.669 2605.401 316.97 

304.104 70.181 2630.565 2605.401 303.97 

304.103 59.973 2629.200 2605.401 287.81 

304.101 50.009 2627.562 2605.400 268.28 

304.099 40.034 2625.437 2605.400 242.79 

304.104 29.784 2622.367 2605.401 205.70 

304.101 20.052 2617.919 2605.400 151.76 

304.103 10.047 2611.504 2605.401 73.83 

304.103 10.047 2611.504 2605.401 73.83 
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Table B.4 Experimental (p-ρ-T) values for carbon dioxide 

T/K p/MPa ρexp / kg·m
-3

 ρEoS / kg·m
-3

 100(ρexp-ρEoS)/ρexp 

T = 304 K 

304.303 119.826 1148.82 1149.13 -0.027 

304.304 136.467 1169.87 1170.20 -0.028 

304.300 104.549 1127.06 1127.47 -0.036 

304.297 86.449 1097.67 1097.98 -0.028 

304.293 69.065 1063.89 1064.08 -0.017 

304.290 56.603 1034.73 1034.73 0.000 

304.287 42.233 992.73 992.44 0.030 

304.285 31.385 950.66 950.15 0.054 

304.294 21.349 895.09 894.61 0.054 

304.294 10.390 768.95 768.89 0.008 

T = 399 K 

398.610 118.142 975.99 975.55 0.044 

398.617 137.833 1012.46 1012.04 0.041 

398.619 119.829 979.32 978.92 0.041 

398.614 103.727 944.72 944.24 0.050 

398.610 86.718 900.46 900.06 0.044 

398.613 70.281 846.15 845.85 0.036 

398.609 52.521 764.26 764.02 0.032 

398.616 36.685 645.59 645.24 0.054 

398.616 36.789 646.63 646.28 0.053 

398.602 20.324 391.90 391.67 0.059 

T = 470 K 

469.763 116.457 861.27 860.52 0.087 

469.759 137.604 908.75 907.90 0.094 

469.738 103.717 827.38 826.75 0.076 

469.735 103.847 827.75 827.13 0.075 

469.748 86.961 773.96 773.46 0.065 

469.740 69.479 702.01 701.57 0.062 

469.729 54.964 621.41 620.95 0.074 

469.777 36.325 466.70 466.53 0.036 

469.775 20.740 272.48 272.60 -0.042 

 

 



 

145 

 

Table B.5 Experimental (p-ρ-T) values for ethane 

T/K p/MPa ρexp / kg·m
-3

 ρEoS / kg·m
-3

 100(ρexp-ρEoS)/ρexp 

T = 304 K 

304.306 120.907 532.80 532.90 -0.019 

304.303 137.643 542.63 542.77 -0.026 

304.300 113.927 528.42 528.47 -0.010 

304.299 103.841 521.63 521.65 -0.002 

304.297 86.990 509.02 508.94 0.014 

304.295 69.715 494.00 493.61 0.079 

304.294 56.004 479.29 478.99 0.063 

304.300 41.974 460.60 460.41 0.041 

304.299 30.964 441.74 441.49 0.055 

304.299 20.724 417.38 417.13 0.059 

304.299 10.173 372.80 372.51 0.078 

T = 399 K 

399.011 123.093 479.22 478.86 0.077 

399.014 136.122 489.14 488.78 0.073 

399.025 120.965 477.50 477.13 0.078 

399.005 103.351 462.05 461.62 0.094 

399.002 86.735 444.78 444.25 0.119 

399.002 69.356 422.40 421.74 0.156 

399.001 55.861 399.66 399.28 0.096 

399.004 42.071 368.25 368.08 0.046 

399.006 30.973 330.57 330.51 0.018 

399.000 20.736 270.05 269.92 0.048 

399.004 10.202 130.49 130.47 0.019 

T = 470 K 

469.996 120.161 439.65 439.16 0.111 

469.992 125.610 444.69 444.23 0.104 

469.966 137.417 454.98 454.45 0.116 

469.956 105.448 424.56 424.14 0.098 

469.967 86.507 401.16 400.87 0.071 

469.968 70.405 376.04 375.81 0.060 

469.969 55.719 346.04 345.82 0.066 

469.982 41.149 303.71 303.54 0.057 

469.961 31.179 260.81 260.56 0.098 

469.948 21.121 194.69 194.50 0.099 

469.938 10.882 98.22 98.02 0.200 
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Table B.6 Experimental (p-ρ-T) values for 25% Methane – 75% Nitrogen Mixture 

T/K p/MPa ρexp / kg·m
-3

 ρEoS / kg·m
-3

 100(ρexp-ρEoS)/ρexp 

T = 304 K 

304.170 119.970 543.01 542.75 0.047 

304.170 137.644 568.44 568.13 0.055 

304.162 119.475 542.25 541.99 0.047 

304.160 100.150 509.22 509.00 0.043 

304.155 80.085 466.50 466.35 0.031 

304.157 69.944 440.11 439.99 0.028 

304.156 60.032 409.84 409.73 0.028 

304.154 49.960 372.83 372.73 0.027 

304.154 40.008 327.46 327.39 0.022 

304.160 29.009 262.61 262.54 0.027 

304.156 20.038 194.30 194.20 0.052 

304.154 10.026 101.09 100.96 0.135 

T = 350 K 

350.052 119.603 503.31 503.04 0.054 

349.911 137.330 530.55 530.19 0.068 

350.005 120.082 504.14 503.86 0.056 

350.022 99.993 467.88 467.67 0.045 

350.021 80.012 423.20 423.06 0.033 

350.020 69.941 395.97 395.87 0.025 

350.022 60.017 364.90 364.83 0.019 

350.023 49.997 327.90 327.85 0.014 

350.028 39.994 283.49 283.46 0.009 

350.026 29.993 229.32 229.30 0.012 

350.034 20.016 163.38 163.33 0.031 

350.034 10.009 85.31 85.22 0.099 
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Table B.6 Continued 

T/K p/MPa ρexp / kg·m
-3

 ρEoS / kg·m
-3

 100(ρexp-ρEoS)/ρexp 

T = 400 K 

399.916 120.219 467.40 467.24 0.034 

399.912 137.620 494.98 494.73 0.050 

399.898 120.086 467.18 467.03 0.032 

399.891 100.077 429.90 429.83 0.017 

399.885 80.004 384.10 384.09 0.000 

399.883 69.977 356.85 356.87 -0.004 

399.882 60.031 325.98 326.02 -0.013 

399.885 49.831 289.34 289.39 -0.016 

399.873 39.948 247.77 247.83 -0.022 

399.857 30.038 198.74 198.77 -0.013 

399.861 19.996 140.32 140.31 0.009 

399.867 10.013 73.52 73.49 0.051 

T = 470 K 

469.864 120.802 424.87 424.82 0.013 

469.865 137.596 452.08 451.96 0.026 

469.903 119.671 422.86 422.84 0.004 

469.886 99.985 385.63 385.65 -0.006 

469.879 80.110 340.44 340.55 -0.032 

469.892 69.961 313.52 313.63 -0.036 

469.885 59.957 283.71 283.84 -0.045 

469.883 49.999 250.17 250.30 -0.054 

469.890 40.040 212.00 212.12 -0.054 

469.900 30.012 168.09 168.16 -0.045 

469.916 20.020 118.12 118.21 -0.078 

469.909 10.004 61.80 61.84 -0.067 
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Table B.7 Experimental (p-ρ-T) values for 50% Methane – 50% Nitrogen Mixture 

T/K p/MPa ρexp / kg·m
-3

 ρEoS / kg·m
-3

 100(ρexp-ρEoS)/ρexp 

T = 304 K 

304.320 119.878 480.29 479.73 0.117 

304.317 137.784 501.45 500.78 0.132 

304.308 120.092 480.60 480.01 0.123 

304.301 99.969 452.36 451.89 0.102 

304.297 80.027 417.33 416.96 0.088 

304.295 69.979 395.67 395.34 0.083 

304.294 59.992 370.21 369.93 0.076 

304.293 49.950 339.04 338.81 0.068 

304.291 40.009 300.09 299.92 0.057 

304.296 30.001 248.55 248.43 0.050 

304.293 20.007 179.37 179.23 0.075 

304.289 9.997 91.69 91.53 0.166 

T = 350 K 

349.847 120.005 446.62 446.00 0.138 

349.849 137.830 469.21 468.46 0.159 

349.847 120.023 446.64 446.03 0.138 

349.844 99.951 416.45 415.94 0.121 

349.845 79.968 378.82 378.52 0.080 

349.841 70.033 356.12 355.86 0.075 

349.840 59.961 329.19 328.97 0.065 

349.839 50.006 297.37 297.21 0.052 

349.841 40.010 258.28 258.21 0.029 

349.837 29.954 209.28 209.23 0.025 

349.833 20.028 149.00 148.95 0.036 

349.831 9.961 76.43 76.37 0.072 
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Table B.7 Continued 

T/K p/MPa ρexp / kg·m
-3

 ρEoS / kg·m
-3

 100(ρexp-ρEoS)/ρexp 

T = 400 K 

399.904 120.559 414.70 414.22 0.115 

399.909 137.807 437.67 437.03 0.148 

399.905 120.026 413.98 413.46 0.125 

399.900 100.082 382.51 382.19 0.084 

399.904 79.818 343.04 342.84 0.058 

399.913 69.931 319.87 319.72 0.046 

399.914 59.961 292.96 292.88 0.028 

399.920 49.865 261.11 261.07 0.017 

399.917 39.952 224.03 224.02 0.003 

399.912 29.983 179.50 179.51 -0.006 

399.915 19.922 126.11 126.10 0.012 

399.913 9.988 65.56 65.51 0.067 

399.924 9.987 65.54 65.51 0.053 

T = 470 K 

470.004 119.844 374.90 374.59 0.084 

470.019 137.925 399.92 399.47 0.112 

470.021 119.963 375.09 374.76 0.089 

470.063 100.025 342.70 342.57 0.038 

470.010 80.022 303.46 303.42 0.014 

469.998 69.917 280.09 280.08 0.004 

469.994 60.016 254.20 254.21 -0.006 

469.987 49.973 224.25 224.31 -0.024 

469.982 40.008 190.16 190.21 -0.029 

469.977 29.966 150.62 150.63 -0.007 

469.973 19.923 105.29 105.27 0.018 

469.973 9.992 54.93 54.91 0.031 
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Table B.8 Experimental (p-ρ-T) values for 75% Methane – 25% Nitrogen Mixture 

T/K p/MPa ρexp / kg·m
-3

 ρEoS / kg·m
-3

 100(ρexp-ρEoS)/ρexp 

T = 304 K 

304.114 120.278 418.82 418.39 0.102 

304.115 137.680 435.25 434.73 0.118 

304.103 119.811 418.39 417.92 0.112 

304.100 100.110 396.33 395.91 0.106 

304.097 80.054 368.16 367.83 0.091 

304.096 69.976 350.71 350.42 0.081 

304.096 59.950 330.09 329.83 0.079 

304.096 49.895 304.63 304.41 0.071 

304.094 39.907 272.08 271.92 0.062 

304.092 29.972 228.08 227.94 0.063 

304.089 19.971 165.17 165.04 0.082 

304.097 9.981 82.59 82.45 0.178 

T = 350 K 

349.917 119.772 388.99 388.61 0.099 

349.918 137.872 407.63 407.12 0.126 

349.915 119.963 389.22 388.82 0.103 

349.913 99.975 364.75 364.46 0.082 

349.897 79.983 334.02 333.86 0.049 

349.899 69.727 314.65 314.53 0.039 

349.901 59.941 292.83 292.75 0.025 

349.899 50.031 266.14 266.11 0.009 

349.898 39.935 232.26 232.24 0.009 

349.896 30.048 189.70 189.71 -0.006 

349.891 20.006 134.29 134.27 0.009 

349.888 10.027 68.31 68.27 0.053 
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Table B.8 Continued 

T/K p/MPa ρexp / kg·m
-3

 ρEoS / kg·m
-3

 100(ρexp-ρEoS)/ρexp 

T = 400 K 

399.862 118.835 359.57 359.31 0.071 

399.878 137.873 380.53 380.13 0.103 

399.878 119.993 361.01 360.67 0.094 

399.877 100.029 335.02 334.82 0.059 

399.872 79.995 302.54 302.47 0.023 

399.882 70.064 283.02 282.98 0.014 

399.881 59.988 260.00 259.98 0.008 

399.881 50.075 233.16 233.17 -0.003 

399.886 40.061 200.52 200.55 -0.013 

399.868 30.067 160.90 160.92 -0.010 

399.859 20.006 112.82 112.78 0.037 

399.862 9.992 57.76 57.72 0.067 

T = 470 K 

469.886 119.899 326.99 326.83 0.048 

469.883 137.448 347.30 346.99 0.089 

469.876 120.092 327.26 327.07 0.057 

469.877 99.995 299.96 299.91 0.019 

469.862 80.021 266.76 266.78 -0.008 

469.863 69.975 246.91 246.94 -0.011 

469.854 59.945 224.29 224.35 -0.025 

469.843 50.010 198.54 198.59 -0.026 

469.835 39.994 168.40 168.45 -0.028 

469.874 29.908 133.12 133.11 0.004 

469.838 20.016 93.29 93.24 0.053 

469.851 10.026 48.26 48.22 0.096 
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APPENDIX C  

The Helmholtz energy and their derivatives can describe all thermodynamic 

properties. Appendix C contains mathematical expressions for first and second 

derivatives using a REOS based upon residual Helmholtz energies. The functional for 

the residual energy is: 
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First and second derivatives in density of the residual Helmholtz energy, using 

numerator and denominator abbreviations are: 
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First and second derivatives in temperature of the residual Helmholtz energy, 

using numerator and denominator abbreviations are: 
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Temperature and density cross derivative terms for the residual Helmholtz 

energy, using numerator and denominator abbreviations are: 
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Numerator and denominator expressions are polynomial functions in 

temperature, their first and second derivatives in temperature and density are: 
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APPENDIX D  

Appendix D shows a program code based upon c language and applied to 

Matlab
®
. This program is a least square non-linear minimization applied for pure 

components including vapor pressure, p-ρ-T, isochoric heat capacities and speed of 

sound data to calculate 45 coefficient parameters. The code reports parameters values, 

uncertainties and residual errors. 

function Fit_lsq_from_Ar_Test1 
format short e 
%Critical Properties Nitrogen 
rhoc=313.29996; %kg/m3 
Tc=126.192;%K  
Pc=3.3958; %Mpa  
Mw=28.01348; % g/mol 
R=8.3144621; % cm3?MPa?K?1?mol?1 

  
Zg=[];Tg=[];Pg=[];delta=[];ww=[]; 

  
x0=[0.456973572646,-0.853394127907,-0.953626347522,0.305153203120,-

0.105507159375,-0.125756126572,1.315257162466,-

3.248502331899,3.053783442656,0.607130865840,0.089245956517,-

0.483899030770,0.611821783288,0.623334308226,-1.890070237787,-

0.006331746935,0.146238580012,-0.188824946279,-

0.341092704490,0.684653238956, -0.267886936762,1.022211537128,-

1.732746542637,-0.305501134060,0.082700215718,0.103709224974,-

0.276110260043,0.068640676190,0.847783598445,-0.077913662712, 
0.003696964869, 0.051247696443,-0.055399981051,-0.105555878940, 

0.013208424552, 0,-0.003940920558,-0.075349429828, 0.235204633831,-

0.206230692773, 0, 0.005653250420, 0.005041475387,-0.032543151544, 

0.028756009973]; 

  
virial=importdata('virial_data.txt'); 
PV_data=importdata('VP_N2-density_3.txt'); 
CV_data=importdata('CV_data.txt'); 
w_data=importdata('speedofsound_data.txt'); 

  
TCv=CV_data(:,2)./Tc; 
deltaCv=(CV_data(:,1)*Mw)./rhoc; 
CV=CV_data(:,3); 

  
SD=w_data(:,3); 
Tw=w_data(:,2)./Tc; 
deltaw=w_data(:,4)./rhoc; 
Pw=w_data(:,1); 
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Tv=PV_data(:,1)./Tc; 
Pv=PV_data(:,2); 
rho_l=PV_data(:,3)./rhoc; 
rho_v=PV_data(:,4)./rhoc; 

  
rho_vp=[PV_data(:,4)]./Mw; 
P_vp=[PV_data(:,2)]; 
T_vp=[PV_data(:,1)]; 
z_vp=P_vp./(R.*T_vp.*(rho_vp./1000)); 

  
for 

i=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

,27,28,29,30,31,32,33,34,35,36,19982,1969,2009] 

     
D=importdata(['t' int2str(i) '.txt']); 
rho=D(:,2); %Kmol/m^3 
P=D(:,1); %Mpa 
T=D(:,3); %Mpa 

  
if i==19982 
   rho=rho./Mw;  
   ww=[ww;(1./0.002)*ones(size(T));]; 
elseif i==1969 
   rho=rho./Mw;  
   ww=[ww;(1./0.1)*ones(size(T));]; 
elseif i==2009 
   rho=rho./Mw;  
   ww=[ww;(1./0.02)*ones(size(T));]; 
elseif i<=22 
    ww=[ww;(1./0.02)*ones(size(T));]; 
else 
    ww=[ww;(1./0.008)*ones(size(T));]; 
end 

  
z=P./(R.*T.*(rho./1000)); %dimensionless 
rhored=(rho.*Mw)/(rhoc);%dimensionless  
Pg=[Pg;P]; Zg=[Zg;z]; Tg=[Tg;T]; delta=[delta;rhored]; 
end 

  
Pg=[Pg;P_vp]; 
Zg=[Zg;z_vp]; 
Tg=[Tg;T_vp]; 
delta=[delta;rho_vp.*Mw/rhoc]; 
ww_vp=(1./0.04)*ones(43,1); 
ww=[ww;ww_vp]; 
Tvirial=(virial(:,1))./Tc; 
B_data=(virial(:,2)./(Mw.*1000)).*rhoc; 
C_data=(virial(:,3)./(Mw.*1000).^2).*rhoc.^2; 
Tred=Tg./Tc; 
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options=optimset('TolFun',1E-20,'TolX',1E-

20,'MaxFunEvals',40000,'MaxIter',40000,'Algorithm','levenberg-

marquardt' ); 
[x,resnorm,residual,exitflag,output,lambda,jacobian] = 

lsqnonlin(@functiongoal,x0,[],[],options,delta,Zg,Tred,ww,B_data,C_data

,Tvirial,Tv,Pv,rho_l,rho_v,SD,Tw,deltaw,TCv,deltaCv,CV);   % Invoke 

optimizer 

  
n1=x(1)+x(2)./Tred+x(3)./Tred.^2+x(4)./Tred.^3+x(5)./Tred.^4;  
n2=x(6)+x(7)./Tred+x(8)./Tred.^2+x(9)./Tred.^3+x(10)./Tred.^4;  
n3=x(11)+x(12)./Tred+x(13)./Tred.^2+x(14)./Tred.^3+x(15)./Tred.^4;  
n4=x(16)+x(17)./Tred+x(18)./Tred.^2+x(19)./Tred.^3+x(20)./Tred.^4;  
n5=x(36)+x(37)./Tred+x(38)./Tred.^2+x(39)./Tred.^3+x(40)./Tred.^4;  
n6=x(41)+x(42)./Tred+x(43)./Tred.^2+x(44)./Tred.^3+x(45)./Tred.^4; 
d1=x(21)+x(22)./Tred+x(23)./Tred.^2+x(24)./Tred.^3+x(25)./Tred.^4; 
d2=x(26)+x(27)./Tred+x(28)./Tred.^2+x(29)./Tred.^3+x(30)./Tred.^4;  
d3=x(31)+x(32)./Tred+x(33)./Tred.^2+x(34)./Tred.^3+x(35)./Tred.^4; 

  
n1_v=x(1)+x(2)./Tvirial+x(3)./Tvirial.^2+x(4)./Tvirial.^3+x(5)./Tvirial

.^4;  
d1_v=x(21)+x(22)./Tvirial+x(23)./Tvirial.^2+x(24)./Tvirial.^3+x(25)./Tv

irial.^4; 
n2_v=x(6)+x(7)./Tvirial+x(8)./Tvirial.^2+x(9)./Tvirial.^3+x(10)./Tviria

l.^4;  

  
B=n1_v; 
C=2*(n2_v-n1_v.*d1_v); 

  
f=n1.*delta+n2.*delta.^2+n3.*delta.^3+n4.*delta.^4+n5.*delta.^5+n6.*del

ta.^6; 
g=1+d1.*delta+d2.*delta.^2+d3.*delta.^3; 
f_delta=n1+2.*n2.*delta+3.*n3.*delta.^2+4.*n4.*delta.^3+5.*n5.*delta.^4

+6.*n6.*delta.^5; 
g_delta=d1+2.*d2.*delta+3.*d3.*delta.^2; 
alpha_delta=(f_delta.*g-g_delta.*f)./g.^2; 

  
zcalc=1+delta.*(alpha_delta); 
dev=((zcalc-Zg)./Zg)*100; 
Pcalc=zcalc.*R.*Tg.*(delta.*rhoc)./(1000.*Mw); 

  
hold on 
plot(Tred,dev,'b*') 

  
ci = nlparci(x,residual,'jacobian',jacobian); 

  

   

  
function f = functiongoal(x, 

delta,Zg,Tred,ww,B_data,C_data,Tvirial,Tv,Pv,rho_l,rho_v,SD,Tw,deltaw,T

Cv,deltaCv,CV) 
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n1=x(1)+x(2)./Tred+x(3)./Tred.^2+x(4)./Tred.^3+x(5)./Tred.^4;  
n2=x(6)+x(7)./Tred+x(8)./Tred.^2+x(9)./Tred.^3+x(10)./Tred.^4;  
n3=x(11)+x(12)./Tred+x(13)./Tred.^2+x(14)./Tred.^3+x(15)./Tred.^4;  
n4=x(16)+x(17)./Tred+x(18)./Tred.^2+x(19)./Tred.^3+x(20)./Tred.^4;  
n5=x(36)+x(37)./Tred+x(38)./Tred.^2+x(39)./Tred.^3+x(40)./Tred.^4;  
n6=x(41)+x(42)./Tred+x(43)./Tred.^2+x(44)./Tred.^3+x(45)./Tred.^4; 
d1=x(21)+x(22)./Tred+x(23)./Tred.^2+x(24)./Tred.^3+x(25)./Tred.^4; 
d2=x(26)+x(27)./Tred+x(28)./Tred.^2+x(29)./Tred.^3+x(30)./Tred.^4;  
d3=x(31)+x(32)./Tred+x(33)./Tred.^2+x(34)./Tred.^3+x(35)./Tred.^4; 

  
f=n1.*delta+n2.*delta.^2+n3.*delta.^3+n4.*delta.^4+n5.*delta.^5+n6.*del

ta.^6; 
g=1+d1.*delta+d2.*delta.^2+d3.*delta.^3; 
f_delta=n1+2.*n2.*delta+3.*n3.*delta.^2+4.*n4.*delta.^3+5.*n5.*delta.^4

+6.*n6.*delta.^5; 
g_delta=d1+2.*d2.*delta+3.*d3.*delta.^2; 

  
alpha_delta=(f_delta.*g-g_delta.*f)./g.^2; 

  
% %critical Constraint 
zc=0.28938788471; 
n1_c=x(1)+x(2)./1+x(3)./1.^2+x(4)./1.^3+x(5)./1.^4;  
n2_c=x(6)+x(7)./1+x(8)./1.^2+x(9)./1.^3+x(10)./1.^4;  
n3_c=x(11)+x(12)./1+x(13)./1.^2+x(14)./1.^3+x(15)./1.^4;  
n4_c=x(16)+x(17)./1+x(18)./1.^2+x(19)./1.^3+x(20)./1.^4;  
n5_c=x(36)+x(37)./1+x(38)./1.^2+x(39)./1.^3+x(40)./1.^4;  
n6_c=x(41)+x(42)./1+x(43)./1.^2+x(44)./1.^3+x(45)./1.^4; 
d1_c=x(21)+x(22)./1+x(23)./1.^2+x(24)./1.^3+x(25)./1.^4; 
d2_c=x(26)+x(27)./1+x(28)./1.^2+x(29)./1.^3+x(30)./1.^4;  
d3_c=x(31)+x(32)./1+x(33)./1.^2+x(34)./1.^3+x(35)./1.^4; 

  
f_c=n1_c.*1+n2_c.*1.^2+n3_c.*1.^3+n4_c.*1.^4+n5_c.*1.^5+n6_c.*1.^6; 
g_c=1+d1_c.*1+d2_c.*1.^2+d3_c.*1.^3; 
f_delta_c=n1_c+2.*n2_c.*1+3.*n3_c.*1.^2+4.*n4_c.*1.^3+5.*n5_c.*1.^4+6.*

n6_c.*1.^5; 
g_delta_c=d1_c+2.*d2_c.*1+3.*d3_c.*1.^2; 

  
f_delta_2_c=2.*n2_c+6.*n3_c.*1+12.*n4_c.*1.^2+20.*n5_c.*1.^3+30.*n6_c.*

1.^4; 
g_delta_2_c=2.*d2_c+6.*d3_c.*1; 

  
alpha_delta_c=(f_delta_c.*g_c-g_delta_c.*f_c)./g_c.^2; 
alpha_delta_2_c=(f_delta_2_c.*g_c-g_delta_2_c.*f_c-

2.*g_c.*g_delta_c.*alpha_delta_c)./g_c.^2; 
alpha_delta_3_c=(120*n6_c*1^3 + 60*n5_c*1^2 + 24*n4_c*1 + 

6*n3_c)/(d3_c*1^3 + d2_c*1^2 + d1_c*1 + 1) - (3*(3*d3_c*1^2 + 2*d2_c*1 

+ d1_c)*(30*n6_c*1^4 + 20*n5_c*1^3 + 12*n4_c*1^2 + 6*n3_c*1 + 

2*n2_c))/(d3_c*1^3 + d2_c*1^2 + d1_c*1 + 1)^2 - (3*(2*d2_c + 

6*1*d3_c)*(6*n6_c*1^5 + 5*n5_c*1^4 + 4*n4_c*1^3 + 3*n3_c*1^2 + 2*n2_c*1 

+ n1_c))/(d3_c*1^3 + d2_c*1^2 + d1_c*1 + 1)^2 - (6*d3_c*(n6_c*1^6 + 

n5_c*1^5 + n4_c*1^4 + n3_c*1^3 + n2_c*1^2 + n1_c*1))/(d3_c*1^3 + 

d2_c*1^2 + d1_c*1 + 1)^2 + (6*(3*d3_c*1^2 + 2*d2_c*1 + 
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d1_c)^2*(6*n6_c*1^5 + 5*n5_c*1^4 + 4*n4_c*1^3 + 3*n3_c*1^2 + 2*n2_c*1 + 

n1_c))/(d3_c*1^3 + d2_c*1^2 + d1_c*1 + 1)^3 - (6*(3*d3_c*1^2 + 2*d2_c*1 

+ d1_c)^3*(n6_c*1^6 + n5_c*1^5 + n4_c*1^4 + n3_c*1^3 + n2_c*1^2 + 

n1_c*1))/(d3_c*1^3 + d2_c*1^2 + d1_c*1 + 1)^4 + (6*(2*d2_c + 

6*1*d3_c)*(3*d3_c*1^2 + 2*d2_c*1 + d1_c)*(n6_c*1^6 + n5_c*1^5 + 

n4_c*1^4 + n3_c*1^3 + n2_c*1^2 + n1_c*1))/(d3_c*1^3 + d2_c*1^2 + d1_c*1 

+ 1)^3; 

  
con1=zc-(1+alpha_delta_c); 
con2=1+2.*1.*alpha_delta_c+1.^2*alpha_delta_2_c; 
con3=2*alpha_delta_c+4*1*alpha_delta_2_c+1^2*alpha_delta_3_c; 

  
%Vapor Pressure Data 
R=8.3144621; % cm3?MPa?K?1?mol?1 
rhoc=313.29996; %kg/m3 
Tc=126.192;%K  

  
Mw=28.01348; % g/mol 
n1_PV=x(1)+x(2)./Tv+x(3)./Tv.^2+x(4)./Tv.^3+x(5)./Tv.^4;  
n2_PV=x(6)+x(7)./Tv+x(8)./Tv.^2+x(9)./Tv.^3+x(10)./Tv.^4;  
n3_PV=x(11)+x(12)./Tv+x(13)./Tv.^2+x(14)./Tv.^3+x(15)./Tv.^4;  
n4_PV=x(16)+x(17)./Tv+x(18)./Tv.^2+x(19)./Tv.^3+x(20)./Tv.^4;  
n5_PV=x(36)+x(37)./Tv+x(38)./Tv.^2+x(39)./Tv.^3+x(40)./Tv.^4;  
n6_PV=x(41)+x(42)./Tv+x(43)./Tv.^2+x(44)./Tv.^3+x(45)./Tv.^4; 
d1_PV=x(21)+x(22)./Tv+x(23)./Tv.^2+x(24)./Tv.^3+x(25)./Tv.^4; 
d2_PV=x(26)+x(27)./Tv+x(28)./Tv.^2+x(29)./Tv.^3+x(30)./Tv.^4;  
d3_PV=x(31)+x(32)./Tv+x(33)./Tv.^2+x(34)./Tv.^3+x(35)./Tv.^4; 

  
alpha_l=(n1_PV.*rho_l+n2_PV.*rho_l.^2+n3_PV.*rho_l.^3+n4_PV.*rho_l.^4+n

5_PV.*rho_l.^5+n6_PV.*rho_l.^6)./(1+d1_PV.*rho_l+d2_PV.*rho_l.^2+d3_PV.

*rho_l.^3); 
alpha_v=(n1_PV.*rho_v+n2_PV.*rho_v.^2+n3_PV.*rho_v.^3+n4_PV.*rho_v.^4+n

5_PV.*rho_v.^5+n6_PV.*rho_v.^6)./(1+d1_PV.*rho_v+d2_PV.*rho_v.^2+d3_PV.

*rho_v.^3); 

  
q1=R.*Tv.*Tc.*((log(rho_l./rho_v))+alpha_l-alpha_v); 
q2=((Pv.*Mw.*1000)./rhoc).*(1./rho_v-1./rho_l); 
Q=q1-q2; 

  
%Speed of Sound 
%Nitrogen Ideal Helmholtz 
tau=1./Tw; 
a=[2.5, -12.76952708, -0.00784163, -1.934819*10^-4, -1.247742*10^-5, 

6.678326*10^-8, 1.012941, 26.65788]; 
alpha_ideal_tau_2=-a(1).*tau.^(-2)+2.*a(4).*tau.^(-3)+6.*a(5).*tau.^(-

4)+12.*a(6).*tau.^(-5)-(a(7).*a(8).*exp(a(8).*tau))./(exp(a(8).*tau)-

1).^2; 

  
%Nitrogen speed of sound 
n1w=x(1)+x(2)./Tw+x(3)./Tw.^2+x(4)./Tw.^3+x(5)./Tw.^4;  
n2w=x(6)+x(7)./Tw+x(8)./Tw.^2+x(9)./Tw.^3+x(10)./Tw.^4;  
n3w=x(11)+x(12)./Tw+x(13)./Tw.^2+x(14)./Tw.^3+x(15)./Tw.^4;  
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n4w=x(16)+x(17)./Tw+x(18)./Tw.^2+x(19)./Tw.^3+x(20)./Tw.^4;  
n5w=x(36)+x(37)./Tw+x(38)./Tw.^2+x(39)./Tw.^3+x(40)./Tw.^4;  
n6w=x(41)+x(42)./Tw+x(43)./Tw.^2+x(44)./Tw.^3+x(45)./Tw.^4; 
d1w=x(21)+x(22)./Tw+x(23)./Tw.^2+x(24)./Tw.^3+x(25)./Tw.^4; 
d2w=x(26)+x(27)./Tw+x(28)./Tw.^2+x(29)./Tw.^3+x(30)./Tw.^4;  
d3w=x(31)+x(32)./Tw+x(33)./Tw.^2+x(34)./Tw.^3+x(35)./Tw.^4; 

  
fw=n1w.*deltaw+n2w.*deltaw.^2+n3w.*deltaw.^3+n4w.*deltaw.^4+n5w.*deltaw

.^5+n6w.*deltaw.^6; 
gw=1+d1w.*deltaw+d2w.*deltaw.^2+d3w.*deltaw.^3; 
f_deltaw=n1w+2.*n2w.*deltaw+3.*n3w.*deltaw.^2+4.*n4w.*deltaw.^3+5.*n5w.

*deltaw.^4+6.*n6w.*deltaw.^5; 
g_deltaw=d1w+2.*d2w.*deltaw+3.*d3w.*deltaw.^2; 
f_deltaw_2=2.*n2w+6.*n3w.*deltaw+12.*n4w.*deltaw.^2+20.*n5w.*deltaw.^3+

30.*n6w.*deltaw.^4; 
g_deltaw_2=2.*d2w+6.*d3w.*deltaw; 

  
alpha_deltaw=(f_deltaw.*gw-g_deltaw.*fw)./gw.^2; 
alpha_deltaw_2=(f_deltaw_2.*gw-g_deltaw_2.*fw-

2.*gw.*g_deltaw.*alpha_deltaw)./gw.^2; 
n1_tau=0;n2_tau=0;n3_tau=0;n4_tau=0;d1_tau=0;d2_tau=0;d3_tau=0;n5_tau=0

;n6_tau=0; 
n1_tau2=0;n2_tau2=0;n3_tau2=0;n4_tau2=0;d1_tau2=0;d2_tau2=0;d3_tau2=0;n

5_tau2=0;n6_tau2=0; 

  
for j=1:5 
    n1_tau=n1_tau+(j-1).*x(j).*tau.^(j-2); 
    n2_tau=n2_tau+(j-1).*x(5+j).*tau.^(j-2); 
    n3_tau=n3_tau+(j-1).*x(10+j).*tau.^(j-2); 
    n4_tau=n4_tau+(j-1).*x(15+j).*tau.^(j-2); 
    d1_tau=d1_tau+(j-1).*x(20+j).*tau.^(j-2); 
    d2_tau=d2_tau+(j-1).*x(25+j).*tau.^(j-2); 
    d3_tau=d3_tau+(j-1).*x(30+j).*tau.^(j-2); 
    n5_tau=n5_tau+(j-1).*x(35+j).*tau.^(j-2); 
    n6_tau=n6_tau+(j-1).*x(40+j).*tau.^(j-2); 

     
        n1_tau2=n1_tau2+(j-2).*(j-1).*x(j).*tau.^(j-3); 
    n2_tau2=n2_tau2+(j-2).*(j-1).*x(5+j).*tau.^(j-3); 
    n3_tau2=n3_tau2+(j-2).*(j-1).*x(10+j).*tau.^(j-3); 
    n4_tau2=n4_tau2+(j-2).*(j-1).*x(15+j).*tau.^(j-3); 
    d1_tau2=d1_tau2+(j-2).*(j-1).*x(20+j).*tau.^(j-3); 
    d2_tau2=d2_tau2+(j-2).*(j-1).*x(25+j).*tau.^(j-3); 
    d3_tau2=d3_tau2+(j-2).*(j-1).*x(30+j).*tau.^(j-3); 
    n5_tau2=n5_tau2+(j-2).*(j-1).*x(35+j).*tau.^(j-3); 
    n6_tau2=n6_tau2+(j-2).*(j-1).*x(40+j).*tau.^(j-3); 
end 
f_tauw=n1_tau.*deltaw+n2_tau.*deltaw.^2+n3_tau.*deltaw.^3+n4_tau.*delta

w.^4+n5_tau.*deltaw.^5+n6_tau.*deltaw.^6; 
g_tauw=d1_tau.*deltaw+d2_tau.*deltaw.^2+d3_tau.*deltaw.^3; 
f_tau_2w=n1_tau2.*deltaw+n2_tau2.*deltaw.^2+n3_tau2.*deltaw.^3+n4_tau2.

*deltaw.^4+n5_tau2.*deltaw.^5+n6_tau2.*deltaw.^6; 
g_tau_2w=d1_tau2.*deltaw+d2_tau2.*deltaw.^2+d3_tau2.*deltaw.^3; 
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f_deltaw_tau=n1_tau+2.*n2_tau.*deltaw+3.*n3_tau.*deltaw.^2+4.*n4_tau.*d

eltaw.^3+5.*n5_tau.*deltaw.^4+6.*n6_tau.*deltaw.^5; 
g_deltaw_tau=d1_tau+2.*d2_tau.*deltaw+3.*d3_tau.*deltaw.^2; 

  
alpha_tauw=(f_tauw.*gw-g_tauw.*fw)./gw.^2; 
alpha_tau_2w=(f_tau_2w.*gw-g_tau_2w.*fw-

2.*gw.*g_tauw.*alpha_tauw)./gw.^2; 
alpha_deltaw_tau=(f_deltaw_tau.*gw.^2+gw.*g_tauw.*f_deltaw-

g_deltaw_tau.*gw.*fw-f_tauw.*gw.*g_deltaw-2.*g_tauw.*(f_deltaw.*gw-

g_deltaw.*fw))./(gw.^3); 

  
w2MoverRT=1+2.*deltaw.*alpha_deltaw+alpha_deltaw_2.*deltaw.^2-

(1+deltaw.*alpha_deltaw-

deltaw.*tau.*alpha_deltaw_tau).^2./(tau.^2.*(alpha_ideal_tau_2+alpha_ta

u_2w)); 
SDcalc=((w2MoverRT).*(R.*(1./tau).*Tc.*1000)./(Mw)).^0.5; 

  
%Nitrogen CV 
%Nitrogen Ideal Helmholtz 
tauCV=1./TCv; 
a=[2.5, -12.76952708, -0.00784163, -1.934819*10^-4, -1.247742*10^-5, 

6.678326*10^-8, 1.012941, 26.65788]; 
alpha_ideal_tau_2Cv=-a(1).*tauCV.^(-2)+2.*a(4).*tauCV.^(-

3)+6.*a(5).*tauCV.^(-4)+12.*a(6).*tauCV.^(-5)-

(a(7).*a(8).*exp(a(8).*tauCV))./(exp(a(8).*tauCV)-1).^2; 

  
n1Cv=x(1)+x(2)./TCv+x(3)./TCv.^2+x(4)./TCv.^3+x(5)./TCv.^4;  
n2Cv=x(6)+x(7)./TCv+x(8)./TCv.^2+x(9)./TCv.^3+x(10)./TCv.^4;  
n3Cv=x(11)+x(12)./TCv+x(13)./TCv.^2+x(14)./TCv.^3+x(15)./TCv.^4;  
n4Cv=x(16)+x(17)./TCv+x(18)./TCv.^2+x(19)./TCv.^3+x(20)./TCv.^4;  
n5Cv=x(36)+x(37)./TCv+x(38)./TCv.^2+x(39)./TCv.^3+x(40)./TCv.^4;  
n6Cv=x(41)+x(42)./TCv+x(43)./TCv.^2+x(44)./TCv.^3+x(45)./TCv.^4; 
d1Cv=x(21)+x(22)./TCv+x(23)./TCv.^2+x(24)./TCv.^3+x(25)./TCv.^4; 
d2Cv=x(26)+x(27)./TCv+x(28)./TCv.^2+x(29)./TCv.^3+x(30)./TCv.^4;  
d3Cv=x(31)+x(32)./TCv+x(33)./TCv.^2+x(34)./TCv.^3+x(35)./TCv.^4; 

  
fCv=n1Cv.*deltaCv+n2Cv.*deltaCv.^2+n3Cv.*deltaCv.^3+n4Cv.*deltaCv.^4+n5

Cv.*deltaCv.^5+n6Cv.*deltaCv.^6; 
gCv=1+d1Cv.*deltaCv+d2Cv.*deltaCv.^2+d3Cv.*deltaCv.^3; 

  
n1_tauCV=0;n2_tauCV=0;n3_tauCV=0;n4_tauCV=0;d1_tauCV=0;d2_tauCV=0;d3_ta

uCV=0;n5_tauCV=0;n6_tauCV=0; 
n1_tauCV2=0;n2_tauCV2=0;n3_tauCV2=0;n4_tauCV2=0;d1_tauCV2=0;d2_tauCV2=0

;d3_tauCV2=0;n5_tauCV2=0;n6_tauCV2=0; 
for j=1:5 
    n1_tauCV=n1_tauCV+(j-1).*x(j).*tauCV.^(j-2); 
    n2_tauCV=n2_tauCV+(j-1).*x(5+j).*tauCV.^(j-2); 
    n3_tauCV=n3_tauCV+(j-1).*x(10+j).*tauCV.^(j-2); 
    n4_tauCV=n4_tauCV+(j-1).*x(15+j).*tauCV.^(j-2); 
    d1_tauCV=d1_tauCV+(j-1).*x(20+j).*tauCV.^(j-2); 
    d2_tauCV=d2_tauCV+(j-1).*x(25+j).*tauCV.^(j-2); 
    d3_tauCV=d3_tauCV+(j-1).*x(30+j).*tauCV.^(j-2); 
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    n5_tauCV=n5_tauCV+(j-1).*x(35+j).*tauCV.^(j-2); 
    n6_tauCV=n6_tauCV+(j-1).*x(40+j).*tauCV.^(j-2); 

     
    n1_tauCV2=n1_tauCV2+(j-2).*(j-1).*x(j).*tauCV.^(j-3); 
    n2_tauCV2=n2_tauCV2+(j-2).*(j-1).*x(5+j).*tauCV.^(j-3); 
    n3_tauCV2=n3_tauCV2+(j-2).*(j-1).*x(10+j).*tauCV.^(j-3); 
    n4_tauCV2=n4_tauCV2+(j-2).*(j-1).*x(15+j).*tauCV.^(j-3); 
    d1_tauCV2=d1_tauCV2+(j-2).*(j-1).*x(20+j).*tauCV.^(j-3); 
    d2_tauCV2=d2_tauCV2+(j-2).*(j-1).*x(25+j).*tauCV.^(j-3); 
    d3_tauCV2=d3_tauCV2+(j-2).*(j-1).*x(30+j).*tauCV.^(j-3); 
    n5_tauCV2=n5_tauCV2+(j-2).*(j-1).*x(35+j).*tauCV.^(j-3); 
    n6_tauCV2=n6_tauCV2+(j-2).*(j-1).*x(40+j).*tauCV.^(j-3); 
end 
f_tauCv=n1_tauCV.*deltaCv+n2_tauCV.*deltaCv.^2+n3_tauCV.*deltaCv.^3+n4_

tauCV.*deltaCv.^4+n5_tauCV.*deltaCv.^5+n6_tauCV.*deltaCv.^6; 
g_tauCv=d1_tauCV.*deltaCv+d2_tauCV.*deltaCv.^2+d3_tauCV.*deltaCv.^3; 
f_tau_2Cv=n1_tauCV2.*deltaCv+n2_tauCV2.*deltaCv.^2+n3_tauCV2.*deltaCv.^

3+n4_tauCV2.*deltaCv.^4+n5_tauCV2.*deltaCv.^5+n6_tauCV2.*deltaCv.^6; 
g_tau_2Cv=d1_tauCV2.*deltaCv+d2_tauCV2.*deltaCv.^2+d3_tauCV2.*deltaCv.^

3; 

  
alpha_tauCv=(f_tauCv.*gCv-g_tauCv.*fCv)./gCv.^2; 
alpha_tau_2Cv=(f_tau_2Cv.*gCv-g_tau_2Cv.*fCv-

2.*gCv.*g_tauCv.*alpha_tauCv)./gCv.^2; 
CVcalc=R.*(-tauCV.^2.*(alpha_ideal_tau_2Cv+alpha_tau_2Cv)); 

  
f = [ww.*1;zeros(43,1);0;0;0;SD.*0.5;CV.*1]-

[ww.*((1+delta.*(alpha_delta))./Zg);Q;2000.*con1;2000.*con2;2000.*con3;

SDcalc.*0.5;CVcalc.*1]; 
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APPENDIX E  

Appendix E shows a program code based upon C++ language. This program 

performs pressure calculations using rational equation of state functional and modern 

functional as in GERG-2008. The code calculates pressure values and computational 

time require for a single evaluation.  

#include <vector> 
#include <iostream> 
#include <time.h> 
 
//#include "crossplatform_shared_ptr.h" 
//#include "AbstractState.h" 
 
/* */ 
 
#include <vector> 
 
std::vector<int> d = { 1, 1, 2, 2, 3, 3, 1, 1, 1, 3, 3, 4, 6, 6, 7, 7, 8, 8, 1, 2, 
3, 4, 5, 8, 4, 5, 5, 8, 3, 5, 6, 9 }; 
std::vector<int> l = { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 
2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4 }; 
std::vector<double> n = { 0.924803575275, -0.492448489428, 0.661883336938, -
1.92902649201, -0.0622469309629, 0.349943957581, 0.564857472498, -1.61720005987, -
0.481395031883, 0.421150636384, -0.0161962230825, 0.172100994165, 
0.00735448924933, 0.0168077305479, -0.00107626664179, -0.0137318088513, 
0.000635466899859, 0.00304432279419, -0.0435762336045, -0.0723174889316, 
0.0389644315272, -0.021220136391, 0.00408822981509, -5.51990017984e-05, -
0.0462016716479, -0.00300311716011, 0.0368825891208, -0.0025585684622, 
0.00896915264558, -0.0044151337035, 0.00133722924858, 0.000264832491957 }; 
std::vector<double> t = { 0.25, 0.875, 0.5, 0.875, 0.375, 0.75, 0.5, 0.75, 2, 
1.25, 3.5, 1, 0.5, 3, 0, 2.75, 0.75, 2.5, 4, 6, 6, 3, 3, 6, 16, 11, 15, 12, 12, 7, 
4, 16 }; 
 
std::vector<double> n_Gaussian = { 19.6688194015, -20.911560073, 0.0167788306989, 
2627.67566274 }; 
std::vector<int> d_Gaussian = { 1, 1, 3, 2 }; 
std::vector<int> t_Gaussian = { 0, 1, 2, 3 }; 
std::vector<int> beta = { 325, 325, 300, 275 }; 
std::vector<int> epsilon = { 1, 1, 1, 1 }; 
std::vector<int> eta = { 20, 20, 15, 25 }; 
std::vector<double> gamma = { 1.16, 1.16, 1.13, 1.25 }; 
 
double dalphar_dDelta_conventional(const double tau, const double delta) { 
 double summer = 0; 
 double log_tau = log(tau), log_delta = log(delta); 
 for (unsigned int k = 0; k < 6; ++k) 
 { 
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  // pow(delta, d[k]-1)*pow(tau, t[k]) --> exp((d[k]-1)*log(delta)+ 
t[k]*log(tau)) 
  summer += d[k] * n[k] * exp((d[k] - 1)*log_delta + t[k] * log_tau); 
 } 
 for (unsigned int k = 6; k < 32; ++k) 
 { 
  double pow_delta_lk = pow(delta, l[k]); 
  summer += n[k] * exp((d[k] - 1)*log_delta + t[k] * log_tau - 
pow(delta, l[k]))*(d[k] - l[k] * pow_delta_lk); 
 } 
 for (unsigned int k = 0; k < 4; ++k) 
 { 
  summer += n_Gaussian[k] * pow(delta, d_Gaussian[k] - 1)*pow(tau, 
t_Gaussian[k])*exp(-eta[k] * pow(delta - epsilon[k], 2) - beta[k] * pow(tau - 
gamma[k], 2))*(d_Gaussian[k] - 2 * eta[k] * delta*(delta - epsilon[k])); 
 } 
 return summer; 
} 
 
std::vector<double> B = { 0.46131520309233526, -0.8720874696304605, -
0.920438417237658, 0.2973194609937205, -0.10935746132151714, -0.12459493381236057, 
1.2875265205314776, -3.120101916214109, 2.879215543759785, 0.560846632170082, 
0.08540697853924611, -0.4898861796429146, 0.6419703709564887, 0.6200371073971928, 
-1.746823346140164, -0.006336150975677217, 0.14151403078990435, -
0.17779302774202227, -0.3501322270166177, 0.6132288387336707, -0.2665713537796835, 
0.9923596936025292, -1.631851496234707, -0.29782839017993784, 0.08081848309792541, 
0.09900729795177489, -0.3135689594673375, 0.06667284671791185, 0.8115649125754364, 
-0.07630349735827587, 0.0036391861409774203, 0.05495468857874896, -
0.05400767480943274, -0.10320932846842755, 0.01373444375655594, -
0.004032870953117091, -0.07952646832002297, 0.24378025235460282, -
0.18758212744270497,0, 0.005566714251489701, 0.0050498500458337845, -
0.034054725403794894, 0.0267280731224514,0 }; 
 
double HornerEvaluate(double x, const double * CoefficientsOfPolynomial, unsigned 
int DegreeOfPolynomial) 
{ 
 /* 
 We want to evaluate the polynomial in x, of coefficients 
CoefficientsOfPolynomial, using Horner's method. 
 The result is stored in dbResult. 
 */ 
 double dbResult = 0.; 
 int i; 
 for (i = DegreeOfPolynomial; i >= 0; i--) 
 { 
  dbResult = dbResult * x + CoefficientsOfPolynomial[i]; 
 } 
 return dbResult; 
} 
 
double calc_Horner(double tau, unsigned int offset, unsigned int n1, unsigned int 
nN) { 
 return HornerEvaluate(tau, &(B[0]) + offset, nN); 
} 
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double calc_pow(double tau, unsigned int offset, unsigned int n1, unsigned int nN) 
{ 
 int i = 0; 
 double summer = 0; 
 for (unsigned int j = n1; j <= nN; ++j) { 
  summer += B[offset + i] * pow(tau, static_cast<int>(j)); 
  ++i; 
 } 
 return summer; 
} 
 
double calc(double tau, unsigned int offset, unsigned int n1, unsigned int nN) 
{ 
 return calc_Horner(tau, offset, n1, nN); 
} 
 
double n1(double tau) { return calc(tau, 0, 0, 4); } 
double n2(double tau) { return calc(tau, 5, 0, 4); } 
double n3(double tau) { return calc(tau, 10, 0, 4); } 
double n4(double tau) { return calc(tau, 15, 0, 4); } 
double d1(double tau) { return calc(tau, 20, 0, 4); } 
double d2(double tau) { return calc(tau, 25, 0, 4); } 
double d3(double tau) { return calc(tau, 30, 0, 4); } 
double n5(double tau) { return calc(tau, 35, 0, 4); } 
double n6(double tau) { return calc(tau, 40, 0, 4); } 
 
double dalphar_dDelta(const double tau, const double delta) 
{ 
 double _n1 = n1(tau), _n2 = n2(tau), _n3 = n3(tau), _n4 = n4(tau), _n5 = 
n5(tau), _n6 = n6(tau); 
 double _d1 = d1(tau), _d2 = d2(tau), _d3 = d3(tau); 
 
 double num = delta*(_n1 + delta*(_n2 + delta*(_n3 + delta*(_n4 + delta*(_n5 
+ delta*_n6))))); 
 double den = 1 + delta*(_d1 + delta*(_d2 + delta*_d3)); 
 
 double dnum_ddelta = _n1 + delta*(2 * _n2 + delta*(3 * _n3 + delta*(4 * _n4 
+ delta*(5 * _n5 + 6 * _n6*delta)))); 
 double dden_ddelta = _d1 + delta*(2 * _d2 + 3 * _d3*delta); 
 
 double dalphar_dDelta = (den*dnum_ddelta - num*dden_ddelta) / (den*den); 
 
 return dalphar_dDelta; 
} 
 
double p_conventional(double tau, double delta) 
{ 
 double R = 8.3144621, T = 126.192 / tau, rhomolar = delta*11183.9014646; 
 double p_old = rhomolar*R*T*(1 + delta*dalphar_dDelta_conventional(tau, 
delta)); 
 return p_old; 
} 
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double p(double tau, double delta) 
{ 
 double R = 8.3144621, T = 126.192 / tau, rhomolar = delta*11183.9014646; 
 double p_new = rhomolar*R*T*(1 + delta*dalphar_dDelta(tau, delta)); 
 return p_new; 
} 
 
int main() 
{ 
 double T = 300, rhomolar = 11183, tau = 126.192 / T, delta = rhomolar / 
11183.9014646; 
 long N = 1000000; 
 
 { 
  double t1 = clock(); 
  double summer = 0; 
  for (unsigned int ii = N; ii > 0; --ii) { 
   summer += p(tau, delta); 
  } 
  double t2 = clock(); 
  std::cout << summer / ((double)N) << " " << (t2 - t1) / 
((double)CLOCKS_PER_SEC) / ((double)N)*1e6 << std::endl; 
 } 
 { 
  double t1 = clock(); 
  double summer = 0; 
  for (unsigned int ii = N; ii > 0; --ii) { 
   summer += p_conventional(tau, delta); 
  } 
  double t2 = clock(); 
  std::cout << summer / ((double)N) << " " << (t2 - t1) / 
((double)CLOCKS_PER_SEC) / ((double)N)*1e6 << std::endl; 
 } 
 int rr = 0; 
} 

 




