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ABSTRACT 

As the demand on energy increases rapidly, exploration and production in deep 

water and facilities in shallow water are in imperative need. Suction caissons are most 

commonly used as anchoring system for offshore floating structures and are used as 

foundations for coastal wind turbines in relatively shallow water. For a long time, 

suction caisson loaded in soft clay such as in Gulf of Mexico are considered rigid due to 

the stiffness being stronger than soft clay. 

The objective of this study is to investigate the elastic behavior of suction 

caissons in soft clay. A new 3-D finite element analysis method using coupled caisson-

springs model is introduced. The properties of springs are developed based on a 2-D 

continuum finite element analysis and scaled to 3-D scenario. Computer program 

ABAQUS is used for the numerical analysis for the coupled caisson-springs model. 

Results show that elastic behavior of caissons is quite different with a rigid 

caisson particularly under small displacement. Taking the advantage of the newly 

developed model, the structural response of the caisson is also assessed. 
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CHAPTER I 

INTRODUCTION 

Background 

With the increasing demand of energy, exploring the offshore is becoming a 

necessity to maintain the energy consumption. As a result, offshore structures have 

developed for over 70 years to cope with this increasing demand. The early offshore 

structures were designed as fixed structures which the top was supported by the steel 

jacket, or concrete gravity base, founded on the seabed (Figure 1a). These fixed 

structures are typically used at water depth less than 350 m.  Compliant tower, another 

type of fixed structure, which can tolerate larger horizontal deformations, can make them 

feasible for water depth up to 600 m. 

 As water depth keeps increasing, fixed structure will not be economical because 

of its increased substructure loads and high material cost. In this case, floating structure 

is a better option to accommodate greater water depth. In such system, the structure is 

floating at the sea surface, and stabled by steel cables connected to anchors founded in 

seafloor. Current applications are used in mooring for tension leg platform (TLP), 

semisubmersible, spars, and so on (Figure 1b). 

No matter what types of structures are used, they all need to be fixed on the soil 

by anchors to sustain the loadings from waves, currents, winds, etc. Typical anchors 

used for stabilization include piles, suction caissons, and drag anchors. This research is 

focusing on the behavior of suction caisson. 
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Figure 1.1 (a) Fixed structure; (b) Floating structures (Schneider & Senders, 2010) 

The Concept of Suction Caissons 

Caissons are large cylindrical structures (Figure 2), serviced as foundations or 

mooring anchors. They are constructed with the top sealed with valve-controlled vent, 

and the bottom open. They have been reported to apply in both sands and clay, with 

different aspect ratio from less than one to ten. The advantages of suction caisson 

foundation include larger capacity than embedded anchors, less seafloor disturbance, 

being able to reuse. From installation point of view, they require lower cost of 

manufacturing and installation equipment, and more time efficient. The installation of 
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the caisson can generally completed by two steps. Initially, the caisson is set vertically, 

partially penetrated into the seafloor driven by its own weight with the vent open. Then, 

a suction is applied within the caisson to force the water out through the valve, and cause 

the caisson to sink further until the full penetration achieved. After installation and prior 

to loading in service, it has to need a period of time for the surrounding soil that is 

disturbed during installation to regain the strength. Then, caisson is connected to 

structure from the top or side of the caisson. 

Figure 1.2 Suction Caissons (Delmar) 

Problem Statement 

Many studies have been conducted to investigate the load capacity of suction 

caisson. Luke et al. (2003) carried ten pullout tests in the normally consolidated kaolinite 

to quantify the axial capacity of caisson, and found the axial capacity was considerably 
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larger in the vent sealed case. A simplified theory for predicting the axial capacity of 

suction caisson was developed by Houlsby et al. (2005). Vásquez et al. (2010) conducted 

a numerical study of the caisson axial capacity and resulted in a good agreement with the 

laboratory tests, except the pore water pressure measured near the caisson tip, which 

may be caused by the insufficiently fine mesh. Clukey and Morrison (1993) reported 

based on the combined centrifuge test and analytical study that the uplift capacity is 

contributed by the suction at the bottom of the caisson. Coffman et al. (2004) conducted 

nine horizontal load tests in the normally consolidated clay, and found that the maximum 

horizontal capacity occurred when the loading points were at two-thirds and three-

quarters of the embedded length. Villalobos et al. (2009) conducted an experimental test 

using a three-degree-of-freedom loading rig to investigate the caisson response under 

combined loads with low vertical loads, and found that the moment and/or horizontal 

capacity can be mobilized under tensile loads. A simplified analytical solution of 

estimating horizontal capacity of suction caisson was presented by Aubeny et al. (2003) 

using an upper bound plasticity formulation. Gong et al. (2011) conducted a three 

dimensional elasto-plastic finite element analysis of caisson under combined vertical-

horizontal-torsional (V-H-T) loads, and found that the bearing capacity in V-T and H-T 

spaces increased with aspect ratio. 

In spite of numerous researches conducted in the suction caisson behavior, very 

little was focused on investigations of the compliance effect on the load-displacement 

relationship, particularly for the relatively small displacement. In addition, from the 

structural perspective, soil reaction stresses along the caisson are always the practical 
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information that structural engineers would need in the caisson design, and hope to get 

from geotechnical engineers. However, little was studied on this since geotechnical 

researches are always focusing on the ultimate capacity. 

Research Scope 

Traditionally, for pile analysis, beam-column methodology captures elastic 

behavior due to bending moments but neglects the cross-section deformation, or called 

ovalization. The traditional pile analysis can be simulated by a single spring connected 

to the pile capturing capacity as shown in Figure 1.3 (a), but cannot capture the response 

around the caisson. This study fills this gap by modeling the caisson connected to 

springs around the caisson circumference as illustrated in Figure 1.3 (b). The purpose of 

this research is to investigate the elastic behavior on the load-displacement relationship 

characterize circumferential response like deformation and soil stress, and assess the 

caisson structural response by a new methodology of a 3-D finite element analysis which 

greatly increase the time efficiency. 
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Figure 1.3 (a) Traditional beam-column single spring analysis; (b) Caisson-springs 

model 

This dissertation investigates the above problems using Finite Element Methods 

to simulate caisson and soil responses. The soil is modeled by soil springs based on the 

2-D finite element analysis, and is representative of soil profile from the Gulf of Mexico. 

The studies are conducted for caissons with aspect ratio of 5 and 3 and with rigid and 

flexible caisson, under loadings at different load attachment points. The objective is to 

study elastic behavior of caisson capacity and structural response of caisson. 

Organization 

There are six chapters in this dissertation, including the introduction in this 

chapter, and are organized as follows: literature review with brief caisson history, 
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installation of caisson, and previous work in both experimental and numerical researches 

in Chapter II; the fundamentals of mechanics in Chapter III; the methodology of soil 

spring development in Chapter IV; the results and discussions of finite element study are 

discussed in Chapter V; and finally the conclusions and recommendations in Chapter VI. 
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CHAPTER II 

LITERATURE REVIEW 

Suction caissons, also referred as to suction anchors, suction piles, suction 

buckets, and bucket foundations. A suction caisson is an upturned circular bucket 

embedded in soils, typically applied as a foundation to sustain the large tensional and 

lateral loadings due to currents and waves that is beyond the capability of gravity 

foundation. It is a new form of offshore foundation that has a number of advantages over 

the traditional driven pile foundation, mainly due to its easy installation process and 

capability of removal and reuse. It is investigated by many researchers, and applied for 

the first time in the North Sea in 1981. Its development is prompted by the oil and gas 

exploration in the great water depth in mid 1980s. Up to 2002, there are recorded 485 

suction caissons installed in over 50 different places around the world in the depth up to 

2000 m. From then on, the use of suction caissons is rising rapidly. 

Caisson History 

The concept of suction caisson was initially the anchor used to immobilize 

mobile military field equipment by applying the vacuum. It was first introduced in the 

literature by Goodman et al. (1961), and performed excellent anchorage in clays and silts. 

Brown and Nacci (1971) verified the feasibility of vacuum anchors on sand using large-

scale model test (10 inch OD). After that, under the background of proliferation of 

offshore oil industry, there were a lot of researches conducted on capacity of suction 
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anchors on different soils in 1970s’ and 1980s’ including Bemben et al. (1973), Wang et 

al. (1975, 1977, 1978), Helfrich et al. (1976), Wilson (1978), Wilson et al. (1980), 

Hogervorst (1980), and Sahota and Wilson (1982). 

Hogervorst (1980) first conducted full-scale test on suction caisson to evaluate 

both the suction emplacement and the load carrying capacities in sand and hard clay. 

Suction caissons of 3.8 m diameter and between 5 to 10 m long were tested. The study 

demonstrated that the suction method was feasible in both sand and clay, and that the 

carrying capacities could be reasonably accurately predicted. Hogervorst also concluded 

that the competitiveness of suction caisson increased rapidly over traditional driven piles 

in deep water. 

The first commercial application of suction caisson was the installation of twelve 

caisson for Shell in Gorm field, North Sea in 1981, and was reported by Senepere and 

Auvergne in 1982. The suction caissons were serviced as Catenary Anchors Leg 

Mooring (CALM) to secure buoy devices, and installed on soils consisting of 6 m sand 

layer underlain by 1 to 2 m soft clay then by stiff clay at a water depth of 40 m. This 

installation required only light craft, and demonstrated the high reliability of suction 

piles. The authors also concluded that the suction pile was a proven alternative to 

traditional driven piles. 

Large-scale offshore test of suction piles used for foundation of the Gulfaks C 

gravity platform was reported by Tjelta et al., 1986. The test structure, consisting of two 

steel cylinders with length of 23 m and diameter of 6.5 m, attached to each other by 

concrete panel, was penetrated 22 m into clay at more than 200 m water depth. The test 
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proved the feasibility of penetrating long concrete skirts into soft to still clay by dead 

weight and suction. 

Installation of Caissons 

Suction caissons can be installed in a great variety of soil condition and in a wide 

range of water depth. Installation of suction caissons is considered easier and less costly 

than the pile driving. Installation equipment typically ranges from pre-installed pump-

modules on the anchor with an umbilical cord running back to the installation vessel to 

simpler Remotely Operated Vehicles (ROV) mounted and operated equipment with a 

minimum of monitoring equipment (Tjelta, 2001). Close monitoring and predefined 

project specifications are required to achieve successful installation and satisfactory 

performance. 

Installation Techniques 

Suction caissons can be either lift-installed from crane vessels or launched over 

the stern of an Anchor Handler Tug (Tjelta, 2001). Crane vessels can lift the caisson 

vertically, and apply the installation. Crane vessels can be load with a large number of 

caisson and do no need assistant vessels; however, the daily cost is high (Sparrevik, 

1998). When an Anchor Handler Tug is used, the caisson is skidded horizontally off the 

stern of the tug, and deployed and oriented by an assistant vessel. This method limits the 

number of caisson installation per trip. Availability of installation vessels, logistics, and 
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cost rather than the anchor itself will often dictate which installation method is preferred 

(Tjelta, 2001). 

It is important to realize that project specification may have a significant impact 

on installation technique and monitoring philosophy (Tjelta, 2001). A very strict 

installation criteria will require more instrumentation and data acquisition equipment. 

The parameters monitored typically includes: position, orientation and tile, penetration 

depth, and pressure difference between inside and outside of the caisson (Sparrevik, 

1998, Colliat et al., 1998, Dendani and Colliat, 2002, El-Gharbawy et al., 1999, and 

Audibert et al., 2003). Some other parameter may also be monitored, such as water flow 

rate through the pump (Audibert et al., 2003), total pressure (Colliat et al., 1998), and 

clearance inside the caisson (Colliat et al., 1998). 

Installation tolerances have an impact on caisson holding capacity. General 

guidelines for tolerance are ± 10° on tilting and ± 10° on heading (Sparrevik, 1998, 

Dendani and Colliat, 2002). A 5°-10° limitation on both tilting and heading are 

suggested by Tjelta, 2001. A ± 5° tolerance on both tilting and heading are reported in 

Na Kika Floating Development System located in the Mississippi Canyon Area of the 

Gulf of Mexico (Newlin, 2003). 

Penetration Resistance 

The penetration resistance of the caisson is the sum of skin and tip resistance. 

The calculation of the penetration resistance should be based on the soil measurement 

obtained from in-situ testing. However, there remain some uncertainties in converting 
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resistance from one case to another due to the differences in caisson geometry, soil 

properties, penetration rate, etc. (Hogervorst, 1980). Hogervorst (1980) assumed that the 

internal and external frictions are equal, and used the following formula to estimate the 

penetration resistance: 














 

h

chpf tqkfdzkDR
0

2  .............................................................................(2.1) 

where, 

D=diameter of pile 

kf=empirical coefficient relating f to skin friction 

f=local friction as measured by the penetrometer 

h=penetrated depth 

kp=empirical coefficient relating qc to end resistance 

chq =average cone resistance of identified strata 

t=thickness of pile rim 

Andréasson et al. (1988) conducted five model tests with a seven-cell model 

foundation in soft clay in the vicinity of Gothenburg. The authors reported a bearing 

capacity factor of 7, and friction factor ranging from 0.2 to 0.4 applied to the fall cone 

shear strength of 15 kPa. The higher penetration rate of 20 to 30 mm/min fell close to 

lower friction factor while the slower penetration rate of 3 mm/min resulted in higher 

friction factor of 0.4. 

Colliat et al. (1998) reported a field model penetration test with a 1.37 m 

diameter and 5 m long caisson at the Nkossa site in the Gulf of Guinea. The soil profile 
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consisted of sandy clay underlain by normally consolidated clay. The undrained shear 

strength of soil was determined by unconsolidated and undrained UU triaxial test. The 

adhesion factor α was found to be 0.3. The authors also reported a full scale test with a 

diameter between 4 m to 5 m, and length between 12.3 m to 13 m. The measured 

penetration resistances were in perfect agreement with the predicted range of resistance. 

Whittle and Germaine (1998) conducted laboratory tests on normally 

consolidated Boston Blue Clay using the Caisson Element Test (CET) cell. The CET cell 

comprised a miniature cylindrical caisson with an outside diameter of 5.1 cm and a wall 

thickness of 0.15 cm. The model had separate caisson cap and wall that allowed the 

independent measurement of displacement and load on caisson cap and wall. The 

caisson was installed at a constant rate of δw=0.3 mm/min. The measured wall force 

increased almost linearly after the tip penetration of 0.7 cm, and was described by the 

following: 

Fw=F0+fw
’δw .......................................................................................................(2.2)

where, 

Fw=wall force 

F0=10.3±0.2 kg 

fw
’=1.45±0.2 kg/cm 

The intercept F0 was used to calculate the bearing capacity factor Nc. The bearing 

capacity factor was calculated to be 16.3 assuming an undrained shear strength ratio 

from triaxial compression of SuTC/σvc
’=0.32. The slope fw

’ was used to calculate the skin 

friction factor β. The skin friction factor was calculated to range from 0.053 to 0.071. 
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House and Randolph (2001) conducted a series of centrifuge model tests with 

smooth-sided and internally stiffened caisson in normally consolidated and over-

consolidated clay. House and Randolph proposed the following theoretical equation to 

calculate the underpressure for installing stiffened caisson: 

 

plug

caiseuetipuc

caisson
A

FFWASAlSN
p

q  


'

..........................................(2.3) 

where, 

Δpcaisson=theoretical installation pressure 

Nc=bearing capacity factor 

Su=undrained shear strength 

γ’=effective unit weight of soil 

l=embedded caisson length 

Atip=tip area of caisson 

Aplug=cross sectional area of soil plug 

Ae=external area of caisson shaft in contact with soil 

αe=external skirt friction factor 

Wcais=submerged caisson weight 

Fq=total stiffener bearing resistance 

Fτ=total stiffener internal frictional resistance 

They concluded that there was little difference for required underpressure for 

installing the stiffened and smooth caisson. They also concluded that the lower measured 

resistance of stiffened caisson compared to the theoretical estimation was due to the 
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possible incomplete soil flow around the stiffener. The caisson installation were modeled 

well by applying an average factor of 0.4 on inside and outside of the caisson. They also 

indicated that the internal friction is lower than the external friction based on analyses of 

the plug stability during pullout of a caisson with no setup time.  

Cao et al. (2002) conducted eight centrifuge tests for suction caissons in kaolin 

clay. The caisson was first penetrated under its self-weight, and then an active suction 

was applied at the top of caisson after a time period (5 to 20 seconds). The penetration 

resistance was monitored and recorded for both stages. The friction coefficient α was 

then back calculated with the following equations for self-weigh penetration stage and 

suction penetration stage: 

Self-weight stage:     sutucswsw ASAhSNLCRC /'   ......................(2.4) 

Suction stage:     sutucsws ASAhSNLCRSC /'  ..........................(2.5) 

where, 

αsw=friction coefficient at self-weight stage 

αs=friction coefficient at suction stage 

Csw=submerged weight of the caisson 

LCR=load cell reading 

Nc=bearing capacity factor 

Su=undrained shear strength of clay 

γ’=buoyant unit weight of the soil 

h=penetration depth 

At=annular base area of steel at the base of the caisson 
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As=total surface area along the caisson’s wall 

The authors found that the average friction coefficient during self-weight stage 

decreased from about 0.6 at the mudline to about 0.15 at 160 mm. This reduction 

indicated that the rate of soil resistance increase with depth was lower than the rate of 

soil shear strength increase. This may be caused by the disturbance of the surrounding 

soil over the penetration process. The friction coefficient during suction stage increased 

from about 0.15 at 160 mm to about 0.27 over the penetration depth when suction was 

applied. This was believed to be due to the active suction on the soil inside the caisson 

and/or the soil-caisson set-up that occurred during the time period between the end of 

penetration stage and the beginning of suction application.   

Newlin (2003b) reported the installation performance of Na Kika suction piles in 

the Mississippi Canyon Area of the Gulf of Mexico. The penetration resistance was 

predicted using the adhesion factor α, which was defined as the inverse of the soil 

sensitivity. The upper bound and lower bound sensitivities were taken as the average and 

95 percent non-exceedance sensitivities obtained from laboratory tests and were 2.35 

and 3.55 respectively. The corresponding α factor ranges from 0.28 to 0.43. The 

measured underpressure was reported to concur with the predicted range.  

Rauch et al. (2003) conducted 17 laboratory tests in normally consolidated 

kaolinite to study the installation resistance. The caisson was made with a anodized 

aluminum tube with a 0.81 mm thickness, a 100 mm diameter, and a 910 mm length. 

Seven installations were inserted completely using dead weight, and ten others were 

inserted using dead weight to about one-fourth of the length, followed by insertion to full 
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depth using an applied suction. The total resistance was directly measured. The end 

bearing resistance was estimated from the following formula assuming a shape factor of 

1.0 and a maximum depth factor of 1.5: 

 

Qt=(7.7Su+σv)At.................................................................................................(2.6) 

where, 

Qt=end bearing resistance 

Su=undrained shear strength 

σv=total vertical stress 

At=cross sectional area of the caisson tip 

The friction resistance on exterior and interior caisson wall was then calculated 

by subtracting the end bearing force from the total resistance. The corresponding average 

friction factor α was calculated from the following formula: 

  avgusesi

tsoil

SAA

QQ

,


 ..........................................................................................(2.7) 

where, 

Qsoil=total soil resistance 

Asi=interior surface area of caisson in contact with the soil 

Ase=exterior surface area of caisson in contact with the soil 

Su,avg=average undrained shear strength 

For dead weight installation, α averaged 0.22; with suction insertion, α averaged 

0.28. The mechanism for the increased resistance during suction installation was not 
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clear and may result from multiple effects. One possible explanation was that suction 

may cause more soil enter the interior of the caisson than would occur during dead 

weight insertion. Thus, the disturbance on the outside may be diminished and significant 

amounts of consolidation may have occurred to cause increased exterior effective 

stresses.  

Chen and Randolph (2004) conducted a series of centrifuge tests on caissons in 

normally consolidated clay. The caissons were installed by jacking and by suction, and 

the results were compared. The penetration resistance during installation was expressed 

as:  

   


 
n

1i

aiaibiextutip

'

iuicibase AτAASαAγzSNΔpA
i

..........................(2.8) 

where, 

Abase=gross cross sectional area of the caisson 

Δp=net installation pressure applied 

Nci=bearing capacity factor for ith surface 

Sui=local undrained shear strength for ith surface 

γ’=effective unit weight of soil 

zi=embedded depth of ith surface 

Atipi=area of bearing surface (caisson tip or stiffener) 

Aext=external area of caisson shaft in contact with soil 

Ai-b=internal area of the caisson shaft in contact with soil 

Ai-a=area of internal shaft above upper edge of pad-eye stiffener 
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τi-a=nominal friction of 0.5 kPa for internal shaft above pad-eye 

α=interface friction factor 

By applying a bearing capacity factor of Nc of 7.5, and the above formula, the 

friction factor α could be back calculated. The estimated friction factors were very 

similar with the similar clay shear strength installed by jacking and by suction. An 

average value of 0.39 was reported for the former and 0.36 for the later, respectively. In 

general, the friction factor varied from 0.3 to 0.45 for normally consolidated clay, with 

an average value of 0.37. The authors also found that there was no essential difference 

between penetration resistance by jacking and by suction. 

Penetration Limits 

In soft clays, long caisson is preferred to provide sufficient capacity. Increasing 

penetration depth leads to higher side friction, tip resistance, and thus higher capacity 

due to the increasing soil strength with depth. In addition, high aspect ratio caisson is 

easier to handle, more robust (Tjelta, 2001), and thus is economical to have large depth 

to diameter ratio (Andersen et al., 2005). 

During the caisson installation, the initial penetration is determined by the 

submerged self-weight of the caisson. The additional penetration will be achieved by 

applying a pressure difference at the top of the caisson. The underpressure required to 

advance the caisson can be calculated by equating the total thrust and the penetration 

resistance. The required underpressure can therefore be formulated as: 
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 
plug

caiseuetipuc

caisson
A

WASAlSN
p




 '

.........................................................(2.9) 

However, if the applied pressure exceeds a certain limit, the soil plug failure 

occurs inside the caisson, and no more penetration can be achieved. Andersen et al. 

(2005) presented the allowable underpressure with respect to large soil heave by bearing 

capacity consideration:  

in

SSD

uinside

av

tipuca ASASNu /,  .......................................................................(2.10) 

where, 

Nc=bearing capacity factor 

av

tipuS , =average undrained shear strength at skirt tip level 

Ainside=inside skirt wall area 

α=adhesion factor, assumed equal to the inverse of the sensitivity of the soil 

av

tipuS , =average direct simple shear strength over penetration depth 

Ain=plan view inside area where underpressure is applied  

The ratio of Ainside/Ain is proportional to the caisson aspect ratio. Therefore, 

besides the bearing capacity factor, adhesion factor, and soil strength, the allowable 

underpressure is also a function of aspect ratio.  

Allersma et al. (1997) carried out small centrifuge tests to simulate the behavior 

of suction piles in dense sand. The test showed that a pile with aspect ratio of 4 could be 

penetrated without any problem.  The authors also found that the relation between the 

pressure difference, the pile diameter, and caisson length, and the wall thickness 

appeared to be linear.  
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El-Gharbawy et al. (1999) successfully installed model caissons with aspect 

ratios ranging between 2 to 12, and full-scale caisson with an aspect ratio of 5.  

House et al. (1999) presented a theoretical critical aspect ratio based on the 

upheaval of the soil plug (Eq. 2.11), and indicated that the caisson may be installed with 

an aspect ratio over 10. However, the caisson installation tests conducted in normally 

and slightly overconsolidated kaolin clay suggested a much lower aspect ratio in the 

region of 5 to 7.  
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where, 

l=embedded caisson length 

d=caisson diameter 

α0=external friction factor 

Nc=bearing capacity factor 

W=submerged caisson weight 

k=shear strength factor 

Tjelta (2001) presented some guidance on aspect ratio. The aspect ratio over 1.5 

was not recommended in dense sand. In soft clay, however, a higher aspect ratio may be 

preferable since for the same weight of an anchor this would provide larger penetration 

and thus reach stronger clay strata. For high aspect ratio anchors, this number was 

limited by penetration refusal which depended on soil sensitivity and pile/soil interface 
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friction, and was believed to be around 20. However, the highest known aspect ratio was 

9 used for riser support anchors. 

Sparrevik (2002) studied four suction piles, with diameter of 6.4 m, 3.2 m, 1.6 m, 

and 0.8 m, each with 35 mm skirt-wall thickness and a length of 35 m. The tests were 

conducted in very soft clay and stiffer clay (a three time stronger soil). The author found 

that the aspect ratio is very high (38) for the pile with smallest diameter in very soft clay, 

and decrease with larger diameter piles. The aspect ratio decreased significantly in a 

stiffer clay, being 22, 13, and 8 for the smaller diameter piles.   

Andersen et al. (2005) conducted three centrifuge tests in normally consolidated 

kaolin clay. The authors showed that the suction anchors could be penetrated by 

underpressure to reach the aspect ratio of about 12.4 to 14.5. The authors also found that 

when penetration depth reached about half of the maximum penetration depth, the 

volume of soil entering inside the anchor increased more than the volume of soil 

displaced by the skirt.  

 

Experimental Studies on Suction Caissons 

There are many experimental studies conducted including both field tests and 

laboratory tests. Experimental studies are conducted in both sandy and clay material. 

The lateral, vertical, and inclined capacity, penetration resistance, caisson aspect ratio, 

etc. are well investigated in these literatures. Some of these studies are reviewed in this 

section.  
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Field Tests 

Hogervorst (1980) conducted full-scale field tests of which two with sandy soils 

and one with hard clay. Suction piles with diameter of 3.8 m and length of 5 m and 10 m 

were tested to investigate the lateral and axial load capacities. The lateral pile stiffness, β, 

was 0.19, which was considered infinitely stiff. The analytical approaches in previous 

literature were based on equilibrium condition, and shown as follow: 


H

pdzQ
0

where, 

p=lateral soil pressure on pile 

z=depth below the seabed 

H=caisson length 

According to Broms (1964), the maximum allowable lateral pile load in this case 

was: 

 Ha

DH

Q













2

2
45tan' 23 



where, 

γ’=underwater unit weight of sand 

D=diameter of pile 

φ=angle of internal friction of sand 

a=distance from pulling point to sand surface 
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The test results showed a reasonable agreement with calculated allowable lateral 

resistance.  

As the pile was provided with an internal friction reducer, only the external 

friction was contributed to the axial capacity. The analytical friction resistance was 

expressed as follow: 



H

s fdzDF
0

  

Where, 

f=unit skin friction 

It was known that the skin friction in sandy soil was 50% lower in tension than in 

compression. This difference was not found in clay. The test results showed a slight 

underestimation of the theoretical values.   

El-Gharbawy et al. (1999) performed six suction anchor installations in the Gulf 

of Mexico with water depth ranging from 4000 feet to 6000 feet. The suction anchors 

were first penetration by their own weight, and followed by suction. Self-weight 

penetration rate was observed to range from 7.6 to 12.7 mm/sec, and accounted for at 

least one-half the installation distance. The final installation suction pressure ranged 

between 34.5 and 138 kPa. The relationship between the required suction pressure and 

penetration distance was shown in Figure 2.1. 
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Figure 2.1 Required suction pressure profile for suction anchor installations (El-

Gharbawy et al., 1999) 

 

 

Cho et al. (2002) conducted a series of field tests with a total of seven piles with 

diameters ranging from 0.7 m to 2.5 m and lengths of either four or five meters. The 

suction piles were made of steel and concrete, and were penetrated in an average water 

depth of 15 meters in the Okpa harbor located along the southern coast of Korea. The 

data were collected to validate the “mobilized soil cohesion ratio”, β, which was defined 

as: 

u

m

S

c
  

where, 
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cm=mobilized soil cohesion necessary for equilibrium between the external force 

and the pile bearing capacity 

Su=fully available soil undrained shear strength 

The authors found that the values of β had an almost linear relationship with the 

normalized equivalent external pressure, and ranging from 0.1 to 0.35. The β value 

approached zero as the normalized equivalent external pressure decreased. The data 

points were grouped in two separate curves, which was distinguished by the pile type or 

pile thickness.   

Cho et al. (2002) similarly conducted three filed tests of suction piles in sand. 

The pile was made of steel, was 2.3 m long, 1.5 m in diameter, and 0.64 cm thick. 

Similar to the “mobilized soil cohesion ratio” for clay, the density of sand at the pile tip 

and inside the pile may reduce due to pile installation, and therefore result in the 

decrease of soil friction angle, and thus the pile capacity. The mobilized effective soil 

friction angle ratio, α, was defined as: 

'

'

tan

tan




 m  

where, 

φm
’=mobilized effective soil friction angle necessary for the equilibrium between 

external force and the pile bearing capacity 

φ’=fully available effective soil friction angle 

The authors introduced an coefficient, X, which was defined as: 
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where,  

ps=applied suction pressure 

Fb=buoyant weight of the pile and the surcharge 

γb=soil buoyant unit weight 

A=area of soil plug inside the pile 

Dp=penetration depth 

Dp-max=the maximum penetration depth 

By applying the coefficient X, the relationship betweenα and X was shown in 

Figure 2.2.  

 

 

Figure 2.2 Variation of mobilized effective friction angle ratio with X (Cho et al., 2002) 

 

Cho et al. (2003) conducted three field suction pile pullout tests in the Okpo 

harbor. The suction pile had a diameter of 0.5 m, 1 m, and 1.5 m, and a length of 5 m. 

The suction piles were installed by applying suction pressure first, and the pullout tests 
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were conducted after a minimum of three days of installation. The pullout tests showed 

that the piles did not move until approximate one half of the ultimate load was reached. 

The ultimate load was reached at the displacement of about 11 cm. The water pressure 

near the pile inside top decreased during the pulling out. It was noted that the water 

pressure increased immediately after the ultimate load was reached. This might be due to 

the relative displacement between pile inside wall and the soil. 

Jeanjean (2006) presented results of installation and retrieval of suction anchors 

in the Gulf of Mexico. The tests included two main suction applications: permanent and 

temporary mooring foundations. For temporary mooring application, the pile diameter 

was 9.55 feet and 12 feet, wall thickness was 1.0 and 1.5 inch. For permanent mooring 

application, the pile diameter was 18 feet, wall thickness ranged from 1.5 inch to 2.0 

inch at the padeye. The author found that the suction anchor would reach 90% 

consolidation after about 30 days. The best fit friction factor is between 0.7 and 0.75 at 

90% consolidation. 

 Colliat et al. (2007) reported installation of suction piles in 1300 m of water in 

three oil field offshore Angola. Site A and B were floating production storage and off-

loading (FPSO) piles with diameter of 8.0 m and wall thickness of 25 mm. Site A and C 

were riser tower foundations with similar pile dimension. The authors found a much 

lower penetration resistance of the suction piles in Site A, which was attributed to: a) the 

effect of pain on the pile resulting in a friction resistance up to three times lower than 

that along non-pained steel; b) the effect of ring stiffeners on the internal friction 



29 

resistance due to soil remolding; c) the underestimated sensitivity of clay due to the use 

of upper bound adhesion factor and clay strength in penetration analyses. 

Colliat and Colliard (2011) performed a series of filed test of suction piles in 

water depth ranging from 700 m to 1300 m offshore Angola and Congo. The diameters 

of the piles ranged from 3.8 m to 8.0 m. The penetration was up to 20.5 m. The 

installations were conducted by self-weight first and followed by suction. The self-

weight penetration was found to be 50% to 67% of final penetration depth. After the 

installation, the extraction tests were conducted after various set-up times, ranging from 

1 day to 3.5 years. The authors found that the increase in resistance was from 35%-45% 

in one week to 70% in one month, and very little between one month to 3.5 years. 

Laboratory Tests 

Larsen (1989) conducted a total of 15 model tests of suction anchors, 11 of which 

were in sand, 2 in clay, and 2 in kaolin. The suction anchors was 104 mm, 204 mm, and 

305 mm in diameter, and all 450 mm long, and all 1.5 mm thick of wall. The installation 

was accomplished by applying a pressure. It was found that when the pressure grew 

sufficiently high, the effective stress of soil inside the anchor became zero, and thus the 

penetration resistance reduced. The static load and oscillating load were then applied on 

the anchors, and the load-displacement curves for two tests were shown in Figure 2.3 

and 2.4. The author also found that the ultimate pulling capacity was 30% to 60% higher 

than the theoretical values. This may due to that a) the calculation method aiming for 

practical purposes was very conservative; b) the calculation method only took into 
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consideration the horizontal stressed outside the anchor, and neglected the bottom 

friction; c) the size scale effects were not precluded. The horizontal displacement at 

failure was less than 20 mm for static load test, and was 25 mm to 30 mm for oscillating 

load tests. The author also found that the vertical displacement at failure was 

proportional to the anchor diameter and that the angular motion at failure was between 3 

to 6 degrees. The ultimate pulling capacity in clay was found to be in good agreement 

with the calculated value with static load tests.  

 

 

Figure 2.3  Static-and-oscillating load-displacement curves for model anchor (d=104 

mm) (Larsen, 1989) 

 



 

 31 

 

Figure 2.4  Static-and-oscillating load-displacement curves for model anchor (d=305 

mm) (Larsen, 1989) 

 

 Rao et al. (1997) conducted pullout tests of suction anchors in clay. The model 

caisson was built on scale of 1:100 with diameter of 75 mm, thickness of 3 mm, and 

aspect ratio of 1, 1.5, and 2. The soil used was a typical marine clay from east coast of 

India. The suction anchor was pushed into the clay to the required position. Two days 

were allowed after the installation for consolidation. Short term pullout tests and 

sustained load tests were conducted. An ultimate uplift capacity, Pu, was obtained from 

the short term pullout test, and sustained load of 25%, 50%, and 75% of Pu were applied 
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in the sustained load tests. The authors found that a displacement of 16% of anchor 

diameter was needed to mobilize the ultimate pullout capacities. At this large 

deformation, skin friction, reverse end bearing, and the tensile strength of the soil at 

anchor base were all mobilized. In the sustained load tests, even at 75% Pu load, 

complete pullout failure was not observed within the test time frame. 

El-Gharbawy and Olson (1998) conducted laboratory tests on model caissons to 

study the pullout behavior. The caisson models were built with a diameter of 125 mm 

with aspect ratio of 2, a diameter of 100 mm with aspect ratios of 4 and 6, and a diameter 

of 50 mm with aspect ratio of 12. All caissons had a wall thickness-to-diameter ratio of 

0.03125. The soil used for experiments was a bleached kaolinite clay with a liquid limit 

of 57% and a plastic limit of 27%. After the clay was setup, shear strength was measured 

immediately. After consolidation, the caisson was installed under its own weight to 

create the sealing, and suction was applied after that to finish the penetration. Piping was 

not observed during suction installation. The authors found that the rate of pullout had a 

major impact on the capacity: undrained test with a rate of 25 mm/s to 50 mm/s resulted 

in a capacity approximately three time larger than the drained test. For undrained test, it 

was noted that the soil plug was retained inside the caisson during pullout.  

El-Gharbawy and Olson (1999) conducted a series laboratory tests of suction 

caisson to study the cyclic pullout behavior. The test program was introduced in El-

Gharbawy and Olson (1998). The authors found that when applied a peak cyclic load 

lower than the long-term capacity (LTC), no significant displacement was observed up 

to 10,000 cycles. When peak cyclic load exceeded LTC, the displacement rate was 
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proportional to the applied peak load. To reach the same displacement, greater number 

of cycles could be sustained at a lower oscillation frequency ratio (OFR), and smaller 

inclination.  

Kim et al. (2001) conducted 8 centrifuge tests of suction piles in sand. The piles 

used had diameter of 10 cm and 6.1 cm, length of 11.7 cm and 17.4 cm, and thickness of 

0.3 mm and 0.25 mm. The tests were performed under acceleration of 100g. The results 

indicated that the suction was very effective in penetrating the large-size suction piles. 

However, the suction pressure was limited to avoid a boiling condition.  

Cao et al. (2002) conducted centrifuge tests of suction caissons in clay. Three 

caisson models were used, which all had the same length of 245 mm and diameters 

corresponded to prototype diameter of 5.17 m, 10.34 m, and 2.87 m, respectively. The 

tests were conducted at 100g condition. A 90% consolidation of clay was achieved at 

100g, and penetration was started after 6 pre-determined time periods. The penetration 

was completed by self-weight penetration at first, and followed by the suction 

installation. The penetration resistance was shown in Figure 2.5, and the friction 

coefficient α was also plotted in Figure 2.6. The results showed that the penetration 

resistance increased linearly with depth for both self-weight and suction installation. The 

friction coefficient decreased from about 0.6 at surface to about 0.15 at the end of self-

weight penetration. This indicated that the rate of resistance increase with depth was 

lower than the rate of soil strength increase. This may due to the disturbance of the 

surrounding soil.  
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Figure 2.5 Penetration resistance with depth (Cao et al., 2002) 

 

 



 

 35 

 

Figure 2.6 Friction coefficient with depth (Cao et al., 2002) 

 

Cho et al. (2002) conducted a series of laboratory model tests to estimate the 

mobilized soil strength during installation. The tests were carried out with four model 

piles made from Plexiglas pipes. The tests were conducted in loose and medium dense 

sand, with friction angle of 30° and 36.5°. The author deduced that the density of sand 

would reduce at the tip and inside of the pile due to the upward flow of water, which 

would result in reduction of friction angle, and thus the friction resistance. The 

mobilized effective soil friction angle ratio, α, was introduced as follow: 

'
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φm
’=mobilized effective soil friction angle necessary for the equilibrium between 

external force and the pile bearing capacity 

φ’=fully available effective soil friction angle 

The relationship between the calibrated values of α and the normalized 

equivalent external pressure was shown in Figure 2.7. 

With evaluation of regression analysis, the relationship could be expressed as 

follow: 
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where, 

ps=applied suction pressure 

Fb=buoyant weight of the pile and the surcharge 

γb=soil buoyant unit weight 

A=area of soil plug inside the pile 

Dp=penetration depth 

Dp-max=the maximum penetration depth 
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Figure 2.7 Mobilized effective soil friction angle ratio α versus normalized equivalent 

external pressure (Cho et al., 2002) 

 

Coffman et al. (2004) conducted nine laboratory of suction caissons behavior 

under horizontal load below mudline. The caisson was made of aluminum tube with a 

diameter of 4 inch, length of 35.5 inch, and thickness of 0.032 inch, and was penetrated 

to a depth of 32 inch into normally consolidated kaolinite clay. The caissons were 

penetrated under self-weight to about 16 inch (halfway), and followed by suction 

installation. The suction was controlled to maintain a penetration rate of about 0.02 

inch/s. The suction penetration was stopped at 32 inch embedment was reached. The 

caissons were allowed to setup for 48 hours before testing. The caisson was horizontally 

loaded at different points along the lower half of the caisson. The displacements of 

caisson padeye at failure were 3% to 12% of the caisson diameter. The maximum 

horizontal capacity was observed at loading points between two-thirds and three-fourths 
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of the caisson embedment depth. It was also observed that there was no gap formed 

between caisson and clay at back side of the caisson. This was due to low strength of the 

clay, which was insufficient to support a vertical face.  

Andersen et al. (2005) conducted three centrifuge model test of suction anchors 

in Speswhite kaolin clay. The suction anchor model was built to represent a prototype 

caisson with a diameter of 2.175 m, a wall thickness of 37.5 mm, and a submerged 

weight of 250 kN. The tests were performed at 75g. The clay was prepared and achieved 

a 90% consolidation before testing. The Test P1 and P2 were installed by self-weight 

first, and followed by the underpressure. The Test P3 was installed by underpressure 

before self-weight penetration was completed. The authors found that the Test P1 and P2 

penetrated to 5.5 m and 3.1 m, respectively, under self-weight. After a setup of 4.5 days 

and 0.8 days prototype time, the penetration resistance was noted to increase by 42% and 

26%, respectively. When penetrated by underpressure, all the clay displaced moved into 

the anchor. The suction anchors could be penetrated by underpressure to a depth ranging 

from 12.4 to a little less than 14.5 times the anchor diameter, at which depth, large soil 

heave was observed inside the anchor.  

Luke et al. (2005) conducted nine axial pullout tests on suction caisson installed 

in normally consolidated clay. The dimension of model caisson was detailed in El-

Gharbawy and Olson (1998). The clay was prepared to consolidate under its own weight. 

Four tests were performed with top cap vented, two of which were installed with suction 

pressure. Four tests were performed with top cap sealed, one of which was installed with 

suction pressure. All these eight tests were rapid tests (undrained condition). Another 
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one slow test (drained condition) was also conducted with suction installation and loaded 

with vent open. In all cases, the peak pullout capacity was reached within about 13 mm 

(13% of the diameter). For vented tests, the test results indicated that the side resistance 

was about the same under drained and undrained conditions, and that the side resistance 

was smaller for suction installed caissons than for dead weight installed caissons. The 

pullout capacity was observed considerably larger for the sealed tests due to the large 

end bearing capacity and weight of soil attained inside the caisson during uplift.  

Bang et al. (2006) conducted centrifuge tests to investigate the vertical pullout 

capacity of embedded suction anchor (ESA). The model ESA had the diameter of 3 cm, 

length of 5 cm, thickness of 1.5 cm, and made of stainless steel. For ESA with flanges, 

three flange were attached along the circumference at 120 degree apart. The flange had 

the same length as the ESA, 1 cm wide, and 1 mm thick. The centrifuge test was 

performed at 50 g, which corresponded to a prototype suction anchor with 1.5 m 

diameter and 2.5 m long. The ESA was installed during the construction of sand bed, 

instead of installation by suction pressure. The authors believed that the ESA would 

rotate and reached equilibrium during vertical loading, therefore the solution of deeply 

embedded plate anchors could be adopted. The authors developed an analytical solution 

based on the modification of Frydman and Shahan’s solutions. The centrifuge test results 

had a good agreement with the analytical solution. Generally, the vertical pullout 

capacity increased with the loading point moving downward, and reach its maximum 

value at about 50% of anchor length. When the loading points were above the maximum 

loading point, the ESA experienced rotational as well as translational movement. When 
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the loading points were below the maximum loading point, the ESA experienced 

completely rotational movement. Purely translational movement occurred at maximum 

loading point.  

Jiao et al. (2009) conducted experimental studies on horizontal and vertical 

capacities of suction caissons in sand. The model caissons had a length of 7.2 cm, a 

diameter of 4 cm, and a thickness of 0.2 cm. The test were tested on single caisson, and 

four caisson compartment. The caissons were installed by self-weight when not sealed, 

and by self-weight followed by suction pressure when sealed. The caisson were loaded 

under compression, uplift, and horizontally for both sealed and not sealed cases. For 

single caisson, it was noted that the capacities were almost the same for sealed and not 

sealed cases. Under drained condition, the capacity of four-caisson foundation was 

nearly 4 times the single caisson. Under undrained condition, the capacity increased with 

the increasing loading rate. For four-caisson foundation, the authors found that the 

capacity of loading along the direction of sidewall was almost the same as that of 

loading along the direction of diagonal. Also, the same capacities for sealed and not 

sealed tests were observed as in the single caisson tests.   

Villalobos et al. (2010) conducted laboratory tests on suction caissons in clay 

subjected to vertical loadings. The caisson used was of diameter 150 mm, length 150 

mm, and wall thickness 1 mm. The caissons were installed by vertical load and suction. 

The soil used was overconsolidated Speswhite kaolin clay. The caisson were subjected 

to compressive load and cyclic load. The results of installation showed that there was 

little different between pushing installation and suction installation. The authors found 
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that the ultimate tensile and compressive capacity was equivalent when converted to 

bearing capacity factor. Also, under the cyclic loading around a value equal to the 

maximum installation load, a permanent settlement was induced, while under the cyclic 

loading around zero, a permanent uplift was observed. 

Gao et al. (2013) conducted a series of tests of suction caisson in sand. The 

caisson had a diameter of 101 mm, thickness of 2.0 mm, and lengths of 202 mm, 404 

mm, and 606 mm. The sand used was a poorly graded sand with a dry density of 1.44 

g/cm3, a relative density of 0.49, and an effective internal friction angle of 36.8 degree. 

The tests were carried out at five loading points with Z/L=0, ½, ⅔, ¾, and 1, and five 

loading inclination (to the horizontal) of 0°, 15°, 30°, 60°, and 90°. The authors found 

that the capacity decreased with loading inclination increased, and the largest capacities 

were at 0°. When the loading inclination was relatively small, the maximum capacity 

loading point was at approximately between ⅔L to ¾L, and the minimum capacities was 

at the top of caisson. However, when the loading inclination became large, the effect of 

loading position was not significant. The aspect ratio had a direct influence on the 

capacity. The larger aspect ratio resulted in large capacities due to the increased shear 

strength with increasing depth. At the inclination angle of 60°, the maximum capacity 

occurred at loading at bottom of the caisson, and the translation occurred near the middle 

of the caisson. 

Kim et al. (2013) conducted penetration tests on bucket foundation to access the 

penetration mechanism in sand. The model buckets had diameters of 50 mm, 100 mm, 

and 150 mm, and was made of acryl. The sand used was prepared to a relative density of 
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40%, and a friction angle of 30 degrees. The buckets were installed by suction pressure 

and human-power. The author found that the penetration load with human-power 

installation was 3.3 to 53.5 times larger than with suction method to reach the same 

penetration depth. Therefore, the suction installation method is more efficient than 

pushed installation method.  

Kim et al. (2013) conducted a series of centrifuge tests of laterally loaded suction 

pile in sand. The model piles were 20-30 mm in diameter, 30-90 mm long, and 1.5 mm 

thick. The sand tested has a specific gravity of 2.62, friction angle of 37.8°, and was 

constructed to a relative density of 76% for testing. The tests were performed under 

acceleration of 50g. The results showed that the ultimate pullout capacity increased with 

increasing the diameter and length when the aspect ratio was high enough. For the lower 

aspect ratio, however, the normalized maximum resistance decreased despite of 

increasing diameter, but increased with increased pile length. Thus, it was concluded that 

increasing the length was more efficient in increasing the pullout resistance than 

increasing the diameter.  

Li and Wang (2013) conducted model test of suction caisson in clay under 1g 

condition. The model caisson had a diameter of 76 mm, thickness of 2 mm, and aspect 

ratios of 4 and 6. The friction factor was calculated to be 0.077 and 0.27 after steel mesh 

was attached. The location of optimal attachment point was analyzed by finite element 

method, and was found to be in 0.69 times height of caisson. The authors found that the 

bearing capacity of suction caisson was related to friction factor and failure mode which 

was further changed with aspect ratio and loading direction. When loading angle was 
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35°, a lateral failure mode was expected for aspect ratio of 4, and a vertical failure mode 

was expected for aspect ratio of 6. However, for caisson with aspect ratio of 6, the lateral 

failure mode was observed when the loading angle reduced to 20°. The bearing capacity 

was also calculated based on Andersen (2005), and the maximum error was 7.63%, 

which verified the accuracy of the limiting equilibrium method.  

 

Analytical Studies on Suction Caissons 

Deng and Carter (2000) developed a simplified method for estimation of inclined 

uplift capacity of the suction caisson in dense sand under fully drained condition. The 

method was developed based on the numerical analysis using a finite element software 

package AFENA (A Finite Element Numerical Algorithm) developed at the University 

of Sydney. The semi-analytical approach was applied in the numerical analysis, make 

use of 20 node solid element. The caisson was assumed to be rigid, and installed without 

any soil disturbance. The caisson had a Young’s modulus of 9×106 MPa and Poisson’s 

ratio of 0.25. The soil had a Young’s modulus of 50 MPa and Poisson’s ratio of 0.25. 

Varies aspect ratio of caisson, lug depth, and load inclination angle were applied. Also, 

the soil dilatancy angle and initial stress state were included into consideration. The 

basic case expressions were firstly determined for the ultimate vertical and lateral loads 

for the associated plastic flow case by curve fitting the numerical results. Then, the 

effect of load inclination, soil dilatancy, and initial stress state were developed with the 

same technique. The authors found that the combined effect of dilatancy and stress state 
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had an approximately multiplicative relationship. Therefore, the the estimate of the uplift 

capacity for the most general case may be expressed as follow: 
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The theoretical estimations and numerical results for different aspect ratio, lug 

depths, friction angles, dilation angles, and initial stress states were shown in Figure 2.8. 

The developed method showed a quite well agreement with the numerical results. 
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Figure 2.8 Theoretical estimation and numerical results for inclined load applied suction 

caisson in dense sand (Deng and Carter, 2000) 

 

Cho and Bang (2002) developed an analytical solution to estimate the ultimate 

inclined loading capacity of suction piles based on the Bransby and Randolph’s (1999) 

approach. The authors found that the ultimate inclined capacity directly correlated to the 

difference between the ultimate horizontal and vertical capacities. When the difference is 

large, the ultimate inclined capacity changed rapidly with load inclination angle to 

horizontal. The ultimate inclined capacity was controlled by the ultimate vertical 

capacity for clay, and by the ultimate horizontal capacity for sand, and was always 

slightly larger than either one. However, this difference is very small and almost 

negligible. Also, the aspect ratio of pile for clay and friction angle for sand had 

influenced greatly the ultimate inclined capacity.  
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Bang and Cho (2002) also developed an analytical solution to estimate the 

horizontal resistance of suction piles. Based on the force equilibrium, the horizontal 

force along the direction of loading was expressed as follow, and refer to the diagram in 

Figure 2.9: 
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where, 

η=pile rotation factor (defined as the distance to the pile rotation point divided by 

the pile length 

H=pile length 

σr=normal stress along the pile 

τrθ=shear stress along the circumference 
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Figure 2.9 Stresses along pile circumference (Bang and Cho, 2002) 

The analytical investigations was conducted for suction pile in clay and sand. In 

clay, the maximum ultimate horizontal loading capacity occurred at 0.55L, which 

associated with pure translation. In sand, however, the loading depth producing pure 

translation was approximately 0.675L, and the maximum ultimate horizontal loading 

capacity was approximately 0.8L, which meant higher capacity could be obtained by 

applying loading point even below the pure translation point. The analysis results are 

shown in Figure 2.10 and 2.11. By applying the centrifuge test results reported by 
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Allersma et al. (2000), the author found that the analytical prediction compared very 

well with the experimental data.  

 

 

Figure 2.10 Ultimate horizontal loading capacity of pile in clay under various loading 

depths (Bang and Cho, 2002) 
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Figure 2.11 Ultimate horizontal loading capacity of pile in sand under various loading 

depths (Bang and Cho, 2002) 

Deng and Carter (2002) further presented the theoretical investigation for 

vertically loaded suction caisson under undrained, partially drained, and fully drained 

conditions. Under undrained condition, a pullout capacity factor, Np, was introduced, 

and was determined by finite element predictions as
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ζcs≈1.2 for a circular foundation 

ζce=1+0.4(L/d), for L/d<1; ζce=1+0.4tan-1(L/d), for L/d≥1 

Su=undrained shear strength at caisson tip 

Under fully drained condition, a drained uplift factor, η, was introduced, and 

determined by finite element predictions as 
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where, 

φ’=soil friction angle 

OCR=over-consolidation ratio 

σ’
v(bottom)=effective vertical stress at caisson bottom 

Under partially drained condition, a bottom resistance factor, Nb, and a friction 

resistance factor were introduced, and determined by finite element predictions as 
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capacity was expressed with this factor as follow: 

Pu=Nfpu(drained)+NbSu(tip) 

Three different failure modes were suggested corresponding to these three 

loading conditions. Under undrained loading condition, the caisson was uplifted to fail 

by developing a reverse bearing capacity at the caisson bottom, and external wall friction 

was also contributed to pullout capacity. Under partially drained condition, a passive 
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suction in the caisson was generated, and hold the soil plug inside the caisson during 

pulling out. Under fully drained condition, the caisson was uplifted to fail by developing 

the external and internal wall friction. By comparing the theoretical solutions with some 

available experimental data, the authors concluded that the solution gave a reasonably 

well prediction.  

Aubeny et al. (2003) proposed a simplified method for estimating the inclined 

load capacity of suction caissons. The proposed formulation expressed the ultimate unit 

axial and lateral resistance per unit projected area, Pa and Pl, as follow: 

Pa=Nas(ψ)Su  

Pl=Nps(ψ,z)Su  

where, 

Nas=axial resistance factor 

Nps=lateral resistance factor 

ψ=load inclination angle 

Su=undrained shear strength of soil 

The resistance factors were easily defined for the limiting cases where ψ=0°and 

90°. For 0°<ψ<90°, a series three dimensional FEM analysis was conducted using 8-

node brick elements with a Prandtl-Reuss material model. The FEM predicted an Nps of 

13.2 for all depths versus the Randolph-Houlsby value of 11.94, and a Nas
 of 3.48 for all 

depths versus a theoretical value of 3.14. This indicated that the FEM predictions over 

estimated the value by about 10%. The FEM predictions of Nas-Nps interaction was 

shown in Figure 2.12 below.    
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Figure 2.12 Axial and lateral resistance factors (Aubeny et al., 2003) 

 

By equating the external work from load to the energy dissipation from side 

resistance and bottom resistance, the horizontal capacity was expressed as follow: 
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where, 

 H=horizontally applied load 

 Fls=lateral force per unit depth 

 Fas=axial force per unit depth 

 z=depth below mud line 
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Li=load attachment depth 

L0=center of rotation of caisson 

Mb=moment about the center of rotation 

Vb=mobilized vertical resistance at bottom of caisson 

ξ=optimization parameter controlling vertical velocity of caisson 

ψ=load inclination angle from horizontal 

The results by the developed method were compared to the FEM simulations. In 

general, the horizontal capacity was not significantly affected by the vertical load 

component when load inclination angle was less than 15°, and vise verse when load 

inclination angle was between 15° to 30°. The capacity is very sensitive to the load 

attachment depth when load inclination angle was less than 30°, and became less 

sensitive when the angle was larger than 45°. The optimal load attachment depth was at 

mid-depth for uniform soil strength profile, and was at three-quarter point for linearly 

increasing strength with depth soil profile. The author also found that the 10% reduction 

for the results from FEM analysis was appropriate for the pure translation, but this 

reduction may be excessive for the rotation movement. 

Aubeny et al. (2003) refined the model with skin resistance coefficient α less 

than unity. The axial side resistance per unit depth Fas is reduced by coefficient α: 

Fas=αNasSuD 

The lateral side resistance per unit depth Fls is computed as: 

Fls=sRfNpsDSu
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Where scaling factor s was obtained by linear interpolation for an intermediate skin 

resistance factor, 0<α<1, as s=0.2111α+0.7889. The reduction factor Rf was also 

modified to accommodate the skin resistance factor. The modified terms in Rf were 

expressed as follow: 

            (N1-N2)=4+1.62α 

            N2=sNps-4-1.62α 

For the case that a gap was formed on the back side of the caisson, N1 and N2 

were divided by 2. The centrifuge test data by Clukey et al. (2003) showed the effect of 

reduced α on inclined capacity. The data showed that under purely vertical loading, a 

30% reduction in α resulted in 20% reduction in uplift capacity. For purely lateral 

loading, a 30% reduction only resulted in 10% reduction in horizontal capacity.   

 

Numerical Studies on Suction Caissons 

Randolph and House (2002) conducted suction caisson capacity in clay using 

software AGSPANC. The soil strength based on the modified Von Mises yield criterion 

allowed the anisotropy soil property. The computed results were compared to the 

published three dimensional finite element solutions for caisson aspect ratio varying 

from 0.5 to 4. Rigorous upper bound capacities from AGSPANC were 1% to 10% higher 

than the FE results. However, when the flow region was introduced below conical wedge, 

the results lied 5% to 7% lower than the FE results. By assuming that the strength for 

shearing within the horizontal plan was equal to the triaxial extension strength, the 

author found that the anisotropy could result in a reduction of 30% as the capacity 
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defined in terms of triaxial extension strength to a reduction of 50% of the triaxial 

compression strength. For the capacity under combined loading, AGSPANC showed a 

reduction up to 16% due to interaction, and lied up to 20% outside the failure envelope 

from FE analysis.  

Cao et al. (2003) conducted a finite element study using ABAQUS to study the 

passive suction simulation. The study used a modified Cam-Clay soil model, CAX8RP 

element for soil, and CAX8R element for caisson. Contact surface element was used to 

model the soil-caisson interaction. The passive suction was simulated by a very soft 

poro-elastic material. The centrifuge test data were used to validate the new method. The 

comparison showed a good agreement of pullout force from FEA and centrifuge tests. 

The passive suction generated from FEA was slightly different from that recorded in 

centrifuge tests. However, the maximum suction value were very close. Further 

researches were needed for improvement.  

Supachawarote et al. (2004) performed a finite element study of pullout capacity 

of suction caissons in normally consolidated clay under inclined loading. The model 

used caisson diameter of 5 m, wall thickness of 50 mm, and aspect ratios of 1.5, 3, and 5. 

The analysis was carried out using ABAQUS. The soil was model with 8-node hybrid 

brick elements, applying an elastic perfectly plastic Von Mises failure criterion. A band 

of soil adjacent to caisson wall was remolded during installation, therefore suffered a 

strength reduction. This effect was simulated by a 50 mm thick soil band on the external 

caisson wall with a reduced shear strength of 65% of the remaining soil at that depth. 

This strength reduction was defined in terms of the friction coefficient α. The function of 
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caisson capacity under inclined loading was obtained by curve fitting the failure 

envelope from the finite element analysis, and shown as follow: 
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where, 

H=horizontal loading 

V=vertical loading 

Hult=ultimate horizontal loading 

Vult=ultimate vertical loading 

a=0.5+L/D 

b=4.5-L/3D 

The results of a loading angle of 30° from horizontal showed that the optimal 

loading point was at approximately 0.7L irrespective of the caisson aspect ratio. For the 

shorter caisson, the capacity reduced as the loading angle became more horizontal. This 

was due to the shorter caisson exhibited a larger vertical pullout capacity than the lateral 

capacity. Conversely, for intermediate and long caissons, which mobilize a large lateral 

capacity than pullout capacity, the capacity reduced as the loading angle became more 

vertical.  

Taiebat and Carter (2005) conducted a finite element study on suction caisson 

under axial, lateral, and torsion loads, and under combination of their load with each 

other. The aspect ratio of the caisson was 2. The simulation assumed a homogeneous 

elastoplastic soil deforms under undrained condition. A thin layer of elements was used 
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around and under the caisson to simulate the effect of shear close to the foundation. The 

pure axial uplift capacity from finite element analysis was slightly smaller than the 

theoretical solution by Deng and Carter (1999). Also, the inclination of axial load had a 

great effect in the capacity reduction at ground level and the tip of caisson. However, 

little of this effect occurred at optimal depth. The pure torsion capacity from FE analysis 

was in a good agreement with the theoretical value. The pure lateral capacity from FE 

analysis was smaller than those suggested by Deng and Carter (1999). And the 

maximum lateral capacity was found to be at about 0.6L. The failure locus for 

combination of these three loadings with each other were shown in Figure 2.13 to 2.15. 

The caissons were loaded to failure which was defined as 50% of the diameter for 

vertical displacement, 20% of the diameter for lateral displacement, and 0.4 radian of 

rotation. The authors found that torsion load had significant effect on axial capacity. 

When axial loads was lower than 0.6Vmax, torsional displacement control the failure 

mechanism. Interaction of torsional-lateral load showed that the maximum reduction of 

capacity occurred at load attachment depth at 0.6L, and the lateral capacity was a 

function of angle of misalignment and loading position. 
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Figure 2.13 Failure locus in axial-lateral loading plane (Taiebat and Carter, 2005) 

 

 

Figure 2.14 Failure locus in axial-torsional loading plane (Taiebat and Carter, 2005) 
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Figure 2.15 Failure locus in lateral-torsional loading plane (Taiebat and Carter, 2005) 

 

Zhou and Randolph (2006) investigated the caisson installation using an 

axisymmetric large-deformation finite element approach. This numerical technique was 

called RITSS proposed by Hu and Randolph (1998). The approach was further 

implemented with the AFENA finite element analysis. The caisson had an internal 

caisson diameter of 4 m and wall thickness of 40 mm. The soil was modeled with six-

node triangular axisymmetric elements with three Gauss points, and was considered 

elastic-perfectly plastic with Tresca failure criterion. The caisson-soil surface was 

simulated with elasto-plastic nodal joints. The caisson was simulated to be installed by 

self-weigh first, followed by either suction or jacking installation. The pattern of 

incremental displacements indicated that a higher proportion of soil is displaced by 

caisson tip flow inward the caisson for suction penetration than by jacking. This also 
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caused the lower total stresses outside the caisson for suction installation due to the 

smaller amount of soil moved outside the caisson during penetration. In general, higher 

amount of soil move inward the caisson and lower external radial stresses generated for 

suction installation compared to jacking installation, and suggested a long-term lower 

shaft friction for suction caissons.  

El-Gharbawy (2007) conducted a finite element study to verify the limit 

equilibrium approach, in which the caisson were tested under drained and undrained 

conditions. The experimental results showed that the pullout under the drained condition 

was characterized by the caisson “slip” clean out of the soil. The pullout under undrained 

condition resulted in a general shear and reverse-bearing failure, and the holding 

capacities ranged from 1.9 to 3.5 times the drained capacity. The finite element analysis 

showed a good agreement with the limit equilibrium solution for a mid-range α value of 

0.5. It was also noted that the finite element results were less sensitive to α than the limit 

equilibrium approach.  

Fakharian and Iraji (2010) conducted a finite difference analysis using FLAC-2D 

to investigate the installation behavior of suction caisson in clay. The soil was modeled 

with elasto-perfectly plastic property with the Mohr-Coulomb failure criterion. The shear 

strength at soil-pile interface was modified by a reduction factor β’ for the effective 

stress analysis as follow: 

τmax=β’(c’+Kσv’tanφ’) 

The caisson was modeled by a linearly elastic property, with an outside diameter 

of 5.5 m, wall thickness of 20 mm, length of 12 m, and buoyant weight of 523 kN. The 
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reduction factor β’ of 0.3 was used from back calculation of the Laminaria Case. One 

important finding was that a cylinder of about ⅔ of caisson diameter soil zone was 

generated during the suction installation. Inside this cylinder the effective stresses were 

lower than the hydrostatic pressure. Outside this cylinder and closer to the caisson wall 

were experiencing lower pore water pressure and thus higher effective stresses. The 

authors also found that the required suction decreased with increasing diameter at a 

diminishing rate. And the reverse end bearing factor increased with increasing 

embedment depth at a diminishing rate. 

Vásquez et al. (2010) presented a finite element study of suction caisson 

installation by self-weight followed by suction. The authors introduced a simulation of 

clay based on Biot theory of porous media. The clay was described as a two-phase 

medium: a water-filled porous solid, which accounted for coupling between the 

deformation of the solid phase and the flow of the pore fluid. The interface between the 

soil and caisson wall was simulated based on a slide-line formulation allowing large 

relative displacement between the soil and caisson wall. The “stick” condition, or 

adhesion, was applied when the frictional force is lower than Coulomb force. The “slip” 

condition was the effective normal force multiplying the interface friction coefficient. A 

special remeshing scheme was used to track the caisson displacement path during 

installation. The results of simulation showed that suction comprised of about 40% 

capacity of total capacity for both cases. The external friction is the next most 

contribution of pullout capacity. The result had a generally good agreement with 
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experimental results. The differences were noted on soil resistance and pore-water 

pressure on the interior and exterior caisson wall.  

Ahn et al. (2014) conducted a finite element analysis on holding capacity of 

suction caisson using ABAQUS. The soil was modeled by a 3-D continuum element 

with the Von Mises criterion. The caisson was modeled as a linear elastic material, and 

was considered rigid compared to the soil. The analysis found that the shape of 

normalized failure envelope appeared independent to soil profile but was affected by 

aspect ratio. This effect was found to diminish as aspect ratio became larger than 6. The 

normalized depth of optimal loading point was found independent to caisson dimensions 

but was affected by soil profile. When in uniform soil, the optimal depth was 0.55 of 

caisson length. While in linearly varying soil profile, the optimal depth was 0.65 of 

caisson length. The bearing capacity factor for reversed end bearing was found to be 9.4 

for uniform soil profile and smaller for linearly increasing soil profile.  
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CHAPTER III 

FUNDAMENTALS OF MECHANICS 

 

In this Chapter, the basic geomechanics and shell mechanics will be 

demonstrated. The related application in Abaqus will also be debriefed. These 

fundamentals of mechanics including theory and terminology will be used in the 

following chapters and will not be further explained.  

 

Geomechanics 

Deformation 

The displacement of a body has two components: a rigid-body displacement and 

a deformation. A rigid-body displacement consists of a simultaneous translation and 

rotation of the body without changing its shape or size. A deformation implies the 

change of shape and/or size of the body from an initial or undeformed configuration 

K0(B) to a current or deformed configuration Kt(B) (Figure 3.1).  

A change in the configuration of a continuum body can be described by 

a displacement field. A displacement field is a vector field of all displacement vectors 

for all particles in the body, which relates the deformed configuration with the 

undeformed configuration. Relative displacement between particles occurs if and only if 

deformation has occurred. If displacement occurs without deformation, then it is deemed 

a rigid-body displacement.  

 

http://en.wikipedia.org/wiki/Displacement_field_(mechanics)
http://en.wikipedia.org/wiki/Vector_field
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Figure 3.1 Motion of a continuum body (Wikipedia) 

 

In any structural problem the analyst describes the initial configuration of the 

structure and is interested in its deformation throughout the history of loading. The 

material particle initially located at some position X in space will move to a new 

position x: since we assume material cannot appear or disappear, there will be a one-to-

one correspondence between x and X, so we can always write the history of the location 

of a particle as:  

x=x(X,t).............................................................................................................(3.1) 
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And this relationship can be inverted - we know X when we know x and t. Now consider 

two neighboring particles, located at X and at X+dX in the initial configuration. In the 

current configuration we must have the following using the “mapping” Equation 3.1: 

dX
X

x
dx




 .......................................................................................................(3.2) 

The matrix 
X

x
F




  is called deformation gradient matrix, and equation 3.2 can be 

written as: 

dx=F·dX.............................................................................................................(3.3) 

 

Material coordinates (Lagrangian description)  

The displacement of particles indexed by variable i may be expressed as follows. 

The vector joining the positions of a particle in the undeformed configuration Pi and 

deformed configuration pi is called the displacement vector. Using X in place 

of Pi and x in place of pi, both of which are vectors from the origin of the coordinate 

system to each respective point, we have the Lagrangian description of the displacement 

vector: 

u(X,t)=uiei...........................................................................................................(3.4) 

where ei is the unit vector that defines the basis of the material (body-frame) coordinate 

system. 

Expressed in terms of the material coordinates, the displacement field is: 

u(X,t)=b(X,t)+x(X,t)-X or ui=αiJbJ+xi-αiJXJ.......................................................(3.5) 

https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/stm/ch01s04ath04.html#stm-int-deformation-eq1
http://en.wikipedia.org/wiki/Displacement_(vector)
http://en.wikipedia.org/wiki/Continuum_mechanics#Lagrangian_description
http://en.wikipedia.org/wiki/Unit_vector
http://en.wikipedia.org/wiki/Basis_(linear_algebra)
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The partial derivative of the displacement vector with respect to the material 

coordinates yields the material displacement gradient tensor ux . Thus we have, 

u(X,t)=x(X,t)-X or ui=xi-δiJXJ=xi-Xi..................................................................(3.6) 

IFIxu xx   or iKiKIK

K

i

K

i δFδ
X

x

X

u










......................................(3.7) 

Spatial coordinates (Eulerian description) 

In the Eulerian description, the vector joining the positions of a particle P in the 

undeformed configuration and deformed configuration is called the displacement vector: 

U(x,t)=UiEi.........................................................................................................(3.8) 

Where Ei is the unit vector that defines the basis of the spatial (lab-frame) coordinate 

system. 

Expressed in terms of spatial coordinates, the displacement field is: 

U(x,t)=b(x,t)+x-X(x,t) or UJ=bJ+αJi-XJ..............................................................(3.9) 

The partial derivative of the displacement vector with respect to the spatial 

coordinates yields the spatial displacement gradient tensor Ux . Thus we have, 

U(x,t)=x-X(x,t) or UJ=δJixi-XJ=xJ-

XJ................................................................(3.10) 

1

xx FIXIU   or 1

JkJk

k

J
Jk

k

J Fδ
x

X
δ

x

U 








..................................(3.11) 

http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Continuum_mechanics#Eulerian_description
http://en.wikipedia.org/wiki/Displacement_(vector)
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Strain Measures 

The strain usually refers to the local deformation in a material, i.e. deformation in 

the neighborhood of a particle, therefore is a description of deformation in terms of 

relative displacement of particles in the body that excludes rigid-body motions. A 

deformation field results from a stress field induced by a applied forces or is due to 

changes in temperature field inside the body. There are also other effects that may result 

in strain, such as changes in water content in wood and soil leads to swelling or 

shrinking. The three primary concepts of strain are: longitudinal strain ε, shear strain γ, 

and volumetric strain εv.  

The longitudinal strain represents the change of length per unit length of 

undeformed line element in the direction e in particle r0 as shown in Figure 3.2. The 

longitudinal strain is also called the normal strain, and is defined by: 

1lim
00

0

0

0

00








 ds

ds

ds

dsds

s

ss

s
 ....................................................................(3.12) 

The shear strain represents the change in the right angle between two material 

line elements. 

The volumetric strain represents the change in volume per unit undeformed 

volume about particle r0. The volumetric strain is defined by: 

0

0

00

lim
V

VV

V 





 ..........................................................................................(3.13) 
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Figure 3.2 General deformation of a body (Irgens, 2008) 

 

Finite Strain vs Small Strain 

Finite strain, also called large strain, deals with deformation in which both 

rotations and strains are arbitrarily large. In this case, the undeformed and deformed 

configurations of the continuum are significantly different and a clear distinction has to 

be made between them. This is commonly the case with plastically-deforming materials.  

Small stain, also called infinitesimal strain, deals with deformation of a solid 

body in which the displacements of the material particles are assumed to be much 

smaller than any relevant dimension of the body so that its geometry and the constitutive 

properties of the material (such as density and stiffness) at each point of space can be 

assumed to be unchanged by the deformation. This is commonly the case with stiff 

elastic material.  
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Cauchy Stress 

The state of stress at a point in the body is then defined by all the stress 

vectors T(n) associated with all planes (infinite in number) that pass through that point. 

Cauchy’s stress theorem states that there exists a second-order tensor field σ(x, t), called 

the Cauchy stress tensor, independent of n, such that T is a linear function of n: 

T(n)=n·σ or Tj
(n)=σijni........................................................................................(3.14) 

This equation implies that the stress vector T(n) at any point P in a continuum 

associated with a plane with normal unit vector n can be expressed as a function of the 

stress vectors on the planes perpendicular to the coordinate axes, i.e. in terms of the 

components σij of the stress tensor σ.  

 

Internal Virtual Work Rate 

For these shell elements, the internal virtual work rate is assumed to be: 

                 
    

A h
r n n
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I

fI

c m

n

KKKdzdAW  


33  

where, 

 r

IK ,  n

IIK , and  r

IIIK  are the transverse shear stiffness and the penalties and r 

indicates the integration points at which transverse shears are calculated, nc indicates 

corner nodes at which six degrees of freedom are used, and nm indicates midside nodes 

at which six degrees of freedom are used. Here, 
f

  and   are the strain and stress in 

the (dSα, dSβ) material directions in a surface offset by a distance z from the reference 

surface.  

http://en.wikipedia.org/wiki/Tensor_field
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Shell Mechanics 

A shell structure is characterized by that one dimension is much smaller than the 

other two. The basic idea behind the shell analysis is that the stresses does not vary much 

across the thin dimension and hence the stress distribution across the thickness can be 

approximated by a Taylor series. In our analysis, shell is considered to be very thin. In 

this case, only the first term of the series will be important - this is the “membrane 

theory”. 

In our analysis, small strain shell elements are considered as a reasonable 

application since the design limit is below the material yielding point. The essential idea 

of these elements is that the position of a point in the shell reference surface, x, and the 

components of a vector n, which is approximately normal to the reference surface, are 

interpolated independently. 

Shell Modeling Options 

In Abaqus, the main category of shell element that can be used are conventional 

shell and continuum shell. 

Conventional shell elements discretize a body by defining the geometry at a 

reference surface. In this case, the thickness is defined through the section property 

definition. These shell elements have displacement and rotational degrees of freedom. 

In contrast, continuum shell elements discretize an entire three-dimensional body. 

The thickness is determined from the element nodal geometry. Continuum shell 

elements have only displacement degrees of freedom. From a modeling point of view, 
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continuum shell elements look like three-dimensional continuum solids, but their 

kinematic and constitutive behavior is similar to conventional shell elements. Figure 3.3 

illustrates the difference between a conventional shell and a continuum shell element.  

 

 

Figure 3.3 Conventional versus continuum shell element 

 

Continuum shell elements are general-purpose shells that allow finite membrane 

deformation and large rotations and thus are suitable for nonlinear geometric analysis. 

Conventional shell elements can be used in static or dynamic procedures. Some elements 

include the effect of transverse shear deformation and thickness change, while others do 

not. Some elements allow large rotations and finite membrane deformation, while others 

allow large rotations but small strains.  
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Membrane Stresses in Cylinder Shell 

There are two principal stresses in a cylinder shell element. One is parallel to the 

central axial, σ1, and the other one is tangential to the shell curvature, σ2, which is also 

called circumferential stress or hoop stress (Figure 3.4).  

 

 

Figure 3.4 (a) A cylinder shell; (b) A rectangular shell element 

 

Notation 

A typical shell surface is shown in Figure 3.5.  
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Figure 3.5 Shell reference surface 

 

Let (θ1, θ2) be a set of Gaussian surface coordinates on the shell reference surface. 

Since these coordinates are only needed locally at an integration point, we use the 

element’s isoparametric coordinates as these coordinates. Let x(θ1, θ2) be the current 

position of a point on the interpolated reference surface, and X(θ1, θ2) be the initial of the 

same point, then the unit vector is: 

21

21
























XX

XX

N .........................................................................................(3.15) 

 

This vector is the unit normal to the interpolated reference surface in the initial 

configuration. The vector gives a “sideness” to the surface - one side of the shell is the 
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“top” surface (in the positive direction along N from the shell’s reference surface) and 

the other is the bottom surface. 

Surface Measures 

The metric of the deformed surface is defined as follow: 


S

x

S

x
g









 ...............................................................................................(3.16) 

and an approximation to the curvature tensor (the second fundamental form) is: 







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
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2

1
..................................................................(3.17) 

The corresponding measures associated with original reference surface are the 

metric: 


S

X

S

X
G









 ..............................................................................................(3.18) 

and the approximation to the curvature is: 































S

X

S

N

S

X

S

N
B

2

1
.................................................................(3.19) 

The vectors 
S

N




 are defined from the derivatives of the interpolation functions 

and the “normals” at the nodes. These nodal normals are calculated as average values of 

the normals to the surfaces of all elements abutting the node. 

Positive normal direction and is referred to as the positive (SPOS) face, and 

negative direction along the normal and is referred to as the negative (SNEG) are used to 
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designate top and bottom surfaces when specifying offsets of the reference surface from 

the shell’s midsurface.  The positive normal direction defines the convention for pressure 

load application and output of quantities that vary through the thickness of the shell. The 

positive normals for a three-dimensional conventional shell element is shown in Figure 

3.6.   

 

 

Figure 3.6 Positive normals for three-dimensional conventional shell elements 

 

Strains 

Therefore, the reference surface membrane strains is: 

  Gg 
2

1
 

The curvature change is: 

 




  BBbB 

2

1
 

The transverse shears is: 

 tn 3  
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where, 







S

x

S

x

S

x

t














  

tα is a unit vector, tangent to the dSα line in the current surface. 

 

Spring Mechanics 

 

  In Abaqus, SPRING1 is between a node and ground, acting in a fixed direction, 

and can be linear or non-linear behavior.  Spring element SPRING1 with non-linear 

behavior is used in our finite element analysis and is defined by giving pairs of force-

displacement values in ascending order of relative displacement and should be over a 

sufficiently wide range of displacement values. Abaqus assumes that the force remains 

constant outside the range given. A conceptual non-linear spring force-displacement 

relationship is shown in Figure 3.7.   
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Figure 3.7 Nonlinear spring force-displacement relationship 

 

For SPRING 1 type spring, the relative displacement across a spring element is 

the ith component of displacement of the spring's node: 

 

where i is defined as described as in Figure 3.7 and can be in a local direction 
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CHAPTER IV 

DEVELOPMENT OF P-Y SPRINGS 

General Scope 

The ultimate objective of this study is to generate a 3-D model with caisson 

supported by springs which simulate the soil around the caisson in ABAQUS. In order to 

generate the spring properties for a 3-D finite element study, the following two 

procedures will be conducted: 

1. A 2-D continuum finite element study is conducted with a steel circular shell

surrounded by soil with the undrained shear strength equal to unity. The shell is then 

loaded horizontally by displacement control. For each soil element contacting the 

caisson (along caisson circumference), the relationship between the net soil reaction 

stresses and displacement is then obtained. The stresses are normalized by undrained 

shear strength, Su. These 2-D stress-displacement spring properties are then used to 

generate the 3-D spring properties for 3-D finite element analysis. It is noted that these 

stresses correspond to each soil element. However, ABAQUS input for spring property 

is based on force at each node. Therefore, the stresses of elements are then converted to 

nodal forces. The forces are based on the area of discretization. The study includes the 

investigation for two cases: a flexible caisson considering both external and internal soil 

resistance and a rigid caisson considering only external soil resistance. 

2. The 2-D normalized spring stresses generated are used to generate springs for

the 3-D analysis. For 3-D analysis, a specific nodal area based on discretization is 
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obtained corresponding to one node. This nodal area is then multiplied by the stresses 

generated in 2-D analysis to obtain the nodal force of the spring. For the case that the 

undrained shear strength is not unity, the corresponding undrained shear strength at a 

certain depth will be assessed first and then multiplied by the above mentioned spring 

force to get the spring force at that depth. In addition, close to free surface, where free 

surface effect becomes prominent, the stresses are scaled down by a factor, Np(z)/Np(∞), 

where Np(z) is the lateral bearing resistance factor at a finite depth and Np(∞) is the 

Randolph-Houlsby bearing factor for infinite depth. Therefore, spring properties can be 

generated to couple with a 3-D caisson model with any soil strength profile and bearing 

resistance utilizing this method. Then, a 3-D finite element study will then be conducted 

with a 3-D steel caisson surrounded by springs with properties generated by the above 

mentioned method. 

Finite element analyses are carried out using ABAQUS 6.9 computer program. 

Taking advantage of the symmetry about the plane in which the load is applied, only 

one-half of the caisson (180 degrees) is simulated in all the analyses. 

2D Finite Element Model 

Model Description 

Considering the caisson is a thin shell structure, 2-node linear beam element B21 

is used to simulate the caisson shell. Soil inside the caisson is not considered in our 

analysis. The thickness of shell of 4 cm is selected for the 2-D study. Soil is simulated 
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using 4-node bilinear continuum element with reduced integration - CPE4R. The soil is 

modeled as undrained, elastic-plastic property, and a von Mises yield criterion is used. 

In order to generate a base model, the undrained shear strength of soil, Su, is set 

to be one. ABAQUS characterizes the von Mises surface in terms of yield strength Y, 

which is related to the undrained shear strength used in the study (Figure 4.1): 

uSY 3 .......................................................................................................(4.1) 

Figure 4.1 Von Mises and Tresca yield surface under biaxial loading (Boresi and 

Schmidt, 2002) 

The displacement for both x and y directions at the outer boundary of the mesh 

are constrained. The nodes at the plane of symmetry is constrained in normal direction 
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(y-direction). The caisson had a diameter of 5 m. The properties of soil and caisson are 

summarized in the following Table 4.1. A general mesh of this 2-D problem is illustrated 

in Figure 4.2. 

The caisson is sub-divided into 50 segments around the circumference to obtain 

the fine enough mesh for analysis. The detailed 2-D mesh discretization is discussed in 

the next chapter. 

Table 4.1 Soil and Caisson Properties 

Soil Caisson 

Soil Rigidity 

Index (RI) 

kPa 

Poisson’s Ratio 

Elastic 

Modulus, 

kPa 

Poisson’s 

Ratio 

D/t * 

300 

0.49 

2*108

Rigid 

0.3 

80 

125 

160 

200 

100 

* D=caisson diameter; t=caisson shell thickness
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Figure 4.2 2-D mesh (Moon, 2000) 

Finite Element Analysis Program 

The caisson was loaded horizontally in the soil by the displacement-controlled 

loading. The shell is considered as a rigid body. The horizontal displacement input is 

0.01 m, 0.05 m, 0.1 m, 0.2 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m, 0.8 m, 1.0 m, 1.4 m, 2.0 m, 

and 2.8 m. At each loading stage, the corresponding external and internal reaction 

stresses for each soil element contacting the caisson is obtained from the stresses output 

from the finite element analysis. The net stresses are then obtained by subtracting the 

internal soil stresses from the external soil stresses. The net stresses in global x and y 

directions will need to be converted to forces in radial and tangential directions for 

spring generation purpose. A typical soil stress diagram is shown in Figure 4.3. 
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s22

dy

dx

s11

s21

θ

θ
ds

s12

Figure 4.3 Stress diagram of soil element around caisson 

The forces in global x and y directions are expressed as follow: 

fx=s11cosθ+s12sinθ.........................................................................................(4.2) 

fy=s22sinθ+s12cosθ.........................................................................................(4.3) 

Where, 

s11=stress in x direction 

s22=stress in y direction 

s12=shear stress 

As the caisson is displaced, the soil reaction stress can also be expressed in radial 

and tangential components as illustrated in Figure 4.4. 
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Figure 4.4 Radial and tangential soil stress due to caisson lateral displacement 

The soil reaction forces in radial and tangential directions are related to the 

components in x and y directions, and can be expressed as follow: 

fr=fxcosθ+fysinθ............................................................................................(4.4) 

ft=fxsinθ+fycosθ............................................................................................(4.5) 

In order to perform parametric study, the different caisson shell thickness (t), soil 

rigidity index (RI=G/Su), and flexibility of caisson are utilized for generating the spring 

properties. Three caisson shell thickness, D/t=160 (t=3.125 cm), D/t=125 (t=4 cm), and 

D/t=80 (t=6.25 cm), three rigidity index RI=100, RI=200, and RI=300, and caisson 

stiffness with regular steel modulus and fully rigid caisson are used for the spring 

properties generating. 
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Analysis Results 

The results of normal stress in x-direction, s11, in y-direction, s22, and shear 

stress, s12/s21 for all the soil elements contacting caisson internally and externally are 

obtained from 2-D analyses for the cases with different caisson shell thickness, soil 

rigidity index, and caisson stiffness. As discussed in the previous section, the net soil 

stresses are then converted to radial and tangential stresses. It is noted that the above 

stresses are soil element stresses. While for spring property input for ABAQUS program, 

nodal property will be needed instead of element property since each spring will be 

connected to each node. Therefore, a simple step will be conducted to obtain the nodal 

stresses. It is considered that each nodal stress will be the average stresses of the 

adjacent two elements. For the node at 0 and 180 degree, the extrapolation will be used 

to obtain approximate nodal stress. The results of radial nodal stress for the different 

cases are shown in Figure 4.5 to 4.10. 
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Figure 4.5 Radial net soil stress for flexible caisson with RI=100 for different caisson 

shell thickness 
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Figure 4.6 Radial net soil stress for flexible caisson with RI=200 for different caisson 

shell thickness 
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Figure 4.7 Radial net soil stress for flexible caisson with RI=300 for different caisson 

shell thickness   
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Figure 4.8 Radial net soil stress flexible caisson (t=3.125cm) and rigid caisson with 

RI=100 
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Figure 4.9 Radial net soil stress flexible caisson (t=3.125cm) and rigid caisson with 

RI=200 
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Figure 4.10 Radial net soil stress flexible caisson (t=3.125cm) and rigid caisson with 

RI=300  

The results showed that the radial stresses with thicker caisson shell were lower 

than with the thinner shell at front and back side of the caisson, approximately from 0 to 

30 degrees and 150 to 180 degrees, but turned higher than the lower RI from 30 to 150 

degrees. Generally, the difference between the thick and thin shells was greater with 

larger soil RI. The radial stresses with rigid caisson had the same tendency that they 

were lower than the flexible caisson at front and back side of the caisson, but were 
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higher from 30 to 150 degrees, and that difference between the rigid and flexible caisson 

was great with larger soil RI. 

The results of tangential nodal stress for the different cases are also shown in 

Figure 4.11 to 4.16. 

Figure 4.11 Tangential net soil stress with RI=100 for different caisson shell thickness 
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Figure 4.12 Tangential net soil stress with RI=200 for different caisson shell thickness 
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Figure 4.13 Tangential net soil stress with RI=300 for different caisson shell thickness 
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Figure 4.14 Radial net soil stress flexible caisson (t=6.25cm) and rigid caisson with 

RI=100  
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Figure 4.15 Radial net soil stress flexible caisson (t=6.25cm) and rigid caisson with 

RI=200 
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Figure 4.16 Radial net soil stress flexible caisson (t=6.25cm) and rigid caisson with 

RI=300  

The results showed that generally the tangential stresses were greater with larger 

RI and maximized at around 1 kPa which was the undrained shear strength of the soil. 

The tangential stresses curves for flexible caisson were characterized with two humps at 

about 30 and 150 degrees, and dipped at about 90 degree. This ‘up-and-down’ effect 

decreased with decreasing RI. The tangential stresses for rigid caisson were almost 

identical to flexible caisson with shell thickness of 6.25 cm for all RIs. 
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In Abaqus, the spring property are input as pairs of radial force and radial 

displacement, or tangential force and tangential displacement. Therefore, the radial and 

tangential normalized radial soil force and displacement are shown in tabular forms 

needed to generate 3-D spring property in Table 4.2, 4.3, and 4.4, and tangential soil 

nodal forces and displacement are shown in Table 4.5, 4.6, and 4.7. The corresponding 

p-y curves of spring forces and displacement in radial direction are shown in Figure 4.17 

to 4.19, and tangential direction in 4.20 to 4.22. 
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Table 4.2 Radial soil nodal forces for RI of 100 

θ ux 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

ur 0.00998027 0.049901336 0.099802673 0.199605346 0.299408019 0.399210691 0.499013364 0.598816037 0.798421383 0.998026728 1.39723742 1.996053457 2.79447484

σr 0.1384138 0.692268751 1.406837194 2.978812318 3.674296116 4.15014365 4.619778715 4.951754286 5.605056741 5.939440402 6.120484599 6.139125068 6.135258292

ur 0.00951057 0.047552826 0.095105652 0.190211303 0.285316955 0.380422607 0.475528258 0.57063391 0.760845213 0.951056516 1.331479123 1.902113033 2.662958246

σr 0.13190532 0.659656766 1.344937101 3.111168641 3.809899216 4.316947765 4.694491391 5.011699173 5.644853658 5.695386985 5.68404707 5.685932684 5.692189509

ur 0.00844328 0.042216396 0.084432793 0.168865585 0.253298378 0.33773117 0.422163963 0.506596755 0.67546234 0.844327926 1.182059096 1.688655851 2.364118191

σr 0.11709804 0.585570779 1.205590865 2.716043389 3.537944584 4.038642943 4.469631583 4.77901601 5.21932268 5.075311777 5.029843773 5.035264033 5.044244182

ur 0.00684547 0.034227355 0.068454711 0.136909421 0.205364132 0.273818842 0.342273553 0.410728264 0.547637685 0.684547106 0.958365948 1.369094212 1.916731897

σr 0.09494738 0.474693042 1.010268142 2.363884318 3.158960615 3.749242555 4.125919724 4.415567671 4.726774075 4.519465046 4.468394511 4.476308187 4.482283234

ur 0.00481754 0.024087684 0.048175367 0.096350735 0.144526102 0.19270147 0.240876837 0.289052204 0.385402939 0.481753674 0.674455144 0.963507348 1.348910287

σr 0.0668139 0.33405467 0.737945936 1.834097839 2.879290355 3.37418179 3.707623268 3.984741141 4.16174913 4.383499354 4.431277299 4.420157689 4.412608399

ur 0.0024869 0.012434494 0.024868989 0.049737977 0.074606966 0.099475955 0.124344944 0.149213932 0.19895191 0.248689887 0.348165842 0.497379774 0.696331684

σr 0.03448698 0.172435264 0.388673348 0.963610265 2.088355117 2.899205523 3.269314018 3.457447473 3.473032073 3.427441778 3.401382749 3.455886696 3.500393134

ur 2.833E-18 1.41651E-17 2.83302E-17 5.66604E-17 8.49906E-17 1.13321E-16 1.41651E-16 1.69981E-16 2.26642E-16 2.83302E-16 3.96623E-16 5.66604E-16 7.93246E-16

σr 1.223E-16 6.12357E-16 1.00614E-15 1.02002E-15 1.01308E-15 1.02696E-15 9.99201E-16 1.11022E-15 1.11022E-15 1.33227E-15 1.11022E-15 1.11022E-15 9.99201E-16

ur -0.0024869 -0.012434494 -0.024868989 -0.049737977 -0.074606966 -0.099475955 -0.124344944 -0.149213932 -0.19895191 -0.248689887 -0.348165842 -0.497379774 -0.696331684

σr -0.034487 -0.172435264 -0.388673348 -0.963610265 -2.088355117 -2.899205523 -3.269314018 -3.457447473 -3.473032073 -3.427441778 -3.401382749 -3.455886696 -3.500393134

ur -0.0048175 -0.024087684 -0.048175367 -0.096350735 -0.144526102 -0.19270147 -0.240876837 -0.289052204 -0.385402939 -0.481753674 -0.674455144 -0.963507348 -1.348910287

σr -0.0668139 -0.33405467 -0.737945936 -1.834097839 -2.879290355 -3.37418179 -3.707623268 -3.984741141 -4.16174913 -4.383499354 -4.431277299 -4.420157689 -4.412608399

ur -0.0068455 -0.034227355 -0.068454711 -0.136909421 -0.205364132 -0.273818842 -0.342273553 -0.410728264 -0.547637685 -0.684547106 -0.958365948 -1.369094212 -1.916731897

σr -0.0949474 -0.474693042 -1.010268142 -2.363884318 -3.158960615 -3.749242555 -4.125919724 -4.415567671 -4.726774075 -4.519465046 -4.468394511 -4.476308187 -4.482283234

ur -0.0084433 -0.042216396 -0.084432793 -0.168865585 -0.253298378 -0.33773117 -0.422163963 -0.506596755 -0.67546234 -0.844327926 -1.182059096 -1.688655851 -2.364118191

σr -0.117098 -0.585570779 -1.205590865 -2.716043389 -3.537944584 -4.038642943 -4.469631583 -4.77901601 -5.21932268 -5.075311777 -5.029843773 -5.035264033 -5.044244182

ur -0.0095106 -0.047552826 -0.095105652 -0.190211303 -0.285316955 -0.380422607 -0.475528258 -0.57063391 -0.760845213 -0.951056516 -1.331479123 -1.902113033 -2.662958246

σr -0.1319053 -0.659656766 -1.344937101 -3.111168641 -3.809899216 -4.316947765 -4.694491391 -5.011699173 -5.644853658 -5.695386985 -5.68404707 -5.685932684 -5.692189509

ur -0.0099803 -0.049901336 -0.099802673 -0.199605346 -0.299408019 -0.399210691 -0.499013364 -0.598816037 -0.798421383 -0.998026728 -1.39723742 -1.996053457 -2.79447484

σr -0.1384138 -0.692268751 -1.406837194 -2.978812318 -3.674296116 -4.15014365 -4.619778715 -4.951754286 -5.605056741 -5.939440402 -6.120484599 -6.139125068 -6.135258292
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32.4

18
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104.4

90
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Table 4.3 Radial soil nodal forces for RI of 200 

θ ux 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

ur 0.009980267 0.049901336 0.099802673 0.199605346 0.299408019 0.399210691 0.499013364 0.598816037 0.798421383 0.998026728 1.39723742 1.996053457 2.79447484

σr 0.276939419 1.406896108 2.978918078 4.153150412 4.948578635 5.604326145 5.939635602 6.098979663 6.132394785 6.138841511 6.134954716 6.130560725 6.125400624

ur 0.009510565 0.047552826 0.095105652 0.190211303 0.285316955 0.380422607 0.475528258 0.57063391 0.760845213 0.951056516 1.331479123 1.902113033 2.662958246

σr 0.263914983 1.34545221 3.11126594 4.314890243 5.014734771 5.646290018 5.695981264 5.686766725 5.68369265 5.68608526 5.691854376 5.701445723 5.712632777

ur 0.008443279 0.042216396 0.084432793 0.168865585 0.253298378 0.33773117 0.422163963 0.506596755 0.67546234 0.844327926 1.182059096 1.688655851 2.364118191

σr 0.234234591 1.205577365 2.71602033 4.039558084 4.780547826 5.219469034 5.075027277 5.030214812 5.03099107 5.034857599 5.043708141 5.058491641 5.078114312

ur 0.006845471 0.034227355 0.068454711 0.136909421 0.205364132 0.273818842 0.342273553 0.410728264 0.547637685 0.684547106 0.958365948 1.369094212 1.916731897

σr 0.189853378 1.010168221 2.363773332 3.741679204 4.420517713 4.727016702 4.51950651 4.464804182 4.472233686 4.475852646 4.481857845 4.494659297 4.519519172

ur 0.004817537 0.024087684 0.048175367 0.096350735 0.144526102 0.19270147 0.240876837 0.289052204 0.385402939 0.481753674 0.674455144 0.963507348 1.348910287

σr 0.133611071 0.737797436 1.833854071 3.380486469 3.993820693 4.163454223 4.384330866 4.438628971 4.424325014 4.419800718 4.412310442 4.396699859 4.357332209

ur 0.002486899 0.012434494 0.024868989 0.049737977 0.074606966 0.099475955 0.124344944 0.149213932 0.19895191 0.248689887 0.348165842 0.497379774 0.696331684

σr 0.068961615 0.38855239 0.963432454 2.90180193 3.449922793 3.468399503 3.426296978 3.37579596 3.426220861 3.456215179 3.50072143 3.545751914 3.569470622

ur 2.83302E-18 1.41651E-17 2.83302E-17 5.66604E-17 8.49906E-17 1.13321E-16 1.41651E-16 1.69981E-16 2.26642E-16 2.83302E-16 3.96623E-16 5.66604E-16 7.93246E-16

σr 2.46331E-16 1.01308E-15 1.01308E-15 9.99201E-16 9.99201E-16 1.11022E-15 1.33227E-15 1.11022E-15 9.99201E-16 9.99201E-16 1.11022E-15 9.99201E-16 1.11022E-15

ur -0.002486899 -0.012434494 -0.024868989 -0.049737977 -0.074606966 -0.099475955 -0.124344944 -0.149213932 -0.19895191 -0.248689887 -0.348165842 -0.497379774 -0.696331684

σr -0.068961615 -0.38855239 -0.963432454 -2.90180193 -3.449922793 -3.468399503 -3.426296978 -3.37579596 -3.426220861 -3.456215179 -3.50072143 -3.545751914 -3.569470622

ur -0.004817537 -0.024087684 -0.048175367 -0.096350735 -0.144526102 -0.19270147 -0.240876837 -0.289052204 -0.385402939 -0.481753674 -0.674455144 -0.963507348 -1.348910287

σr -0.133611071 -0.737797436 -1.833854071 -3.380486469 -3.993820693 -4.163454223 -4.384330866 -4.438628971 -4.424325014 -4.419800718 -4.412310442 -4.396699859 -4.357332209

ur -0.006845471 -0.034227355 -0.068454711 -0.136909421 -0.205364132 -0.273818842 -0.342273553 -0.410728264 -0.547637685 -0.684547106 -0.958365948 -1.369094212 -1.916731897

σr -0.189853378 -1.010168221 -2.363773332 -3.741679204 -4.420517713 -4.727016702 -4.51950651 -4.464804182 -4.472233686 -4.475852646 -4.481857845 -4.494659297 -4.519519172

ur -0.008443279 -0.042216396 -0.084432793 -0.168865585 -0.253298378 -0.33773117 -0.422163963 -0.506596755 -0.67546234 -0.844327926 -1.182059096 -1.688655851 -2.364118191

σr -0.234234591 -1.205577365 -2.71602033 -4.039558084 -4.780547826 -5.219469034 -5.075027277 -5.030214812 -5.03099107 -5.034857599 -5.043708141 -5.058491641 -5.078114312

ur -0.009510565 -0.047552826 -0.095105652 -0.190211303 -0.285316955 -0.380422607 -0.475528258 -0.57063391 -0.760845213 -0.951056516 -1.331479123 -1.902113033 -2.662958246

σr -0.263914983 -1.34545221 -3.11126594 -4.314890243 -5.014734771 -5.646290018 -5.695981264 -5.686766725 -5.68369265 -5.68608526 -5.691854376 -5.701445723 -5.712632777

ur -0.009980267 -0.049901336 -0.099802673 -0.199605346 -0.299408019 -0.399210691 -0.499013364 -0.598816037 -0.798421383 -0.998026728 -1.39723742 -1.996053457 -2.79447484

σr -0.276939419 -1.406896108 -2.978918078 -4.153150412 -4.948578635 -5.604326145 -5.939635602 -6.098979663 -6.132394785 -6.138841511 -6.134954716 -6.130560725 -6.125400624
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Table 4.4 Radial soil nodal forces for RI of 300 

θ ux 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

ur 0.009980267 0.049901336 0.099802673 0.199605346 0.299408019 0.399210691 0.499013364 0.598816037 0.798421383 0.998026728 1.39723742 1.996053457 2.79447484

σr 0.41537738 2.28626186 3.6742819 4.946957062 5.833245375 6.095543007 6.12744111 6.139991218 6.13722019 6.134631445 6.12970259 6.124412163 6.120053449

ur 0.009510565 0.047552826 0.095105652 0.190211303 0.285316955 0.380422607 0.475528258 0.57063391 0.760845213 0.951056516 1.331479123 1.902113033 2.662958246

σr 0.395845554 2.230591459 3.811300132 5.016765473 5.700206078 5.687943145 5.683552884 5.684504129 5.689092156 5.693934553 5.703143407 5.715944386 5.731490401

ur 0.008443279 0.042216396 0.084432793 0.168865585 0.253298378 0.33773117 0.422163963 0.506596755 0.67546234 0.844327926 1.182059096 1.688655851 2.364118191

σr 0.351328042 2.116211947 3.537868925 4.777500789 5.143419123 5.031407796 5.030318309 5.033138345 5.039210739 5.045945654 5.06093085 5.082578676 5.110144023

ur 0.006845471 0.034227355 0.068454711 0.136909421 0.205364132 0.273818842 0.342273553 0.410728264 0.547637685 0.684547106 0.958365948 1.369094212 1.916731897

σr 0.284762 1.707411524 3.161560919 4.420197383 4.614726482 4.466214726 4.470703521 4.474328392 4.478727398 4.483184534 4.498122481 4.525215767 4.554991431

ur 0.004817537 0.024087684 0.048175367 0.096350735 0.144526102 0.19270147 0.240876837 0.289052204 0.385402939 0.481753674 0.674455144 0.963507348 1.348910287

σr 0.20031134 1.267692247 2.874469921 3.993145173 4.263668257 4.438149768 4.426244747 4.421594188 4.415647643 4.410056164 4.390842814 4.347563979 4.297631862

ur 0.002486899 0.012434494 0.024868989 0.049737977 0.074606966 0.099475955 0.124344944 0.149213932 0.19895191 0.248689887 0.348165842 0.497379774 0.696331684

σr 0.103388663 0.660200274 2.089524311 3.455754137 3.51704534 3.376127219 3.414025295 3.440573117 3.479576799 3.508522822 3.54965478 3.572351908 3.595493363

ur 2.83302E-18 1.41651E-17 2.83302E-17 5.66604E-17 8.49906E-17 1.13321E-16 1.41651E-16 1.69981E-16 2.26642E-16 2.83302E-16 3.96623E-16 5.66604E-16 7.93246E-16

σr 3.67761E-16 1.00614E-15 9.99201E-16 9.99201E-16 8.88178E-16 1.11022E-15 9.99201E-16 1.11022E-15 9.99201E-16 9.99201E-16 9.99201E-16 1.11022E-15 9.99201E-16

ur -0.002486899 -0.012434494 -0.024868989 -0.049737977 -0.074606966 -0.099475955 -0.124344944 -0.149213932 -0.19895191 -0.248689887 -0.348165842 -0.497379774 -0.696331684

σr -0.103388663 -0.660200274 -2.089524311 -3.455754137 -3.51704534 -3.376127219 -3.414025295 -3.440573117 -3.479576799 -3.508522822 -3.54965478 -3.572351908 -3.595493363

ur -0.004817537 -0.024087684 -0.048175367 -0.096350735 -0.144526102 -0.19270147 -0.240876837 -0.289052204 -0.385402939 -0.481753674 -0.674455144 -0.963507348 -1.348910287

σr -0.20031134 -1.267692247 -2.874469921 -3.993145173 -4.263668257 -4.438149768 -4.426244747 -4.421594188 -4.415647643 -4.410056164 -4.390842814 -4.347563979 -4.297631862

ur -0.006845471 -0.034227355 -0.068454711 -0.136909421 -0.205364132 -0.273818842 -0.342273553 -0.410728264 -0.547637685 -0.684547106 -0.958365948 -1.369094212 -1.916731897

σr -0.284762 -1.707411524 -3.161560919 -4.420197383 -4.614726482 -4.466214726 -4.470703521 -4.474328392 -4.478727398 -4.483184534 -4.498122481 -4.525215767 -4.554991431

ur -0.008443279 -0.042216396 -0.084432793 -0.168865585 -0.253298378 -0.33773117 -0.422163963 -0.506596755 -0.67546234 -0.844327926 -1.182059096 -1.688655851 -2.364118191

σr -0.351328042 -2.116211947 -3.537868925 -4.777500789 -5.143419123 -5.031407796 -5.030318309 -5.033138345 -5.039210739 -5.045945654 -5.06093085 -5.082578676 -5.110144023

ur -0.009510565 -0.047552826 -0.095105652 -0.190211303 -0.285316955 -0.380422607 -0.475528258 -0.57063391 -0.760845213 -0.951056516 -1.331479123 -1.902113033 -2.662958246

σr -0.395845554 -2.230591459 -3.811300132 -5.016765473 -5.700206078 -5.687943145 -5.683552884 -5.684504129 -5.689092156 -5.693934553 -5.703143407 -5.715944386 -5.731490401

ur -0.009980267 -0.049901336 -0.099802673 -0.199605346 -0.299408019 -0.399210691 -0.499013364 -0.598816037 -0.798421383 -0.998026728 -1.39723742 -1.996053457 -2.79447484

σr -0.41537738 -2.28626186 -3.6742819 -4.946957062 -5.833245375 -6.095543007 -6.12744111 -6.139991218 -6.13722019 -6.134631445 -6.12970259 -6.124412163 -6.120053449
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Table 4.5 Tangential soil nodal forces for RI of 100 

θ ux 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

ur 0.000627905 0.003139526 0.006279052 0.012558104 0.018837156 0.025116208 0.03139526 0.037674312 0.050232416 0.06279052 0.087906727 0.125581039 0.175813455

σr 0.007638707 0.03820006 0.078476004 0.204173121 0.210466245 0.189790253 0.184479364 0.151119033 0.157888709 0.320164675 0.338123926 0.236382604 0.230921834

ur 0.00309017 0.01545085 0.030901699 0.061803399 0.092705098 0.123606798 0.154508497 0.185410197 0.247213595 0.309016994 0.432623792 0.618033989 0.865247584

σr 0.037588235 0.187993525 0.388360995 0.879644986 0.844197189 0.821185918 0.803166658 0.784123357 0.785673166 0.860431925 0.898548289 0.900255879 0.902646522

ur 0.005358268 0.02679134 0.053582679 0.107165359 0.160748038 0.214330718 0.267913397 0.321496077 0.428661436 0.535826795 0.750157513 1.07165359 1.500315026

σr 0.06518392 0.325959261 0.686041711 0.933946248 0.888886871 0.885635558 0.864159788 0.881365544 0.903496113 0.986735082 0.990549341 0.990530523 0.990251704

ur 0.007289686 0.036448431 0.072896863 0.145793725 0.218690588 0.291587451 0.364484314 0.437381176 0.583174902 0.728968627 1.020556078 1.457937255 2.041112157

σr 0.088699332 0.443446929 0.971748388 0.986596653 0.951243724 0.966900674 0.969138882 0.974743383 0.982755383 0.999634958 0.999431445 0.999552492 0.999434105

ur 0.008763067 0.043815334 0.087630668 0.175261336 0.262892004 0.350522672 0.43815334 0.525784008 0.701045344 0.87630668 1.226829352 1.75261336 2.453658704

σr 0.106625811 0.533093873 0.995652278 0.998910766 0.986717505 0.976050716 0.988297358 0.99037293 0.998203071 0.998812308 0.999499482 0.999586602 0.999714635

ur 0.009685832 0.048429158 0.096858316 0.193716632 0.290574948 0.387433264 0.484291581 0.581149897 0.774866529 0.968583161 1.356016426 1.937166322 2.712032851

σr 0.117851507 0.589250643 0.998990469 0.999984633 0.999386218 0.996437574 0.992040196 0.990565075 0.99713305 0.999877735 1.000016381 0.999847456 0.999942203

ur 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

σr 0.121619084 0.608295027 0.999933822 1.000003875 0.999921959 0.999921687 0.999845044 0.999704208 0.999645888 0.999868961 0.999883549 0.999940695 0.999972066

ur 0.009685832 0.048429158 0.096858316 0.193716632 0.290574948 0.387433264 0.484291581 0.581149897 0.774866529 0.968583161 1.356016426 1.937166322 2.712032851

σr 0.117851507 0.589250643 0.998990469 0.999984633 0.999386218 0.996437574 0.992040196 0.990565075 0.99713305 0.999877735 1.000016381 0.999847456 0.999942203

ur 0.008763067 0.043815334 0.087630668 0.175261336 0.262892004 0.350522672 0.43815334 0.525784008 0.701045344 0.87630668 1.226829352 1.75261336 2.453658704

σr 0.106625811 0.533093873 0.995652278 0.998910766 0.986717505 0.976050716 0.988297358 0.99037293 0.998203071 0.998812308 0.999499482 0.999586602 0.999714635

ur 0.007289686 0.036448431 0.072896863 0.145793725 0.218690588 0.291587451 0.364484314 0.437381176 0.583174902 0.728968627 1.020556078 1.457937255 2.041112157

σr 0.088699332 0.443446929 0.971748388 0.986596653 0.951243724 0.966900674 0.969138882 0.974743383 0.982755383 0.999634958 0.999431445 0.999552492 0.999434105

ur 0.005358268 0.02679134 0.053582679 0.107165359 0.160748038 0.214330718 0.267913397 0.321496077 0.428661436 0.535826795 0.750157513 1.07165359 1.500315026

σr 0.06518392 0.325959261 0.686041711 0.933946248 0.888886871 0.885635558 0.864159788 0.881365544 0.903496113 0.986735082 0.990549341 0.990530523 0.990251704

ur 0.00309017 0.01545085 0.030901699 0.061803399 0.092705098 0.123606798 0.154508497 0.185410197 0.247213595 0.309016994 0.432623792 0.618033989 0.865247584

σr 0.037588235 0.187993525 0.388360995 0.879644986 0.844197189 0.821185918 0.803166658 0.784123357 0.785673166 0.860431925 0.898548289 0.900255879 0.902646522

ur 0.000627905 0.003139526 0.006279052 0.012558104 0.018837156 0.025116208 0.03139526 0.037674312 0.050232416 0.06279052 0.087906727 0.125581039 0.175813455

σr 0.007638707 0.03820006 0.078476004 0.204173121 0.210466245 0.189790253 0.184479364 0.151119033 0.157888709 0.320164675 0.338123926 0.236382604 0.230921834

118.8

176.4

162

147.6

133.2

3.6

90

75.6

61.2

46.8

32.4

18

104.4
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Table 4.6 Tangential soil nodal forces for RI of 200 

θ ux 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

ur 0.000627905 0.003139526 0.006279052 0.012558104 0.018837156 0.025116208 0.03139526 0.037674312 0.050232416 0.06279052 0.087906727 0.125581039 0.175813455

σr 0.015280157 0.078474778 0.204170527 0.190926138 0.15029645 0.157462169 0.320272213 0.390019527 0.287216935 0.236085063 0.230845562 0.230706981 0.232994679

ur 0.00309017 0.01545085 0.030901699 0.061803399 0.092705098 0.123606798 0.154508497 0.185410197 0.247213595 0.309016994 0.432623792 0.618033989 0.865247584

σr 0.075200346 0.388502145 0.879657823 0.820659934 0.785215153 0.78624874 0.860574321 0.896461455 0.899173579 0.900317468 0.902616394 0.905724963 0.909186238

ur 0.005358268 0.02679134 0.053582679 0.107165359 0.160748038 0.214330718 0.267913397 0.321496077 0.428661436 0.535826795 0.750157513 1.07165359 1.500315026

σr 0.130385346 0.686050097 0.933961155 0.885542121 0.882883814 0.903548348 0.987038435 0.990614465 0.990498384 0.990339798 0.990280081 0.990185136 0.989547571

ur 0.007289686 0.036448431 0.072896863 0.145793725 0.218690588 0.291587451 0.364484314 0.437381176 0.583174902 0.728968627 1.020556078 1.457937255 2.041112157

σr 0.177379761 0.971787408 0.986604372 0.965972286 0.972763107 0.982514901 0.999400799 0.999546858 0.999249384 0.999318333 0.999201927 0.99916699 0.998969772

ur 0.008763067 0.043815334 0.087630668 0.175261336 0.262892004 0.350522672 0.43815334 0.525784008 0.701045344 0.87630668 1.226829352 1.75261336 2.453658704

σr 0.21324703 0.995693249 0.99897282 0.976584059 0.991441638 0.998171027 0.999004732 0.999474155 0.999378471 0.99938181 0.999688012 0.999574573 0.999656439

ur 0.009685832 0.048429158 0.096858316 0.193716632 0.290574948 0.387433264 0.484291581 0.581149897 0.774866529 0.968583161 1.356016426 1.937166322 2.712032851

σr 0.235700496 0.9989795 0.999999034 0.996709095 0.990279395 0.99724825 0.999901207 0.99994649 1.000028208 0.999828741 0.99992347 0.999796738 0.999986293

ur 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

σr 0.243336597 0.999927108 0.999991798 0.999894563 0.999716745 0.999620266 0.999843328 0.999900621 0.999920717 0.99988368 0.999946423 0.999977752 0.999877872

ur 0.009685832 0.048429158 0.096858316 0.193716632 0.290574948 0.387433264 0.484291581 0.581149897 0.774866529 0.968583161 1.356016426 1.937166322 2.712032851

σr 0.235700496 0.9989795 0.999999034 0.996709095 0.990279395 0.99724825 0.999901207 0.99994649 1.000028208 0.999828741 0.99992347 0.999796738 0.999986293

ur 0.008763067 0.043815334 0.087630668 0.175261336 0.262892004 0.350522672 0.43815334 0.525784008 0.701045344 0.87630668 1.226829352 1.75261336 2.453658704

σr 0.21324703 0.995693249 0.99897282 0.976584059 0.991441638 0.998171027 0.999004732 0.999474155 0.999378471 0.99938181 0.999688012 0.999574573 0.999656439

ur 0.007289686 0.036448431 0.072896863 0.145793725 0.218690588 0.291587451 0.364484314 0.437381176 0.583174902 0.728968627 1.020556078 1.457937255 2.041112157

σr 0.177379761 0.971787408 0.986604372 0.965972286 0.972763107 0.982514901 0.999400799 0.999546858 0.999249384 0.999318333 0.999201927 0.99916699 0.998969772

ur 0.005358268 0.02679134 0.053582679 0.107165359 0.160748038 0.214330718 0.267913397 0.321496077 0.428661436 0.535826795 0.750157513 1.07165359 1.500315026

σr 0.130385346 0.686050097 0.933961155 0.885542121 0.882883814 0.903548348 0.987038435 0.990614465 0.990498384 0.990339798 0.990280081 0.990185136 0.989547571

ur 0.00309017 0.01545085 0.030901699 0.061803399 0.092705098 0.123606798 0.154508497 0.185410197 0.247213595 0.309016994 0.432623792 0.618033989 0.865247584

σr 0.075200346 0.388502145 0.879657823 0.820659934 0.785215153 0.78624874 0.860574321 0.896461455 0.899173579 0.900317468 0.902616394 0.905724963 0.909186238

ur 0.000627905 0.003139526 0.006279052 0.012558104 0.018837156 0.025116208 0.03139526 0.037674312 0.050232416 0.06279052 0.087906727 0.125581039 0.175813455

σr 0.015280157 0.078474778 0.204170527 0.190926138 0.15029645 0.157462169 0.320272213 0.390019527 0.287216935 0.236085063 0.230845562 0.230706981 0.232994679

147.6

162

176.4

61.2

75.6

90

104.4

118.8

133.2

3.6

18

32.4

46.8
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Table 4.7 Tangential soil nodal forces for RI of 300 

θ ux 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

ur 0.000627905 0.003139526 0.006279052 0.012558104 0.018837156 0.025116208 0.03139526 0.037674312 0.050232416 0.06279052 0.087906727 0.125581039 0.175813455

σr 0.022913974 0.14640365 0.209022225 0.148697543 0.21333683 0.390897794 0.313867143 0.243149108 0.232107513 0.230469813 0.230781319 0.233848714 0.241231408

ur 0.00309017 0.01545085 0.030901699 0.061803399 0.092705098 0.123606798 0.154508497 0.185410197 0.247213595 0.309016994 0.432623792 0.618033989 0.865247584

σr 0.11278542 0.779776565 0.843965288 0.785748628 0.805056057 0.894934725 0.898954393 0.899549272 0.901618464 0.903417901 0.906365013 0.910208057 0.914656122

ur 0.005358268 0.02679134 0.053582679 0.107165359 0.160748038 0.214330718 0.267913397 0.321496077 0.428661436 0.535826795 0.750157513 1.07165359 1.500315026

σr 0.195572628 0.977474383 0.88667414 0.881476236 0.967763066 0.990686213 0.990587605 0.990447436 0.990357032 0.990186675 0.989835227 0.989350849 0.988841964

ur 0.007289686 0.036448431 0.072896863 0.145793725 0.218690588 0.291587451 0.364484314 0.437381176 0.583174902 0.728968627 1.020556078 1.457937255 2.041112157

σr 0.26609093 0.992999479 0.951911262 0.972355414 0.9978764 0.99976684 0.999246404 0.999550854 0.999396855 0.999249116 0.999226717 0.998806543 0.998417706

ur 0.008763067 0.043815334 0.087630668 0.175261336 0.262892004 0.350522672 0.43815334 0.525784008 0.701045344 0.87630668 1.226829352 1.75261336 2.453658704

σr 0.319830781 0.998563197 0.987188565 0.991256338 0.998876498 0.999512653 0.999619094 0.999398058 0.999728345 0.999685473 0.999632646 0.9999042 0.999671681

ur 0.009685832 0.048429158 0.096858316 0.193716632 0.290574948 0.387433264 0.484291581 0.581149897 0.774866529 0.968583161 1.356016426 1.937166322 2.712032851

σr 0.353496658 0.999808337 0.999387503 0.990353401 0.999513057 0.999988996 1.0000285 0.999913463 0.99994698 0.999862506 0.999907652 1.000051951 0.999925173

ur 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.4 2 2.8

σr 0.364952902 0.999983566 0.999887119 0.999692232 0.999765952 0.999906431 0.999863731 0.999858078 0.999889421 0.999920764 0.999952063 0.999852129 0.999851982

ur 0.009685832 0.048429158 0.096858316 0.193716632 0.290574948 0.387433264 0.484291581 0.581149897 0.774866529 0.968583161 1.356016426 1.937166322 2.712032851

σr 0.353496658 0.999808337 0.999387503 0.990353401 0.999513057 0.999988996 1.0000285 0.999913463 0.99994698 0.999862506 0.999907652 1.000051951 0.999925173

ur 0.008763067 0.043815334 0.087630668 0.175261336 0.262892004 0.350522672 0.43815334 0.525784008 0.701045344 0.87630668 1.226829352 1.75261336 2.453658704

σr 0.319830781 0.998563197 0.987188565 0.991256338 0.998876498 0.999512653 0.999619094 0.999398058 0.999728345 0.999685473 0.999632646 0.9999042 0.999671681

ur 0.007289686 0.036448431 0.072896863 0.145793725 0.218690588 0.291587451 0.364484314 0.437381176 0.583174902 0.728968627 1.020556078 1.457937255 2.041112157

σr 0.26609093 0.992999479 0.951911262 0.972355414 0.9978764 0.99976684 0.999246404 0.999550854 0.999396855 0.999249116 0.999226717 0.998806543 0.998417706

ur 0.005358268 0.02679134 0.053582679 0.107165359 0.160748038 0.214330718 0.267913397 0.321496077 0.428661436 0.535826795 0.750157513 1.07165359 1.500315026

σr 0.195572628 0.977474383 0.88667414 0.881476236 0.967763066 0.990686213 0.990587605 0.990447436 0.990357032 0.990186675 0.989835227 0.989350849 0.988841964

ur 0.00309017 0.01545085 0.030901699 0.061803399 0.092705098 0.123606798 0.154508497 0.185410197 0.247213595 0.309016994 0.432623792 0.618033989 0.865247584

σr 0.11278542 0.779776565 0.843965288 0.785748628 0.805056057 0.894934725 0.898954393 0.899549272 0.901618464 0.903417901 0.906365013 0.910208057 0.914656122

ur 0.000627905 0.003139526 0.006279052 0.012558104 0.018837156 0.025116208 0.03139526 0.037674312 0.050232416 0.06279052 0.087906727 0.125581039 0.175813455

σr 0.022913974 0.14640365 0.209022225 0.148697543 0.21333683 0.390897794 0.313867143 0.243149108 0.232107513 0.230469813 0.230781319 0.233848714 0.241231408

147.6

162

176.4

61.2

75.6

90

104.4

118.8

133.2

3.6

18

32.4

46.8
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Figure 4.17 Radial soil p-y curves for RI of 100 
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Figure 4.18 Radial soil p-y curves for RI of 200 
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Figure 4.19 Radial soil p-y curves for RI of 300 
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Figure 4.20 Tangential soil p-y curves for RI of 100 
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Figure 4.21 Tangential soil p-y curves for RI of 200 
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Figure 4.22 Tangential soil p-y curves for RI of 300 

Model Validation 

The accuracy of the 2-D model is validated by calculating the bearing capacity 

factor, Np, and compare the calculated Np value with the solution from plasticity theory 

presented by Randolph and Houlsby (1984) (Np=11.94). 

The bearing capacity factor is calculated as follow: 

LDS

ΔF
N

u

p


 ............................................................................................... (4.6) 

where, 
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Np=bearing capacity factor 

ΔF=increase in lateral capacity 

Su=undrained shearing strength 

D=caisson diameter 

ΔL=incremental length 

The summation of lateral capacity is calculated by adding up all the lateral 

component of the soil stress around the caisson. The calculated Np values for rigid 

caisson with soil rigidity of 100, 200, and 300 are shown in Table 4.8, and percent error 

is also shown in the Table 4.8. 

Table 4.8 Bearing Capacity Factors and Percent Error 

RI Np Np (Randolph and Houlsby) 
Percent 

Error 

100 12.17118 11.94 1.9% 

200 12.19396 11.94 2.1% 

300 12.20541 11.94 2.2% 

Randolph and Houlsby (1984) presented solutions from plasticity theory to give 

Np=11.94. It is noted that our numerical analysis comes out an Np value using the spring 

forces larger than the Randolph-Houlsby solution for only about 2% for all RIs. The 

larger Np value resulted from numerical analysis is also observed by other researchers 

(Aubeny et al., 2001). Aubeny et al. (2001) conducted a 3-D numerical analysis and 
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obtained Np=13.19, or 10% greater than Randolph-Houlsby solution. Generally, the 

spring properties resulted in the reasonably good results. The detailed analyses and 

discussions of the results are presented in the next chapter. 

Spring Property in 3-D Model 

As discussed previously, for 3-D analysis, the spring forces are obtained by 

multiplying the stresses generated from 2-D analysis to a nodal area. This area will be 

equal to the finite element area created for a certain size of caisson. 

Model Description 

Considering the model structure of caisson in which the thickness is significantly 

smaller than the other dimensions, shell element is selected to simulate the caisson for 3-

D analysis. The conventional shell element S4R5, which is a 4-node thin shell element, 

with reduced integration, and five degrees of freedom per node, is selected for caisson 

simulation. The caisson diameter is still 5 m with different aspect ratio. Shell stress at 

section point 1 is selected for analysis purposes. 

The soil around the caisson is simulated by spring element, SPRING1. Based on 

soil element responses from 2-D model, the spring properties was generated to couple 

with a 3-D model as described in Chapter 4. 

Similar to the 2-D model, the nrow of 50 is used in the 3-D model. In the vertical 

direction, the caisson is divided into certain layers (nlayerp) that makes each element a 

best square. Each node on caisson is connected to one end of the spring element. The 
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other end of the spring element is grounded (constrained) which services as the boundary 

condition in the model. The stress and displacement in the spring element is measured to 

simulate the soil reaction around the caisson. A typical mesh of caisson with spring 

elements is shown in Figure 4.17. 

Figure 4.23 3-D mesh of caisson with spring elements 

Spring Properties 

In ABAQUS program, the spring property is input as forces instead of stresses. 

Therefore, each nodal stress will be multiplied by an area to obtain the corresponding 

nodal force which will be the spring force connected to that node. 
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For a 3-D analysis, this area will be: 

dA=dl*dz......................................................................................................(4.7) 

where, 

dz=L/nlayerp (L is caisson length) 

50*2

πD
dl   (D is caisson diameter; caisson is divided to 50 segments as finite 

element) 

For 3-D analysis, free surface condition should be considered for generating the 

spring properties since the lateral resistance factor decreases from at mudline to bottom 

of caisson. The reduction factor Rf can be expressed as proposed by Murff and Hamilton 

(1993) as follow: 

 

1

21
f

N

ηz/DexpNN
R


 ........................................................................... (4.8) 

where, 

N1=9.42+2.52α (α is assumed to be 1 for fully rough caisson) 

N2=7.42+1.7α 

η=0.25+0.05ρ for ρ<6 

η=0.55 for ρ>6 

ρ=Su0/Su1D (Su0 is soil strength at mudline and Su1 is vertical strength gradient) 

Therefore, the spring forces at radial and tangential directions can be obtained as 

follow: 

dFr=fr*dA*Rf*Su..............................................................................................(4.9) 
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dFt=ft*dA*Rf*Su.............................................................................................(4.10) 

Finally, as the spring properties are calculated, these springs are coupled with the 

caisson which is modeled by shell elements to make the coupled caisson-springs 3-D 

model for the analysis. The results and discussions are presented in the following 

chapter. 
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CHAPTER V 

FINITE ELEMENT STUDY RESULTS AND DISCUSSIONS 

General Scope 

Finite element analyses are carried out using ABAQUS 6.9 computer program. A 

3-D caisson and springs coupled model is generated for the finite element analysis. 

Spring properties discussed in the previous chapter are utilized for 3-D analysis. The 

caisson is loaded laterally at different location on caisson surrounded by the springs, and 

the results of caisson capacity, shell radial stress, shell moment, and spring radial forces 

at interesting locations are investigated. Taking advantage of the symmetry about the 

plane in which the load is applied, only one-half of the caisson (180 degrees) is 

simulated in all the analyses. 

Description of Study 

The analyses were performed for the caisson with dimeter of 5 m, two aspect 

ratios of 5 (L/D=5) and 3 (L/D=3), two modulus of regular steel modulus and fully rigid, 

and three shell thickness of D/t=80 (base case), D/t=125 (medium case), and D/t=160 

(ring stiffened case). Two undrained shear strength profiles were included in the 

analyses: linearly increasing (Su=2+1.6z) and uniform strength based on the averaged 

value of the linear profile (Suavg). Three soil rigidity index, RI=100, RI=200, and RI=300 

were included in the analyses. In order to simulate the real world application, a ring 

stiffener was put at the level of load attachment location. The load attachment point was 
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located at Li/L=0, Li/L=1/3, Li/L=1/2, and Li/L=2/3 for L/D=5 caisson, and Li/L=0, 

Li/L=1/3, and Li/L=2/3 for L/D=3 caisson. All the loading were in the lateral direction. 

Analysis Matrix 

Based on the parameters included in the description of the study, the matrix of 

the analyses are summarized in the Table 5.1 and Table 5.2. It is noted that for the 

analysis of rigid caisson, only one caisson shell thickness of 4 cm was used since it made 

no difference with different shell thickness when the caisson was fully rigid. A thickness 

was still input just for analysis purpose. 
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Table 5.1 Analysis Matrix for Flexible Caisson 

RI D/L Soil Profile D/t t,cm Li/L RI D/L Soil Profile D/t t,cm Li/L RI D/L Soil Profile D/t t,cm Li/L

0 0 0

1/3 1/3 1/3

1/2 1/2 1/2

2/3 2/3 2/3

0 0 0

1/3 1/3 1/3

1/2 1/2 1/2

2/3 2/3 2/3

0 0 0

1/3 1/3 1/3

1/2 1/2 1/2

2/3 2/3 2/3

0 0 0

1/3 1/3 1/3

1/2 1/2 1/2

2/3 2/3 2/3

0 0 0

1/3 1/3 1/3

1/2 1/2 1/2

2/3 2/3 2/3

0 0 0

1/3 1/3 1/3

1/2 1/2 1/2

2/3 2/3 2/3

125 4.000

160 3.125 

Su=2+1.6z

80 6.250

125 4.000

160

200 5

Uniform

80 6.250

125 4.000

160 3.125

Su=2+1.6z

80 6.250 

125 4.000

160 3.125

300 5

Uniform

80 6.250 

3.125

Flexible Caisson

6.250

4.000

3.125

6.250

4.000

3.125

80

125

160

80

125

160

100 5

Uniform

Su=2+1.6z
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Table 5.2 Analysis Matrix for Rigid Caisson 

RI D/L Li/L RI D/L Li/L RI D/L Li/L

0 0 0

1/3 1/3 1/3

2/3 2/3 2/3

0 0 0
1/3 1/3 1/3
2/3 2/3 2/3

0 0 0
1/3 1/3 1/3
1/2 1/2 1/2
2/3 2/3 2/3
0 0 0
1/3 1/3 1/3
2/3 2/3 2/3
0 0 0
1/3 1/3 1/3
2/3 2/3 2/3
0 0 0
1/3 1/3 1/3
1/2 1/2 1/2
2/3 2/3 2/3

Su=2+1.6z

100 3 200 3 300 3

Su=2+1.6z Su=2+1.6z

Soil Profile

Uniform Uniform

Soil Profile Soil Profile

Uniform

Rigid Caisson
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Soil Data 

As mentioned previously, two undrained soil strength profiles were utilized in 

the parametric study: linearly increasing (Su=2+1.6z) and uniform strength based on the 

averaged value of the linear profile. Therefore, since there were two caisson length used 

in the study (L=25 m and L=15 m), the uniform undrained shear strength for L=25 m 

caisson is Su=41 kPa and the uniform undrained shear strength for L=15 m caisson is 

Su=14 kPa. 

Mesh Discretization 

The nodal density for the 3-D analysis was based on the 2-D model mesh and 

then size matched for the 3-D mesh to obtain the enough fineness. 

In order to achieve the enough fineness of the 2-D mesh, the bending theory of 

curved beams (Housner and Vreeland, 1991) is introduced.  The governing differential 

equation for bending moment of a circular bar is given by following equation: 
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where, 

M=bending moment 

E=young’s modulus 

I=moment inertia 

u=radial displacement 

r0=initial radius 
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θ=rotation 

In a 2-D mesh, this governing equation can be developed, and applied for a 

slender circular beam loaded by diametrically opposed forces as shown in Figure 5.1. 

The relative displacement of the two opposed forces P is then given in a close form 

solution: 

EI

Pr
0.149u

3

  .................................................................................................(5.2) 

where, 

u=displacement 

P=loading force 

r=radius 

Figure 5.1 Bending of slender circular beam 
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With a testing finite element analysis using a shell structure with thickness t=0.04 

m, r=2.5 m, P=100 N, and E=3*1010 Pa, the half of the caisson length is then divided by 

10, 30, 50, and 100 (nrow) to represent cases for different element size. The loading is 

applied at one end of the half caisson using a load-control, and the corresponded 

displacement at the other end was measured. The results of numerical solutions are 

compared to the result from analytical solution for nrow of 50 and is shown in Table 5.3. 

The results shows that as nrow of 50, the results from analytical and numerical are close 

enough. Therefore, nrow of 50 is fine enough to for the 2-D mesh. 

Table 5.3 Nodal Density Analysis for a 2-D Mesh 

nrow P, kN δabaqus E t I r δclose form Difference 

50 0.1 0.6966 2.000E+08 0.04 3.333E-09 2.5 0.6984 0.0018 

For a 3-D mesh, the discretization in z-direction is based on the best matched 

element size in z-direction to make the shell element size a close-square. Based on this 

philosophy, the caisson length is divided into 160 elements for an L/D=5 caisson and 95 

elements for an L/D=3 caisson. 

Analysis Results 

Some important features are observed in the analysis and examples of results are 

presented and discussed below. 
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Elastic Behavior of Caisson 

Effect of Load Attachment Point and Caisson Shell Thickness (Ring Stiffener) 

The results of caisson capacity versus displacement (p-y curve) for the rigid 

caisson with aspect ratio of 5, linearly increasing soil strength, and RI of 300 are shown 

in Figure 5.2. 

Figure 5.2 P-y curve of the rigid caisson, aspect ratio of 5, linearly increasing soil 

strength, and RI=300 

The results of p-y curves of flexible caisson with different caisson shell thickness 

are added to the Figure 5.2 and is shown in Figure 5.3. 
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Figure 5.3 P-y curves of the rigid caisson and flexible caisson with different shell 

thickness, aspect ratio of 5, linearly increasing soil strength, and RI=300 

The results of caisson capacity versus displacement (p-y curve) for the rigid 

caisson with aspect ratio of 5, linearly increasing soil strength, and RI of 300 are shown 

in Figure 5.4. 
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Figure 5.4 P-y curve of the rigid caisson, aspect ratio of 3, linearly increasing soil 

strength, and RI=300 

 

The results of p-y curves of flexible caisson with different caisson shell thickness 

are added to the Figure 5.4 and is shown in Figure 5.5.    
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Figure 5.5 P-y curves of the rigid caisson and flexible caisson with different shell 

thickness, aspect ratio of 3, linearly increasing soil strength, and RI=300 

These results indicate that the optimal load attachment point is at Li/L=2/3 for an 

aspect ratio of 5 caisson for both rigid and flexible caisson and that the capacity reduce 

with load attachment point moving up towards the caisson top. 

These results also indicate that, although the ultimate capacity of rigid and 

flexible caissons are converging, the capacity of caisson at smaller displacement are 

quite different between rigid and flexible caisson and this difference is larger for load 

attachment point yielding larger capacity. 

These result also indicate that when stiffened the caisson behaves stiffer at lower 

displacement level. 
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Effect of Soil Rigidity Index (RI) 

The results of p-y curves of rigid caisson with different soil rigidity index with a 

caisson shell thickness of 4 cm are shown in Figure 5.6. 

Figure 5.6 P-y curves of the rigid caisson with different RI, with shell thickness of 4 cm, 

aspect ratio of 5, linearly increasing soil strength 

The results of p-y curves of flexible caisson with different soil rigidity index with 

a caisson shell thickness of 4 cm are shown in Figure 5.7. 
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Figure 5.7 P-y curves of the flexible caisson with different RI, with shell thickness of 4 

cm, aspect ratio of 5, linearly increasing soil strength 

The results of p-y curves of rigid caisson with different soil rigidity index with a 

caisson shell thickness of 4 cm are shown in Figure 5.8. 
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Figure 5.8 P-y curves of the rigid caisson with different RI, with shell thickness of 4 cm, 

aspect ratio of 3, linearly increasing soil strength 

The results of p-y curves of flexible caisson with different soil rigidity index with 

a caisson shell thickness of 4 cm are shown in Figure 5.9. 



130 

Figure 5.9 P-y curves of the flexible caisson with different RI, with shell thickness of 4 

cm, aspect ratio of 3, linearly increasing soil strength 

These results indicate that both rigid and flexible caissons have stiffer behavior 

when surrounded by soil with larger soil rigidity index. Also, all the previous analysis 

results indicate that a shorter caisson (lower aspect ratio) generally results in lower 

ultimate capacity than a longer caisson. 
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Effect of Soil Strength Profile 

The results of p-y curves of rigid and flexible caisson in uniform strength soil, 

with different load attachment point, with a caisson aspect ratio of 5, shell thickness of 4 

cm, and soil rigidity index of 300 are shown in Figure 5.10. 

Figure 5.10 P-y curves of the rigid and flexible caissons in uniform strength soil, with 

different load attachment point, with caisson aspect ratio of 5, shell thickness of 4 cm, 

and soil rigidity index of 300 

These results indicate that for a uniform soil strength the optimal load attachment 

point is at Li/L=1/2, and the second largest caisson capacity occurs at load attachment 

point of Li/L=2/3 and followed by the Li/L=1/3. The smallest capacity still occurs at 

caisson top, same as previous examples. 
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These results also reinforce the previous observation that the flexible caisson 

shows a more floppy behavior compared with rigid caisson and the ultimate capacity of 

these two types of caisson converges at larger displacement. 

Effect of Stiffener 

Effect of two types of stiffener-padeye stiffener and ring stiffener-is studied. 

Padeye stiffener, also called plate stiffener, is a steel plate supporting the front and back 

sides of the caisson and usually placed at the loading attachment level. A sketch of a 

padeye stiffener is shown below in Figure 5.11. In the analysis, the padeye stiffener is 

simulated with a rigid body. 

Figure 5.11 Cross section of a caisson with a padeye stiffener 

A ring stiffener is a reinforced shell around the circumference of the caisson at 

certain location. In the analysis, the ring stiffener is simulated by doubling the shell 

thickness at the load attachment level. 
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The results of p-y curves of a caisson with aspect ratio of 5, shell thickness of 

3.125 cm, in linearly increasing soil profile of RI=300 with padeye stiffener and ring 

stiffener is shown in Figure 5.12. 

Figure 5.12 P-y curves of caisson with thickness of 3.125 cm with padeye stiffener and 

ring stiffener 

The results of p-y curves of a caisson with aspect ratio of 5, shell thickness of 

6.25 cm, in linearly increasing soil profile of RI=300 with padeye stiffener and ring 

stiffener is shown in Figure 5.13. 
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Figure 5.13 P-y curves of caisson with thickness of 6.25 cm with padeye stiffener and 

ring stiffener 

The results indicate that both types of stiffener show benefit of increasing the 

stiffness of the caisson. A rigid padeye stiffener is more efficient on increasing the 

caisson stiffness than a ring stiffener. Generally, stiffeners are more efficiently 

increasing the caisson stiffness for a caisson with thinner shell. Thicker caisson is 

originally stiffer than a thinner caisson, and therefore benefits less from adding the 

stiffener. 
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Effect of Caisson Topcap 

In practice, caisson can be connected to the superstructure directly on top of it. In 

this case, a topcap is usually used on top of the caisson to serve as a platform on which 

the superstructure is set. The topcap is considered a rigid cap, and the effect of this rigid 

confinement at caisson top on the p-y curves are investigated in this study. 

The p-y curves showing effect of a rigid topcap for an aspect ratio of 5 and 3, 

shell thickness of 3.125 cm caissons in the linearly increasing soil profile with rigidity 

index of 300 are presented in Figure 5.14 and 5.15. 

Figure 5.14 Effect of rigid topcap on p-y curves for aspect ratio of 5 caisson 
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Figure 5.15 Effect of rigid topcap on p-y curves for aspect ratio of 3 caisson 

For both long and short caissons, the rigid topcap increase the stiffness of caisson 

at all loading points. It seems that at optimal load attachment point, the rigid topcap on a 

short caisson showed more benefit in increasing caisson stiffness than on a long caisson. 

It is also noted that when loading at the caisson top, the effect of a rigid topcap is same 

as a rigid caisson. 

Structural Assess of Caisson 

The structural responses of caisson are investigate based on shell stress and 

bending moment. In this 3-D analysis, the largest stress (S11) and bending moment 
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(SM1) in caisson shell are investigated. Examples of caisson structural responses are 

presented and discussed below. 

Caisson Shell Stress 

The largest stress (S11) is in the direction that is perpendicular to the shell 

surface pointing outward the caisson. Therefore, the results for this radial shell stress, 

S11, was presented in this study. 

The radial stress of caisson at different depths with shell thickness of 3.125 cm 

and 6.25 cm, and a rigid caisson, with aspect ratio of 5, linearly increasing soil strength 

with RI=300, and loading at Li/L=2/3 are shown in Figures 5.16 to 518. 
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Figure 5.16 Radial stress of flexible caisson with shell thickness of 3.125 cm, with 

caisson aspect ratio of 5, linearly increasing soil strength, and loading at Li/L=2/3  
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Figure 5.17 Radial stress of flexible caisson with shell thickness of 6.25 cm, with caisson 

aspect ratio of 5, linearly increasing soil strength, and loading at Li/L=2/3  
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Figure 5.18 Radial stress of rigid caisson with aspect ratio of 5, linearly increasing soil 

strength, and loading at Li/L=2/3  

The finite element results with stress contours for the above three cases are also 

shown in Figures 5.19 to 5.21 to show the stress distribution on the caisson. 
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Figure 5.19 Stress (S11) distribution on caisson for caisson shell thickness of 3.125 cm 
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Figure 5.20 Stress (S11) distribution on caisson for caisson shell thickness of 6.25 cm 



143 

Figure 5.21 Stress (S11) distribution on caisson for rigid caisson 
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These results indicate that the larges stress occurs at the load attachment point in 

a flexible caisson and this maximum stress is larger in a caisson with thinner shell 

thickness, which mean that double the caisson shell thickness help to reduce the stress 

level in the caisson. 

These results also indicate that however in a rigid caisson the larges stress occur 

at the bottom of caisson and the stress level is three magnitude and two magnitude 

smaller than the unstiffened caisson and ring stiffened caisson, respectively, based on 

this specific study. 

Caisson Shell Bending Moment 

The largest bending moment is about the local 2-direction that is tangential to the 

shell surface. Therefore, the results for this shell bending moment, SM1, was presented 

in this study. 

The bending moment, SM1 of flexible caisson with shell thickness of 3.125 cm 

and 6.25 cm, and a rigid caisson, with the caisson aspect ratio of 5, linearly increasing 

soil strength with RI of 300, and loading at Li/L=2/3 are shown in Figure 5.22 to 5.24. 
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Figure 5.22 Bending moment of flexible caisson with shell thickness of 3.125 cm, with 

caisson aspect ratio of 5, linearly increasing soil strength, and loading at Li/L=2/3  
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Figure 5.23 Bending moment of flexible caisson with shell thickness of 6.25 cm, with 

caisson aspect ratio of 5, linearly increasing soil strength, and loading at Li/L=2/3  
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Figure 5.24 Bending moment of rigid caisson, with caisson aspect ratio of 5, linearly 

increasing soil strength, and loading at Li/L=2/3  

These results indicate that in a flexible caisson the largest bending moment 

occurs at load attachment point and this maximum moment is larger in a caisson with 

thicker shell thickness. 

These results also indicate that in a rigid caisson the largest bending moment 

occur at the bottom of caisson and the moment level is way less than that in a flexible 
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caisson by a factor of 10 compared with an unstiffened caisson based on this specific 

study. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The 3-D finite element analyses using a newly developed coupled caisson-

springs model provided valuable results of elastic behavior of suction caisson 

foundations in typical soil profiles which was not investigated for a long time. The 

model also provided an efficient way of assessing the structural response of caisson in 

different soil and caisson properties. Based on this study, several important conclusions 

were reached which are outlined in this chapter. The finite element study did not account 

for all the factors that will also affect the results. Some of these factors are discussed in 

the final section in this chapter. 

Conclusions 

The most important observation in this study is that the elastic behavior of 

suction caisson is actually quite different from a rigid caisson. However, the previous 

researches had assume that the caisson was rigid when loaded in soft soils. The ultimate 

capacity is unaffected by elastic effects; however, at lower displacement or loading 

levels, the flexible caisson has a markedly more compliant behavior compared with a 

rigid caisson. This finding is very valuable for caisson design when under service loads 

instead of strength or ultimate load conditions. 

The structural response of caisson also significantly affected by elasticity of the 

caisson. The maximum shell stress and bending moment in a flexible caisson occur at 
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the loading point. The stress and moment level obtained from an analysis that considers 

the elastic interaction between soil and caisson is much higher than that which occurs 

when structural analysis of the caisson is based on soil stress distributions corresponding 

to a rigid caisson. 

In addition, this study presented a very time-efficient finite element method of 

using springs elements instead of continuum soil elements. By using the newly 

developed caisson-springs model, a 3-D analysis computing time reduced dramatically 

from hours to a few minutes, which greatly enhance the efficiency of evaluations. 

Taking the advantage of the caisson-springs model, it can be easily used to assess 

caisson structural response under different soil and caisson properties. 

Recommendations 

Potential for gap at the back side of the caisson 

In this study, the spring properties were developed based on that assumption that 

there was no gap forming on the back side of the caisson. However, at shallow soil 

depth, it is very possible that the gap can be formed at the back side of the caisson 

particularly under long duration of monotonic loading. Studies need to be conducted to 

take this into consideration to generate springs that is useful to better evaluate the elastic 

behavior under this condition. 
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Effect of caisson tip resistance 

The soil resistance at caisson tip could contribute significantly to overall load 

capacity for short caisson (small L/D). The short caisson studied in this analysis (L/D=3) 

did not take this into account. Therefore, it is not clear that how this factor will affect the 

elastic behavior of caisson compared with a rigid one. Studies need to be conducted to 

including this factor in the analysis for short caisson to understand the effect of tip 

resistance. 

Calibration of the spring properties 

The results of finite element analysis using coupled caisson-springs model under 

other setups, including soil profile, caisson stiffness, caisson dimensions, etc., need to be 

further confirmed with other continuum finite element analyses, laboratory testing 

results, or field testing results. Calibration of spring properties is a possible step if the 

results using springs based on the methodology described in this study are not in 

favorable agreement. 

Complex spring properties for other loading conditions 

The spring properties in this study were developed based on the 2-D finite 

element analysis. Therefore, the spring properties are valid for lateral direction, which 

means the coupled model is only appropriate to evaluate laterally loaded caisson and the 

vertical response cannot be simulated. However, the suction caisson foundation is very 

often under inclined and possibly torsional loading in real world practice. In order to 
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evaluate the suction caisson under more complex loading conditions and to take 

advantage of the efficiency of caisson-springs model, more complex springs with both 

lateral and vertical direction properties are needed. 

As mentioned previously, in order to include the caisson tip resistance, the more 

complex mechanism and spring properties at caisson tip need to be investigated. 
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