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ABSTRACT

In this work, we examine properties of quantum chromodynamics (QCD) at mod-

erate temperatures and density. These conditions are reached in the later stages of

ultra-relativistic heavy-ion collisions after the matter has cooled sufficiently to re-

hadronize from a quark-gluon plasma. The properties of matter in this stage are

expected to change smoothly with temperature. We explore this behavior in two

ways. First, we use finite-temperature sum rules to analyze the properties of vec-

tor and axial-vector spectral functions at low temperatures. Previous models used

in sum rule analyses frequently led to ambiguous applications. Here we avoid such

ambiguities by using an improved vacuum spectral function model together with

a strict leading-order-in-temperature expansion. This results in well-defined finite-

temperature spectral functions. Additionally, we incorporate a finite pion mass,

which we show induces an analytical violation of the sum rules. We then proceed to

numerically measure that violation.

Second, we calculate thermal photon emissivities of QCD matter from interactions

involving both mesons and baryons. We identify a novel source of thermal photons

from a system composed of π, ρ, and ω mesons, then calculate photon emission

rates from this system using both relativistic kinetic theory and thermal field theory.

These rates are compared to existing calculations and found to be significant. We

then calculate thermal photon emission rates from baryon interactions, using an

exhaustive set of both strange and non-strange particles. We again find novel sources

of photons from this system, compare the total rates to calculations of current state-

of-the-art photon emission rates, and find them to be comparable.
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NOMENCLATURE

ALEPH Apparatus for LEP PHysics at CERN

Condensate The vacuum expectation value of a quantum field

KT Kinetic Theory

LEP Large Electron-Positron collider

LHS Left-Hand Side

OPE Operator Product Expansion

PCAC Partial Conservation of Axial-vector Current

PDG Particle Data Group

QCD Quantum ChromoDynamics

QCDSR Quantum ChromoDynamics Sum Rule

RIKM Relativistically Improved K-matrix Model

RHS Right-Hand Side

TFT Thermal Field Theory

VMD Vector Meson Dominance

WSR Weinberg-type Sum Rule

In this work we use the following conventions:

• the Minkowski metric is gµν = Diag(+1,−1,−1,−1),

• the speed of light in vacuum c, reduced Planck’s constant ~, and Boltzmann’s

constant kB are all defined to be unity,

• Lowercase Roman indices a, b, c, ... indicate Cartesian space components of

isospin,
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• Lowercase Roman indices i, j, k, ... indicate Cartesian components of spin

(i.e., spatial components of a four-vector),

• Lowercase Greek letters α, β, µ, ν, ... indicate components of four-vectors, and

• the Dirac gamma matrices are in the Dirac representation, such that γ0 =

Diag(+1,+1,−1,−1).
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1. INTRODUCTION AND MOTIVATION

Nothing is ever finished, you just run out of time.

–Peter Jackson

On July 4, 2012, the ATLAS and CMS collaborations jointly announced their

discovery of a particle matching the properties of the Higgs boson [10,11], tentatively

confirming a nearly 50 year-old prediction. This was a monumental triumph for

the Standard Model of particle physics and it explained the origin of the masses

of all elementary particles in the Standard Model. It is currently believed that

several picoseconds after the Big Bang, the universe cooled below a certain critical

temperature and the Higgs field condensed into a “soup” that fills all space. Formerly

massless particles, like quarks, interact with this soup thereby acquiring non-zero

mass. As the universe cooled even further, quarks eventually became bound together

into baryons, such as the proton and neutron (collectively known as “nucleons”),

a phenomenon known as confinement. The Higgs mechanism for mass generation

explains the ≈ 5 MeV mass [9] of up and down quarks. The proton, which is made

up of two ups and one down quark, has a mass of ≈ 940 MeV [9]. Thus, the Higgs

field condensation cannot account for the overwhelming majority of the nucleon mass.

Since the vast majority of the visible universe is composed of protons and neutrons,

≈ 98% of the visible mass in the universe is unexplained by the Higgs field. From

whence does this “extra” mass originate?

The answer to this question lies under the purview of Quantum ChromoDynam-

ics [12, 13] (QCD). QCD is widely believed to be the correct theory to describe the

“strong” nuclear force. This force, mediated by particles known as gluons, is re-

sponsible for tightly binding quarks together into protons. The origin of the “extra”
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nucleon mass is believed to come from what is known as “chiral symmetry.” This is

a symmetry displayed in the fundamental equation describing QCD. However, this

symmetry is not displayed in the everyday universe around us, and is therefore a

“broken” symmetry. An example of this broken symmetry lies in the masses of two

subatomic particles, the ρ and a1 mesons. If chiral symmetry was realized in na-

ture, then these two particles would have the same mass, However, the a1 is ≈ 60%

more massive than the ρ. This mass difference is generated by the breaking of chiral

symmetry, which is also the source of the “extra” mass found in nucleons.

Another peculiar aspect of the strong nuclear force is that, as the momentum

transfer between interacting quarks increases, the strength of the strong force de-

creases. Therefore, if we sufficiently heat up nucleons, eventually the energy their

constituent quarks acquire from the heat would be so great that the strong force

would no longer be strong enough to bind them together. At this point, protons and

neutrons would melt away leaving only quarks and gluons which are no longer con-

fined within the nucleons. Thus, matter undergoes a transition into a state known

as quark-gluon plasma (QGP). In addition to this phenomenon of “deconfinement,”

it is also believed that the extra mass generated by the breaking of chiral symmetry

melts away with increasing temperature, indicating the gradual restoration of chiral

symmetry. The QGP is believed to have been the state of the universe when it was

between approximately 10−12 to 10−6 seconds old.

The temperature required to attain a quark-gluon plasma is approximately 4

trillion degrees Fahrenheit. There is no known condition in the known universe

where this environment naturally occurs. Not even the most extreme phenomena

such as black holes nor supernova attain such temperatures. This does, however,

occur in Brookhaven, New York and Geneva, Switzerland. The former is the home

to the Relativistic Heavy Ion Collider (RHIC) and the latter is home to the Large

2



Hadron Collider (LHC). At both facilities, experiments are conducted where heavy

ions, such as gold or lead nuclei, are slammed together at speeds in excess of 99.9999%

the speed of light. These collisions result in a fireball where sufficient temperatures

are attained to create the QGP. Luckily for humanity, these fireballs are only a few

hundredths of a trillionth of a meter across, and only last for a handful of billionths of

a second. These fireballs very rapidly cool, so that the QGP disappears and the only

particles that reach the detectors of experiments are those with very long lifetimes

(“long” in terms of strong-force interaction physics). By the time these particles are

emitted, they have “thermalized.” That is, they have interacted with each other in

the fireball so much that they lose much information they were been carrying from

the fireball itself. The question is then, how do we glean information about matter in

these extreme conditions from this fireball? For that matter, how do we even know

how hot it gets?

One answer is, “look” at it. Not as in seeing light with eyes, but by using

experimental instruments to detect photons. Since photons do not interact via the

strong nuclear force, they can pass almost unhindered through the fireball. We

can estimate this effect by looking at the elastic mean free path of particles. In

the simplest possible elastic photon scattering process there are two electromagnetic

(EM) vertices, which together pick up one power of the electromagnetic coupling

constant αEM . Similarly, a tree-level quark and/or gluon scattering process picks

up one power of the strong coupling constant, αs. An interaction cross section

involves effectively squaring the tree level process, so the cross section is proportional

to the squared coupling constant. The mean free path of a particle is inversely

proportional to its interaction cross section. Using the canonical value for the EM

coupling constant of αEM = 1/137 ≈ 1/100 and using a very rough estimate of the

strong coupling constant in the fireball of αs ≈ 1, the ratio of their elastic mean

3



free paths is α2
EM/α

2
s ≈ 10, 000. Therefore, a photon is 10,000 times less likely to

rescatter on its way through the QGP than a quark. Since matter in the fireballs of

heavy-ion collisions continuously emit photons, they serve as an excellent probe of

all stages of the fireball evolution.

In heavy-ion collisions, when the collision geometry is non-central, i.e., the nuclei

“clip” one another instead of colliding head on, the parts of the nuclei that did not

collide quickly move away from the central matter, leaving an almond-shaped blob

of impacted matter. Over the progression of the fireball lifetime, this initial spatial

anisotropy is converted to a momentum anisotropy whereby particles moving along

the minor axis of the collision zone have a greater momentum than particles moving

along the major axis. This is known as elliptic flow, v2, and can be experimentally

measured in heavy-ion collisions. By measuring the relative flow of particles, one

can possibly glean such information as the shear viscosity, pressure, temperature,

and even electrical conductivity of the fireball matter.

The goal of this work is to examine the properties of strongly-interacting matter

in temperature ranges cooler than the QGP transition temperature. To do so, we

analyze the behavior of the vector current-current correlator, ΠV . We first analyze

the behavior of the isovector vector and axial-vector correlators as temperatures

gradually rise towards the QGP phase transition temperature. As these particles

associated with these correlators (viz. the ρ and a1 mesons) heat up and slowly start

to melt, their properties are expected to gradually change and become degenerate,

signaling the restoration of chiral symmetry. We analyze these changes using a

quantum field theoretic construct known as sum rules. We then proceed to calculate

contributions to photon emission rates from the latter stages of fireball evolution by

taking the zero-mass limit of the vector correlator. We then directly relate the vector

correlator to the electromagnetic correlator, thereby allowing us to calculate thermal
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photon emission rates by analyzing finite-temperature properties of photons. These

photon emission rates can be used to glean information about the strongly-interacting

matter from which these photons originate.
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2. FINITE-TEMPERATURE QCD SUM RULES

The spontaneous breaking and ultimate restoration of chiral symmetry induces

observable changes in the hadron spectrum, particularly among chiral partners. Were

chiral symmetry to be unbroken in the QCD vacuum, all chiral multiplets, specifically

their masses and widths, would remain unchanged under a rotation in chiral space.

However, the QCD ground state spectrum does not display this symmetry. This

is particularly evident in the large mass splitting between the isovector ρ(770) and

a1(1260) mesons.

Chiral symmetry is believed to be restored at high temperatures and/or baryon

densities [14,15]. Its breaking and restoration can be described by an order parameter

whose value is zero when the symmetry is restored and non-zero when the symmetry

is broken. For the chiral phase transition of QCD, the typical order parameter is

the expectation value of the quark condensate, 〈0|q̄q|0〉. It is believed that the

chiral phase transition at finite temperature and small baryon chemical potential is

neither first- nor second-order, but a crossover transition [15]. Therefore, the quark

condensate is expected to smoothly “melt” with increasing temperature until chiral

symmetry is restored, a prediction that has been confirmed by first-principle lattice

QCD computations [16, 17]. The gradual melting of the quark condensate should

then be accompanied by an approach towards degeneracy in ρ and a1 masses, or

more generally, the spectral distributions of the isovector-vector (ρ) and isovector-

axial-vector (a1) channels.

This temperature-dependent interplay of spectral functions can be analyzed non-

perturbatively by the use of finite-temperature sum rules. Sum rules relate the

spectral distribution of a particular channel to an expansion in powers of inverse
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momenta which is expressed in low-energy condensates. The sum rules pertinent to

the current work are the finite-temperature versions of the QCD sum rules (QCD-

SRs [18, 19]) and the Weinberg-type sum rules (WSRs) [20–22]. The QCDSRs are

channel-specific; one such sum rule exists for each of the vector and axial-vector

channels. The WSRs relate moments of the difference in vector and axial-vector

spectral functions to various chiral order parameters.

At low temperatures, the thermal medium can be modeled as a gas of non-

interacting pions [23]. In Ref. [24] it was found that, to leading order in temperature,

this gas results in a linear mixing of the vacuum vector and axial-vector spectral

functions. This model-independent “chiral mixing” is the result of thermal pion

exchange between the two channels [25–27]. There it was also found that chiral

mixing straightforwardly satisfies the finite-temperature WSRs.

Many previous works [28–34] that explored the QCDSRs in the context of chiral

mixing have used a spectral function ansatz of a single resonance together with a

perturbative continuum modeled by a sharp onset (i.e., Heaviside function) at some

energy threshold s0, following the original works in 1979 [18, 19]. However, those

same works labeled this a “rough model” and “...it is in fact for the first time that

we can test QCD beyond mere perturbation theory, and a rough model is preferable

for a quantitative analysis.” [19] Thus, the usage of such a schematic model was

acceptable simply because this was a first attempt at the application of the QCDSRs.

Additionally, regarding the usage of the sharp-onset continuum [19]:

“It is worth noting that introducing the dimensionful parameter s0...

through the continuum model is in fact unsatisfactory. It might make a

false impression that the sum rules just relate the ρ mass to s0 introduced

by hand and that is all. In fact, we can consider s0 as a fit parameter
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and find it from the sum rules themselves.”

Therefore, the authors themselves realized that such sharp-onset a continuum model

was unsatisfactory, but suitable for a first attempt at application of the sum rules.

The application of the above spectral function model to finite-temperature sum

rules raises further questions. Should the threshold move as a function of tempera-

ture? If so, what should be its temperature dependence? Even when moving beyond

a delta-function resonance with finite-width spectral distributions, it was found that

the axial-vector channel did not satisfy the vacuum QCDSRs [35]. In addition, if

the threshold moves with temperature and is treated as a fit parameter, the location

of the threshold moves lower in energy with increasing temperature, and actually

“consumes” the resonance in the spectral function [36].

In the context of chiral mixing, the threshold for each channel must remain fixed

to its vacuum value since the finite-temperature spectral functions are linear com-

binations of the vacuum spectral functions. Even this presents an ambiguity: if the

thresholds for the vector and axial-vector channels differ, then chiral mixing will in-

duce a mixing between perturbative (continuum) and non-perturbative (resonance)

structures. If the two regimes are, by definition, separate, what then does mixing

them mean? The above questions suggest that the spectral function model of delta

function and sharp-onset continuum may be too crude for a clear application within

the QCDSRs. This suggests the usage of a more advanced model1.

Such a model was constructed in Ref. [1]. The vector and axial-vector spectral

functions from that work are shown in Fig. 2.1. They contain three features which

prove to be important to the current work: a ground state resonance (the ρ and

1In the context of this work, the author found that, when using a spectral function model
composed of a single ρ resonance together with a smooth-onset continuum which agreed with
ALEPH data, he was unable to satisfy the vacuum QCDSR in the vector channel. However, when
altering the spectral function to include the second resonance region visible in the ALEPH data
(see Fig. 2.1), the vacuum QCDSR was well satisfied.
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a1), an excited state (ρ′ and a′1), and a smooth degenerate continuum. The spectral

functions were constructed to satisfy τ decay data from the ALEPH collaboration [37]

as well as the vacuum Weinberg-type sum rules, where near-perfect agreement was

achieved. Most previous data-based WSR analyses of the τ decay data set the upper

limit of the energy integration range at the τ mass [37–39]. However, at this energy

the WSRs still display oscillatory behavior and are not yet convergent. The work of

Ref. [1] overcame this limitation by extending the energy integration range from the

τ mass to infinity and including an a′1 excited state, which compliments the ρ′ state

evident in the ALEPH data.
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Figure 2.1: Vacuum vector and axial-vector spectral functions compared with
ALEPH τ -decay data.
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The agreement of these vacuum spectral functions with both the WSRs and

QCDSRs suggests using them in an updated analysis of the finite-temperature sum

rules. In this chapter we present and apply the finite-temperature QCDSRs and

WSRs. We additionally employ a finite pion mass instead of working in the chiral

limit of mπ → 0, a feature which turns out to be pivotal in our analysis.

The remainder of this chapter is organized as follows. We first present the vacuum

sum rules, then their finite-temperature counterparts. We then construct the finite-

temperature spectral functions within the context of chiral mixing. Next, we apply

the resulting spectral functions to both the finite-temperature WSRs and QCDSRs

and evaluate the results. Finally, we summarize our findings.

2.1 Vacuum Sum Rules

Here we outline the derivations of the QCD and Weinberg sum rules in vacuum.

Complete derivations can be found in Refs. [18–22].

2.1.1 QCD Sum Rule

We begin with the vector or axial-vector current-current correlator,

Πµν(q) = i

∫
d4x eiq·x 〈0|T {jµ(x)jν(0)} |0〉 . (2.1)

This can be interpreted as the amplitude to propagate the current jµ with the given

quantum numbers from x = 0 to a variable location x. Here the currents have been

time-ordered in the standard fashion, such that

T {jµ(x, t1)jν(x, t2)} ≡ Θ(t1−t2)jµ(x, t1)jν(x, t2)+Θ(t2−t1)jν(x, t2)jµ(x, t1) , (2.2)
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where Θ(t) is the Heaviside step function. The currents are constructed of combi-

nations of quark fields which yield the quantum numbers of the hadronic channel

under study. For the present work we focus on the isovector-vector and isovector-

axial-vector currents

jVµ =
1

2

(
ūγµu− d̄γµd

)
, (2.3)

jAµ =
1

2

(
ūγµγ5u− d̄γµγ5d

)
, (2.4)

where we have suppressed isospin indices for clarity and simplicity. The lowest-lying

resonances in each of the vector and axial-vector channels (save for the pion in the

axial-vector channel, which is “special” due to its Goldstone boson nature), are the

ρ and a1 mesons, respectively.

The current-current correlators can be decomposed into four-dimensional trans-

verse and longitudinal parts,

ΠV,A
µν =

(
−gµν +

qµqν
q2

)
ΠV,A
T +

qµqν
q2

ΠV,A
L , (2.5)

where qµ is the four-momentum of the resonant state under study. In vacuum the lon-

gitudinal part of the vector correlator vanishes due to conservation of vector current.

However, the conservation of the axial-vector current is broken by the finite pion

mass, which is embodied in the partial conservation of axial-vector current (PCAC):

the axial-vector current is not conserved, but its violation is only of order m2
π. PCAC

takes the explicit form [40,41]

〈
0|∂µjAµ (x)|π

〉
=
fπm

2
π e

iq·x
√

2Eπ
, (2.6)
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where fπ = 92.4 MeV is the pion leptonic decay constant [9]. This violation of

current conservation causes the longitudinal vacuum axial-vector correlator to pick

up an “extra” part in the form of the pion pole,

Im ΠA
L(q2) = −πf 2

π q
2 δ(q2 −m2

π) . (2.7)

In medium the pion acquires a self-energy which effectively smears out the δ-function

representing its mass distribution.

The current-current correlators may also be expressed in terms of spectral func-

tions, which we denote by the symbol ρ, by using the Källen-Lehmann spectral

representation,

Π(q2) =

∫ ∞
0

ds
ρ(s)

s− q2 − iε . (2.8)

The explicit expression for the spectral function is

ρ(q2) = − 1

π
Im Π(q2) . (2.9)

The dispersion relation of Eq. (2.8) includes subtractions;

Π(q2)− Π(0)

q2
=

1

π

∫
ds

s− q2 − iεIm
(

Π(s)− Π(0)

s

)
. (2.10)

Since Im Π(0) = 0, this yields

Π(q2) = Π(0) +
q2

π

∫
ds

s

Im Π(s)

s− q2 − iε . (2.11)

Repeating the subtraction procedure, we find

Π(q2) = Π(0) + q2Π′(0) +
q4

π

∫
ds

s2

Im Π(s)

s− q2 − iε . (2.12)
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In vacuum both Π(0) and Π′(0) vanish. We thus have a representation of the current-

current correlator in a hadronic basis—as resonances encoded in the spectral func-

tions of the vector and axial-vector channels.

The correlator may also be expressed in a quark basis, owing to the principle of

quark-hadron duality [42]. The correlator can be evaluated using perturbative QCD

when the four-momentum is large and negative; −q2 = Q2. Using Wilson’s operator

product expansion (OPE) [43–45], the correlator can be expanded as

Π(Q2) =
∑
n

Cn(Q2, µ) 〈0|On(µ)|0〉 , (2.13)

where the Cn terms are complex-valued coefficients (Wilson coefficients), the On
are local operators composed of quark and gluon fields, and µ is an arbitrary en-

ergy/momentum normalization point. The physics from momenta greater than µ

is encoded in the Wilson coefficients, and physics from momenta less than µ is ab-

sorbed into the local operators, allowing an unambiguous application of the OPE [46].

The Wilson coefficients can be calculated via QCD perturbation theory, see, e.g.,

Refs [18, 19, 46]. The resulting vacuum expectation values of the local operators are

known as “condensates,” signifying the non-trivial propagation/coupling of quarks

and gluons in and to the physical QCD vacuum.

Our general QCD sum rule is now given by equating Eqs. (2.12) and (2.13).

Various integral transforms may be performed to improve series convergence; we

focus on the Borel transform of a function f(x), defined by [18]

f̃(M) =
1

2πi

∫ c+i∞

c−i∞
e−M/xf(x) d

(
1

x

)
, (2.14)

where the integration contour c is to the right of all singularities in f(x). The Borel
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transform may also be expressed in a derivative operator form,

L̂M = lim
Q2→∞,n→∞,Q2/n=M2

1

(n− 1)!

(
Q2
)n(− d

dQ2

)n
. (2.15)

When applied to a polynomial, this transform gives

L̂M

[
1

Q2k

]
=

1

(k − 1)!

(
1

M2k

)
. (2.16)

Thus, when applied to the OPE of Eq. (2.13), the Borel transform results in a

factorial suppression of higher-order terms as a result of Eq. (2.15). Additionally,

when the Borel transform is applied to Eq. (2.12), it exponentially suppresses the

higher resonant states in the spectral function. Applying the Borel transform to both

Eqs. (2.12) and (2.13) and equating the two yields the usual QCD sum rule:

1

M2

∫
ρ(s)

s
e−s/M

2

ds = C0 +
C1

M2
+

C2

M4
+

C3

M6
. (2.17)

The left-hand side (LHS) essentially contains information on the low-lying hadronic

resonances, while the right-hand side (RHS) encodes quark and gluon physics in the

form of condensates and Wilson coefficients. As a result of the Borel transform, the

four-momentum Q has been replaced by the “Borel mass,” M, which is treated as

a parameter. The Cn coefficients contain both numerical factors and condensates

whose energy dimension matches that of the Borel mass in the denominator, as both

sides of Eq. (2.17) are dimensionless. We truncate the OPE at dimension 6 due to

the factorial suppression of higher-dimensional terms. We then assume convergence

of the sum rules and evaluate the uncertainty in our results.
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The resulting values for Cn in the vector and axial-vector channels [18,19] read:

CV
0 = CA

0 =
1

8π2

(
1 +

αs
π

)
,

CV
1 = CA

1 = −3

8
(m2

u +m2
d) ≈ 0 ,

CV
2 = CA

2 =
1

24
〈αs
π
Ga
µνG

a
µν〉+ 〈muūu+mdd̄d〉 ,

CV
3 = −56

81
παs〈OV4 〉 ,

CA
3 =

88

81
παs〈OA4 〉 . (2.18)

Here all expectation values are taken over vacuum states; 〈O〉 = 〈0|O|0〉. In prin-

ciple there exists a dimension-6 gluon condensate in CV
3 and CA

3 which we have not

listed,
〈
fabcG

a
µνG

b
νλG

c
λµ

〉
(where fabc are the SU(3) structure constants). However,

contributions from condensates with more than two gluon field strength operators

are known to be suppressed relative to the other OPE terms [47–49]. Therefore we

neglect this condensate in the present work, a convention which was followed by the

original and many subsequent works [1, 28,29,32–35,46,48].

In Eq. (2.18) αs is the strong coupling constant, mu and md are the up and down

current quark masses whose small size (mu ≈ md ≈ 5 MeV) renders C
V/A
1 negligible

relative to the other terms, and
〈
αs
π
Ga
µνG

a
µν

〉
is the lowest possible dimension gluon

condensate, which we refer to as “the” gluon condensate. The (lowest possible di-

mension) quark condensate
〈
muūu+mdd̄d

〉
can be simplified by using the average

current quark mass mq = 1
2
(mu +md) and by using isospin symmetry to equate the

up and down quark condensates, so that
〈
muūu+mdd̄d

〉
= mq 〈q̄q〉. The subscript

4 in the condensates appearing in the C3 terms indicates that the quark content

involves four fields; we refer to these as the four-quark condensates. The explicit

quark field content in the vector and axial-vector four-quark condensates is given by
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the expressions [19,35]

〈
OV4
〉

=
81

224

〈(
ūγµγ5λ

au− d̄γµγ5λ
ad
)2
〉

+
9

112

〈(
ūγµλ

au+ d̄γµλ
ad
) ∑
ψ=u,d,s

ψ̄γµλaψ

〉
,

〈
OA4
〉

= − 81

352

〈(
ūγµλ

au− d̄γµλad
)2
〉
− 9

176

〈(
ūγµλ

au+ d̄γµλ
ad
) ∑
ψ=u,d,s

ψ̄γµλaψ

〉
.

(2.19)

Here the λa matrices are the Gell-Mann matrices, which are (up to an arbitrary

normalization factor) the generators of the Lie algebra of the SU(3) color symmetry

group.

The four-quark condensates can be substantially simplified by using the factor-

ization hypothesis, which states that the vacuum intermediate state in all channels

is dominant, and that all higher states can be neglected. This results in the following

simplification:

〈q̄Γ1qq̄Γ2q〉 = N−2 [(Tr Γ1 Tr Γ2)− Tr (Γ1Γ2)] 〈q̄q〉2 , (2.20)

where the Γ terms represent the matrix structure between the quark field operators.

N is a normalization constant defined by the relation

〈q̄AqB〉 =
δAB
N
〈q̄q〉 , (2.21)

and the subscripts A, B stand for a combination of spin, color, and flavor indices.

For the vector and axial-vector four-quark condensates, the numerical prefactor turns

out to be unity. We additionally add a parameter κ > 1 to account for the violation

of the factorization hypothesis, i.e., the contribution from the other states. We then
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have

〈
OV4
〉

= κV 〈q̄q〉2〈
OA4
〉

= κA 〈q̄q〉2 . (2.22)

In principle, the values of κV and κA need not be identical, as the vector and axial-

vector four-quark condensates are not the same. We note that all condensates ap-

pearing at zero temperature are Lorentz scalars, as they must be to ensure Lorentz

invariance of the vacuum state.

2.1.2 Weinberg-Type Sum Rules

The Weinberg-type sum rules relate the moments of the difference between vector

and axial-vector spectral functions to various order parameters of chiral symmetry

breaking. The full derivations of the Weinberg-type sum rules can be found in the

original works [20–22] and in Ref. [50]. The Weinberg-type sum rules take the general

form ∫ ∞
0

ds

s2
sn [ρV (s)− ρA(s)] = fn , (2.23)

where the fn represent various order parameters of spontaneous chiral symmetry

breaking. Sum rules are known for n = 0, 1, 2, and 3. They are, in order of increasing

n:

(WSR-0)

∫ ∞
0

ds

s2
[ρV (s)− ρA(s)] =

1

3
f 2
π

〈
r2
π

〉
− FA , (2.24)

(WSR-1)

∫ ∞
0

ds

s
[ρV (s)− ρA(s)] = f 2

π , (2.25)

(WSR-2)

∫ ∞
0

ds [ρV (s)− ρA(s)] = f 2
πm

2
π , (2.26)

(WSR-3)

∫ ∞
0

ds s [ρV (s)− ρA(s)] = −2παs
〈
OSB4

〉
. (2.27)
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We label the first listed sum rule as number zero since it was discovered after the

original Weinberg sum rules (WSR-1 and -2). Here FA = 0.0058 is the pion radiative

decay constant and 〈r2
π〉 = 0.439 fm2 is the average squared pion charge radius. In

Eq. (2.27),
〈
OSB4

〉
is the chiral symmetry-breaking combination of the vector and

axial-vector condensates, and is given by [1]

〈
OSB4

〉
=

16

9

(
7

18

〈
OV4
〉

+
11

18

〈
OA4
〉)

=
1

4

〈(
ūγµγ5λ

au− d̄γµγ5λ
ad
)2 −

(
ūγµλ

au− d̄γµλad
)2
〉
. (2.28)

This condensate also may be factorized in the same manner as Eq. (2.22):

〈
OV4
〉

=
16

9

(
7

18
κV +

11

18
κA

)
〈q̄q〉2 . (2.29)

2.2 Finite-Temperature Sum Rules

2.2.1 QCD Sum Rules at Finite Temperature

At finite temperatures, Lorentz invariance is broken due to the presence of a

thermal rest frame. By considering the mesons (or, alternately, their associated cur-

rents) under study to be at rest relative to the thermal frame, the condensates retain

a dependence only on temperature. The broken Lorentz invariance also necessitates

the introduction of new, non-scalar condensates in the C2 and C3 terms. These new

operators are typically characterized by the difference between their energy dimen-

sion and their spin, known as “twist,” τ . Additionally, the expectation value must

now be taken with respect to the thermal medium instead of the vacuum state. The
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new, thermal OPE terms are then [29]

CV
2 (T ) = CA

2 (T ) =
1

24
〈αs
π
Ga
µνG

a
µν〉T +mq〈q̄q〉T +

〈
Oτ=2,s=2

〉
T
,

CV
3 (T ) = −56

81
παs〈OV4 〉T +

〈
Oτ=2,s=4

〉
T

+
〈
Oτ=4,s=2

〉
T
,

CA
3 =

88

81
παs〈OA4 〉T +

〈
Oτ=2,s=4

〉
T

+
〈
Oτ=4,s=2

〉
T
. (2.30)

The temperature dependence of the OPE resides in the condensates, as the Wil-

son coefficients are temperature independent as a result of the separation of energy

scales [28].

In the present work we focus on the leading-order temperature dependence of the

QCD and Weinberg-type sum rules. We then need an expansion parameter that we

require to be “small.” Our setting contains three inherent energy scales: mπ, T , and

Λ, where Λ is a typical hadronic energy scale of order O[1 GeV]. We then have two

expansion parameters, mπ/Λ and T/Λ (the possibility of mπ/T is addressed below.).

The temperature regime pertaining to the current work is T . mπ, which leaves us

with one effective parameter

λ =
T

Λ
.
mπ

Λ
. (2.31)

Our consistent finite-temperature treatment of the QCD and Weinberg-type sum

rules is then satisfied by working to leading order in λ.

Evaluation of the leading-order temperature dependence of the condensates is

carried out by modeling the thermal medium as a dilute gas of non-interacting pions,

which is a valid approximation for T . mπ where the mean distance between pions

suppresses their interaction [29,51,52]. One then integrates the expectation value of
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the relevant operator over one-pion states, folded with the thermal Bose distribution:

〈O〉T ≈ 〈O〉0 + 3

∫
d3k

(2π)3Eπ
fπ(Eπ, T )

〈
π(~k)|O|π(~k)

〉
, (2.32)

where Eπ =

√
~k2 +m2

π is the pion energy in the thermal rest frame and fπ =

[exp (Eπ/T )− 1]−1 is the pion’s Bose distribution function. The numerical prefactor

3 is a result of summing the over isospin states of the pion.

These integrals were carried out in Refs. [28, 29]. The integrals involving scalar

condensates may be evaluated using vector and axial-vector current algebra together

with the soft pion theorem, which relates transition matrix elements between single

pion states with vanishingly small momentum to matrix amplitudes between vacuum

states [29];

lim
~p→0
〈πa(~p)|O|0〉 = − i

fπ
〈0|[Qa

5,O]|0〉 , (2.33)

Where Qa
5 is the isovector axial charge of the pion, given by

Qa
5 =

∫
d3x q̄(x)γ0γ5

τa

2
q(x) . (2.34)

The q(x) are the light-quark fields and τa is the Pauli matrix in isospin space.

The resulting temperature dependence of a scalar operator is then contained

solely in the dimensionless quantity

ε(T ) =
2

f 2
π

∫ ∞
0

d3k

(2π)3Eπ
fπ(Eπ, T ) . (2.35)

In the chiral limit of mπ → 0 this expression reduces to T 2/(6f 2
π). However, in this

work we are concerned with the effects from a finite pion mass, so we retain the full

expression for ε(T ) above. The leading-order temperature dependencies of the scalar
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condensates listed in Eq. (2.18) are [23,29]:

〈q̄q〉T = 〈q̄q〉0
(

1− 3

4
ε(T )

)
,〈αs

π
Ga
µνG

a
µν

〉
T

=
〈αs
π
Ga
µνG

a
µν

〉
0
− 2

3
m2
πf

2
πε(T ) ,〈

OV4
〉
T

= κV 〈q̄q〉20
(

1− 18

7

κ

κV
ε(T )

)
,

〈
OA4
〉
T

= κA 〈q̄q〉20
(

1− 18

11

κ

κA
ε(T )

)
. (2.36)

Calculation of the temperature dependencies of the non-scalar condensates is

somewhat more involved. The matrix elements of the these operators appear in deep

inelastic scattering of pions, i.e., they involve the light-quark distribution functions

of the pion. The operators and their temperature dependence are [29,32,53]:

〈
Oτ=2,s=2

〉
T

= Aπ2

(
3

4
m2
πI1(T ) + I2(T )

)
,

〈
Oτ=2,s=4

〉
T

= −Aπ4
(

5

8
m4
πI1(T ) +

5

2
m2
πI2(T ) + 2I3(T )

)
,

〈
Oτ=4,s=2

〉
T

= −Bπ
2

(
3

4
m2
πI1(T ) + I2(T )

)
, (2.37)

where the In(T ) are temperature-dependent integrals similar to the expression for

ε(T ):

In(T ) =

∫ ∞
0

d3k

(2π)3

k2n−2

Eπ
fπ(Eπ, T ) . (2.38)

The coefficients Aπn are moments of the light quark/anti-quark pion distribution

functions, given by [29]

Aπn = 2

∫ 1

0

dx xn−1 [q(x, µ) + (−1)nq̄(x, µ)] . (2.39)
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We adopt the values of these coefficients to be [29,54] Aπ2 = 0.97 and Aπ4 = 0.255.

While experimental data on the B2 term exist for the nucleon, similar data for

the pion are not available. However, analyses using the MIT bag model estimate

Bπ
2 to be small [55, 56]. Therefore, we will assume the value of Bπ

2 to be zero, and

estimate the effect of possible deviations from this value as part of the uncertainty

in our calculations.

Our numerical evaluation of the QCD sum rules will require a metric to quantify

deviation between the spectral and OPE sides. We shall use the method introduced

by the original authors [18, 19] and refined by Leinweber [48, 57, 58]. This measure

uses the average deviation between the LHS and RHS of Eq. (2.17) over a finite range

of the Borel mass. This measure, which we refer to as the d value, is given by

d =
1

M2
max −M2

min

∫ M2
max

M2
min

∣∣∣∣1− LHS(M2)

RHS(M2)

∣∣∣∣ dM2 . (2.40)

The minimal and maximal values of the Borel mass form a “Borel window” wherein

the sum rules are considered to be valid. We choose M2
min such that the C3 term

contributes at most 10% of the total from the OPE side, and M2
max such that the

contribution from the spectral continuum is at most 50% of the contribution from res-

onant states. Previous works used a limit of 100% contribution from the continuum.

We use a more stringent limit due to our larger continuum threshold.

2.2.2 Weinberg-Type Sum Rules at Finite Temperature

The leading-order temperature dependence of WSR-1, -2, and -3 was derived in

Ref. [22]. To the best of our knowledge, no such temperature dependence has yet

been found for WSR-0. For mesons at rest relative to the thermal frame (the same

condition used for the finite-temperature QCD sum rules), the finite-temperature
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Weinberg-type sum rules are:

(WSR-1)

∫ ∞
0

ds

s
[ρV (s, T )− ρ̄A(s, T )] = 0 ,

(WSR-2)

∫ ∞
0

ds [ρV (s, T )− ρ̄A(s, T )] = 0 ,

(WSR-3)

∫ ∞
0

ds s [ρV (s, T )− ρ̄A(s, T )] = −2παs
〈
OSB

4

〉
T
. (2.41)

Here we introduce the notation ρ̄A = ρA + f 2
π sδ(s − m2

π) to indicate we have ab-

sorbed the pion pole contribution to the axial-vector correlator into the definition of

the axial-vector spectral function. As stated earlier, at finite temperature the pion

develops a self-energy. This effectively smears the δ-function in Eq. (2.7) into a spec-

tral distribution. The pion pole can then no longer be simply integrated out of the

spectral side of the WSRs and is more naturally included along with the vector and

axial-vector spectral functions. The temperature dependence of the chirally-breaking

four-quark condensate has been shown to be [22,59]

〈
OSB

4

〉
T

=
〈
OSB

4

〉
0

[1− 2ε(T )] . (2.42)

Now that the leading-order temperature dependence of the sum rules has been es-

tablished, we turn to the temperature dependence of the spectral function.

2.3 Finite-Temperature Spectral Function

To consistently match the leading-order temperature dependence on the RHS of

the QCD sum rules, we require an equivalent temperature expansion for the vec-

tor and axial-vector spectral functions. This was derived in Ref. [59] in a model-

independent manner by using precisely the same techniques used to derive the

leading-order OPE temperature dependence. The correlators were evaluated in a
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thermal medium of a non-interacting pion gas, and the resulting transition matrix

elements were evaluated using current algebra and soft-pion theorems. The resulting

leading-order in temperature spectral functions were found to be linear combinations

of the vacuum spectral functions:

ρV (s, T ) = [1− ε(T )] ρV (s, 0) + ε(T )ρ̄A(s, 0) ,

ρ̄A(s, T ) = [1− ε(T )] ρ̄A(s, 0) + ε(T )ρV (s, 0) . (2.43)

This results in the temperature dependence of the finite-temperature spectral func-

tions residing solely in the mixing parameter ε(T ), which is identical to that of

Eq. (2.35). The two sides of the QCDSR sharing a temperature dependence gov-

erned by the same thermal parameter is reasonable, as the leading-order temperature

dependence was calculated in precisely the same fashion—via a non-interacting ther-

mal pion gas. The thermal parameter ε(T ) induces a mixing of the vector and axial-

vector spectral functions. For ε = 1
2

(T ≈ 215 MeV) the finite-temperature spectral

functions become degenerate, indicating restoration of chiral symmetry. However,

Eq. (2.43) was obtained using current algebra, which is a low-energy effective theory.

Therefore, its applicability to the high-energy perturbative part of the spectral func-

tion is questionable at best, and should not be applied to the perturbative continuum

of the spectral functions.

While the above method of chiral mixing completely determines the leading-order

temperature dependence of the spectral functions, it still requires vacuum spectral

functions as input. As previously stated, we use the vacuum spectral functions from

Ref. [1]. The parameter combinations from this work are shown in Table 2.1. These

parameters resulted in d values in the vector and axial-vector channels of dV = 0.24%

and dA = 0.56%, displaying satisfactory agreement with the vacuum QCD sum rules.
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Vacuum QCDSR parameters
mπ 139.6 MeV
fπ 92.4 MeV
mq 5 MeV

αs(1 GeV) 0.5
〈r2
π〉 0.439 fm2

FA 0.0058
〈q̄q〉 (−0.25 GeV)3〈
αs
π
G2
〉

0.022 GeV4

κV 2.1
κA 2.1

Table 2.1: List of vacuum QCD sum rule parameters.

The vacuum spectral functions were shown at the beginning of this chapter in

Fig. 2.1. In both plots the contributions to the total spectral function (solid lines) are

due to the ground-state resonance (dotted curve), excited resonance (dashed curve)

and a universal continuum (dotted-dashed curve). These plots show how the inclu-

sion of excited states shift the onset of the perturbative continuum to higher energies,

and display the excellent agreement of the spectral functions with the ALEPH data.

We now use these vacuum spectral functions together with the chiral mixing

scheme given by Eq. (2.43) to generate our finite-temperature spectral functions. The

resulting finite-temperature spectral functions are shown in Fig. 2.2 for three different

temperatures. The nonperturbative resonance regions of the spectral functions mix

smoothly with increasing temperature. Additionally, the degenerate continua avoid

any ambiguity of mixing of onset thresholds. The chirally-mixed spectral functions

show an oscillatory pattern of “peaks” and “valleys” where the peaks in one channel

fill in the the valleys in the other. By doing so, the spectral functions show a clear

trend toward chiral restoration.
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Figure 2.2: Temperature evolution of vector and axial-vector spectral functions.
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2.4 Finite-Temperature Sum Rule Analysis

Having established the leading-order finite-temperature Weinberg-type and QCD

sum rules, as well as our leading-order finite-temperature spectral functions, we are

now ready to analytically and numerically evaluate the finite-temperature sum rules.

2.4.1 Weinberg Sum Rules with Chiral Mixing

As shown in Eq. (2.41), the temperature dependence of WSR-1 and -2 depends

strictly on the difference of the finite-temperature vector and axial-vector spectral

functions. This is easily evaluated within the scheme of chiral mixing, and yields

ρV (s, T )− ρ̄A(s, T ) = [1− ε(T )] ρV (s, 0) + ε(T )ρ̄A(s, 0)

− {[1− ε(T )] ρ̄A(s, 0) + ε(T )ρV (s, 0)}

= [1− 2ε(T )] [ρV (s, 0)− ρ̄A(s, 0)] . (2.44)

The temperature dependence of the spectral functions factors outside the energy

integral in the finite-temperature Weinberg sum rules in Eq. (2.41), and we immedi-

ately recover the vacuum sum rules. Thus, the finite-temperature analogs of WSR-1

and -2 are satisfied within the chiral mixing scheme if the vacuum sum rules are

satisfied. Since our input vacuum spectral functions satisfy WSR-1 and -2 to a high

degree of accuracy, the finite-temperature analogs of WSR-1 and -2 are automatically

satisfied as well. The finite-temperature analog of WSR-3 also yields the same re-

sult, although not as trivially. When we combine the temperature dependence of the

chirally-breaking four-quark condensate from Eq. (2.42) with the finite-temperature

spectral functions, we find

[1− 2ε(T )]

∫ ∞
0

ds s [ρV (s, 0)− ρ̄A(s, 0)] = −2παs
〈
OSB

4

〉
0

[1− 2ε(T )] . (2.45)
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The temperature dependence of WSR-3 drops out since the leading-order tempera-

ture dependence of the spectral functions is identical to that of the chirally-breaking

four-quark condensate. This again leaves us with the vacuum sum rule, which is

satisfied by the vacuum spectral functions.

Thus, within the scheme of chiral mixing, the finite-temperature Weinberg-type

sum rules are automatically satisfied if the corresponding vacuum sum rules are

satisfied.

2.4.2 QCD Sum Rules with Chiral Mixing

2.4.2.1 Analytical Analysis

Before we proceed with the numerical evaluation of the QCD sum rules, we can

use a simple approximation to analytically examine their leading-order temperature

dependence. To do so, let us consider the chiral limit of mπ → 0, so that ε(T ) =

T 2/(6f 2
π). Therefore, we should retain only terms with temperature dependence

on the order of T 2. This automatically eliminates the non-scalar terms, since the

temperature dependence of the In integrals in Eq. (2.38) involves powers of T greater

than 2. For definiteness, we work with the vector channel, although we shall see that

the results are equally applicable to the axial-vector channel. In the chiral limit the

leading-order temperature dependence of the LHS is given by

1

M2

∫
ds
ρV (s, 0)

s
e−s/M

2

+ ε(T )
1

M2

∫
ds
ρ̄A(s, 0)− ρV (s, 0)

s
e−s/M

2

. (2.46)

The second integral may be eliminated by using the vacuum QCDSRs, Eq. (2.18).

Upon taking the difference between the axial-vector and vector channels only the

29



contribution from the four-quark condensates remains:

OPEA −OPEV =
ε(T )

M6

88

81
παs

〈
OA

4

〉
0

+
ε(T )

M6

56

81
παs

〈
OV

4

〉
0

=
ε(T )

M6
παs

16

9

(
7

18

〈
OV4
〉

0
+

11

18

〈
OA4
〉

0

)
=
ε(T )

M6
παs

〈
OSB4

〉
0
, (2.47)

where we have used the definition of the chiral symmetry-breaking four-quark con-

densate, Eq. (2.28), in the last line. The left-hand side of the vector QCDSR is

then

LHS =
1

M2

∫
ρV (s, 0)

s
e−s/M

2

+
ε(T )

M6
παs

〈
OSB4

〉
0
. (2.48)

We now turn to the right-hand side of the sum rule. Since we are now working in the

chiral limit, all terms multiplied by a pion mass on the OPE side of the sum rule must

vanish. This eliminates the quark condensate term via the Gell-Mann–Oakes–Renner

relation, which states [60,61]

−f 2
πm

2
π = mu 〈ūu〉+md

〈
d̄d
〉

+O[m2
q] . (2.49)

The finite-temperature correction to the gluon condensate must also be omitted since

it enters at order T 8 in the chiral limit [23]. The remaining terms on the OPE side

are then

RHS = C0 +
1

24M4

〈αs
π
G2
µν

〉
0

+
1

M6

[
−56

81
παs

〈
OV4
〉

0
− 18

7
ε(T )

(
−56

81
παs

)〈
OV4
〉

0

]
= C0 +

1

24

〈αs
π
G2
µν

〉
0

+
1

M6

[
−56

81
παs

〈
OV4
〉

0
+

16

9
παsε(T )

〈
OV4
〉

0

]
. (2.50)
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Recalling that we are working with κV = κA = κ, we now we use the factorization

hypothesis on the term in brackets to find

RHS = C0 +
1

24M4

〈αs
π
G2
µν

〉
0

+
1

M6

[
−56

81
παsκ 〈q̄q〉20 + παsε(T )κ 〈q̄q〉20

]
. (2.51)

We now equate the two sides of the sum rule, Eqs. (2.48) and (2.51), to find

1

M2

∫
ρV (s, 0)

s
e−s/M

2

+
ε(T )

M6
παsκ 〈q̄q〉20 = C0 +

1

24M4

〈αs
π
G2
µν

〉
0

+
1

M6

[
−56

81
παsκ 〈q̄q〉20 + παsε(T )κ 〈q̄q〉20

]
.

(2.52)

Comparison with Eqs. (2.17) and (2.18) shows that this expression is just the vacuum

QCDSR in the chiral limit for the vector channel along with two factorized four-quark

condensate terms, which identically cancel. This procedure may also be applied to

the axial-vector channel with the same result.

If we now move away from the chiral limit and work with a finite pion mass,

several of the above simplifications do not occur. The LHS remains the same, but

the RHS now retains the quark condensate term which was eliminated by taking mπ

to zero. In addition, since ε(T ) no longer reduces to T 2/(6f 2
π), we must now work to

order λ2 instead of T 2. Thus we must include both the gluon condensate temperature

correction and the non-scalar condensates. These extra terms explicitly violate the

QCDSR at order λ2.

Our conclusion is that, when using the factorization hypothesis with κV = κA

and working strictly to leading order, the inclusion of a finite pion mass explicitly

violates the QCD sum rules. This magnitude of this violation will be determined not

only by the numerical values of the condensates, but also by the shape of the vector
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and axial-vector spectral functions. Therefore, we proceed to a numerical analysis in

order to quantify the violation of the QCDSRs.

2.4.2.2 Numerical Analysis

The graphical display of the results from the vector and axial-vector sum rules is

shown in Fig. 2.3. The LHS (solid curve) and RHS (dashed curve) of each channels’

sum rule are plotted as a function of Borel mass at four different temperatures. The

vertical line in each plot indicates the vacuum Borel window, as discussed below. In

Table 2.2 we quantify the agreement between the two sides of the sum rules in terms of

the d value given by Eq. (2.40). Since the vacuum sum rules are not exactly satisfied,

we have included the zero-temperature results for comparison. We see that the finite-

temperature QCDSRs are reasonably satisfied (d . 1%) for temperatures up to ≈

140 MeV. Within this temperature range the deviations are approximately linear in

ε, as one would expect from the leading-order linear temperature dependencies of the

spectral functions and condensates (which are linear in ε). We therefore conclude

that the QCD sum rules are reasonably satisfied for temperatures T . 140 MeV.

Since we are conducting a numerical analysis of the sum rules, we must ensure

that we have control over the associated numerical uncertainties. Fig. 2.3 shows that

the lower limit of the Borel window significantly decreases with rising temperature.

This decrease stems from the temperature dependence of the C3 terms. Since those

terms decrease with temperature, the limit of a 10% contribution to the OPE by the

C3 term causes the minimum acceptable Borel mass to drop appreciably below the

vacuum limit. This is shown in Fig. 2.3 where the vertical lines indicate the lower

bound of the vacuum Borel window. If we keep the vacuum Borel window instead

of altering it with temperature, the sum rules remain reasonably satisfied up to T ≈

160–170 MeV. This is displayed in Table 2.2 where the values in parentheses show
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Figure 2.3: Comparison of the LHS (solid curve) and RHS (dashed curve) of the
QCDSRs for the the vector (upper panels) and axial-vector (lower panels) channels
at select temperatures. The extent of each plot corresponds to the Borel window at
that temperature, while the vertical lines designate the Borel window in vacuum.
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T (MeV) 0 100 110 120 130
ε 0 0.06 0.08 0.10 0.13

dV (%) 0.24 0.32(0.29) 0.38(0.33) 0.48(0.39) 0.64(0.51)
dA(%) 0.56 0.65(0.57) 0.70(0.58) 0.78(0.61) 0.90(0.67)

T (MeV) 140 150 160 170 180
ε 0.16 0.20 0.23 0.28 0.32

dV (%) 0.85(0.64) 1.11(0.74) 1.43(0.97) 1.82(1.17) 2.29(1.39)
dA(%) 1.08(0.76) 1.30(0.88) 1.60(1.01) 1.98(1.17) 2.53(1.34)

Table 2.2: Average deviation of the QCDSRs over the Borel window for the vector
and axial-vector channels at select temperatures. Values in parentheses are based on
a frozen Borel window identical to the vacuum one.

the d value calculated with the vacuum Borel window.

The non-scalar terms in the OPE are another source of uncertainty in our analysis.

The values of the twist-2 condensates, Aπ2 and Aπ4 , are not well-known, as they are

based on the pion structure functions. However, we have found the effect of changing

their values on the deviation to be small. Altering the value of Aπ2 by 20% causes a

relative change in the d value in both channels of only 0.7% for all temperatures. A

20% change in the Aπ4 condensate causes a relative change in the d values of 0.1% at

the lowest temperatures, up to a relative change of ≈ 5% at the highest temperatures.

Therefore, we find that changing the values of the twist-2 condensates has minimal

effect on the d values in both channels.

The effects of changes to the twist-4 condensate Bπ
2 are more pronounced. In

our analysis, we have set this condensate to zero due to a lack of experimental data

on its value. However, we may estimate the effect of a non-zero value by using the

value for the nucleon, BN
2 = −0.247 GeV2. The effect of this change on the vector

deviation is a change in dV by less than 1% at 100 MeV and up to a 25% change at

180 MeV. The effect in the axial-vector channel is less, with a relative change in dA
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of 5% at T = 180 MeV. We note, however, that the largest changes of the d values

take place at the highest temperatures, where the sum rule agreement has already

broken down.

2.5 Discussion and Summary

We now put our results into the context of previous finite-temperature sum rule

analyses. Most previous works have been based on the ground-state plus sharp-

onset continuum ansatz for both the vector and axial-vector channels. This causes

two issues. The first is that the continuum onset thresholds for the vector and

axial-vector channels are different. The second is that the thresholds can in princi-

ple be temperature-dependent. When one uses a rigorous leading-order treatment

of spectral functions, i.e., chiral mixing, this raises questions about the mixing of

nonperturbative resonances with perturbative continua, where the latter should be

chirally invariant. In this work we could avoid such ambiguities in application of

finite-temperature effects by using spectral functions with continua between the vec-

tor and axial-vector channels which are chirally-invariant (i.e., identical) to begin

with. This is enabled by the inclusion of a second excited state in each channel.

In addition, we have implemented leading-order temperature dependencies with a

strictly-defined expansion parameter which has an unambiguous application in the

spectral functions. We have found that the resulting finite-temperature Weinberg-

type sum rules are analytically fulfilled for all temperatures, and that the finite-

temperature QCD sum rules are analytically fulfilled in the chiral limit. We have

also found that the inclusion of a finite pion mass explicitly violates the QCD sum

rules at leading order in temperature. Numerically this causes the QCDSRs to break

down at temperatures T ≈ mπ. However, as noted in Refs. [29, 51, 52], at these

temperatures the mean distance between pions becomes small enough so that their
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interactions could become relevant. This indicates that the model of the thermal

medium as a non-interacting pion gas begins to break down at that point. In ad-

dition, for temperatures above ≈ 140 MeV, thermal resonances other than the pion

should become important. For example, the thermal number density ratio between

the ρ and the π, nρ/nπ ≈ 3(mρ/mπ)3/2e−(mρ−mπ)/T , goes from ≈ 3% at T = 100 MeV

to ≈ 15% at T = 140 MeV.
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3. THERMAL PHOTON EMISSION FROM HADRONIC SYSTEMS

The utility of photons as probes of QCD matter, as outlined in Sec. 1, reflects

the necessity of having theoretical models capable of reliably calculating photonic

observables from URHICs, specifically spectra and elliptic flow. Indeed, within the

last several years a putative “photon puzzle” has been presented wherein the same

models which reproduced dilepton spectra [15, 62] were found to leave discrepan-

cies [63] with direct photon spectra from both the PHENIX and ALICE experiments

by a factor ≈ 2 for photon energies between q0 . 3 GeV [64]. This is accompanied by

a slight underprediction in v2 at PHENIX and to a lesser degree at ALICE [65–71].

Much theoretical work has gone into addressing this photon puzzle [63,64,72–80],

with the tentative conclusion that the fireball source has hitherto unaccounted-for

thermal sources of photons. The difficulty in addressing this problem lies in the

variety of possible sources. For example, QGP radiation contributes heavily to pho-

ton spectra, particularly at high energies. However, during this time the fireball

has not yet developed sufficient momentum anisotropy to provide the needed v2 for

the emitted photons. In addition, the PHENIX collaboration measured the effective

temperature of direct-photon spectra to be Teff ≈ 240 ± 20 MeV. However, since

this radiation originates from matter moving towards the detector at an appreciable

fraction of the speed of light, the photons have been blue-shifted. The observed tem-

perature is related to the local rest-frame temperature, T , by a relativistic Doppler

shift [81]:

Teff = T

√
1 + β

1− β . (3.1)

For a typical average flow velocity of β ≈ 0.3–0.5 [63], the effective temperature

corresponds to T ≈ 130–180 MeV, which suggests the notion of direct photons
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originating from a hadronic source.

Recently Ref. [64] explored the effect of unaccounted-for hadronic contributions

by enhancing hadronic photon emission rates by hand by a factor 2–3 for tempera-

tures 140 . T . 200 MeV. After processing these rates through the evolution of the

fireball, they found improved agreement of photon spectra together with the photon

v2 increasing into the lower area of the error bars (c.f. Figs. 10 and 11 in that work).

Recent advances in fireball evolution models used in thermal photon emission

calculations, such as dissipative relativistic hydrodynamics [79] or coarse-grained

transport [82], still require local photon emission rates from QCD matter as input.

These rates are convolved over the entire evolution of the fireball to calculate photon

spectra and v2. However, few advances in photon emission rates from hadronic

matter have been made over the past ∼ 10 years, the last notable ones being from an

extensive calculation of photon-producing meson and nucleon/antinucleon scattering

processes [83], meson gas calculations with an in-medium ρ spectral function [84]

(2003), and meson Bremsstrahlung [3] (2007), extended to higher photon energies in

2014 [4].

Therefore, it is in order to revisit hadronic emission rates and search for sources

of thermal photons which have not yet been accounted for. In the following two

chapters we do so, focusing first on purely mesonic contributions. We then examine

the baryonic contributions to photon rates and compare the results to those from an

in-medium ρ spectral function.

3.1 Thermal Photon Emission Framework

In the remainder of this chapter we present our methods for calculation of thermal

photon emission rates from hadronic systems. These methods will be used in the

next two chapters to calculate photon rates for both mesonic and baryonic processes.
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First we present how we couple the electromagnetic field to hadrons using the vector

meson dominance (VMD) model. Then we present our methods of photon rate

calculations using both thermal field theory (TFT) and kinetic theory (KT).

3.1.1 Vector Meson Dominance

To introduce electromagnetic interactions into hadronic interactions, we employ

the vector meson dominance model [50, 85–87] which postulates that all hadronic

electromagnetic interactions proceed through vector mesons. This is realized through

in the current-field identity

jµEM =
m2
V

gV
V µ , (3.2)

where jµEM is the electromagnetic current, mV the vector meson mass, gV its coupling

strength, and V µ the field of the vector meson. This can also be expressed in terms

of the electromagnetic current correlator:

Πµν
EM =

m4
V

g2
V

Dµν
V , (3.3)

where Dµν
V is the vector meson propagator. We neglect the contributions of the ω

and φ mesons to the electromagnetic current, as their couplings are suppressed by

factors of ≈ 11 and ≈ 7, respectively, relative to the ργ coupling [50,88]. We use the

following interaction Lagrangian to couple the neutral ρ field to the electromagnetic

field:

Lργ = −AµCρm2
ρρ

0
µ . (3.4)

Here Aµ is the photon field and ρ0
µ the neutral ρ field. Were we to use strict VMD

the value of the coupling Cρ would be fixed to be e/gρ. However, we instead treat it

as an adjustable parameter which can be evaluated through the ρ dielectron decay.

In practice, these two values only differ by ≈ 15%.
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3.1.2 Calculations using Thermal Field Theory

Here we lay out the method for calculation of thermal photon rates using thermal

field theory. We follow the outline of derivation from Refs. [89, 90]. Consider the

interaction between two generic initial and final states, |i> and |f> which results in

the emission of an on-shell photon with four-momentum qµ = (q0, ~q ) and polarization

vector εµ. We are interested in finding the transition rate between the initial and

final states, which is

Rfi =
|Sfi|2
tV

, (3.5)

where tV is the proper four-volume and Sfi the S-matrix connecting the two states.

The S-matrix element for the emission of one photon is

〈
f

∣∣∣∣∫ d4xjµ(x)Aµ(x)

∣∣∣∣ f〉 , (3.6)

where jµ is the hadronic electromagnetic current operator and Aµ is the photon field.

We make a free-field ansatz for the electromagnetic field, such that

Aµ(x) =
εµ√
2q0V

(
eiq·x + e−iq·x

)
. (3.7)

Using translational invariance of the hadronic EM current operator we displace it to

the origin by means of a plane wave:

〈f |jµ(x)| i〉 = ei(pf−pi)·x 〈f |jµ(0)| i〉 . (3.8)

We now insert the expression for the Dirac delta function

∫
d4x e−i(px−py)·x = (2π)4δ4(px − py) (3.9)
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and the completeness relation for on-shell photons [91]

∑
spin

ε∗µεν = −gµν , (3.10)

into the S-matrix element above, integrate over x, and perform the complex square

in Eq. (3.5) to obtain

Rfi =
−gµν
2q0V

(2π)4[δ4(pi + q − pf ) + δ4(pi − q − pf )]

× 〈f |jµ(0)| i〉 〈i |jν(0)| f〉 . (3.11)

The first delta function corresponds to absorption of a photon with four-momentum

qµ, and the second delta function to emission of a photon. The former process is

not of concern in this work and is omitted from here on. In order to convert this

into a thermal emission rate, we sum over final states and average over initial states

with the Boltzmann factor e−Ei/T/Z, where Z =
∑

i e
−Ei/T (i.e., thermal averaging).

Doing so yields the differential rate [90]

q0
dR

d3q
=− gµν

2(2π)3

1

Z

∑
i,f

e−Ei/T (2π)4δ4(pi − pf − q)

× 〈f |jµ(0)| i〉 〈i |jν(0)| f〉 . (3.12)

This expression is greatly simplified by identifying the finite-temperature spectral

function for the photon:

ρµν(q) = − 1

Z

∑
i,f

e−Ei/T (2π)3δ4(pi − pf − q) 〈f |jµ(0)| i〉 〈i |jν(0)| f〉 . (3.13)
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Performing the sum over states gives us

q0
dR

d3q
=

gµν

(2π)3
π fB(q0, T ) ρµν(q) . (3.14)

Since the spectral function is related to the imaginary part of the (retarded) current-

current correlator, we then have [84,90]

q0
dR

d3q
= −αem

π2
f(q0, T ) Im Πem(q0 = |~q |, T ) . (3.15)

This expression is exact to all orders in the strong coupling and to leading order in

the electromagnetic coupling. It is our basis for calculation of thermal photon rates

using TFT.

3.1.3 Calculations using Kinetic Theory

Here present our method for calculation of thermal photon emission rates using

relativistic kinetic theory. Our outline follows that of Ref. [88].

The cross section for a 1 + 2→ 3 + γ photon-producing scattering process is

σ =

∫
2π

4E1E2v12

d3p3

2E3(2π)3

d3q

2q0

|M |2 δ4(p1 + p2 − p3 − q) , (3.16)

where v12 is the relative velocity between the incoming particles, q is the four-

momentum of the emitted photon, and |M |2 is the initial-state averaged and final-

state summed matrix amplitude. The production rate for this process is

R =
∑
E1,E2

Inσ , (3.17)

were I is the intensity of incoming particle 1 and n is the target density of particle
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2, which are given by

I = v12N1
dE1 g(E1) f(E1)

V
, n = N2

dE2 g(E2) f(E2)

V
, (3.18)

with g(Ei) being the density of states of the ith particle inside the volume V , f(Ei)

its thermal distribution factor, and Ni its spin/isospin degeneracy factor. Inserting

these expressions into Eq. (3.16) and taking the thermodynamic limit

∑
E1

dE1 gE1 → V

∫
d3p

(2π)3
(3.19)

gives the differential rate

q0
dRγ

d3q
=N

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

|M |2

× (2π)4δ4(p1 + p2 − p3 − q)f(E1, T )f(E2, T )
[1± f(E3, T )]

2(2π)3
,

(3.20)

where N = N1N2 is the overall degeneracy factor of incoming particles, and the “±”

is “+” if particle 3 is a boson (Bose enhancement) and “−” if it is a fermion (Pauli

blocking). This expression is our basis for calculating thermal photon emission rates

using kinetic theory.
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4. PHOTON EMISSION FROM MESONS: THE πρω SYSTEM

The exploration of thermal photon emission from a system of π, ρ, and ω particles

is motivated by two factors. The first is the relatively large size of the πρω coupling

constant [92, 93]. This coupling was pivotal to the identification of the ω t-channel

exchange in the πρ → γπ process as a significant contributor to thermal photon

emission rates generated by both a hot meson gas [84] and by the ω → π0γ radiative

decay [94]. However, in Ref. [84] the ω was treated solely as an exchange particle in

photon-producing scattering processes and neither as an incoming nor as an outgoing

particle. Since the ω is an unstable 3π state under strong interactions, some care must

be taken when evaluating scattering diagrams where the ω is an external particle.

The second motivating factor is the fact that the particles involved are relatively

light. This results in their thermal distribution factors being less suppressive than

heavier-mass particles. In this chapter, we calculate the thermal photon emission

rates from the πρω system using relativistic kinetic theory, while cross-checking and

verifying our results using thermal field theory.

4.1 Microscopic Ingredients

The ingredients for calculation of thermal photon emission rates using TFT are

the ρ/γ self-energy (equivalent within our VMD model), and for KT the Born scat-

tering amplitudes. Both of these are derived from the same effective Lagrangian

interactions and form factors. We also must evaluate the parameters in our model.
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4.1.1 Effective Lagrangians

We begin with free-field Lagrangians for π and ρ mesons,

L0
π + L0

ρ =
1

2
∂µ~π · ∂µ~π −

1

2
m2
π~π · ~π −

1

4
~ρµν · ~ρµν −

1

2
m2
ρ~ρµ · ~ρµ , (4.1)

with the usual definition of the ρ field strength tensor as

~ρµν = ∂µ~ρν − ∂ν~ρµ . (4.2)

Interactions between the π and ρ may be generated by treating the ρ as the gauge

particle of the SU(2) isospin symmetry [50, 87, 95]. We minimally couple the ρ to

itself and to the π by promoting simple derivatives to gauge-covariant derivatives

such that

∂µ → ∂µ + igρ~ρµ · ~T , (4.3)

where gρ is the isospin gauge coupling of the ρ. Due to vector meson universality [50,

96], the ρ has approximately the same coupling to all particles with isospin. We

identify the coupling gρ with the ρππ coupling constant, so that gρ = gρππ. Since we

are applying the gauging procedure to isospin-1 fields, we need the matrix elements

connecting two isovector fields;
〈
~φ|T |~φ

〉
. In Cartesian isospin notation, the isospin

operator ~T connecting two isovector fields φa and φc has matrix elements of [96]

〈φa|Tb|φc〉 = iεabc . (4.4)
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Applying this procedure to Eq. (4.1) gives ρππ and πππ interactions of

Lρππ = −gρ~ρµ · (∂µ~π × ~π) ,

Lρρρ = −1

2
gρ~ρ

µν · (~ρµ × ~ρν) . (4.5)

The anomalous parity-violating πρω interaction is incorporated using the Wess-

Zumino term [92,93]

Lπρω = gπρωε
µναβ∂αωβ∂µ~ρν · ~π . (4.6)

Interaction terms are typically not gauged, as they are obtained from the gauging of

free field Lagrangians. However, our ad-hoc introduction of the Wess-Zumino inter-

action requires us to gauge this term to maintain gauge invariance in our scattering

matrices. Applying the covariant derivative to this term generates a contact term

Lπρρω = gπρωgρε
µναβ∂αωβ (~ρµ × ~ρν) · ~π . (4.7)

Photon interactions are included by coupling the ρ directly to the photon using VMD

as laid out in Sec. 3.1.1. Restated for reference, that interaction is

LEM = −AµCρm2
ρρ

0
µ . (4.8)

With the above Lagrangian interactions established, we may now apply Feynman

rules to construct both the needed Born scattering diagrams and the ρ/photon self-

energy diagrams.

4.1.2 Form Factors

The above phenomenological Lagrangian interactions treat the particles involved

as point-like, i.e., as having zero size. However, mesons are spatially extended objects.
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An effective way of treating finite-size effects in scattering theory is with the use of

form factors. Simply put, form factors represent the Fourier transform of the spatial

charge distribution of an object. They represent the charge distribution “seen” by

an external probe. Take the case of an electron scattering off of a spatially-extended

charge distribution (e.g., a nucleus) via a virtual photon, schematically shown in

Fig. 4.1. If of the electron is much smaller than the mass of the charge distribution,

~ki
~kf

~q = ~kf − ~ki

ρ(~r )

Figure 4.1: Schematic drawing of electron with initial momentum ~ki and final mo-
mentum ~kf scattering off a charge distribution ρ(~r).

we may neglect any energy transfer between the two. In this case, the relation

between the differential cross section of electron scattering off a point charge (i.e.,

Mott scattering) and the cross section of electron scattering of the charge distribution

can be shown to be (see Chap. 8.1 and 8.2 of Ref. [91] for details)

dσ

dΩ
=
dσ

dΩMott
|FF (q)|2 , (4.9)

47



where q = |~q | = |~kf −~ki| is the three-momentum of the virtual photon and the form

factor FF (q) is given by the Fourier transform of ρ(x);

FF (q) =

∫
d3r ρ(~r) ei~q·~r . (4.10)

From the above expression we see that the form factor can be interpreted as a measure

of how much charge distribution the photon probe encounters in its interaction with

the charge distribution. When q � r such that the photon has a wavelength (given by

the de Broglie relation q = h/λ) much larger than the size of the charge distribution,

the exponential in the Fourier transform is nearly unity. This turns the form factor

into the simple integral of the charge distribution over all space, yielding the total

charge contained in the distribution. We then recover the Mott cross section for

scattering off a point object with a total charge Q =
∫
d3r ρ(~r). However, if q � r

such that the wavelength of the photon is comparable to or smaller than the size

of the system, the oscillatory behavior of the exponential results in a suppression of

the integral. This results in the photon “seeing” a lesser amount of net charge which

decreases the scattering cross section relative to the Mott cross section.

The implementation of hadronic form factors is analogous to that of electric form

factors. To approximately evaluate interactions between hadrons of finite size, at each

hadronic vertex we introduce a form factor which depends on the four-momentum

transfer through that vertex. With higher momentum transfer, smaller hadronic

structures are resolved which is reflected in a greater form factor suppression. For
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s-channel decay processes, we apply to each vertex a dipole1 form factor of the type

FF (s) =

(
2Λ2 +m2

R

2Λ2 + [E2(pCM) + E3(pCM)]2

)2

, (4.11)

where Ei(pCM) =
√
m2
i + p2

CM and pCM(s) is the center-of-mass momentum of each

hadronic decay particle, i=2,3, and mR is the mass of the resonant (or decay) particle.

Our value of Λ is addressed below. For t-channel scattering processes, we apply to

each vertex a dipole form factor

FF (t) =

(
2Λ2

2Λ2 − t

)2

, (4.12)

with t = (p1 − p3)2 for incoming (p1) and outgoing (p3) four-momenta (and likewise

for u-channel processes).

Save for the simplest of processes, like those involving only one Feynman diagram,

the implementation of form factors in a gauge-invariant manner is known to be a

complicated and involved process [97], especially when more than two particle species

are involved. However, we can approximate the effect of form factors by following

the prescription of Ref. [84] and implementing a “factorized” form factor. We do

so by identifying the dominant scattering diagram for the process, i.e., the diagram

with the largest contribution to the photoemission rates at high photon energies,

since at low photon energies the form factor effects are small. The dominant process

is usually the t-channel diagram involving a light meson as the exchange particle, for

example the t-channel π exchange diagram in the process πρ→ γω, shown in Fig. 4.2

(g). The s-channel processes are suppressed by the exchanged particle propagator

1Monopole form factors of the type (1 + q2/Λ2)−1 result from exponentially decreasing charge
distributions of ρ(r) = e−Λr, while dipole form factors of (1 + q2/Λ2)−2 result from “Yukawa”-type
charge distributions of ρ(r) = r−1e−Λr.
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(s −m2
R)−1. We then use an averaged exchange momentum, t̄, in the form factors

involved in the dominant diagram. This average momentum is a function of the

emitted photon’s energy, and is evaluated via the expression

(
1

m2
X − t̄

)2(
2Λ2

2Λ2 − t̄

)8

= − 1

4q2
0

∫ −4q20

0

dt

(
1

m2
X − t

)2(
2Λ2

2Λ2 − t

)8

, (4.13)

where q0 is the energy of the emitted photon and mX is the mass of the exchanged

particle. If a u-channel diagram dominates, we follow the same procedure but with ū

instead of t̄. The resulting form factor is independent of the four-momentum transfer

and thus factors out of the total matrix amplitude such that

|M |2 = |Mpoint|2FF (t̄)4 . (4.14)

This retains the gauge invariance in the amplitude, Mpoint, which is evaluated from

the point-like Lagrangian interactions from Sec. 4.1.1.

4.1.3 Evaluation of Parameters

Before we move on to photoemission rate calculations, we must evaluate the four

parameters Cρ, gρ, gπρω, and Λ. We use the value Λ = 1 GeV following Ref. [94]. In

that work, the above s-channel form factor was applied to the ρπa1, ρKK1, ρπh1,

and πρω mesonic vertices. The cutoff value of Λ = 1 GeV was found to satisfactorily

recover experimental results on the decay widths for both hadronic and radiative

decays simultaneously. As mentioned in Sec. 3.1, were we to strictly use VMD our

value of Cρ would be fixed to e/gρ. However, we may use experimental data from

the ρ → e+e− decay to directly evaluate Cρ. We similarly use data from the decay
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ρ→ ππ decay to evaluate gρ. For a 1→2+3 decay where the daughter particles have

negligible width, the partial decay width is [91]

Γ1→2+3 =
pCM |M |2FF 2(pCM)

8πm2
1

, (4.15)

where we have used the s-channel form factor from Sec. 4.1.2. The decay matrices for

each decay process are listed in Appendix A. Calculations of gρ and Cρ are straight-

forward. To evaluate gπρω, we can use VMD in the ω → π0γ decay such that the

photon proceeds through a virtual ρ. The resulting values for gρ, Cρ, and gπρω are

collected in Table 4.1. Now that we have established the necessary Lagrangian in-

Decay
Channel

Partial
Width

Resulting
Coupling

Γρ→ππ 149.1 MeV gρ = 6.01
Γρ→e+e− 7.04 keV Cρ = 0.0611
Γω→π0γ 0.703 keV gπρω = 21.6 GeV−1

Table 4.1: Coupling constant values calculated from 2016 PDG [9] data.

teractions, form factors, and coupling constants, we proceed to calculation of thermal

photon emission rates.

4.2 Kinetic Theory

As laid out in Sec. 3.1.3, the calculation of photo-emission rates within the frame-

work of relativistic KT requires the squared matrix amplitude of the scattering pro-

cesses. The πρω system is comprised of three 2→2 scattering processes: πρ → γω,

πω → γρ, and ρω → γπ. Each processes contains one each of an s-, t-, and u-channel

diagram, and a contact (c) term which arises as a result of the gauging procedure,
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(a) s-channel (b) contact term (c) t-channel (d) u-channel

(e) s-channel (f) contact term (g) t-channel (h) u-channel

(i) s-channel (j) contact term (k) t-channel (l) u-channel

Figure 4.2: Feynman Born diagrams for photon emission from the πρω system.
Figs. (a)-(d) show the processes for πω → γρ, Figs. (e)-(h) show the processes for
πρ→ γω, and Figs. (i)-(l) show the processes for ρω → γπ.

and is required for gauge-invariance of the scattering process. The resulting diagrams

for each process πρ→ γω, πω → γρ, and ρω → γπ are shown in Fig. 4.2.
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The input for our KT calculation is the (squared) coherent sum of the matrix

amplitudes for each diagram;

|M |2 = |Ms +Mt +Mu +Mc|2 . (4.16)

These are constructed by applying Feynman rules to the diagrams in Fig. 4.2 using

the previously established Lagrangian interactions and form factor procedure. The

matrix elements for each process are given in Appendix A.

Photon emission rate calculations with KT are straightforward for the πρ→ γω

and ρω → γπ processes. However, the πω → γρ process contains a subtlety. In

the u-channel diagram shown in Fig. 4.2 (d), it is kinematically allowable that the

exchanged pion goes on-shell, such that u = (pω − pρ)2 = m2
π. This creates a non-

integrable singularity in the corresponding pion propagator when applying Eq. (3.20).

This pion pole configuration corresponds to the ω → π0γ radiative decay, which

has already been included in previous rate calculations [84, 94]. We thus need to

eliminate this contribution in order to prevent double-counting of the radiative ω

decay. To do so, we can exploit the structure of the Wess-Zumino interaction of

Eq. (4.6). The four-dimensional Levi-Civita symbol ensures that, when the outgoing

ρ is converted to a photon, any diagram containing the Wess-Zumino interaction is

automatically gauge-invariant. We demonstrate this by confirming the Ward identity

for the πω → γρ process, using the matrix element from Appendix A. This involves

contracting the four-momentum of the photon with the Lorentz index of the photon’s

polarization vector:

Mγq
γ =

gπρωgρCρ
u−m2

π

(p2 − q)µpα2 (p1 − p2 + q)δ εµγαβq
γ εβ(p2)ε∗δ(p3) ε3abeae

∗
b . (4.17)
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Focusing on the Lorentz structure of the Levi-Civita symbol, we see that

εµγαβ(p2 − q)µqγpα2 εβ(p2) = εµγαβp
µ
2q

γpα2 ε
β(p2)− εµγαβqµqγpα2 εβ(p2) . (4.18)

The Levi-Civita symbol is zero when any two indices are the same. In each of the

two terms in Eq. (4.18) the Levi-Civita symbol is contracted with two of the same

momenta, p2 in the first term and q in the second. This same phenomenon will repeat

for any such diagram where the photon is emitted from the Wess-Zumino vertex. We

conclude that the Lorentz structure of the Levi-Civita symbol ensures that the Ward

identity is fulfilled for these diagrams, rendering them gauge invariant without the

need for additional diagrams.

We may then separate the u-channel diagram from the other three diagrams

in the πω → γρ process without affecting the gauge invariance of the total process.

Näıvely, we can avoid the ω radiative decay by excluding timelike pion configurations

with u > 0 from the integration range in Eq. (3.20), which avoids the singularity.

However, this is somewhat of an ad hoc approach and not is not rigorously justified.

To scrutinize this issue in detail, we turn to thermal field theory, where this issue

does not occur.

4.3 Thermal Field Theory

As mentioned in Sec. 3.1.2, thermal field theory provides a rigorous framework

for the calculation of photon emission rates. To calculate rates using Eq. (3.15), we

must evaluate the relevant photon self-energy. Each diagram in the KT calculation

has a corresponding photon self-energy.

In our current analysis, we focus on the two self-energy diagrams shown in Fig. 4.3.

The imaginary parts of these self-energies give rise to the u-channel Feynman dia-

grams of the ρω → γπ (Fig. 4.3 (a)) and πω → γρ (Fig. 4.3 (b)) processes. The latter
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process involves the diagram which contains the divergence and double-counting of

the ω radiative decay in the KT framework. We use the former as a benchmark of the

equivalence between the TFT and KT calculations. In both cases, the photon couples

to the Wess-Zumino vertex through the ρ, rendering the diagrams gauge-invariant

by themselves.

(a) ρω → γπ process

(b) πω → ργ process

Figure 4.3: Cuts of the photon self-energy which generate imaginary parts corre-
sponding to the u-channel diagrams of the ρω → γπ and πω → γρ processes.

The two ρ self-energy diagrams have similar structure, differing only by the pion

self-energy in the inner loop. The pion propagator is treated fully resummed in a

Dyson series, yielding (u − m2
π)−1 → (u − m2

π − Σπ)−1. The Σπ is the self-energy

arising from the πρ loop with the thermal pion2. We can set up the ρ self-energy

2In the TFT diagrams in this work, the “thermal” particle corresponds with the loop particle
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without yet evaluating either pion self-energy. By applying standard Feynman rules,

we find the ρ self energy to be

Σρ(q) =
1

2
P µµ′

T

∫
d3p

(2π)3

dp0

2π
vµνπρωv

µ′ν′

πρωD
νν′

ω (p0, ~p )Dπ(q0 − p0, ~q − ~p ) . (4.19)

Here p is the four-momentum of the ω, which we have separated into its spatial and

temporal components. The four-momentum of the ρ is q, Dπ is the propagator for

the π, and Dµν
ω = (−gµν + pµpν/m2

ω)Dω is the propagator for the ω meson. The

πρω vertex function is vνβπρω = gπρωε
µναβqµpα. The transverse projection operator PT

removes the 4-D longitudinal components of Σρ as required for a conserved vector

current. When taking the ρ self-energy to the photon point of |~q | = q0 as we are

doing, the transverse projection operator becomes P ββ′

T = −gββ′ and the longitudinal

component of the ρ self-energy vanishes.

When evaluating the thermal photon emission rates using Eq. (3.15), we omit

the real part of the ρ self energy as it is small compared to the ρ mass and has a

negligible effect on the rates. We therefore focus on calculating the imaginary part

of Σρ. To evaluate Eq. (4.19) using TFT, we use an elegant method from Ref. [89].

This procedure works only for propagators which have simple poles, as ours do. We

first set up the integral in vacuum, as we have done above. To obtain the finite-

temperature analogue of the vacuum expression, we simply make the propagator

replacement

1

p2 −m2 + iε
→ 1

p2 −m2 + iε
− 2πi

e|p0|/T ± 1
δ(p2 −m2) . (4.20)

The first term obviously recovers the vacuum expression, while the second term gives

whose arrow points to the left.
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the finite-temperature contribution when the delta function is used on p0. The “±”

term becomes +1 for fermions and -1 for bosons, thus resulting in either the Fermi or

Bose thermal distribution function of the particle. There are two possible solutions

from the delta function. The first, p0 = +
√
~p 2 +m2, corresponds to a topological

configuration where the energy is “positive,” or flowing in the direction it would in a

vacuum Feynman diagram. The second solution, p0 = −
√
~p 2 +m2 , corresponds to

a “negative” energy which flows in the opposite direction from its flow in a vacuum

Feynman diagram. This method allows us to obtain thermal field theory results from

a suitable modification of our vacuum integral.

To evaluate this integral, we first rewrite each propagator using a dispersion

relation;

D(p0, ~p ) = − 1

π

∫ ∞
−∞

dω
ImD(ω, ~p )

p0 − ω + iε
. (4.21)

We treat the ω as a zero-width particle which corresponds to its treatment as an

external particle in the KT approach. Therefore,

ImDω(p0, ~p ) = −πδ
(
p2

0 − ~p 2 −m2
ω

)
. (4.22)

Now making the propagator substitution of Eq. (4.20), evaluating the full expressions

for the vertex factors, and contracting over Lorentz indices, we find:

ΣT
ρ (q0, ~q, T ) = 4gπρω

∫ ∞
ω,ω′=0

d3p

(2π)3

dp0

2π
dω dω′ ω ω′[(p · q)2 − p2q2]

× 1

π2
ImDπ(ω′, ~p− ~q ) ImDω(ω, ~p )

×
(

1

ω′2 − (q0 − p0)2
+ fπ(ω′;T ) δ(ω′

2 − (q0 − p0)2)

)
×
(

1

ω2 − p2
0

+ fω(ω;T ) δ(ω2 − p0)2

)
(4.23)
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Since we are working at the photon point, q2 = 0. The imaginary part of Σρ which

concerns us uses the delta function solutions of p0 = ω and p0 = q0 − ω′. We use

those solutions and use the Bose function identity of fB(−x) = −1− fB(x) to find

Im Σρ(q0, ~q, T ) = g2
πρω

∫
d3p

(2π)3

1

2Eω

×
{

(Eωq0 − ~p · ~q) ImDπ (q0 − Eω, ~q − ~p)
[
1 + fπ(q0 − Eω, T ) + fω(Eω, T )

]
− (Eωq0 + ~p · ~q) ImDπ (Eω − q0, ~q − ~p)

[
fπ(Eω − q0, T )− fω(Eω, T )

]}
,

(4.24)

where Eω =
√
~p 2 +m2

ω. The inner loop of either diagram constitutes a pion self-

energy which enters into the denominator of the resummed pion propagator in

Eq. (4.24). The pion self-energies from interactions with a thermal meson m take

the form [94]

Σπm(k0, ~k, T ) =

∫
d3p

(2π)3

Mπm(p,~k)

2Em

{
fm(Em, T )− fπm(Em + k0, T )

}
, (4.25)

where Mπm is the forward-scattering amplitude for the π + m → π + m process

and fπm is the Bose factor for the resonance particle in the scattering process. The

self-energy for the inner loop in Fig. 4.3 (a) constitutes ππ scattering through an

s-channel ρ resonance, while the pion self-energy in Fig. 4.3 (b) is comprised of πρ

scattering through an s-channel pion resonance. Taking the imaginary part of the

ρ self-energy involves cutting through the loop diagrams, as shown in Fig 4.3. This

means each propagator that is severed by the thick line is put on-shell. Thus, the π

self-energy Σππ generates the ρω → γπ process, and the π self-energy Σπρ generates

the πω → γρ process.

We now proceed to analyze each process in more detail. First we use the process
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ρω → γπ as a benchmark to establish the equivalence of the photo-emission calcula-

tions resulting from the TFT and KT calculations. We will also show how the TFT

calculation provides a solution to the issue encountered in the KT calculation. Then

we apply this solution to the πω → γρ process to eliminate any double-counting with

the ω radiative decay.

4.3.1 ρω → πγ u-channel

The u-channel diagram of the ρω → πγ process is topologically similar to the

πω → γρ process, with one important difference: in the former process the exchanged

pion is kinematically forbidden from going on-shell. This allows us to calculate the

photon emission rates using both KT and TFT without encountering any ambiguities.

The pertinent imaginary part of the ρ self energy has two contributions, schematically

shown in Fig. 4.4. These are commonly known as the unitary cut, which represents

ρ→ πω decay on the left-most πρω vertex, and the Landau cut, representing πρ→ ω

scattering on the same vertex. These different cuts can be differentiated based on

the direction of the energy flow of the virtual pion. Focusing on the right-most

πρω vertex, the unitarity cut is associated with pion energy flow into the vertex,

as displayed in Fig. 4.4 (a). Since the energy of the ρ is equal to the sum of the

energy of the ω and the pion, we can quantitatively classify this cut by noting the

energy of the ω must always be less than the energy of the photon; Eω < q0. This

cut corresponds to the first term in the braces in Eq. (4.24). The Landau cut is

associated with a virtual pion energy flow out of the right-most πρω vertex, shown

in Fig. 4.4 (b). We may classify this cut by noting that Eω > q0.

We have calculated the photo-emission rates for the ρω → γπ process using both

TFT and KT (both without form factors). The resulting rates at T = 150 MeV are

shown in Fig. 4.5. We find excellent agreement between the full TFT calculation,
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(a) Unitarity cut

(b) Landau cut

Figure 4.4: Two cuts of the photon self-energy which give rise to imaginary parts
corresponding to the u-channel diagram of the ρω → γπ process.

given by the sum of the unitarity and Landau cuts, and the KT calculation using Born

diagrams. This confirms the equivalence of the two thermal photon emission rate

calculations. In addition, we find that the relation of energy flow between the ω and

the photon, which differentiate the unitarity and Landau cuts, can be mapped to a

KT calculation with an appropriate phase space restriction. Specifically, the unitarity

cut, which is given by the energy flow configuration of Eω < q0, corresponds to a KT

calculation where the phase space is restricted to the exchanged pion energy flowing

into the πρω vertex, which also corresponds to Eω < q0. A similar correspondence

exists between the Landau cut, Eω > q0, and a KT calculation with phase space

restricted to the energy of the exchanged pion flowing out of the πρω vertex. This

identification of a mapping between the unitarity and Landau cuts to KT is facilitated

by the u-channel Born calculation being free from on-shell singularities, contrary to
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the case in the πω → γρ process.

Fig. 4.4 (b) demonstrates that the Landau cut of the ρ self-energy gives rise to

a Born diagram featuring an ω → πγ decay topology. However, the emitted pion is

prevented from going on shell by the top vertex of the diagram, where an on-shell

ρ absorbs the emitted pion and converts to an on-shell pion. This is only possible

if the pion emitted from the ω decay is heavily space-like. A similar situation exists

in the diagram resulting from the unitarity cut, where an on-shell ρ decays into two

pions, which is allowable for two on-shell pions. However, one of the emitted pions

is absorbed by an on-shell ω which then converts into an on-shell photon. Again,

this is only possible for a highly virtual pion. We use these correspondences in the

following section to avoid ambiguous results and remove the double-counting the ω

radiative decay.

4.3.2 πω → ργ u-channel

As shown in Fig. 4.6, the ρ self-energy corresponding to the u-channel diagram of

the πω → ργ process can be separated into unitarity and Landau cuts. In the Born

diagram corresponding to the Landau cut, the exchanged pion can go on-shell, which

results in the double-counting of the ω → π0γ radiative decay. In principle, we could

use TFT to calculate this process, which unlike its KT counterpart, contains no di-

vergences associated with a pion pole. This is effectively due to a Dyson series resum-

mation of propagator of the pion, which generated a self-energy term that “shields”

the propagator from singular behavior: (u−m2
π)−1 → (u−m2

π−Σπ)−1. However, this

calculation would still be double-counting the ω radiative decay, which has already

been included in previous calculations of thermal photon emission rates [84, 94] and

does not constitute a novel source of thermal photons from the πρω system.

We now use the energy flow distinction between the unitarity cuts and the cor-
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Figure 4.5: Results from photo-emission calculation of ρω → γπ via the u-channel
diagram at T = 150 MeV. The solid line is the result using KT over the full kinematic
range of the exchanged pion, the dashed line is from TFT via the unitarity cut of
Fig. 4.4, and the dot-dashed is from the Landau cut of Fig. 4.4. The sum of the
unitarity and Landau cuts is plotted but cannot be seen as it coincides with the solid
curve.

respondence between TFT and KT to apply a criterion for what to include in our

rates. We omit the Landau cut contribution completely in order to remove the possi-

bility of double-counting the ω radiative decay. We have found that the contribution

to photo-emission rates from the TFT unitarity cut agrees with a KT calculation

when the phase space is restricted such that Eω < q0. We do not explicitly plot this

correspondence, since the difference between the two rates is not visible over our plot

ranges; c.f. Fig. 4.5 as an example. In principle, this selection is a conservative one,

since it removes not only all timelike pions, but also spacelike pions whose energy is

allowable by Eω < q0.
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(a) Unitarity cut

(b) Landau cut

Figure 4.6: Two cuts of the photon self-energy which give rise to imaginary parts
corresponding to the u-channel diagram of the πω → γρ process.

4.4 Thermal Photoemission Rates from the πρω System

Before presenting our final results, we will elaborate on our implementation of

form factors. The πω → γρ process is dominated by the t- and u-channel pion

exchange diagrams. Since the form factors for these diagrams have the same structure

(recall Eq. (4.13)), their factorized average form factors are identical and should

be applied as an overall form factor to the entire squared matrix amplitude. In

the πρ → γω process, the t-channel pion exchange is expected to give a higher

contribution to photo-emission rates than the u-channel diagram, which is suppressed

by a ρ mass in the propagator. Therefore the pertinent form factor for this process

is the average t-channel form factor. Before implementation of form factors, the

ρω → γπ process has two approximately equal contributions, one being the u-channel
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pion exchange and the other being the combined contact, s-, and t-channel terms,

which we refer to as “stc” for brevity. Again, this separation is possible due to the

gauge-invariance of the u-channel process alone. This equality of contributions is

shown in Fig. 4.7.

Figure 4.7: Comparison of the contributions to the ρω → γπ process from the u-
channel diagram (solid line) and the combined stc terms (dashed line); no form
factors included.

As discussed in Sec. 4.1.2, the factorized form factor suppression is driven by the

mass of the exchanged particle. The u-channel diagram involves an exchanged pion

whose associated form factor generates a suppression up to a factor 4.5 at q0 = 3.0

GeV. The stc terms are dominated by a t-channel ρ exchange at high energies, whose

associated form factor generates a suppression up to a factor 30 at q0 = 3.0 GeV.

Clearly, using either form factor alone would result in an under- or overestimation of

the net form factor suppression. However, once again we find a solution in the form of

individually gauge-invariant diagrams. Since we can separate the u- channel and stc

terms, we can apply an average π-exchange form factor (FFπ) to the u-channel, an
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(a) πρ→ γω (b) ρω → γπ

(c) πω → γρ

Figure 4.8: Impact of hadronic form factors on the photo-emission rates at T = 150
MeV for πρ→ γω(a), ρω → γπ(b), and πω → γρ(c) processes. The rates with form
factor (solid lines) are compared to the ones without form factor (dashed lines).

averaged ρ exchange form factor (FFρ) to the stc terms, and a combination of the two

form factors to the interference term, which is also gauge-invariant. Schematically,

we have

|MFF|2 = FF 4
π |Mu|2 + FF 4

ρ |Mstc|2 + FF 2
πFF

2
ρ (MuM

∗
stc +MstcM

∗
u) . (4.26)

The net effect of this implementation is that the total πρ→ γω rate is suppressed by

a somewhat larger magnitude than the other two processes, but less suppressed than
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if we had applied an overall t-channel ρ exchange form factor. We quantitatively

show the effect of form factor implementation in all three processes in Fig. 4.8.

We have also examined how variations in the Λ = 1 GeV form factor cutoff value

affect our rates. As mentioned in Sec. 4.1.3, this value simultaneously recovered

hadronic and radiative decay width for numerous mesonic interactions. This value

was used to calculate all coupling constants in this work. By lowering this cutoff, the

form factor suppression is increased, which demands a compensatory increase in the

couplings in order to recover the partial decay widths. However, it turns out that a

smaller cutoff value of Λ = 0.8 GeV yields an insignificant change in our decay rates

over a photon energy range up to q0 = 5.0 GeV. This is a result of the seesaw effect

of lowered form factor cutoffs yielding larger couplings.

4.4.1 Results and Comparison to Existing Rates

Our final results for photon emission rates for all three processes are summarized

in Fig. 4.9 (a)-(c) for temperatures of 120, 150, and 180 MeV. In the phenomeno-

logically pertinent regime of q0 ≈ 1 GeV, the rates from all three processes are com-

parable. Below this value the ρω → γπ process quickly dies as a result of a lack of

phase space. For q0 & 1.5 GeV, this process becomes dominant for all temperatures.

The relative strength of the processes is stable with temperature; only the πρ→ γω

process varies slightly. Parametrizations of all three rates are for 0.2 ≤ q0 ≤ 5.0 GeV

and 100 ≤ T ≤ 180 MeV are given in Appendix B.

66



(a) T = 120 MeV

(b) T = 150 MeV

(c) T = 180 MeV

(d) T = 120 MeV

(e) T = 150 MeV

(f) T = 180 MeV

Figure 4.9: LEFT COLUMN: Rates from the πρω system broken down by indi-
vidual process at varying temperatures. RIGHT COLUMN: Total rates from the
πρω system as calculated in the present work (black lines) versus the ω t-channel
rate (red line) at varying temperatures. Dashed lines are without form factor; solid
lines are with form factor.
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We compare our total photon emission rate for the πρω system with two previously-

established mesonic calculations. The first is the ω t-channel exchange diagram in

the πρ → γπ process, calculated in Ref. [84]. This diagram contains the same ρππ

and πρω vertices employed in this work, but features the ω only as an exchange

particle rather than an external one. Its thermal photo-emission rate was found to

be comparable to other known thermal photon sources at energies q0 & 1.5 GeV,

c.f. Refs. [4, 84]. Fig. 4.9 (d)-(f) displays the rates from this process as compared

to the πρω system at three temperatures. Each plot shows the photo-emission rates

with and without form factors. We see that prior to inclusion of form factors, the ω

t-channel rate is larger by a factor 4–5 for photon energies over 1 GeV. However, in

the realistic case including form factor implementation, the rates are similar in the

phenomenologically relevant regime of q0 . 2.0 GeV.

We also compare our work to the ππ Bremsstrahlung calculated in Refs. [3, 4].

These rates were found to be appreciable for photon energies q0 . 1 GeV, and at

the lowest energies (q0 < 0.3 GeV) even exceeding the contribution from in-medium

ρ mesons with baryonic sources [98, 99]. Fig. 4.10 shows a comparison of the rates

from the πρω system, ππ Bremsstrahlung, and the ω t-channel exchange. We see

that the rates from the πρω system are comparable to the Bremsstrahlung rates for

0.5 ≥ q0 ≥ 1.0 GeV, suggesting the contribution from this novel source of photons

may be significant compared to existing thermal photon rate calculations.
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Figure 4.10: Total rates at T = 150 MeV from the πρω system (solid black line)
compared to the ππ Bremsstrahlung rate (dashed black line) [3,4] and the πρ→ γπ
ω t-channel rate (red line).

While our current work focuses strictly on thermal photon emission rates, in ultra-

relativistic heavy-ion collisions below the chemical freezeout temperature of Tch = 160

MeV effective pion chemical potentials build which will significantly augment two of

the three processes in the πρω system. The processes πω → γρ will pick up a pion

fugacity factor zπ = expµπ/T to the 4th factor, since the ω is a 3π state. Likewise,

the process ρω → γπ will pick up a pion fugacity to the 5th power, since the ρ is a 3π

state. This additional enhancement induces a further significance for its contribution

to direct-photon spectra [64].

We have focused on the thermal photon emission rates from the πρω system due

to the relatively large gπρω coupling constant and relatively small particle masses

which result in relatively large thermal densities. The question remains if higher

mass states should also be considered. To answer this question, we can estimate the

possible contribution from the a1 meson. This exhibits a relatively large coupling to

πρ, approximately half that of the πρω coupling [94]. In that work the contribution
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to the ρ self-energy at the photon point from the a1 is around an order of magnitude

smaller than the contribution from the ω meson. This is a result of both the larger

πρω coupling, which enters into the photon rate squared, and the thermal densities of

the a1 which, at T = 150 MeV, is a factor ≈ 4 smaller than that of the ω. Therefore

the contribution from the a1 and higher mass states should be negligible.

4.5 Discussion and Summary

In this chapter we have calculated the thermal photon emission rates from a sys-

tem composed of π, ρ, and ω mesons using relativistic kinetic theory. We performed

complimentary calculations of photon emission rates using thermal field theory for

the u-channel diagrams of two of the processes. By doing so, we established the

equivalence between the two approaches, which allowed quality control of our results.

Additionally, these dual calculations allowed us both to avoid an ambiguity in the

kinetic theory calculation and to identify a criterion by which we avoided double-

counting of a previously-calculated contribution to thermal photon emission rates

corresponding to the ω → π0γ radiative decay. After accounting for finite-size effects

in hadronic interactions by implementing phenomenological form factors, we found

our resulting rates from the entire πρω system to be comparable to rates from the ω

t-channel exchange in the πρ→ γπ process [84] and from ππ Bremsstrahlung [3, 4].

This identification of a novel source of thermal photon production directly supports

the conjecture put forth in Ref. [64] that there are unaccounted-for hadronic sources

of thermal photons which contribute to both photon spectra and to elliptic flow.

Work has been done which supports our expectation of a significant contribution of

our rates to photon spectra and v2 [79, 82].
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5. THERMAL PHOTON EMISSION FROM BARYONS

In this chapter we extend our search for thermal photons to include effects from

interactions with baryons. We first re-examine and augment the state of existing

calculations of thermal photon rates from nucleon and delta resonances, and iden-

tify novel contributions from baryonic interactions with the ω meson. We then set

forth the microscopic ingredients to our calculations in the form of non-relativistic

Lagrangian interactions and form factors. We then constrain our parameter choices

using available data from particle decays, proton photoabsorption cross sections, and

πN scattering phase shifts. We then show the resulting photon emission rates and

compare them to previous calculations.

5.1 Overview of Existing Calculations

Contrary to mesonic sources, exploration of thermal photon rates from baryonic

sources has been somewhat limited. Perhaps due to the large number of nucleon and

delta resonances, many previous works have leaned toward calculations which use an

equation of state obtained from a hadron resonance gas model [100,101] without ex-

plicitly calculating baryon interactions. Other studies included the nucleon, ∆, and

N(1520), but could not achieve a quantitative reproduction of proton photoabsorp-

tion data [102]. Baryonic photon rates calculated within the Parton-Hadron String

Dynamics model [103] included only V +N → γ+N processes with phenomenological

cross sections, where V is a vector meson. However, Ref. [83] conducted an extensive

calculation of baryon radiative decays and thermal photon-producing processes of

the types XN → γN and NB̄ → γX, where X is any of the mesons π, η, ρ, ω, φ, and

a1. However, all the photon-producing scattering process involved only the nucleon

and not other baryon resonances.
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The current state-of-the-art calculations of thermal photon rates from baryonic

sources come from the in-medium ρ spectral function of Refs. [94, 98, 99, 104]. By

taking this spectral function to the photon point, photon rates from baryonic inter-

actions were generated [84]. The self-energy loops in that spectral function generate

direct ρB → γB through s-channel baryon resonances. In addition, ππ cloud modifi-

cations to the ρ were included which correspond to πB1 → γB2 scattering processes,

such as those shown in Fig. 5.1. However, only nucleons and ∆s were explicitly

calculated in these loops. The effect of higher baryon resonances in the ππ cloud

was approximated by using an effective nucleon density of %eff = %N + 1
2
%B∗ [98],

where the baryon resonance density %B∗ was estimated using a hadron resonance gas

approach.
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Figure 5.1: Cuts to pion cloud modifications of the in-medium ρ spectral function
which yield our Born scattering diagrams.
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The aim of this chapter is to provide direct calculations of thermal photon rates

using as full a spectrum of baryons as possible, including hyperons (strangeness-

carrying baryons). We calculate thermal photon rates from πB1 → γB2 processes

as shown in Fig. 5.1. In addition, due to the relatively large couplings of the πρω

and ωNN , we explore additional baryonic sources which involve the ω meson, shown

in Fig. 5.2. Save for the process ωN → γN , which was previously calculated in

Ref. [83], these modifications to the πω cloud of the ρ are novel contributions to

thermal photon emission rates.

The remainder of this chapter is organized as follows. We first lay out the mi-

croscopic ingredients for our calculations, which involve Lagrangian interactions,

hadronic form factors, and evaluation of free parameters. We constrain the latter

using particle decay information from the PDG, elastic πN phase shifts, and proton

photoabsorption cross sections. We then present our resulting thermal photon rates,

first from the ππ cloud processes, then from the πω. Finally we compare our results

to those of the in-medium ρ spectral function and discuss the results.

5.2 Microscopic Ingredients

5.2.1 Effective Lagrangians

We begin with the free-field Lagrangians terms π mesons, ρ mesons, and massive

spin-1/2 baryons:

L0
B1

= ψ̄ (iγµ∂µ −mB)ψ , (5.1)

L0
π =

1

2
∂µ~π · ∂µ~π −

1

2
m2
π~π · ~π , (5.2)

L0
ρ = −1

4
~ρµν · ~ρµν +

1

2
m2
ρ~ρµ · ~ρµ . (5.3)
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Figure 5.2: Cuts to the πω cloud of the ρ self-energy which give rise to processes
involving an “internal” ω in the scattering process (top), and to an “external” ω
(bottom).
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The notation B1 indicates a spin-1/2 baryon. To describe spin-3/2 baryons we start

from the Rarita-Schwinger formalism [105]. The free-field Lagrangian for a massive

spin-3/2 particle is

L0
B3

= −ψ̄µ (iγµ∂µ −mB)ψµ +
i

3
ψ̄µ (γµ∂ν + γν∂

µ)ψν − 1

3
ψ̄µγ

µ (iγµ∂µ +mB) γνψ
ν .

(5.4)

For a πB1B2 interaction term with spin-1/2 baryons, we choose a derivative

coupling to respect chiral symmetry [40],

LπB11 =
fπB1B2

mπ

ψ̄(iγ5)γµ∂µ~π · ~T ψ . (5.5)

The notation B11 indicates an interaction between two spin-1/2 baryons. Since the

pion field is parity-odd an iγ5 factor is needed (or not) if both baryon fields are

of the same (different) internal parity. In the above expression ~T is the isospin

transition operator connecting the pion and baryon fields. Its specific form depends

on the isospin quantum numbers of the particle to which it couples, i.e., whether

the baryons are isospin-1/2 or -3/2; see Table 5.1 for representations of this operator

(further details are given in Appendix A). For couplings between pions and two

spin-3/2 baryons we make the ansatz

LπB33 =
fπB1B2

mπ

ψ̄µ (iγ5) γν∂ν~π · ~T ψµ , (5.6)

with the same requirement for inclusion of the iγ5 term as Eq. (5.5). Interactions

between pions, spin-1/2, and spin-3/2 particles are given by

LπB13 = −fπB1B2

mπ

ψ̄µ (iγ5) ∂µ~π · ~T ψ + H.c. , (5.7)
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where “H.c.” indicates the Hermitian conjugate of the previous term.

In Appendix C we show that we require a different Lagrangian interaction to

describe interactions between pions, spin-1/2, and spin-3/2 baryons with opposite

internal parity, which has a non-relativistic correspondence to a D-wave interaction.

For these interactions we introduce the following term [106]:

LDπB13
=
fπB1B2

m2
π

ψ̄µγ5γ
ν∂ν∂µ~π · ~T ψ + H.c. . (5.8)

For interactions of pions and baryons with the ρ we use the same minimal substi-

tution gauging procedure as used in Sec. 4.1.1. Upon replacing ordinary derivatives

with the covariant derivative we obtain the following Lagrangian interaction terms:

Lρππ = −gρ~ρµ · (∂µ~π × ~π) ,

Lρρρ = −1

2
gρ~ρ

µν · (~ρµ × ~ρν) ,

LρB11 = −gρψ̄γµ~ρµ · ~T ψ ,

LρB33 = gρψ̄µγ
ν~ρν · ~T −

gρ
3
ψ̄γµ (γµ~ρν + γν~ρ

µ) · ~T ψν +
gρ
3
ψ̄µγ

µγν~ρν · ~T γσψσ ,

LπρB11 = gρ
fπB1B2

mπ

ψ̄(iγ5) (γµ~ρµ × ~π) · ~T ψ ,

LπρB33 = gρ
fπB1B2

mπ

ψ̄µ(iγ5) (γν~ρν × ~π) · ~T ψµ ,

LπρB13 = gρ
fπB1B2

mπ

ψ̄µ(iγ5) (~ρµ × ~π) · ~T ψ + H.c. ,

LDπρB13
= gρ

fπB1B2

m2
π

ψ̄µ (iγ5) γν (~ρν × ∂µ~π + ~ρµ × ∂ν~π) · ~T ψ + H.c. , (5.9)

where ~ρµν = ∂µ~ρν − ∂ν~ρµ is the ρ field strength tensor.

We will also be using interactions with an ω meson. Since the ω is an isosinglet

vector meson, we take the ωB1B2 interaction to be similar to the ρB1B2 interaction
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but in an isosinglet state [106–108]. This gives the following Lagrangians:

LωB11 = gωB1B2ψ̄(iγ5)γµωµψ ,

LωB33 = gωB1B2ψ̄
µ(iγ5)ωµψ + H.c. . (5.10)

There is no ~T operator in Eq. (5.10) since the ω is an isospin-0 particle and cannot

induce transitions between isospin-1/2 and -3/2 states.

The πρω and πρρω interactions are identical to those used in Sec. 4.1.1. We use

the VMD ρ-γ coupling given in Sec. 3.1.1.

5.2.2 Non-Relativistic Lagrangians

Taking advantage of the large baryon masses, we will be performing an expansion

in |~pB|/mB on Dirac and Rarita-Schwinger spinors and propagators, keeping only

contributions to 0th order. The reasons for this are threefold. First, the works whose

photoemission rates we are supplementing, Refs. [98, 99, 109], used non-relativistic

baryonic interaction vertices for the pion cloud effects. To allow for consistent com-

parisons we should use the same approach. Second, a fully relativistic treatment

would require use of the Rarita-Schwinger propagator. Considerable ambiguity ex-

ists on its usage for off-shell particles, as it not fully clear how to address the con-

tributions from spin-1/2 states which appear in the off-shell propagator [110, 111].

The third reason is a practical one: A non-relativistic treatment of Dirac spinors

dramatically simplifies calculations. The simplifications that result from the non-

relativistic treatment of spin-1/2 particles is minor, but treating spin-3/2 particles

non-relativistically significantly reduces the amount of work involved in the calcula-

tions while still maintaining accuracy at three-momenta up to q0 ≈ 2 GeV [112].

The inclusion of a iγ5 factor in the relativistic πBB interactions causes differences
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in the non-relativistic interactions. We introduce the notation L+ to indicate the two

baryon spinors have the same parity quantum number (whether +1 or -1) and L− to

indicate they have opposite parity quantum numbers. It is also shown in Appendix C

that the individual parity quantum number of each baryon is not relevant to the

Lagrangian interaction, only the combination of baryons’ parity. For the interaction

of two baryons with a pion, schematically displayed in Fig. 5.3, we find

L+
πB1B2

=
fπB1B2

mπ

χ†1

(
~π · ~T

)(
~k · ~S

)
χ2 , (5.11)

L−πB1B2
=
fπB1B2

mπ

χ†1

(
~π · ~T

)
ωπ(k)χ2 , (5.12)

π(~k)

B1(~p)

B2(~p+ ~k)

→ ~k

Figure 5.3: Diagrammatic representation of momentum flow of the πB1B2 vertex
given by Eq. (5.12).

The three-momentum of the pion is denoted by ~k and its on-shell energy is

ωπ(k) =

√
m2
π + ~k2. Here the χ are either two- or four-component spinors in both

spin and isospin space, depending on the quantum numbers of the baryons. As

mentioned in Sec. 5.2.1, the form of the isospin transition operator ~T depends on

the isospin quantum numbers of the baryons. The spin transition operator ~S is the

spin-space analogue of ~T . We list the notation for the various representations of the
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spin and isospin transition operators in Table 5.1, while the explicit matrix elements

of all transition operators are given in Appendix A. We note that L− describes an

S-wave interaction containing no powers of pion momentum, while L+ is a P -wave

interaction containing one power of pion momentum. In principle, we could continue

to expand the Dirac spinors to higher orders to obtain higher partial wave terms,

but this is at variance with our O
[
( ~p
m

)0
]

expansion. Therefore, we perform our non-

relativistic reduction on the relativistic Lagrangian of Eq. (5.8). The non-relativistic

spin structure of the D-wave interaction is slightly more complicated than P -wave

interactions, and depends on the spin of χ2, whether 1/2 or 3/2. After the |~pB|/mB

expansion (see Appendix C), the resulting interactions are

LDπB1B2
=
fπB1B2

m2
π


χ†1

(
~π · ~T

)(
~k · ~S

)(
~k · ~σ

)
χ2 , χ2 spin = 1

2

χ†1

(
~π · ~T

)(
~k · ~σ

)(
~k · ~S†

)
χ2 . χ2 spin = 3

2

(5.13)

Transition Spin Isospin
1/2→ 1/2 ~σ ~τ

1/2→ 3/2 ~S ~T

3/2→ 1/2 ~S† ~T †

3/2→ 3/2 ~S(3/2) ~T (3/2)

Table 5.1: Representations of spin and isospin transition operators based on the
spin/isospin quantum numbers of the initial- and final-state baryons.

The non-relativistic reduction of baryon interactions with the ρ are similarly

straightforward. However, as shown in Appendix C, the ρB1B2 interaction requires

modification to satisfy a non-relativistic Ward-Takahashi identity (see Refs. [113,114]
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ρ(~q )

B1(~p )

B2(~p− ~q )

← ~q

Figure 5.4: Diagrammatic representation of momentum flow of the ρB1B2 vertex
given by Eq. (5.14).

for more details). The resulting modified interaction shown in Fig. 5.4 is

L+
ρB1B2

= −gρχ†1ρµ

 G−1
B1

(p+q)−G−1
B2

(p)

q0

0

µ (
~ρ · ~T

)
χ2 , (5.14)

where p and q are the baryon and ρ four-momenta, respectively, and GB is the

non-relativistic baryon propagator. We introduce the notation

(
1

~S

)µ
=


1 , µ = 0

Si , µ = i = 1, 2, 3 .

(5.15)

This object is a four-vector such that contraction with a four-vector pµ gives

(
1

~S

)µ
pµ = p0 − ~p · ~S . (5.16)

We note that in our framework there exists no L−ρB1B2
. This is a result of introducing

the ρ as a gauge boson, so that the ρB1B2 interactions generated via gauging the free-

field Lagrangians of Eqs. (5.1) and (5.4) result only in interactions between identical
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baryons. The non-relativistic baryon contact terms are

L+
πρB1B2

= gρ
fπB1B2

mπ

χ†1ρµ

(
0
~S

)µ
(~ρ× ~π) · ~T χ2 , (5.17)

L−πρB1B2
= gρ

fπB1B2

mπ

χ†1ρµ

(
1

0

)µ
(~ρ× ~π) · ~T χ2 . (5.18)

The purely mesonic interactions in Eqs. (5.9) and (4.6) are unaffected by the |~pB|/mB

expansion since they have no dependence on spinors.

The non-relativistic versions of Eqs. (5.10) and (4.7) are

L+
ωB1B2

= gωB1B2 χ
†
1ωµ

(
1

0

)µ
χ2 ,

L−ωB1B2
= gωB1B2 χ

†
1ωµ

(
0
~S

)µ
χ2 . (5.19)

In principle, these interactions require the same modifications as Eq. (5.14) to satisfy

a Ward-Takahashi identity. However, in our analysis we will not be using the ωB1B2

vertex when the omega is an external particle, so that it will not be part of a conserved

vector current. Therefore, it does not require the same modification as Eq. (5.14). All

processes involving the ω, whether as an external or internal particle, will be coupling

via the πρω vertex of Eq. (4.6) with the ρ as an external particle. This vertex is

gauge invariant by itself, so that we may use Eq. (5.19) without modification.

Finally, for interactions with photons we use the vector meson dominance ργ

coupling introduced in Eq. (3.4) in Sec. 3.1:

Lργ = −AµCρm2
ρρ

0
µ . (5.20)
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5.2.3 Hadronic Form Factors

Before we can construct the Born diagrams from Sec. 5.1 via application of Feyn-

man rules, we must account for the finite size of the hadrons involved. As men-

tioned in Sec. 4.1.2, the inclusion of form factors in scattering process can be a

rather involved process. We therefore employ the factorized form factor method

from Sec. 4.1.2. For our πB1 → γB2 photon emission processes, however, we can

insert form factors on all πB2B2 vertices in a fully gauge-invariant manner.

In Ref. [115] it was suggested that the insertion of a monopole πNN form factor,

(Λ2
π)/(Λ2

π + ~k2), in nucleon-nucleon scattering diagrams could be diagrammatically

visualized as “a particle of mass Λπ with the same quantum numbers as the π-meson”

attaching to the “normal” pion lines; see Figs. 7-9 in that work. Here Λπ is the value

of the form factor cutoff and ~k is the pion’s three-momentum. We shall denote this

fictitious pion as π̃. A rigorous way of using this “heavy pion” method to implement

the πNN and πN∆ form factors was introduced in Ref. [109]. There it was shown

that, by assigning appropriate Feynman rules for the inclusion of the heavy-pion

propagator and pion-heavy-pion vertices, the resulting Feynman diagrams for ρ self-

energies generated form factors on all pertinent vertices and also maintained gauge

invariance. In Ref. [116] these Feynman rules were implemented in the context of

πN → ρN Born scattering diagrams, as opposed to self-energies. There it was

found that the gauge-invariant implementation of the πNN form factor required the

inclusion of two t-channel terms: one where the fictitious heavy pion is attached to

the external pion line, and one where the heavy pion is attached to the internal pion

line. These two diagrams are shown in Fig. 5.5. The remaining contact, s-, and

u-channel diagrams have only the external pion to attach the heavy pion, therefore

the inclusion of the πNN form factor on those diagrams is straightforward.
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γ

ρ

B2B1

π

π̃

π̃

(a) t-channel diagram 1

γ

ρ

B2B1

π

π̃

π

(b) t-channel diagram 2

Figure 5.5: Two t-channel diagrams that amount to an implementation of πB1B2

form factors via application of Feynman rules. The long dashed lines indicate “nor-
mal” pions while the short dashed lines indicate “heavy” pions.

Since the structure of our πB1B2 interaction is identical to that of the πNN

interaction used in Refs. [109] and [116], we may use the same Feynman rules to

implement the πB1B2 form factor in a gauge-invariant manner. Those rules are:

1. a heavy pion π̃ attaches to a normal pion at all possible locations,

2. the heavy pion “propagator” Gπ̃ produces a factor of −i/(Λ2
π + ~k2), and

3. the pion-heavy pion vertex produces a factor of iΛ2
π.

The combination of the propagator in item 2 and the vertex in item 3 yields the

desired monopole form factor. Item 1 ensures that the resulting combination of

diagrams and couplings will be gauge invariant.

As mentioned above, the application of these rules includes a t-channel dia-

gram [116] containing a ρπ̃π̃ vertex interaction term where the ρ attaches to two

heavy pions, shown in Fig. 5.5. This introduces a complication, as the structure of
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this vertex is a priori not known. We can, however, use the Ward-Takahashi identity

as a means to deduce/construct this vertex. We begin by noting that since the ρ is

coupled to a conserved vector current, we demand that the interaction vertex satisfy

the Ward-Takahashi identity [113,114]:

qµΓ̃µ
!

= −gρ
(
G−1
π̃ (k − q)−G−1

π̃ (k)
)
, (5.21)

where we have suppressed isospin structure for simplicity. We are not altering the

isospin structure of the vertex in any way, so we may temporarily remove it, then

reintroduce it after we arrive at our result. Since we know the expression for the heavy

pion propagator, we can calculate the difference between the inverse propagators:

G−1
π̃ (k − q)−G−1

π̃ (k) = Λ2
π + (~k − ~q )2 − Λ2

π − ~k2 ,

= Λ2
π + ~k2 + ~q 2 − 2~k · ~q − Λ2

π − ~k2 ,

= ~q · (~q − 2~k) . (5.22)

We may then combine Eqs. (5.21) and (5.22) to find

qµΓ̃µ
!

= −gρ~q · (~q − 2~k) . (5.23)

Since the four-momentum of the ρ (which we denote by q) necessarily has a non-zero

temporal component (as it is attached to a photon, so q0 = |~q |), the only possible

ρ-heavy pion interaction vertex which satisfies the Ward-Takahashi identity is

Γ̃µ = −gρ
(

0

2~k − ~q

)
µ

. (5.24)

This vertex is shown schematically in Fig. 5.6. We see that this has the same struc-
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ρ(~q )

π̃(~k )

π̃(~k − ~q )

← ~q

Figure 5.6: Diagrammatic representation of momentum flow of the ρπ̃π̃ vertex given
by Eq. (5.24).

ture of the “normal” ρππ vertex of Eq. (5.9), except that only the spatial components

of the four-vector structure figure. This is reasonable since the vertex connects two

heavy pion propagators which themselves depend only on the heavy pions’ three-

momentum. Therefore, satisfaction of the Ward-Takahashi identity demands that

the vertex contain no dependence on the temporal component of the pions’ four-

momentum. Since we have not modified any isospin structure of this new interac-

tion, it is identical to that of the ρππ interaction. Having established this vertex,

calculation of the matrix elements for S- and P -wave πB1 → γB2 photon emission

processes is straightforward.

The monopole form factor Λ2
π/(Λ

2
π + ~k2) is sufficient to ensure convergence in

the S- and P -wave πB1B2 interactions. However, our D-wave interaction contains

two powers of pion momentum. There a monopole form factor does not generate

sufficiently rapid convergence of the photon emission integral given by Eq. (3.20).

Therefore, we introduce an “effective” dipole form factor of the form Λ4
π/(Λ

4
π + ~k4).

We may then use the same method of introducing the form factor in a gauge-invariant

manner, using the following Feynman rules for processes involving a D-wave πB1B2

interaction:

1. a heavy pion π̃ attaches to a normal pion in all possible places,
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2. the heavy-pion “propagator” Gπ̃ receives a term of −i/(Λ4
π + ~k4), and

3. the pion-heavy pion vertex receives a term of iΛ4
π.

Implementing these rules gives us the same results as for the monopole form factor,

but with higher powers of Λπ and ~k. However, since we have altered the propagator

of the heavy pion, the above result for the ρπ̃π̃ vertex, Eq. (5.23), no longer applies.

We must repeat the procedure using the new 1/(Λ4
π + ~k4) propagator to construct a

new ρπ̃π̃ vertex. The structure of the Ward-Takahashi identity is identical, but the

difference in the inverse heavy pion propagators becomes

G−1
π̃ (k − q)−G−1

π̃ (k) = Λ4
π + (~k − ~q )4 − Λ4

π − ~k4 ,

= −4~k2(~k · ~q) + 4(~k · ~q )2 + 2~k2~q 2 − 4(~k · ~q)~q 2 + ~q 4

=
[
−4~k2~k + 4(~k · ~q )~k + 2~k2~q + ~q 2~q

]
· ~q − 4(~k · ~q )~q 2 . (5.25)

Here we encounter an ambiguity we did not have with the monopole form factor. We

need to “factor out” a “·~q ” from the above expression in order to identify the vertex,

which we have already done to the term in brackets. However, in the second term we

may factor out the “·~q ” from either the (~k ·~q ) or the ~q 2 term. We then have two ways

to construct the vertex; the Ward-Takahashi identity does not uniquely determine

the vertex. Indeed, in an analysis of in-medium Ward and Ward-Takahashi identities,

it was noted in Ref. [113] that “...the Ward and Ward-Takahashi identities are useful

for checking the consistency of approximations. However, they do not uniquely

determine the vertex function at finite momentum transfer. Thus, it is hazardous to

extrapolate away from the point of vanishing momentum transfer using only these

identities.”

The analysis of Ward-Takahashi identities in Ref. [113] involved significantly more
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complicated propagators and vertex functions than used in the present work. As

shown above, for our simple model we have only two choices for a vertex function

using our 1/(Λ4
π + ~k4) propagator1. We have used both possible choices for a vertex

function to calculate photon emission rates and found that, within the accuracy of

this work, there is little difference (. 5% for all photon energies) between the result-

ing rates. Therefore, for our purposes either choice is equally valid; we arbitrarily

choose to factor the “·~q ” from the ~q 2 term in Eq. (5.25). Continuing from that point,

we have

G−1
π̃ (k − q)−G−1

π̃ (k) =
[
−4~k2~k + 4(~k · ~q )~k + 2~k2~q + ~q 2~q

]
· ~q −

[
4(~k · ~q )~q

]
· ~q ,

=
[
−4~k(~k2 − ~k · ~q )− ~q (4~k · ~q − 2~k2 − ~q 2)

]
· ~q . (5.26)

Equating this result with the Ward-Takahashi identity of Eq. (5.21), we find a D-

wave ρπ̃π̃ vertex of

Γ̃Dµ = −gρ
(

0

4~k(~k2 − ~k · ~q ) + ~q (4~k · ~q − 2~k2 − ~q 2)

)
µ

. (5.27)

As before, the isospin structure remains unchanged from the “normal” ρππ vertex.

We now have defined our πB1B2 form factor and established a method of im-

plementation that ensures gauge invariance. However, there remain vertices in the

πB1 → γB2 processes which do not have form factors applied to them. Take, for

example, the s-channel diagram shown in Fig. 5.1(a). Our above method applies a

form factor to the πB1B2 vertex on the left of the diagram. However, we have not

applied a form factor to the ρB2B2 vertex. Similarly, in the t-channel diagram of

1It is interesting to note that in the course of this work we have found that any heavy pion prop-
agator of the form 1/(Λ2n

π + ~k2n) for n = 1, 2, 3, ... gives exactly n possible choices for constructing
a ρ-heavy pion vertex that satisfies the Ward-Takahashi identity.
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Fig. 5.1(b), the ρππ vertex at the top of the diagram also lacks a form factor. In order

to fully account for finite-size effects, we now employ the method from Sec. 4.1.2. We

identify the dominant diagram, which is the t-channel pion exchange. We then apply

a factorized form factor using an average pion exchange momentum. However, we

have already incorporated the πB1B2 vertex. Therefore, we use a modified version

of Eq. (4.13) where we include only the ρππ form factor in the averaging procedure.

Therefore, to the overall scattering scattering process we apply a dipole ρππ form

factor of

FFρππ(t̄) =

(
2Λ2

ρππ

2Λ2
ρππ − t̄

)2

, (5.28)

where we evaluate t̄ via the expression

(
1

m2
pi − t̄

)2( 2Λ2
ρππ

2Λ2
ρππ − t̄

)4

= − 1

4q2
0

∫ −4q20

0

dt

(
1

m2
π − t

)2( 2Λ2
ρππ

2Λ2
ρππ − t

)4

. (5.29)

We use Λρππ = 1 GeV in accordance with Sec. 4. This averaged form factor is then

applied to the overall amplitude as in Sec. 4.1.2;

|M |2 = |Mpoint|2FF (t̄)4 . (5.30)

This method accounts for the form factor effects that are not incorporated with the

heavy-pion technique. This is the final ingredient for form factor implementation in

πB1 → γB2 processes.

5.2.4 Novel ω Processes

Due to the relatively large πρω coupling, we consider two other processes, shown

in Fig. 5.7, both involving the ω meson. The process shown in Fig. 5.7 (a) involves
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γ
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π
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(a) Incoming π

ω

B1
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γ

ρ
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ω

π π

π

(b) Incoming ω

Figure 5.7: Cuts to the πω cloud contribution to the ρ spectral function which
yield Born scattering diagrams with an incoming pion (top) or with an incoming ω
(bottom).

the ωB1B2 vertex of Eq. (5.19), where the ω is an exchange particle. For this vertex,

we use the standard monopole form factor Λ2/(Λ2 +~k2) with ~k being the momentum

of the ω. The second process, shown in Fig. 5.7 (b), involves the ω as an external

particle, attaching to the πρω vertex of Eq. (4.6). As this is a purely mesonic vertex,

we use a dipole form factor of [2Λ2/(2Λ2 − t2)]
2
. Due to the gauge invariance of the

πρω vertex which is in both processes, we need only consider the t-channel diagrams.

This allows a straightforward implementation of form factors on both vertices without

the need to resort to a factorized form factor.
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5.2.5 Parameter Evaluation

The large number of vertices involved in these photoemission processes leave us

with a similarly large number of parameters. The purely mesonic parameters we

will be using have already been evaluated in Sec. 4. We still need to evaluate the

following quantities:

• the coupling constant fπB1B2 for each possible πB1B2 vertex, where B1 and B2

are any of the baryons under consideration,

• the cutoff ΛπB1B2 for each πB1B2 vertex form factor,

• the coupling constant gωB1B2 for each possible ωB1B2 vertex, and

• the cutoff ΛωB1B2 for each ωB1B2 vertex form factor.

We will use data from the Particle Data Group [9] on B1 → πB2 decays to calcu-

late the fπB1B2 coupling constants. The data used to calculate decays are given in

Appendix D. We neglect all πB1 → γB2 processes which contain couplings that

cannot be calculated due to lack of available decay data. The coupling constants are

found by applying Feynman rules to B1 → πB2 decay processes, then inserting the

resulting amplitude into the standard two-particle decay formula. In the rest frame

of B1, this is

ΓB1→πB2 =
pCM

8πm2
B1

|M |2 FF (pCM)2 , (5.31)

where ΓB1→πB2 is the partial width for the decay process, pCM is the magnitude

of the center-of-mass three-momentum of each daughter particle, and FF (pCM) is

the form factor for the πB1B2 vertex. |M |2 is the initial-state averaged and final-

state summed squared matrix amplitude (detailed in Appendix A). This amplitude

contains the (squared) coupling we wish to evaluate. The center-of-mass momentum
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can be calculated straightforwardly by applying conservation of four-momentum to

the invariant mass of the parent particle. Working in the rest frame of the parent

particle (~pπ = −~pB2), we can evaluate the squared four-momentum of the on-shell

decay particle:

q2 = m2
B1

= (pπ + pB2)
2

= p2
π + p2

B2
+ 2ωπ(pCM)EB2(pCM)− 2~pπ · ~pB2

= m2
π +m2

B2
+ 2
√
m2
π + ~p 2

CM

√
m2
B2

+ ~p 2
CM + 2~p 2

CM , (5.32)

which, after minor algebra, yields

pCM =
1

2mB1

√
m2
B1
− (mπ −mB2)

2

√
m2
B1
− (mπ +mB2)

2 . (5.33)

The particle properties (masses, widths, decay momenta, etc.) used to find the

πB1B2 couplings are given in Appendix D.

Resonances heavier than the ∆(1232) have considerable uncertainty in both their

total widths and in their branching ratios, both of which are needed to evaluate

the πB1B2 couplings. To account for this uncertainty, we introduce an uncertainty

parameter 0.6 ≤ y ≤ 1.4 which multiplies the partial width in Eq. (5.31), so that

ΓB1→πB2 → yΓB1→πB2 . Additionally, we use the same form factor cutoff for all

resonances other than the nucleon and ∆, so that we have only three cutoffs for

πB1B2 interactions: ΛπNN , ΛπN∆, and ΛπBB.

This method of calculating couplings is appropriate when the decay products

have zero or relatively small width, i.e., they are stable particles. However, if the

daughter baryon has a non-negligible width, treating it as a stable particle may no

longer be justified. We can then no longer use a fixed-mass approximation for the
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daughter baryon’s spectral distribution, and rather should integrate over its invariant

mass. The extension of Eq. (5.31) is then [104]

ΓB1→πB2 =

∫
dq q

pCM(q)

8πm2
B1

|M(q)|2 FF (q)2 ρB2(q) , (5.34)

where q2 is the variable mass of the daughter baryon B2, and ρB2(q) is its spectral

function. When B2 is treated in this manner we imply the replacement mB2 → q in

the expression for pCM . For simplicity, we will model ρB2(q) using a Breit-Wigner

resonance with an energy-dependent width:

ρB2(q) = − 1

π
ImDB2(q) =

1

π

qΓ(q)(
q2 −m2

B2

)2
+ q2Γ(q)2

. (5.35)

The width of B2 is generated by the decay process B2 → πN . This gives us the lower

bound for the integration over q in Eq. (5.34), qmin = mN +mπ. The upper bound for

q is given by the amount of energy available for B2, qmax = mB1 −mπ. These limits

also give us a criterion for when we need to use Eq. (5.34) over Eq. (5.31). If the

integration range of q covers a sufficient amount of the width of the spectral function,

we may approximate ρB2 with a delta function. If not, then we must integrate over

the kinematically available regions of the spectral function. More quantitatively, we

must integrate over the spectral function if

mB1 − (mB2 +mπ) <
ΓB2

2
. (5.36)

In practice, only one of our couplings requires this treatment, for the ∆(1600) →

πN(1440) decay. The N(1440) has a width of 350 MeV, and m∆(1600) − (mN(1440) +

mπ) = 20 MeV, which necessitates the usage of Eq. (5.34). The calculation of

the πN(1440)∆(1600) coupling with a sharp N(1440) mass using Eq. (5.31) gives
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fπN(1440)∆(1600) = 8.4, which turns out to be a gross overestimate. The calculation

using Eq. (5.34) and a finite N(1440) width gives fπN(1440)∆(1600) = 4.9.

We may calculate the gωB1B2 couplings in the same manner as the fπB1B2 cou-

plings. We note that the ω is an isoscalar particle, so it can couple only to baryons

with identical isospin; there are no ωN∆ couplings. Additionally, since the ω is

not easily reconstructed from its dominant 3π decay, direct data on B1 → ωB2 de-

cays is greatly lacking. The 2016 PDG has data only on decays of the N(1875) and

N(1900) to ωN states. However, it was found in Ref. [117] that one can use helicity

amplitudes of N∗ → γN decays together with the vector meson dominance model

to indirectly estimate ωNN∗ couplings. This also allows us to calculate couplings

that occur below the ω production threshold. The couplings are found by equating

Eq. (5.31) with the expression for the partial width of a radiative decay in terms of

helicity amplitudes, given by [9]

ΓN∗→γN =
~p 2
CM

π

2mN

(2J + 1)mN∗

(
|A1/2|2 + |A3/2|2

)
, (5.37)

where J is the spin of the parent particle. We note that A3/2 = 0 for radiative

decays of spin-1/2 resonances. It was shown in Ref. [117] that by taking the appro-

priate combinations of proton and neutron helicity amplitudes, one can isolate the

contributions from the isoscalar (ω) and isovector (ρ) channels. These combinations

are

Asi =
1

2
(Api + Ani ), Avi =

1

2
(Api − Ani ) , (5.38)

where s and v indicate the isoscalar and isovector combinations, respectively, and i

is 1/2 or 3/2. Using the isoscalar combination of helicity amplitudes then allows us

to solve for gωNN∗ . Details of the calculations of the ωNN∗ couplings are given in
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Appendix A.

The final step in quantifying the πB1B2 and ωNN∗ couplings requires to establish

values for the form factor cutoffs ΛπNN , ΛπN∆, ΛπBB, and ΛωNN∗ . Information on the

πB1B2 cutoffs can be inferred by fitting phase shift data for elastic πN scattering.

However, there are several constraints on parameter choices we must observe.

5.2.5.1 Constraints from Experimental Data and Previous Works

Previous calculations of the in-medium ρ spectral function [94, 98, 99, 104, 109],

which serve as our benchmark, found that the πNN form factor cutoff, ΛπNN , could

be no larger than ≈ 500 MeV in order to remain consistent with proton photoab-

sorption data. Larger values yielded non-resonant background cross sections that

exceeded experimental data, as shown in Fig 5.8. Furthermore, calculation of the

π−p → ρ0n cross section using the same vertices employed here [116] found that

consistency with experimental data demanded that ΛπNN be around 310 MeV with

a coupling of fπNN = 1. We therefore take this cutoff value as fixed and not a free

parameter. We allow for a 10% variation in the value of the πNN coupling.

A second constraint applies to the πN∆ form factor cutoff. The works we are

comparing to use a cutoff of ΛπN∆ = ΛπNN = 310 MeV. This value is constrained

by the 2π production contribution to the total proton photoabsorption cross section.

The pioneering works which evaluated ΛπN∆ via fits to P33 phase shift data found

excellent agreement with a value of 360 MeV [118–120]. We therefore allow our cutoff

to vary up to this value. Additionally, we allow the values of ΛπBB to vary from 310

MeV (to match the πNN cutoff) up to a value of 1500 MeV, which is a typical size

for form factor cutoffs in the Bonn potential model [107].

We are also constrained by our choices for the ωNN coupling and form factor.

The process γN → πN via ω t-channel exchange also contributes to the photoab-
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Figure 5.8: Proton photoabsorption cross section calculations [5] with ΛπNN = 310
MeV (solid line) and 1 and 2π production background (dashed line). Data are from
Refs. [6, 7]

sorption cross section on the proton. Since this process was not included in the fits

using the in-medium ρ spectral function, we add the ω t-channel photoabsorption

cross section to the overall result. Our choice of coupling and form factor should not

raise the total cross section above the experimental data. The resonance couplings of

ωN∗ are similarly constrained by the cross sections of γN → ωN∗ photoproduction

processes.

5.2.5.2 Final Parameter Values

To evaluate the remaining parameters fπNN , ΛπN∆, and ΛπBB
2, we will fit the

phase shifts for elastic πN → πN scattering in the P11 (spin-1/2, isospin-1/2) and P33

(spin-3/2, isospin-3/2) channels. We neglect the S-wave channel since these involve

t-channel diagrams with the exchange of ρ mesons. These diagrams are not in the

2We have explored rates from a π∆(1232)∆(1232) coupling using a constituent quark model
estimate [121] of f∆∆ = 1/5fπNN and found the resulting rates to be negligible.
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P -wave calculations since we do not use a P -wave ρBB interaction. Since we are not

using the ρBB form factor in our photoemission rate calculations, calculation of the

S-wave phase shifts would involve introducing an extra parameter, ΛρBB, that would

not enter into our final calculations for photon rates. The P13 and P31 channels are

neglected due to the relatively small size of their phase shift, δ . 5◦.

The P -wave phase shifts are relatively easily calculated using the K-matrix for-

malism [122]. The relativistically improved K-matrix (RIKM) model of Oset, Toki,

and Weise [96, 123] provides a particularly straightforward way to do so. It is com-

posed of Born diagrams using non-relativistic interactions identical to ours. Energy

denominators for the s- and u-channels are then treated relativistically as shown

below; see Sec. 2.5.3 of Ref. [96] for details. This relativistic treatment also involves

moving beyond the static approximation where nucleon momenta are neglected, i.e.,

center-of-mass momentum is used instead of simply the momentum of the incoming

pion.

Calculation of the phase shift and K-matrix proceeds as follows. First, the uni-

tarity condition on elastic scattering requires that all S-matrix elements vanish save

for those where the quantum numbers of the initial and final states are identical [124].

The relation between the S-matrix of a given partial wave and isospin channel α

and the corresponding phase shift δα reads:

Sα = e2iδα . (5.39)

For P-waves (l = 1), the relation between the S-matrix and the K-matrix is [96]

Sα =
1 + ikKα

1− ikKα

, (5.40)
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where k is the magnitude of the center-of-mass three-momentum. Noting that for

elastic scattering the phase shift is purely real, we can equate the above expressions

to find

Kα =
1

k
tan δα . (5.41)

The relativistically improved K-matrix for a given partial wave and isospin channel

α is given by3

Kα =
1

4π

mN√
s
κα , (5.42)

where mN is the nucleon mass, s = (EN + ωπ)2, where EN =

√
m2
N + ~k2 and

ωπ =

√
m2
π + ~k2. The factor mN/

√
s is a relativistic flux factor which enters as

a result of working in the center-of-mass frame. Each quantity κα is constructed out

of the s- and u-channel Born scattering terms for a given spin and isospin channel.

To illustrate how these quantities are constructed, we will construct the κ11 (spin-

and isospin-1/2 channel) matrix elements using nucleon and delta resonances. The

Born scattering κ-matrix elements 〈πb(k′)|κ|πa(k)〉 = κN + κ∆ are

κN =
f 2
πNN

m2
π

(
Λ2
πNN

Λ2
πNN + ~k2

)2 [
(~k′ · ~σ)(~k · ~σ)

m2
N − s

τbτa +
(~k · ~σ)(~k′ · ~σ)

m2
N − u

τaτb

]
,

κ∆ =
f 2
πN∆

m2
π

(
Λ2
πN∆

Λ2
πN∆ + ~k2

)2 [
(~k′ · ~S)(~k · ~S†)

m2
∆ − s

TbTa +
(~k · ~S)(~k′ · ~S†)

m2
∆ − u

TaTb

]
. (5.43)

We must now find the spin- and isospin-1/2 projections of these matrices. This can

3The factor 1/4π is a result of the relation between the scattering amplitude and the transition
matrix, see Appendix 8 in Ref. [96].
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be done using the projection operators [96]

〈
πb

∣∣∣P̂ 1
2

∣∣∣ πa〉 = δab − 1
3
τbτa ,〈

πb

∣∣∣P̂ 3
2

∣∣∣ πa〉 = 1
3
τbτa ,〈

πj

∣∣∣Q̂ 1
2

∣∣∣ πi〉 = δij − 1
3
σiσj ,〈

πj

∣∣∣Q̂ 3
2

∣∣∣ πi〉 = 1
3
σjσi . (5.44)

We can invert these expressions to find

τbτa =
〈
πb

∣∣∣3P̂ 1
2

∣∣∣ πa〉
τaτb =

〈
πb

∣∣∣(2P̂ 3
2
− P̂ 1

2

)∣∣∣ πa〉
TbT

†
a =

〈
πb

∣∣∣P̂ 3
2

∣∣∣ πa〉
TaT

†
b =

〈
πb

∣∣∣(4
3
P̂ 1

2
+ 1

3
P̂ 1

2

)∣∣∣ πa〉 . (5.45)

Identical expressions for spin are given by replacing τ with σ, Ta with Sa, P̂ with

Q̂, and changing from isospin to spin indices. We can now eliminate the spin and

isospin matrices in Eq. (5.43) in favor of the projection operators from Eq. (5.45).

This allows us to identify the contributions to each spin and isospin channel. The P11

channel terms will be those which contain the projector combination P̂ 1
2
Q̂ 1

2
. Those

combinations are

κN =
2mN

~k2

3

f 2
πNN

m2
π

(
Λ2
πNN

Λ2
πNN + ~k2

)2(
9

s−m2
N

+
1

u−m2
N

)
,

κ∆ =
2m∆

~k2

3

f 2
πN∆

m2
π

(
Λ2
πN∆

Λ2
πN∆ + ~k2

)2
16

9

1

u−m2
∆

. (5.46)

Construction of the κ matrices for other resonances and for other channels is done in
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an identical manner by constructing the relevant Born diagrams and evaluating the

projections into the needed spin and isospin channel. The original RIKM model in-

cluded s- and u-channel exchanges of the nucleon, delta, and the N(1440) resonance.

We include all P -wave nucleon and delta resonances in our list of particles (see Ap-

pendix D), namely the N(1440), N(1710), N(1720), N(1900), ∆(1232), ∆(1600),

and ∆(1910).

We may now use the RIKM model to evaluate our parameters ΛπN∆, ΛπBB, and

fπNN . We match our phase shifts to the data fits from Ref [8]. We fit center-of-

mass momenta from 0 to 300 MeV. In principle, we should limit our analysis to

the π production threshold of kcm ≈ 215 MeV. After this point the phase shift

acquires an imaginary part, indicating the onset of inelasticity in the scattering

channel. However, we have verified that there is a negligible difference in the resulting

parameter fits when fitting phase shifts up to 215 MeV versus a maximum value of

300 MeV. The parametrizations of the P11 and P33 phase shift data are shown in

Fig. 5.9. We note that the phase shift is much larger in the P33 channel than in the

P11 channel. This difference is important to our fits.

As an aid to fit our parameters to the phase shifts, we seek to minimize the

integrated difference between our K-matrix phase shift and the data fit from Ref [8].

We define this difference to be

D =

∫ kmax

0

dk
{[
δdata11 (k)− δRIKM11 (k)

]2
+
[
δdata33 (k)− δRIKM33 (k)

]2}
, (5.47)

where k is the magnitude of the center-of-mass momentum, δdata is the phase shift

fit from Ref. [8], and δRIKM is our phase shift calculated using the RIKM model. In

Fig. 5.10 we display the results for the fits that result from optimizing the parameters

for just one channel at a time. We see that the parameter combination which provides
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(a) P11 channel (b) P33 channel

Figure 5.9: Fits to phase shift data in the P11 (left panel) and P33 (right panel)
channels from Ref. [8].

an optimal fit in one channel results in a rather poor fit in the other channel. This

suggests that we need to find a suitable balance of parameter values which adequately

satisfies both channels. We show the simultaneous fit of both channels given by

Eq. (5.47) in Fig. 5.11 (a) and (b). This displays why it is important to recognize

the vertical axis scale difference in the P11 and P33 plots. While both channels have

been evaluated on an equal basis, since the P33 channel phase shift varies from 0 to

≈ 150◦ while the P11 channel phase shift varies from 0 to ≈ 20◦, it appears that the

P11 channel has a worse fit than the P33 channel. To illustrate this effect, we have

plotted both channels’ phase shifts in Fig. 5.11(b).

Fig. 5.10 (a) displays a problem with our fit which should be addressed. Our fit

does not display the attractive negative phase shift in the P11 channel at momenta

smaller than ≈ 180 MeV which is evident in the data. We can remedy this issue

by giving a greater weight to the P11 channel in Eq. (5.47). If we weight the P11

channel a factor 10 more than the P33 channel, the only parameter that changes is

ΛπB1B2 , which increases from 520 MeV to 920 MeV. This results in the fits shown in
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(a) P11 channel (b) P33 channel

(c) P11 channel (d) P33 channel

Figure 5.10: Phase shifts with parameters fit to P11 data only (top row) and with
parameters fit to P33 data only (bottom row).

Figs. 5.10 (c) and (d). This shows that we achieve the wanted attraction in the P11

channel at the cost of the fit in the P11 channel. We shall use the parameters from

the fit shown in Fig. 5.11 (c) and (d) for our calculations, i.e., ΛπB1B2 = 920 MeV.

However, since couplings and form factors enter into the rates as f 2FF 2, changing

the form factor cutoff causes a compensatory effect on the couplings. We have found

that the resulting seesaw effect yields a negligible difference in our rates when using

a value of ΛπB1B2 = 520.

To evaluate the ωNN coupling and form factor cutoff, we calculate the contri-

bution to the γp → πN cross section from an ω t-channel exchange. This process
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(a) P11 channel (b) P33 channel

(c) P11 channel (d) P33 channel

Figure 5.11: Phase shifts with parameters simultaneously fit to both channels (top
row), and phase shifts with parameters fit to both channels with weighting toward
the P11 channel (bottom row).

contains the coupling gωNN and the form factor cutoff ΛωNN , which allows us to

evaluate both parameters. The resulting photoabsorption cross section is added to

the total proton photoabsorption cross section calculated using the low-density limit

of the ρ-meson spectral function from Ref. [5]. We choose a conservative value [107]

of gωNN = 11. We then find the maximal value of ΛωNN that yields a total cross

section compatible with proton photoabsorption data.

The results for ΛωNN = 500 MeV and 750 MeV are shown in Fig 5.12. Here

we see that the total photoabsorption cross section using the 500 MeV cutoff is at
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P11 Only
Fit

P33 Only
Fit

Simultaneous
Fit

Weighted
Fit

fπNN 1.1 0.9 1.1 1.1
y 0.69 0.6 0.6 0.6

ΛπN∆ 310 360 360 360
ΛπBB 1360 410 520 920

Table 5.2: Parameter combinations for partial wave channel fits.

Figure 5.12: Proton photoabsorption cross section calculations excluding ω t-channel
exchange [5] (solid black line), including the t-channel exchange with ΛωNN = 500
MeV (dashed blue line), and with ΛωNN = 750 MeV (dot-dashed red line). The
lower solid red line is the isolated ω t-channel contribution with ΛωNN = 500 MeV.
Data are from Refs. [6, 7].

the higher end of the error bars in the 1100–1300 MeV photon energy range, and is

compatible with the data for other energies. The 750 MeV cutoff sightly exceeds the

data in the 1100–1300 MeV photon energy range. Therefore, we choose ΛωNN = 500

MeV. For simplicity, we also assume this value for all ωNN∗ form factor cutoffs.

Fig 5.12 also shows the individual contribution to the photoabsorption cross section
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from the ω t-channel exchange alone to demonstrate its relatively slow growth as

a function of photon energy. The t-channel exchange contribution reaches half its

maximum value of ≈ 11 µb at a photon energy of Eγ ≈ 500 MeV, and reaches its

maxinal value at Eγ ≈ 2000 MeV. This suggests that contributions from processes

of γp → πN∗ via ω t-channel exchange do not become appreciable until photon

energies reach several hundred MeV higher than the πN∗ production threshold4.

The lowest-lying resonance we consider in this process is the N(1440), which has

a πN∗ production threshold of ≈ 860 MeV. Therefore, contributions to resonance

production processes via proton photoabsorption that are mediated by an ω t-channel

exchange are negligible to the energy range considered in Fig. 5.12. In principle, we

could also use the process γp→ ωp to constrain the form factor cutoff. However, the

ωp production threshold is ≈ 1100 MeV, so it too is negligible in the photon energy

range considered here.

This completes our evaluation of free parameters in our photoemission model.

The resulting coupling constants are collected in Appendix D. We may proceed to

calculations of thermal photon emission rates.

5.3 Photon Emission from ππ Cloud

Here we present our photon emission rates which correspond to modifications

of the pion cloud of the ρ meson. In order to examine the impact of each process

individually, we first display rates for a temperature of 150 MeV and zero baryon

chemical potential, where we multiply the resulting rates by a factor 2 to account

for the effect of anti-baryons. We arrange our rates by partial wave channel, i.e.,

whether the πB1B2 interaction is an S-, P -, or D-wave. Our S-wave results are

shown in Fig. 5.13. We immediately see a trend where, in the photon energy range

4The π∆ production threshold is irrelevant since the ω is an isospin-0 state and cannot excite
the nucleon’s isospin state.
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of 0.2–0.5 GeV, processes involving more massive baryons in the initial state have rel-

atively large photon emission rates (exothermic processes). We also see that photon

rates from processes involving more massive baryons in the final state (endothermic

processes) are heavily suppressed in this low energy range. This is due to the phase

space favoring a highly energetic final state when the initial state contains a large

amount of invariant mass. These same processes also dominate at photon energies

above ≈ 1 GeV for the same reason.

Fig. 5.13 also shows an interesting trend where the high-q0 behavior of the rates

seems to be dominated by the final-state baryon. Take for example the processes

πN(1535) → γN(940) and πN(1650) → γN(940) shown in Fig. 5.13 (a). The

N(1535) and N(1650) share the same quantum numbers, so their spin/isospin de-

generacy factors are identical. Their couplings are also approximately equal, so the

only difference in their rates should be from their differing masses. The rates for

these two processes are essentially degenerate for q0 & 2.0 GeV. This can be ex-

plained very roughly as follows. When typical momenta in the scattering processes

are small, then the thermal factor f(E1)f(E2)[1− f(E3)] is dominated by the mass

of the particles.
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(a) S-wave Nucleons

(b) S-wave Deltas

(c) S-wave Hyperons

Figure 5.13: S-wave photon production processes.
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This also corresponds to the lower end of photon energies, which is where we

observe the rates differing as a result of the≈ 100 MeV mass difference of theN(1535)

and N(1650). However, then typical momenta are high, the energies E =
√
m2 + p2

in the thermal factors are driven by the momenta. At this point the mass differences

are “washed out” by the momenta, and the thermal factors will be driven by purely

momentum effects.

To check this hypothesis, we can examine a processes with a mass close to the

N(1535) or N(1650), but with different quantum numbers, and thus different de-

generacy. In Fig. 5.13 (b) we have the π∆(1620) → γN(940) process. The com-

bined spin/isospin factor5 for this process is 16/3, while for the N(1650) process the

spin/isospin factor is 8. Since the masses are approximately equal, we expect that,

for high q0, the ∆(1620) process should be smaller by a factor of 2/3. Inspection of

the plots reveals this to be the case; at q0 = 3 GeV, the ∆(1620) rate has a value of

(ignoring units) 6.2 x 10−15, while the N(1650) rate has a value of 9.3 x 10−15.

Additionally, Fig. 5.13 (c) shows the contribution from S-wave hyperon inter-

actions, which have been mostly ignored in previous works. While these processes

have smaller isospin degeneracies than non-strange baryons, in the phenomenological

region of interest around q0 ≈ 1 GeV, we see they have a significant contribution

compared to the nucleons and ∆s. Much of this is due to the non-negligible size of

their coupling constants, as shown in Table D.5 in App. D.

We now proceed to the P -wave processes, shown in Figs. 5.14 and 5.15. We first

note the greater number of P -wave processes as compared to S-wave processes. This

alone suggests the P -wave interaction may have a greater contribution to the overall

rates. We also find that the size of the P -wave rates in general are greater than

5We note that the spin/isospin factor is NOT equal to the particle degeneracy; see Sec. A for
details.
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the S-wave. Inspecting the individual plots, Fig. 5.14 (a) shows that the πN → γN

process is quite large, as expected. However, the πN(1440)→ γN process begins to

exceed it at q0 ≈ 1 GeV. This has several reasons. While the πNN(1440) coupling is

half that of the πNN , the increased amount of mass in the initial state has an extra

500 MeV available to be injected into the final state. However, this is mitigated by

the increased thermal penalty for that mass. More importantly, while the πNN form

factor cutoff is constrained to be 310 MeV, we recall the cutoff value for our πB1B2

form factors is 920 MeV. This harder form factor generates less suppression than in

the πN → γN process.

Figs. 5.14 (b) displays an expected result: the N ↔ ∆ processes dominate. This

is mainly due to the large πN∆ coupling and relatively small masses of the particles,

which gives these processes a generous phase space. Figs. 5.15 (a) shows a significant

unexpected result, namely that of the size of the rates from the N(1440)↔ ∆(1600)

processes, using the coupling we calculated in Sec. 5.2.5 by using theN(1440) spectral

function. We found that the πN(1440)∆(1600) coupling has a relatively large value

of fπN(1440)∆(1600) = 4.9, which is 60% larger than the πN∆ coupling. Since couplings

enter into the rates squared, this gives a relative increased of a factor ≈ 2.5 over the

N ↔ ∆ processes. While this is somewhat mitigated by the thermal suppression

from larger masses, this is a novel result that, to the author’s knowledge, has not

before been encountered in the area of thermal photon emission. A similar result is

seen in the processes involving fπ∆N(1440) = 1.785. Additionally, the ∆ ↔ ∆(1600)

and ∆↔ N(1720) processes are sizeable as a result of the large spin/isospin factors

resulting from spin- and/or isospin-3/2 particles in both the initial and final states.

Finally, we see that the contributions from P -wave hyperons are smaller than the

nucleons and ∆s, but are not negligible.
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(a) P-wave Nucleons

(b) P-wave Deltas+N940

Figure 5.14: First table of P-wave photon production processes.
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(a) P-wave Deltas and Nucleon Resonances

(b) P-wave Hyperons

Figure 5.15: Second table of P-wave photon production processes.
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Our final contribution from the ππ cloud comes from D-wave processes, shown

in Fig. 5.17. We first see that the contribution from the D-wave hyperons is smaller

than from the nucleons or ∆s by more than two orders of magnitude, and are thereby

negligible. Therefore, we will neglect their contribution to the overall rates from this

point on. Secondly, for q0 > 1 GeV, we see that the size of the D-wave nucleon and

∆ rates are comparable to the P -wave rates. This is somewhat to be expected, since

both P - and D-wave interactions involve non-zero powers of momenta, albeit with

different form factors.

The total pion cloud contributions are collected by partial wave and shown in

Fig. 5.17. We compare the rates to those from the in-medium ρ spectral function

mentioned in Sec. 5.1 and parametrized in Ref. [4]. The ratio between our total

pion cloud rates and the ρ spectral function is also shown in Fig. 5.17. At close to

the pseudo-critical temperature of T = 150 MeV and at vanishing baryon chemical

potential, our pion cloud rates are ≈ 17% of the ρ spectral function at q0 = 1.0 GeV.

This suggests that, at zero density, the photon rates from the ρ spectral function are

dominated by meson effects and radiative decays of baryon resonances.
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(a) D-wave Nucleons

(b) D-wave Deltas

(c) D-wave Hyperons

Figure 5.16: D-wave photon production processes.
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Figure 5.17: Thermal photon rates from ππ cloud modifications (top) and ratio of
ππ cloud rates to rates from ρ spectral function (bottom).

5.4 Photon Emission from πω Cloud

We now move on to contributions from the πω cloud of the ρmeson. As mentioned

above, save for ωN → γN , these processes are novel contributions to thermal photons

rates.

5.4.1 Incoming π

Processes involving an incoming pion together with an ω t-channel exchange cor-

respond to cuts of the πω cloud of the ρ spectral function as shown at the beginning

of this chapter in Fig. 5.2 (a). Since the emitted photon is attached to the πρω

vertex, this process is gauge invariant by itself, without the need to consider any

other diagrams. These processes all involve an ωNN∗ vertex. In the present work
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we only have values for these couplings for 9 N∗ resonances, so the baryon spectrum

we have is not as complete as for πNN∗ coupling. The resulting rates for the ω

t-channel exchanges are shown in Fig. 5.18. We immediately see the effect of the

different sizes of the ωNN∗ coupling constants on the rates. Since the couplings

enter into the rates squared, the process including the coupling gωNN = 11 dwarfs all

other processes, whose couplings are all less than 3. Since these rates are all several

orders of magnitude smaller than the other baryonic contributions, we will neglect

them and keep only the result from the πN → γN ω t-channel process.

Figure 5.18: Thermal photon emission rates from processes involving t-channel ω
exchange.

5.4.2 Incoming ω

We now move on to the second contribution from the πω cloud, shown in Fig. 5.2

(b). This cut to the πω cloud of the ρ spectral function corresponds to a scattering

process of ωB1 → γB2 via a t-channel pion exchange. As with the above processes
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involving a t-channel ω exchange, this process involves photon emission from the πρω

vertex, and is thus gauge invariant by itself without the need for other diagrams.

This process is topologically similar to the processes generated by the ππ cloud

and only involves swapping the ρππ vertex for the πρω vertex. This yields a new

set of processes, all involving the same combinations of baryons as considered in

Sec. 5.3. While these new processes are more suppressed by the ω mass in the

exchange propagator, they also receive a significant boost from the large size of the

πρω coupling constant. We therefore anticipate their contribution to the overall

photon rate to be appreciable.

γ

ρ

B2B1

ω

π

qν

kµ

π̃

Figure 5.19: Feynman diagram of photon emission processes involving ω mesons as
external particles.

Before we move on to the rates, let us first reexamine the Feynman diagram for

this process, shown in Fig. 5.19. This process has the same topological configuration

as the u-channel process in Fig. 4.2 from Sec. 4. Recall that process was the one

where the exchanged pion could go on shell, which double-counted the ω radiative

decay. This same problem shows itself in Fig. 5.19. If the incoming baryon is less
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massive than the outgoing baryon by at least the pion mass, the exchanged pion

can go on shell. We then have two separate processes, an ω → π0γ radiative decay,

and a B1 → πB2 absorption, all involving on-shell particles. However, we recall that

thermal field theory gave us the solution to this problem, which involved excluding

the Landau cut of the ρ self-energy. We shall use that solution here; we apply the

same kinematic restriction of Eω < q0 to the KT integration range. As before, his

precludes the possibility of the exchange pion going on-shell.

Since we again have a considerable number of processes, we will only plot the rates

of several of the processes with the lightest external baryons, then analyze the total.

These are displayed in Fig. 5.20. We first note the effect of the kinematic restriction

of Eω < q0. This removes the low-q0 range from the ωN → γ∆ process, causing it to

have no contribution for photon energies less than 1 GeV. This is the same behavior

displayed by the kinematic restriction (or equivalently, the Landau cut) in Fig. 4.5

of Sec. 4. Second, we note the sizes of the individual processes. For comparison,

we have also plotted the process πN → γN as calculated in Sec. 5.3. We see that

in the phenomenologically relevant range near q0 ≈ 1 GeV, the ωN → γN process

is not far below the πN → γN , suggesting its possible impact on the overall rates.

This is due to the large size of the πρω coupling constant overcoming the increased

phase space suppression from the ω as an external particle as compared to the pion.

Third, we see that at energies above q0 ≈ 1 GeV, the incoming ω processes rapidly

gain strength, as expected from an exothermic process. This indicates that the total

rate from the external ω processes may be significant at high photon energies.
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Figure 5.20: Thermal photon rates from processes involving an external ω particle.

5.5 Results and Comparison to Existing Rates

We now analyze our total rates from both the πω cloud and the ππ cloud. We

compare these rates to the in-medium ρ spectral function in Fig. 5.21. As anticipated

earlier, the effect of the πω cloud processes is quite evident at photon energies q0 & 1.0

GeV. At q0 = 1.0 GeV the inclusion of πω cloud effects lifts the total from 17% with

just the ππ cloud to 23%. This effect increases with photon energy: at q0 = 2.0

GeV, we have 12% → 30%, and at q0 = 3.0 GeV, we have 8% → 31%. Therefore,

for photon energies over 1 GeV, the effect of the πω cloud is substantial.

In addition, we can estimate the size of the contribution of our ππ cloud calcula-

tions with those of the ρ spectral function. In Ref. [84], the left-hand panel of Fig. 3

separates out the individual contributions to the spectra function at T = 150 MeV

and µB = 340 MeV. At a photon energy of q0 = 1.0 GeV, we take the difference of

the value of the full spectral function and the spectral function with no baryons. This

gives us the baryonic contribution, and the value is ≈ 1 x 10−6 fm−4 GeV−2. This

is approximately split evenly between pion cloud effects and direct ρBB interaction
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effects [5]. Therefore the estimated contribution from the pion cloud is 5 x 10−7.

By direct calculation of our pion cloud, we find the rate at the same temperature,

density, and photon energy to be 9.76 x 10−7. This indicates that at q0 = 1.0 GeV

we have found a 100% enhancement of pion cloud rates, which is a 50% enhancement

of baryonic rates, resulting in a 25% enhancement of the overall photon rate of the

ρ spectral function.

We now examine our results to the ρ spectra function at chemical freezeout con-

ditions of T = 160 MeV and µB = 240 MeV. This is shown in Fig. 5.22. We see

that the increase in baryon chemical potential has substantially increased the relative

effects of the baryons in the ρ spectral function. Additionally, the process πN → γN

with an ω t-channel exchange has increased relative to the total rates.
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(a) ππ+πω Cloud Rates

(b) Ratio of ππ+πω Cloud Rates to ρ Spectral Function Rates

Figure 5.21: Total thermal photon rates from the ππ cloud, the πω cloud, and their
sum as compared to rates from the in-medium ρ spectral function (top). Ratio of
rates from both ππ and πω cloud to rates from the in-medium ρ spectral function
(bottom).
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(a) ππ+πω Cloud Rates

(b) Ratio of ππ+πω Cloud Rates to ρ Spectral Function Rates

Figure 5.22: Total thermal photon rates from the ππ cloud, the πω cloud, and their
sum as compared to rates from the in-medium ρ spectral function (top). Ratio of
rates from both ππ and πω cloud to rates from the in-medium ρ spectral function
(bottom).
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5.6 Discussion and Summary

In this chapter we have revisited the thermal photon rate calculation from an

in-medium ρ spectral function by using relativistic kinetic theory. We have checked

the previously-estimated effects from baryon interactions in the ππ cloud by explicit

calculation and found it to be a slight underestimate. In addition, we identified

a novel source of thermal photons in the form of interactions with an ω meson,

both as a t-channel exchange particle and as an external particle in ωB1 → γB2

scattering processes. The contributions to photon rates from these new processes

turned out to be non-negligible for photon energies of q0 & 1.0 GeV, even exceeding

the contributions from the ππ cloud at high photon energies. These novel processes

are substantial enough to warrant their inclusion in further calculations of thermal

photon spectra and elliptic flow.
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6. CONCLUSION AND OUTLOOK

In this work, we have explored the properties of QCD matter at finite temperature

and densities. We first examined the behavior of the spectral distributions of the

isovector-vector and isovector-axial-vector spectral functions at low temperatures

(T . mπ) and zero density by using the finite-temperature QCD and Weinberg-type

sum rules. By implementing a strict leading-order-in-temperature expansion and

approximating the thermal medium as a dilute pion gas, we found that, while the

WSRs were analytically satisfied, the QCDSRs were analytically violated by a finite

pion mass. We then numerically measured the size of this violation and found it

to be small for temperatures less than the pion mass. Above this temperature, the

QCD sum rule violation grows to the extent that it can no longer be considered

satisfied, probably indicating the breakdown of the thermal medium model. Further

improvements on this analysis could include more elaborate spectral function models

which go beyond simple chiral mixing, as well as incorporating finite-density effects.

In fact, work in this direction has already been carried out in Ref. [125], where it

was found that the scenario of a ρ meson which broadened and “melted” away with

increasing temperature and density was compatible with the restoration of chiral

symmetry.

We then revisited thermal photon emission rates from a hadronic source, begin-

ning with a system composed of π, ρ, and ω mesons. These rates were anticipated to

be non-negligible due to both the large size of the πρω coupling constant and due to

the relatively small particle masses involved. In the process of calculating these rates

using relativistic kinetic theory, we encountered a problem wherein a non-integrable

singularity occurs, which also implies a double-counting of a previously-considered

123



contribution, that of the ω → π0γ radiative decay. We resolved this problem by turn-

ing to an alternative framework for the calculation of photon rates, that of thermal

field theory. Within this framework, we were able not only to identify a criterion to

avoid double-counting, but also to verify the equivalence of both calculation frame-

works. After accounting for finite-size effects, we found the photo-emission rates

from the πρω system to be significant compared to existing total hadronic emission

rates.

Finally, we calculated the photo-emission rates from baryonic contributions. We

constructed a microscopic framework consisting of a non-relativistic expansion of

phenomenological Lagrangians and accounted for finite-size effects by implement-

ing form factors in a gauge-invariant manner. The parameters were evaluated by

using resonance decay branchings, proton photoabsorption cross sections, and elas-

tic πN scattering phase shift data. We compared these rates to the corresponding

ones given by the ππ cloud of an in-medium ρ spectral function. We found that

the newly-calculated contributions increase previous estimates from the ρ spectral

function, especially with rising baryon chemical potential. The implementation of

these new contributions into the ρ spectral function is thus an important future task.

Additionally, we identified another novel source of photons equivalent to a πω cloud

modification of the ρ spectral function. These rates were found to be non-negligible

as well, again benefitting from the large πρω coupling constant.

These thermal photon rate calculations both improve the accuracy of the current

state-of-the-art calculations, and augment them by adding previously unaccounted-

for rates. These rates should be included in any further calculations of thermal

photon spectra and v2, and as such, should help to alleviate the “photon puzzle.”
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APPENDIX A

BORN MATRIX ELEMENTS

In this appendix we list the matrix elements for our photon-producing processes.

We use the following notation:

• ea/e∗a is an isospin polarization vector (in Cartesian space) for an incom-

ing/outgoing isovector particle,

• εµ/ε∗µ is a spin polarization vector (in Minkowski space) for an incoming/outgoing

vector particle,

• φi is the spinor in isospin space of the ith baryon, and is 2-dimensional for

isospin-1/2 baryons (nucleons) and 4-dimensional for isospin-3/2 particles (deltas),

• χi is a baryon spinor in spin space of the ith baryon, and is 2-dimensional for

spin-1/2 baryons and 4-dimensional for spin-3/2 particles,

• ~T is the isospin transition operator between φ1 and φ2 with Cartesian compo-

nents Ta, and is given in Table A.1,

• ~S is the spin transition operator between χ1 and χ2, and is given in Table A.1,

The matrix elements for the spin and isospin transition operators are given below.

The form factors Γπ(~k) and ΓDπ (~k) are given by

Γπ(~k) =
Λ2

Λ2 + ~k2
,

ΓDπ (~k) =
Λ4

Λ4 + ~k4
. (A.1)
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Transition Spin Isospin
1/2→ 1/2 ~σ ~τ

1/2→ 3/2 ~S ~T

3/2→ 1/2 ~S† ~T †

3/2→ 3/2 ~S(3/2) ~T (3/2)

Table A.1: Representations of spin and isospin transition operators based on the
spin/isospin quantum numbers of the initial- and final-state baryons.

The D-wave vertex vector ~V D is

~V D = 4~k(~k2 − ~k · ~q ) + ~q (4~k · ~q − 2~k2 − ~q 2) . (A.2)

Photon-Producing Baryonic Processes

γ(q)

B2B1

πa(k)

Figure A.1: Schematic diagram of the photon-producing process πB1 → γB2.
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• S-wave:

MS = igρCρ
fπB1B2

mπ

[
φ†2 (ε3baTb)φ1

]
ea

χ†2

{
Γπ(~k)

 1− ωk
q0

(ωk−q0)(2~k−~q )

(~k−~q )2+Λ2

µ

− Γπ(~k − ~q )
(ωk − q0)(2k − q)µ

t−m2
π

}
χ1 ε

∗
µ (A.3)

• P -wave:

MP = igρCρ
fπB1B2

mπ

[
φ†2 (ε3baTb)φ1

]
ea

χ†2

{
Γπ(~k)

 −~k· ~S
q0

(~k−~q )· ~S (2~k−~q )

(~k−~q )2+Λ2
− ~S

µ

− Γπ(~k − ~q )
(~k − ~q ) · ~S (2k − q)µ

t−m2
π

}
χ1 ε

∗
µ

(A.4)

• D-wave:

MD = igρCρ
fπB1B2

m2
π

[
φ†2 (ε3baTb)φ1

]
ea

χ†2

{
ΓDπ (~k)

 −(~k · ~S)(~k · ~σ) 1
q0

(~k−~q )·~S (~k−~q )·~σ ~V D
(~k−~q )4+Λ4

− ~S(~k − ~q ) · ~σ − (~k · ~S)~σ)

µ

− ΓDπ (~k − ~q )
(~k − ~q ) · ~S (~k − ~q ) · ~σ (2k − q)µ

t−m2
π

}
χ1 ε

∗
µ (A.5)

The D-wave matrix element written above is for a spin-1/2 to spin-3/2 baryon tran-

sition. For a spin-3/2 to spin-1/2 transition, one must make the replacement ~S → ~S†

and the reverse the order of the ~S and ~σ matrices, such that

(~k · ~S)(~k · ~σ)→ (~k · ~σ)(~k · ~S†) . (A.6)

• ω t-channel exchange
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γ

ρ

B2B1

π

ω

qνkµ

Figure A.2: Photon-producing ω t-channel exchange process.

Mention that only ωNN counts– others are tremendously suppressed.

M+
ω t−chan = i (gωNN∗gπρωCρ)

[
φ†2 δa3 φ1

]
ea

[
χ†2

(ω0

0

)µ
χ1

]( 2Λ2
πρω

2Λ2
πρω − t

)2

(
Λ2
ωBB

Λ2
ωBB + (~k − ~q )2

)(
−gµν − (k−q)µ(k−q)ν

m2
ω

t−m2
ω

)
εαβλν qα ε

∗
β (k − q)λ (A.7)

M−
ω t−chan = i (gωNN∗gπρωCρ)

[
φ†2 δa3 φ1

]
ea

[
χ†2

(
0

~ω · ~S

)µ
χ1

](
2Λ2

πρω

2Λ2
πρω − t

)2

(
Λ2
ωBB

Λ2
ωBB + (~k − ~q )2

)(
−gµν − (k−q)µ(k−q)ν

m2
ω

t−m2
ω

)
εαβλν qα ε

∗
β (k − q)λ (A.8)

• Incoming ω
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γ

ρ

B2B1

ω

π

qν

kµ

π̃

Figure A.3: Photon-producing ωB1 → γB2 π t-channel exchange process.

MS
ω inc = −i

(
gπρω

fπB1B2

mπ

Cρ

)[
φ†2 δ3bTb φ1

] [
χ†2(ωk)χ1

]( 2Λ2
πρω

2Λ2
πρω − t

)2

(
Λ2
πB1B2

Λ2
πB1B2

+ ~k2

)(
1

t−m2
π

)
εαβλν qα εβ (k + q)λ ε

∗
ν (A.9)

MP
ω inc = −i

(
gπρω

fπB1B2

mπ

Cρ

)[
φ†2 δ3bTb φ1

] [
χ†2(~k · ~S)χ1

]( 2Λ2
πρω

2Λ2
πρω − t

)2

(
Λ2
πB1B2

Λ2
πB1B2

+ ~k2

)(
1

t−m2
π

)
εαβλν qα εβ (k + q)λ ε

∗
ν (A.10)

MD
ω inc = −i

(
gπρω

fπB1B2

m2
π

Cρ

)[
φ†2 δ3bTb φ1

] [
χ†2(~k · ~S)(~k · ~σ)χ1

]( 2Λ2
πρω

2Λ2
πρω − t

)2

(
Λ4
πB1B2

Λ4
πB1B2

+ ~k4

)(
1

t−m2
π

)
εαβλν qα εβ (k + q)λ ε

∗
ν (A.11)
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Photon-Producing Mesonic Processes

• πρ→ γω

γ(q)

ω(p3)ρb(p2)

πa(p1)

Figure A.4: Diagram showing four-momenta labels and isospin indices for the process
πρ→ γω.

Ms = −gπρωgρCρ
s−m2

π

(2p1 − p2)δq
µpα3 εµγαβ ε

δ(p2)ε∗γ(q)ε∗β(p3) ε3abeaeb (A.12)

Mt = −gπρωgρCρ
t−m2

π

(2p1 − q)γpµ2pα3 εµδαβ εδ(p2)ε∗γ(q)ε∗β(p3) ε3abeaeb (A.13)

Mu = −gπρωgρCρ
t−m2

ρ

(p2 − q)µpα3
(
−gνλ +

(p2 − q)ν(p2 − q)λ
m2
ρ

)
[
−gδγ(p2 + q)λ − gγλ(p2 − 2q)δ + gδλ(2p2 − q)γ

]
εµναβ ε

δ(p2)ε∗γ(q)ε∗β(p3) ε3abeaeb (A.14)

Mc = −gπρωgρCρpα3 εγδαβ εδ(p2)ε∗γ(q)ε∗β(p3) ε3abeaeb (A.15)

• πω → γρ
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πa(p1)

ω(p2)

γ(q)

ρb(p3)

Figure A.5: Diagram showing four-momenta labels and isospin indices for the process
πω → γρ.

Ms = −gπρωgρCρ
s−m2

ρ

pµ1p
α
2

(
−gνλ +

(q + p3)ν(q + p3)λ

m2
ρ

)
[gλδ(q + 2p3)γ − gλγ(2q + p3)δ + gγδ(q − p3)λ]

εµναβ ε
β(p2)ε∗γ(q)ε∗δ(p3)ε3abeae

∗
b (A.16)

Mt =
gπρωgρCρ
t−m2

π

(p1 − q)µpα2 (2p1 − q)γ

εµδαβ ε
β(p2)ε∗γ(q)ε∗δ(p3) ε3abeae

∗
b (A.17)

Mu =
gπρωgρCρ
u−m2

π

(p2 − q)µpα2 (p1 − p2 + q)δ

εµγαβ ε
β(p2)ε∗γ(q)ε∗δ(p3) ε3abeae

∗
b (A.18)

Mc = gπρωgρCρp
α
2 εδγαβ ε

β(p2)ε∗γ(q)ε∗δ(p3) ε3abeae
∗
b (A.19)

• ρω → γπ
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ρa(p1)

ω(p2)

γ(q)

πb(p3)

Figure A.6: Diagram showing four-momenta labels and isospin indices for the process
ρω → γω.

Ms =
gπρωgρCρ
s−m2

π

pµ1p
α
2 (q + 2p3)γ εµδαβ ε

δ(p1)εβ(p2)ε∗γ(q) ε3abeae
∗
b (A.20)

Mt = −gπρωgρCρ
t−m2

ρ

(p1 − q)µpα2
(
−gνλ +

(p1 − q)ν(p1 − q)λ
m2
ρ

)
[−gδγ(p1 + q)λ − gγλ(p1 − 2q)δ + gδλ(2p1 − q)γ]

εµναβ ε
δ(p1)εβ(p2)ε∗γ(q) ε3abeae

∗
b (A.21)

Mu =
gπρωgρCρ
u−m2

π

pµ3p
α
2 (p2 − q + p3)δ εµγαβ ε

δ(p1)εβ(p2)ε∗γ(q) ε3abeae
∗
b (A.22)

Mc = gπρωgρCρp
α
2 εδγαβ ε

δ(p1)εβ(p2)ε∗γ(q) ε3abeae
∗
b (A.23)

1→ 2 Particle Decay Matrices

Here the isospin factor is IF = Tr[T 2], and is 6 for I = 1
2
, 4 for I = 1, and 15 for

I = 3
2
. The spin factor is SF = Tr[SaSb] and is 2 for a 1

2
↔ 1

2
transition, 4

3
for a

1
2
↔ 3

2
transition, and 5 for a 3

2
↔ 3

2
transition.

• B1 → πB2 S-wave

|M |2 = 4
f 2
π

m2
π

mB1mB2N IF ω2
k (A.24)

Here N is the number of spin states of the decay particle.
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• B1 → πB2 P -wave

|M |2 = 4
f 2
π

m2
π

mB1mB2SF IF
~k2 (A.25)

• B1 → πB2 D-wave

|M |2 = 4
f 2
π

m4
π

mB1mB2SF IF
~k4 (A.26)

• N∗ → ωN

|M |2 = 8gωNN∗mNmN∗SF (A.27)

This expression is for when both nucleons are parity plus. If the decay particle is

parity minus, replace SF with N .

• N∗ → ωN Helicity Amplitude

|M |2 = 8gωNN∗C
2
ωmNmN∗SF (A.28)

Here Cω = 0.0177 is the electromagnetic coupling of the ω to the photon, calculated

from the ω → e+e− decay. This calculation is identical to the ρ→ e+e− given below.

• ρ→ ππ

|M |2 =
4

3
g2
ρ

[
(pCMωπ(pCM) + p2

CM)−m2
π

]
(A.29)

• ρ→ e+e−

|M |2 =
8π

3
m3
ρC

2
ραEM (A.30)

• ω → π0γ

|M |2 =
2

3
g2
πρωC

2
ρ

(
pCMωπ(pCM) + p2

CM

)2
(A.31)
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SU(2) Transition Operator Matrices

Note: Since the mathematical formalism of spin and isospin are carbon-copies

of one another, we refer to spin below. All conclusions and results are identical for

isospin, necessitating merely a change in notation. In typical physics fashion, we also

abuse notation and refer to both the symmetry group and associated Lie algebra as

SU(2).

For each process involving a transition between total spin states of n−1
2
↔ n−1

2
,

where n is an integer, the spin transition operators are the n-dimensional generators

of SU(2). The generators of the SU(2) algebra in any dimension are defined to be

[Ta, Tb] = iεabcTc , a, b, c = 1, 2, 3 , (A.32)

where εabc is the (three-dimensional) Levi-Civita symbol. This symbol is defined by

ε123 = +1 and is equal to zero if any indices are equal, equal to +1 under any even

permutation of indices, and -1 under any odd permutation of indices.

Note that in this work we use the normalization of [Sa, Sb] = iεabcSc.

• 1
2
→ 1

2
In the above normalization, the 1

2
→ 1

2
transition operators are just

Pauli matrices with a factor of 1/
√

2.

S
(1/2)
1 =

1√
2

 0 1

1 0

 , S
(1/2)
2 =

i√
2

 0 −1

1 0

 , S
(1/2)
3 =

1√
2

 1 0

0 −1


(A.33)
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• 1
2
→ 3

2
The 1

2
→ 3

2
transition operators are:

S1 =
1√
2



−1 0

0 − 1√
3

1√
3

0

0 1


, S2 =

i√
2



1 0

0 1√
3

1√
3

0

0 1


, S3 =



0 0√
2
3

0

0
√

2
3

0 0


.

(A.34)

• 3
2
→ 1

2
Here we find the reason for the notation S†: these matrices are simply

the Hermitian conjugate of the 1
2
→ 3

2
transition operators. Thus:

S†1 =
1√
2

 −1 0 1√
3

0

0 − 1√
3

0 1

 , S†2 = − i√
2

 1 0 1√
3

0

0 1√
3

0 1


S†3 =

1√
2

 0
√

2
3

0 0

0 0
√

2
3

0

 (A.35)

• 3
2
→ 3

2

S
(3/2)
1 =



0
√

3
2

0 0
√

3
2

0 1 0

0 1 0
√

3
2

0 0
√

3
2

0


, S

(3/2)
2 = −i



0
√

3
2

0 0

−
√

3
2

0 1 0

0 −1 0
√

3
2

0 0 −
√

3
2

0



S
(3/2)
3 =

1

2



3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3


(A.36)

147



APPENDIX B

πρω SYSTEM PHOTOEMISSION RATE PARAMETRIZATIONS

In this appendix, we present parametrizations of the photo-emission rates for

each process in the πρω system, along with plots of comparisons of parametrizations

to calculated rates. We have verified the accuracy of the parametrizations to within

10% for temperature and photon energy ranges of 100 MeV ≤ T ≤ 180 MeV and

0.2 GeV ≤ q0 ≤ 5.0 GeV, except for the lowest photon energies of the ρω → γπ

process, whose overall contribution in that photon energy range is negligible. Form

factor effects are included in all rate parametrizations.

• πρ→ γω

Figure B.1: Left panel: Calculated thermal photo-emission rates from the πρ→ γω
process (symbols) compared to the parametrized rates (lines). Right panel: Ratio of
parametrized rates to calculated rates.
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q0
dRπρ→γω

d3q
= exp

[
a1q0 + a2 + a3q

a4
0 + a5(q0 + a6)a7

] [
fm−4 GeV−2

]
, (B.1)

a1(T ) = −35.8991 + 460.425T − 2592.04T 2 + 5342.32T 3 ,

a2(T ) = −41.9725 + 601.952T − 3587.8T 2 + 7604.97T 3 ,

a3(T ) = 0.740436− 16.7159T + 133.526T 2 − 347.589T 3 ,

a4(T ) = 2.00611− 3.79343T + 29.3101T 2 − 72.8725T 3 , (B.2)

a5(T ) = −8.33046 + 121.091T − 801.676T 2 + 1712.16T 3 ,

a6(T ) = 17.9029− 388.5T + 2779.03T 2 − 6448.4T 3 ,

a7(T ) = −15.622 + 340.651T − 2483.18T 2 + 5870.61T 3 .

• πω → γρ

Figure B.2: Left panel: Calculated thermal photo-emission rates from the πω → γρ
process (symbols) compared to the parametrized rates (lines). Right panel: Ratio of
parametrized rates to calculated rates.
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q0
dRπω→γρ

d3q
= exp

[
a1q0 + a2 + a3q

a4
0 + a5(q0 + a6)a7

] [
fm−4 GeV−2

]
, (B.3)

a1(T ) = −29.4663 + 291.356T − 1301.27T 2 + 2102.12T 3 ,

a2(T ) = −45.081 + 688.929T − 4150.15T 2 + 8890.76T 3 ,

a3(T ) = −0.260076 + 8.92875T − 60.868T 2 + 136.57T 3 ,

a4(T ) = 2.2663− 8.30596T + 49.3342T 2 − 90.8501T 3 , (B.4)

a5(T ) = 10.2955− 317.077T + 2412.15T 2 − 6020.9T 3 ,

a6(T ) = 3.12251− 47.5277T + 222.61T 2 − 241.9T 3 ,

a7(T ) = −3.39045 + 56.5927T − 336.97T 2 + 622.756T 3 .

• ρω → γπ

Figure B.3: Left panel: Calculated thermal photo-emission rates from the ρω → γπ
process (symbols) compared to the parametrized rates (lines). Right panel: Ratio of
parametrized rates to calculated rates.
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q0
dRρω→γπ

d3q
= exp

[
a1q0 + a2 +

a3

(q0 + 0.2)
+

a4

(q0 + 0.2)2

] [
fm−4 GeV−2

]
,(B.5)

a1(T ) = −29.6866 + 331.769T − 1618.66T 2 + 2918.53T 3 ,

a2(T ) = −15.3332 + 90.2225T − 300.185T 2 + 428.386T 3 , (B.6)

a3(T ) = −7.35061 + 109.288T − 630.396T 2 + 1227.69T 3 ,

a4(T ) = −10.6044 + 109.1T − 500.718T 2 + 872.951T 3 .
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APPENDIX C

NON-RELATIVISTIC REDUCTION OF SPINORS

In this appendix we present our method of non-relativistic reduction of Dirac and

Rarita-Schwinger spinors. Note we use the Dirac spinor normalization of ψ̄ψ = 2m.

The basic motivation is simple. For a given Lagrangian interaction, we simply

drop any spinor components which are of order ~p/m or higher. A four-component

Dirac spinor has the form

ψ(~p, s) =
√
E(~p) +m

(
χ(s)

~σ·~p
E+m

χ(s)

)
, (C.1)

where E =
√
~p2 +m2 and the numerical prefactor is for normalization purposes.

The χ are two-component spinors representing the spin state of the particle, such

that

χ(+
1

2
) =

(
1

0

)
χ(−1

2
) =

(
0

1

)
. (C.2)

To obtain the non-relativistic reduction of the Dirac spinor, we omit its lower two

components. We then have the simple reduction of

ψ(~p, s)→
(
χ(s)

0

)
, (C.3)

where each component of this 1x2 matrix is, in turn, a 1x2 matrix.

For spin-3/2 particles, we must evaluate the reduction of Rarita-Schwinger spinors.

These are constructed out of Dirac spinors with spin s = 1
2
, Lorentz polarization

vector with spin l = 1, and 1
2
⊗ 1 = 3

2
= j Clebsch-Gordan coefficients, such that
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[96, 105,126]

ψµ(~p,mj) =
1∑

ml=−1

1/2∑
ms=−1/2

(
1,ml;

1

2
,ms|

3

2
,mj

)
u(~p,ms)e

µ(~p,ml) , (C.4)

where the mi are the z-components of the respective spin. In the particle’s rest frame,

the Lorentz polarization vector has components in a spherical basis êλ of

~eλ=+1 = − 1√
2


1

i

0

 , ~eλ=−1 =
1√
2


1

−i

0

 , ~eλ=0 =


0

0

1

 . (C.5)

The general polarization four-vector eµ is found by boosting the three-vector into a

general Lorentz frame [96]:

eµ(p, λ) =

(
êλ ·

~p

m
, êλ +

~p(êλ · ~p)
m(p0 +m)

)
. (C.6)

Note that in the |~p|/m expansion, this vector becomes

eµ(~p, λ) = (0, êλ)
µ +O(

|~p|
m

) . (C.7)

We now introduce the total spin-3/2 spinors

χ(3/2)(
3

2
) =



1

0

0

0


, χ(3/2)(

1

2
) =



0

1

0

0


, χ(3/2)(−1

2
) =



0

0

1

0


, χ(3/2)(−3

2
) =



0

0

0

1


.

(C.8)

By performing the non-relativistic reduction on the Lorentz polarization vector and
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the Dirac spinor in Eq. (C.4), and by introducing the expression for the components

of the transition operator ~S

~S =
∑

mj ,ml,ms

(
1,ml;

1

2
,ms|

3

2
,mj

)
χ(3/2)(mj)χ

†(ms)~e
∗(ml) , (C.9)

we have the simple result of

u0(~p,mj)→ 0, ui(~p,mj)→

 S†iχ
(3/2)(mj)

0

 . (C.10)

To see how these spinor reductions simplify interactions, let us examine the P -

wave πNN interaction given in Sec. 5.2.1. Let us examine only the spin structure of

this interaction; we shall address isospin below. We have

LπNN =
fπB1B2

mπ

ψ̄(iγ5)γµ∂µπψ →
fπB1B2

mπ

χ†(γ5)γµkµχ . (C.11)

We now write the Dirac matrices in the form (recall we work in the Dirac basis)

γ0 =

 1
(2) 0

0 −1(2)

 , ~γ =

 0 ~σ

−~σ 0

 , γ5 =

 0 1
(2)

1
(2) 0

 , (C.12)

where 1(2) represents a the 2x2 identity matrix and ~σ is the Pauli matrix vector. Now
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we write out the four-product between the momentum k and the gamma matrices:

LπNN =
fπB1B2

mπ

(
χ† 0

) 0 1
(2)

1
(2) 0


 k0 −~k · ~σ
~k · ~σ −k0


 χ

0


=
fπB1B2

mπ

(
χ† 0

) ~k · ~σ −k0

k0 −~k · ~σ


 χ

0


=
fπB1B2

mπ

χ†
(
~k · ~σ

)
χ . (C.13)

This is the origin of the spin structure of our P -wave πNN vertex. Note that since

we did not alter the isospin structure of this interaction, it remains as it was in

the relativistic Lagrangian. Now let us examine the interaction between π, N , and

N∗, where the latter has a negative parity. In this case, we remove the γ5 from the

Lagrangian. This gives

(
χ† 0

) k0 −~k · ~σ
~k · ~σ −k0


 χ

0

 = χ† (k0)χ . (C.14)

This is our S-wave interaction. Before we examine the D-wave interaction, let us

look at the reduction of the π∆∆ interaction given by Eq. (5.6). Again suppressing

isospin, we have

Lπ∆∆ =
fπ∆∆

mπ

ψ̄µ (iγ5) γν∂νπψ
µ . (C.15)
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Inserting the above reductions for the Rarita-Schwinger spinors, we have

Lπ∆∆ =
fπ∆∆

mπ

 S†iχ
(3/2)

0


† 0 1

(2)

1
(2) 0


 k0 −~k · ~σ
~k · ~σ −k0


 S†iχ

(3/2)

0


=
fπ∆∆

mπ

(
χ†(3/2)Si 0

) ~k · ~σ −k0

k0 −~k · ~σ


 S†iχ

(3/2)†

0


=
fπ∆∆

mπ

χ†(3/2)
(
SiσjS

†
i kj

)
χ(3/2) . (C.16)

However, one can show by direct calculation that

∑
i

SiσjS
†
i = S

(3/2)
j (C.17)

. We then have a non-relativistic π∆∆ interaction of

Lπ∆∆ =
fπ∆∆

mπ

χ†(3/2)
(
~k · ~S(3/2)

)
χ(3/2) . (C.18)

Now that the reduction of Rarita-Schwinger spinors has been established, we

can move on to a D-wave interaction, which occurs in a πB1B2 interaction when

the baryons have opposite parity, one baryon is spin-1/2, and the other baryon is

spin-3/2. As mentioned in Sec. 5.2.1, we encounter an issue with this interaction

when using a simple derivative coupling. Let us demonstrate by performing the non-

relativistic reduction. First, the relativistic D-wave interaction is, neglecting the

coupling constant and isospin

L = ψ̄µγ5∂µπψ . (C.19)
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Now we insert the non-relativistic spinors and carry out the matrix multiplication:

L =

(
χ†(3/2)Si 0

) 0 1
(2)

1
(2) 0

 ki

 χ

0


=

(
χ†(3/2)Si 0

)
ki

 0

χ


= 0 . (C.20)

The lack of a γµ matrix causes the γ5 matrix to “flip” one of the spinors, causing the

product to vanish. This is the reason for our D-wave ansatz of [106]

LD = ψ̄µγ5γ
ν∂ν∂µπψ . (C.21)

Let us examine the non-relativistic reduction of this interaction. Inserting the non-

relativistic spinors, we have

LD =

(
χ†(3/2)Si 0

) 0 1
(2)

1
(2) 0


 k0 −~k · ~σ
~k · ~σ −k0

 ki

 χ

0


=

(
χ†(3/2) 0

)
~k · ~S

 ~k · ~σ −k0

k0 −~k · ~σ


 χ

0


=χ†(3/2)

[
(~k · ~S)(~k · ~σ)

]
χ (C.22)

This is our non-relativistic D-wave interaction.

We also simplify the baryonic propagators by neglecting antiparticle contribu-

tions, but keeping relativistic kinematics in the denominator. We do so by separating
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the two propagator poles via partial fraction decomposition:

GB(p) =

∑
spin

ψ̄ψ

p2 −m2
B + iε

=

∑
spin

ψ̄ψ

2ωB(~p )

(
1

p0 − ωB(~p ) + iε
− 1

p0 + ωB(~p)− iε

)

→

∑
spin

χ̄χ

2ωB(~p )

1

p0 − ωB(~p ) + iε
=

1

p0 − ωB(~p ) + iε
, (C.23)

where ωB(~p ) =
√
~p 2 +m2

B is the on-shell energy of the baryon. The final simplifi-

cation is a result of our spinor normalization of
∑
spin

χ̄χ = 2mB.

Since we now have our non-relativistic baryon propagators, the reduction of

baryon interactions with the ρ is straightforward, giving

L+
ρBB = −gρχ†ρµ

(
1

0

)µ
(~ρ · T )χ . (C.24)

However, there is a problem with this non-relativistic ρBB interaction. As men-

tioned in Sec. 5.2.2, the fully relativistic ρBB vertex, Γµ, satisfies a Ward-Takahashi

identity [113,114]. The Lorentz structure of this identity is

qµΓµ(p, q) = −igρ
(
G̃−1
B (p+ q)− G̃−1

B (p)
)
, (C.25)

where p and q are the four-momenta of the baryon and ρ, respectively, and G̃B

is the baryon’s fully relativistic fermionic propagator. However, if we use our non-

relativistic propagators and ρBB vertex in this identity, we find (suppressing isospin)

qµΓµ(p, q) = −igρ
(
G−1
B (p+ q)−G−1

B (p)
)

−igρq0 = −igρ [q0 + ωB(p+ q)− ωB(p)]

= −igρq0 +O
( |~q|
mB

)
. (C.26)
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Thus the Ward-Takahashi identity is not fulfilled, indicating a breakdown of gauge

invariance. However, since the non-relativistic vertex is only calculated to order

( |~q|
mB

)0, we can add in a term of order ( |~q|
mB

)1 without affecting the accuracy of our

reductions. Therefore, we can simply add in a term to the non-relativistic vertex

which causes it to fulfill the Ward-Takahashi identity. The new vertex is then

Γµ(p, q) =

(
−igρ G

−1
B (p+q)−G−1

B (p)

q0

0

)
µ

. (C.27)
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APPENDIX D

LIST OF PARTICLE PROPERTIES

Particle
Mass

(MeV)
JP I

π± 139.6 0− 1
π0 135.0 0− 1
ρ 775 1+ 1
ω 783 1+ 0

N 939 1
2

+ 1
2

N(1440) 1440 1
2

+ 1
2

N(1520) 1520 3
2

− 1
2

N(1535) 1535 1
2

− 1
2

N(1650) 1650 1
2

− 1
2

N(1700) 1700 3
2

− 1
2

N(1710) 1710 1
2

+ 1
2

N(1720) 1720 3
2

+ 1
2

N(1875) 1875 3
2

− 1
2

N(1900) 1900 3
2

+ 1
2

∆ 1232 3
2

+ 3
2

∆(1600) 1600 3
2

+ 3
2

∆(1620) 1620 1
2

− 3
2

∆(1700) 1700 3
2

− 3
2

∆(1910) 1910 1
2

+ 3
2

∆(1920) 1920 3
2

+ 3
2

Particle
Mass

(MeV)
JP I

Λ 1115 1
2

+
0

Λ(1405) 1405 1
2

−
0

Λ(1520) 1520 3
2

−
0

Λ(1600) 1600 1
2

+
0

Λ(1670) 1670 1
2

−
0

Λ(1690) 1690 3
2

−
0

Λ(1810) 1810 1
2

+
0

Λ(1890) 1890 3
2

+
0

Ξ 1315 1
2

+ 1
2

Ξ(1530) 1530 3
2

+ 1
2

Σ 1190 1
2

+
1

Σ(1385) 1385 3
2

+
1

Σ(1670) 1670 3
2

−
1

Table D.1: Basic properties of particles used in this work.
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Parent
Full

Width (MeV)
Decay
Mode

Partial
Width (%)

Partial
Wave

pCM
(MeV)

N(1440) 350 Nπ 65 P 391
350 ∆π 20 P 135

N(1520) 115 Nπ 60 D 453
115 ∆π 15 S 225

N(1535) 150 ∆π 2 D 242
150 Nπ 45 S 468

N(1650) 140 ∆π 12.5 D 344
140 Nπ 60 S 546
140 N(1440)π 3 S 147

N(1700) 150 ∆π 50 S 385
150 Nπ 12 D 580

N(1710) 125 Nπ 12.5 P 587
125 ∆π 39 P 393
125 N(1535)π 15 S 100

N(1720) 250 Nπ 11 P 593
250 ∆π 75 P 401

N(1875) 250 Nπ 7 D 694
250 ∆π 40 S 520

N(1900) 200 Nπ 5 P 710
250 ∆π 7 D 305

∆ 117 Nπ 100 P 229
∆(1600) 320 Nπ 17.5 P 513

320 ∆π 55 P 328
320 N(1440)π 22.5 S 75

∆(1620) 140 Nπ 25 S 534
140 ∆π 45 D 318
140 N(1440)π 9.5 P 107

∆(1700) 300 Nπ 15 D 580
300 ∆π 37.5 S 385

∆(1910) 280 Nπ 22.5 P 716
280 ∆π 60 P 545
280 N(1440)π 47 P 393

∆(1920) 150 Nπ 12.5 P 722

Table D.2: Nucleon and ∆ particle decay data used to calculate fπB1B2 coupling
constants. Partial widths are the average of minimum and maximum uncertainty
ranges listed in PDG [9].
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Parent
Full

Width (MeV)
Decay
Mode

Partial
Width (%)

Partial
Wave

pCM
(MeV)

Λ(1405) 50 Σπ 100 S 151
Λ(1520) 16 Σπ 42 D 266
Λ(1600) 150 Σπ 35 P 336
Λ(1670) 35 Σπ 40 S 393
Λ(1690) 60 Σπ 30 D 409
Λ(1810) 150 Σπ 25 S 500
Λ(1890) 100 Σπ 10 P 558
Σ(1385) 36 Λπ 87 P 208
Σ(1385) 36 Σπ 11.7 P 126
Σ(1670) 60 Σπ 45 D 415
Ξ(1530) 10 Ξπ 1 P 654

Table D.3: Hyperon particle decay data used to calculate fπB1B2 coupling constants.
Partial widths are the average of minimum and maximum uncertainty ranges listed
in PDG [9].

Parent Ap1/2 An1/2 Ap3/2 An3/2 pCM (MeV) gωNN∗

N(1440) -0.060 0.040 0 0 414 0.867
N(1520) -0.020 -0.050 0.140 -0.115 470 2.711
N(1535) 0.115 -0.075 0 0 480 1.228
N(1650) 0.045 -0.050 0 0 558 0.193
N(1700) 0.015 0.020 -0.015 -0.030 591 2.968
N(1710) 0.040 -0.040 0 0 597 0
N(1720) 0.100 -0.080 0.150 -0.140 604 2.091

Table D.4: Data used to calculate coupling constants for ωNN∗ interactions derived
from helicity amplitudes. Helicity amplitudes taken from PDG [9].
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Coupling Value
fπNN 1.1
fπN∆ 3.044

fNN(1440) 0.576
fNN(1520) 0.125
fNN(1535) 0.253
fN∆(1600) 0.668
fN∆(1620) 0.285
fNN(1650) 0.252
fNN(1700) 0.049
fN∆(1700) 0.109
fNN(1710) 0.095
fNN(1720) 0.243
fNN(1875) 0.030
fNN(1900) 0.138
fN∆(1910) 0.332
fN∆(1920) 0.412

Coupling Value
fπ∆N(1440) 1.785
fπ∆N(1520) 0.305
fπ∆N(1535) 0.128
fπ∆∆(1600) 0.464
fπ∆∆(1620) 0.158
fπ∆N(1650) 0.135
fπ∆N(1700) 0.368
fπ∆∆(1700) 0.329
fπ∆N(1710) 0.338
fπ∆N(1720) 0.531
fπ∆N(1875) 0.328
fπ∆∆(1910) 0.379

fπN(1440)∆(1600) 4.903
fπN(1440)∆(1620) 0.754
fπN(1440)N(1650) 0.185
fπN(1440)∆(1910) 0.702
fπN(1535)N(1710) 0.487
fπN(1535)N(1900) 0.142

Coupling Value
fΣΣ(1385) 0.683
fΣΛ(1405) 1.093
fΣΛ(1520) 0.216
fΣΛ(1600) 0.541
fΣΛ(1670) 0.222
fΣΣ(1670) 0.155
fΣΛ(1690) 0.131
fΣΛ(1810) 0.306
fΣΛ(1890) 0.251
fΛΣ(1385) 0.325
fΛΣ(1670) 0.110
fΞΞ(1530) 0.654

gωNN 11.0
gωNN(1440) 0.867
gωNN(1520) 2.711
gωNN(1535) 1.228
gωNN(1650) 0.445
gωNN(1700) 0.193
gωNN(1710) 0.0
gωNN(1720) 2.091
gωNN(1875) 2.015
gωNN(1900) 2.887

Table D.5: Baryonic coupling constants used in this work.
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