
MOCK-3D WEB APPLICATION: INTERACTIVE LIGHTING, RENDERING

AND SHADING FOR 2D ARTWORK

A Dissertation

by

YINAN XIONG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ergun Akleman
Committee Members, Bruce Gooch

Felice House
Head of Department, Timothy McLaughlin

August 2016

Major Subject: Visualization

Copyright 2016 Yinan Xiong

ABSTRACT

In this thesis, we developed a web-based tool to allow artists to create 3D-looking

stylized depictions based on 2D artwork with complete visual control. The controls

include multiple lights with diffuse reflections and specular highlights, and refraction

and mirror reflection with Fresnel control. Our controls do not necessarily corre-

spond to underlying physical phenomena; however, they still provided results that

are visually similar to 3D realistic rendering.

The core of this approach is using paintable shape maps, which are similar to

normal maps. The shape maps do not have to correspond to 3D shapes and, therefore,

they can allow the artist to obtain incoherent and impossible 2D shapes with 3D

appearance.

Another contribution is that we linearized Fresnel Curve so that it can be con-

trolled by two sliders. This allows it to achieve an intuitive blending of the results

of refraction and reflection.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr.Ergun Akleman, my committee chair, for providing me

continuous support and inspiration while I was working on my thesis. I am grateful

for his patience and his trust. I would also like to thank the rest of my committee,

professor Bruce Gooch and professor Felice House for giving me refreshed perspectives

and helping me look at my work in different ways during the progress. Thanks also

to all the students, faculties and staff of the department of Visualization for all your

time and everything. Your efforts and passion fuel me with energy. Your patience

and help make me feel warm in this viz family. Thank for making viz lab such a

loveable place and nurturing environment.

A series of thank you goes to my friends: Shenyao Ke, Siran Liu, Cherise Castille,

Xiaoyi Zhang, Zhao Yan, Jiahe Bian, Phillip Rollfing. Thank you for being the ones

I need when I was confused, lost and stressed. I am grateful for meeting you and

thanks for being a good friend by my side. At last, I would like to say thanks to my

parents back in China. Thanks for all the love and support since I was born. It has

always been the most powerful thing that keeps me moving. And one more thanks

to Devkan Kaleci for techincal support.

iii

NOMENCLATURE

2D Two-dimensional

3D Three-dimensional

CG Computer Graphics

NPR Non-Photorealistic Rendering

FG Foreground

BG Background

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Introduction . 2

2. RELATED WORK . 5

2.1 Normal Map Modeling . 5
2.2 Rendering and Compositing . 6

3. MOCK-3D OBJECTS . 8

3.1 Definition of Mock-3D Objects . 8
3.1.1 Shapes of Mock-3D Objects 8
3.1.2 Material Properties of Mock-3D Objects 11

3.2 Creation of Mock-3D Objects . 11
3.2.1 Rendering Normal Map as Shape Image 12
3.2.2 Use Existing 2D Modeling Applications 12
3.2.3 Hand Painting Shape Image 13
3.2.4 Use Red and Green Lights to Photograph a Shape Image . . . 13

4. WEB-BASED MOCK-3D RENDERING SYSTEM DESIGN 15

4.1 User Goals and Product Requirements 15
4.2 Mock-3D Prototype . 17

4.2.1 Framework . 17
4.2.2 Responsive Interface . 19

4.3 Component Design . 19

v

5. RENDERING AND COMPOSITING WITH MOCK-3D OBJECTS . . . 23

5.1 Rendering . 25
5.1.1 Light and Style . 27

5.1.1.1 Light Type and Properties 27
5.1.1.2 Style . 28
5.1.1.3 Multiple Lights . 32

5.1.2 Refraction . 33
5.1.3 Reflection . 37

5.1.3.1 Mapping Foreground Image on an Ultimate Plane . 37
5.1.3.2 Mapping Foreground Image as Hemisphere 38
5.1.3.3 Comparison of Two Mapping Methods 39

5.1.4 Fresnel . 40
5.2 Compositing . 48

5.2.1 Compositing Equation Using Diffuse Alpha Channel 48
5.2.2 Additional Diffuse Alpha Control 49

6. IMPLEMENTATION AND RESULTS 50

6.1 Implementation . 50
6.1.1 WebGL Application Pipeline Model 50
6.1.2 Front-end Development . 51

6.2 Results . 52
6.2.1 Style . 53

6.2.1.1 Cartoon Shading . 53
6.2.1.2 Pattern Merging . 54
6.2.1.3 Artistic Shading . 55

6.2.2 Refraction . 56
6.2.3 Reflection . 57

6.2.3.1 Full Reflection . 57
6.2.3.2 Diffuse with Full Reflection 57

6.2.4 Fresnel . 57
6.2.5 Impossible Shape Illumination 60
6.2.6 Others: Artwork as Shape Image 60

7. CONCLUSION AND FUTURE WORK 66

REFERENCES . 67

vi

LIST OF FIGURES

FIGURE Page

1.1 (a) An example of incoherent scenes: a cubist self-portrait by Pablo
Picasso from 1907. In cubist paintings, the artists create images
based on their successive and subjective experiences in both space
and time [1, 2]. (b) A landscape painting by Richard Davison from
2001. Davison intentionally introduced contradictory vanishing points
in this painting [3]. (c) A hand-drawn compositing of an impossible
object into a photograph, by Qiao Wang. 2

3.1 Two examples of shapes of Mock-3D objects as shape map images.
(a) is a cat model created by Lumo application by Johnson [4]. (b) is
a cartoon character created by the shady program developed in Texas
A&M. (c) is a shape map created by photographing a real object
illuminated by red and green lights. 9

3.2 RGB channel of a shape map: R & G channel represent vector field,
B channel represent thickness field . 9

3.3 Mock-3D orthographic rendering and coordinate 10

3.4 Shape Image create by normal map rendering 12

3.5 Shape Image create by existing software. From left to right: (a) and
(b)from CrossShade [5], (c)from Shady (d) from Bui’s program [6]. . . 13

3.6 Shape Image painted by artist . 14

3.7 Shape Image photographed by real objects lit in red and green lights 14

4.1 Mock-3D prototype . 18

4.2 Style control slidebar and corresponding results 20

4.3 Expand different item in multiple lights accordion component 21

4.4 Examples of five types of components (From left to right: image
thumbnail, checkbox, slidebar, dropdown menus and color picker) . . 21

vii

5.1 Workflow of Mock-3D system . 24

5.2 Additional alpha control in the workflow of Mock-3D system 25

5.3 Mock-3D coordinate top view. (a) shows camera and lights position,
(b) shows reflection and refraction rays trace from a position p on
Shape Image plane to the Foreground Image plane and Background
Image plane. 26

5.4 Mouse and canvas position on browser coordinate (in black). The
origin of Mock-3D coordinate (in color) is on the center of canvas. . . 28

5.5 Shadow comparison of photorealistic rendering and NPR 29

5.6 The relationship between cos θ on position a, b and c and the shade
result on them. 30

5.7 Artistic shading equation in diagrams. (b) add t0 and t1 parameters
to provide flexiable controls to blend two color C0 and C1 30

5.8 Results of tweaking style control slidebar with two handles 31

5.9 Multiple lights equation demonstrated in images. Artwork from a
cartoon character of Homer Simpson 33

5.10 Refraction ray changes direction when it transits to a different medium. 34

5.11 Refraction ray (in pink) trace from position p on shape Image to the
Background Image plane . 35

5.12 Refraction ray cause a shift of detected UV position of Background
Image . 36

5.13 Results of seting refraction slidebar under refraction section to dif-
ferent values in Mock-3D application affects on a bottle shape. The
artwork is modified by an painting from Alison Mackay [7]. 36

5.14 Two different methods of mapping Foreground Image 37

5.15 Calculate reflection ray r by coming ray incidence −v and the normal
vector n. 38

5.16 Results of two mapping methods on a sphere shape using different
Foreground Image as shown in the right bottom thumbnail 40

viii

5.17 Results of two mapping methods on an eye shape using Foreground
Image as shown in the right bottom thumbnail 40

5.18 Two examples of reflection cooefficient curve of different medium ac-
cording to the angle of incidence [8] 41

5.19 Mock-3D reflection cooefficient / Fresnel curve 42

5.20 Fresnel curve according to cos θ . 42

5.21 From bottom to top: Mock-3D coordinate top view on a cylinder cross
section, according Fresnel result with white as reflection and black as
refraction, according Fresnel curve 45

5.22 Fresnel results on a bottle shape when user move two handles on Fres-
nel position slidebar. The first row shows Fresnel results. The Second
row shows Fresnel matte, in which white part represtent reflection and
black part represent refraction. The third row and the last row show
the according Fresnel position slidebar and Fresnel curves. 46

5.23 Interpolations between Fresnel curve and full reflection in (a), between
Fresnel curve and full refraction in (b) 46

5.24 Fresnel results on a bottle shape when user move the handle on Fresnel
control slidebar. The middle result show the default Fresnel curve, the
left one is full refraction result and the right one is full reflection result.
Others are the interpolation results. 47

6.1 WebGL application simplified pipeline model [9] 50

6.2 An example of cartoon shading application: Homer Simpson 53

6.3 An example of pattern merging application. 54

6.4 An example of artistic shading result. The artwork is modified by the
painting “Self-portrait” from Pablo Picasso [10]. 55

6.5 An example of a rendering of water refraction. The artwork is modified
by the painting “Goldfish” from Jenni Ulrich [11]. 56

6.6 An example of interactive full reflection rendering. The artwork is
modified by the drawing “Hand With Reflecting Sphere” from M.C.
Escher [12] . 58

ix

6.7 An example of the rendering of half diffuse half reflection. The artwork
is modified by the drawing “Eye” from M.C. Escher [13] 59

6.8 An example of interactive Fresnel control on the shape of a transparent
bottle. Bright/Dark and Background Image modified by an artwork
from Alison Mackay [7]. Foreground Image cropped and modified by
an artwork from Cecilia Rosslee [14]. 61

6.9 An example of illuminating impossible shape: Penrose Triangle [15] . 62

6.10 An example of illuminating impossible shape: Penrose Stairs [16] . . . 62

6.11 An example of illuminating impossible shape: M.C. Escher “Convex
and Concave” [17]. The result using (a) as Shape Image, a solid white
as Bright Image and solid black as Dark Image 63

6.12 An original artwork by Wedha Abdul Rasyid [18] 63

6.13 Examples of using an original artwork (see Figure 6.12) as Shape Im-
age to achieve a variety of results. (a) shows the interface with the
input of Shape Image, Bright Image and Dark Image. The artwork is
modified by a painting from Alison Mackay. The Foreground Image is
cropped and modified by a painting from Atelier Cecilia Rosslee . . . 64

6.14 An example of using an original artwork (see Figure 6.12) as Shape
Image and Bright Image to achieve various results. (a) shows the
interface with the input of Shape Image, Bright Image and Dark Image. 65

x

1. INTRODUCTION

1.1 Motivation

Despite the significant advances done in 3D computer graphics and shape model-

ing, according to a recent market research 3D Graphics is still only 8% of the whole

graphics market, while 2D graphics market such as vector, image and video consti-

tutes the rest, i.e. more than 90%, of the graphics market [19]. Moreover, the 3D

modeling market does not grow as rapidly as 2D painting/editing market.

There are several usual suspects to explain the reluctance of adapting 3D model-

ing such as 3D modeling is less intuitive, more expensive and requires more training

than 2D. We think that there exists an additional and important reason. Using 3D,

it is hard to include all types of expressive depictions that are caused by impossible,

inconsistent and incoherent shapes (see Figure 1.1). This reluctance suggests that

there exists a critical need to develop hybrid systems that can provide 3D effects

along with the convenience and expressive power of 2D.

In this work, we developed such a web-based hybrid system that can support

expressive depictions of impossible, inconsistent and incoherent shapes and scenes.

Although there exists a significant amount of research on non-(photo)realistic ren-

dering (NPR), except Wang et al. preliminary work [20, 21], there has not yet been

a comprehensive expressive depiction system that is capable of an integrated non-

realistic approach for both modeling and rendering. One problem with his system

is that it is Windows based and nobody currently use it. Our application turns his

system into a web-based program such that artist can use the system without a need

for a specific configuration.

1

(a) (b) (c)

Figure 1.1: (a) An example of incoherent scenes: a cubist self-portrait by Pablo
Picasso from 1907. In cubist paintings, the artists create images based on their suc-
cessive and subjective experiences in both space and time [1, 2]. (b) A landscape
painting by Richard Davison from 2001. Davison intentionally introduced contra-
dictory vanishing points in this painting [3]. (c) A hand-drawn compositing of an
impossible object into a photograph, by Qiao Wang.

1.2 Introduction

Our project is a web-based version of Wang’s [21] initial Mock-3D rendering sys-

tem. We built this system using WebGL. The original Mock-3D rendering system is

developed in windows and it is hard for the people to appreciate its power. There-

fore, we moved the system into web environment such that artists who are interested

in the creation of interactive and 3D looking artwork can use our system without

a need for specific configuration. This system can also be useful for people other

than artists who want to demonstrate their work with motion and interactive images

instead of still images.

The interface design is one of the key elements for effective use of the system. Our

goal is to develop a simple interface that can quickly give users a clear understanding

of what functions Mock-3D could provide. This is essential since most of our users

may not necessarily have a training in 3D computer graphics.

2

Creating dynamic imagery with the web-based Mock-3D renderer requires only

providing a set of input images. These input images can simply be created using any

image manipulation software such as Photoshop or Gimp. The input images can be

as little as three images which include two control images and a corresponding shape

map, which is also an image. It is also possible to provide additional images such as

foreground and background to obtain interesting reflection and refraction effects.

The two control images can be created by artist easily by turning their original

artwork into a dark (unlit) version and a bright (fully lighted) version. Final result

will be created by (1) interpolating between the dark and bright images using shading

information derived from the shape map image, then (2) a compositing process that

interpolate the transparent regions of the diffuse image with deformed background

and environment maps blended using Fresnel. The artist can interactively control

the illumination and rendering processes to intuitively obtain desired visual results.

Shape maps, themselves, are images, so they can be represented by using any

convenient 2D raster or vector image format. The fact that the shape map is itself

an image makes it a very painter-friendly representation, subject to creation and

manipulation by both algorithmic and direct approaches. The shape map encodes 2D

gradient and thickness information for all visible points of a shape. This information

does not have to be complete or consistent. There are three ways of obtaining shape

maps: (1) converting 3D shapes into 2D images, (2) directly painting a gradient

domain image or (3) modeling using a sketch based interface. The most interesting

shape maps are those sketched or painted by an artist since they can reflect the

artist’s intention, even if this does not follow the normal rules of perspective.

To develop our Interactive Mock-3D tool, we took Conrad Egans program based

on WebGL and GLSL as a basic back-end program. We designed and developed

front-end, including all the interface, interactive experience research and studied

3

and implemented artistic shaders regarding style and multiple lights, refraction and

reflection section and Fresnel blending methods.

4

2. RELATED WORK

Even though the main goal of this work resides in the rendering and compositing,

the mock-3D representation, shape map, resembles normal maps, and most of the

previous literature do not distinguish modeling from rendering, so we provide a survey

on both modeling along with rendering.

2.1 Normal Map Modeling

Simplest Mock-3D shapes are normal maps. They can directly be modeled in 2D

without any 3D interaction. One way of modeling Normal Maps is to model normals.

Johnston presented the first skectch-based normal map modeling method, called

Lumo [4]. Johnston is also the first person who notices that outlines of 2D drawings

typically provide well-defined normals. Once the normal in the outline is determined,

it is possible to diffuse normals from outlines into the empty regions inside of the

shape. Johnston applied an iterative Laplacian kernel to diffuse the normal vectors

from outlines [4].

Since then, many researchers developed normal map modeling methods. Sun

et al.[22] introduced Gradient Mesh to semi-automatically and quickly interpolate

normals from edges, and Orzan et al. [23] calculate a diffusion from edges by solving

the Poisson equation. Sykora et al. [24] proposed Lazy-Brush, which can propagate

scribbles to accelerate the definition of constant color regions. Finch et al. build thin-

plate splines which provide smoothness everywhere except at user-specified tears and

creases [25]. The underlying splines are, then, used to interpolate normals. Wu et

al. [26] proposed shape palette, where user can draw a simple 2D primitive in the

2D view and then specify its 3D orientation by drawing a corresponding primitive.

This method also performs diffusion using a thin-plate spline. Shao et al.

5

Shao et al. developed CrossShade by using an explicit mathematical formulation

of the relationships between cross-section curves and the geometry they aim to convey

[5]. The specified cross-section point is used as an extra control point to control the

normals. Bui et al. recently developed another method to generate normal maps

from simple sketches having outlines and hatching strokes[6].

Vergne et al. [27] introduces surface flow from smooth differential analysis, which

can be used to measure smooth variations of luminance. Therefore, the author

also proposes to drawing the shadows and other shading effects. Sykora et al. [28]

developed a user-assisted method to convert normal maps into Bass-Reliefs that can

provide correct shadows in a commercial renderer, but this approach will fail if the

normal maps do not correspond to shapes that can have an explicitly meaningful 3D

geometry.

2.2 Rendering and Compositing

The rendering technique we developed follows the general branch of non-photorealistic

rendering (NPR), where rendering mainly works on normal maps. NPR shading mod-

els are often simply functions of the surface normal and light direction that result

in effects such as Gooch shading [29], cartographic hill shading[30], or other artist-

specified effects. A more complex model includes curvature-based shading [31] and

”exaggerated shading” [32]. However, all these techniques are only available in 3D

with a normal and corresponding position information. However, shaded appear-

ance may be designed through a painting interface, even though they may not be

photorealistic, such as tweakable light and shade [33]. In tweakable light and shade

[33], Anjyo et al. proposed to control light and shade inside a shape by dragging

highlighted area, and an underlying normal map still needs to be estimated.

The rendering technique we developed is mostly related to the work of Gois et

6

al. [34]. Gois proposed a technique relies on the graphics pipeline to infer relief and

to simulate the 3D rotation of the shading effects inside the 2D models in real-time.

They demonstrate the application on Phong, Gooch and cel shadings, as well as

environment mapping, fur simulation, animated texture mapping, and (object-space

and screen-space) texture hatchings. Our rendering method is also related to the

work of [35]. In this work, Toler et al. created non-photorealistic illustrations from

a type of data lying between simple 2D images and full 3D models, named RGBN

image, which contains both color and a surface normal information. However, some

limitation exists such as shadows, which are only considered at discontinuities of

normal. The proposed reflection/refraction methods share similarity with the work

of Ritschel et al. [36], as we both conduct reflection/refraction in a non-physical

way. Ritschel et al. introduce a sketch-based interface for artists to create reflection

effects easily. Later on, they [37] improved the interface that can also edit shadows,

caustics, and indirect illumination. However, their results highly depend on the

scene, the camera motion, and the performed edit. And all of these have to be tuned

carefully by the user.

7

3. MOCK-3D OBJECTS

The concept of Mock-3D objects are introduced by Youyou Wang et al [21] based

on Lumo [4]. In this chapter, we will give the defination of Mock-3D objects, which

has its shape and its material properties. Then, We will talk about how to create

the shape of a Mock-3D object.

3.1 Definition of Mock-3D Objects

A Mock-3D object consists of two elements: its shape and its material properties.

3.1.1 Shapes of Mock-3D Objects

In our thesis, the shape of a Mock-3D object is given by a image, which is called

Shape map[20]. Two examples of shape maps are shown in Figure 3.1. In these

images, r, g and b values provide a 2D vector field and thickness field. The 2D

vector field is used to construct normals to the shape and thickness field is used to

provide an approximate thickness for the object (see Figure 3.2).

The concept of shape map image is inspired by Johnson’s Lumo idea. As Johnston

said in Lumo [4], “The primary components to illuminate a point on a surface is its

position and its normal map”. The main advantage of using images to represent

the shapes of objects is that images are easy to create and modify. In other words,

creating and modifying a shape map is much more simple than building a model in

a 3D application. There are several ways to create this shape image, which will be

explained in next section.

Unlike the traditional normal map, our shape map image can have pixels alpha =

0. RGB channels of a shape image represent the normal of the point face to the top,

right or toward the camera, alpha channel represent if the object is exist or not. We

8

(a) (b) (c)

Figure 3.1: Two examples of shapes of Mock-3D objects as shape map images. (a) is
a cat model created by Lumo application by Johnson [4]. (b) is a cartoon character
created by the shady program developed in Texas A&M. (c) is a shape map created
by photographing a real object illuminated by red and green lights.

(a) Vector field (b)Thickness field

Figure 3.2: RGB channel of a shape map: R & G channel represent vector field, B
channel represent thickness field

9

treat the shape map as the object, and it is separated to the background. If the

object does not exist, Mock-3D will composite the main character with Background

Image.

Since a piece of artwork has already embedded perspective view or may not

which are all intendedly designed by artists. So that Mock3d project applied an

orthographic view to render our scene. Therefore, the aspect ratio of the result is

only based on the shape map image, which I call “Shape Image”.

As shown in Figure 3.3, it demonstrate the orthographic view of a camera, it

also show our Mock-3D coordinate system. We calculate (x, y) pixel position of the

result rendering image by using the according (u, v) position of our shape image.

Since we are not considering shadow at this phase, what we need for illumination is

the according normal vector of the point we get from shape image. So we consider

the result image is mapped on the plane of z = 0, in which the center of the image

is on the coordinate origin - black dot on the figure.

Figure 3.3: Mock-3D orthographic rendering and coordinate

10

3.1.2 Material Properties of Mock-3D Objects

For every point of a Mock-3D shape, we need to describe material properties. For

instance, some objects may be transparent like glass or water; some other objects

may be reflective such as mirrors, human eyes or waxed surfaces. Some materials

can only be diffuse. To represent a wide variety of materials we use (r,g,b,α) images,

where (r,g,b) terms are used to represent diffuse properties and α term represent

both reflectivity and transparency. To differentiate only-reflective materials from

transparent materials, we use Fresnel. A constant Fresnel function of one turn a

transparent material into only-reflective material.

For rendering, we use barrycentric algebra suggested by [38]. In that approach,

rendering is obtained as a weighted average of a set of control texture images mapped

on 3D shapes. Since shape maps are simply rectangular images in our case, there is

no need for texture mapping and images that are the same size of shape maps can

simply be used a control textures. Therefore, material properties of Mock-3D objects

are provided by a set of images [38]. In the web application, we use two images: a

Bright Image and a Dark Image to represent look of materials.

3.2 Creation of Mock-3D Objects

In this section, we will discuss how to create a Shape Image. As we mentioned,

the advantage of creating a shape of Mock-3D objects is that we can just use an

image to represent the shape. That makes the shape of the object is simple to be

changed. As we list the following methods to create a Shape Image, it should also

be noted that artists can combine any of these methods, and modify these images

through a 2D software such as Gimp or Photoshop.

11

3.2.1 Rendering Normal Map as Shape Image

One way to create shape map image is that, we can use a traditional 3D rendering

software to build the 3D model in the scene and assign it a normal shader based on the

camera position. If we take Renderman Shading Language as example, the equation

for the normal shader will be:

normal N n = normal ize (ntransform (‘ camera ’ , N)) ;

f l o a t r = N n [0] / 2 + 0 . 5 ;

f l o a t g = N n [1] / 2 + 0 . 5 ;

f l o a t b = N n [2] / 2 + 0 . 5 ;

r e s u l t = (r , g , b) ;

(a) (b) (c)

Figure 3.4: Shape Image create by normal map rendering

3.2.2 Use Existing 2D Modeling Applications

Another way of creating a shape map image is to use a existing 2D modeling tool,

such as Lumo [4], CrossShade [5] or Bui’s [6] program etc. (See Figure 3.5).

12

(a) (b) (c) (d)

Figure 3.5: Shape Image create by existing software. From left to right: (a) and
(b)from CrossShade [5], (c)from Shady (d) from Bui’s program [6].

3.2.3 Hand Painting Shape Image

The third way to create a shape map image is that we can manually paint our

Shape Image separately through its RGB channels, and then add them together. As

explained in section 3.1.1, red & green channels represent the vector field, and blue

channel represents the thickness of the object. We can think about the red channel

as the result of our object being cast by a red light on the right side, and the green

channel as the result of being cast by a green light on the top side. We can draw

more blue on the place which you think is thicker than other place. Usually, more

blue in the center of a shape, less blue near the contour (see Figure 3.6).

3.2.4 Use Red and Green Lights to Photograph a Shape Image

Another way to create Shape Image is photographing physical objects. According

to the concept of the vector field of shape map image we only concern the Red and

Green channel of shape map. We can use a red light cast on the right side of an

object, and a green light cast on the top of it, then, we photograph the object under

the lights (see Figure 3.7).

13

(a) (b) (c)

Figure 3.6: Shape Image painted by artist

(a) (b) (c)

Figure 3.7: Shape Image photographed by real objects lit in red and green lights

14

4. WEB-BASED MOCK-3D RENDERING SYSTEM DESIGN

For building a friendly and pragmatic web application, it is critical to develop

the web application using user-centered interface design principles. In this chapter,

we discuss our approach to optimize the product around how users can, want, or

need to use the product rather than forcing the user to change their behavior to

accommodate the product [39].

For the processes of a user interface design, we start with the functionality re-

quirement gathering, working on user and task analysis, followed by information

architecture and prototyping, along with usability inspection and iterative test, fi-

nally focusing on graphical user interface details [40].

4.1 User Goals and Product Requirements

To lead to better design decisions and defining the product's feature set, we set

a list of persona [41, 42] and finally focus on 4 types of users:

(1) Illustrators who are technically traditional artists but want to obtain a 3D

look and feel for their art. (2) Web and mobile designers who want to obtain high-

quality materials and use lights, shadows, and some physical elements to represent

the space relationship on their designs. (3) Product designers who love to explore

latest trends and get inspiration from new technology. (4) CG lovers who are curious

about artistic style shading and want to explore more.

Based on these simplified personas, we identified the following characteristics of

our Mock-3D users:

• Mostly designers are artists, or at least interested in aesthetics.

• Most users do not have a skill of 3D software or not clear about the knowledge

15

of computer graphic.

A good product design first meets user goals according to personas expectation

such as user needs to have a tool simple to use, get inspiration. In this project, I have

extended Noessels model [42] to design a user interface for Mock3D. This model build

over Don Normans concept of Emotional Design [43] by adapting Normans cognition

model into the practice of design or user research. The model allows linking user

goals with top-level user motivations.

Noessels model present 3 steps of goal: Experience goals, Ends goals and Life

goals. Since life goal is considering branding strategy and we are not in the stage of

this level. We primarily consider the first two types of user goals in this paper: (1)

Experience goals, (2) Ends goals.

Experience goals are the most immediate level of cognitive processing, they ex-

press how people want to feel while using a product. In our case, experience goal

is to make artists feel it is easy to get a touch on 3D field, and feel cool, have fun

when they interact with the product. Therefore, our user interface should be simple,

self-explanatory, and the interaction response should be immediate and obvious to

see the change.

Ends goals are the middle level of cognitive processing. It leads user gradually

understand the product, and let users manage simple everyday behaviors. According

to Norman, these constitute the majority of human activity. As a research project,

the key for developing Mock-3D is to present our product features such as: able to

create 3D work without using complex 3D software, try different artistic styles, able

to turn impossible, incoherent or inconsistent 2D artwork into 3D. To let users have

an idea about these features. We will set up some preset examples and make tutorial

videos in the future, to allow user change images from the selected examples.

16

Combined with our user experience goal and End goal, we concluded the following

requirements when we construct the prototype of Mock-3D.

• Since our major users don't have the experience of 3D software, the first sight of

our application should directly present the result in a most simple and under-

standable way - that will be our primary functions.

• To provide a variety of manipulation opportunity for users, the secondary func-

tions should be hidden, but at the same time we remain links and instruct user

to make further explorations.

• Since each artist have different working environments, and it is a creative art

tool, our tool is not only used for work but also for pleasure, it need to be

fit on the medium screen such as iPad and larger screens. It will be a better

to fit on mobile screens, but not necessary. Hence, compatibility through dif-

ferent browsers and a responsive interface design is the key for our technical

requirements.

4.2 Mock-3D Prototype

According to the product requirements proposed by user research, we collected

our functions and separate them into 3 parts: (1) File import and export (2) Vari-

ables/ parameters controls (3) Result area. In the Control Sections, we seperate

them to basic controls, and optional controls.

4.2.1 Framework

After iterations of discussion, we presented the prototype of our landing page of

Mock-3D website (see Figure 4.1).

We decided to apply a layout that sidebars on the left side and right side with

same width and the result output window in the center. Since the scanning path of a

17

Figure 4.1: Mock-3D prototype

user is always from left to right. The left side includes our primary controls, the right

side includes our optional controls. In primary controls part, it has our file import

and export section, then followed by basic image control section. In optional controls

part, it includes light, diffuse alpha, refraction, reflection and Fresnel controls.

Since we want to let user understand the feature of our tool, which consist of 3

basic images - Shape Image, Bright Image and Dark Image - as the key images for a

simple Mock-3D result. The result is a combination of Bright Image and Dark Image

which can tweak the line of light and dark by style control slidebar based on the shape

information provided by Shape Image. Other functions are all optional. Thus, we

decided to keep other controls collapsed at the first landing page of our application

to make the interface simple and neat, and as the right side is the secondary sight of

18

a user which implies they are all optional.

4.2.2 Responsive Interface

In order to fit different widths of devices, we need to design a responsive interface

to let user get access to Mock-3D in different screens, such as large or medium device

desktop, small device tablet, or extra small device phones.

As shown in Figure 4.2, in our Mock-3D case, the key of the responsive layout is

the width of sidebars and the size of the result image.

In order to able to see our result in a quite large display even when we use a

extra small device, we hide the left sidebar when width of browser is less than 768px

(see Phone section). The sidebars width is set to 25% full width of browser, and no

larger than 300px when the browser width is larger than 1200px, and not smaller

than 160px when it is displayed on phones. Either too long or too short for the width

of sidebar will cause the components in sidebars uncomfortable for user to control.

The size of result image is based on the aspect ratio of Shape Image. It has the same

aspect ratio as shape image, but display as large as possilbe and always leave a 10px

spacing to the left and right, or to the top and bottom. Each component’s width

and height will be recalculated when the browser is resized.

4.3 Component Design

For a better navigation experience and a clear hierarchy presentation, we want to

only expand one of our optional controls section at a time. That makes us choose to

use “accordion” component. Figure 4.3 shows the application of accordion in multi-

ple lights under light control section. Apart from this “accordion” component, the

left sidebar and right sidebar individually using an accordion component to arrange

different control sections.

According to the control of function requirements such as image replacement,

19

Figure 4.2: Style control slidebar and corresponding results

20

Figure 4.3: Expand different item in multiple lights accordion component

parameter tweaking, functions turn on/off, method selection, and in order to keep

the consistent experience for user, we use the following five most commonly used

template components in websites to control parameters: (1) Image thumbnails with

unloading function, (2) Checkboxes, (3) Slidebars, (4) Dropdown Menus, (5) Color

Picker. We show these four types of template components in Figure 4.4.

Figure 4.4: Examples of five types of components (From left to right: image thumb-
nail, checkbox, slidebar, dropdown menus and color picker)

We, now, want to discuss two of these components and their features in detail:

Thumbnail and the slidebar.

21

Thumbnail: The thumbnail is not only provides a thumbnail view of the up-

loading image but also able to upload an image by clicking on the image or draging

image format file in it. All the thumb images will show the actual aspect ratio of the

original image user uploaded. However, since the result rendering is based on the

Shape Image, if other images (Dark, Bright, diffuse Alpha, Background, Foreground

Image) provided by users is not the same aspect ratio as the Shape Image, these

images will be automatically stretched or shrank to the same aspect ratio of Shape

Image.

Slidebar: Each slidebar allows to control the value of a parameter in a given

range of numbers using a handle. We set an appropriate range of the parameter to

let users get a reasonable result even when the handle is moved to one of the two

ends of the slider. The slider controls also provide an input text area to directly

control the values of the parameters. Using this input text area, users can set values

beyond the given range of maximum and minumum values.

22

5. RENDERING AND COMPOSITING WITH MOCK-3D OBJECTS

In this chapter, we will introduce the general principles of qualitatively acceptable

rendering of Mock-3D shapes.

To achieve artistic rendering purpose with more understandable changing asso-

ciated to parameters, we provide different shading algorithms differ from traditional

shading method.

As shown in Figure 5.1, the workflow of Mock-3D rendering and compositing

system mainly has 5 input images. Left side, started with Bright, Dark, Shape

Image, is the workflow to generate a diffuse result. The right side is the workflow

of generation of reflection result and refraction result. The combination of reflection

and refraction base on a Fresnel equation according to the material of the object.

Then, an appearance result comes from the mix of diffuse result and Fresnel result

base on the alpha channel of the result of diffuse. Finally, we use the alpha channel

of Shape Image to composite appearance with Background Image.

The red arrow in Figure 5.1 and 5.2 pointing to the result of diffuse alpha stand

for the percentage of diffuse in the process of combining with Fresnel, it comes from

the alpha channel in both Bright Image and Dark Image. It can be considered as

the transparent part of the Mock-3D object.

We also provided an additional Alpha Control Image to provide the convenience

of adjusting alpha of diffuse result. The workflow will not change if we don’t adjust

the slider bars in the “Diffuse Alpha” section. If we want to use this control, the

workflow of Mock-3D will add a process on the diffuse alpha channel before generating

appearance result, then continue the workflow. By using this additional Alpha Image,

We don’t need to set some part of our Bright and Dark Image transparency. Instead,

23

Figure 5.1: Workflow of Mock-3D system

24

we can use slidebars to intuitively control how transparency a certain part in the

mock-3D object should be.

Figure 5.2: Additional alpha control in the workflow of Mock-3D system

5.1 Rendering

Rendering scene in Mock-3D includes lights, shading method (our style control),

reflection, refraction and Fresnel combination. As we introduced in chapter three,

we use orthographic view in rendering. Mock-3D Shape Image is on the plane z = 0

and the image center is on the coordinate origin. Figure 5.3 shows the top view of

our Mock-3D scene.

25

As shown in Figure 5.3(a), to calcualte pixel (x, y) in the final result image,

we need to calculate the point p(x, y, 0) in the Mock-3D coordinate system. Lights

L0, L1, L2 is in the space of z > 0. The diffuse shading can be received from those

lights’ positions and the according (x, y) information from Bright, Dark, and Shape

Images. Figure 5.3(b) shows a ray traces from point p on the Shape Image plane

to the Foreground (FG) Image plane to get the reflection information and trace to

Background (BG) Image plane to get the refraction information. In which FG Image

is on the plane of z = a (a > 0). BG Image is on the plane of z = b (b < 0), in which

a and b can be adjusted by users.

(a) (b)

Figure 5.3: Mock-3D coordinate top view. (a) shows camera and lights position, (b)
shows reflection and refraction rays trace from a position p on Shape Image plane to
the Foreground Image plane and Background Image plane.

26

5.1.1 Light and Style

In the Mock-3D system, shading result (style) is based on light’s properties. By

tweaking the parameters of lights, we can create different art styles of result. At the

same time, we also provided a style control slidebar to intuitively control the shading

of our Mock-3D objects.

5.1.1.1 Light Type and Properties

In the Mock-3D system, light can be considered as a brush to add color variety

on the result. Take the brush tool in Adobe Photoshop as an example, since different

types of brush can present different types of artist styles, we have options to choose

brush style from hard edge to soft edge, it can also have different sizes. Therefore, we

use this idea, and choose to use pointlight instead of directional light to have “size”

and “style” controls of our light brush. The distance from the light to the canvas

is used to control the “size” of the light, the intensity and decay of light controls

are similar to the opacity of a brush in Photoshop. Furthermore, we have our style

control slidebar for the soft or hard edge control.

Lights in Mock-3D system are represented by mouse position. In order to apply

on different aspect ratios of images, the x, and y of our normalized mouse position

pMn(XMn, YMn) on the Mock-3D coordinate can be calculated as following:

XMn =
XM −X0

X1 −X0

− 0.5

YMn = −YM − Y0
Y1 − Y0

+ 0.5

As shown in Figure 5.4, pM(XM , YM) is the mouse position on the browser,

27

p0(X0, Y0) is the left top position of canvas on the browser, p1(X1, Y1) is the right

bottom position of canvas the on browser.

Figure 5.4: Mouse and canvas position on browser coordinate (in black). The origin
of Mock-3D coordinate (in color) is on the center of canvas.

Considering when artists move their brush, the brush size should not be changed,

therefore, we set our pointlight position on a plane d away from the canvas. Since

our shape image is on the plane of z = 0 in the Mock-3D coordinate system. Thus,

our pointlight position pL will be:

pL = (XMn, YMn, d)

5.1.1.2 Style

We noticed that the significant difference from a photorealistic rendering is that,

non-photorealistic rendering (NPR) has a comparatively more saturated color in the

shadow (Figure 5.5). For the artistic purpose, we hope the shadow shade can be

given directly by artists.

28

Therefore, we came up with the idea of using two images, a fully illuminated

image, and an unlit image to represent the shades of objects. That becomes our

Bright Image and Dark Image. The diffuse result is an equation derived from RGBα

channel from both Bright and Dark Image.

(a) Photorealistic Rendering (b) NPR Rendering

Figure 5.5: Shadow comparison of photorealistic rendering and NPR

As shown in Figure 5.6, we denoted θ as the degree between the normal vector

of a point on a sphere and the ray from the point to the light position. The cos θ

from the position a (lighted part) on the sphere to b (half lighted part), to c (shadow

part) equal to 1, 0, and -1 respectively. We can use an linear interpolation to achieve

a gradient from one color C1 in the light to another color C0 in the dark. Then, the

shading equation of result color C will be:

C = C0(1− t) + C1t (5.1)

Where t is between 0 to 1. This formulation closely resemble to Gooch shading

formulation [29]. Note that since cos θ is in this range for lights in front of object,

29

(a) (b)

Figure 5.6: The relationship between cos θ on position a, b and c and the shade result
on them.

we can directly use it as our t parameter. Diagram in 5.7(a) shows the relationship

between t and C given in Equation 5.1.

(a) (b)

Figure 5.7: Artistic shading equation in diagrams. (b) add t0 and t1 parameters to
provide flexiable controls to blend two color C0 and C1

.

30

Cartoon shader can be considered as the flatten combination of C0 and C1, in

order to have a flexible control of the gradient step point of C0 and C1, we intro-

duce two parameters t0 and t1 in between 0 to 1 (see Figure 5.7(b)), so that, the

two parameters turn into two handles of the slidebar in our interface. Figure 5.8

demonstrates how the shading of a sphere shape is controlled by our slidebar.

Figure 5.8: Results of tweaking style control slidebar with two handles

Since C0 and C1 can be replaced by two images, we use I0 and I1 to represent

them, that is our Dark Image and Bright Image. Then, our diffuse result ID will be:

ID = I0t
′ + I1(1− t′)EL

31

Where,

T ′ =
t− t0
t1 − t0

t′ =

0, If T ′ < 0

1, If T ′ > 1

T ′, Otherwise

EL is the energy of a incident light and in Mock-3D system, it is computed from

light properties such as: light color, light intensity, light plane distance and light

decay. Here, we simplified it as the multiplication of the intensity of a light IL and

the color of a light CL. Thus, the energy of incident light is: EL = ILCL.

5.1.1.3 Multiple Lights

Lights have two functions in Mock-3D system: (1) For illumination fuction (2) For

creative manipulation - lights work as brushes. In order to implement the second

function, we provided multiple lights with independent light properties. In this

section, we will talk about how to apply them together on the result.

Derived from one light diffuse equation in the previous section 5.1.1.2, let T

denote the overall contribution of lights, it can be calculated by the sum of each

light's energy multiplied by (1− t′) as the following:

T =
n∑

i=0

((1− t′)EL)

Then, our diffuse result ID of multiple lights will be:

ID = I0T + I1(1− T)

32

Figure 5.9: Multiple lights equation demonstrated in images. Artwork from a cartoon
character of Homer Simpson

The equation can be visually demonstrated as in Figure 5.9, where 1 − T is the

reverse of the image of T . And T can be represented as the rendering diffuse result

of multiple lights cast on a white shape of the character.

5.1.2 Refraction

We observe that index of refraction in nature is mostly in the range from 1/2 to

2. To achieve a linear interpolation, we set the parameter log2 η as the power of 2,

so that our index of refraction parameter on the interface ranges from -1 to 1. Noted

that when log2 η = 0, which is in the middle position of our slidebar, the index of

refraction is 2 to the 0, that equals to 1 which is the index of refraction of the water

medium.

As shown in Figure 5.10, when a refraction ray l transits to a different medium, the

ray will change direction. If the index of refraction of boundary η is larger than

33

1, that is to say, log2η is larger than 0, its direction will be more inclined to the

normal vector line of that point. Vice versa, if the index of refraction of boundary η

is smaller than 1, log2η is smaller than 0, it will be inclined to the surface plane.

Figure 5.10: Refraction ray changes direction when it transits to a different medium.

According to the principle before, as shown in Figure 5.11, we can calculate our

refraction ray r by interpolating three rays: (1) le the camera ray which always is

(0, 0,−1), (2)−n the opposite direction of the normal vector of current pixel position:

P , and (3) Vs which is on the same plane of −n and le, and perpendicular to −n. It

can be calculated as following:

Vs = −n× le ×−n

When log2 η is in the range of -1 to 0, refraction ray can be interpolated by ray

(1) and ray (2) (see Figure 5.11 (a)), when log2 η is in the range of 0 to 1, it can be

interpolated by ray (1) and ray (3) (see Figure 5.11 (b)). Therefore, the refraction

34

(a) (b)

Figure 5.11: Refraction ray (in pink) trace from position p on shape Image to the
Background Image plane

ray r equation will be:

r =

 le(1− log2 η) + (−n) log2 η, If log2 η > 0

le(1− (− log2 η)) + Vs(− log2 η), Otherwise

As shown in Figure 5.12, let d denote the distance in z direction from our Back-

ground Image plane to the Shape Image plane. Then the shift unit vector in x and

y direction of the refract ray r = (xr, yr, zr) is (xr,yr)
zr

. Therefore, the shift vector V

of UV position of our background image can be calculated as following:

V = (xr, yr)
d

zr

Examples are shown in Figure 5.13. According to different log2η, the results of

setting the value of refraction slidebar larger than 0 makes the Background Image

35

Figure 5.12: Refraction ray cause a shift of detected UV position of Background
Image

expand through the bottle. Vice versa, Background Image looks shrunken when the

value is set smaller than 0. In our application, we use the term “refraction” to stand

for log2 η.

Figure 5.13: Results of seting refraction slidebar under refraction section to different
values in Mock-3D application affects on a bottle shape. The artwork is modified by
an painting from Alison Mackay [7].

36

5.1.3 Reflection

For our reflection rendering, we have two options for users. (1) Take the reflection

Foreground Image as a plane, set it parallel to the Shape Image plane and a certain

distance away (see Figure 5.14 (a)). (2) Map the reflection Foreground Image on an

environment hemisphere (see Figure 5.14 (b)).

(a)Mapping Foreground Image on a Plane (b)Mapping Foreground Image on a Hemisphere

Figure 5.14: Two different methods of mapping Foreground Image

5.1.3.1 Mapping Foreground Image on an Ultimate Plane

Let n denote the normal vector of a point on our Shape Image plane, v is the

normalized vector from the point to eye/camera (it points to positive direction of

axis z in Mock-3D system). As shown in Figure 5.15, reflection vector r can be

represented as: r = −v + 2(n · v)n.

let d denote the distance in z direction from our Foreground Image plane to the

Shape Image plane. Then the shift unit vector in x and y direction of the reflect

ray r = (xr, yr, zr) is (xr,yr)
zr

. Therefore, the shift vector V of UV position of our

37

Figure 5.15: Calculate reflection ray r by coming ray incidence −v and the normal
vector n.

Foreground Image will be: V = (xr, yr)
d
zr

.

To increase the interactive experience of reflection with the mouse, we add an

additional mouse position pMn in the end. Therefore, our detected UV position

(u′, v′) of our Foreground Image can be calculated as following:

(u′, v′) = (u, v) + (xr, yr)
d

xz
+ pMn

Where (u, v) is our original UV position of the Shape Image.

5.1.3.2 Mapping Foreground Image as Hemisphere

Another mapping method is to map our Foreground Image on a hemisphere. It

works similar as adopting an environment sphere. In our case we only consider the

front part of the sphere which is before our Shape Image plane (see Figure 5.14(b)).

The UV cordinate on the environment sphere depends on the normal vector of

38

the calculated point. Consider that if there isn’t a change of the normal vector,

which comes from Shape Image, the detected UV position of Foreground Image

is supposed to be exactly the same position as the UV position on Shape Image.

Since the Shape Image provides a normal direction changing, the shift vector of our

detected UV position of our Foreground Image can simply use the x and y direction

of the normal vector n = (xn, yn, zn) to represent, then our detected UV position

(u′, v′) of Foreground Image can be calculated as following:

(u′, v′) = (u, v) + (xn, yn)
1

zn

Where (u, v) is our original UV position of the Shape Image.

5.1.3.3 Comparison of Two Mapping Methods

As shown in Figure 5.16, Plane mapping method and Hemisphere mapping method

have comparatively different results. When we use Plane mapping method, we re-

peat the pattern if reflect ray traces out of the boundary of Foreground Image, so

the result repeats the window pattern as shown in Figure 5.16(a). In addition, the

Plane mapping method in the window pattern case looks more distorted, especially

on the edge of the shape. Similar with the result in the case of applying a checker

as Foreground Image, Plane mapping reflection looks more distorted.

Another example shows the benefits of adopting Hemisphere mapping method.

As shown in Figure 5.17, Plane mapping results to much distortion and finally loses

the legiable shape of relection image in the eye. However, Hemisphere mapping

can properly provide a clear silhouette of buildings which meet the needs of user to

represent a meaningful reflection in this case.

In sum, both Plane and Hemisphere mapping methods have pros and cons, we

provided a dropdown selection widget in Mock-3D interface for users to choose an

39

appropriate reflection mapping method in different situations.

(a)Plane mapping (b)Hemisphere mapping (c)Plane mapping (d)Hemisphere mapping

Figure 5.16: Results of two mapping methods on a sphere shape using different
Foreground Image as shown in the right bottom thumbnail

(a)Plane mapping (b)Hemisphere mapping

Figure 5.17: Results of two mapping methods on an eye shape using Foreground
Image as shown in the right bottom thumbnail

5.1.4 Fresnel

The Fresnel equation describes how to combine reflection and refraction terms

when the light moves between media of different refractive indices [44].

40

Figure 5.18: Two examples of reflection cooefficient curve of different medium ac-
cording to the angle of incidence [8]

As shown in Figure 5.18, when light incident transmits from one medium to an-

other medium, the reflection percentage changes according to the angle of incidence.

We also notice that different index of refraction boundary has different shape of re-

flection coefficient curve, but in general, they look visually similar. So, it is possible

to use this visual similarity to simplify the Fresnel curve into piecewise linear function

as shown in Figure 5.19.

To make the simplification, we selected four points on the curve and piecewise-

linearly connected those points as shown in Figure 5.19. Therefore, our reflection

coefficient curve becomes three linear equations on three range of the angle of inci-

dence from 0◦ to 90◦. The four points are: when angle of incidence θ equals 0◦ (θa),

when θ equals Brewster’s angle (θb), when θ equals 90◦ (θd), and finally we find a

random angle between θb and θd (θc).

Let’s call reflection coefficient in Figure 5.19 as Fresnel value(F) with the range

between 0 and 1 on y axis as shown in Figure 5.20, and we use cos θ as x axis instead

41

Figure 5.19: Mock-3D reflection cooefficient / Fresnel curve

Figure 5.20: Fresnel curve according to cos θ

42

of Angle of incidence. Therefore, the value of cos θ of θa, θb, θc, θd are 1, cos θb, cos θc

and 0 respectively. The according Fresnel values equal to a, b, c, and d.

Since there exist diverse Fresnel curves based on index of refraction η, we should

use η to interpolate them. Let’s give a minium and a maximum reflection precentage

values of a and c while b and d stay on value 0, and value 1. Furthermore, in

refraction rendering method, we already got log2 η with the range from -1 to 1, now,

we normalize it as N :

N =
(log2 η + 1)

2

Therefore, our a, b, c and d values are:

a = amin(1−N) + amaxN

b = 0

c = cmin(1−N) + cmaxN

d = 1

So, in order to calculate the Fresnel value of cos θi, we have our pseudo Fresnel

equation F as following:

if 1 > cos θi & cos θi > cos θb then

t← (cos θi − cos θb)/(1− cos θb)

F ← a ∗ t+ b ∗ (1− t)

else if b > cos θi & cos θi > cos θc then

t← (cos θi − cos θc)/(cos θb − cos θc)

F ← b ∗ t+ c ∗ (1− t)

else if cos θc > cos θi & cos θi > 0 then

43

t← (cos θi − 0)/(cos θc − 0)

F ← c ∗ t+ d ∗ (1− t)

end if

In Mock-3D system, we provide two parameters, sinb and sinc, for a custom

adjustment of Fresnel equation since adapting sin instead of cos can comparatively

achieve a linear impact of the interactive result.

We can further prove that using sin θ can better demostrate Fresnel curve and give

users a visualized and intuitive control. As shown in 5.21, a top view of getting cos θ

and sin θ values of different position of a cylinder shape, it also show the according

results and Fresnel curve. From the cylinder center to its edge, sin θ changes from 0

to 1, sin θb and sin θc equals Xb and Xc in the figure, which can visually demonstrate

how Fresnel position slider parameters work.

As shown in Figure 5.22, by adjusting the slidebar of Fresnel position control, we

can get a variety of Fresnel rendering results.

To provide more various controls of the combination of refraction and reflection,

we give a Fresnel control slidebar to transit Fresnel result to full reflection, or full

refraction (see Figure 5.23).

We denote NF as the interpolate value, then we have our new Fresnel equation:

F ′ =

 NF + F (1−NF), If NF > 0

F (1 +NF), Otherwise

As shown in Figure 5.24, Fresnel control slidebar provides more flexible fresnel

rendering results. With the combined use of both Fresnel position and Fresnel control

slidebar, we can get nearly all the possibilities of a plausible Fresnel curve.

44

Figure 5.21: From bottom to top: Mock-3D coordinate top view on a cylinder cross
section, according Fresnel result with white as reflection and black as refraction,
according Fresnel curve

45

Figure 5.22: Fresnel results on a bottle shape when user move two handles on Fresnel
position slidebar. The first row shows Fresnel results. The Second row shows Fresnel
matte, in which white part represtent reflection and black part represent refraction.
The third row and the last row show the according Fresnel position slidebar and
Fresnel curves.

(a) (b)

Figure 5.23: Interpolations between Fresnel curve and full reflection in (a), between
Fresnel curve and full refraction in (b)

46

Figure 5.24: Fresnel results on a bottle shape when user move the handle on Fresnel
control slidebar. The middle result show the default Fresnel curve, the left one is full
refraction result and the right one is full reflection result. Others are the interpolation
results.

47

5.2 Compositing

After we get the result of differenct material properties, the final process is to

composite them together. In this section, we mainly talk about the compositing

of diffuse and Fresnel result using diffuse alpha channel to create our appearance

result, which is then, composite with Background Image. After that, we will talk

about additional diffuse alpha control.

5.2.1 Compositing Equation Using Diffuse Alpha Channel

There are two compositing processes in the workflow of Mock-3D system (see

Figure 5.1 at the beginning of this chapter). (1) The compositing of diffuse result

and Fresnel result and (2) The compositing of Apprearence result and Backgroung

Image.

The parameter we use to composite them are diffuse alpha channel in (1) and

Shape Image alpha channel in (2).

The diffuse alpha channel is derived from both Bright Image and Dark Image,

which is transparent in some area to represent a partially transparent object. Let

aD denote the diffuse alpha. We already got Fresnel result IF , which mixes the

reflection and refraction results, in previous sections. So our appearance result IA in

compositing (1) is:

IA = IF (1− aD) + IDaD

After the calcuation of the apprearence equation, in compositing (2), we compos-

ite our appearance with the Background Image IBG using the alpha channel from

Shape Image aS. Then, our final compositing image IC will be:

IC = IBG(1− aS) + IAaS

48

5.2.2 Additional Diffuse Alpha Control

To have a better control of the transparent part of Mock-3D objects for users, we

propose an additional diffuse alpha control section.

If users want to activate this function, they need to provide a diffuse Alpha

Image in color. By setting different values of transparency in Red, Green and Blue

in slidebars, users can control different areas with different transparenty respectively,

which can be up to three areas (R,G,B).

This additional alpha control will add upon on the original diffuse alpha after the

diffuse alpha is calculated by Bright Image and Dark Image. Let's denote aD0 as the

calculated alpha value of diffuse result. Then our new alpha value of diffuse a′D will

be:

aD1 = aD0(1− rI) + aD0NR rI

aD2 = aD1(1− gI) + aD1NG gI

a′D = aD2(1− bI) + aD2NB bI

Where rI , gI , bI stand for the Red, Green and Blue channel of Alpha Control

Image respectively, and NR, NG, NB are parameters (range from 0 to 1) which get

values from Red, Green and Blue slidebars.

49

6. IMPLEMENTATION AND RESULTS

6.1 Implementation

The languages we used in web-based Mock-3D project are: WebGL, GLSL,

HTML, Javascript, JQuery, CSS and SVG. In this section, we will introduce a basic

WebGL pipeline model we used and then, talk about the framework tools we use to

assist our responsive front-end development.

6.1.1 WebGL Application Pipeline Model

WebGL is a javascript implementation of OpenGL ES 2.0, which is becoming

increasingly more popular because it is supported by all browsers except Internet

Explorer (and even that appears to be changing). Besides the advantage of being

able to run without recompilation across platforms, it can easily be integrated with

other Web applications and make use of a variety of portable packages available over

the Web.

Figure 6.1: WebGL application simplified pipeline model [9]

50

Figure 6.1 is a simplified WebGL application pipeline model. Data flows from

the application through the GPU to generate an image in the frame buffer. The

application will provide vertices, which are collections of data that are composed to

form geometric objects, to the OpenGL pipeline. The vertex processing stage uses a

vertex shader to process each vertex, doing any computations necessary to determine

where in the frame buffer each piece of geometry should go.

After all the vertices for a piece of geometry are processed, the rasterizer deter-

mines which pixels in the frame buffer are affected by the geometry, and for each

pixel, the fragment processing stage is employed, where the fragment shader runs to

determine the final color of the pixel.

In a WebGL program, we must do the following tasks:

• Set up canvas to render into - HTML5 Canvas element

• Generate data in application

• Create shader programs

• Create buffer objects and load data into them

• “Connect” data locations with shader variables

• Render

In our project, we setup an HTML file, and the application in a separate Javascript

file. HTML file includes shaders, and it reads in utilities and application.

6.1.2 Front-end Development

We use Bootstrap as the framework to develop responsive projects. In addition,

it provides a comparatively clean, refined and elegant interface, which also includes

51

source code to customize style, font and widgets through a LESS compiler to generate

minified CSS and Javascript.

Left and right columns use a sidebar component, in which the left sidebar is

set as “offcanvas” style when the width of the window of a device is smaller than

768px. All of the three views - left column, right column, and main center area -

are in fixed position style in CSS and “overflow” style is set to “hidden” to avoid

scrolling. However, both left column and right column “overflow” in y-direction are

set to “auto”, in order to see content when one section is fully expanded.

We have three Accordion components in the HTML: one is for the left sections,

another is for the right sections, the third is in multiple lights. We restrict to expand

one item in one accordion list each time to achieve a clear navigation. This restriction

also works in multiple lights to imply that only the expanded light can be edited and

only its light position is influenced by current mouse position.

Since WebGL needs to work with canvas element in HTML, our result is displayed

on a canvas. On the top of canvas, we have a hidden SVG layer to demonstrate the

lights'positions, which can be displayed by checking on the “Show lights position”

checkbox in the Light section.

6.2 Results

In this section, we will give some results based on using different controls in Mock-

3D application to achieve interactive lighting, shading and rendering results. We will

give the results of different shading styles, the use of refraction, half reflection and

full reflection, then Fresnel application, impossible shape examples and the result of

using a artwork directly as a Shape Image.

52

6.2.1 Style

Here we will give some examples of using Mock-3D to achieve differenct styles:

cartoon shading, patterns merging and artistic shading.

6.2.1.1 Cartoon Shading

As shown in Figure 6.2, the style control slider can be used to control the tran-

sition boundary from our Bright Image to Dark Image.

(a) Shape Image (b) Bright Image (c) Dark Image

(d) Results of different style control

(d) Results of different style control

Figure 6.2: An example of cartoon shading application: Homer Simpson

53

6.2.1.2 Pattern Merging

Instead of turning an artwork into two different shades to use as Dark Image and

Bright Image in Mock-3D, we can apply any two different images/patterns to create

an interactive artwork (see Figure 6.3).

(a) Shape Image

(b) Bright Image (c) Dark Image

(d) Results of different light position

Figure 6.3: An example of pattern merging application.

54

6.2.1.3 Artistic Shading

As show in Figure 6.4, the shape map image we used here is a manual painting

Shape Image. In the results, we can see clear artistic strokes representing the bound-

ary of light and dark. After we placed a light source in different positions, lights

created different interesting mood scenarios.

(a) Shape Image (b) Bright Image (c) Dark Image

(d) Results of different light position

Figure 6.4: An example of artistic shading result. The artwork is modified by the
painting “Self-portrait” from Pablo Picasso [10].

55

6.2.2 Refraction

In the application of Background Image to get refraction results, we use diffuse

Alpha Image to make the diffuse result transparent. Then, the Background Image

can be visible and be distorted according to the Shape Image and refraction control.

As shown in Figure 6.5, we assign different refractive values to the transparent

part - ripple, to get interactive ripple results. The cat in the background is distorted

in an interesting way after the refraction of the ripple.

(a) Shape Image (b) Bright Image (c) Dark Image

(d) Background Image (e) Alpha Image

(f) Results of different index of refraction

Figure 6.5: An example of a rendering of water refraction. The artwork is modified
by the painting “Goldfish” from Jenni Ulrich [11].

56

6.2.3 Reflection

In this section, we will give some results of using a Foreground Image to be

reflected according to the Shape Image to get full reflection results. In Mock-3D,

Foreground Image can be scaled and shifted, and it will be shifted also according to

the default light/mouse position. We will first give an example of full reflection on a

specific area of the image. Then, we will give a result of the combination of diffuse

and pure reflection.

6.2.3.1 Full Reflection

As shown in Figure 6.6, we had the ball in hand fully reflected by the Foreground

Image mapped on plane. The famous artwork “Hand with Sphere” from M.C. Escher

is interactive represented according to the cursor movement.

6.2.3.2 Diffuse with Full Reflection

In the case of representing a material which only have the reflection but no

refraction, such as metal or waxed floor. We use an Alpha Image to control the mix

of diffuse and the result of Fresnel. As shown in Figure 6.7, we set 0.5 to the value

of “alphaA” slider, and 1 to Fresnel control slider. These parameters stand for a half

diffuse and half pure reflection appearance.

6.2.4 Fresnel

In a Fresnel application as shown in Figure 6.8, we use two different oil painting

arts as Foregound Image and Background Image. After Fresnel calculation, we can

see a distorted refractive cake background and a reflective room foreground at the

same time. They blended naturely according to the shape of the bottle - most

reflection on the edge or center of the bottle, other areas show more refractive results.

The blending method can be intuitively controlled by users via a Fresnel control

57

(a) Shape Image (b) Bright Image (c) Dark Image

(d) Foreground Image (e) Alpha Image

(f) Results of reflection foreground shift in x or y direction,

using “map as Plane” method

Figure 6.6: An example of interactive full reflection rendering. The artwork is mod-
ified by the drawing “Hand With Reflecting Sphere” from M.C. Escher [12]

58

(a) Shape Image (b) Bright Image (c) Dark Image

(d) Foreground Image (e) Alpha Image

(f) Results of reflection foreground shift in x direction,

using “map as Hemisphere” method

Figure 6.7: An example of the rendering of half diffuse half reflection. The artwork
is modified by the drawing “Eye” from M.C. Escher [13]

59

slidebar and a Fresnel position slidebar.

6.2.5 Impossible Shape Illumination

Figure 6.9, 6.10 and 6.11 show the possiblities of illuminating impossible shapes

and impossible artwork. Three different color values are given to Shape Image by

considering what precentage of the face aim to the right, top and towards camera

individually. The shape Image of the third example (see Figure 6.11) is created by

assigning a gradient map with 3 calculated color on the light, grey and dark shade

of the original image by M.C. Escher.

6.2.6 Others: Artwork as Shape Image

Figure 6.13 and Figure 6.14 show an example of using the original artwork (Figure

6.12) as Shape Image or Bright or Dark Image, instead of creating a Shape Image to

explore more interesting results.

60

(a) Shape Image (b) Bright/Dark Image

(c) Foreground Image (d) Background Image (e) Alpha Image

(f) Results of tweaking Fresnel control slider and Fresnel position slider

Figure 6.8: An example of interactive Fresnel control on the shape of a transparent
bottle. Bright/Dark and Background Image modified by an artwork from Alison
Mackay [7]. Foreground Image cropped and modified by an artwork from Cecilia
Rosslee [14].

61

(a) Shape Image (b) Bright Image (c) Dark Image

(d) Results of different light position with a black background

Figure 6.9: An example of illuminating impossible shape: Penrose Triangle [15]

(a) Shape Image (b) Bright Image (c) Dark Image

(d) Results of different light position with a black background

Figure 6.10: An example of illuminating impossible shape: Penrose Stairs [16]

62

(a) Shape Image (b) Results of different light position

Figure 6.11: An example of illuminating impossible shape: M.C. Escher “Convex
and Concave” [17]. The result using (a) as Shape Image, a solid white as Bright
Image and solid black as Dark Image

Figure 6.12: An original artwork by Wedha Abdul Rasyid [18]

63

(a) Interface 1

(b) Results from different light position and style control

(c) Multiple lights results

Figure 6.13: Examples of using an original artwork (see Figure 6.12) as Shape Image
to achieve a variety of results. (a) shows the interface with the input of Shape Image,
Bright Image and Dark Image. The artwork is modified by a painting from Alison
Mackay. The Foreground Image is cropped and modified by a painting from Atelier
Cecilia Rosslee

64

(a) Interface 2

(b) Results from different light porsition

Figure 6.14: An example of using an original artwork (see Figure 6.12) as Shape
Image and Bright Image to achieve various results. (a) shows the interface with the
input of Shape Image, Bright Image and Dark Image.

65

7. CONCLUSION AND FUTURE WORK

The goal of this project is to let artists achieve a variety of qualitative physics

inspirations and shading test with their personal artistic style. We try to provide an

easy-to-use interface with complete control for the properties of alpha, lights, shad-

ows, reflection, refraction, ambient occlusion and rendering qualities by uploading

paintable control images and adjusting parameters. By using this tool, artists can

easily turn their traditional 2D artwork into an interactive 3D-looking file with qual-

itatively convincing physically correct details. The major contribution of this tool is

providing a flexible paintable method to light and render the impossible / incoherent

/ inconsistent shapes, and at the same time, the intuitive Fresnel Control method

provides a new way to composite the reflection and refraction result in the artwork.

66

REFERENCES

[1] A. Gleizes and J. Metzinger, Du ”cubisme”. RG Fischer, 1993.

[2] D. Robbins, “Jean metzinger: At the center of cubism,” Joann Moser, Jean

Metzinger in Retrospect. Iowa City: University of Iowa Museum of Art, pp. 9–

23, 1985.

[3] K. Jonathan, “Using local information for compositing cg into traditional art,”

Master’s thesis, Texas A&M University, 2009.

[4] S. F. Johnston, “Lumo: illumination for cel animation,” in Proceedings of the

2nd international symposium on Non-photorealistic animation and rendering,

NPAR ’02, pp. 45–52, 2002.

[5] C. Shao, A. Bousseau, A. Sheffer, and K. Singh, “Crossshade: shading concept

sketches using cross-section curves,” ACM Transactions on Graphics (TOG),

vol. 31, no. 4, pp. 45:1–45:11, 2012.

[6] M. T. Bui, J. Kim, and Y. Lee, “3d-look shading from contours and hatching

strokes,” Computers & Graphics, vol. 51, pp. 167 – 176, 2015. International

Conference Shape Modeling International.

[7] A. Mackay, “Cakes with glass bottle,” 2013. Oil on Board, http://

alisonmackay-latestwork.weebly.com/insideout-2013.html, [Online; ac-

cessed May 11, 2016].

[8] E. Hecht, “Optics, 4th,” International edition, Addison-Wesley, San Francisco,

vol. 3, 2002.

67

[9] D. S. Ed Angel, “An introduction to webgl,” 2014. Siggraph2014 Course, video

link: https://www.youtube.com/watch?v=tgVLb6fOVVc, pdf link: https://

www.cs.unm.edu/~angel/SIGGRAPH14/, [Online; accessed May 11, 2016].

[10] P. Picasso, “Self-portrait,” 1907. http://www.wikiart.org/en/

pablo-picasso/self-portrait-1907, [Online; accessed May 11, 2016].

[11] J. Ulrich, “Goldfish,” 2012. Mizu-no-Akiras Deviant Art page, http:

//mizu-no-akira.deviantart.com/art/Goldfish-285755371, [Online; ac-

cessed May 11, 2016].

[12] M. Escher, “Hand with reflecting sphere,” 1935. http://www.mcescher.com/

gallery/most-popular/hand-with-reflecting-sphere/, [Online; accessed

May 11, 2016].

[13] M. Escher, “Eye,” 1946. http://www.mcescher.com/gallery/

back-in-holland/eye/, [Online; accessed May 11, 2016].

[14] C. Rosslee, “Baron de rode,” 2013. Oil on Canvas, http://ceciliarosslee.

blogspot.com.br/2014/02/baron-de-rode.html?m=1, [Online; accessed May

11, 2016].

[15] T. Pappas, ““the impossible tribar.”,” The Joy of Mathematics, p. 13.

[16] L. S. Penrose and R. Penrose, “Impossible objects: A special type of visual

illusion,” British Journal of Psychology, vol. 49, no. 1, pp. 31–33, 1958.

[17] M. Escher, “Convex and concave,” 1955. http://www.mcescher.com/gallery/

recognition-success/convex-and-concave/, [Online; accessed May 11,

2016].

[18] W. A. Rasyid, “How to create a geometric, wpap vector portrait in adobe

illustrator,” 2013. Online tutorial, http://design.tutsplus.com/tutorials/

68

how-to-create-a-geometric-wpap-vector-portrait-in-adobe-

illustrator--vector-16102 [Online; accessed May 11, 2016].

[19] J. Hart. John Hart, (2013) private conversion: According to a market research

firm 3D Graphics is only 8% of the whole graphics market. 2D graphics such as

vector, image and video is 90% of the graphics market.

[20] Y. Wang, Qualitative Global Illumination of Mock-3D Scenes. PhD thesis, Texas

A&M University, 2014.

[21] Y. Wang, O. Gonen, and E. Akleman, “Global illumination for 2d artworks with

vector field rendering,” in ACM SIGGRAPH 2014 Posters, p. 95, ACM, 2014.

[22] J. Sun, L. Liang, F. Wen, and H. Shum, “Image vectorization using opti-

mized gradient meshes,” ACM Transactions on Graphics (TOG), vol. 26, no. 11,

pp. 11:1–11:7, 2007.

[23] A. Orzan, A. Bousseau, H. Winnemoller, P. Barla, J. Thollot, and D. Salesin,

“Diffusion curves: A vector representation for smooth-shaded images,” ACM

Transactions on Graphics (TOG), vol. 27, no. 3, pp. 92:1–92:8, 2008.

[24] D. Sýkora, J. Dingliana, and S. Collins, “Lazy- brush: Flexible painting tool for

hand-drawn cartoons,” Computer Graphics Forum, vol. 28, no. 2, pp. 599–608,

2009.

[25] M. Finch, J. Snyder, and H. Hoppe, “Freeform vector graphics with controlled

thin-plate splines.,” ACM Transactions on Graphics (TOG), vol. 30, pp. 166:1–

166:10, 2011.

[26] T.-P. Wu, C.-K. Tang, M. S. Brown, and H.-Y. Shum, “Shapepalettes: inter-

active normal transfer via sketching,” ACM Transactions on Graphics (TOG),

vol. 26, no. 3, pp. 44.1–44.6, 2007.

69

[27] R. Vergne, P. Barla, R. W. Fleming, and X. Granier, “Surface flows for image-

based shading design,” ACM Transactions on Graphics (TOG), vol. 31, no. 94,

pp. 94:1–94:9, 2012.

[28] D. Sýkora, L. Kavan, M. Čad́ık, O. Jamrǐska, A. Jacobson, B. Whited, M. Sim-

mons, and O. Sorkine-Hornung, “Ink-and-ray: Bas-relief meshes for adding

global illumination effects to hand-drawn characters,” ACM Transactions on

Graphics (TOG), vol. 33, 2014.

[29] A. Gooch, B. Gooch, P. Shirley, and E. Cohen, “A non-photorealistic lighting

model for automatic technical illustration,” in Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, pp. 447–452, ACM,

1998.

[30] B. K. Horn, “Hill shading and the reflectance map,” Proceedings of the IEEE,

vol. 69, no. 1, pp. 14–47, 1981.

[31] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller, “Curvature-based

transfer functions for direct volume rendering: Methods and applications,” in

Visualization, 2003. VIS 2003. IEEE, pp. 513–520, IEEE, 2003.

[32] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi, “Efficiently com-

bining positions and normals for precise 3d geometry,” ACM Transactions on

Graphics (TOG), vol. 24, no. 3, pp. 536–543, 2005.

[33] K. ichi Anjyo, S. Wemler, and W. Baxter, “Tweakable light and shade for car-

toon animation,” in Symposium on Non-photorealistic animation and rendering,

NPAR ’06, pp. 133–139, 2006.

[34] J. a. P. Gois, B. A. D. Marques, and H. C. Batagelo, “Interactive shading of

2.5d models,” in Proceedings of the 41st Graphics Interface Conference, GI ’15,

70

(Toronto, Ont., Canada, Canada), pp. 89–96, Canadian Information Processing

Society, 2015.

[35] C. Toler-Franklin, A. Finkelstein, and S. Rusinkiewicz, “Illustration of com-

plex real-world objects using images with normals,” in Symposium on Non-

photorealistic animation and rendering, NPAR ’07, pp. 111–119, 2007.

[36] T. Ritschel, M. Okabe, T. Thormlen, H. peter Seidel, and M. Informatik, “Inter-

active reflection editing,” ACM Transactions on Graphics (TOG) (Proc. SIG-

GRAPH Asia), vol. 28, no. 5, pp. 129:1–129:7, 2009.

[37] T. Ritschel, T. Thormlen, C. Dachsbacher, J. Kautz, and H. Seidel, “Interactive

on-surface signal deformation,” ACM Transactions on Graphics (TOG), vol. 29,

no. 4, pp. 36:1–36:8, 2010.

[38] E. Akleman, D. House, and S. Liu, “Barrycentric shaders: Art directed shading

using control images,” in Expressive 2016: Computational Aesthetics Confer-

ences, p. accepted, Eurographics, 2016.

[39] C. Abras, D. Maloney-Krichmar, and J. Preece, “User-centered design,” Bain-

bridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage

Publications, vol. 37, no. 4, pp. 445–456, 2004.

[40] K. Holtzblatt and H. R. Beyer, Contextual design. Interaction Design Founda-

tion. The Encyclopedia of Human-Computer Interaction, Second Edition.

[41] A. Cooper et al., The inmates are running the asylum:[Why high-tech products

drive us crazy and how to restore the sanity], vol. 261. Sams Indianapolis, 1999.

[42] A. Cooper, R. Reimann, D. Cronin, and C. Noessel, About face: The essentials

of interaction design. John Wiley & Sons, 2014.

71

[43] D. A. Norman, Emotional design: Why we love (or hate) everyday things. Basic

books, 2005.

[44] J. F. Hughes, A. Van Dam, J. D. Foley, and S. K. Feiner, Computer graphics:

principles and practice. Pearson Education, 2013.

72

