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ABSTRACT

In this dissertation we deal with some spectral problems for periodic differential operators

originating from mathematical physics. We begin by using quantum graphs to model a

particular graphyne and related nanotubes. The dispersion relations, and thus spectra, of

periodic Schrödinger operators on these structures are analyzed. We find highly directional

Dirac cones, which makes some types of graphynes fascinating. Then, we study a conjecture

that has been widely assumed in solid state physics. Namely, the extrema of the dispersion

relation of a generic periodic difference operator on a class of discrete graphs are proven

to be non-degenerate. Here, by non-degeneracy we mean extrema having non-degenerate

Hessian. Finally, we present a technique of creating and manipulating spectral gaps for

a (regular) periodic quantum graph by inserting appropriate internal structures into its

vertices.
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CHAPTER I

INTRODUCTION

Graphene, a monolayer of graphite, is a wonder material (e.g., [22, 32, 46]). There are

manifold reasons for its becoming a rising star in the arsenal of materials science and

condensed matter physics. The subject of the 2010 Nobel Prize in physics, graphene is

famous for its mechanical and electrical properties, for instance super strength and high

conductivity.

Figure I.1: Graphene is an atomic-scale honeycomb lattice made of carbon atoms [25]

Recently, researchers suggested other 2D carbon allotropes which were given the common

name “graphynes.” Some graphynes, which have not been synthesized yet, are claimed to

be even better than graphene in terms of electrical properties (see, e.g., [4, 45]).

Carbon nanotubes are also carbon allotropes but with a cylindrical nano-structure. Similar

to graphene and some of graphynes, they have extraordinary thermal, mechanical, and

electrical properties, which are valuable for nano-technology, electronics, optics, and other

fields of materials science. Although carbon nanotubes were discovered and studied long

before the appearance of graphene (see, e.g., [28, 32]) they can be understood as sheets

of graphene rolled onto a cylinder (i.e., with one of the vectors of the lattice of periods

quotioned out, see, e.g., [32]). Thus, it is natural to think of graphynes nanotubes as

obtained by folding a sheet of graphynes.
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Figure I.2: Some graphyne structures1[27]

Figure I.3: Different types of carbon nanotubes [26]

The “true” quantum mechanical models of such structures are beyond our analytical and

computer abilities for a foreseeable future. Therefore, various approximate models are

used. Two of the most popular ones are the density functional theory and the tight bind-

ing model. Density functional theory, an approximation of the complete multiple-electron

model, although is amenable to computation, is quite complex. In single-electron approxi-

mation, tight binding method (i.e. discrete graph model, e.g., [16, 59]) is easy to study, but

1Image reprinted with permission from “Could graphynes be better than graphene?” by Belle
Dumé, 2012. Physics World (Institute of Physics), Copyright 2012 by Institute of Physics.
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often is too simplistic (for example, the Schrödinger operators on graphene structure are

bounded and their spectra have only two bands). Another method in the single-electron

approximation, the so-called quantum graph (or quantum network) technique (see, e.g.,

[2, 49, 54]), falls somewhere in the middle (e.g., unlike tight binding model, it leads to

unbounded Hamiltonians and infinitely many spectral bands). Quantum graph models

have proven to be simple enough to study and yet preserve all essential ingredients of the

dispersion relation. In particular, several studies of spectra of Schrödinger operators on

graphene and graphene nanotubes have been conducted (e.g., [36, 35, 44]).

In chapter II and chapter III, using quantum graph models, we describe explicitly disper-

sion relations and spectra of periodic Schrödinger operators with real and even potentials

on a particular graphyne and its related nanotubes respectively. The quantum graph oper-

ators on these structures have nonempty point spectra (i.e., bound states). We find these

parts of the spectra and provide explicit descriptions of the corresponding eigenspaces [12,

11]. We also study Dirac cones of the dispersion relations of the periodic Schrödinger oper-

ators on this particular graphyne. In case of graphene, Dirac cones are mainly responsible

for its wonderful electrical properties. There are several studies of dispertion relations of

2D Schrödinger operators with honeycomb symmetry, where in particular the mandatory

presence of Dirac cones is proven. One should mention [59] where this was done for dis-

crete graph model, [44] - for the quantum graph model, and [19, 20, 6] which studied the

continuous model. The presence of Dirac cones is one of the features that makes some

of graphynes, which do not have honeycomb symmetry, fascinating in term of electrical

properties.

In chapter IV, we study an open conjecture in mathematical physics. It is conjectured that

extrema of dispersion relation of a generic periodic Schödinger operator are isolated and

having non-degenerate Hessian. (The other belief that each band edge of a generic periodic

Schödinger operator is an extremal value of a single band function was answered positively

in [34].) This conjecture is assumed, for example, when studying emergence of impurity

states under localized perturbations of the periodic medium or defining the effective masses

(see, e.g., [3] [37, Section 5.9]). It has been proven [21] for 2D Schrödinger operator that

the extrema of the dispersion relation are generically isolated. In this dissertation, we are

interested in the non-degeneracy aspect of the extrema of the dispersion relation. We prove

the conjecture for periodic difference operators on discrete (combinatorial) graphs.

In the last chapter V, we study creation of gaps in the spectra of some periodic operators

arising in mathematical physics. Gap existence plays important role in many areas (e.g.,

solid state physics [3], photonic crystal manufacturing [30, 43, 42], and in expander graphs

construction [52], see also discussion in [37, Section 6.1]). It is also important for customized
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designing of quantum wire circuits, which can be modeled by quantum graphs. Many

efforts have been made to investigate various mechanisms of creating and manipulating the

spectral gaps, for example, to make the medium periodic, to construct expander graphs,

or to distribute identical resonators throughout the medium. A spider decoration, i.e. an

internal structure being inserted into each vertex of a regular graph, was considered in [47].

It was proven that some special decoration will indeed open the gap in the finite quantum

graph case. We extend this result in chapter V.

In the rest of this introduction we provide some preliminaries on quantum graphs and

Floquet-Bloch theory, which are necessary for further study.

I.1 Quantum graphs

We consider a graph G that consists of a set of points (vertices) and a set of segments

(edges) connecting some of the vertices. By E(G) and V (G) we denote the set of edges

and vertices of G respectively. The set of edges containing a vertex u is denoted as E(u).

The graph G is called a metric graph if we define on each its edge e a coordinate xe that

identifies the edge e with a segment [0, le] of the real axis for some le > 0. We call le the

length of the edge e. When it does not lead to ambiguity, we will use x instead of xe to

denote the coordinate on the edge e. One can now introduce in a natural way the Hilbert

space L2(e) as the space of all square integrable functions on the edge e and H2(e) as the

Sobolev space of all functions on the edge e with two distributional derivatives in L2(e).

We also define

L2(G) =
⊕

e∈E(G)

L2(e)

as the space of all square integrable functions on G. A quantum graph [7, Section 1.4],

[40, 41] is a metric graph equipped with a differential operator (which we will call the

Hamitonian) and appropriate vertex conditions. Let us introduce one example of such an

operator and vertex conditions. On each edge of the graph the Hamiltonian operator acts

as follows

u(x) 7→ −d
2u(x)

dx2

The domain of this operator consists of all functions u(x) on G such that:

1. ue ∈ H2(e), for all e ∈ E(G),

2.
∑

e∈E(G)

‖ue‖2H2(e) <∞,

3. at each vertex these functions satisfy the Neumann vertex condition, i.e.

4



ue1(v) = ue2(v) for any edges e1, e2 ∈ E(v) and∑
e∈E(v) u

′
e(v) = 0 for any vertex v from V (G).

Here ue is the restriction of function u on G to the edge e and u′e is the derivative of

ue in the direction away from the vertex v. The defined Hamiltonian is unbounded and

self-adjoint (see, e.g., [7, Theorem 1.4.19]).

Here is a more general Schrödinger operator

u(x) 7→ −d
2u(x)

dx2
+ V (x)u(x),

where V (x) is an electric potential. If one wishes to consider operators that involve first

order derivative term, as it is the case, for example, in magnetic Schrödinger operator,

then the quantum graph needs to be directed. However, we consider neither such kind

of operators nor directed quantum graphs in this dissertation. There are other types of

self-adjoint vertex conditions, see, e.g., [7, Subsection 1.4.4].

I.2 Floquet-Bloch theory

Let us define a periodic quantum graph (see [7, Section 4.1]) and introduce some notions

that we will need later.

Definition I.2.1. An infinite combinatorial, metric, or quantum graph is said to be peri-

odic (or Zn-periodic) if G is equipped with an action of the free abelian group Zn, i.e. a

mapping (p, x) ∈ Zn ×G 7→ px ∈ G, such that the following properties are satisfied:

1. Group action: For any p ∈ Zn, the mapping x 7→ px is a bijection of G.

0x = x for any x ∈ G, where 0 ∈ Zn is the identity element;

(p1p2)x = p1(p2x) for any p1, p2 ∈ Zn, x ∈ G.

2. Continuity: For any p ∈ Zn, the mapping x 7→ px of G into itself is continuous.

3. Faithfulness: If px = x for some x ∈ G, then p = 0.

4. Discreteness: For any x ∈ G, there is a neighborhood U of x such that px /∈ U for

p 6= 0.

5. Co-compactness: The space of orbits G/Zn is compact. In other words, the whole

graph can be obtained by the Zn−shifts of a compact subset.

6. Structure preservation:

• px, py are connected iff x, y are connected. In particular, Zn acts bijectively on the

5



set of edges.

• The action preserves the edges’ lengths in the case of a metric or quantum graph.

• The action commutes with the Hamiltonian H.

A simple geometric model of a periodic graph is graph G embedded into Rn in such a way

that G is invariant under shifts by integer vectors pe :=
∑

1≤i≤n piei, where p ∈ Zn and

e = (e1, . . . , en) - a basis of Rn. In this case, the map (p, x) 7→ x + pe is the action of the

group Zn in the above definition. For n = 1, 2, edges of the graph G may have to cross

each other when G is embedded into Rn. When n ≥ 3, by allowing curved edges, one can

avoid such crossings.

Due to the co-compactness condition, there exists a compact part W of G such that

1. The union of all Zn-shitfs of W covers the whole graph G.

2. Two different Zn-shitfs of W have only finite number of common points, none of

which are vertices.

Such a compact subset W , which is not uniquely defined, is called the fundamental domain

(or the Wigner-Seitz cell) for this action of Zn of G.

Floquet-Bloch theory (see, e.g., [7, Section 4.3],[51, Section XIII.16], [39, Chapter 4], [15,

38]) is the main tool to study periodic differential operators. One can think of Floquet-

Bloch technique as an analog of Fourier series expansion.

Let V be a periodic function on G, i.e. V (x + pe) = V (x) for p ∈ Zn, and G be a

periodic metric graph equipped with a self-adjoint Schödinger operator H = −∆ + V (x)

and appropriate boundary conditions. For p = (p1, . . . , pn) ∈ Zn and θ = (θ1, . . . , θn) ∈ Cn,

we denote p1θ1 + . . . + pnθn by pθ. For θ = (θ1, . . . , θn) ∈ Cn, the Floquet transform of a

compactly supported or sufficiently fast decaying function on V (G) function f is defined

as follows

f(x) 7→ Uf(x, θ) =
∑
p∈Zn

f(x− pe)eipθ.

The parameter θ is called quasimomentum (the term comes from solid-state physics, see,

e.g., [3]). By straightforward calculation we have

Uf(x+ pe, θ) = eipθUf(x, θ), for all p ∈ Zn, (I.1)

and

Uf(x, θ + γ) = Uf(x, θ), for all γ ∈ 2πZn. (I.2)
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The relation (I.1), also known as Floquet (cyclic) condition, shows that it is sufficient to

know Uf(x, θ) for x from the fundamental domain W only. On the graph we define

The relation (I.2) means that the function Uf(x, θ) is periodic with respect to the quasi-

momentum θ. Let us call B = [−π, π)n the Brillouin zone. Then it is enough to know

Uf(x, θ) for those θ from B in order to define Uf(x, θ) completely.

Combining (I.1) and (I.2), the Floquet transform can be considered as a function of θ in

B with values in a space of functions of x on compact domain W . The following theorem

[23, 38, 51] is true:

Theorem I.2.2. The transform U : L2(Rn)→ L2(B,L2(W )) is isometric and its inverse

transform is U−1f(x) =
∫
B f(x, θ)dθ, where f(x, θ) is extended from W to all x ∈ Rn

according to the Floquet condition.

It can be understood that L2(Rn) is expanded into a “continuous direct sum” over B of

identical summands L2(W ). One can easily check that UH = HU . Thus, after Floquet

transform, the operator H becomes the operator of multiplication in L2(B,L2(W )). To be

specific, for each θ = (θ1, θ2) in the Brillouin zone B, let H(θ) be the Bloch Hamiltonian

that acts as H does on the domain consisting of functions u(x) that belong to H2
loc(G) and

satisfy Neumann vertex condition and the following cyclic (or Floquet) condition:

u(x+ p1e1 + p2e2) = u(x)eipθ = u(x)ei(p1θ1+p2θ2), (I.3)

The operator H(θ), being self adjoint elliptic operator and acting on the compact metric

graph W , has discrete spectrum {λ1(θ) ≤ . . . ≤ λn(θ) ≤ . . . → ∞} (see, e.g., [7, Theorem

3.1.1]). We then say that the operator H is expanded into the direct integral of operators

H(θ) (see, e.g., [51, 38], [7, Section 4.2]).

H =

∫ ⊕
B
H(θ)dθ.

As a consequence,

σ(H) =
⋃
θ∈B

σ(H(θ)). (I.4)

We define the dispersion relation of H as the multiple-valued function that maps each

quasimomentum θ to the (discrete) spectrum of H(θ). The graph of the dispersion relation

is called the dispersion surface or the Bloch variety. Function θ 7→ λj(θ), j = 1, 2, . . . , is

called the j-th band function or dispersion relation branch. It is known (see, e.g., [31]) that

band functions are continuous and piecewise analytic. The range [aj , bj ] of the j-th band

function is called the j-th spectral band. Numbers aj , bj are called spectral edges and they
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correspond to the extrema of the dispersion relation of H.

Similarly, in case of periodic difference operator, after the Floquet transform, the operator

becomes multiplication by a matrix-valued function in L2(B,C|W |).

From the identity (I.4), we have that a value λ belongs to the spectrum of H iff λ is in the

spectrum of H(θ) for some θ ∈ B. Thus, we switch from the spectral problem for H on

the periodic graph to a set of spectral problems for H(θ) on the fundamental domain.
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CHAPTER II

SPECTRAL ANALYSIS OF A GRAPHYNE STRUCTURE1

In this chapter, we take the quantum graph approach similar to [44] to study spectra of

periodic Schrödinger operators on the simplest graphyne (see Fig. II.1) among 14 various

structures suggested in [16]. It represents the 2D projection of the so called lithographite

[10]. From now on, we reserve the word “graphyne” for this particular structure. We derive

the dispersion relations for periodic Schrödinger operators with real and even potentials on

this graphyne. From here, we extract various information about the spectral structures of

the operators. Unlike similar periodic operators in Rn, the quantum graph operators can

(and often do) have point spectra (i.e., bound states). We find these parts of the spectra

and provide an explicit description of the corresponding eigenspaces2. The presence of

spectral gaps and Dirac cones is also studied. The formulations of the results involve the

discriminant of the Hill operator with the potential obtained by the periodic extension of

the 1D potential on a single edge.

In Section II.1 we describe the geometry of the particular graphyne structure and the

operators of interest. In Section II.2 we derive the dispersion relations and the band-gap

structures of the operators on the graphyne with the main results stated in Theorems II.2.5

and II.2.7. The proof of an auxiliary Proposition II.2.8 is given in Section II.3.

II.1 Quantum graph model of graphyne structure and related Schrödinger

operators

In what follows, we describe quantum graph model of the graphyne structure shown in Fig.

II.1. At each vertex there is a carbon atom that is bonded to three or four neighboring

atoms. The chemical bonds between the atoms are represented by the edges connecting the

corresponding vertices. This graphyne structure is periodic (see Section I.2). There is a

free action of the group Z2 of integer vectors in R2 on G by the shifts by vectors p1e1 +p2e2,

where (p1, p2) ∈ Z2 and e1 = (
√

3, 0), e2 = (0, 2). We choose the shaded domain W shown

in Fig. II.1 as the fundamental domain of this action. It contains three vertices a, b, c and

1Part of this chapter is reprinted with permission from “Quantum graph spectra of a graphyne
structure” by Ngoc Do and Peter Kuchment, 2013. Nanoscale Systems: Mathematical Modeling,
Theory and Applications, Volume 2, Page 107-123, Copyright [2013] by Ngoc Do and Peter Kuch-
ment.

2The presence of bound states is an artefact of the quasi-1D model. It, however, often indicates
possible presence of very flat bands and thus resonances in the “grown up” system.
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five edges f, g, h, k, l as shown in the figure. We choose the directions3 of these edges as

shown. The entire structure G can be obtained from W by Z2-shifts, which also define

directions on all edges of the graph G. All the edges of G have length 1. We define on each

directed edge e the arc length coordinate xe that identifies it with the segment [0, 1].

Figure II.1: The structure G and a fundamental domain W with vertices a, b, c and edges
f, g, h, k, l

We now define Schrödinger operator and corresponding vertex boundary conditions. Let

q0(x) be an even4 and real L2-function on [0, 1], i.e. q0(x) = q0(1 − x) for a.e. x ∈ [0, 1].

Using the described before identification of the directed edges with the segment [0, 1], we

can transfer the potential q0(x) to each edge, thus defining a potential q(x) on the whole

G.

It is not hard to show that the evenness assumption on q0 implies the following property:

Lemma II.1.1. The potential q defined as above is invariant with respect to the symmetry

group of the graph G.

Proof. We denote the shifts by the integer vectors p1e1 +p2e2, where (p1, p2) ∈ Z2, and the

reflections with respect to the lines l1 and l2 shown in Figure II.2 by T(p1,p2) and R1, R2

accordingly. Let us first prove that the symmetry group of the graph G is generated by

Tp1,p2, R1, R2 then show that the potential q is invariant under each of these transforms,

which implies the lemma.

3The choice of the directions can be arbitrary and does not influence the results.
4The evenness assumption is made not only for technical convenience. Without this condition,

the graph must be oriented in order to define the operator. This assumption is also needed to
preserve the symmetry that we use.
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Indeed, let F be an isometry from the symmetry group of the graph G. Let A1, A2 be

the shaded hexagon and rhombus shown in the Fig. II.2 respectively. Let us denote

A0 = A1 ∪A2.

Figure II.2: A1, A2 are shaded hexagon and rhombus accordingly. M and its images
through shifts and reflections

Since F preserves distance, F (A1) is a hexagon. Let p0 = (p0
1, p

0
2) ∈ Z2 such that R(A1) :=

Tp0(F (A1)) coincides with A1 as hexagons. Since R preserves distance, R(A0) is one of the

forms shown in Figure II.3.

Figure II.3: Possible images of A0 after an isometry from the symmetry group of G
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As R = Tp0 · F , we have F = T−p0 ·R.

If R(A0) is of the form a shown in Fig. II.3 then R = Id, thus F = Tp0 .

If R(A0) is of the form b shown in Fig. II.3 then R = R1, thus F = Tp0 ·R1.

If R(A0) is of the form c shown in Fig. II.3 then R = R1 ·R2, so F = Tp0 ·R1 ·R2.

If R(A0) is of the form d shown in Fig. II.3 then R = R2, so F = Tp0 ·R2.

So one can always represent the isometry F as a combination of a shift Tp and reflections

R1, R2 for some p ∈ Z2.

Now we just need to check that the potential q is invariant with respect to each of the

transforms Tp and R1, R2.

Let M ∈ e, e ∈ E(G), be some point on the graph G. Since the directions on all edges of

the graph G are defined periodically from the directions of edges inside the fundamental

domain, xe(M) = xTp(e)(Tp(M)). Thus,

q(M) = q0(xe(M)) = q0(xTp(e)(Tp(M))) = q(Tp(M)),

i.e. the potential q is invariant with respect to the shifts Tp.

A similar argument proves the invariance of the potential q with respect to the reflection

R1.

For the reflection R2, due to the direction of edges, we have xR2(e)(R2(M)) = 1− xe(M).

Since q0 is even, q(xR2(e)(R2(M))) = q0(xR2(e)(R2(M))) = q0(1 − xe(M)) = q0(xe(M)) =

q(M). Thus, the potential q is also invariant with respect to the reflection R2.

We are now ready to construct the Schrödinger operator H in L2(G), whose spectral

properties will be studied in this chapter. The operator H acts on each edge as follows:

Hu(x) = −d
2u(x)

dx2
+ q(x)u(x). (II.1)

Its domain D(H) consists of all functions u(x) on G such that:

1. ue ∈ H2(e), for all e ∈ E(G),

2.
∑

e∈E(G) ‖ue‖2H2(e) <∞,

3. at each vertex these functions satisfy Neumann vertex conditions, i.e. ue(v) = ue′(v),

∀e, e′ ∈ E(v) and
∑

e∈E(v) u
′
e(v) = 0.
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The defined operator is known to be unbounded and self-adjoint (e.g. [7, Theorem 1.4.19]).

It is also invariant with respect to all symmetries of the graph G.

II.2 Spectral analysis of the graphyne operator

In this section we study the spectrum of the operator H. Let us describe first the main

steps of our approach. Using the Floquet-Bloch technique I.2, we reduce our consideration

to a family of spectral problems on the fundamental domain W . Then, using the standard

Hill’s operator theory [15, 51], we switch to a discrete problem (e.g., [48], [7, Section 3.6]).

Finally, the discrete problem can be analyzed rather explicitly.

Let us get to some detail now. For each θ = (θ1, θ2) in the Brillouin zone B = [−π, π)2, let

H(θ) be the Bloch Hamiltonian that acts as (II.1) on the domain consisting of functions

u(x) that belong to H2
loc(G) and satisfy Neumann vertex condition and the following cyclic

(or Floquet) condition:

u(x+ p1e1 + p2e2) = u(x)eipθ = u(x)ei(p1θ1+p2θ2), (II.2)

for all (p1, p2) ∈ Z2 and all x ∈ G.

From the Floquet-Bloch theory, we have

σ(H) =
⋃
θ∈B

σ(H(θ)).

It is well-known (e.g., [40], [7, Theorem 3.1.1]) that the operators H(θ), θ ∈ B, has purely

discrete spectrum σ(H(θ)) = {λ1(θ) ≤ . . . ≤ λn(θ) ≤ . . . → ∞}. The spectrum of H

is the range of the dispersion relation for θ changing in the Brillouin zone B. Thus, we

now concentrate on studying the spectra of H(θ) for θ ∈ B, i.e. on solving the eigenvalue

problem:

H(θ)u = λu, λ ∈ R, (II.3)

for u ∈ H2(W ) satisfying the cyclic condition at the boundary and Neumann vertex con-

ditions inside W .
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Combining the vertex and cyclic conditions we have:

uf (0) = ug(1) = uh(0) = uk(1) =: A

u′f (0)− u′g(1) + u′h(0)− u′k(1) = 0

uf (1) = ul(1) = uh(1)eiθ1 =: B

u′f (1) + u′l(1) + u′h(1)eiθ1 = 0

ug(0) = uk(0)eiθ1 = ul(0)e−iθ2 =: C

u′g(0) + u′k(0)eiθ1 + u′l(0)e−iθ2 = 0.

We will need another auxiliary operator. Let us denote by HD the Dirichlet Hamiltonian

on [0, 1] that acts as (II.1) with Dirichlet boundary conditions u(0) = u(1) = 0. We also

denote by ΣD the (discrete) spectrum of HD For each λ /∈ ΣD, there exist two linearly

independent solutions ϕ0, ϕ1 such that ϕ0(0) = ϕ1(1) = 1, ϕ0(1) = ϕ1(0) = 0. We omit the

letter λ in the notations ϕ0,λ, ϕ1,λ unless we want to emphasize their dependence on λ. We

use notations ϕ0, ϕ1 for analogous functions on each edge of W under fixed λ and fixed

identification of these edges with the segment [0, 1], which should not lead to confusion.

Then for λ /∈ ΣD solution of (II.3) can be represented as follows:

uf = Aϕ0 +Bϕ1

ug = Cϕ0 +Aϕ1

uk = Ce−iθ1ϕ0 +Aϕ1

uh = Aϕ0 +Be−iθ1ϕ1

ul = Ceiθ2ϕ0 +Bϕ1.

Continuity and eigenvalue equation on each edge are already satisfied. What we need to

check is the zero flux condition at each of the three vertices in W :
A(2ϕ′0(0)− 2ϕ′1(1)) + (Bϕ′1(0)− Cϕ′0(1))(1 + e−iθ1) = 0

Aϕ′0(1)(1 + eiθ1) + 3Bϕ′1(1) + Ceiθ2ϕ′0(1) = 0

Aϕ′1(0)(1 + eiθ1) +Be−iθ2ϕ′1(0) + 3Cϕ′0(0) = 0.

(II.4)

Due to the evenness of the function q0, we have ϕ′1(1) = −ϕ′0(0) and ϕ′1(0) = −ϕ′0(1) Thus,

(II.4) becomes 
−4Aϕ′1(1) +Bϕ′1(0)(1 + e−iθ1) + Cϕ′1(0)(1 + e−iθ1) = 0

Aϕ′1(0)(1 + eiθ1)− 3Bϕ′1(1) + Ceiθ2ϕ′1(0) = 0

Aϕ′1(0)(1 + eiθ1) +Be−iθ2ϕ′1(0)− 3Cϕ′1(1) = 0.

(II.5)
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Since ϕ′1(0) 6= 0, we can define

η(λ) :=
ϕ′1,λ(1)

ϕ′1,λ(0)
, (II.6)

then (II.5) is reduced to


−4η(λ)A+ (1 + e−iθ1)B + (1 + e−iθ1)C = 0

(1 + eiθ1)A− 3η(λ)B + eiθ2C = 0

(1 + eiθ1)A+ e−iθ2B − 3η(λ)C = 0.

The determinant of this system is

−4[9η3(λ)− η(λ)− (cos θ1 + 1)(3η(λ) + cos θ2)].

These calculations prove the following:

Lemma II.2.1. A point λ /∈ ΣD is in the spectrum of the Schrödinger operator H if and

only if there exists θ = (θ1, θ2) ∈ B such that x = η(λ) is a root of the equation

9x3 − x− (cos θ1 + 1)(3x+ cos θ2) = 0. (II.7)

Let us now extend q0 periodically from [0, 1] to qper on R and consider the Hill operator

Hper on R as below:

Hperu(x) = −d
2u(x)

dx2
+ qper(x)u(x).

The monodromy matrix5 M(λ) of Hper is defined by the following formula[
ϕ(1)

ϕ′(1)

]
= M(λ)

[
ϕ(0)

ϕ′(0)

]
,

where ϕ satisfies the differential equation

− d2ϕ(x)

dx2
+ q0(x)ϕ(x) = λϕ(x) on R. (II.8)

Discriminant (or Lyapunov function) trM(λ) of the Hill operator Hper is denoted by

D(λ). The next proposition ([44, Proposition 3.4]) collects some well-known results about

the spectra of Hill operators [15]:

Lemma II.2.2.

5I.e. Monodromy matrix is the matrix that transforms the Cauchy data (u(0) u′(0))τ of the
solution of Hperu = λu at zero to the data (u(1) u′(1))τ at the end of the period.
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1. The spectrum σ(Hper) of Hper is purely absolutely continuous.

2. σ(Hper) = {λ ∈ R
∣∣|D(λ)| ≤ 2}.

3. σ(Hper) consists of the union of closed non-overlapping (although, possibly touching)

and non-zero length finite intervals (bands) B2k := [a2k, b2k], B2k+1 := [b2k+1, a2k+1]

such that

a0 < b0 ≤ b1 < a1 ≤ a2 < b2 ≤ . . .

and lim
k→∞

ak =∞.
The (possibly empty) segments (b2k, b2k+1) and (a2k, a2k+1) are called the spectral

gaps.

Here, {ak} and {bk} are the spectra of the operators with periodic and anti-periodic

conditions on [0, 1] correspondingly.

4. Let λDk ∈ ΣD be the kth Dirichlet eigenvalue labeled in increasing order. Then, λDk
belongs to (the closure of) the kth gap. When q0 is even, λDk coincides with an edge

of the k-th gap.

5. If λ is in the interior of the kth band Bk, then D′(λ) 6= 0, and D(λ) is a home-

omorphism of the band Bk onto [−2, 2]. Moreover, D(λ) is decreasing on (−∞, b0)

and (a2k, b2k) and is increasing on (b2k+1, a2k+1). It has a simple extremum in each

spectral gap [ak, ak+1] and [bk, bk+1].

6. The dispersion relation for Hper is given by

D(λ) = 2 cos θ,

where θ is the one-dimensional quasimomentum.

Claim (4) of the lemma about the even potential case can be explained as follows: let u(x)

be the eigenfunction of the Hill operator Hper corresponding to the kth Dirichlet eigenvalue

λDk , i.e.

Hperu(x) = λDk u(x), u(0) = u(1) = 0.

Then u(1 − x) is also an eigenfunction corresponding to that eigenvalue. Either u(x) +

u(1−x) or u(x)−u(1−x) is nonzero and therefore will be an eigenfunction corresponding

to λDk . Since u(x) + u(1 − x) is periodic and u(x) − u(1 − x) is anti-periodic, λDk must

coincide with an edge of the kth gap.

The following relation between function η(λ) (see (II.6)) and the discriminant D(λ) of Hper
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is well-known [15, 44] and easy to establish:

η(λ) =
1

2
D(λ). (II.9)

Therefore, according to the statement (2) of Lemma II.2.2 and equality (II.9), one just

needs to analyze the roots of the cubic equation (II.7).

So far we have just dealt with λ not in the Dirichlet spectrum ΣD of HD. Now let us

consider the exceptional values λ ∈ ΣD.

We introduce the following notion first:

Definition II.2.3. An eigenfunction is said to be a simple loop state if it is supported on

a single hexagon or rhombus of the structure G and vanishes at all vertices (see Fig. II.4).

We can now describe what happens for λ ∈ ΣD.

Lemma II.2.4. Each λ ∈ ΣD is an eigenvalue of infinite multiplicity of the operator H.

The corresponding eigenspace is generated by6 the simple loop states.

Proof. For each λ ∈ ΣD, let ψλ be the corresponding eigenfunction of operatorHD. Since q0

is even, one can assume the function ψλ to be either even or odd. For an odd eigenfunction

ψλ, we repeat it on each edge of a hexagon/rhombus; for an even eigenfunction ψλ - repeat

around a hexagon/rhombus with an alternating sign. In both cases we get an eigenfunction

of H that lives only on one particular loop. Thus, λ ∈ σpp(H).

Figure II.4: Simple loop states constructed from even function on [0, 1] for hexagon and
odd function on [0, 1] for rhombus

Let us prove infinite multiplicity of the eigenvalues λ ∈ ΣD, which is a well-known feature of

periodic problems. Let Mλ ⊂ L2(G) be the corresponding eigenspace and γ be some period

6I.e., is the closed linear hall of ...
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vector of G. The shift operator Sγ by γ acts in Mλ as an unitary operator. Suppose that

Mλ is finite dimensional, then Sγ has an eigenfunction f ∈ Mλ ⊂ L2(G) corresponding to

an eigenvalue µ such that |µ| = 1. On the other hand, f is multiplied by µ when shifted by

the vector γ. Since |µ| = 1, f clearly cannot belong to L2(G), which leads to contradiction.

Thus, λ ∈ ΣD are eigenvalues of infinite multiplicity.

In order to prove that the eigenspace is generated by simple loop states with hexagonal

and rhomboidal supports, it is enough to prove that these simple loop states generate all

compactly supported eigenfunctions in the eigenspace Mλ. Indeed, as it is shown in [41]

(see also [7, Theorem 4.5.2]), linear combinations of compactly supported eigenfunctions

are dense in the space Mλ.

First, we notice that each compactly supported eigenfunction ϕ ofH vanishes at all vertices.

Indeed, due to connectedness of G, there must be a “boundary” vertex v of the support

that is connected by an edge with a vertex w outside the support. We claim that ϕ(v) = 0.

Otherwise, we have an edge such that the function vanishes at one end, w (corresponding

to x = 0), and does not vanish at the other end. We introduce a basis of solutions of (II.3),

functions cλ and sλ, such that cλ(0) = 1, sλ(0) = sλ(1) = 0 (such non-trivial function sλ

exists for λ ∈ ΣD). The eigenfunction ϕ can be represented as ϕ(x) = Acλ(x) + Bsλ(x).

In particular, 0 = ϕ(0) = A, and so 0 6= ϕ(1) = Bsλ(1) = 0, which leads to contradiction.

Repeating this argument, we conclude that the eigenfunction ϕ vanishes at all vertices.

Besides, the support of ϕ cannot have a vertex of degree 1. (Otherwise, due to Neumann

boundary condition, both function and its derivative will vanish at that vertex, which

makes function to be equal to zero.)

Now one needs to prove that ϕ can be represented as a combination of simple loop states.

Consider the external boundary of the support of ϕ, which is a closed circuit C of edges,

containing the whole support inside. The interior of this curve is a union of N elementary

hexagons and/or rhombuses of the graph G. We begin with a boundary edge e0 ∈ C. One

of the N internal hexagonal or rhomboidal loops must contain e0. Let ϕ0 be the simple

loop state that coincides with ϕ on the edge e0 and is extended to that loop as described

before. Function ϕ − ϕ0 will be the new eigenfunction with a smaller support (number

of loops N − 1). Continuing this process (see Fig.II.5), we will eventually represent the

eigenfunction ϕ as a combination of simple loop states.

In the next theorem, which is our main result of this section, we describe the dispersion

relation and the structure of the spectrum of the operator H.

Let F (θ) be the triple-valued function providing for each θ the three roots of the equation

(II.7). By Proposition II.2.8, which we will formulate and prove later, function F is real-
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Figure II.5: An example of deleting simple loop states (the dark ones) from the support of
an eigenfunction

valued in the Brillouin zone. Assume F (θ) = (F1(θ), F2(θ), F3(θ)), where F1(θ) ≤ F2(θ) ≤
F3(θ) for all θ ∈ B. Then we have

Theorem II.2.5.

1. The singular continuous spectrum σsc(H) is empty.

2. The dispersion relation of operator H consists of the following two parts:

i) pairs (θ, λ) such that 0.5D(λ) ∈ F (θ) (or, λ ∈ D−1(2F (θ))), where θ changing in

the Brillouin zone;

and

ii) the collection of flat (i.e., θ-independent) branches λ ∈ ΣD.

3. The absolutely continuous spectrum σac(H) has band-gap structure and is the same

(as the set) as the spectrum σ(Hper) of the Hill operator Hper with potential obtained

by extending periodically q0 from [0, 1]. In particular,

σac(H) = {λ ∈ R
∣∣ |D(λ)| ≤ 2},

where D(λ) is the discriminant of Hper.

4. The bands of σ(H) do not overlap (but can touch). Each band of σ(Hper) consists of

three touching bands of σ(H).

5. The pure point spectrum σpp(H) coincides with ΣD and belongs to the union of the

edges of spectral gaps of σ(Hper) = σac(H).

Eigenvalues λ ∈ ΣD of the pure point spectrum are of infinite multiplicity and the
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corresponding eigenspaces are generated by simple loop (hexagon or rhombus) states.

6. Spectrum σ(H) has gaps if and only if σ(Hper) has gaps.

The statements of the theorem are illustrated in Fig. II.6.

Figure II.6: The bold segments are the bands of σ(Hper). Each of them is split into three
touching bands of σ(H). One eigenvalue at the end of a band is also shown.

Proof. The first claim about emptiness of the singular continuous spectrum of the Schrödinger

operator H is well-known7.

Let first λ /∈ ΣD. Then, according to Lemma II.2.1, (θ, λ) is in the dispersion surface of H

iff η(λ) is a root of (II.7) for this θ. In other words, due to (II.9), 0.5D(λ) must be one of

the three values of F (θ). Hence, this is equivalent to D(λ) ∈ 2F (θ), or λ ∈ D−1(2F (θ)).

If λ ∈ ΣD, then according to Lemma II.2.4, (θ, λ) is in the dispersion surface for any θ

from the Brillouin zone.

This proves the second statement of the theorem.

According to the Lemmas II.2.2 and II.2.4 we have

ΣD ⊂ σ(H),ΣD ⊂ σ(Hper), (II.10)

and

σ(Hper) = {λ ∈ R
∣∣ |D(λ)| ≤ 2}.

7It goes back to the famous L. Thomas’ absolute continuity theorem [57]. See, e.g., [51, Section
XIII.6], [7, Theorem 4.4.1], or [37, Section 6.3] and references therein.
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For λ /∈ ΣD, λ is in the spectrum of H iff η(λ) is a root of equation (II.7) for some

θ. Proposition II.2.8 below shows, in particular, that all roots of equation (II.7) belong

to [−1, 1] and cover this interval. Thus, λ is in the spectrum of H iff |η(λ)| ≤ 1. Since

D(λ) = 2η(λ), this means that σ(H)\ΣD = σ(Hper)\ΣD and, by closure, σ(H) = σ(Hper).

The same Proposition II.2.8 shows that the graph of the triple-valued function F (θ) does

not have any flat branches outside the set of values ΣD. Thus, the spectrum of H is

absolutely continuous outside ΣD. This argument, together with Lemma II.2.4, finishes

the proof of the statements (3) and (5) of the theorem.

From statement (2), the dispersion relation ofH consists of the variety λ = D−1(2Fj(θ)), j ∈
1, 3, and collection of flat branches λ ∈ ΣD located at some edges of spectral bands.

According to Lemma II.2.2, function D(λ) is a monotonic homeomorphism from each

spectral band of the Hill operator onto [−2, 2]. Besides, the ranges of functions 2F1, 2F2,

and 2F3 are all in [−2, 2]. Thus, part of the spectrum σ(Hper) that corresponds to each

band of the Hill operator Hper coincides as a set with the part of the absolutely continuous

spectrum σac(H) that consists of three bands. In another words, the operator H has “three

times more” non-flat bands than the Hill operator Hper does.

The function D−1 is multiple-valued, thus producing infinitely many bands for any 2Fj , j =

1, 3. Two such spectral bands (pre-images of the same 2Fj(B)) clearly cannot overlap

because function D(λ) is monotonic on each band. Two spectral bands which are pre-

images of 2Fj(B) and 2Fi(B) for different i, j ∈ 1, 3, also cannot overlap because the

ranges of functions Fj , j = 1, 3, belong to [−1, 1] and do not overlap by Proposition II.2.8

below. One should notice that although spectral bands do not overlap, they still can touch

each other as we will see shortly. This can happen at points (θ, λ) such that D(λ) = ±2

or ±2/3. This proves the statement (4) of the theorem.

Since the spectra of H and Hper coincide as sets, we get the last statement of the theorem.

Corollary II.2.6.

1. Unless the potential q0 is constant, the spectrum σ(H) has at least one gap.

2. For a generic smooth potential q0, all possible gaps in σ(H) are open.

Proof. The first claim of the Corollary follows from the last statement of Theorem II.2.5

and Borg’s theorem [9]. Similarly, the second claim follows from Simon’s genericity result

[56] instead of Borg’s theorem.
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Graphene has captured physicists’ interest because of its unusual electronic properties.

These properties are caused by the occurrence of so-called conical singularities or Dirac

points. Roughly speaking, Dirac point is point where two spectral bands touch and locally

form a cone (also known as Dirac cone). We are interested in conical singularities that are

stable under small perturbation of the potential not breaking the symmetry.

In the next theorem, we will take a closer look at the spectral bands of the operator H.

Moreover, we will specify all the conical singularities in the Brillouin zone B and describe

how the spectral bands behave near these points.

In what follows, we will use the notation

θ0 := arccos(−1/3).

Theorem II.2.7.

1. In the free case, i.e., when the potential q0 is equal to zero, the Bloch variety of H

has conical singularities at the following points:

i) (θ, λ) = (0, 0, (2(k + 1)π)2), at which D(λ) = 2,

ii) (θ, λ) = (0,±π, ((2k + 1)π)2), at which D(λ) = −2,

iii) (θ, λ) = (±θ0, 0, (θ0 + 2kπ)2), at which D(λ) = −2/3,

iv) (θ, λ) = (±θ0,±π, (2π − θ0 + 2kπ)2), at which D(λ) = 2/3, for k = 0, 1, 2, . . .

2. When we turn on a small potential q0 6= 0, the conical singularities corresponding

to |D(λ)| = 2 will generically split into two smooth branches, thus, open a gap. The

conical singularities that occur when |D(λ)| = 2/3 are stable under small perturbation

by a potential q of the type considered.

Before proving this theorem, we need to explore some properties of function F (θ).

Proposition II.2.8.

1. Function F (θ) is real-valued for θ in the Brillouin zone B.

2. Let F (θ) = (F1(θ), F2(θ), F3(θ)), where F1(θ) ≤ F2(θ) ≤ F3(θ) for all θ ∈ B. Then,

the ranges of functions F1, F2, F3 are [−1,−1/3], [−1/3, 1/3], and [1/3, 1] correspond-

ingly.

3. Function F1 attains its maximal value at (θ1, 0) for θ1 ∈ [−π,−θ0]∪ [θ0, π] or (±π, θ2)

for θ2 ∈ [−π, π] and minimal value at θ = (0,±π).
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Figure II.7: The stable Dirac points are located at the points where three bands of σ(H)
touch to form a band of σ(Hper).

Function F2 attains its maximal value at (θ1,±π) for θ1 ∈ [−θ0, θ0] and minimal

value at θ = (θ1, 0) for θ1 ∈ [−θ0, θ0].

Function F3 attains its maximal value at (0, 0) and minimal value at (θ1,±π) for

θ1 ∈ [−π,−θ0] ∪ [θ0, π] or (±π, θ2) for θ2 ∈ [−π, π].

4. The linear level sets of function F (θ) inside B are

{(±π, θ2), θ2 ∈ [−π, π]},

{(θ1,±π), θ1 ∈ [−π, π]},

{(θ1,±π/2), θ1 ∈ [−π, π]},

{(θ1, 0), θ1 ∈ [−π, π]}.

Function F (θ) does not have any flat branches.

Proof of this proposition will be given in Section II.3.

Proof of Theorem II.2.7

1. In the free case, D(λ) = 2 cos
√
λ (see, e.g., [15]), so we have

cos
√
λ = Fj(θ), j = 1, 2, 3. (II.11)

As it was proven in Theorem II.2.5, spectral bands do not overlap. It is still possible that

these bands touch each other at their edges. We will prove this indeed happens and at

these points the spectral bands have conical form.
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According to (II.11), all non-flat spectral bands are

λ6k+j = (arccos(Fj(θ)) + 2kπ)2, λ6k+3+j = (2π − arccos(Fj(θ)) + 2kπ)2,

for all j = 1, 3, k = 0, 1, 2, . . .

Thus, for k = 0, 1, 2, . . ., we have

i) Bands λ6k+4, λ6k+7 touch each other at (0, 0, (2(k + 1)π)2), for which D(λ) = 2.

ii) Bands λ6k+3, λ6k+6 touch each other at (0,±π, ((2k + 1)π)2), for which D(λ) = −2.

iii) Bands λ6k+2, λ6k+3 touch each other at (±θ0, 0, (θ0 + 2kπ)2) while bands λ6k+5, λ6k+6

touch each other at (±θ0, 0, (−θ0 + (2k + 2)π)2). At these points D(λ) = −2/3.

iv) Bands λ6k+1, λ6k+2 touch each other at (±θ0,±π, (π − θ0 + 2kπ)2) while λ6k+4, λ6k+5

touch each other at (±θ0,±π, (π + θ0 + 2kπ)2). At these points D(λ) = 2/3.

Let us now look at the structure near the touching points. One needs to deal with each

case above separately. Since the argument we use for i) and iii) are similar to those needed

for ii) and iv), for the sake of brevity, we will consider only cases i) and iii).

i) Let (θ, λ) = (0, 0, λ0) where λ0 = (2(k + 1)π)2, k ∈ N. Then,

D(λ)

2
= cos

√
λ = 1 + a2(λ− λ0)2 + o((λ− λ0)2), (II.12)

for λ→ λ0 where a2 = −1/8λ0 < 0,

cos θ1 = 1− θ2
1

2
+ o(θ2

1), for θ1 → 0 (II.13)

and

cos θ2 = 1− θ2
2

2
+ o(θ2

2), for θ2 → 0. (II.14)

Since 0.5D(λ) is a root of the equation (II.7), we have

9

(
D(λ)

2

)3

− D(λ)

2
= (cos θ1 + 1)

(
3
D(λ)

2
+ cos θ2

)
. (II.15)

Plugging expressions (II.12), (II.13), and (II.14) into (II.15) and simplify the expression,

one obtains the following formula:

A(λ− λ0)2 + 2θ2
1 + θ2

2 = o(θ2
1) + o(θ2

2) + o((λ− λ0)2), (II.16)

24



for (θ, λ)→ (0, 0, λ0), where A = 20a2 < 0. Equation (II.16) shows that the spectral bands

touching at the point (θ, λ) = (0, 0, λ0) have the conical form. In other words, the Bloch

variety of operator H has conical singularity at (θ, λ) = (0, 0, λ0).

iii) Let now (θ, λ) = (θ0, 0, λ0), where λ0 = (θ0 + 2kπ)2, k = 0, 1, 2, . . .. We have

D(λ)

2
= −1

3
+ a1(λ− λ0) + a2(λ− λ0)2 + o((λ− λ0)2),

for λ→ λ0, where a1 = 0.5D′(λ0),

cos θ1 = −1

3
+ b1(θ1 − θ0) + b2(θ1 − θ0)2 + o((θ1 − θ0)2),

for θ1 → θ0 where b1 = − sin θ0,

and

cos θ2 = 1− θ2
2

2
+ o(θ2

2), for θ2 → 0.

Analogously to part i), we substitute these formulas into (II.15) to obtain

(A(λ− λ0) + b1(θ1 − θ0))2

4
− B(θ1 − θ0)2

4
− θ2

2

3
=

= o(θ2
2) + o((θ1 − θ0)2) + o((λ− λ0)2),

for (θ, λ) → (θ0, 0, λ0), where A = 6a1 and B = b21 > 0. Since D′(λ) 6= 0 if D(λ) 6= ±2

according to Lemma II.2.2, D′(λ0) 6= 0 and so A = 6a1 = 3D′(λ0) 6= 0. Thus, two spectral

bands which touch at the point (θ0, 0, λ0) form a cone about that point. The Bloch variety

of operator H has conical singularity at (θ0, 0, λ0).

The same argument applies when (θ, λ) = (−θ0, 0, λ0).

2. When we turn on a small potential, since D′(λ0) 6= 0 for λ0 = D−1(±2/3), we can repeat

the calculation in part iii), and find conical singularities at θ = (±θ0, 0) or (±θ0,±π) (at

these points |D(λ)| = 2/3).

As it was shown in [56], for almost every C∞ periodic potential q0 on R, all the gaps of

the Hill operator Hper open (at the edges of the gaps D(λ) = ±2). Since the spectrum

σ(H) has gaps iff σ(Hper) has gaps, this implies that all conical singularities in the free

case with D(λ) = ±2 will generically split into two smooth branches and open a gap when

we perturb the potential a little bit.
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Figure II.8: Bloch variety of operator H in the free case

II.3 Proof of Proposition II.2.8
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Figure II.9: The line l1,1 lies between l0,1 and l2,1 and thus has nonempty intersections
with I1, I2 and I3

26



Proof. 1. We will use the following notations a := cos θ1 +1, b := cos θ2, then a ∈ [0, 2], b ∈
[−1, 1]. Equation (II.7) becomes:

9x3 − x = a(3x+ b). (II.17)

Denote la,b as the graph of function y = a(3x + b) and I1, I2, I3 as parts of the graph

of function y = 9x3 − x restricted to [−1,−1/3], [−1/3, 1/3] and [1/3, 1] correspondingly,

I := I1 ∪ I2 ∪ I3. Then I1, I2, I3 are all connected.

One can notice that the line l0,1 intersects with I1, I2, I3 when x = −1/3, 0, 1/3 correspond-

ingly while the line l2,1 intersects with I1, I2, I3 when x = −2/3, 1/3, 1 respectively. When

slope 3a of the line la,1 changes from 0 to 6, the line la,1 rotates from the line l0,1 to the

line l2,1 around point (−1/3, 0) as shown in Fig. II.9. Thus, the line la,1 intersects with

each of I1, I2, I3 for all values a ∈ [0, 2]. Applying the same argument for the line la,−1, we

also have that the line la,−1 intersects with each of I1, I2, I3 for all a ∈ [0, 2].

Besides, for a ∈ [0, 2], b ∈ (−1, 1), three lines la,1, la,b and la,−1 are parallel and la,b lies

between the other two. Both lines la,1 and la,−1 intersect with each of I1, I2, I3, and so the

line la,b also intersects with each of I1, I2, I3, see illustration in case a = 1/2 in Fig. II.10.

This means equation (II.17) has three real roots for all a ∈ [0, 2], b ∈ [−1, 1]. Thus, all

roots of equation (II.7) are real and so function F (θ) has only real values for all θ ∈ B.

2. For each a ∈ [0, 2], b ∈ [−1, 1], the line la,b intersects with each of I1, I2, I3. By our

notation, I1, I2, I3 are parts of the graph of function y = 9x3 − x restricted to [−1,−1/3],

[−1/3, 1/3] and [1/3, 1] correspondingly. Thus, the ranges of functions F1, F2 and F3 are

[−1,−1/3], [−1/3, 1/3] and [1/3, 1] respectively.

3. In what follows, we will find out when function F3 attains its maximal and minimal

values. The similar argument applies for functions F1 and F2.

From part 2 we know that maximal value of F3 is 1 and its minimal value is 1/3.

Plugging x = 1 into equation (II.17) we have a(3 + b) = 8, which occurs only when

a = 2, b = 1, i.e. θ = (0, 0). So function F1 attains its maximum at (0, 0).

Similarly, we plug x = 1/3 into the equation (II.17) to obtain a(1 + b) = 0, i.e. either

a = 0 or b = −1. Now for each case when a = 0 or b = −1, solve equation (II.17), we

will see that the biggest root of equation (II.17) is equal to 1/3 when a = 0, b ∈ [−1, 1]

or a ∈ [0, 2/3], b = −1. This means function F3 attains its minimum at (±π, θ2) for

θ2 ∈ [−π, π] or (θ1,±π) for θ1 ∈ [−π,−θ0] ∪ [θ0, π].
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Figure II.10: The line l1/2,1/2 is parallel to l1/2,1 and l1/2,−1, thus intersects with I1, I2, I3

4. Let us denote the linear level set of function F (θ) as L (if such a set exists).

L := {(θ1, θ2) ∈ B|p0
1θ1 + p0

2θ2 = 2k0π}, p0 = (p0
1, p

0
2) ∈ Z2\{(0, 0)}, k0 ∈ Z.

For all θ belonging to L, equation (II.7) has (at least) a constant solution, namely c. Then

9c3 − c = (cos θ1 + 1)(3c+ cos θ2), for all (θ1, θ2) ∈ L. (II.18)

If p0
2 = 0, then the linear level set L = {(2k0π/p

0
1, θ2), θ2 ∈ [−π, π]}. Since all values in

(II.18) are constant except θ2 changing from −π to π, the expression (II.18) is true only if

cos θ1 + 1 = 0. This would mean θ1 = ±π, i.e. L = {(±π, θ2), θ2 ∈ [−π, π]}.

In case p0
2 6= 0, the linear level set L can be rewritten as

L =

{
(θ1, θ2) ∈ B

∣∣θ2 =
−p0

1θ1 + 2k0π

p0
2

}
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Figure II.11: Graph of root function for equation (II.7)

and so (II.18) becomes

9c3 − c = (cos θ1 + 1)

(
3c+ cos

−p0
1θ1 + 2k0π

p0
2

)
, for all θ1 ∈ [−π, π].

Since c is a constant and θ1 runs from −π to π, we have

9c3 − c = (cosπ + 1)

(
3c+ cos

−p0
1π + 2k0π

p0
2

)
= 0.

Thus by solving the equation 9c3 − c = 0, we conclude that constant c can be 0, 1/3 or

−1/3. Plugging each value of c into (II.18), we can get all the linear level sets of F (θ) as

below:

{(±π, θ2), θ2 ∈ [−π, π]},

{(θ1,±π), θ1 ∈ [−π, π]},

{(θ1,±π/2), θ1 ∈ [−π, π]},

{(θ1, 0), θ1 ∈ [−π, π]}.

As a consequence, function F (θ) does not have any flat branches.
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CHAPTER III

ON GRAPHYNE NANOTUBES1

III.1 Carbon nanotube structures and related Schrödinger operators

While in the previous chapter we studied the spectra of the Schrödinger operators on

the periodic graphyne structure shown in Fig. III.1, now we introduce carbon nanotubes

related to that structure, which also carry similar Schrödinger operators. Studying the

spectra of the latter ones is our goal.

Figure III.1: Graph G and a fundamental domain W

As before the vectors e1 and e2 generate the square lattice of shifts that leave the geometry

invariant. Let p = (p1, p2) ∈ Z2\{(0, 0)}, then pe := p1e1 + p2e2 belongs to the latice

of translation symmetries of the graphyne G. This means G + pe = G. We define ιp to

be the equivalence relation that identifies vectors z1, z2 ∈ G if z2 − z1 = kpe for some

integer k. Then nanotube Tp is the graph obtained as the quotient of G with respect to

this equivalence relation:

Tp := G/ιp.

Let us recall that q0(x) is a real, even, square integrable function on [0, 1] and q(x) is the

transferred potential of q0 on all edges of Tp.

1Part of this chapter is reprinted with permission from “On the quantum graph spectra of
graphyne nanotubes” by Ngoc Do, 2015. Analysis and Mathematical Physics Journal, Volume 1,
Page 39-65, Copyright [2015] by Analysis and Mathematical Physics Journal
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In chapter II, the operator

Hu(x) := −d
2u(x)

dx2
+ q(x)u(x)

on the graphyne G was defined and studied. Analogously, we introduce the nanotube

Schrödinger operator Hp that acts on each edge in the same way as H does:

Hpu(x) = −d
2u(x)

dx2
+ q(x)u(x) (III.1)

and whose domain D(Hp) is the set of all functions u(x) on Tp
2 such that:

1. ue := u|e ∈ H2(e), for all e ∈ E(Tp),

2.
∑

e∈E(Tp) ‖ue‖2H2(e) <∞,

3. at each vertex these functions satisfy the Neumann vertex condition, i.e. ue(v) =

ue′(v), ∀e, e′ ∈ E(v) and
∑

e∈E(v) u
′
e(v) = 0..

Understanding the spectra σ(Hp) of these nanotube operators is our task here.

III.2 Spectral analysis of graphyne nanotube operators

The questions we address here are about the structure of the absolute continuous, singular

continuous, and pure point spectrum of Hp, as well as spectral gaps opening.

In this section, we study the spectra of the operator Hp acting on the nanotube Tp = T(p1,p2)

for some p = (p1, p2) ∈ Z2. If p is a zero vector, instead of a nanotube one gets the whole

graphyne G, so we will always assume, without repeating this every time, that p 6= (0, 0).

The standard Floquet-Bloch theory (see Section I.2) gives the following direct integral

decomposition of the graphyne operator H:

H =
⊕∫
B

H(θ)dθ.

Here H(θ) is the Bloch Hamiltonian that acts as H does on the domain consisting of

functions u(x) that belong to H2
loc(G) and satisfy Neumann vertex conditions and Floquet

condition.

Since functions on Tp are in one-to-one correspondence with p-periodic functions u on G,

i.e. u such that u(x+p1e1 +p2e2) = u(x), only the values of quasimomenta θ satisfying the

2Equivalently, one can say that u(x) is a function on G such that u(x + kpe) = u(x) for all
k ∈ Z.
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condition pθ = p1θ1 + p2θ2 ∈ 2πZ will enter the direct integral expansion of Hp. Denoting

by Bp the set

{(θ1, θ2) ∈ B|pθ = p1θ1 + p2θ2 = 2kπ, k ∈ Z}, (III.2)

one obtains the direct integral decomposition for Hp:

Hp =

⊕∫
Bp

H(θ)dθ.

As a consequence (see, e.g., [7, Section 4.2]),

σ(Hp) =
⋃
θ∈Bp

σ(H(θ)). (III.3)

Moreover, the dispersion relation of Hp is the dispersion relation of H restricted to Bp.

We now need to recall some notations and results from chapter II that describe the spectrum

and the dispersion relation of the operator H.

We extend the potential q0(x) on [0, 1] to a 1-periodic function qper(x) on R and denote

by D(λ) = trM(λ) the discriminant (or the Lyapunov function) of the periodic Sturm-

Liouville operator

Hper := − d2

dx2
+ qper(x).

Here M(λ) is the monodromy matrix for this operator.

As before, by ΣD we denote the (discrete) spectrum of the operator −d2/dx2 + q0(x) on

[0, 1] with Dirichlet conditions at the ends of this segment.

Let us recall that the triple-valued function F (θ) := (F1(θ), F2(θ), F3(θ)) on B provides for

each θ the three (real) roots of the equation

9x3 − x− (cos θ1 + 1)(3x+ cos θ2) = 0,

where F1 ≤ F2 ≤ F3 for each value of θ.

We can now quote the main result from the previous chapter, which describes the spectral

structure of the graphyne operator H:

Theorem II.7

1. The singular continuous spectrum σsc(H) is empty.
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2. The dispersion relation of operator H consists of the following two parts:

i) pairs (θ, λ) such that D(λ) ∈ 2F (θ) (or, λ ∈ D−1(2F (θ))), where θ is changing in

the Brillouin zone;

and

ii) the collection of flat (i.e., θ-independent) branches (θ, λ) such that λ ∈ ΣD.

3. The absolutely continuous spectrum σac(H) has band-gap structure and is (as the set)

the same as the spectrum σ(Hper) of the Hill operator Hper with potential obtained

by extending periodically q0 from [0, 1]. In particular,

σac(H) = {λ ∈ R
∣∣ |D(λ)| ≤ 2},

where D(λ) is the discriminant of Hper.

4. The bands of σ(H) do not overlap but can touch. Each band of σ(Hper) consists of

three touching bands of σ(H).

5. The pure point spectrum σpp(H) coincides with ΣD and belongs to the union of the

edges of spectral gaps of σ(Hper) = σac(H).

Eigenvalues λ ∈ ΣD of the pure point spectrum are of infinite multiplicity and the

corresponding eigenspaces are generated by simple loop (i.e., supported on a single

hexagon or rhombus) states.

6. Spectrum σ(H) has gaps if and only if σ(Hper) has gaps 3.

Since, in order to obtain the dispersion relation for the nanotube operator Hp, we need

to restrict this relation to the subset Bp of the Brillouin zone B, the previous theorem

provides a good start. Indeed, we see that ΣD belongs to the pure point spectrum σpp(Hp)

and the rest of the spectrum is defined by D−1(2F (Bp)). However, further analysis is still

needed, since during the restriction to Bp new gaps might open and new bound states

might appear. These effects are expected to depend upon the vector p, i.e. on the type of

the nanotubes (for the “usual” nanotubes the names “zig-zag,” “armchair,” and “chiral”

are used, but they are not applicable in our situation).

In what follows, we will study the range of the function F restricted to Bp. According to

(III.2), in the θ1θ2-coordinate system, Bp is a set of points belonging to a family of parallel

lines restricted to the Brillouin zone B. If the slope of these lines is negative, we reflect

Bp over the θ2-axis to make the slope positive. Let us denote the set of segments from Bp

3It is well known that for any non-constant potential q, the spectrum σ(Hper) has some gaps
(see [15]). Moreover, for a generic potential q, all gaps are open (see [56]).
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with positive slope as Rp, then Rp = {(θ1, θ2) ∈ B : |p2|θ2 = |p1|θ1 − 2kπ, k ∈ Z}. Since

F (θ1, θ2) = F (−θ1, θ2) for all (θ1, θ2), we have F (Bp) = F (Rp).

Figure III.2: Rp and Bp coincide when p1p2 ≤ 0 ( cases a, b, c) or are symmetric w.r.t.
the θ2-axis (d)

We denote by Np the set of points from Rp that belong to lines with non-negative θ1-

intercept (or nonpositive θ2-intercept in case lines from Rp are parallel to θ1-axis). Then

Np = {(θ1, θ2) ∈ B : |p2|θ2 = |p1|θ1 − 2kπ, k = 0, 1, . . .}. Since F (θ1, θ2) = F (−θ1,−θ2) for

all (θ1, θ2), F (Rp) = F (Np).

Let Vq := {(θ1, θ2) ∈ B : q2θ2 = q1θ1 − 2kπ, k = 0, 1, . . .}, where q = (q1, q2). The above

argument proves that F (Bp) = F (Vq) for q = (q1, q2) := (|p1|, |p2|). Thus, it is sufficient to

study the range of function F (θ) restricted to Vq for nonnegative q1, q2.

Let us denote l0 = [q1θ0/2π]. Below we state three lemmas about the range of functions

Fj , j = 1, 3, proofs of which will be provided in Section III.3.

Lemma III.2.1. If q2 = 0 and q1 > 1, then

F1(Vq) = [−1, F1(2l0π/q1, 0)] ∪ [F1(2(l0 + 1)π/q1, π),−1/3].
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If q2 = 0 and q1 = 1, then F1(Vq) = [−1,−2/3].

If q2 6= 0 is even, then F1(Vq) =
[
− 1,−1

3

]
.

If q2 is odd, then F1(Vq) = [a,−1/3] for some a := minF1(Vq) ∈ (−1,−2/3]. In particular,

if q1 = 0 then a = F1(0,−2[q2/2]π/q2)

Lemma III.2.2. If q1 ≤ 1 and q2 is odd, then F2(Vq) = [−1/3, a] for some a ∈ [0, 1/3).

Otherwise F2(Vq) = [−1/3, 1/3].

Lemma III.2.3. If q2 = 0 and q1 > 1 then

F3(Vq) = [1/3, F3(2(l0 + 1)π/q1, 0)] ∪ [F3(2l0π/q1, π), 1].

If q2 = 0 and q1 = 1 then F3(Vq) = [2/3, 1].

Otherwise F3(Vq) = [1/3, 1].

Taking into account that F (Bp) = F (Vq) for q = (|p1|, |p2|), we summarize results of above

lemmas in Fig. III.3

Figure III.3: Functions Fj , j = 1, 3, have values in [−1, 1]. The bold segments are F (θ).
The dotted intervals do not belong to the union of the ranges of Fj , j = 1, 3. a) p2 6= 0
even, b) p2 = 0, p1 = ±1, c) p2 = 0, |p1| > 1, d) p2 odd, |p1| ≤ 1, e) p2 odd, |p1| > 1

Notice that in the case c where p2 = 0 and |p1| > 1 either or both dotted intervals may

vanish.

As it was pointed out before, ΣD belongs to the pure point spectrum of Hp. Extra pure

point spectrum appears if some non-constant branch of the dispersion relation of H has

constant restriction on Bp. This can happen only on the linear level sets of functions

Fj , j = 1, 3, inside B. In Proposition II.2.8 we described all such sets:

1. A1 = {(±π, θ2), θ2 ∈ [−π, π]},

2. A2 = {(θ1,±π), θ1 ∈ [−π, π]},
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3. A3 = {(θ1, 0), θ1 ∈ [−π, π]},

4. A4 = {(θ1,±π/2), θ1 ∈ [−π, π]}.

Let us now deal with the additional pure point spectrum that arises due to the presence of

linear level sets. First, we build compactly supported eigenfunctions corresponding to those

extra eigenvalues. Then, we prove that these functions generate all compactly supported

eigenfunctions in the corresponding eigenspaces.

We look at the first linear level set A1 = {(±π, θ2), θ2 ∈ [−π, π]}. Let p = (2N, 0) for

some postivive integer N , then A1 can be rewritten as {θ|pθ ± 2Nπ = 0}. On this line

F1(θ) = −1/3, F2(θ) = 0, and F3(θ) = 1/3.

Let us recall that for each λ /∈ ΣD functions ϕ0, ϕ1 are two linearly independent solutions

of the equation

− d2u

dx2
+ q0(x)u = λu (III.4)

such that ϕ0,λ(0) = ϕ1,λ(1) = 1, ϕ0,λ(1) = ϕ1,λ(0) = 0. Also, function η(λ) is defined as

follows η(λ) := ϕ′1,λ(1)/ϕ′1,λ(0). Then (Lemma II.2.1), λ is in the spectrum of H if and

only if there exists θ = (θ1, θ2) ∈ B such that η(λ) = Fj(θ) for some j ∈ 1, 3. We will first

consider those values of λ such that η(λ) = F2(θ) = 0, i.e.

ϕ′1,λ(1)

ϕ′1,λ(0)
= 0 or ϕ′1,λ(1) = 0.

As it was said before, we now build a compactly supported eigenfunction , namely g(x),

corresponding to these λ of operator H(2N,0) . Let g be equal to ϕ1 on four edges directed

toward the vertex A and be equal to −ϕ1 on four edges directed toward B and C (see Fig.

III.4). One can easily check that the Neumann boundary conditions satisfied at vertex A.

Figure III.4: Piece of rhombus bracelet function corresponding to p = (2N, 0) and η(λ) = 0

We extend this piece of function g to the whole nanotube by repeating it N times hori-

zontally. Outside this band of rhombuses around the nanotube, function g is defined to be
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equal to zero. The defined function g is periodic with period 2e1 and satisfies the Neumann

boundary conditions at all vertices. Thus, it is a compactly supported eigenfunction for

the nanotube T(2N,0) corresponding to those λ such that η(λ) = 0. We call the constructed

function the rhombus bracelet function.

In Fig. III.5, III.6, III.7 one can find similar functions built on a piece of the nanotube

structure, extensions of which will serve as the compactly supported eigenfunctions corre-

sponding to the additional eigenvalues.

Figure III.5: Piece of hexagon bracelet functions of type a (η(λ) = −1/3) or type b
(η(λ) = −1/3) in case p = (2N, 0)

Figure III.6: a. Piece of mushroom function in case p = (0, N) for N - a multiple of 2 and
η(λ) = 1/3 and b. piece of flower function in case p = (0, N) for integer N and η(λ) = −1/3

More specifically, for p = (2N, 0), where N is some nonzero integer, we repeat the piece

of functions in Fig. III.5 N times horizontally and make it equal to zero elsewhere. The

obtained functions are compactly supported eigenfunctions corresponding to λ such that

η(λ) = F1(θ) = −1/3 (on the left) and η(λ) = F3(θ) = 1/3 (on the right). For the
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Figure III.7: Piece of double-band function in case p = (0, N) for N - a multiple of 4 and
η(λ) = 0

second linear level set A2 = {(θ1,±π), θ1 ∈ [−π, π]}, we have p = (0, 2N), where N is

some nonzero integer. In this case, we has to repeat function from Fig. III.6a N times

vertically and make it equal to zero elsewhere. The obtained function is a compactly

supported eigenfunction corresponding to λ such that η(λ) = 1/3. Analogously, p = (0, N)

corresponds to the third linear level set A3 = {(θ1, 0), θ1 ∈ [−π, π]}. One first needs to

repeat the piece of function from Fig. III.6b N times vertically and make it equal to zero

beyond that in order to get a compactly supported eigenfunction corresponding to λ with

η(λ) = −1/3. The last linear level set, A4 = {(θ1,±π/2), θ1 ∈ [−π, π]}, corresponds to

p = (0, 4N), where N is some nonzero integer. One again repeat the piece of function from

Fig. III.7 N times horizontally and make it equal to zero outside the double-band in order

to obtain an eigenfunction corresponding to eigenvalues λ with η(λ) = 0. We accordingly

call functions from Fig. III.5 hexagon bracelet functions of type a and b, from Fig. III.6

- mushroom function and flower function accordingly, and from Fig. III.7 - double-band

function.

Now one needs to prove that these functions generate all compactly supported eigenfunc-

tions of the corresponding eigenspaces.

Indeed, let g be a compactly supported eigenfunction of H(2N,0) corresponding to those

eigenvalues λ such that η(λ) = 0 and P - the lowest point on the boundary of the support

of g (think about the nanotube T(2N,0) as a vertical tube). Since the nanotube structure is

periodic, without loss of generality, P can be one of three points D,E, or I shown in the

Fig. III.8.

The point P cannot be E since it would make g|e(E) = g′|e(E) = 0, as a result of which,

g|e ≡ 0 - contradiction.

Fig. III.9 shows what we obtain when trying to construct the compactly supported eigen-

function using Neumann vertex conditions if P is I.
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Figure III.8: Three possible locations (D,E or I) of the lowest point on the boundary of
the compactly supported eigenfunction in case p = (2N, 0)

Figure III.9: Construction of a compactly supported eigenfunction (if such a function
exists) when P concides with I in case p = (2N, 0) and η(λ) = 0

From the Neumann boundary conditions at vertices Aj , j = 1, 2N , we have

a1 + a2 + 1 = 0,

a2 + a3 − 1 = 0,

. . .

a2N−1 + a2N + 1 = 0,

a2N + a1 − 1 = 0.

Let us number above formulas, starting from 1. Then, the sum of odd-ordered formulas

gives us a1 + a2 + . . . + a2N + n = 0 while the sum of even-ordered formulas gives us

a1 + . . .+ a2N −n = 0, which lead to contradiction. Thus, I cannot be the lowest point on

the support of function g.

Therefore, D must be the lowest point on the boundary of the support of function g.

Extending from D a function with band of rhombuses support and substracting it from g,
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we will get a new function with smaller support. The lowest point in the support of this new

function (this is also an eigenfunction corresponding to the same eigenvalue, provided that

it is nonzero) must be “another” point D. Continuing this procedure, we will eventually

get zero function, which implies that g is a combination of rhombus bracelet eigenfunctions.

In case p = (2N, 0), N - nonzero integer, and η(λ) = F1(θ) = −1/3 or η(λ) = F3(θ) = 1/3,

we use the same technique. The only difference is the lowest point on the boundary is now

I. Point E cannot be the lowest point by the same reason as before and point D - by

contradiction obtained from Fig. III.10.

Figure III.10: Construction of a compactly supported eigenfunction (if such a function
exists) when P concides with D in case p = (2N, 0) and η(λ) = ±1/3

In all other cases, we also use the “lowest point” argument. The symmetry of the struc-

ture once again implies that the lowest point on the boundary of compactly supported

eigenfunction can locate at D, E, or I (see Fig. III.11).

Figure III.11: Three possible locations of the lowest point on the boundary of the compactly
supported eigenfunctions in case p = (0, N) for N ∈ Z

Both D and E are excluded by the same reason. For instance, if E is the lowest point,

then g|e(E) = g|e(E′) = 0 (otherwise due to the first Neumann boundary condition E will
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not be the lowest point). From here we have g|e ≡ 0, which leads to contradiction. The

lowest point, thus, should be I.

The eliminating process for p = (0, N), N ∈ Z, η(λ) = −1/3 or p = (0, 2N), N ∈ Z,

η(λ) = 1/3 occurs exactly the same as in the previous cases.

Now, we consider the case when p = (0, 4N), N ∈ Z, η(λ) = 0. We claim that there does

not exist a compactly supported eigenfunction of height |e1|. Indeed, suppose the contrary,

Fig. III.12 shows what we may obtain when constructing such a function. Then, there

would not be such an a that the Neumann boundary conditions satisfied at both points A

and B. This implies that any compactly supported eigenfunction corresponding to λ with

η(λ) = 0 has at least height 2|e1|.

Figure III.12: Situation when trying to construct a compactly supported eigenfunction of
height |e1|

The eliminating process would then be similar to what happened before. (Since the mini-

mum height of any nonzero compactly supported eigenfunction is 2|e1|, when we substract

function of double-band type from the original eigenfunction, there is no need to worry

that the support of the new eigenfunction will exceed the old one’s.)

Let Σ0 be the extra pure point spectrum which occurs due to the linear level set(s) of

function F . Recall that D(λ) = 2η(λ). Then the above argument proves the following:

Lemma III.2.4.

1. If p = (2N, 0) for some nonzero N ∈ Z, then Σ0 = D−1({±2/3, 0}).

The eigenspace corresponding to λ with D(λ) = 0 is generated by the rhombus bracelet

functions. The eigenspaces corresponding to λ with D(λ) = −2/3 or 2/3 are generated

by the hexagon bracelet functions of type a or b accordingly.

2. If p = (0, N) for some odd N , then Σ0 = D−1({−2/3}).
If p = (0, N) for some N which is a multiple of 2 but not a multiple of 4, then
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Σ0 = D−1({±2/3}).
If p = (0, N) for some N which is a multiple of 4, then Σ0 = D−1({±2/3, 0}).

In all cases, the eigenspace corresponding to λ with D(λ) = −2/3 is generated by the

flower functions. The eigenspace corresponding to λ with D(λ) = 2/3 is generated by

the mushroom functions and the one corresponding to λ with D(λ) = 0 is generated

by the double-band functions.

We are now ready to formulate the main result about the spectra of carbon nanotubes.

Let us first recall some necessary notations. Vector pe := p1e1 + p2e2 is the translation

vector that defines the nanotube Tp. Function q0 is a real, even, L2-function on [0, 1]. The

Hamiltonian Hp is defined on L2(Tp) with potential q transfered from q0 to each edge. The

set Bp is the subset of the Brillouin zone B as defined in (III.2). The Hill operator Hper has

potential qper, which is periodic extension of q0 and D(λ) - its discriminant. By simple loop

state we mean an eigenfunction of operator H with Dirichlet boundary condition whose

support is a hexagon or rhombus (see Fig. III.13). We also introduce the so-called tube

loop eigenfunction, support of which is a loop of edges around the tube.

Figure III.13: Simple loop states constructed from odd function on [0, 1] for hexagon and
even function on [0, 1] for rhombus

Theorem III.2.5.

1. The singular continuous spectrum σsc(Hp) is empty.

2. The nonconstant part of the dispersion relation for the Hamiltonian Hp is described

by the following formula

D(λ) ∈ 2F (θ), θ ∈ Bp or λ ∈ D−1(2F (θ)), θ ∈ Bp. (III.5)

3. The absolutely continuous spectrum σac(Hp) has band gap structure. All bands do not

overlap. If p2 is nonzero and even, then σac(Hp) = σ(Hper). Otherwise, there may
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be additional gaps opened inside spectral bands Hper. In particular,

i. If p2 = 0 and p1 = ±1, then σac(Hp) = D−1({[−2,−4/3]∪[−2/3, 2/3]∪[4/3, 2]}).
There is two gaps opened in each spectral band of Hper.

ii. If p2 = 0 and p1 6= ±1, then σac(Hp) = D−1(A), where

A = [−2, 2F1(2l0π
p1
, 0)] ∪ [2F3(2l0π

p1
, π), 2] ∪ [2F1(2(l0+1)π

p1
, π), 2F3(2(l0+1)π

p1
, 0)].

If F1(2l0π
p1
, 0) < F1(2(l0+1)π

p1
, π) there is a gap opened in each band of Hper.

If F3(2(l0+1)π
p1

, 0) < F3(2l0π
p1
, π) there is a gap opened in each band of Hper.

iii. If p2 is odd and |p1| ≤ 1, then for B = [2 minF1(Bp), 2 maxF2(Bp)]∪ [2/3, 2] we

have σac(Hp) = D−1(B). There is always two gaps opened in each band of Hper.

iv. If p2 is odd and |p1| > 1, then σac(Hp) = D−1(C) where C = [2 minF1(Bp), 2].

Only one gap is opened in each band of Hper.

4. The pure point spectrum of Hp contains the pure point spectrum ΣD of H.

i. If p is not of the form (2N, 0) or (0, N) for some nonzero integer N , then these

two sets concide. The eigenvalues from ΣD are of infinite multiplicity and the

corresponding eigenspaces are spanned by the simple loop state eigenfunctions

and the tube loop eigenfunctions.

ii. If p = (2N, 0) or (0, N) for some nonzero N , then, besides ΣD, the nanotube

operator Hp has extra pure point spectrum, which is denoted by Σ0. All eigenval-

ues are of infinite multiplicity. Description of these extra eigenvalues and their

corresponding eigenspaces are provided in Lemma III.2.4.

Proof. The first claim is a well-known fact about singular continuous spectrum of Schrödinger

operator (see [57],[7, Theorem 4.4.1], [51, Section XIII.6] [37, Section 6.3]).

The second claim follows from the formula (III.3) and claim 2i of II.2.5.

The fact that absolutely continuous spectrum σac(Hp) has band gap structure and all bands

do not overlap is also a consequence of formula (III.3) and claims (3) and (4) of II.2.5.

Gaps will be opened when the ranges of functions F1, F2, and F3 restricted on Bp create

gaps in the interval [−1, 1]. The rest of this claim therefore follows directly from lemmas

III.2.1, III.2.2, III.2.3 (result of which was briefly described in Fig. III.3).

As it was mentioned before, the pure point spectrum of Hp always contains the Dirichlet

spectrum ΣD. The claim about infinite multiplicity of eigenvalues in both cases is known to
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be true for periodic problems (see, e.g., Lemma II.2.4). Extra pure point spectrum occurs

only if there is some linear level set. This happens when p = (2N, 0) or (0, N) for some

nonzero N . The next part of claim (4) is proved similarly as for the analogous one from

Lemma II.2.4. The only difference is that the eliminating process may end up with a tube

loop eigenfunction.

The last part of the claim is contained in Lemma III.2.4.

III.3 Proofs of supporting lemmas

In what follows, we denote the graph of the line q2θ2 = q1θ1− 2kπ and its restriction to Vq

by tq,k and Tq,k accordingly. Let us recall that by θ0 we denote arccos(−1/3).

Lemma III.2.1 If q2 = 0 and q1 > 1, then

F1(Vq) = [−1, F1(2l0π/q1, 0)] ∪ [F1(2(l0 + 1)π/q1, π),−1/3].

If q2 = 0 and q1 = 1, then F1(Vq) = [−1,−2/3].

If q2 6= 0 is even, then F1(Vq) =
[
− 1,−1

3

]
.

If q2 is odd, then F1(Vq) = [a,−1/3] for some a := minF1(Vq) ∈ (−1,−2/3]. In particular,

if q1 = 0 then a = F1(0,−2[q2/2]π/q2)

Proof. First of all we notice the following:

i. For fixed θ1 = θ0
1 6= ±π, function F1(θ0

1, θ2) is decreasing on [0, π].

ii. For fixed θ2 = θ0
2, function F1(θ1, θ

0
2) is non-decreasing on [0, π].

Indeed, F1(θ1, θ2) is the smallest value of x− coordinates of intersections of graphs of

functions f(x) = 9x3 − x and g(x) = (cos θ1 + 1)(3x + cos θ2). If we fix θ1 := θ0
1 6=

±π, then the slope 3(cos θ0
1 + 1) is constant and positive. As a consequence, y−intercept

(cos θ0
1 + 1) cos θ2 decreases on [0, π], which make function F1 decrease on [0, π]. (In case

θ1 = ±π, function F1 is constant and equal to −1/3.)

Now if we fix θ2 := θ0
2, then the x−intercept −(cos θ0

2)/3 of g(x) will be constant and

belongs to the interval [−1/3, 1/3]. The slope 3(cos θ1 + 1) of function g(x) is decreasing

on [0, π], thus F1(θ1, θ
0
2) is nondecreasing on [0, π].
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Figure III.14: Graph of function F1
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Figure III.15: The constant slope and decreasing θ2-intercept make F1 decrease

We first consider the case q2 = 0. Then,

Vq = {(θ1, θ2) ∈ B : θ1 =
2kπ

q1
, k = 0, 1, 2, . . .}.

The most right interval Tq,k of Vq is Tq,[ q1
2

]. Thus,

F1(Vq) = F1

( ⋃
0≤k≤

[
q1
2

]Tq,k) =
⋃

0≤k≤[ q12 ]

F1(Tq,k).
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Since Tq,k =

{
2kπ

q1

}
× [−π, π] and F1(θ1, θ2) = F1(θ1,−θ2),

F1(Tq,k) = F1

({
2kπ

q1

}
× [−π, π]

)
= F1

({
2kπ

q1

}
× [0, π]

)
.

Now, according to the remark above, for fixed k, θ1 = 2kπ/q1, we have

F1(Tq,k) =

[
F1

(
2kπ

q1
, π

)
, F1

(
2kπ

q1
, 0

)]
.

(In case θ1 = π the segment boils down to the one-point set {−1/3}.) Therefore,

F1(Vq) =
⋃

0≤k≤[ q12 ]

[
F1

(
2kπ

q1
, π

)
, F1

(
2kπ

q1
, 0

)]
.

Recall that l0 = [q1θ0/2π], the interval Tq,k intersects with θ2 = π at θ1 = 2kπ/q1 < θ0 for

all k ∈ [0, l0]. Function F1 is non-decreasing on [0, π] for fixed θ2, thus for all k ∈ [0, l0]

−1 = F1(0, π) < F1(2kπ/q1, π) ≤ −2/3 = F1(θ0, π)

and

F1(0, 0) = −2/3 ≤ F1(2kπ/q1, 0) ≤ F1(2l0π/q1, 0).

Figure III.16: Case q2 = 0.F1(Tq,0) = [−1,−2/3], F1(2kπ/q1, π) are on the right of −2/3
and F1(2kπ/q1, 0) ≤ F1(2l0π/q1, 0) are on the left of −2/3 for all k ∈ [0, l0]

As a consequence (see Fig. III.16), for q = (q1, 0),⋃
0≤k≤l0

F1(Tq,k) = [−1, F1(2l0π/q1, 0)]. (III.6)

For all q1 ≥ 6 we have 1 ≤ q1/2 − q1θ0/2π, which implies the existence of an integer k

such that l0 < k ≤ [q1/2]. It is not difficult to check that the latter claim is also true for
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1 < q1 ≤ 5. Thus, for all q1 > 1, there exists k such that Tq,k belongs to Vq and lies on the

right of the line θ1 = θ0 (see Fig. III.17).

Figure III.17: Case q2 = 0, q1 > 1. Point (θ0, 0) lies between two lines tq,l0 and tq,l0+1

For such k, we have 2kπ/q1 > θ0. Since function F1 is non-decreasing on [0, π] for fixed θ2,

we have

F1(θ0, 0) = −1/3 ≤ F1(2kπ/q1, 0) ≤ −1/3 i.e. F1(2kπ/q1, 0) = −1/3

and

F1(2(l0 + 1)π/q1, π) ≤ F1(2kπ/q1, π) for all k ∈ [l0 + 1, [q1/2]].

Thus, for q = (q1, 0)

⋃
l0<k≤[ q12 ]

F1(Tq,k) =

[
F1

(
2(l0 + 1)π

q1
, π

)
,−1

3

]
. (III.7)

Combining (III.6) and (III.7), we obtain that

F1(Vq) = [−1, F1(2l0π/q1, 0)] ∪ [F1(2(l0 + 1)π/q1, π),−1/3].

If q1 = 1, then Vq = Tq,0, which leads to F1(Vq) = F1(Tq,0) = [−1,−2/3].

Now let us study the case when q2 = 2k0 for some nonzero integer k0 (see Fig. III.18).

Note that (0,−π) ∈ Tq,k0 , thus −1 = F1(0,−π) ∈ F1(Tq,k0).

If Tq,k0 intersects with θ1 = π at some point (π, θ0
2), then F1(π, θ0

2) = −1/3. As a con-

sequence, F1(Vq) ⊃ F1(Tq,k0) = [−1,−1/3] or F1(Vq) = [−1,−1/3]. If Tq,k0 intersects

with θ2 = π at (b0, π), then tq,jk0 intersects with θ2 = −π and θ2 = π at (aj ,−π) and
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Figure III.18: Different situations occur for even q2 = 2k0. Tq,k0 intersects with θ1 = π on
the left and with θ2 = π on the right

(bj , π) accordingly, where aj = (j − 1)b0/2 and bj = (j + 1)b0/2. There exists a smallest

j0 ∈ N, j0 ≥ 2, such that Tq,j0k0 intersects with both θ2 = −π at (aj0 ,−π) and θ1 = π at

(π, θ0
2). Note that 0 < aj < aj+1 = bj−1 for all j ≥ 1, thus according to the second remark,

F1(aj ,−π) < F1(aj+1,−π) = F1(aj+1, π) = F1(bj−1, π).

We then have

[−1,−1/3] ⊂
⊂ [−1, F1(b0, π)] ∪ (

⋃
1≤j<j0

[F1(bj−1, π), F1(bj , π)]) ∪ [F1(bj0−1, π),−1/3]

⊂ [−1, F1(b0, π)] ∪ (
⋃

1≤j<j0

[F1(aj ,−π), F1(bj , π)]) ∪ [F1(aj0 ,−π),−1/3]

⊂
⋃

0≤j≤j0

F1(Tq,jk0) ⊂ F1(Vq),

i.e. F1(Vq) = [−1,−1/3].

We will now study the last case when q2 is odd, namely q2 = 2k0 + 1, k0 ∈ N. Since q2 is

odd, Vq contains neither (0, π) nor (0,−π), the minimum of F1(Vq) is some a ∈ (−1,−2/3]

(since F1(0, 0) = −2/3). One should be able to find a on Tq,k0 or Tq,k0+1 which are closest

to (0,−π).

If q1 = 0, then Vq = {[−π, π]×{−2kπ/q2}, k = 0, . . . , [q2/2]}. Since F1(θ1, θ2) = F1(−θ1,−θ2),

F1(Vq) = ∪0≤k≤[q2/2]F1([0, π]×{2kπ/q2}). Moreover, function F1 is non-decreasing on [0, π]

for fixed θ2, thus,

F1(Vq) = ∪0≤k≤[q2/2][F1(0, 2kπ/q2), F1(π, 2kπ/q2)].
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For θ1 = π, F1 ≡ −1/3. Besides, function F1(0, θ2) is decreasing on [0, π], we have

F1(Vq) =
⋃

0≤k≤[q2/2]

[
F1

(
0, 2kπ/q2

)
,−1/3

]
=
[
F1

(
0, 2[q2/2]π/q2

)
,−1/3

]
.

Now we consider the case when q1 6= 0. Let k1 ∈ N such that function F1 attains its

minimum a on Tq,k1 . If Tq,k1 intersects with θ1 = π, then we have [a,−1/3] ⊂ F1(Tq,k1) ⊂
F1(Vq), i.e. F1(Vq) = [a,−1/3]. Otherwise, let k2 ∈ N such that Tq,k2 is the most left

segment from Vq having nonempty intersection with θ1 = π (see Fig. III.19).

Figure III.19: q2 is odd and q1 is nonzero. Tq,k2 is the most left segment from Vq having
nonempty intersection with θ1 = π

Let (ak,−π) and (bk, π) be intersection of tq,k with θ2 = −π and θ2 = π accordingly. Then,

ak0+1 =
π

q1
≤ (2k0 + 1)π

q1
= b0 ≤ bk1 ,

and

ak =
(2k − q2)π

q1
, bk =

(q2 + 2k)π

q1
,

which imply that 0 < ak ≤ bk−1 < bk for k ≥ k0 + 1.

Since function F1 is non-decreasing on [0, π]× {π}, we have

F1(ak0+1,−π) = F1(ak0+1, π) ≤ F1(bk1 , π),

and

F1(ak,−π) = F1(ak, π) ≤ F1(bk−1, π) ≤ F1(bk, π),

which makes [F1(bk−1, π), F1(bk, π)] ⊂ [F1(ak,−π), F1(bk, π)] ⊂ F1(Tq,k) for k ≥ k0 + 1.

Thus,
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[a,−1/3]

= [a, F1(ak0+1,−π)] ∪ [F1(ak0+1,−π), F1(bk0+1, π)]∪
∪ (∪k0+1<k<k2 [F1(bk−1, π), F1(bk, π)]) ∪ [F1(bk2−1, π),−1/3]

⊂ [a, F1(bk1 , π)] ∪ F1(Tq,k0+1) ∪ (∪k0+1<k<k2F1(Tq,k)) ∪ [F1(ak2),−1/3] ⊂
⊂ F1(Tq,k1) ∪ (∪k0+1≤k≤k2F1(Tq,k))

⊂ F1(Vq)

i.e. F1(Vq) = [a,−1/3].

Minimum value of F1(Vq) does not exceed −2/3 = F1(0, 0) in all cases.

Lemma III.2.2 If q1 ≤ 1 and q2 is odd, then F2(Vq) = [−1/3, a] for some a ∈ [0, 1/3).

Otherwise, F2(Vq) = [−1/3, 1/3].

Figure III.20: Graph of function F2

Proof. If q2 6= 0 and
q1

q2
≥ π

θ0
or q2 = 0, then Tq,0 intersects with θ2 = π at (θ0

1, π) for some

θ0
1 ∈ [0, θ0]. Thus, F2(Tq,0) = [−1/3, 1/3], i.e. F2(Vq) = [−1/3, 1/3].

If q2 6= 0 and 1 < q1/q2 < π/θ0, then Tq,0 and θ2 = π intersect at (θ0
1, π) for some

θ0
1 ∈ (θ0, π). Thus, [−1/3, 0] ⊂ F2(Tq,0). Also since q1 ≥ 2, q2 ≥ 1, which follows from

inequality 1 < q1/q2, we have

k0 :=

[
q1θ0 + q2π

2π

]
≥
[

2θ0 + π

2π

]
≥ 1. (III.8)
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Two lines tq,k0 and θ2 = −π intersect at (θ0
1,−π), θ0

1 =
−q2π + 2k0π

q1
.

From (III.8) one have

k0 ≤
q1θ0 + q2π

2π
< k0 + 1,

therefore,

−θ0 < θ0 −
2π

2
≤ θ0 −

2π

q1
=
−q2π + q1θ0 + q2π − 2π

q1
<
−q2π + 2k0π

q1
,

and
−q2π + 2k0π

q1
≤ −q2π + q1θ0 + q2π

q1
= θ0,

i.e. θ0
1 ∈ [−θ0, θ0] and so (θ0

1,−π) ∈ Vq. Let C = (0, π), O = (0, 0), A,E are intersection

points of tq,k0 with two lines θ2 = 0 and θ2 = π correspondingly as shown in the Fig. III.21.

Figure III.21: q2 6= 0 and 1 < q1/q2 < π/θ0. On the left 0A ≤ θ0 while on the right is one
case when OA > θ0. Here k0 = [(q1θ0 + q2π)/2π]

If OA ≤ θ0, then A ∈ Vq and F2(A) = −1/3. Thus, [−1/3, 1/3] ⊂ F2(Tq,k0), i.e. F2(Vq) =

[−1/3, 1/3]. If OA > θ0, then CE = CD +DE = CD + OA > θ0 + θ0 > π, which means

the point E lies outside Brillouin zone B. In this case, Tq,k0 intersects with θ1 = π at

(π, θ0
2) for some θ0

2 ∈ [−π, 0], thus [0, 1/3] = [F2(π, θ0
2), F2(θ0

1,−π)] ⊂ F2(Tq,k0). We also

have that F2(Vq) = [−1/3, 1/3] since

[−1/3, 1/3] = [−1/3, 0] ∪ [0, 1/3] ⊂ F2(Tq,0) ∪ F2(Tq,k0) ⊂ F2(Vq).

Now we consider the case when q2 6= 0, q1/q2 ≤ 1, and q1 > 1. Since

q2π + q1θ0

2π
− q2π − q1θ0

2π
=
q1θ0

π
≥ 2θ0

π
> 1,
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Figure III.22: Tq,0 and Tq,k0 in case q1/q2 ≤ 1 and q1 > 1 (here p = (2, 3), k0 = 2)

we can choose an integer k0 such that

0 <
q2π − q1θ0

2π
≤ k0 ≤

q2π + q1θ0

2π
.

For chosen k0, two lines tq,k0 and θ2 = −π intersect at the point (θ0
1,−π) for some θ0

1 ∈
[−θ0, θ0].

Then F2(Vq) = [−1/3, 1/3] because

[−1/3, 1/3] = [−1/3, 0] ∪ [0, 1/3] ⊂ F2(Tq,0) ∪ F2(Tq,k0) ⊂ F2(Vq).

The only case left to be considered is q1 ≤ 1 and q2 6= 0 .

If q1 = 0 and q2 is even, the interval Tq,[q2/2] concides with [−π, π]× {π}, so

[−1/3, 1/3] = [−1/3, 0] ∪ [0, 1/3] ⊂ F2(Tq,0) ∪ F2(Tq,[q2/2]) ⊂ F2(Vq).

If q1 = 0 and q2 is odd, namely q2 = 2k0 + 1, k0 ∈ N, Vq does not intersect with θ2 = ±π,

thus a := maxF3(Vq) ∈ [0, 1/3).

Let k ∈ N such that a ∈ F2(Tq,k). One would expect that k = k0 which makes tq,k be

closest to θ2 = −π. We have [0, a] ⊂ F2(Tq,k), therefore

[−1/3, 0] ∪ [0, a] ⊂ F2(Tq,0) ∪ F2(Tq,k) ⊂ F2(Vq) i.e. F2(Vq) = [−1/3, a].

If q1 = 1 and q2 6= 0 even, i.e. q2 = 2k0 for some k0 ∈ N, k0 > 0, then F2(Tq,k0) = [0, 1/3].
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Figure III.23: Different cases occur when q1 = 0. On the left q2 is odd and on the right q2

is even

As a consequence,

[−1/3, 1/3] = [−1/3, 0] ∪ [0, 1/3] ⊂ F2(Tq,0) ∪ F2(Tq,k0) ⊂ F2(Vq),

which means that F2(Vq) = [−1/3, 1/3].

If q1 = 1 and q2 is odd, namely, q2 = 2k0 + 1, k0 ∈ N, Vq again does not contains any point

from [−θ0, θ0]×{±π}, so a := maxF2(Vq) ∈ [0, 1/3). Let k ∈ N such that a ∈ F2(Tq,k), since

(2k0 + 1)(±π) 6= θ1−2kπ for θ1 6= ±π, Tq,k intersects with θ1 = ±π, and so [0, a] ⊂ F2(Vq).

As a consequence,

[−1/3, a] = [−1/3, 0] ∪ [0, a] ⊂ F2(Tq,0) ∪ F2(Tq,k) ⊂ F2(Vq).

Thus, F2(Vq) = [−1/3, a] for a ∈ [0, 1/3).

Lemma III.2.3 If q2 = 0 and q1 > 1, then

F3(Vq) = [1/3, F3(2(l0 + 1)π/q1, 0)] ∪ [F3(2l0π/q1, π), 1].

If q2 = 0 and q1 = 1 then F3(Vq) = [2/3, 1].

Otherwise F3(Vq) = [1/3, 1].

Proof. In this proof we will need the following remarks:

i. For fixed θ0
2, function F3(θ1, θ

0
2) is non-increasing on [0, π].

ii. For fixed θ0
1, function F3(θ0

1, θ2) is decreasing on [0, π].

These claims can be justified using the same argument as in Lemma III.2.1.
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Figure III.24: Graph of function F3

Note that function F3 always attains its maximum at (0, 0).

If q2 = 0, then

Vq = {{2kπ/q1} × [−π, π], 0 ≤ k ≤ [q1/2]}.

Since F3(θ1, θ2) = F3(θ1,−θ2), we have

F3(Vq) = F3({{2kπ/q1} × [0, π], 0 ≤ k ≤ [q1/2]}).

Thus, according to the last remark,

F3(Vq) =
⋃

0≤k≤[q1/2]

[F3(2kπ/q1, π), F3(2kπ/q1, 0)].

For all k such that 0 ≤ k ≤ l0 = [q1θ0/2π], we have

i. F3(Tq,0) = [2/3, 1],

ii. F3(2l0π/q1, π) ≤ F3(2kπ/q1, π) < 2/3 = F3(0, π) according to the first remark,

iii. 2/3 = F3(θ0, 0) ≤ F3(2kπ/q1, 0).

Therefore, ⋃
0≤k≤l0

F3(Tq,k) = [F3(2l0π/q1, π), 1]. (III.9)

From Lemma III.2.1 we know that when q1 > 1 there must be some k ∈ (l0, [q1/2]]. For
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these k, we have θ0 < 2kπ/q1 ≤ π, which implies 1/3 = F3(π, π) ≤ F3(2kπ/q1, π) ≤
F3(θ0, π) = 1/3 or F3(2kπ/q1, π) = 1/3. Besides, F3(2kπ/q1, 0) ≤ F3(2(l0 + 1)π/q1, 0) from

the first remark. Thus,

⋃
l0<k≤[ q12 ]

[
1

3
, F3

(
2kπ

q1
, 0

)]
=

[
1

3
, F3

(
2(l0 + 1)π

q1
, 0

)]
. (III.10)

Combining equations (III.9) and (III.10), we obtain that

F3(Vq) = [1/3, F3(2(l0 + 1)π/q1, 0)] ∪ [F3(2l0π/q1, π), 1].

In case q1 = 1, Vq = Tq,0, and so F3(Vq) = [2/3, 1].

Now we consider the case when q2 6= 0.

If the slope q1/q2 of tq,k is less or equal than π/θ0, then the interval Tq,0 intersects either

with the line θ1 = π at (π, θ0
2) for some θ2 ∈ [0, π] or with the line θ2 = π at (θ0

1, π) for some

θ0
1 ≥ θ0 (see Fig. III.25). Since F3(θ0

1, π) = F3(π, θ0
2) = 1/3, the range of F3 restricted to

Tq,0 is [1/3, 1], and thus F3(Vp) = [1/3, 1].

Figure III.25: q2 is nonzero and q1/q2 ≤ π/θ0. On the left Tq,0 intersects with θ1 = π and
on the right it intersects with θ2 = π at (θ0

1, π) where θ0
1 > θ0

If q1/q2 is larger than π/θ0, then the interval Tq,0 intersects with the line θ2 = π at (θ0
1, π),

where 0 < θ0
1 < θ0. Thus F3(Tq,0), and thus, F3(Vq), contain [a, 1] for a = F3(θ0

1, π) ∈
(F3(θ0, π), F3(0, π)) = (1/3, 2/3) according to the first remark.

In case q1 ≥ 4 and q2 > 1, let k0 =
[
q1θ0
2π

]
, then

k0 ≤
q1θ0

2π
< k0 + 1.
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Two lines tq,k0 and θ2 = 0 intersect at (2k0π/q1, 0). Since

0 ≤ 2k0π

q1
≤ θ0,

according to the first remark, we have

b := F3

(
2k0π

q1
, 0

)
>

2

3
.

Two lines tq,k0 and θ2 = π intersect at the point ((q2 + 2k0)π/q1, π). Since

θ0 <
2(1 + k0)π

q1
=

(2k0 + 2)π

q1
≤ (q2 + 2k0)π

q1
,

the interval Tq,k0 intersects either with the line θ2 = π at (θ0
1, π) for some θ0 < θ0

1 < π or

with the line θ1 = π at (π, θ0
2) for some θ0

2 ∈ [0, π] (see Fig. III.26).

Figure III.26: Tq,0 and Tq,k0 in different cases for q1/q2 > π/θ0 and q1 ≥ 4, q2 > 1. On the
left Tq,k0 intersects with θ2 = π at (θ0

1, π) for θ0
1 > θ0 while on the right Tq,k0 intersects

with θ1 = π

In both cases,

[1/3, 1] = [1/3, b] ∪ [a, 1] ⊂ F3(Tq,k0) ∪ F3(Tq,0) ⊂ F3(Vq),

i.e. F3(Vq) = [1/3, 1].

Now one need to consider the case when q1 ≥ 4 and q2 = 1 or q1 < 4 and q1/q2 > π/θ0.

Note that for q1 < 4, since q1/q2 > π/θ0, q2 can be 1 and q1 > 1. Thus, it is enough to

study the range of function F3 restricted to Vq for q = (q1, 1) with q1 > 1.

For each k ∈ N, k > 0, the line tq,k intersects with θ2 = −π at ((2k − 1)π/q1,−π) and

with θ2 = π at ((2k + 1)π/q1, π). When both intersection points are in Vq, we have
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[bk, ak] ⊂ F3(Tq,k), where

ak := F3

(
(2k − 1)π

q1
,−π

)
, bk := F3

(
(2k + 1)π

q1
, π

)
.

On the other hand,

F3

(
(2k + 1)π

q1
, π

)
= F3

(
(2k + 1)π

q1
,−π

)
, i.e. ak+1 = bk.

Figure III.27: Tq,k for k = 0, k0 in different cases when q1 > 1, q2 = 1

Besides, [b0, 1] ⊂ F3(Tq,0) and there must be some k0 such that tq,k0 intersects with θ1 = π

inside Vq, i.e. [1/3, a[q1/2]] ⊂ F3(Tq,k0). Therefore,

[1/3, 1] =
⋃

0≤k<k0

[bk, ak] ∪ [b0, 1] ∪ [1/3, ak0 ] ⊂
⋃

0≤k≤k0

F3(Tq,k),

so F3(Vq) = [1/3, 1].
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CHAPTER IV

SPECTRAL EDGE NON-DEGENERACY

There are quite a few features (called threshold properties) of elliptic periodic operators

that depend upon spectral behavior near spectral edges (see [37]). Below, we state an open

conjecture about some spectral edge properties. We then sketch the approach that we have

used to attack this conjecture and a partial result obtained.

Consider the periodic Schrödinger operator HV = −∆ + V (x) on Rn for n ≥ 2, where the

potential V (x) is real-valued and Zn-periodic, i.e. V (x) = V (x+e) for all e ∈ Zn. For each

quasimomentum θ ∈ Rn, we define the Bloch operator HV (θ) = (−i∇+ θ)2 + V (x) acting

on the torus Tn = Rn/Zn. The spectrum of the operator HV (θ) is real and discrete:

σ(HV (θ)) = {λj(θ, V )/λ1(θ, V ) ≤ . . . ≤ λm(θ, V ) ≤ . . .→∞}.

By Floquet-Bloch theory (see Section I.2), HV =

∫ ⊕
B
HV (θ)dθ for B = [−π, π)n. As a

consequence,

σ(HV ) =
⋃
θ∈B

σ(HV (θ)). (IV.1)

Let us recall that multi-valued function θ 7→ (λ1(θ), λ2(θ), . . .) is called the dispersion

relation of HV . Each function θ 7→ λj(θ), j = 1, 2, . . ., is called the j-th band function and

its extrema - spectral edges. The following can occur at a spectral edge value λ0 (of the

band function λj(θ) at θ0):

1. The extremum λ0 is not simple, i.e. is attained by more than one band function.

2. The extremum λ0 of a single band function is non-isolated, i.e. in every neighborhood

U of θ0 there exists θ′ 6= θ0 such that λj(θ
′) = λ0.

3. The extremum is isolated, but degenerate, i.e. the determinant of the Hessian matrix

(
∂nλj

∂θi1 ...∂θin
)ni1,...,in=1 at θ0 is zero.

The following conjecture [58] is believed to be true.

Conjecture IV.0.1. The dispersion relation of a generic periodic Schrödinger operator

has only single, isolated, and non-degenerate extrema.

The notion of “genericity” has not been defined precisely. However, one can understand the

conjecture as follows: “The set of all periodic potentials such that the related Schrödinger

58



operators have only simple, isolated, and non-degenerate extrema is a residual set1 in an

appropriate space of periodic functions.”

The conjecture is often assumed in mathematics and physics literature [37, Section 7]

(e.g., in studying homogenization, Green’s function asymptotics, Liouville type theorems,

Anderson localization, in defining effective masses in solid state physics).

The result of [34] establishes that the extrema of the dispersion relation of a generic periodic

Schrödinger operator are simple. Recently Filonov and Kackovskii have proven [21] that

the extrema of the dispersion relation of a generic periodic 2D Schrödinger operator are

isolated. In this chapter, we are only interested in the non-degeneracy aspect and assume,

due to [34], that the extrema under consideration are simple.

In what follows, we prove the conjecture for periodic difference operators on a class of

discrete (combinatorial) graphs. To be specific, we consider periodic combinatorial graphs

(see Section I.2). There is a free action on the graph of the group Z2 by the shifts through

vectors p1e1 +p2e2, where (p1, p2) ∈ Z2 and (e1, e2) is a basis of R2. There are two vertices

in the fundamental domain W of the graph as shown in Fig. IV.1.

Figure IV.1: There are 2 vertices (atoms) in the fundamental domain

Vertices from W are allowed to connect to each other or to vertices from shifted copies

having common boundary edges with W (i.e. copies(1), (2), (3), (4) shown in Fig. IV.1).

No loops or multiple edges are allowed. Graphene [22] is one example in this class of graphs.

Each graph is equipped with a periodic weight function that assigns to each edge a positive

number. We study Laplacian operators on these graphs and prove that the dispersion

1A residual set is the intersection of a countable collection of open, dense sets.
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Figure IV.2: Left: vertices from W are connected to each other or to vertices from shifted
copies (1), (2), (3), (4); Right: graphene - an example of graphs under consideration

relation of such a generic (with respect to the weights) Laplacian has only non-degenerate

extrema.

A zero weight on an edge can be considered to be equivalent to the removal of the edge.

Thus, for convenience, graph under consideration can be thought of as a graph with all

possible edges presenting to which non-negative constant weights are assigned. From now

on, we study the periodic discrete graph G with shaded fundamental domain W as shown

in Fig. IV.3. The fundamental domain W contains two vertices C,D and nine edges.

Let us denote the set of non-negative real numbers by R+
0 . Given α = (α1, . . . , α9) ∈ (R+

0 )9,

we can assign the weights αi, i = 1, 9, to nine edges from the fundamental domain W as

shown in Fig. IV.3. The entire structure G and all edges’ weights can be obtained from W

by Z2-shifts of the fundamental domain. We can now define a Laplace-Beltrami operator

Lα acting on the graph G as follows

Lαf(u) =
∑

e=(u,v)∈E(G)

α(e)(f(u)− f(v)), (IV.2)

where α(e) is the weight of edge e. When it does not lead to confusion, we will use the

notation L instead of Lα.

For each θ = (θ1, θ2) from the Brillouin zone B = [−π, π)2, let L(θ) be the Bloch Laplacian
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Figure IV.3: The structure G and a fundamental domain W with vertices (atoms) C,D
and nine edges

that acts as (IV.2) on the set of functions defined on G and satisfying the Floquet condition

f(u+ p1e1 + p2e2) = f(u)ei(p1θ1+p2θ2)

for all (p1, p2) ∈ Z2 and all u ∈ V (G). Such functions f are determined uniquely by their

restrictions to the fundamental domain W . The Laplacian L is decomposed into the direct

integral

L =

∫ ⊕
B
L(θ)dθ.

In particular, σ(L) =
⋃
θ∈B σ(L(θ)).

Since there are only two vertices inside the fundamental domain, operator L(θ), θ ∈ B,

acts in 2D and thus has a spectrum σ(L(θ)) = {λ1(θ), λ2(θ)}, where λ1(θ) ≤ λ2(θ).

Below we specify our notion of “genericity.”

Definition IV.0.2. It is said that a generic operator {Lα, α ∈ (R+
0 )9} has a property ι
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if the set of α such that Lα does not have property ι is a semi-algebraic subset of positive

codimension in (R+
0 )9.

Our main result is the following theorem:

Theorem IV.0.3. The dispersion relation of the operator Lα, for a generic α ∈ (R+
0 )9,

has only non-degenerate extrema.

Proof. Instead of θ ∈ B, it is more convenient to consider the pair z = (z1, z2) := (eiθ1 , eiθ2)

of Floquet multipliers. Notice that:

∂λ

∂θj
= ieiθj

∂λ

∂zj
, j = 1, 2, (IV.3)

and
∂2λ

∂θ2
1

∂2λ

∂θ2
2

−
(

∂2λ

∂θ1∂θ2

)2

= e2i(θ1+θ2)

[
∂2λ

∂z2
1

∂2λ

∂z2
2

−
(

∂2λ

∂z1∂z2

)2
]
. (IV.4)

For each z ∈ T = {(z1, z2) : |z1| = |z2| = 1}, we denote by Λα(z) the operator that acts as

(IV.2) on the set of functions defined on G and satisfying condition

f(u+ p1e1 + p2e2) = zp11 z
p2
2 f(u).

Then, the spectrum σ(Λα(z)) of Λα(z) coincides with σ(Lα(θ)) for θ ∈ B such that

(z1, z2) = (eiθ1 , eiθ2).

From (IV.3) and (IV.4), the dispersion relation of Lα has a degenerate extremum if and

only if there exists z = (z1, z2) ∈ T and λ ∈ R such that λ ∈ σ(Λα(z)),

∂λ

∂zj
= 0, j = 1, 2, (IV.5)

and
∂2λ

∂z2
1

∂2λ

∂z2
2

−
(

∂2λ

∂z1∂z2

)2

= 0 (IV.6)

By P we denote the set of (α1, . . . , α9, λ, z1, z2) ∈ C12 intersecting with T such that λ ∈
σ(Λα(z)) satisfying (IV.5) and (IV.6). Let us sketch the proof of the theorem, which

consists of three steps:

1. Obtain an algebraic variety P that contains P .

2. Show that all components of P having non-empty intersections with P are of dimen-

sion at most 8.
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3. Prove that by projecting these components to C9 that contains the weight parameters

space (R+
0 )9, we get a semi-algebraic subset of positive codimention in C9, which

implies the desired result.

The two dimensional operator Λα(z) acts as follows

(Λα(z)f)(C)

= α1(f(C)− f(C)z2) + α2(f(C)− f(D)z2) + α5(f(C)− f(D))

+α3(f(C)− f(D)z1) + α4(f(C)− f(C)z1) + α1(f(C)− f(C)z−1
2 )

+α6(f(C)− f(D)z−1
2 ) + α4(f(C)− f(C)z−1

1 ) + α9(f(C)− f(D)z−1
1 ),

and

(Λα(θ)f)(D)

= α6(f(D)− f(C)z2) + α7(f(D)− f(D)z2) + α8(f(D)− f(D)z1)

+α9(f(D)− f(C)z1) + α5(f(D)− f(C)) + α7(f(D)− f(D)z−1
2 )

+α2(f(D)− f(C)z−1
2 ) + α3(f(D)− f(C)z−1

1 ) + α8(f(D)− f(D)z−1
1 ).

Let Aα(z) = (aij)
2
i,j=1 be the matrix of the operator Λα(z). Then,

a11 = 2α1 + α2 + α3 + 2α4 + α5 + α6 + α9 − α1(z2 + z−1
2 )− α4(z1 + z−1

1 ),

a12 = −(α2z2 + α6z
−1
2 + α3z1 + α9z

−1
1 + α5),

a21 = −(α2z
−1
2 + α3z

−1
1 + α6z2 + α9z1 + α5),

a22 = α6 + 2α7 + 2α8 + α9 + α5 + α2 + α3 − α7(z2 + z−1
2 )− α8(z1 + z−1

1 )

As a consequence, the spectrum of Λα(z) is the set of eigenvalues of matrix Aα(z). Like

before, when it does not lead to the confusion, we will use the notation A(z) instead of

Aα(z). Then, λ belongs to the spectrum of Λ(z) if and only if

λ2 − λTrA(z) + detA(z) = 0. (IV.7)

Differentiating (IV.7) with respect to zj , j = 1, 2, and combining the results with (IV.5)

and (IV.6), we have

λ
∂(TrA)

∂zj
− ∂(detA)

∂zj
= 0, j = 1, 2, (IV.8)
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and

(2λ− TrA)2.

(
∂2λ

∂z2
1

∂2λ

∂z2
2

−
(

∂2λ

∂z1∂z2

)2
)

=(
λ
∂2(TrA)

∂z2
1

− ∂2(detA)

∂z2
1

)
.

(
λ
∂2(TrA)

∂z2
2

− ∂2(detA)

∂z2
2

)
−

−
(
λ
∂2(TrA)

∂z1∂z2
− ∂2(detA)

∂z1∂z2

)2

.

(IV.9)

The left-hand side of identity (IV.9) is equal to zero according to (IV.6). Thus, we have(
λ
∂2(TrA)

∂z2
1

− ∂2(detA)

∂z2
1

)
.

(
λ
∂2(TrA)

∂z2
2

− ∂2(detA)

∂z2
2

)
−

−
(
λ
∂2(TrA)

∂z1∂z2
− ∂2(detA)

∂z1∂z2

)2

= 0.

(IV.10)

Thus, the dispersion relation of Laplacian L have degenerate extremum only if system of

equations (IV.7), (IV.8), and (IV.10) in variables λ, z1, z2 has solution such that λ is real

and (z1, z2) ∈ T. The left hand sides of equations (IV.7), (IV.8), and (IV.10) are rational

functions in variables α1, . . . , α9, λ, z1, z2, denominators of which are of the form zn1
1 zn2

2

for some n1, n2 ∈ N. Let (α1, . . . , α9, λ, z1, z2) ∈ V := C12 and P be the algebraic variety

(the joint zero set) of the polynomials-numerators of (IV.7), (IV.8), and (IV.10). Then,

P = P ∩ T. Consider the space S := C9 of weight parameters (α1, . . . , α9). Let π : V → S

be the natural projection that omits coordinates λ, z1, z2.

We will prove that π(P ) has codimension at least 1 in S. We first need to explore some

properties of P.

Lemma IV.0.4. The dimensions of all components of P having non-empty intersections

with P in V are at most 8.

This result is obtained by BertiniTMsoftware [5]. The algebraic variety P is decomposed

into union of smooth manifolds of different dimensions. According to our computation, the

components that have non-empty intersections with the torus T are of dimensions at most

8.

The dimensions of the projections of these components to the weight parameters space S

are also at most 8. Indeed, let O be an arbitrary point from a component of P that has

non-empty intersection with P . Let us denote the dimension of the component containing
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O by m, then m ≤ 8. There exists a smooth submersion

f := u ∈ U ⊂ Cm 7→ (f1, . . . , f12) ∈ VO ⊂ V,

where VO is a neighborhood of O in V , such that αj = fj , j = 1, 9, λ = f10, z1 = f11,

and z2 = f12. The projection of VO to S is {(f1(u), . . . , f9(u)), u ∈ VO}, and thus has

dimension at most 8. Therefore, the projections of those components of P having non-

empty intersections with P has positive codimension in the ambient space S.

On the other hand, the set P is defined by polynomial equations and inequalities. By Tarski

- Seidenberg theorem (see, e.g., [8, 24]), its projection down to the weight parameters space

(R+
0 )9 is also defined by polynomial equations and inequalities, i.e. is a semi-algebraic

set.
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CHAPTER V

GAP OPENING

Existence of spectral gaps attracts a lot of interests in many fields ranging from solid state

physics to photonic crystal theory, waveguides, expanders and Ramanujan graphs, and

quantum wire circuits [3, 30, 43, 42, 18, 52], [7, Section 5.1], [37, Section 6.1].

One of the standard ways to achieve the band-gap structure of the spectrum is by making

the medium periodic, where the gaps may arise due to the Bragg scattering [3]. However,

existence of spectral gaps in periodic media is not guaranteed and is not easy to achieve

and manipulate (see, e.g., [37, Section 6.1]). Thus, a different, resonant gaps technique has

been explored, where identical resonators are distributed throughout the medium to create

spectral gaps [50]. This idea was implemented in the discrete situation in [1] by attaching

to each vertex v of the graph Γ0 (which is the medium in this case) an identical decoration

(resonator) G (Fig. V.1).

Figure V.1: Decorations used by Schenker and Aizenman in [1].

This technique has been extended to the case of quantum graphs, see [7, Section 5.1].

However, it would be desirable in many instances (e.g., in photonic crystal theory) to

insert some internal structure into each vertex, rather than attach a decoration (resonator)

to Γ0 sideways. In other words, one is looking for a spider decoration (Fig. V.2)1.

1Compare with the first step of the zig-zag construction of an expander [52].
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v

Figure V.2: A “spider” decoration replacing a vertex V .

Here one hits a snag. The nice procedure in [1] does not work nearly that well when the

common “boundary” between Γ and G consists of more than one point, as in the case of

a “spider” decoration.

When the boundary is a single point, by applying a rather standard technique used in

considering the transmission problem between two media, one can rewrite the spectral

problem on the decorated graph as the one on the original graph Γ with an additional

energy (spectral parameter) dependent potential (Dirichlet-to-Neumann operator of the

decoration, see [7, Section 5.1] for details). Poles of this potential arise at the spectrum of

the decoration, which leads to the gap opening.

With the boundary consisting of more than one point, the arising potential term is now

a meromorphic matrix function, whose poles may or may not show up, depending on the

vector the matrix function is applied to. Some examples of spider decorations not leading

to spectral gap opening were constructed in [47, Chapter 3]. On the other hand, it is also

shown in [47, Chapter 3] that some special decorations do lead to gap openings.

In what follows, we will extend the result of [47]. We provide necessary notions and

notations as well as some auxiliary results in Section V.1, and the main result on gap

opening in Section V.2.

V.1 Preliminary results

In what follows, we consider only infinite periodic metric graph Γ0 (see Section I.2). Let us

also assume that Γ0 is a d-regular graph (i.e. the degree of each vertex is equal to d), G is

a finite metric graph with at least d vertices and a singled out subset B ⊂ V (G) consisting

of d vertices. The set B will be called the boundary of G. For each vertex v ⊂ V (Γ0) we

establish a 1-to-1 correspondence between the edges adjacent to v and the elements of B.

One can now decorate in a natural way the vertex v with the internal structure, which is
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a copy of G (see again Fig. V.2). Doing this for all vertices of Γ0, we obtain the decorated

graph Γ.

We now introduce differential operators H0 in L2(Γ0) and H in L2(Γ) as follows: on each

edge they act as −d2/dx2 with the domain consisting of functions f such that

1. f ∈ H2(e) for each edge e;

2.
∑
e
‖f‖2H2(e) <∞;

3. f is continuous on the whole graph;

4. at each vertex, the sum of the outgoing derivatives of f along all adjacent edges is

equal to zero (Kirchhoff condition).

Here, H2(e) is the standard Sobolev space on the segment e = [0, le].

We also denote by HG the analogous operator on G, with the exception that at the bound-

ary vertices v ∈ B of the boundary, Dirichlet conditions f(v) = 0 are imposed instead of

Kirchhoff ones. The spectrum σ(HG) of this operator is discrete [7, Theorem 3.1.1]. All

defined operators H0, H, and HG are self-adjoint [7, Section 1.4.4].

We denote by ΣD the discrete set of Dirichlet eigenvalues of all edges of Γ0, i.e. ΣD :=

{(nπl−1
e )2, n ∈ N, e ∈ E(Γ0)}.

Let us also denote by N :
⊕

e∈E(G)

H2(e) → l2(B) the Neumann operator that for any

function f ∈
⊕

e∈E(G)

H2(e) and a vertex v ∈ B produces the value at v equal to the sum of

the outgoing derivatives of f along the edges of G adjacent to v. Here, we denote by l2(B)

the d-dimensional Hilbert space of functions on B.

We can now define, for any λ /∈ σ(HG), the Dirichlet-to-Neumann operator (in fact, a

d×d-matrix) Λ(λ) as follows: for any φ ∈ l2(B) let u be the (existing and unique) solution

of the following problem:
−u′′ = λu on each e ∈ E(G),

u satisfies continuity and Kirchhoff condition at each vertex v /∈ B,

u|B = φ.

(V.1)

Then, Λ(λ)φ := Nu. It is clear that Λ(λ) is a meromorphic functions with poles at σ(HD)

only (see [7, Section 3.5] for more detailed consideration of Dirichlet-to-Neumann operator

in the quantum graph case and its relation to the resolvent of HG).
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Let λ0 ∈ σ(HG). As it was indicated before, and as we will see clearly in the next section,

it will be important for us that for any non-zero φ ∈ l2(B) the vector function Λ(λ)φ still

has a pole at λ0. It is clearly sufficient to consider vectors φ that belong to the unit sphere

S of l2(B) ≈ Cd.

We recall and extend some auxiliary results from [47] that are crucial for our work. The

proofs (with some minor changes) of these results are reproduced here for readers’ conve-

nience. From now on, unless otherwise specify, we use the notation ‖.‖ to denote the L2-

norm.

Theorem V.1.1. 1. If for a given φ ∈ S and λ = λ0 the problem (V.1) has a solution,

then Λ(λ)φ does not have singularity at λ0;

2. If the problem (V.1) has no solution for λ = λ0 and any φ ∈ S, then for any φ, the

following estimate holds in an (independent on φ) neighborhood of λ0:

‖Λ(λ)φ‖ ≥ C

|λ− λ0|
‖φ‖ (V.2)

with a constant C independent of φ.

This result was established in [47, Theorem 20] for decoration graphs with no internal

vertices (i.e. V (G) \B = ∅). This unessential assumption can be removed as we see below.

Proof. 1. For λ 6= λ0 we want to solve the spectral problem (V.1). Let φ̃ be defined on

G, twice differentiable on each edge, and satisfy continuity and Kirchhoff condition on

V (G) \B such that φ̃|B = φ. Such a function is easy to construct. Then w = u− φ̃ solves

the following problem
−w′′ − λu = φ̃′′ + λφ̃ on each e ∈ E(G),

w satisfies continuity and Kirchhoff condition at each vertex v /∈ B,

w|B = 0.

(V.3)

As for λ = λ0 the problem (V.1) has a solution, let φ̃ be that solution. Then, the solution

of (V.3) can be written as

w = R(λ)(φ̃′′ + λφ̃) = R(λ)(λ− λ0)φ̃ = (λ− λ0)R(λ)φ̃.

Since λ0 ∈ σ(HG) and HG is self-adjoint, R(λ) has a pole of order one. This pole is

eliminated by (λ − λ0), which implies that ‖λ(λ)φ‖ = ‖N((λ − λ0)R(λ)φ̃ + φ̃)‖ < C for

some constant C independent on λ.
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2. Let {ψj} be the orthonormal complete set of eigenfunctions of HG corresponding to

eigenvalues λj and Ψj(vi) be the sum of outgoing derivatives of ψj at vi along all edges in

E(vi), where vi ∈ B, i = 1, d. Let us also denote by Ψj the vector (Ψj(v1), . . . ,Ψj(vd)).

For λ 6= λ0 and φ ∈ S, let φ̃ be smooth on each edge of G, φ̃|B = φ that vanishes together

with its first derivative on V (G) \B. Then, w = u− φ̃ solves the problem (V.3).

w = R(λ)(φ̃′′ + λφ̃)

=
∑
j

〈R(λ)(φ̃′′ + λφ̃), ψj〉ψj =
∑
j

〈φ̃′′ + λφ̃,R(λ)ψj〉ψj

=
∑
j

〈φ̃′′ + λφ̃,
1

λ− λj
ψj〉ψj =

∑
j

1

λ− λj
〈φ̃′′ + λφ̃, ψj〉ψj

=
∑
j

1

λ− λj

 d∑
i=1

∑
e∈E(vi)

−φ̃(vi)
dψj
dxe

(vi)ψj + (λ− λj)〈φ̃, ψj〉ψj)


= −

∑
j

1

λ− λj
〈φ,Ψj〉Cdψj +

∑
j

〈φ̃, ψj〉ψj

= − 1

λ− λ0

∑
λj=λ0

〈φ,Ψj〉Cdψj −
∑
λj 6=λ0

1

λ− λj
〈φ,Ψj〉Cdψj +

∑
j

〈φ̃, ψj〉ψj .

In [47, Theorem 20] the assumption that there is no internal vertices was used to prevent

unnecessary boundary terms from appearing after doing integration by part. With our

choice of φ̃, these terms go away even under the presence of internal vertices.

As
∑

e∈E(vk)

dφ̃

dxe
(vk) is analytic with respect to λ for any vk, it is sufficient to consider

∑
e∈E(vk)

dw

dxe
(vk). Computing the latter, we have

− 1

λ− λ0

∑
λj=λ0

〈φ,Ψj〉CdΨj(vk)−
∑
λj 6=λ0

1

λ− λj
〈φ,Ψj〉CdΨj(vk) +

∑
j

〈φ̃, ψj〉Ψj(vk). (V.4)

The last two terms are both analytic on a small neighborhood around λ0. If the sum in

the first term is nonzero at some vk, then λ(λ)φ will blow up at λ = λ0 for all nonzero φ.

We now show that if (V.1) has no solution for all nonzero φ ∈ Cn for λ = λ0, then this will

indeed happen. If the problem (V.1) has no solution u for non-zero φ, then the problem

(V.3) also has no solution w for non-zero φ. By Fredholm alternative, there exists j such

that

λj = λ0 and 〈φ̃′′ + λ0φ̃, ψj〉 6= 0, i.e. 0 6= 〈φ̃′′ + λ0φ̃, ψj〉 =

d∑
i=1

φ̃(vi)ψj(vi) = 〈φ,Ψj〉Cd .
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Therefore,

〈φ,
∑
λj=λ0

〈φ,Ψj〉CdΨj〉 =
∑
λj=λ0

|〈φ,Ψ〉Cd |2 > 0 for all φ 6= 0,

which implies
∑
λj=λ0

〈φ,Ψj〉CdΨj 6= 0, for all φ 6= 0.

Thus, there exists vi such that
∑
λj=λ0

〈φ,Ψj〉CdΨj(vi) 6= 0.

The first statement of case 2 of the theorem is proven. We now show the inequality (V.2).

From above we know that
∑
λj=λ0

|〈φ,Ψj〉|2 > 0. This sum of square is a positive continuous

function on the compact set S, there exists a positive constant C1 such that∑
λj=λ0

|〈φ,Ψj〉|2 ≥ C1 for all φ ∈ S. (V.5)

Analogously, there exists a positive constant C2 such that∑
λj=λ0

|〈φ,Ψj〉| ≤ C2 for all φ ∈ S.

For each j let us define function fj as follows

fj(λ) =

1 if λj = λ0,

1 + 1
λ−λj if λj 6= λ0

Function fj(λ) is analytic in some small neighborhood U of λ0 not containing any λj 6= λ0.

Then, for λ ∈ U , there exists a constant C3 > 0 such that

|fj(λ)| ≤ 1 +
1

|λ− λj |
≤ C3 for all j ∈ N such that λj 6= λ0.

The following estimate is true for φ from S∑
j

|fj(λ)||〈φ̃, ψj〉||〈φ,Ψj〉Cd | ≤ C3‖φ̃‖
∑
j

|〈φ,Ψ〉Cd | ≤ C2C3‖φ̃‖. (V.6)

Using the expression (V.4) and u = w + φ̃, we get

|〈Λ(λ)φ, φ〉| ≥ 1

|λ− λ0|
∑
λj=λ0

|〈φ,Ψj〉Cd |2 − σj |fj(λ)||〈φ̃, ψj〉||〈φ,Ψj〉Cd | − 〈φ,Φ〉Cd ,
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where Φ =

 ∑
e∈E(v1)

dφ̃

dxe
(v1), . . . ,

∑
e∈E(vd)

dφ̃

dxe
(vd)

.

From (V.5) and (V.6), we have

|〈Λ(λ)φ, φ〉| ≥ C1

|λ− λ0| − C2C3‖φ̃‖ − ‖Φ‖Cd

.

Since function φ̃ is smooth on each edge, it is in H2(e) for all e ∈ E(G). By Sobolev

trace theorem on each edge, ‖φ̃‖ and ‖Φ‖ are bounded above by C4‖φ‖ for some positive

constant C4. Thus,

|〈Λ(λ)φ, φ〉| ≥ C1

|λ− λ0|
− (C2C3 + 1)C4, .

For λ sufficiently close to λ0, i.e. |λ− λ0| <
C1

2C5
, where C5 = (C2C3 + 1)C4,

C1

|λ− λ0|
− (C2C3 + 1)C4 =

1

|λ− λ0|
(C1 − C5|λ− λ0|) >

C1

2|λ− λ0|
.

The desired estimate follows from here as |〈Λ(λ)φ, φ〉| ≤ ‖Λ(λ)φ‖.

Thus, we will be looking at graphs G with boundary B such that the problem (V.1) has

solution only for zero Dirichlet data φ. The following theorem describes some graphs with

this property, and thus provides the desired gap-opening tool.

Theorem V.1.2. Let l0 > 0 and n be an odd natural number. Suppose that the pair G,B

satisfies the following conditions:

1. Graph G contains a non-self-intersecting cycle Z consisting of an odd number of edges

of the length l0;

2. Each boundary vertex v ∈ B either belongs to Z, or is connected to a vertex of Z by

a path of edges of length l0 each.

Then, for λ0 = (nπ/l0)2, there exist a neighborhood U of λ0 and a constant C such that

the inequality (V.2) holds for any φ and λ ∈ U .

Proof. Assume on the contrary that there exists function φ ∈ S such that the problem

(V.1) has a solution for λ = λ0.

We first consider a special case. Suppose the cycle Z contains all the vertices in Bv which

we denote as (v1, . . . , vd). On each edge connecting vi to vi+1 the solution is of the form
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ci cos(
√
λ0x) + bi sin(

√
λ0x) with x = 0 representing vi and x = l0 representing vi+1. Then

ci = u(0) = φi and −ci = u(l0) = φi+1 since n is odd. Hence, φi = −φi+1.

Since there is an odd number of vertices in Bv, we have φ1 = −φ2 = . . . = φn = −φ1,

which makes φi = 0, i = 1, d and thus φ = 0 - contradiction.

Now let us consider the general case. Suppose at φ(vj0) 6= 0 for some j0. If vj0 belongs to

the cycle Z then by a similar argument we arrive at the contradiction. Otherwise, there

is a l0-path (vj0 , . . . , vjk) connects to a vertex vc (vc ≡ vjk) belonging to Z. Let eji be the

edge connecting vertices vji and vji+1 , i = 0, . . . , k− 1. On each of these edge, the solution

of (V.1) has the form ci cos(
√
λ0x) + bi sin(

√
λ0x) with x = 0 representing vji and x = l0

representing vji+1 . Again, we have φj0 = −φj1 = . . . = (−1)kφjk = 0. Thus, φ = 0 which

is contradict to φ 6= 0. Problem (V.1) therefore cannot have a solution for non-zero φ for

λ = λ0.

V.2 Spectral gaps opening

The main result of this chapter is the following

Theorem V.2.1. Let l0 > 0 and n be an odd natural number. Let also the infinite periodic

d-regular graph Γ0, finite graph G with boundary B, |B| = d, and the decorated graph Γ be

as before. Suppose that the following conditions are satisfied:

1. λ0 = (nπ/l0)2 is not in the Dirichlet spectrum ΣD of Γ0, with dist(λ0,ΣD) = δ > 0;

2. The decoration (resonator) (G,B) satisfies the conditions of Theorem V.1.2.

Then, there exists a punctured neighborhood of λ0, depending on G, topology of Γ0, and δ

only, which does not belong to the spectrum σ(H).

Proof. As before, by Hθ we denote Bloch Hamiltonian operator that acts in the same way

as H does and has domain consisting of functions u such that

1. u ∈ H2(e) for each edge e;

2. u is continuous on the whole graph;

3. at each vertex, the sum of the outgoing derivatives of u along all adjacent edges is

equal to zero (Kirchhoff condition);

4. u satisfies Floquet condition, i.e. u(x+ pe) = eipθu(x), for all x ∈ G and p ∈ Zn.

If λ ∈ σ(H), then there exists a quasimomentum θ ∈ [−π, π)n and a corresponding non

zero quasi-periodic Floquet-Bloch eigenfunction uθ of Hθ.
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Removing all internal edges and vertices from each of the decorations in Γ, one gets a

disjoint union of edges of Γ0 (see Fig V.3), since each former vertex v ∈ Γ0 is replaced by d

vertices v1, . . . , vd. We denote this new graph Γ̃. By W̃ we denote the fundamental domain

of Γ̃.

Figure V.3: Decoration removed from a former vertex of degree 4.

Denoting

φv := (uθ(v1), . . . , uθ(vd))
t, φ′v := (duθ/dxe1(v1), . . . , duθ/dxed(vd))

t,

where e1, . . . , ed are the edges formerly adjacent to vertex v and coordinates xej increase

from the value zero at vertex v, one can rewrite the equation for u on Γ as the following

one on Γ̃: −u′′θ = λuθ on each edge e ∈ Γ̃,

φ′v = −Λ(λ)φv for all vertices v ∈ V (Γ̃).
(V.7)

From now on, we write u instead of uθ when there is no confusion.

We consider only λ from the neighborhood of λ0 with radius less than δ/2 = dist(λ0,ΣD)/2.

Then, it does not intersect with ΣD and for all λ from this neighborhood we have

(1 + |λ|2) ≤ 1 + (|λ0|+ δ/2)2.

Let x ∈ [0, le] be the coordinate defined on the edge e. By ue we denote the solution of

−u′′ = λu on edge e. As ‖u‖H2(e) is equivalent to the norm defined by (‖u‖2 + ‖u′′‖2)1/2,
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for some positive constant C1 depending only on the topology of Γ0 we have

‖u‖2H2(e) ≤ C1

∫
e
(‖u‖2 + ‖u′′‖2) = C1

∫
e
(1 + |λ|2)|u|2dx ≤ 1 + (|λ0|+ δ/2)2)C1‖u‖.

We have three cases depending on λ.

Case 1: Suppose that λ > 0. On each edge e in Γ0 we have sin
√
λle 6= 0 because λ /∈ ΣD.

The solution of −u′′ = λu on e has the following form:

ue(x) =
u(0) sin

√
λ(le − x) + u(le) sin

√
λx

sin
√
λle

.

We then have

‖u‖2H2(e) ≤ (1 + (|λ0|+ δ/2)2)C1‖u‖ ≤
2(1 + |λ|2)C1le

sin2
√
λle

∑
vi∈e
|u(vi)|2

In order to estimate the term sin
√
λle, we inscribe a triangle inside each hump of | sin

√
λle|

with vertices of triangle at ((n− 1)π, 0), (nπ, 0), and ((2n− 1)π/2, 1) for some n ∈ N (see

Fig. V.4), then we obtain

| sin
√
λle| ≥

2le
π

min
n
|
√
λ− nπ

le
|.

There exists a positive constant C2 depending on λ0 and δ only such that

2le
π

min
n
|
√
λ− nπ

le
| ≥ 2leC2

π
min
n
|λ−

(
nπ

le

)2

|. (V.8)

On the other hand,

min
n
|λ−

(
nπ

le

)2

| ≥ min
n
|λ0 −

(
nπ

le

)2

| − |λ− λ0| ≥
δ

2
. (V.9)

From (V.8) and (V.9) we have

| sin
√
λle| ≥

C2δle
π

.

Therefore, for some constant C3 depending only on λ0, δ, and Γ0 we have

‖u‖2H2(e) ≤ C3

∑
v∈e
|u(v)|2.

75



Figure V.4: Inscribe a triangle inside each hump of | sin
√
λle|

Summing this over all the edges e from the fundamental domain, we obtain∑
e∈W̃

‖u‖2H2(e) ≤ dC3

∑
v∈W̃

|u(v)|2

Case 2: If λ = 0, then

ue(x) =
u(0)(le − x) + u(le)x

le

There exist C4, C5 depending on λ0, δ, and Γ0 such that∑
e∈W̃

‖u‖2H2(e) ≤
∑
e∈W̃

(1 + (|λ0|+ δ/2)2)C1‖u‖ ≤
∑
e∈W̃

C4

∑
v∈e
|u(v)|2 ≤ C5

∑
v∈W̃

|u(v)|2.

Case 3: If λ < 0, then

ue(x) =
u(0) sinh

√
−λ(le − x) + u(le) sinh

√
−λx

sinh
√
−λle

.

Again, we have that∑
e∈W̃

‖u‖2H2(e) ≤
∑
e∈W̃

(1 + (|λ0|+ δ/2)2)C1

∑
v∈e
|u(v)|2 ≤ C6

∑
v∈Γ0

∑
vi∈Bv

|u(vi)|2
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for some C6 constant depending on λ0, δ,Γ0.

Hence, in all cases, we end up with∑
e∈W̃

‖u‖H2(e) ≤ C
∑
v∈W̃

‖φv‖2Cd ,

where the constant C depends on λ0, δ,Γ0 only.

Combining that with the trace estimate (e.g., [7, Theorem 1.3.8]), we have∑
v∈W̃

‖φ′v‖2Cd ≤M
∑
v∈W̃

‖φv‖2Cd . (V.10)

for a constant M that only depends on λ0, δ, and the topology of Γ0.

On the other hand, when λ is sufficiently close to λ0, according to Theorem V.1.2, one has

∑
v∈W̃

‖φ′v‖2Cd ≥
C2

|λ− λ0|2
∑
v∈W̃

‖φv‖2Cd > M
∑
v∈W̃

‖φv‖2Cd . (V.11)

The contradiction obtained from (V.10) and (V.11) proves the claim of the theorem.

V.3 Some remarks

(1) Although it is not easy to understand the general case of spider decoration, the main

result of this chapter provides a way to create spectral gaps rather easily at prescribed

locations. The spectral value (nπ/l0)2 involves an arbitrary positive length l0 and an odd

natural number n, which gives one a significant freedom of choosing location (one just

needs to avoid the Dirichlet spectrum of Γ0). When such a value is specified, one can

easily produce a spider decoration G that creates the gap. An example of such a procedure

is shown in Fig.V.5 for the case d = 4. The structure of decoration graph is also quite

flexible, for example, there is no constraint on its inner vertices or edges as long as the

listed conditions from Theorem V.1.2 are satisfied.

(2) The regularity assumption on the graph Γ0 can be removed. Indeed, one can still

open a spectral gap in the case of non-regular periodic graph by choosing different spider

decorations adjusted to each vertex such that the corresponding resonant value λ0 agree.
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Figure V.5: An example of spider decoration. The decorated graph Γ is obtained from the
periodic 4-regular graph Γ0 and the decoration graph G
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CHAPTER VI

SUMMARY

In chapter II and chapter III we analyzed dispersion relations of periodic Schrödinger op-

erators with real and even potentials on graphyne and its related nanotubes respectively.

Various information about singular continuous spectra, absolutely continuous spectra, and

pure point spectra of the operators was extracted from here. Unlike similar periodic opera-

tors in Rn, the quantum graph operators on these structures were proven to have nonempty

point spectra (i.e., bound states). We found these parts of the spectra and provided explicit

description of the corresponding eigenspaces. Spectral gaps and Dirac cones for a graphyne

structure were described. The formulations of the results involved the discriminant of the

Hill operator with the potential obtained by the periodic extension of the 1D potential on

a single edge. The presence of Dirac cones makes some of graphynes, which do not have

honeycomb symmetry, fascinating in terms of their electrical properties.

In chapter IV, we investigated the conjecture that the extrema of dispersion relation of

a generic periodic Schödinger operator have only non-degenerate Hessian. We studied a

simpler version of the conjecture using the graph approach. In particular, we proved the

conjecture for periodic difference operators on a class of discrete (combinatorial) graphs.

In the last chapter V, we studied the creation of gaps in the spectra of some periodic

operators. Namely, we extended the technique that was used in [47] to open and manipulate

the spectral gaps in the finite quantum graph case. It was proven that inserting some

internal structure into each vertex will indeed open a gap. We were able to remove the

unessential condition that prohibits internal vertices of the decoration graph. Moreover,

we proved that the same technique works well in the infinite periodic quantum graph case.
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Henri Poincaré 8 (2007), no. 6, 1151–1176.

[36] E. Korotyaev and I. Lobanov, Zigzag periodic nanotube in magnetic field, (2006).

arXiv: 1012.0814v2 [math.QA].

[37] P. Kuchment, An overview of periodic elliptic operators, Bulletin of the American

Math. Soc. (2016).

[38] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhauser Verlag,

1993.

[39] P. Kuchment, On some spectral problems of mathematical physics, Contemporary

Mathematics 362 (2004).

[40] P. Kuchment, Quantum graphs I. Some basic structures, Waves in Random media

14 (2004), S107–S128.

[41] P. Kuchment, Quantum graphs II. Some spectral properties of quantum and

combinatorial graphs, Journal of Physics A: Mathematical and Theoretical 38

(2005), no. 22, 4887–4900.

[42] P. Kuchment, “The mathematics of photonic crystals”, Mathematical modeling in

optical science, ed. by G. Bao, L. Cowsar, and W. Masters, vol. 22, Frontiers Appl.

Math. SIAM, Philadelphia, PA, 2001, pp. 207–272.

[43] P. Kuchment and L. Kunyansky, Spectral properties of high-contrast band-gap

materials and operators on graphs, Experimental Mathematics 8 (1999), no. 1, 1–28.

[44] P. Kuchment and O. Post, On the Spectra of Carbon Nano-Structures,

Communications in Mathematical Physics 275 (2007), no. 3, 805–826.

[45] D. Malko et al., Competition for Graphene: Graphynes with Direction-Dependent

Dirac Cones, Physical Review Letters 108 (2012).

[46] K. Novoselov, Nobel lecture: Graphene: Materials in the flatland, Reviews of

Modern Physics 83 (2011), 837–849.

[47] B.-S. Ong, Spectral Problems of Optical Waveguides and Quantum Graphs,

PhD thesis, Texas A&M University, 2006.

[48] K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs,

Letters in Mathematical Physics 77 (2006), no. 2, 139–154.

[49] L. Pauling, The diamagnetic anisotropy of aromatic molecules, Journal of Chemical

Physics 4 (1936), no. 10, 673–677.

82

http://arxiv.org/abs/1012.0814v2


[50] B. Pavlov, The theory of extensions, and explicitly solvable models, Uspekhi Mat.

Nauk 42 (1987), no. 6(258), 99–131, 247.

[51] M. Reed and B. Simon, Methods of Modern Mathematical Physics: Functional

analysis, vol. 4, Academic Press, 1972.

[52] O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag graph

product, and new constant-degree expanders, Ann. of Math. (2) 155 (2002), no. 1,

157–187.

[53] J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin

strips. I. Basic estimates and convergence of the Laplacian spectrum, Archive for

Rational Mechanics and Analysis 160 (2000), no. 4, 271–308.

[54] K. Ruedenberg and C.W. Scherr, Free-electron network model for conjugated

systems, The Journal of Chemical Physics: I. Theory 21 (1953), no. 9, 1565–1581.

[55] Y. Saito, The limiting equation for Neumann Laplacians on shrinking domains,

Electronic Journal of Differential Equations 31 (2000), 1–25.

[56] B. Simon, On the genericity of nonvanishing instability intervals in Hills equation,
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