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ABSTRACT

Induction Motor Bearing Fault Detection Using a

Sensorless Approach. (May 2007)

Lin Wang, B.S., Zhejiang University, Hangzhou, China;

M.S., Southwest Jiaotong University, Chengdu, China

Chair of Advisory Committee: Dr. Alexander G. Parlos

Continuous condition assessment of induction motors is very important due to

its potential to reduce down-time and manpower needed in industry. Rolling element

bearing faults result in more than 40% of all induction motor failures. Vibration

analysis has been utilized to detect bearing faults for years. However, vibration

sensors and expert vibration interpretation are expensive. This limitation prevents

widespread monitoring of continuous bearing conditions in induction motors, which

provides better performance compared to periodic monitoring, a typical practice for

motor bearing maintenance in industry. A strong motivation exists for finding a cost-

effective approach for the detection of bearing faults. Motor terminal signals have

attracted much attention. However, not many papers in the literature address this

issue as it relates to bearing faults, because of the difficulties in effective detection.

In this research, an incipient bearing fault detection method for induction motors

is proposed based on the analysis of motor terminal voltages and currents. The basic

idea of this method is to detect changes in amplitude modulation between the spa-

tial harmonics caused by bearing faults and the supply fundamental frequency. This

amplitude modulation relationship can be isolated using the phase coupling property.

An Amplitude Modulation Detector (AMD), developed from higher order spectrum

estimation, correctly captures the phase coupling and isolates these modulation rela-
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tionships.

In this research, in-situ bearing damage experiments are conducted so that the

accelerated life span of the bearing can be recorded and investigated. Experimental

results shown in this dissertation are based on different power supplies, load levels, VSI

control schemes, and motor operating conditions. Taking the mechanical vibration

indicator as a reference for fault detection, the proposed method is demonstrated to

be effective in detecting incipient bearing faults in induction motors. If motors are

operating at near steady state conditions, then experimental results show that the

bearing fault detection rate of the proposed approach is 100%, while no false alarms

are recorded.
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CHAPTER I

INTRODUCTION

A. Induction Motor Fault Detection and Diagnosis

1. Motivation

Induction motors play a very important role in the safe and efficient running of any

industrial plant. Like all rotating machinery, induction motors are not 100% reliable.

Several parts of the machine are especially susceptible to failure. For example, the

stator windings are subject to insulation failures caused by mechanical vibration,

heat, age, damage during installation, and contamination by oil. The rotor bars are

subject to failures caused by a combination of various stresses that act on the rotor.

Machine bearings are subject to excessive wear and damage caused by inadequate

lubrication, incorrect loading, or misalignment. In many applications, these failures

can shut down an entire industrial process. The unexpected shutdowns cost the user

both time and money that can be avoided if some form of early warning system is

used. Furthermore, such systems add to safety and reliability, which are key factors

in a wide range of industrial environments. Fault detection and diagnosis schemes

are intended to provide advanced warnings so that corrective action can be taken

without detrimental interruption of the process. Extensive fault diagnosis of motors

can lead to greater plant availability, extended plant life, higher quality products, and

smoother plant operation.

The goal of fault detection and diagnosis is to ensure the success of the planned

operations by providing information that recognizes and indicates anomalies of sys-

The journal model is IEEE Transactions on Automatic Control.
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tem behavior. This information not only keeps the operators better informed of the

status of the system, but also assists them in taking appropriate remedial actions to

eliminate any abnormal system behavior. The success of a fault detection and diagno-

sis algorithm is fundamentally related to the available information, the features of the

information that it uses, and the technique with which these features are evaluated.

A fault is defined as the inability of a system to perform in an acceptable manner.

A fault manifests itself as a deviation in observed system behavior from a set of ac-

ceptable behaviors. Fault detection is the recognition of the unacceptable behavior,

and fault diagnosis is the identification of a component or set of components in the

system that caused the fault, including the type, location, magnitude, and time of

the fault. The detection and diagnosis tasks should be considered separately, but

this distinction is not always made clear in practice because detection and diagnosis

processes can be closely intertwined. Fault detection consists of 1) collecting data,

2) extracting relevant features from the data and evaluating those extracted features

into a form of fault indicators, and 3) comparing those indicators to baseline obser-

vations formed from the normal condition of the system. Based on the results of this

comparison, a fault can be declared.

Before the literature review, motor anomalies, motor faults, and motor fault

detection and diagnosis methods are reviewed in this chapter.

2. Motor Anomalies

Motor anomalies are not faulty conditions of the machine. They are normal machine

operating conditions that occur when there are temporal variations in the motor

inputs and disturbances. Motor anomalies, being major sources of false alarms, can

produce signatures similar to some faults. Motor anomalies originate from supply

imbalance and the load fluctuations.
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a. Supply Imbalance

Three phase electric power systems generally provide voltage supply at the generating

station that is well balanced in both magnitude and displacement. At the distribution

end, unbalanced single phase loads and non-linear loads cause unequal voltage drops

in the transformer and line impedances. This results in an unbalanced supply voltage

at the point of utilization. The supply imbalance will affect fault detection to some

extent. For example, the majority of the methods developed until now to detect stator

faults are based on monitoring the negative sequence of the current. If the supply

becomes unbalanced, a negative sequence current will flow because of the motor’s

low negative sequence impedance. Using only current measurements, it is difficult to

distinguish between the negative sequence current due to unbalanced voltage and due

to motor stator deterioration. This makes the negative sequence of the current alone

an unreliable indicator for incipient fault detection.

b. Load Fluctuations

If the load torque varies, the stator current spectrum contains load induced frequency

components that coincide with those caused by a fault condition. In the sinusoidal

steady-state, a load torque oscillation produces a related oscillation in the electromag-

netic field. The current drawn by the motor contains all of the frequency components

found in the load torque. The magnitude of these developed load torque harmonics

are primarily dependent upon the system inertia and the frequency of the torque os-

cillation. If the stator flux linkage is purely sinusoidal, then any oscillation in the load

torque at multiples of the rotational speed will produce stator currents at frequencies

[1],

fload = fe ± kfrm = fe

[
1± k

(1− s)

p/2

]
, (1.1)



4

where fe is the electrical supply frequency, k = 1, 2, 3, . . ., s is the per unit slip, p is

the number of poles, and frm is the mechanical rotor speed in Hertz. Since motor

faults, like air-gap eccentricity and broken rotor bars generate the same frequencies

as those given in equation (1.1), it is clear that when induction motors operate with

a typical time-varying load, stator current frequency components caused by torque

oscillations can obscure those caused by fault conditions.

3. Motor Faults

Motor reliability studies have been performed by both General Electric, under the

sponsorship of the Electric Power Research Institute [2], and the IEEE Industry

Application Society [3], in order to evaluate the reliability of electric motors and to

identify the design and operational characteristics offering the potential to increase

their reliability. These two surveys are for motors energized by power supply mains.

Another motor reliability survey for motors energized by inverters was performed by

Thorson [4]. The failure rates are reported to be 47% for stator faults, 5% for rotor

faults, 32% for bearing faults, and 16% for other faults. However, the original sources

of the Thorson survey cannot be tracked down in the literature. Table I shows the

first two motor reliability survey results, where the first two columns include motors

of all types and the third column includes only squirrel-cage induction machines.

The majority of electric machine component failures are related to three main

components of motors, the stator, the rotor, and the bearings. Bearing failures ac-

count for 30% to 50% of all electric motor failures. In the following sections, failures

related to each of these motor components are discussed.
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Table I. Motor Reliability Survey Results [2, 3].

EPRI Survey IEEE IAS Survey IEEE IAS Survey

Survey Size 1052 Failures 380 Failures 304 Failures

Stator 36% 26% 25%

Rotor 9% 8% 9%

Bearings 41% 44% 50%

Others 14% 22% 16%

a. Stator Faults

Stator faults are usually insulation related, which might be inter-turn, phase-to-phase,

and phase-to-ground shorts. While the insulation is most susceptible to failure where

the end windings enter the stator slots, failures also occur at locations where the con-

ductors pass through the motor casing [5]. Manufacturing defects that include voids,

contamination, and penetration by foreign materials, such as oil or metal, frequently

cause failures in the electrical insulation of the machine. Damaging conditions are also

produced by the large electrical voltage stresses at conductor bends, electro-dynamic

forces produced by the winding current, thermal aging from multiple heating and

cooling cycles, and mechanical vibrations from internal and external sources. The de-

terioration of the insulation strength eventually leads to shorted or grounded stator

windings that give rise to zero and negative sequence currents.

b. Rotor Faults

Bar defects occur in squirrel-cage rotors. These defects come from two sources [5].

The first source is associated with high temperatures and large centrifugal forces
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developed during transient operations, such as startup. Defective casting (voids) or

poor end-ring joints formed during manufacturing are the second source. Once the

initial defect occurs, propagation of the fault is the result of multiple startups and load

fluctuations that produce high centrifugal forces. The condition is further accentuated

by the heating and cooling cycles of the rotor. Similar to stator windings, damage

in wound rotors generally occurs at the end regions. Mechanical defects produced by

high centrifugal stresses experienced by rotor components can lead to catastrophic

failures. These failures are accelerated if the cooling system contains impurities,

which encourage corrosion and degrade the mechanical strength of the rotor. Long

before unassisted disassembly occurs, the machine begins to exhibit some level of

mechanical imbalance. In many cases, this eccentricity of the rotor is amplified by

the unbalanced magnetic pull produced by the magnetic field of the machine. This

situation is compounded when the asymmetrical heating leads to thermal bending of

the rotor. Machines with small air-gaps are especially susceptible and the possibility

of contact between the rotor and the stator becomes real.

c. Bearing Faults

Over the past several decades, rolling-element bearings have been utilized in many

electric machines, while sleeve bearings are installed in only the larger machines. In

the case of induction motors, rolling-element bearings are widely used to provide

rotor supports. Bearing deterioration, which accounts for 30% to 50% of all machine

failures, is now one of the main causes of induction motor failures [2, 3, 4]. The causes

and classifications of bearing failures are discussed in Chapter II.
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d. Air-Gap Eccentricity

An induction motor can fail due to air-gap eccentricity, which can be caused by many

reasons. There are two types of air-gap eccentricities: static air-gap eccentricity and

dynamic air-gap eccentricity. In the case of static air-gap eccentricity, the position of

the minimal radial air-gap length is fixed in space. Static air-gap eccentricity can be

caused by the ovality of the core or by the incorrect positioning of the stator or rotor

at the commissioning stage. In the case of dynamic air-gap eccentricity, the center of

the rotor is not at the center of the rotation and the minimum air-gap rotates with

the rotor. It follows that dynamic eccentricity is time and space dependent, whereas

static eccentricity is only space dependent. Dynamic eccentricity can be caused by a

bent rotor shaft, wear of bearings, misalignment of bearings, mechanical resonances

at critical speed, and so on. Both types of eccentricities cause excessive stressing of

the motor and greatly increase bearing wear. In addition, the radial magnetic force

waves produced by eccentricity can also act on the stator core and subject the stator

windings to unnecessary and potentially harmful vibrations. It is also possible that

rotor-to-stator rub might occur, leading to damage of the core, windings, and the

rotor cage [6].

4. Fault Detection and Diagnosis Methods

Detection techniques consider one or more fault indicators of the observations. These

indicators are calculated from the measured data, which in some way represent the

state or behavior of the system. For fault detection, limits may be placed on some

of the indicators, and a fault is detected whenever one of the indicators is evaluated

to be outside its limits. The indicators of a fault detection scheme are mainly de-

rived from three approaches, data-driven, knowledge-based, and analytical methods.
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The data-driven indicators are derived directly from measurements. The analytical

approach uses mathematical models often constructed from physical principles, while

the knowledge-based approach uses qualitative models. The analytical approach is

applicable to information-rich systems, where satisfactory models and sufficient sen-

sors are available. Meanwhile, the knowledge-based approach is better applied to

information-poor systems, where few sensors or poor models are available [7].

a. Data-Driven Methods

Accurate and detailed models are difficult to develop for complex systems containing

a large number of inputs, outputs, and/or states. Thus, analytical methods cannot be

successfully applied to complex systems. In these situations, data-driven methods are

widely applied. Data-driven methods use the data collected during normal operating

conditions and during specific faults to develop the fault indicators for detecting and

diagnosing failures. Because these methods are data-driven, their effectiveness is

highly dependent on the quantity and quality of the measured data. While a large

amount of data might be available from many sensors, typically only a small portion

might be useful. One must determine with confidence that the useful fraction of the

data are not somehow corrupted and that no unknown faults occurred in the system

[8, 9, 10].

b. Knowledge-Based Methods

For establishing a knowledge base for fault detection and diagnosis, several approaches

have been described in the literature [11]. In general, specific rules are applied in order

to set up logical interactions between observed symptoms (effects) and unknown faults

(causes). The propagation from the actual fault appearance to observable symptoms

follows physical cause-effect relationships such that physical properties and variables
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are not only connected to each other quantitatively, but also as functions of time.

However, the underlying physical laws are usually not known in analytical form or are

too complicated for calculations. Rule-based expert systems are a general technique

for representing knowledge in usable forms, and are thus capable of using almost any

pre-specified observation feature for diagnosis [12]. Expert systems can be excellent

tools for capturing and utilizing knowledge that is not or cannot be captured by

traditional techniques, such as models. Expert systems generally work well when

a model is not known, or is too complex to develop. In some types of systems,

the symptoms used by the expert system are more successful in identifying a fault

compared to the model-based diagnosis. This is because some types of symptoms are

difficult to relate to a fault through a model, but may easily be related to a fault

through a simple rule. However, rule-based expert systems have several drawbacks

[13]. Most expert systems are fault specific and are only capable of diagnosing faults

that are represented in the knowledge base. In a complex system, it may not be

possible or practical to represent all possible faults. Moreover, although rules can

easily be added to the knowledge base, expert systems can be difficult to modify and

maintain in certain circumstances. This is because the knowledge base would require

extensive reworking following a system modification or sensor change.

c. Analytical Methods

Fault diagnosis can be achieved using a replication of hardware (e.g., computers, sen-

sors, actuators, and other components). In what is known as hardware or physical

redundancy, outputs from identical components are compared for consistency. Al-

ternatively, fault diagnosis can be achieved using analytical information about the

system being monitored. This is known as analytical or functional redundancy. In

contrast to hardware redundancy, in which measurements from different sensors are
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compared, in analytical redundancy sensory measurements are compared to analyt-

ically obtained values of the corresponding variable. This implies that the inherent

redundancy contained in the static and dynamic relationships among the system

inputs and outputs is exploited for fault diagnosis. Such computations exploit the

present and/or previous measurements of other variables and the mathematical model

of the system describing their relationships. The model can use the system input and

output data to estimate information about the system, including the output, state,

or internal parameters [14, 15].

d. Pattern Recognition

Many data-driven, knowledge-based, and analytical approaches incorporate pattern-

based techniques to some extent. Pattern-based methods generally consist of tem-

plates or patterns distinguishing acceptable and unacceptable operations. These are

then compared to the system observations to determine whether a fault has occurred.

Templates or patterns may be determined by performance specifications, by past

observations of faulty operations, by expert knowledge, or even from analysis or

simulation of a system model. Since pattern recognition approaches are based on

inductive reasoning through generalization from a set of stored or learned examples

of system process behaviors, these techniques are useful when data are abundant, and

expert knowledge is lacking [16]. The artificial neural network (NN) is a particularly

promising approach in pattern-based fault detection and diagnosis [6, 17, 18, 19].

e. Motor Condition Monitoring Sensors

While there have been numerous sensors proposed in the literature, such as temper-

ature, flux, etc., the most widely used induction motor fault detection sensors are of

mechanical and electrical origin [5].
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Mechanical monitoring of electric machines is accomplished through the use of

spectral signature analysis, which converts the measured vibration signal into fre-

quency components of constant bandwidth by using Fast Fourier Transform (FFT)

[5]. The idea is based on the concept that mechanical vibrations at various frequen-

cies are related to identifiable causes of anomalies in the machine and they can be

used to provide an indication of the condition of the machine. The vibrational energy

of the machine is measured in units of one of the three related quantities: displace-

ment, velocity, or acceleration. These measurements are accomplished using either

displacement probes, velocity transducers, or accelerometers. The appropriate device

depends upon the size of the machine and the frequency range of interest; however,

it is now common practice for displacement and velocity to be integrated from the

acceleration measurements.

While mechanical monitoring has been utilized for decades, most of the recent

research has been directed toward electrical monitoring techniques utilizing stator cur-

rents of the machine. On the surface, stator currents contain much less information

than the magnetic flux density, but are more readily accessible by non-invasive mea-

surement techniques. They have been selected as appropriate signals for processing,

together with the supply line voltages in this research. A large amount of research has

been directed toward using motor currents to sense stator insulation failures involving

turn-to-turn shorts, rotor faults involving air-gap eccentricity, and broken rotor bars.

Thermal monitoring of electric machines is accomplished by measuring either the

local or the bulk temperatures of the motor [5]. Local temperatures include those

measurements taken with embedded detectors located at hot spots within either the

stator core and windings or the motor bearings. While these measurements provide

temperature indications at known problem areas, there is still the question of whether

the hottest spot in the machine is being monitored. Bearing temperatures are often
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surveyed on a routine basis, like vibration levels. They provide a useful warning for

tribological problems. Winding temperature is very valuable for determining the limit

to which a motor can be loaded and for estimating the remnant life of the winding

insulation. Bulk temperatures include the measurements of cooling and lubrication

fluids such as the air flowing inside the machine casting and the bearing oil. They are

valuable for indicating motor cooling problems and for monitoring motor operation

beyond its rating. But, even these temperature measurements can miss isolated

problems in the machine.

5. Motor Current Signature Analysis and

Electrical Signal Analysis

Traditionally, motor condition has been monitored by measuring variables such as

noise, vibration, and temperature. But the implementation of such systems is ex-

pensive and they are generally installed only on the largest motors or most critical

applications where the cost of the monitoring system can be justified. In addition,

the environmental sensitivity of some sensors can cause mechanical monitoring tech-

niques to provide unreliable indications. Mechanical forms of sensing are also limited

in their ability to detect some electrical faults such as stator insulation faults. A solu-

tion to this problem can be the use of quantities that are already measured in a drive

system, or easily accessible in a system with or without drives, e.g., the machine’s

stator currents and voltages.

In the literature, two categories of fault detection schemes that use the motor

terminal signals are presented, Motor Current Signature Analysis (MCSA) and Elec-

trical Signal Analysis (ESA).

The Motor Current Signal Analysis (MCSA), which separates the monitored sig-

nal into individual frequency components, is commonly used to detect some induction
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machine mechanical faults. Most rotor faults affect either the air-gap permeance or

the magnetomotive force (MMF) that cause variations in the air-gap flux density.

These flux variations produce stator currents at frequencies related to the fault con-

dition. In MCSA, only motor stator currents are considered as the fault media. This

is acceptable in some special environment where the voltage inputs are clean and

mostly stationary. However in practical industrial environments, the voltage inputs

are highly non-stationary signals where rich harmonic information comes from the

supply and other devices, and may mask fault signatures abstracted using MCSA

techniques.

The ESA is based on the concept that air-gap flux density variations caused by

mechanical and electrical defects produce correlated changes in currents and voltages.

Therefore, stator voltages and currents are utilized for fault detection purposes. In

this research, both stator currents and voltages are used for motor bearing detection

purposes.

“Sensorless” means that only current and voltage measurements are used. Cur-

rent and voltage monitoring can be implemented inexpensively on any size machine

by utilizing the current transformers and potential transformers in the motor con-

trol/switch gear centers. Use of the existing current transformers and potential

transformers makes it feasible to monitor large numbers of motors remotely from

one location. Similarly, these measurements can be easily obtained when a drive

system is used to energize the motor.

B. Literature Review

In this research, detection of bearing faults in motors energized by power supply mains

and VSI type drives is investigated. The desired fault detection method should be
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independent of any physical motor parameters and must utilize only motor terminal

currents and voltages.

In the following sections, the literature for bearing fault detection in motors

energized by power supply mains and VSI type drives is reviewed.

1. Classification of the Bearing Faults

Depending on the location of the fault, bearing faults can be classified as ball fault,

inner race fault, outer race fault, and train fault. But, this classification does not

include all bearing faults. In [20], bearing faults are grouped into two categories:

single point defects and generalized roughness faults.

A single point defect is defined as a single, localized defect on an otherwise

relatedly undamaged bearing surface. A common example is a pit or a spall. A single

point defect produces one of the four characteristic fault frequencies depending on

which surface of the bearing contains the fault, the ball, the inner raceway, the outer

raceway, or the cage. These predictable frequency components typically appear in the

machine vibration spectrum and are often reflected into the stator current spectrum.

Despite its name, a bearing can possess multiple single point defects.

Generalized roughness is a type of fault where the condition of a bearing surface

degrades considerably over a large area and becomes rough, irregular, or deformed.

This damage may or may not be visible to the unaided eye. There is no localized defect

to be identified as the fault; rather, large areas of the bearing surfaces deteriorate.

A common example is the overall surface roughness produced by a contamination or

loss of lubricant. The effects produced by this type of fault are difficult to predict,

and there are no characteristic fault frequencies in the current or vibration spectra

associated with this type of fault [20].

There are many reasons that cause the general roughness fault in a bearing. Some
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of the more common fault sources include contamination of the lubricant, lack or loss

of lubricant, shaft currents, and misalignment. While these fault sources may also

produce single point defects, it is common that they produce unhealthy bearings that

do not contain single point defects. If one of these bearings is removed from service

prior to a catastrophic failure, a technician can easily recognize that a problem exists

within the bearing because it either spins roughly or with difficulty. However, upon

a visual examination, there is no single point defect, and the actual damage of the

bearing may or may not be visible to the unaided eye. For this kind of fault, it

is stated in [20] that the specific way in which these bearings fail is unpredictable.

Therefore, the effect the fault has on machine vibration and stator current spectra

is unpredictable. However, as the fault increases in severity, the magnitude of the

broadband machine vibration increases accordingly.

2. Bearing Fault Detection in Induction Motors

Energized by the Power Supply Mains

In the literature, most bearing fault detection techniques for induction motors are

intended for detecting single point defects. To detect such faults, vibration analysis

is widely used. In MCSA approaches, frequency analysis, time-frequency analysis,

and model based method are used for detecting single point defects. For bearing

generalized roughness faults, model based approaches are used.

a. Frequency Analysis

Single-point defects produce one of the four characteristic fault frequencies in machine

vibration spectrum depending on which bearing surface contains the fault. These

frequencies are listed below. More details can be found in [4, 20, 21, 22].
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Cage fault frequency:

FCF =
1

2
FR(1− BDcosβ

PD
), (1.2)

Outer raceway fault frequency:

FORF =
NB

2
FR(1− BDcosβ

PD
), (1.3)

Inner raceway fault frequency:

FIRF =
NB

2
FR(1 +

BDcosβ

PD
), (1.4)

Ball fault frequency:

FBF =
PD

2BD
FR(1− BD2cos2β

PD2
). (1.5)

Ball bearing dimensions are shown in Figure 1. In the above equations, BD is the ball

diameter; PD is the bearing pitch diameter; NB is the number of rolling elements; β

is the contact angle; and FR is the rotor frequency.

It has been shown that single point defects in damaged bearings cause air gap

variations. These variations generate stator current harmonics at the following fre-

quencies [21],

FBNG = |FE ±m · FV |, (1.6)

where FE is the supply fundamental frequency, FV is one of the characteristic vibra-

tion frequencies, and m = 1, 2, 3, . . . .

Equation (1.6) is the most often quoted model studying the influence of bear-

ing damage on the induction machine stator current. However in the literature,

researchers reported that it’s not easy to identify these bearing fault related frequen-

cies in the stator current spectra [23, 24]. Studies in [25] gave the following modified

version of equation (1.6),
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Fig. 1. Ball Bearing Dimensions.

Outer raceway fault frequency:

FBNG ORF = |FE ±m · FORF |, (1.7)

Inner raceway fault frequency:

FBNG IRF = |FE ± FR ±m · FIRF |, (1.8)

Ball fault frequency:

FBNG BF = |FE ± FCF ±m · FBF |. (1.9)

The main drawback of the bearing defect frequency identification method is that

calculation of a bearing defect frequency requires full knowledge of the bearing design

parameters. Usually such parameters are not available, except to bearing designers.

Moreover, it is difficult to identify the contact angle β because it is depended on the
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practical assembling.

b. Time-Frequency Analysis

Induction motor stator currents are known to be non-stationary and the Fast Fourier

Transformation is not suitable for such non-stationary signals [26]. In order to over-

come this problem, a time-frequency method is proposed in [26] and [27].

In [26], inner and outer race bearing defect frequencies are investigated. The

total number of balls and the fundamental electrical frequency are needed for the

calculation. The Short Time Fourier Transformation (STFT) is used to capture

time variation of the bearing defect frequencies. Bearing conditions are determined

statistically, by analyzing the bearing fault related spectrum and comparing it with

a baseline spectrum.

Compared to STFT, Wavelet Packet Decomposition (WPD) is known to provide

optimal combination of time and frequency resolution. This results in better diagnos-

tic performance. In [27], small ranges of bearing defect frequency bands are isolated

from the entire stator signature using WPD. The Root Mean Square (RMS) values

of the frequency bands are compared with a baseline value and the bearing condi-

tion is determined accordingly. The bearing defect frequency bands are associated

with single point defects. Hence, identifying a specific defect band requires bearing

dimensions and other bearing design parameters.

c. Model Based Method

A recurrent neural network model was used to detect single point defects in [6]. In

this method, quasi-stationary data segments in the terminal currents are grouped

together so that the non-stationarity of the signal can be avoided. Then, a neural

network model is used to predict the healthy system response.
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For bearing generalized roughness faults, Stack presented pioneer work using

mechanical vibration analysis [22]. He also used a stator current Auto-Regressive

(AR) model to detect generalized bearing faults [28]. In this paper, the current

fundamental frequency is removed before sampling the data, so that variations caused

by the supply voltage fundamental can be avoided. But, the problem is that the other

frequency components of the supply voltage are presented in the current spectrum

and they are time-varying. Moreover, in most experimental results shown in this

paper, the fault indicator drops down to the healthy level while bearings are already

damaged. This makes fault detection difficult.

3. Bearing Fault Detection in Induction Motors

Energized by Voltage Source Inverter (VSI)

Induction machine drives can be classified into two major categories, Voltage Source

Inverter (VSI) and Current Source Inverter (CSI). While CSI’s were originally the

choice for motor drives, they have pretty much been replaced by VSI’s for all but the

higher power levels where the controlled output current and reduced load harmonics

are desired [29]. VSI type drive is used in this research because it is commonly used

in industry.

Bearing fault detection in induction machines energized by VSI are rarely dis-

cussed in the literature. Only one method has been published in the open literature,

the Vienna Monitoring Method (VMM).

The VMM was proposed in an attempt to reduce the negative effects from in-

verter harmonics [30, 31, 32]. The VMM is a time domain, model based method. In

this method, the stator resistance is needed to model the stator flux and the rotor

position is needed to transform the current space phasor in the rotor fixed reference

frame. Two models are used in VMM, the voltage model and the current model. In
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case of an ideal symmetric motor, both models calculate the same torque. As a fault

occurs, the distribution of air gap flux is distorted and a deviation appears between

the torque values calculated from the two different models. The voltage model is able

to indicate the real (faulty) motor performance, while the current model represents

the healthy machine. The deviation of the torque is found to be approximately pro-

portional to load torque. Although the authors stated that this method can be used

to detect bearing faults, the paper does not provide suitable evidence to support the

claim. Moreover, in this method accurate knowledge of induction motor parameters

is needed, but such accuracy is usually not practically feasible in most applications.

Although very few papers discuss bearing fault detection of motors energized by

VSI drives, yet there exists literature on other kinds of motor faults, like stator shorts

and broken rotor bars.

Bellini and Filippetti used the torque and flux components of the current for the

detection of stator short circuit and broken rotor bar faults [33, 34]. They conclude

that the flux current is suitable for fault diagnosis purposes and the torque current is

not robust enough to be a diagnostic index. The reason is that the torque current is

strongly affected by load torque values and ripples.

Stator faults are also investigated in [35], where the discrete wavelet transform

is used on both the current and voltage, and in [36], where a neural network model

is used to estimate the reference signals.

In [37], a rotor cage defect machine model based on motor parameters is de-

veloped for rotor cage fault diagnosis under inverter fed conditions. It serves two

purposes: to determine the signature frequencies of a cage defect, and to generate the

training data for a neural network model. The NN model is used for the purpose of

fault classification.
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C. Research Objectives

From the previous sections, it can be seen that there is a strong motivation to develop

an improved and cost-effective fault detection method for induction motor bearing

faults. The objectives of this research are to

• Detect bearing faults when motors are energized by power supply mains and

VSI type drives,

• Detect bearing failures using only motor terminal voltage and current measure-

ments, i.e., in a sensorless manner, and,

• Develop an approach that is independent of physical motor parameters, so that

it can be applicable to various induction motors, independent of voltage and

power ratings, and manufacturers.

D. Proposed Approach

To develop a bearing fault detection scheme, bearing fault data are needed. Such data

can be generated in an offline manner. That is, to disassemble the bearing, damage it

separately, and then assemble the machine in order to collect damaged bearing data.

The act of disassembling, reassembling, remounting, and realigning the test motor

significantly alters the current and vibration characteristics of the machine, which is

one of the difficulties in collecting fault data for a bearing fault detection scheme.

In this research, in-situ bearing damage experiments are conducted so that the life

span of the bearing can be accelerated and the bearing fault detection scheme can be

developed and validated.

In both single defect and general roughness bearing faults, the damaged bear-

ing leads the radial motion between the stator and the rotor. This type of motion
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varies the air gap of the machine in a way which can be characterized as a modu-

lation relationship with fundamental frequency of the supply. Although this type of

modulation relationships exit in the healthy condition, they are changed by the dam-

aged bearing. In single point defect bearing faults, the fault related frequencies can

be detected according to the bearing geometry dimensions, while in the generalized

roughness bearing faults, the fault related frequencies are residing in wide frequency

bands and are not easily predictable. Moreover, the damaged bearing impedes the

rotor rotation and causes additional loading on the motor. Although the load itself is

small and ignorable, the load fluctuations imposed on the motor increase. This load

fluctuations are also modulated with the fundamental frequency of the supply.

Bearing faults can be captured in frequencies that are modulated with the fun-

damental frequency of the supply. This modulation relationship can be isolated using

the phase coupling between the bearing fault frequencies and the fundamental fre-

quency of the supply. An Amplitude Modulation Detector (AMD), developed from

estimates of the higher order spectrum, can correctly capture the phase coupling and

isolate the modulation relations. This approach is proposed in this research.

The system power supply plays a very important role in bearing fault detection.

Variations in the power supply definitely change the stator current spectrum and

mask bearing faults. To negate the effects of the power supply changes, bearing fault

indicators are developed using the combinations of the stator current AMD and the

voltage AMD.

E. Research Contributions

The main contribution of this research is the development and validation of a method

for the detection of bearing faults in induction motors. The method is characterized
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by the following attributes:

• It is applicable to motors energized by power supply mains and VSI type drives,

• It requires monitoring of the motor terminal currents and voltages only, and,

• Even though it is a model-based method, it does not make use of any physical

motor parameters, so that it is easily portable to induction motors of different

voltage, power ratings and to induction motors made by different manufacturers.

F. Organization of the Dissertation

It is expected that this research will provide a powerful general method for incipient

bearing fault detection in induction motors.

In Chapter II, an overview of bearing fault causes and effects are discussed. The

experimental test beds used in in-situ bearing damage are introduced. In Chapter III,

the higher order spectrum, the amplitude modulation detector, the system modulation

model and the bearing fault indicators developed in this research are summarized. In

Chapter IV, the experimental and the analysis results of the induction motor bearing

faults under different power supplies, load levels, VSI control schemes, and operating

condition are presented. In Chapter V, a summary of this dissertation, the conclusions

reached from this research, and the directions for future research are given.
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CHAPTER II

BEARING FAULTS AND DESCRIPTION OF EXPERIMENTAL SETUPS FOR

IN-SITU BEARING DAMAGE

A. Overview of Bearing Faults and Failures

Bearing problems are one of the main causes of induction motor failures, accounting

for 30% to 50% of all induction motor failures [2, 3, 4].

1. Causes of Motor Bearing Faults and Failures

Rolling element bearings generally consist of two rings, an inner and an outer, be-

tween which a set of balls or rollers rotate in raceways. Under normal operating

conditions of balanced load and good alignment, fatigue failure begins with small fis-

sures, located below the surfaces of the raceway and rolling elements. These fissures

gradually propagate to the surface, generating detectable vibrations and increasing

noise levels. Continued stresses cause fragments of the materials to break, producing

a localized fatigue phenomena known as flaking or spalling. Once started, the affected

area expands rapidly contaminating the lubrication and causing localized overloading

over the entire circumference of the raceway. Eventually, failure of the bearing results

in rough running. While this is the normal mode of failure in rolling element bear-

ings, there are many other conditions that reduce the time of bearing failure. These

external sources include contamination, corrosion, improper lubrication, improper

installation, or brinelling [21].

Contamination and corrosion frequently accelerate bearing failure because of the

harsh environment present in most industrial settings. Dirt and other foreign matter

that is commonly present often contaminate the bearing lubrication. The abrasive
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nature of these minute particles, whose hardness can vary from relatively soft to

diamond like, cause pitting and sanding actions that give way to measurable wear

of the balls and raceways. Bearing corrosion is produced by the presence of water,

acids, deteriorated lubrication, and even perspiration from careless handling during

installation. Once the chemical reaction has advanced sufficiently, particles are worn

off, resulting in the same abrasive action produced by bearing contamination [21].

When a bearing operates with the proper lubrication and at the right speed,

the balls or rollers lift off the raceway slightly and there is an oil film between the

rolling elements and the raceways. This film is called Elasto-Hydro-Dynamic (EHD)

film. This extremely thin film protects and lubricates the bearing while it is running.

Improper lubrication includes both under and over lubrication. In either case, the

rolling elements are not allowed to rotate on the designed oil film, causing increased

levels of heating. The excessive heating causes the grease to break down, which

reduces its ability to lubricate the bearing elements and accelerates the failure process.

Installation problems are often caused by improperly forcing the bearing onto

the shaft or in the housing. This produces physical damage in the form of brinelling

or false brinelling of the raceways, leading to premature failure. Misalignment of the

bearing is also a common result of defective bearing installation.

Brinelling is caused when the load applied to a ball bearing exceeds the elastic

limits of the steel and the raceways are permanently deformed. Brinelling creates

measurable dents at each ball location similar to the deformation caused by a Brinell

Hardness Tester. This type of damage can occur quite easily if proper care is not

taken. High energy impacts (from hammers and smash-ups), improper bearing han-

dling, and incorrect spindle assembly can all damage bearings. While this form of

damage is rare, a form of ‘false brinelling’ occurs more often.

False brinelling is not related to excessive loads. False brinelling is caused by
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ambient vibration. Even a brand new bearing, sealed in a box on a shelf, is subject

to false brinelling if it is exposed to environmental vibrations for an extended period.

When a bearing is not operating it is subject to false brinelling in the box or in the

machine. When a bearing is running, it is protected by the EHD film. When the

bearing is stopped there is no EHD film and there is metal to metal contact. That is

when false brinelling can quietly attack bearings. The combination of metal to metal

contact and vibration creates wear and corrosion patterns that mimic brinelling.

Bearing failures can be classified to single point defects and generalized roughness

faults. In both cases, fault related frequency components are modulated with the fun-

damental frequency in stator current. These modulation relationships are discussed

in the following sections.

2. Basis for Amplitude Modulation

A frequency domain representation of amplitude modulation is depicted in Figure 2,

where Fs is the baseband signal component and Fc is the carrier frequency. In this

illustration, a signal with frequency Fs and phase φs interacts with another signal at

Fc, φc to produce two new sideband components at Fc+Fs ,φc+φs and Fc−Fs, φc−φs.

Because the phases of the two sideband components are related to the phases of Fc

and Fs, this type of interaction is generally referred to as Quadratic Phase Coupling

(QPC).

A standard analytic tool for the detection of QPC is the bispectrum and its

normalized form, the bicoherence [22].

3. Amplitude Modulation Relationships in Bearing Faults

Single point defects begin as localized defects on the raceways or rolling elements.

As the rolling elements pass over these defect areas, small collisions occur producing
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Fig. 2. Basic Amplitude Modulation in the Frequency Domain.

mechanical vibration shockwaves. These shockwaves then excite the frequencies of

natural mechanical resonance in the machine. This process occurs every time a defect

collides with another part of the bearing, and its rate of occurrence is equal to one

of the previously defined characteristic fault frequencies, as shown in equations (1.2)

to (1.5). These characteristic fault frequencies are modulated with the mechanical

resonant frequencies (the carriers) [21, 27].

The relationship of the bearing vibration to the stator current spectrum can

be determined by considering that any air gap eccentricity produces anomalies in

the air gap flux density. Since ball bearings support the rotor, any bearing defect

will produce a radial motion between the rotor and the stator of the machine. The

mechanical displacement resulting from damaged bearings causes the air gap of the

machine to vary in a manner that can be described by a combination of rotating

eccentricities. These variations generate stator currents at predictable frequencies, as

shown in equation (1.6) [21]. Although equation (1.6) is improved further by [25], the

modulation relationship between the bearing fault characteristic frequencies and the

supply fundamental frequency always hold.

Bearing generalized roughness faults are common in industry, but they are often

neglected in the research literature. Many of the newer, more sophisticated condition
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monitoring techniques focus only on single point defects. This explains the discrep-

ancy between the large number of state-of-the-art techniques in the research literature

and their lack of use in industry [20].

Bearing generalized roughness faults do not excite any one of those characteristic

fault frequencies as in the case of single point defects. But, they alter the current

spectrum in ways that are similar to the spectrum of bearings with single point defects.

Bearings with generalized roughness exhibit radial motion between the stator and the

rotor. Like the single defect cases, this kind of motion varies the air gap of the machine

in a way which can be characterized as the modulation relationship with the supply

fundamental frequency. For bearings with single point defect, fault related frequencies

can be decided according to the bearing geometry dimensions, while for generalized

roughness bearings, fault related frequencies are located in wide frequency bands and

are not predictable.

Additionally, in both the single defect and generalized roughness bearing faults,

the damaged bearing impedes the rotor rotation and causes extra load to the motor.

Although the load itself is small and ignorable, the load fluctuation of the system is in-

creased. This kind of load fluctuation is also modulated with the supply fundamental

frequency, as indicated by equation (1.1).

4. Bearing Faults Caused by the In-situ Bearing Damage Experiments

In a practical environment, bearing single-point defects and general roughness defects

cannot be distinguished absolutely. When a bearing is damaged, most possibly these

two classes of faults occur at the same time. It is necessary to develop a method that

can deal with the combination of these two classes of faults.

As discussed in previous sections, bearing fault related frequencies are modulated

with the stator current fundamental frequency. No matter what the classification of
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the bearing fault is and what the real fault signature frequencies are, this amplitude

modulation relationship always exits. This is the basic idea of the proposed approach

in this research. Note that these fault frequency components are not only modulated

with the stator current fundamental frequency, they are also modulated with all other

harmonics in the supply voltage.

Using the proposed approach, bearing faults can be isolated without knowing

the exact fault signature frequencies. Hence, bearing physical dimensions and motor

parameters are not needed so that the proposed method is independent of the physical

motor parameters.

The proposed method is intended to detect both single point defects and gen-

eralized roughness bearing faults. But, bearing damaging experiments conducted in

this research usually damage bearings in a way that mainly results in generalized

roughness faults. When a bearing is slightly damaged by the shaft currents, there are

no obvious pits or roughness can be seen by the naked eyes on any surfaces of the

bearing. Large area roughness appears only after the bearing is heavily damaged. In

Figure 3, one of bearings damaged in this research by the shaft currents is shown.

Only large area roughness can be seen and there are no significant pits on the surfaces

of this bearing although it was damaged heavily. Because of this, the detection of

bearing single point defects is not fully demonstrated in this research.

B. Experimental Staging of Bearing Faults via Shaft Currents

1. Motivation for In-situ Bearing Damage Experiments

When experimental bearing fault data are collected for research purposes, the test

bearings are typically seeded with faults generated off-line, e.g., scratching, drilling,

or Electric Discharge Machining (EDM), and then placed in a test motor. The act of
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Fig. 3. A Bearing Damaged by a Generalized Roughness Fault.
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disassembling, reassembling, remounting, and realigning the test motor significantly

alters the current and vibration characteristics of the machine. This biases the exper-

imental data, rendering them invalid for use in many bearing condition monitoring

schemes. The drastic variations in machine vibration and stator current can result

simply from the act of removing and reinstalling the same bearing [38]. In a research

setting, these variations will appear every time test bearings are interchanged. This

can potentially conceal fault signatures, contribute to misleading results, or add diffi-

culty and confusion to the process of evaluating certain bearing condition monitoring

schemes. Therefore, there is a definite need for a method that facilitates an online,

in-situ failure process to effectively evaluate these condition monitoring methods and

conduct bearing failure research.

2. Bearing Faults Generated by Shaft Currents

The tendency for shaft currents to cause bearing failures in actual installations has

been studied by many scholars [38, 39, 40]. Studies indicate that there are several

mechanisms by which bearings are damaged by shaft currents. However, the most

common and most destructive is EDM. For EDM damage to occur, the rolling ele-

ments must be separated from the raceways by a thin film of lubricant. This film

of lubricant serves as a dielectric and allows the bearing to behave as a capacitor.

When the voltage across the bearing exceeds the dielectric strength of the grease,

EDM occurs and pits are etched on the raceways and rolling elements.

Research indicates that a healthy bearing will possess a film of lubrication rang-

ing from 0.2 to 2.0 µm thick at normal operating speeds. Given this thickness of

lubrication, EDM currents can be caused by the 60 Hz shaft voltages with magni-

tudes as low as 0.2 to 2 V [41]. Another study suggests that it is not the magnitude

of the EDM current, but rather the current density within the bearing that directly
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determines the rate of failure [40]. The purpose of this research is not to explore and

explain the mechanisms by which shaft currents cause bearing failures. This research

uses shaft currents as means for experimentally generating online bearing faults.

3. Experimental Setups for In-situ Bearing Damage

a. Induction Motors and Loads Utilized

In this research, 3HP, 3 Phase, 230V induction motors, manufactured by Marathon

Electric Company, are tested. A Delta VFD-B voltage source inverter (VSI) is used.

Two test beds, one loaded by a synchronous generator, the other loaded by a gearbox,

are used for different experimental purposes.

In the first test bed, a synchronous generator is used to load the induction motor.

Figure 4 shows a photograph a schematic diagram of this test bed. The synchronous

generator of this research is obtained by modifying a Delco Remy CS-130 Lundell

automotive alternator. In order to utilize a general synchronous generator, the voltage

regulator and the three phase rectifier are removed from this alternator [42]. A field

excitation DC current fed to the rotor coil is provided by an external power supply.

An Agilent HP E3631A power supply is chosen due to its availability in the laboratory.

In addition, the power supply is powered by a single phase, 120V power line from

a power outlet, while the in-situ bearing damage circuit uses separate power lines.

Therefore, the high bearing damage current does not affect the proper operation of

the power supply.

The generator used produces three phase AC voltage and the output power is

consumed by a bank of three resistors. The electrical load consists of three OHMITE

D225-ND power resistors, a piece of wooden plate, and low resistivity stranded 8AWG

wires. Each of the power resistors has 225W power rating and 5Ω resistance. Hence,
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Fig. 4. Experimental Setup of the Motor-Generator Test-bed.
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the maximum current that the power resistor can carry is about 6.7A. The required

power rating is initially estimated based on the test results of the alternator. The

resistors are mounted on the wooden plate, which also serves as a heat insulator. The

resistors are wired to form a delta winding. The three terminal connections of the

delta winding are connected to the three armature terminals.

In the second test bed, the induction motor is loaded by a gearbox, which is

shown in Figure 5. This test bed is used to test the proposed bearing fault detection

scheme using the VSI under speed feedback control. In this test bed, the Delta VFD-

B VSI is set to V/Hz closed-loop control mode. An ACCU 260 encoder is used to

close the speed feedback loop. This encoder cannot be placed on the first test bed

because of limitation on the generator shaft length. On the other hand, the gearbox

cannot endure long running time; therefore, different experimental procedures are

used in closed loop tests, which are presented in Chapter IV.

The easy availability of the induction motor, the gearbox, the alternator, and

their internal replacement components in the market, the small size, and the suitable

output power rating are some of the main reasons for the experimental setup choices.

b. Sensors and Data Acquisition System

Induction motor line voltages and line currents are measured by LAH 25-NP current

transducers and LV 25-P potential transducers, respectively. A PIEZOTRONICS

three axis shear accelerometer is used for motor vibration sensing. This accelerometer

is capable of measuring ±50 G, peak gravitational acceleration, with the sensitivity

of 100mV/G from 0.2Hz up to 5000Hz. It is mounted on the top of the induction

motor bearing that is damaged during the experiment.

The data acquisition hardware consists of a National Instruments (NI) PCI-

6070E DAQ card, a NI SCXI-1531 8 channel accelerometer input module, a NI
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Fig. 5. Experimental Setup of the Motor-Gearbox Test-bed.
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SCXI-1141 8 channel low pass filter module, and a SCXI-1305 AC/DC coupling BNC

terminal block. The DAQ card has the capability of sampling 16 channel analog

inputs with 12 bit hardware and 16 bit software resolution. The sampling mode is

set to be multiplexed. The accelerometer input module has a built-in 4-pole Bessel

low pass filter, whose bandwidth is set to 5000 Hz, the same as the bandwidth of

the accelerometer. The SCXI-1141 low pass filter module has a built-in 8th order

elliptical filter whose cutoff frequency is automatically set by the DAQ card. Low

pass filtering is required to avoid aliasing. The BNC terminal block is plugged into

the NI SCXI 1141 module.

A Virtual Instrument (VI) program that runs under the NI LabView ver. 6.1.4

saves the nine channels (three voltages, three currents and three axis vibration signals)

of the experimental measurements into data files. The sampling rate, the number of

sampled points, can be varied according to the needs of the experiments.

c. Experimental Setup for Shaft Current Injection

The test motor has a type 6203 fan-side bearing and a type 6205 load-side bearing.

In the experimental method used in this research, a new 6205 bearing is placed in the

test motor and AC currents are injected into the motor shaft to damage this bearing.

The shaft current setup is depicted in Figure 4. In this setup, an external voltage

source is applied to the motor shaft via a carbon brush. This causes a current to

flow from the shaft through the load-side bearing. Two power resistors are placed in

series with the voltage source to limit the shaft current. The 6203 fan-side bearing is

a hybrid ceramic bearing, which is electrically insulated from the stator so that the

shaft current is forced to flow from the shaft through the load-side test bearing to

reach the stator frame.

The source providing the shaft voltage is a single-phase, variable transformer
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supplied by 120V 60Hz utility power. This frequency and voltage level are chosen

because of convenience and availability.

The magnitude of the shaft current applied to the test motor remains constant

for a given experiment. The injected current values can be chosen between 0 to 14A,

the maximum allowable current for the current injecting circuit. The shaft current

produce voltage drops across the bearing and the brush, ranging from 0 to 3V at

the time of injection. When the bearing is close to severe failure, it is observed that

this voltage value increases with the degradation of the bearing since the grease film

thickness decreases after the occurrence of the EDM. To damage the bearing, this

voltage value should be larger than 1.8V in this experimental setup.

The severity of bearing failure is not affected by the magnitude of the shaft

current. This observation agrees with the assertions made in [38]. However, the

magnitude of the shaft current was found to have some relationship with the failure

time of the bearing, which is different than the assertions made in [38].

In industry, two types of greases are used for bearing lubrication. One is the

high resistivity mineral oil greases (in MΩ resistance). These types of greases act

as capacitances and produce EDM currents and arcing or fritting on discharge. The

other is the low resistivity lithium greases. These kinds of greases act as resistances.

Currents of 189 mA will cause these kinds of greases to decompose into lithium

iron oxide, leading to increased wear and bearing failure [40]. In this research, high

resistivity grease is used since the goal of conducted experiments is to accelerate the

bearing damage and EDM is reported by other researchers as a good tool for this

purpose.

Using this method, the amount of time it takes for a bearing to fail is variable

and depends on many factors. The first factor is the magnitude of the shaft current.

Another significant factor is the type and amount of grease in the bearing. Using the
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shaft current method, as stated in [38], the average failure time for a new bearing

with the factory fill of grease is approximately 2-3 weeks. In order to further reduce

the amount of time required to reach failure, some of the grease is removed from each

test bearing, before it is installed in the test motor. To accomplish this, each bearing

is soaked in a degreasing solution to remove all of the grease. Later, the bearing is

repacked with a known amount of grease that was removed from the bearing initially.

The factory fill of grease varies widely depending on manufacturer, bearing size, and

type of grease. Nevertheless, a typical factory fill was observed to be approximately

20%-40% by volume. The test bearings are repacked with an approximate fill of 3%-

5% by volume. By carefully controlling the amount of grease in the bearing and the

magnitude of the shaft current, the average failure time could be reduced to anywhere

from 8 to 30 hours.

In this research, the bearing reaches in-situ failure without interrupting the oper-

ation of the motor. This experimental method produce artificially accelerated bearing

faults, and it provides bearing fault data that are more representative of measurements

obtained from an actual installation compared to data from off-line bearing faults.

Since the time required for the bearing to fail is significantly less than the bearing’s

expected natural life, the failure process of many bearings can be documented and

studied. Throughout the failure process, the stator voltages, currents, and machine

vibration are sampled. The data can then be used to evaluate the performance of

any bearing condition monitoring scheme.

C. Chapter Summary

In this chapter, causes of the bearing faults and failures are explained. Amplitude

modulation relationships of bearing single point defects and general roughness faults
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are discussed. The in-situ bearing damage experimental setups are described.
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CHAPTER III

PROPOSED BEARING FAULT DETECTION METHOD

A. Overview of the Higher Order Spectrum

One of the most fundamental and useful tools in digital signal processing has been

the estimation of the power spectra density (PSD) of discrete-time deterministic and

stochastic processes. The available power spectrum estimation techniques may be

considered in a number of separate classes, namely, conventional (or ”Fourier type”)

methods, maximum-likelihood method of Capon with its modifications, maximum-

entropy and minimum-cross-entropy methods, minimum energy, methods based on

autoregressive (AR), moving average (MA) and ARMA models, and harmonic de-

composition methods such as Prony, Pisarenko, MUSIC, and Singular Value Decom-

position. Research in this area has also led to signal modeling, and to extensions to

multi-dimensional, multi-channel, and array processing problems. Each one of the

aforementioned techniques has certain advantages, and limitations not only in terms

of estimation performance, but also in terms of computational complexity. Therefore,

depending on the signal environment, one has to choose the most appropriate method

[43].

In power spectrum estimation, the process under consideration is treated as a su-

perposition of statistically uncorrelated harmonic components and the distribution of

power among these frequency components is then estimated. Only linear mechanisms

governing the process are investigated because phase relationships between frequency

components are suppressed. The information contained in the power spectrum is es-

sentially present in the autocorrelation sequence. This is sufficient for the complete

statistical description of a Gaussian process of known mean. However, there are prac-
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tical situations where one must look beyond the power spectrum (autocorre1ation)

to obtain information regarding deviations from Gaussianness and presence of non-

linearities in the system that generates the signals. Higher order spectra (also known

as polyspectra), defined in terms of higher order cumulants of the process, do contain

such information [43]. Particular cases of higher order spectra are the third-order

spectrum also called the bispectrum which is, by definition, the Fourier transform

of the third-order cumulant sequence, and the trispectrum (fourth-order spectrum),

which is the Fourier transform of the fourth-order cumulant sequence of a stationary

random process. The power spectrum is, in fact, a member of the class of higher

order spectra, i.e., it is the second-order spectrum.

1. Motivation for Using Higher Order Spectra in Fault Detection

The general motivation behind the use of higher order spectra in signal processing

is threefold: 1) to extract information due to deviations from Gaussianness, 2) to

estimate the phase of non-Gaussian parametric signals, and 3) to detect and char-

acterize the nonlinear properties of mechanisms that generate time-series via phase

relationships of their harmonic components [43].

In this research, the motivation for using higher order spectra is based on the fact

that the nonlinear properties of mechanisms can be characterized via phase relation-

ships of their harmonic components. Using the phase relation information between

harmonic components, some motor faults can be detected.

In this research, the amplitude modulation detector is developed from the concept

of the bispectrum. In the following section, the bispectrum estimation is reviewed.
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2. Bispectrum Estimation

Bispectrum is one of the polyspectra, which is widely used in identifying the phase

relationships between harmonic components.

Let x(n) be a stationary, discrete, zero-mean random process. In this case, its

third order cumulant sequence c(τ1, τ2) will be identical to its third moment sequence

(see equation (A.4) in Appendix (A)). Thus,

c(τ1, τ2) = E[x(n)x(n + τ1)x(n + τ2)], (3.1)

where E[.] denotes the expectation. The bispectrum is defined as (see equation (A.6)

in Appendix (A)),

B(ω1, ω2) =
∞∑

τ1=−∞

∞∑
τ2=−∞

c(τ1, τ2) exp[−j(ω1τ1 + ω2τ2)]. (3.2)

When a finite set of observation measurements is given, two chief approaches

have been used to estimate the bispectrum, namely, the conventional (’Fourier type’)

and the parametric approach, which is based on autoregressive (AR), moving average

(MA), and ARMA models [43].

In the proposed method, phase relationships between harmonic components are

desired. The advantage of using the conventional approach to bispectrum estimation

is its ability to provide good estimates of the phase coupling at harmonically related

frequency pairs [43]. Therefore, the conventional estimation approach is used in this

research.

The conventional bispectrum estimation method can be classified into the fol-

lowing two classes [43]:

1) Indirect class of techniques, which are approximations of the definition of the
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bispectrum given by,

R(m, l) = E[x(n)x(n + m)x(n + l)], (3.3)

B(ω1, ω2) =
∞∑

m=−∞

∞∑
n=−∞

R(m, l) exp[−j(ω1m + ω2l)]. (3.4)

where R(m, l) denotes the third moment sequence of x(n).

2) Direct class of techniques, which approximate an equivalent definition of the

bispectrum described by,

B(k1, k2) = E[X(k1)X(k2)X
∗(k1 + k2)]. (3.5)

where X(k) is the DFT of x(n).

B. Amplitude Modulation Detector

1. From Bispectrum to Amplitude Modulation Detector (AMD)

The bispectrum estimator searches only for the presence of a summation frequency,

which can be seen clearly from equation (3.5). However, bearing fault signature

frequencies and the supply fundamental frequency are modulated as |fe±mfv|. This

modulation relationship not only contains a summation relationship, but also contains

a subtraction relationship. Assume two biased signals as follows,

x1(n) = A + cos(2π60n + φ1) (3.6)

x2(n) = B + cos(2π20n + φ2) (3.7)



44

where, φ1 and φ2 are arbitrary phase angles. The multiplication result of these two

signals is,

x(n) = x1(n)x2(n)

= AB + B cos(2π60n + φ1) + A cos(2π20n + φ2)

+ cos(2π60n + φ1) cos(2π20n + φ2)

= AB + B cos(2π60n + φ1) + A cos(2π20n + φ2)

+
1

2
cos(2π80n + φ1 + φ2) +

1

2
cos(2π40n + φ1 − φ2). (3.8)

In this signal, the 20Hz and 60Hz components are modulated with each other.

This modulation relationship can be detected using the phase coupling property.

However, the bispectrum not only correctly identifies that the 80Hz is produced by

the 20Hz and 60Hz components, but it also incorrectly suggests that the 20Hz and the

40Hz components are interacting to generate the 60Hz component (i.e., 60 = 20+40),

shown in Figure 6(a). This makes the bispectrum less useful in finding the amplitude

modulation relationship.

In order to correctly identify the modulation relationship between frequency com-

ponents, a modified bispectrum detector, used by Stack in vibration analysis [22], is

utilized. This Amplitude Modulation Detector (AMD) is defined as follows,

̂AMD(k1, k2) = E[X(k1 + k2)X(k1 − k2)X
∗(k1)X

∗(k1)]. (3.9)

Figure 6(b) shows the result for the example above using the AMD. By consid-

ering both sidebands created by amplitude modulation, AMD is more appropriate in

finding the amplitude modulation components.

The amplitude modulation contains the plus and minus relationships. The above

example shows the difference between the bispectrum and AMD estimators. In the
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Fig. 6. (a)Incorrect Detection of the Amplitude Modulation Relationship Using Bis-

pectrum; (b)Correct Detection of the Amplitude Modulation Relationship Us-

ing the AMD.
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bispectrum estimator, only one of the two sidebands, the plus relationship is consid-

ered, while in the AMD estimator, both plus and minus relationships are considered.

This makes the AMD a more effective amplitude modulation estimator.

Most importantly, in the bispectrum calculation, the career frequency, the mod-

ulated frequencies, and resulting sidebands are all used, while in AMD calculation,

only the career frequency and resulting sidebands are needed. In this research, tools

are desired to isolate spatial harmonics that are modulated by the fundamental fre-

quency of the supply. In power systems, the fundamental frequency of the supply is

not biased. Hence, in the signal spectrum, only the fundamental frequency and the

sidebands appear, and the spatial harmonics that are modulated with the fundamen-

tal frequency do not show up actually. In these types of applications, the bispectrum

estimator cannot be used because the information of the spatial harmonics are not

available.

All in all, AMD is more suitable to detect the amplitude modulation relationships

encountered in this application than the bispectrum.

2. Development of the Amplitude Modulation Detector

To implement the Amplitude Modulation Detector estimation in computers, two im-

portant issues need to be addressed. One is the frequency resolution, the other is the

expectation procedure.

a. One Dimensional Amplitude Modulation Detector

The AMD spectrum is a two dimensional matrix. The frequency resolution of AMD

can be calculated by ∆ = fs

N
[43], where fs is the sampling rate and N is the sample

numbers. A good frequency resolution will lead to a rather huge AMD matrix, which

cannot be implemented easily using computers.
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In this research, we are interested only in the frequency components that are

modulated with some specified frequency; for example, the supply fundamental fre-

quency. Therefore, it is possible to use only one dimensional AMD estimation. That

is to only calculate AMD spectra that are modulated with the supply fundamental

frequency.

b. Expectation on AMD to Distinguish Fault Signature Frequencies

The Amplitude Modulation Detector works as the phase coupling detector. If fre-

quency components have phases that are coupled with each other, AMD components

calculated will have zero phases and peaks will be exhibited at those frequencies

indicating this phase relationship. To illustrate this, let’s expand equation (3.9) as,

E[|X(k1+k2)|ej 6 (k1+k2)|X(k1−k2)|ej 6 (k1−k2)|X∗(k1)|e−j 6 (k1)|X∗(k1)|e−j 6 (k1)]. (3.10)

After grouping magnitude and phase terms together, we get,

E[|X(k1 + k2)||X(k1 − k2)||X∗(k1)||X∗(k1)|ej( 6 (k1+k2)+ 6 (k1−k2)−6 (k1)−6 (k1))]. (3.11)

If there is phase coupling between the frequency components k1 and k2, then

6 (k1 + k2) = 6 (k1) + 6 (k2), (3.12)

6 (k1 − k2) = 6 (k1)− 6 (k2). (3.13)

By substituting equations (3.12) and (3.13) into equation (3.11), we see that the

phase part of equation (3.11) equals zero. Equation (3.11) will equal the expected

value of the product of the magnitudes. Therefore, if significant frequency components

exist at k1, k1 + k2 and k1 − k2, the detector will exhibit a peak at AMD(k1, k2),

indicating that frequencies k1 and k2 are modulated components.
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On the other hand, if there is no phase coupling between the frequency com-

ponents k1 and k2, equations (3.12) and (3.13) are not valid and AMD components

calculated will have random phases from sample to sample. The expectation opera-

tion will then cause these AMD components to approach zero after a sufficient number

of samples are averaged together. Therefore, the AMD spectrum will not exhibit a

peak at AMD(k1, k2) in the absence of phase coupling.

C. Effect of Power Supply

1. Power Supply Mains

For induction motors, stator voltages can be considered as the system input, while

stator currents can be considered as the system output. As the system input, the

stator voltage affects the stator current heavily, especially in the practical industrial

environment where ‘clean’ power input is usually not available. Because of this,

fault signature in stator current spectrum may be masked by frequency components

originating from the stator voltage.

In the laboratory environment, clean power input can be provided using big trans-

formers. However, in most practical industrial environments where the power supply

system is not big enough compared with the rated power of machines, motor input

voltages are affected by other equipment under the same power supply. Noise related

harmonics produced in that equipment are interacting with motor input voltages and

affect the stator currents in an unpredictable way.

One experiment was conducted to illustrate effects of noise related harmonics in

motor voltages. In this experiment, the motor is in healthy condition with 0% load.

Data are collected every minute.

The voltage Root Mean Square (RMS), the voltage imbalance, the voltage Total
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Harmonic Distortion (THD), and the voltage Signal to Noise Ratio (SNR) are calcu-

lated for the data collected (see Appendix (B)). Table II lists test results for the first

ten data sets. The experimental results show that the voltage RMS, imbalance, and

THD values do not change much. But, the SNR changes more than 300%.

Table II. Motor Input Voltage Variables, Averaging Three Line Voltages

Data Sets RMS
Imbalance THD SNR

(10−3) (10−2) (102)

1 3.611319 3.724 2.7888 5.596

2 3.610595 3.661 2.7753 5.605

3 3.612443 4.033 2.7867 4.423

4 3.612354 4.076 2.784 3.045

5 3.615914 4.172 2.7219 5.488

6 3.612687 4.048 2.782 5.219

7 3.610440 4.167 2.7599 3.715

8 3.611955 4.114 2.7715 1.553

9 3.610664 4.099 2.7761 1.313

10 3.611990 4.130 2.7658 2.026

In Figure 7, two voltage spectra, calculated from data 1 and 4 in Table II are

shown. In these two voltage spectra, although differences in the integer harmonics

are small, differences in the inter-harmonics are rather big. Corresponding current

spectra are shown in Figure 8. It is obvious that the entire current noise level in data

set 1 is lower than that in data set 4. It is reasonable to conclude that differences

between two current spectra come from differences between two voltage spectra.

Bearing faults alter stator current inter-harmonics. If the effect of the voltage is
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not removed, changes in the current spectrum caused by the voltage input may mask

the fault information. This will be shown in the next chapter.

Fig. 7. Voltage Spectrum Comparison.

2. Voltage Source Inverter

a. Overview of Voltage Source Inverters

Voltage source inverters allow a variable frequency supply to be obtained from a dc

supply. Figure 9 shows a VSI employing transistors. Any other self-commutated

device can be used instead of a transistor. Generally, MOSFET is used in low volt-

age and low power inverters. IGBT (Insulated Gate Bipolar Transistor) and power

transistors are used up to medium power levels. GTO (Gate Turn Off Thyristor) and

IGCT (Insulated Gate Commutated Thyristor) are used for high power levels [44].

VSIs can be operated as a stepped wave inverter or a pulse width modulated
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Fig. 8. Current Spectrum Comparison.

(PWM) inverter. When operated as a stepped wave inverter, transistors are switched

in the sequence of their numbers with a time difference of T/6 and each transistor

is kept on for the duration T/2, where T is the time period of one cycle. Frequency

of inverter operation is varied by varying T and the output voltage of the inverter is

varied by varying DC input voltage. When supply is DC, variable DC input voltage is

obtained by connecting a chopper between DC supply and the inverter. When supply

is AC, variable DC input voltage is obtained by connecting a controlled rectifier be-

tween AC supply and the inverter. A large electrolytic filter capacitor C is connected

in the DC link to make inverter operation independent of the rectifier or chopper and

to filter out harmonics in DC link voltage [44].

The main drawback of stepped wave inverter is the large harmonics of low fre-

quency in the output voltage. When inverter is operated as a PWM inverter, har-
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monics are reduced, low frequency harmonics are eliminated, associated losses are

reduced, and smooth motion is obtained at low speeds. Figure 10 shows output volt-

age waveform for sinusoidal PWM. This voltage waveform is not pure sinusoidal, but

a combination of square waves. Since output voltage can be controlled by PWM,

no arrangement is required for the variation of input DC voltage [44]. Hence, the

inverter can be directly connected when the supply is DC or through a diode rectifier

when the supply is AC, as shown in Figure 9. In this research, a PWM inverter is

used.

Fig. 9. VSI Controlled Induction Motor Drive.

b. Constant V/Hz Control for Induction Motors

For induction motor fault detection, inverter control schemes need to be investigated.

Several control schemes are used in PWM voltage source inverters, the V/Hz control,
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Fig. 10. Voltage PWM Wave Forms.

the Field Orientation Control (FOC), and the Direct Torque Control (DTC). The

V/Hz control is used in this research because of its wide applicability in industry.

Assume the voltage applied to a three phase AC induction motor is sinusoidal

v(t) = VMsin(ωt), and neglect the voltage drop across the stator resistor. The flux φ

in the core of the induction motor can be found from Faraday’s Law [45],

v(t) = −N
dφ

dt
, (3.14)

φ(t) =
1

N

∫
v(t)dt

=
1

N

∫
VM sin(ωt)dt

= − VM

ωN
cos(ωt)

= − VM

2πfN
cos(ωt), (3.15)

where N is the number of winding, VM is the voltage magnitude and f is the frequency.

Induction motors are normally designed to operate near the saturation point on

their magnetization curves, so the increase in flux due to a decrease in frequency

will cause excessive magnetization currents to flow in the motor. To avoid excessive
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magnetization currents, it is customary to decrease the applied stator voltage in direct

proportion to the decrease in frequency whenever the frequency falls below the rated

frequency of the motor.

From equation (3.15), it follows that if the ratio V/f remains constant with the

change of f , then the flux remains constant too and the torque is independent of

the supply frequency. In actual implementation, the ratio between the magnitude

and frequency of the stator voltage is usually based on the rated values of these

variables or motor ratings. However, when the frequency and, hence, the voltage are

low, the voltage drop across the stator resistance cannot be neglected and must be

compensated. At frequencies higher than the rated value, the constant V/Hz principle

has to be violated in order to avoid insulation breakdown. The stator voltage must

not exceed its rated value. This principle is illustrated in Figure 11.

Fig. 11. Voltage versus Frequency under the Constant V/Hz Principle.

Since the stator flux is maintained constant, independent of the change in supply

frequency, the torque developed depends on the slip speed [46]. So, by regulating the

slip speed, the torque and speed of an AC induction motor can be controlled with

the constant V/Hz principle.
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Both open-loop and closed-loop control of the speed of an AC induction motor

can be implemented based on the constant V/Hz principle. Open-loop speed control

is used when accuracy in speed response is not a concern such as in HVAC (Heating,

Ventilation, and Air Conditioning), fan, or blower applications. In this case, the sup-

ply frequency is determined based on the desired speed and the assumption that the

motor will roughly follow its synchronous speed. Figure 12 shows how the frequency

f and the output voltage V of the inverter are proportionately adjusted with the

speed reference. The speed reference signal is normally passed through a filter that

only allows a gradual change in the frequency f [46].

Fig. 12. Open-loop Constant V/Hz Controller.

When accuracy in speed response is a concern, closed-loop speed control can be

implemented with the constant V/Hz principle through regulation of slip speed, as

illustrated in Figure 13. In this scheme, the slip limiter is used so that the motor

is allowed to follow the change in the supply frequency without exceeding the rotor

current and torque limits. The motor speed is sensed and added to a limited speed

error (or limited slip speed) to obtain the frequency.
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Fig. 13. Closed-loop Constant V/Hz Controller.

c. Motor Bearing Fault Detection under VSI Operation

Voltage source inverters are widely used in industry. When the motor is driven by

a voltage source inverter, the motor input voltages are isolated from outside devices

since most noise outside of the system usually can not pass through the DC line in

the inverter, as shown in Figure 9. Hence, input voltage variations from supply mains

do not affect stator currents in motors energized by VSI. However, fault detection of

induction motors energized by VSI faces two problems,

• The symptoms of internal faults of induction motors may be masked by the

control of the drive system.

• Harmonics from the inverter are much richer than that from power supply mains.

This makes the fault detection difficult.

The control of the drive system affects the bearing fault detection in two aspects.

One is the control scheme itself, the other is the speed feedback loop.
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For voltage source inverters, controlled variables are finally utilized to adjust

the voltage fundament frequency supplied by the VSI. In the proposed method, the

current fundamental frequency, which comes from the voltage supplied by the VSI, is

used for the AMD estimation. This fundamental frequency is adjusted according to

the inverter speed set point and the speed feedback loop. For motors working in the

steady state operation condition, the fundamental frequency does not change so that

the VSI control schemes do not affect the bearing fault detection.

The bandwidth of the speed feedback loop usually is a degree of freedom set

by the user. Extra frequency components may be introduced into current spectra

because of the speed feedback loop. These frequency components are unpredictable.

The closed-loop experiment conducted in this research show that the bearing fault

signatures are not masked by the VSI speed feedback control.

The biggest problem in motor bearing fault detection using VSI is the rich har-

monics. The VSI outputs are not pure sinusoidal, as shown in Figure 10. Inverters

switching on and off produces large inter-harmonics in the voltage spectra. These

inter-harmonics are injected into current spectra, which causes problems when trying

to detect motor bearing faults.

The motor stator voltage and current spectra are shown in Figures 14 and 15.

Also in these two figures, narrow frequency band spectra are shown so that inter-

harmonics can be seen clearly. Because of these big inter-harmonics, motor bearing

fault signatures may be masked. This is the main reason that very few papers have

been published in the VSI driven motor fault detection area.
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Fig. 14. Top: VSI Driven Voltage Spectrum; Bottom: Narrow Frequency Band of the

Voltage Spectrum.
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Fig. 15. Top: VSI Driven Current Spectrum; Bottom: Narrow Frequency Band of the

Current Spectrum.
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D. Electrical AMD Indicators

1. Modulation Model

General induction motor voltage equations in terms of machine variables can be ex-

pressed as,

vabcs = rsiabcs + pλabcs, (3.16)

vabcr = rriabcr + pλabcr. (3.17)

where p is the derivative calculator; the s subscript denotes variables and parame-

ters associated with the stator circuits, and the r subscript denotes variables and

parameters associated with the rotor circuits; and,

(fabcs)
T =

[
fas fbs fcs

]
,

(fabcr)
T =

[
far fbr fcr

]
.

For a magnetically linear system, the flux linkages may be expressed, λabcs

λabcr

 =

 Ls Lsr(θm(t))

LT
sr(θm(t)) Lr


 iabcs

iabcr

 , (3.18)

where θm(t) is the mechanical rotating angle of the rotor. The winding inductances,

Ls, Lr and Lsr(θm(t)) are complex functions of angular rotor positions and other

machine design parameters. They are given in [47].

For a squirrel cage induction motor, vabcr = 0. Substituting equation (3.18) into

equations (3.16) and (3.17), we get,

vabcs = rsiabcs + Ls(piabcs) + (pLsr(θm(t)))iabcr + Lsr(θm(t))(piabcr), (3.19)

0 = rriabcr + (pLT
sr(θm(t)))iabcs + LT

sr(θm(t))(piabcs) + Lr(piabcr). (3.20)
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At steady state, equations (3.19) and (3.20) can be expressed in the time phasor

form as follows,

Ṽs(t) = (rs + jωsLs)Ĩs(t) + (jωsLsr(θm(t)))Ĩr(t), (3.21)

0 = jωrL
T
sr(θm(t))Ĩs(t) + (rr + jωrLr)Ĩr(t). (3.22)

The detailed derivation can be found in [47].

In equation (3.22), assuming that (rr +jωrLr) is invertible, the time phasor Ĩr(t)

can be expressed by,

Ĩr(t) = −jωrL
T
sr(θm(t))

rr + jωrLr

Ĩs(t). (3.23)

Substituting equation (3.24) into equation (3.21), we have,

Ṽs(t) = (rs + jωsLs +
ωsωrLsr(θm(t))LT

sr(θm(t))

rr + jωrLr

)Ĩs(t). (3.24)

Assuming (rs+jωsLs+
ωsωrLsr(θm(t))LT

sr(θm(t))
rr+jωrLr

) is invertible, we obtain the following

relationship between stator voltages and currents,

Ĩs(t) = [rs + jωsLs +
ωsωrLsr(θm(t))LT

sr(θm(t))

rr + jωrLr

]−1Ṽs(t). (3.25)

Ĩs(t) = [Z(θm(t))]−1Ṽs(t). (3.26)

In general, equation (3.26) is linear in terms of the voltages and currents. How-

ever, this relation is representative of a non-linear system, i.e. a modulator, as the

inverse of the impedance is made of time-varying and nonlinearly coupled terms. As-

suming the voltage to be a single frequency signal, the current will be composed of

frequencies beyond the single input voltage frequency, made up of modulated com-

ponents. This frequency shifts are indicative of a nonlinear system.

Based on this, an induction motor at steady state can be modeled as a modulator

as shown in Figure 16, where u(n) is the system input, the stator voltage; a(n) is an
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Fig. 16. The Induction Motor Modulator Model.

unknown signal which contains the spatial frequencies of the motor, represented by

[Z(θm)]−1; and y(n) is the system output, the stator current.

Assuming a(n) to be periodic, it can be written as,

a(n) = A0 +
k∑

i=1

Ai cos(ωin + φi). (3.27)

The system output is given by,

y(n) = a(n)u(n) = [A0 +
k∑

i=1

Ai cos(ωin + φi)]u(n). (3.28)

In the frequency domain, the corresponding system output is,

Y (ω) = A0U(ω) +
1

2

k∑
i=1

Ai[e
−jφiU(ω + ωi) + ejφiU(ω − ωi)]. (3.29)

A special frequency phasor is defined as,

ai ≡ Aie
−jφi . (3.30)

Equation (3.29) can be written as,

Y (ω) = A0U(ω) +
1

2

k∑
i=1

[aiU(ω + ωi) + a∗i U(ω − ωi)]. (3.31)

The AMD estimation can be re-written as,

̂AMD(ω) = Y (ω0 + ω)Y (ω0 − ω)Y ∗(ω0)Y
∗(ω0). (3.32)
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where ω0 is the fundamental supply frequency.

Based on equation (3.31), equation (3.32) can be written as,

Y ∗(ω0) = A0U
∗(ω0) +

1

2

k∑
i=1

[a∗i U
∗(ω0 + ωi) + aiU

∗(ω0 − ωi)], (3.33)

Y (ω0 + ω) = A0U(ω0 + ω) +
1

2

k∑
i=1

[aiU(ω0 + ω + ωi) + a∗i U(ω0 + ω − ωi)], (3.34)

Y (ω0 − ω) = A0U(ω0 − ω) +
1

2

k∑
i=1

[aiU(ω0 − ω + ωi) + a∗i U(ω0 − ω − ωi)]. (3.35)

Let T1 and T2 be the summation terms in equations (3.34) and (3.35),

T1(ω) =
k∑

i=1

[aiU(ω0 + ω + ωi) + a∗i U(ω0 + ω − ωi)], (3.36)

T2(ω) =
k∑

i=1

[aiU(ω0 − ω + ωi) + a∗i U(ω0 − ω − ωi)]. (3.37)

Obviously, these terms depend on the system input.

Suppose the system input contains a fundamental, the fundamental’s integer

harmonics, and noise. The representation of the system input in the frequency domain

is as follows,

U(ω) =



s1, ω = ω0

s2, ω = 2ω0

s3, ω = 3ω0

...
...

sp, ω = pω0

m, ∀ω 6= lω0

(3.38)

where ω0 and s1 are the fundamental frequency and its magnitude, respectively;

s2, s3, . . . , sp are magnitudes of integer harmonics; m is the noise level, and l =

1, 2, ..., p.

Generally, for induction motor supply, the magnitude of the fundamental fre-
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quency is far larger than the magnitude summation of all other frequencies. Hence,

we have,

|s1| >>
p∑

i=2

|si|+
∫
|m|dω. (3.39)

At any frequency ωs, T1(ωs) can be calculated based on the input, equation

(3.38), as follows,

T1(ωs) =
k∑

i=1

[aiU(ω0 + ωs + ωi) + a∗i U(ω0 + ωs − ωi)]

= a∗sU(ω0) + asU(ω0 + 2ωs) +
s−1∑
i=1

[aiU(ω0 + ωs + ωi) + a∗i U(ω0 + ωs − ωi)]

+
k∑

i=s+1

[aiU(ω0 + ωs + ωi) + a∗i U(ω0 + ωs − ωi)]. (3.40)

Because U(ω) can take values from s1 to sk and m, the resulting expressions for

equation (3.40) are not unique. Using bi, cji, and Qi as dummy variables, equation

(3.40) can be written as,

T1(ωs) = a∗ss1 + b1m + b2s2 + b3s3 + . . . + bksk

+
Q1∑
i=1

c1im +
Q2∑
i=1

c2im +
Q3∑

i=s+1

c3im +
Q4∑

i=s+1

c4im

= a∗ss1 +
p∑

i=2

bisi + m(b1 +
Q1∑
i=1

c1i +
Q2∑
i=1

c2i +
Q3∑

i=s+1

c3i +
Q4∑

i=s+1

c4i)

= a∗ss1 +
p∑

i=2

bisi + cim, (3.41)

where ci = b1 +
∑Q1

i=1 c1i +
∑Q2

i=1 c2i +
∑Q3

i=s+1 c3i +
∑Q4

i=s+1 c4i; ai’s are spatial harmonics

in a(n); b1 and cji can take values among 0, ai, a∗i or summation of ai and a∗i ; and

b2, b3, ..., bk can take values among 0, ai and a∗i .

Compared to the magnitude of the fundamental frequency, ai, bi, cji, and m are

very small. Further, assume as, bi, and ci have comparable values. Using equation



65

(3.39), equation (3.41) becomes,

T1(ωs) ≈ a∗ss1. (3.42)

Following the same procedure, T2 can be written as,

T2(ωs) ≈ ass1. (3.43)

Signature frequencies caused by bearing generalized faults are distributed in wide

frequency bands. They are mostly located in inter-harmonics. Integer harmonics of

the supply fundamental frequency usually have big magnitudes compared with other

inter-harmonics. In order to detect variations in inter-harmonics, the integer harmon-

ics must be removed from the final AMD spectrum. Hence, the integer harmonics of

the fundamental frequency are not present in the spectrum of a(n). Hence,

ωi 6= qω0, q = 1, 2, ..., p, (3.44)

U(ω0 ± ωi) = m, (3.45)

where ωi’s are spatial harmonics in a(n). Based on the above simplification, at fre-

quency ωs, equations (3.33), (3.34), and (3.35) can be re-written as,

Y ∗(ω0) = A0s
∗
1 +

1

2
m∗

k∑
i=1

[a∗i + ai]

= A0s
∗
1 + m∗

k∑
i=1

Ai cos φi

≈ A0s
∗
1. (3.46)

The term, m∗ ∑k
i=1 Ai cos φi, can be ignored compared with A0s

∗
1, so,

Y (ω0 + ωs) = A0m +
1

2
T1

≈ A0m +
1

2
a∗ss1



66

≈ 1

2
a∗ss1, (3.47)

and,

Y (ω0 − ωs) = A0m +
1

2
T2

≈ A0m +
1

2
ass1

≈ 1

2
ass1. (3.48)

The composite AMD estimator at frequency ωs becomes,

̂AMD(ωs) = Y (ω0 + ωs)Y (ω0 − ωs)Y
∗(ω0)Y

∗(ω0)

≈ 1

4
A2

0|as|2|s1|4. (3.49)

Various forms of this AMD indicator are used in this research to obtain the

experimental results presented in later chapters.

E. Mechanical Vibration Indicator

In this research, mechanical vibration signals are also collected with the electrical

signals. The vibration signals are used for two purposes.

First, vibration signals are used to monitor the bearing damage process. During

the experiment, vibration level is changing with the deterioration of the bearing. By

looking at the vibration level, the experiment can be controlled.

Second, the vibration fault indicator is used as a reference for the fault detection

capability of the electrical AMD indicator.

In this research, the aggregate RMS values of the vibration signals are calculated

as the vibration indicator.
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The RMS of vibration signal is defined as follows,

Indicator vib =

√√√√ 1

N

N∑
i=1

x(i)2, (3.50)

where x(i) is the vibration sample and N is the total number of samples used in the

RMS calculation.

F. Chapter Summary

Bearing failures can be captured in frequencies that are modulated with the funda-

mental frequency and all other harmonics of the supply. This modulation relationship

can be isolated using the phase coupling between the bearing fault frequencies and the

supply fundamental frequency. An Amplitude Modulation Detector (AMD), which is

developed from the higher order spectrum estimation, can correctly capture the phase

coupling and isolate these modulation relationships. This is the proposed approach

for this research.

In this chapter, estimation procedures of the AMD are introduced. Effects of

supply voltages on stator currents are discussed both for motors energized by power

supply mains and VSI type drives. Based on this, the modulation model and elec-

trical AMD indicator are derived. Moreover, a mechanical vibration indicator is also

provided. This indicator is used to control the bearing damage experiments, and as

a reference for testing the fault detection capability of the electrical AMD indicator.
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CHAPTER IV

EXPERIMENTAL RESULTS

Experimental results are presented in this chapter. These experiments are grouped

into six categories. The first group of experiments are used to test the effect of the

shaft currents on the electrical indicator performance; the second group of experiments

are used to test the effect of different load levels on the same indicators. Healthy

bearing experiments are the third group used to test the variations of the healthy

electrical indicators. Bearing damage experiments for motors energized by power

supply mains and VSI are the fourth and fifth group, respectively. Finally, the effect

of bearing faults on motor conversion efficiency is also presented in this chapter.

A. Effect of Shaft Currents on Indicator Performance

In this research, the motor load-side bearing is damaged using injected shaft currents.

The effect of shaft currents on the indicator has to be investigated since this is a large

current, around 6 to 12 A, compared with the motor stator current. However, it is

difficult to exactly identify the effects of the this shaft currents on the motor magnetic

field. In this research, indicators with shaft currents and without shaft currents are

compared so that the effect of shaft currents on the fault indicator can be identified.

Moreover, this comparison work is focused on the early stage of bearing damage

because we are interested in detecting incipient faults.

Comparison experiments are conducted as follows: (1) collect healthy data; (2)

inject the shaft current for around one hour so that the bearing is slightly damaged.

This procedure is essential. In order to make comparisons, indicators have to deviate

from the healthy range; (3) collect one hour of data with the shaft current; (4) remove

the shaft current and collect one hour data; (5)repeat step (3) and step (4). These
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procedures are summarized in Figure 17.

Fig. 17. Experimental Procedures for the Shaft Current Effect Comparison.

Two kinds of experiments are conducted. One driven by VSI, the other driven

by the power supply mains. AMD indicators with and without the shaft current for

experiment driven by VSI are shown in section 1 and section 2 of Figure 18. In each

section, the indicator with the shaft current is rising because the bearing is damaged.

The indicator without the shaft current is also rising. It is obvious that differences

between these two indicators are small. The corresponding vibration RMS indicators

are shown in Figure 19.

Indicators for motors energized by power supply mains are shown in Figure 20

and the vibration RMS indicators are shown in Figure 21. Data with and without

the shaft current are collected following the same procedures as in the experiment

above. It is also obvious from this experiment that these indicators are quite close.

Observations from these experiments can be summarized as follows,

1. The shaft current has some effect on the fault indicators, but this effect is not

significant. It does not appear to distort the fault detection results.

2. Because of experimental procedures followed, the bearing damage process is

heavily slowed down. In one experiment, the bearing is damaged just a little
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Fig. 18. AMD Indicators Comparison; Motor Energized by VSI.

Fig. 19. Vibration RMS Comparison; Motor Energized by VSI.
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Fig. 20. AMD Indicators Comparison; Motor Energized by Power Supply Mains.

Fig. 21. Vibration RMS Comparison; Motor Energized by Power Supply Mains.
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bit 16 hours after injecting the shaft current. The reason is that when the shaft

current is injected, the bearing is getting damaged. But once the shaft cur-

rent is removed, the damage process usually stops, and sometimes, the bearing

roughness caused by the shaft current can be smoothed out, which heavily slows

down the bearing damage process.

To entirely avoid the shaft current effect, the experiment procedure described

above has to be used, i.e., to collect data, with and without the shaft current alter-

nately. But, this procedure will lead to unwanted variation on the damage process

and may cause the experiment to fail. Most importantly, the shaft current does not

distort the fault detection result significantly. Therefore, most experiments conducted

in this research are with the shaft current. But in performing closed-loop experiments

data without the shaft current present are collected.

B. Effect of Different Load Levels on Indicator Performance

The proposed method is load dependent. To demonstrate this point, three exper-

iments are conducted. Healthy bearings are used and motors are energized by the

power supply mains in these experiments. Load levels used are roughly 36%, 38% and

40%. Figure 22 shows the AMD indicators for these three experiments. Deviations

can be clearly seen among these AMD indicators. Although load level changes are

small, 2%, deviations between AMD indicators are 3% to 4%. Stator current RMS

values and voltage RMS values are shown in Figures 23 and 24 for these three experi-

ments. When the load level changes, the magnitude of the stator current fundamental

frequency changes accordingly, while the magnitude of the voltage fundamental fre-

quency remains practically the same. This is the main reason for the deviations of

the AMD indicators.
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Fig. 22. AMD Indicator for Different Load Levels; Motor Energized by Power Supply

Mains.
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Fig. 23. Current RMS for Different Load Levels; Motor Energized by Power Supply

Mains.
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Fig. 24. Voltage RMS for Different Load Levels; Motor Energized by Power Supply

Mains.
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All experiment results shown in the following sections are related to specified

machine operating load levels.

C. Effect of Power Supply on Indicator Performance

As the input, voltages play a very important role in motor fault detection. Without

considering the voltage inputs, the current AMD variations are large even for the

healthy data; and the Bearing faults cannot be detected.

Figure 25 and figure 26 show the electrical indicator and current AMD plot for

a healthy experiment where the motor is energized by power supply mains. The

load is 20% and the bearing is healthy. It is clear that the variation of the electrical

indicator is rather small, 0.5%-0.6%, while the variation of the current AMD is very

large, about 15%.

Fig. 25. Electrical AMD Indicator for Healthy Data Set #1; Motor Energized by

Power Supply Mains.
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Fig. 26. Current AMD for Healthy Data Set #1; Motor Energized by Power Supply

Mains.

Figure 27 shows a vibration indicator curve for an experiment where the motor

is energized by the power supply mains. The load level is 0%. The bearing fault can

be detected at around 6.5 hours after the experiment started using the mechanical

vibration indicator. Figure 28 shows the corresponding current AMD curve. It is

obvious that the current AMD alone does not have any pattern, and it cannot be

used to detect the bearing fault. Figure 29 shows the cross-AMD of voltage and

current. This apparent random variation of these indicators prevent their use in fault

detection.

In another experiment, the motor is energized by VSI. The bearing fault can

be detected at around 23.5 hours after the experiment started using the mechanical

vibration indicator, as shown in Figure 30. Figure 31 and Figure 32 show the corre-

sponding current AMD and voltage AMD, respectively. The percentage changes of

the current AMD and voltage AMD are very small both in the healthy section and
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Fig. 27. Vibration Indicator for Motors Energized by Supply Mains; No Load.

Fig. 28. Current AMD for Motors Energized by Supply Mains; No Load.
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Fig. 29. Cross-AMD of Voltage & Current for Motors Energized by Supply Mains;

No Load.

in the faulty section. It is reasonable to conclude that the unpredictable manners of

the AMD curves come from the random variation of the inter-harmonics. Thus, the

current AMD or voltage AMD alone cannot be used for fault detection purposes.

D. Healthy Baseline and Bearing Fault Detection Threshold

Healthy bearing experiments are conducted to decide the bearing fault detection

threshold. Bearings used in these experiments are healthy with full amounts of grease.

Three healthy experiments are conducted when the motors are energized by

power supply mains. Each of these experiments lasted 30 hours, 29 hours, and 24

hours, respectively. The same 20% load level is used. The healthy AMD indicators

are shown in Figure 33. In this figure, the y axis is the absolute value of the AMD

indicators. The percentage changes with respect to means are shown separately in
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Fig. 30. Vibration Indicator for Motors Energized by VSI; No Load.

Fig. 31. Current AMD for Motors Energized by VSI; No Load.
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Fig. 32. Voltage AMD for Motors Energized by VSI; No Load.

Figures 25, 34, and 35. It is shown that the deviations from the maximum values to

means are 0.51%, 0.41%, and 0.2% for these three healthy data sets, respectively.

To roughly identify the statistical distribution of the healthy AMD indicators,

these three data sets are combined together and the distribution fits are calculated.

Figure 36 shows the normal distribution fit for these three healthy data sets. In this

figure, the x axis is the percentage change with respect to the mean of all data. It is

shown that the normal distribution roughly fits the healthy AMD indicators.

Three healthy experiments are also conducted where the motors are energized

by VSI. Each of these experiments lasted 22.2 hours, 22.5 hours, and 22.5 hours,

respectively. The same load level, 20% load, is used. Healthy AMD indicators are

shown in Figure 37. In this figure, the y axis is the absolute value of AMD indicators.

The percentage changes with respect to means are shown separately in Figures 38, 39,

and 40. It is shown that the deviations from the maximum values to means are 0.66%,



82

Fig. 33. AMD Indicator for Healthy Data Set #1, #2, and #3; Motor Energized by

Power Supply Mains.

Fig. 34. AMD Indicator for Healthy Data Set #2; Motor Energized by Power Supply

Mains.
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Fig. 35. AMD Indicator for Healthy Data Set #3; Motor Energized by Power Supply

Mains.

Fig. 36. Normal Distribution Fit for the Healthy AMD Indicators; Motor Energized

by Power Supply Mains.
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1.6% and 0.61% for these three healthy data sets. The variation in healthy data #2

is rather large compared to the others. During the bearing damage experiment, the

generator is mounted on a steel plate where the motor is also mounted. When the

shaft current is injected on the motor shaft, the generator cage is also energized.

For some reasons, the generator load-side bearing is slightly damaged, even though

there is no obvious closed circuit through the generator rotor shaft, bearing, and

cage. Actually, when collecting healthy data #2, noise originated from the generator.

After replacing the generator load-side bearing, this noise disappeared. Then, healthy

data #3 is collected with the new installed generator load-side bearing. The AMD

indicator for healthy data #3 has small variation, as shown in Figure 40.

Fig. 37. AMD Indicator for Healthy Data #1, #2, and #3; Motor Energized by a

VSI.

These three healthy data sets are combined together and the distribution fittings

are calculated. Figure 41 shows the normal distribution fit for these three healthy
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Fig. 38. AMD Indicator for Healthy Data Set #1; Motor Energized by a VSI.

Fig. 39. AMD Indicator for Healthy Data Set #2; Motor Energized by a VSI.
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Fig. 40. AMD Indicator for Healthy Data Set #3; Motor Energized by a VSI.

data sets. In this figure, the x axis is the percentage change with respect to the

mean of all data. It is shown that the normal distribution roughly fits healthy AMD

indicators. There are several outliers in Figure 41, which result from healthy data

#2.

The percentage variations of healthy AMD indicators are very small and percent-

age deviations from healthy to faulty indicators are also not big because large amounts

of data are averaged in the proposed method. It is not easy to set a fixed threshold for

the fault detection purpose in a practical environment, because the healthy baseline

may vary in different motors and different loads. Most importantly, bearing dam-

age experiments are conducted continually in this research and the proposed method

should be used in the similar continuous monitoring manner in practice. Therefore,

it is reasonable to use adaptive thresholds for different continuous monitoring ex-
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Fig. 41. Normal Distribution Fit for the Healthy AMD Indicators; Motor Energized

by a VSI

periments. These adaptive thresholds are decided according to healthy data in each

experiment.

Because the healthy AMD indicators are roughly normally distributed, three

times the standard deviation of the healthy data in each experiment is used as the

bearing fault detection threshold in AMD indicators. This way, the false alarms are

limited to less than 1% since three times standard deviation accounts for 99% of the

samples in the normal distribution. The mechanical vibration indicators are used as

a reference for the electrical AMD indicators. In order to compare these two types of

indicators, the same three times standard deviation thresholds are also used in the

vibration indicators for fault detection purposes.
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E. Experimental Results for Motors Energized by Power Supply Mains

The generator test bed is used in experiments energized by power supply mains.

Different level of loads are used, including 0% load, 20% load, and 40% load. Because

of the limitation on the generator field excitation current, load levels higher than 40%

are not used.

1. Experiments with Motor at No Load Conditions

The first experimental results for no load condition are shown in Figures 42 and

43. The shaft current is injected at 4 hours after the experiment started. Using the

three times of standard deviation threshold discussed above, the bearing fault can

be detected at around 6.5 hours using the mechanical vibration indicator, which is

shown in Figure 42, and around 4.6 hours using the electrical AMD indicator, which

is shown in Figure 43.

In the vibration indicator, large variations show up after the experiment ran for

about 24 hours, which is shown in Figure 42. The reason is that when the bearing

is damaged very heavily, the vibration rises to a very high level, which exceeds the

limitation of the vibration sensor so that the sensed vibration signals display an

unreasonable manner. In follow-on experiments, bearings are not damaged too much

so that the vibration levels are kept to a rather low level to avoid damaging the

experimental setup.

The second experimental results for the no load condition are shown in Figures

44 and 45. The shaft current is injected at 3.9 hours after the experiment started.

Using the three times of standard deviation threshold discussed above, the bearing

fault can be detected using the vibration indicator at around 5.5 hours, as shown in

Figure 44. The electrical AMD indicator detects the fault at around 5.5 hours too,
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Fig. 42. Vibration Indicator of Data Set #1 for Motors Energized by Power Supply

Mains; No Load.

Fig. 43. AMD Indicator of Data Set #1 for Motors Energized by Power Supply Mains;

No Load.
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which is shown in figure 45.

Fig. 44. Vibration Indicator of Data Set #2 for Motors Energized by Power Supply

Mains; No Load.

2. Experiments with Motor at 20% Load Conditions

In the generator test bed, a synchronous generator is used to load the induction

motor. This generator is modified from a CS-130 alternator by removing the voltage

rectifier and voltage regulator. An external power supply is used to energize the

generator magnetic field. Because of the output current limitation of the power

supply, the generator field current cannot exceed 2 A. Hence, the maximum load that

this generator can provide to the induction motor is 40%.

The first experimental results with 20% load level are shown in Figures 46 and

47. In this experiment, the shaft current is injected at around 8.7 hours after the

experiment started. The bearing fault can be detected at 9.2 hours using the me-
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Fig. 45. AMD Indicator of Data Set #2 for Motors Energized by Power Supply Mains;

No Load.

chanical vibration indicator, as shown in Figure 46, and 9.3 hours using the electrical

AMD indicator, as shown in Figure 47.

The second set of experimental results are shown in Figures 48 and 49. In this

experiment, the shaft current is injected at around 10.8 hours after the experiment

started. The bearing fault can be detected at 11.8 hours using the mechanical vi-

bration indicator, as shown in Figure 48, and 12.5 hours using the electrical AMD

indicator, as shown in Figure 49.

3. Experiments with Motor at 40% Load Conditions

The first set of experimental results with 40% load are shown in Figures 50 and

51. In this experiment, the shaft current was injected at around 9.2 hours after

the experiment started. The bearing fault can be detected at 9.7 hours using the

mechanical vibration indicator, as shown in Figure 50, and 10.1 hours using the
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Fig. 46. Vibration Indicator of Data Set #1 for Motors Energized by Power Supply

Mains; 20% Load.

Fig. 47. AMD Indicator for of Data Set #1 for Motors Energized by Power Supply

Mains; 20% Load.
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Fig. 48. Vibration Indicator of Data Set #2 for Motors Energized by Power Supply

Mains; 20% Load.

Fig. 49. AMD Indicator for of Data Set #2 for Motors Energized by Power Supply

Mains; 20% Load.
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electrical AMD indicator, as shown in Figure 51.

Fig. 50. Vibration Indicator of Data Set #1 for Motors Energized by Power Supply

Mains; 40% Load.

The second set of experiment results are shown in Figures 52 and 53. In this

experiment, the shaft current is injected at around 8.8 hours after the experiment

started. The bearing fault can be detected at 9.6 hours using the mechanical vibration

indicator, as shown in Figure 52, and 9.8 hours using the electrical AMD indicator,

as shown in Figure 53.

4. Summary of Experiments for Motors Energized by Power Supply Mains

All experiments where the motors are energized by the power supply mains are sum-

marized in Table III. Differences between electrical AMD indicator detection times

and mechanical vibration indicator detection times are calculated in this table. The

means of these time differences are -0.95 hours, +0.4 hours, and +0.63 hours, re-
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Fig. 51. AMD Indicator of Data Set #1 for Motors Energized by Power Supply Mains;

40% Load.

Fig. 52. Vibration Indicator of Data Set #2 for Motors Energized by Power Supply

Mains; 40% Load.
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Fig. 53. AMD Indicator of Data Set #2 for Motors Energized by Power Supply Mains;

40% Load.

spectively for 0%, 20% and 40% load levels. Here, the negative sign indicates that

the AMD indicator detects bearing faults earlier than the vibration indicator, while

the positive sign means that the AMD indicator detects bearing faults later than the

vibration indicator.

Bearing damage experiments conducted in this research used shaft currents to

accelerate the bearing damage process. Usually, the total experiment time from the

shaft current injection time to the bearing being heavily damaged is around 22 hours

(as shown in Figure 43). In practical industral environment, bearing life spans are

usually 6 to 9 months. Assume the life of the bearing is 7 months, a one-hour exper-

iment time then roughly equals 9.5 days. Therefore, means of fault detection time

differences between electrical AMD indicators and mechanical vibration indicators

can be roughly estimated as -9 days (earlier detection), +3.8 days (later detection)

and +6 days (later detection), for 0%, 20% and 40% load levels, respectively.
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Table III. Summary of Experiments for Motors Energized by Power Supply Mains.

Load Data Sets Vibration Indicator AMD Indicator Difference*
(Hours) (Hours) (Hours)

No Load I 6.5 4.6 -1.9

II 5.5 5.5 0

III N/A 13.1 N/A

Mean - - -0.95

20% Load I 9.2 9.3 +0.1

II 11.8 12.5 +0.7

Mean - - +0.4

40% Load I 9.7 10.1 +0.4

II 9.6 9.8 +0.2

III 11.3 12.6 +1.3

Mean - - +0.63

* The difference of the fault detection time between the vibration and AMD Indicators.
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F. Experimental Results for Motors Energized by a VSI

When motors are energized by a VSI, the rich current inter-harmonics are the biggest

problem for fault detection. To detect bearing faults, the VSI AMD indicator is used.

The actual VSI supply fundamental is not purely sinusoidal, but the combination

of square waves. In the VSI AMD indicator calculation, the special frequencies, which

are modulated with a frequency band around the supply fundamental, are calculated.

By doing this, the variation of the VSI AMD indicator is bigger than that of the

power supply main AMD indicator because the frequency band around the supply

fundamental contains more non-stationary inter-harmonics.

In this research, experiments are conducted with V/Hz open-loop and V/Hz

closed-loop VSI operation. These results are summarized in the following sections.

1. Speed Set-point Regulation Using a VSI Operating

in Open-loop V/Hz Control Mode

a. Experiments with Motor at No Load Conditions

The first set of experimental results for the no load condition are shown in Figures 54

and 55. The shaft current is injected at 15.5 hours after the experiment started. The

bearing fault can be detected at around 23.5 hours using the mechanical vibration

indicator, as shown in Figure 54, and around 16.3 hours using the electrical AMD

indicator, as shown in Figure 55. There are abnormal variations in the vibration

signals in this experiment. In the healthy section, the vibration signal goes down,

which leads to late detection in the vibration indicator compared with the AMD

indicator. One possible reason is the bearing roughness. Initially, the test bearing had

some kinds of roughness on the contacting surface. After a period of time running,

this roughness was smoothed out because only 4% to 5% grease was filled in the
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bearing. Actually, the behavior of the non-fully filled bearings is not predictable. In

some cases, the vibration levels are increased even though no shaft current is injected.

Fig. 54. Vibration Indicator of Data Set #1 for Motors Energized by a VSI; No Load.

The second set of experimental results are shown in Figures 56 and 57. In this

experiment, the healthy data are not long enough. Only 11.5 hour healthy data are

collected. After that, the shaft current is injected. From Figure 56, we see that the

bearing fault can be picked up at 17.3 hours using the mechanical vibration indicator.

From Figure 57, we see that the bearing fault is detected at around 14.9 hours using

the electrical AMD indicator.

b. Experiments with Motor at 20% Load Conditions

The first set of experimental results are shown in Figures 58 and 59. In this experi-

ment, the shaft current is injected at around 15.9 hours after the experiment started.
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Fig. 55. AMD Indicator of Data Set #1 for Motors Energized by a VSI; No Load.

Fig. 56. Vibration Indicator of Data Set #2 for Motors Energized by a VSI; No Load.
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Fig. 57. AMD Indicator of Data Set #2 for Motors Energized by a VSI; No Load.

The bearing fault can be detected at 20.1 hours using the mechanical vibration in-

dicator, as shown in Figure 58, and 18 hours using the electrical AMD indicator, as

shown in Figure 59.

The second set of experimental results are shown in Figures 60 and 61. In this

experiment, the shaft current is injected at around 14.1 hours after the experiment

started. The bearing fault can be detected at 15.5 hours using the mechanical vi-

bration indicator, as shown in Figure 60, and 14.8 hours using the electrical AMD

indicator, as shown in Figure 61.

c. Experiments with Motor at 40% Load Conditions

The first set of experimental results are shown in Figures 62 and 63. In this experi-

ment, the shaft current was injected at around 15 hours after the experiment started.

The bearing fault can be detected at 16.1 hours using the mechanical vibration indi-
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Fig. 58. Vibration Indicator of Data Set #1 for Motors Energized by a VSI; 20%

Load.

Fig. 59. AMD Indicator of Data Set #1 for Motors Energized by a VSI; 20% Load.
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Fig. 60. Vibration Indicator of Data Set #2 for Motors Energized by a VSI; 20%

Load.

Fig. 61. AMD Indicator of Data Set #2 for Motors Energized by a VSI; 20% Load.



104

cator, as shown in Figure 62, and 18.9 hours using the electrical AMD indicator, as

shown in Figure 63.

Fig. 62. Vibration Indicator of Data Set #1 for Motors Energized by a VSI; 40%

Load.

The second set of experimental results are shown in Figures 64 and 65. In this

experiment, the shaft current is injected at around 15 hours after the experiment

started. The bearing fault can be detected at 18.9 hours using the mechanical vi-

bration indicator, as shown in Figure 64, and 18.7 hours using the electrical AMD

indicator, as shown in Figure 65.

d. Summary of Experiments for Motors Energized by a VSI Operating in Open-loop

V/Hz Control Mode

All experiments using VSI in open-loop control operating mode are summarized in

Table IV. Time differences between electrical AMD indicator detection times and

mechanical vibration indicator detection times are calculated in this table. Means
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Fig. 63. AMD Indicator of Data Set #1 for Motors Energized by a VSI; 40% Load.

Fig. 64. Vibration Indicator of Data Set #2 for Motors Energized by a VSI; 40%

Load.
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Fig. 65. AMD Indicator of Data Set #2 for Motors Energized by a VSI; 40% Load.

of differences are -3.67 hours, -1.4 hours, and +0.87 hours, respectively, for 0%, 20%

and 40% load levels. Here, the negative sign means that the AMD indicator detects

bearing faults earlier than the vibration indicator, while the positive sign means that

the AMD indicator detects bearing faults later than the vibration indicator.

Bearing damage experiments conducted in this research use shaft currents to ac-

celerate the bearing damage process. If we assume one hour experiment time equals

9.5 real days, as in cases of experiments energized by power supply mains, means

of fault detection time differences between electrical AMD and mechanical vibration

indicators can be roughly estimated as -34.8 days (earlier detection), -13.3 days (ear-

lier detection), and +8.2 days (later detection) for 0%, 20%, and 40% load levels,

respectively.
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Table IV. Summary of Experiments for Motors Energized by a VSI Operating in

Open-loop V/Hz Control Mode.

Load Data Sets Vibration Indicator AMD Indicator Difference*
(Hours) (Hours) (Hours)

No Load I 23.5 16.3 -7.2

II 17.3 14.9 -2.4

III N/A 15 N/A

IV 8.2 6.8 -1.4

Mean - - -3.67

20% Load I 20.1 18 -2.1

II 15.5 14.8 -0.7

Mean - - -1.4

40% Load I 16.1 18.9 +2.8

II 18.9 18.7 -0.2

III 16.2 16.2 0

Mean +0.87

* The difference of the fault pick up time between the vibration and AMD indicators.
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2. Speed Set-point Regulation Using a VSI Operating

in Closed-loop V/Hz Control Mode

The synchronous generator test bed, as shown in Figure 4, cannot be used in perform-

ing experiments with the VSI using speed feedback control since there is not enough

space to install an encoder. So, the gearbox test bed, shown in Figure 5, is used.

a. Experimental Procedures

Usually, the total time of the bearing damage experiment is around 26 to 32 hours.

Because the gearbox cannot endure such a long running time, different experimental

procedures are used for the closed-loop control experiments, which is shown in Figure

66. Firstly, the healthy data is collected. Then, the gearbox and other devices on

the test bed are disconnected from the motor, and the shaft current is injected to

damage the motor bearing. In this procedure, data are not collected. Finally, after

the bearing is damaged to some degree, the shaft current is removed, the gearbox is

connected, and the faulty data are collected.

Fig. 66. Closed-loop Control Experimental Procedures.

Usually, VSI works at different speed set points. In this research, two speed set

points are used to test the proposed method, the 60Hz and the 40Hz. In the 60Hz

set point, the gearbox can load the motor at 45% of full rated load. In the 40Hz set
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point, the motor rotating speed drops, while the load torque keeps constant so that

the actual motor load level drops to around 41%.

b. Experiments at 60Hz Set Point

Two experiments are conducted at 60Hz set points. The first set of experimental

results are shown in Figures 67 and 68. In the electrical AMD indicator, shown in

Figure 68, the left part is the healthy data, while the right part is the faulty data.

Although this is not a continuous experiment, an increasing trend is shown from

the healthy to the faulty indicators. This is because the healthy and fault data are

processed continuously and the later indicator points are calculated based on the

earlier indicator points. The clear deviation from healthy AMD indicators to the

faulty AMD indicators shows that the bearing fault can be detected when the motor

is driven by a VSI with speed feedback control.

Fig. 67. Vibration Indicator of Data Set #1 for the V/Hz Closed-loop Control; 60Hz

Fundamental; 45% Load.
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Fig. 68. AMD Indicator of Data Set #1 for the V/Hz Closed-loop Control; 60Hz

Fundamental; 45% Load.

The second set of experimental results are shown in Figures 69 and 70. Also in

these figures, the left part is the healthy data, while the right part is the faulty data.

The clear deviation from healthy AMD indicators to faulty AMD indicators shows

that the bearing fault can be detected when the motor is energized by a VSI with

speed feedback control.

c. Experiments at 40Hz Set Point

Two experiments are conducted at 40Hz set points. The first set of experimental

results are shown in Figures 71 and 72. Also in these figures, the left part is the healthy

data, while the right part is the faulty data. The clear deviation from healthy AMD

indicators to faulty AMD indicators shows that the bearing fault can be detected

when the motor is energized by a VSI operating with speed feedback control.
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Fig. 69. Vibration Indicator of Data Set #2 for the V/Hz Closed-loop Control; 60Hz

Fundamental; 45% Load.

Fig. 70. AMD Indicator of Data Set #2 for the V/Hz Closed-loop Control; 60Hz

Fundamental; 45% Load.
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Fig. 71. Vibration Indicator of Data Set #1 for the V/Hz Closed-loop Control; 40Hz

Fundamental; 41% Load.

Fig. 72. AMD Indicator of Data Set #1 for the V/Hz Closed-loop Control; 40Hz

Fundamental; 41% Load.
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The second set of experimental results are shown in Figures 73 and 74. Also

in these figures, the left part is the healthy data, while the right part is the faulty

data. The clear deviation from healthy AMD indicators to faulty AMD indicators

shows that the bearing fault can be detected when the motor is energized by a VSI

operating with speed feedback control.

Fig. 73. Vibration Indicator of Data Set #2 for the V/Hz Closed-loop Control; 40Hz

Fundamental; 41% Load.

3. Speed Set-point Tracking Using a VSI Operating

in Closed-loop V/Hz Control Mode

In the experiments shown in previous sections, motors are operated at steady state

conditions. To investigate the effect of motor transient operation condition on the

proposed method, two closed-loop control experiments are conducted.

Transient motor operating conditions are achieved by changing the motor speed
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Fig. 74. AMD Indicator of Data Set #2 for the V/Hz Closed-loop Control; 40Hz

Fundamental; 41% Load.

set points. First, healthy data are collected at one speed set point; for example, 40Hz

or 60Hz. Then, the bearing is damaged using the shaft current. During this bearing

damage procedure, there is no data collection. After the bearing is damaged, the

motor is operated at different speed set points and data are collected. The followed

experimental procedures are shown in Figure 75.

Fig. 75. Transient Experimental Procedures.
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In the first set of experiments, the initial speed set point is 40Hz. Speed set points

are changed between 40Hz and 60Hz in transient operating conditions. Vibration

indicators are shown in Figure 76. Figure 77 is the detailed plot of the transient

operation in Figure 76.

Fig. 76. Vibration Indicator of Data Set #1 for Transient Operation; Closed-loop

Control.

In Figure 77, vibration indicators are labeled from ‘{1}’ to ‘{5}’. The meaning

of these numbers are listed in Figure 78. When the entire data set, i.e., data sections

from ‘{1}’ to ‘{5}’, are used to calculate the AMD indicator, abnormal results are

obtained, as shown in Figure 79. The large deviations between faulty sections and

the healthy section comes from the transient data, not from the bearing fault itself.

The transient data heavily affect the application of AMD indicators. However, when

only using data sections that are in the same speed set point, i.e., sections ‘{1}’, ‘{2}’,

and ‘{4}’, the AMD indicator gives reasonable results, as shown in Figure 80.

In the second set of experiments, the initial speed set point is 60Hz. Speed
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Fig. 77. Vibration Indicator of Data Set #1 for Transient Operation; Closed-loop

Control.

Fig. 78. Transient Sections in Data Set #1; Closed-loop Control.
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Fig. 79. Incorrect Detection Using AMD Indicator for Transient Operation Data Set

#1; Closed-loop Control.

Fig. 80. Correct Detection Using AMD Indicator for Transient Operation Data Set

#1; Closed-loop Control.
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set points are changed between 60Hz and 40Hz in transient operation conditions.

Vibration indicators are shown in Figure 81. Figure 82 is the detailed plot of the

transient operation of Figure 81.

Fig. 81. Vibration Indicator of Data Set #2 for Transient Operation; Closed-loop

Control.

In Figure 82, vibration indicators are labeled from ‘{1}’ to ‘{4}’. The meaning

of these numbers are listed in Figure 83. When the entire data set, i.e., data sections

from ‘{1}’ to ‘{4}’, are used to calculate the AMD indicator, abnormal results are

obtained, as shown in Figure 84. Also, the large deviations between faulty sections

and the healthy section come from the transient data, not from the bearing fault itself.

When only using data sections, that are in the same speed set point, i.e., sections

‘{1}’, ‘{2}’ and ‘{4}’, the AMD indicator gives reasonable results, as shown in Figure

85.

When motors are operating at different speeds, the magnitude and location of

the fundamental frequency changes according to the VSI speed set points. The mag-
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Fig. 82. Vibration Indicator of Data Set #2 for Transient Operation; Closed-loop

Control.

Fig. 83. Transient Sections in Data Set #2; Closed-loop Control.
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Fig. 84. Incorrect Detection Using AMD Indicator for Transient Operation Data Set

#2; Closed-loop Control.

Fig. 85. Correct Detection Using AMD Indicator for Transient Operation Data Set

#2; Closed-loop Control.
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nitudes and locations of integer harmonics of the fundamental frequency and other

inter-harmonics also change. In applying the proposed fault detection method, these

variations must be accounted.

G. Effect of Bearing Faults on Motor Efficiency

When the bearing is damaged, the motor losses caused by the increased friction will

be larger. This decreases the motor efficiency.

The motor efficiency is calculated as follows,

Efficiency =
Torque× Speed√

3× Vrms × Irms × PF
. (4.1)

where Vrms and Irms are RMS values of the line voltage and the line current, respec-

tively. PF is the power factor.

The gearbox test-bed is used to conduct an efficiency experiment. The motor

torque is measured by an AC100V Torque Detector, and the motor speed is measured

by a MP981 encoder. The experiment procedure of the efficiency experiment is the

same with the closed-loop experiment procedures listed in Figure 66.

The vibration indicator and the AMD indicator for this experiment are shown in

Figures 86 and 87. The motor efficiency is shown in Figure 88. It can be seen that the

motor efficiency decreases from around 79.8% in healthy condition, to around 76.5%

in faulty condition.

H. Chapter Summary

The experimental results are shown in this chapter. These experiments are based on,

• different power supplies, supply mains, and VSI;

• different load levels, 0%, 20%, 40%, 41%, and 45% loads;
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Fig. 86. Vibration Indicator for Motor Energized by Power Supply Mains.

Fig. 87. Electrical AMD Indicator for Motor Energized by Power Supply Mains.
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Fig. 88. Motor Efficiency for Motor Energized by Power Supply Mains.

• different VSI control methods, open-loop, and closed-loop controls;

• different motor operation conditions, steady state, and transient operations;

and,

• different fault indicators, electrical AMD indicators, and mechanical vibration

indicators.

The mechanical vibration indicator can effectively detect mechanical faults of

induction motors. It is used as the fault detection capability reference for the electrical

AMD indicators. Experimental results show that electrical AMD indicators developed

in this research can effectively detect incipient bearing faults in motors with a constant

load level. When motors are operating at steady state, experimental results show that

the fault detection rate is 100%.
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The proposed method cannot be directly used in motors working in transient

operation conditions. To use this method in transient operation, additional steps are

needed to detect the steady state regions.

The damaged bearing increases motor losses. Experimental result show that the

motor efficiency drops significantly when the bearing is damaged.
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CHAPTER V

SUMMARY AND CONCLUSIONS

A new approach for rolling element bearing fault detection is proposed. In this

chapter, this research is summarized, and future research work is suggested.

A. Summary of Research

The objective of this research is to develop a data driven approach for bearing fault

detection of induction motors energized by power supply mains and VSI type drives.

In the proposed method, only motor terminal voltages and currents are utilized for

fault detection purposes.

To develop a bearing fault detection scheme, bearing faults are often staged in an

off-line manner. That is, disassembling the bearing, damaging it separately and then

assembling the machine. The act of disassembling, reassembling, remounting, and

realigning the test motor significantly alters the current and vibration characteristics

of the machine, which is one of the difficulties in developing a bearing fault monitoring

scheme. In this research, in-situ bearing damage experiments are conducted so that

the life span of the bearing can be simulated in an accelerated manner and a bearing

fault detection scheme can be developed and tested.

Bearing faults can be categorized into single point defects and generalized rough-

ness defects. In both single point defect and generalized roughness bearing faults, the

damaged bearing leads to radial motion between the stator and the rotor. This kind

of motion varies the air gap of the machine, so that the original amplitude modulation

relationships in the healthy motor are changed when bearings are damaged. In single

point defect bearing defects, the fault related frequencies can be determined using

the bearing geometric dimensions, while in generalized roughness bearing defects,
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the fault related frequencies are located in wide frequency bands and are not easily

predictable. Moreover, the damaged bearing impedes the rotor rotation and imposes

extra load on the motor. Although this extra load itself is small and ignorable, the

load fluctuations of the motor are increased. These load fluctuations are also modu-

lated by frequency components in input voltages. Because the fundamental frequency

is dominated in the voltage spectrum, amplitude modulation relationships between

spatial harmonics and all other voltage harmonics are masked. Only the amplitude

modulation relationship between spatial harmonics and the voltage fundamental fre-

quency can be used for the fault detection purpose.

Bearing faults can be captured easily in frequencies that are modulated with the

fundamental frequency of the supply. This modulation relationship can be isolated

using the phase coupling between the bearing fault frequencies and the supply funda-

mental frequency. An Amplitude Modulation Detector (AMD), developed from the

estimation of the higher order spectrum, can correctly capture the phase coupling

and isolate these modulation relationships. This is the proposed approach in this

research.

Induction motors are commonly energized by power supply mains or VSI type

drives. The system power supply plays a very important role in induction motor

bearing fault detection. Variations in the power supply definitely change the stator

current spectrum and mask bearing fault information. To negate the effects of the

power supply, bearing fault indicators are developed using stator currents and the

voltages.

In Chapter II, causes of bearing faults and failures are explained. Amplitude

modulation relationships of bearing single point defects and generalized roughness

faults are discussed. The in-situ bearing damage experiment setups used in this

research are described. Practical experiment issues, such as shaft currents, grease
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amount, and experiment time, are discussed.

In Chapter III, estimation procedures for the AMD are introduced. Effects of

supply voltages on stator currents are explored. Based on this, a modulation model

and electrical AMD indicator are derived. Moreover, a mechanical vibration indicator

is provided. This indicator is used as a reference for the fault detection capability of

the electrical indicator.

In Chapter IV, experimental results are shown based on power supply mains and

VSI, different load levels, different VSI control schemes, and different motor oper-

ating conditions. Taking the mechanical vibration indicator as a reference for fault

detection, the proposed method is shown as effective in detecting incipient bearing

faults in induction motors.

B. Conclusions

The conclusions drawn from this research are summarized as follows:

1. The developed approach can effectively detect incipient bearing faults in in-

duction motors energized by power supply mains and VSI type drives. This

approach is load dependent. If motors are operated at near steady state con-

ditions, then experimental results show that the bearing fault detection rate is

100% and there are no false alarms.

2. The developed approach is intended for motors operated at steady-state con-

ditions. If transient conditions are encountered, then the data must be pre-

processed to segment the steady-state regions.
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C. Recommendations for Future Research

The fault detection method developed in this research is demonstrated to be an

effective way for detecting rolling element bearing faults. Based on the research

reported in this dissertation, some possible topics for future research are:

1. Load independence - The proposed method is load dependent. To negate the

load effects of the bearing fault detection method is one of the most important

topics for future research.

2. Other types of motor faults - The proposed method not only could detect bear-

ing faults, but it could also detect other types of motor faults that introduce

some form of modulation relationships in the spectrum of motor terminal sig-

nals. Hence, further tests on other types of motor faults are needed.

3. Diagnosis - Distinguishing the bearing faults from other types of motor faults.

4. Prognostics - Predicting the remaining operational life of damaged bearing.
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APPENDIX A

DEFINITIONS OF HIGHER ORDER CUMULANTS AND SPECTRA

In this section, a brief overview of higher order spectra is presented. Detailed

information on this topic can be found in [43] and [?].

Higher order spectra are defined in terms of cumulants and therefore are also

called cumulant spectra. Given a set of n real random variables x1, x2, ..., xn, their

joint cumulants of order r = k1 + k2 + ... + kn are defined as

ck1,...,kn = (−j)r ∂rlnΦ(ω1, ω2, ..., ωn)

∂ωk1
1 ∂ωk2

2 ...∂ωkn
n

|ω1=ω2=...=ωn=0, (A.1)

where Φ(ω1, ω2, ..., ωn) = E[ej(ω1x1+...+ωnxn)] is their joint characteristic function.

The joint moments of order r of the same set of random variables are given by

mk1,...,kn = E[xk1
1 xk2

2 ...xkn
n ]

= (−j)r ∂rΦ(ω1, ω2, ..., ωn)

∂ωk1
1 ∂ωk2

2 ...∂ωkn
n

|ω1=ω2=...=ωn=0.

(A.2)

Hence, the joint cumulants can be expressed in terms of the joint moments of

the random variables.

By taking X(n), n = 0, 1, 2, ... to be a real stationary random process with zero

mean, E[X(n)] = 0, then the moment sequences of the process are related to its

cumulants as given below:

Autocorrelation sequence:

E[X(n)X(n + τ1)] = m2(τ1) = c2(τ1), (A.3)
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Third order moment or cumulant sequence:

E[X(n)X(n + τ1)X(n + τ2)] = m3(τ1, τ2) = c3(τ1, τ2), (A.4)

Fourth order moment sequence:

E[X(n)X(n + τ1)X(n + τ2)X(n + τ3)] = m4(τ1, τ2, τ3)

= c4(τ1, τ2, τ3) + c2(τ1)c2(τ3 − τ2)

+c2(τ2)c2(τ3 − τ1) + c2(τ3)c2(τ2 − τ1).

(A.5)

The N th order spectrum C(ω1, ω2, ..., ωn) of the process X(n) is defined as the

Fourier Transform of its Nth order cumulant sequence cN(τ1, τ2, ..., τN−1),

C(ω1, ω2, ..., ωn) =
∞∑

τ1=−∞
...

∞∑
τN−1=−∞

cN(τ1, τ2, ..., τN−1)e
−j(ω1τ1+...+ωN−1τN−1). (A.6)

In general, C(ω1, ω2, ..., ωn) is complex and a sufficient condition for its existence

in that cN(τ1, τ2, ..., τN−1) is absolutely summable. The power spectrum, bispectrum

and trispectrum are special cases of the N th order spectrum defined by equation (A.6).

At this point, a natural question that arises is why the N th order spectrum (or

polyspectrum) is defined as the Fourier Transform of the cumulant rather than of the

moment sequence of X(n). The reason is twofold: a) if X(n) is a stationary Gaussian

random process, than all its N th order moments for N ≥ 3 do not provide any addi-

tional information pertaining to the process. It is, therefore, better to have a function

that shows this fact explicitly. The cumu1ant spectrum function does so since higher

order (N ≥ 3) cumulants are zero for Gaussian processes; b) if the random variables

x1, ..., xn can be divided into any two or more groups which are statistically indepen-

dent, their N th order cumulants are identically zero. Hence, cumulant spectra provide
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a suitable measure of statistical dependence. Finally, the ergodicity requirements are

met more easily with cumulants than with moments.
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APPENDIX B

CALCULATION OF THE RMS, THD, IMBALANCE AND SNR

The Root Mean Square (RMS) of a time series x(n) is defined as follows,

RMS =

√√√√ 1

N

N∑
i=1

x(i)2. (B.1)

The Total Harmonic Distortion (THD) is defined as the RMS value of the total

harmonics of the signal, divided by the RMS value of its fundamental frequency. The

THD is defined as,

THD =

√
I2
2 + I2

3 + ... + I2
n

IF

. (B.2)

where In is the RMS value of the nth harmonics; IF is the RMS value of the funda-

mental frequency.

For three phase signals a, b, c, the imbalance is calculated as,

Imbalance =
max |RMS(a,b,c) − avg|

avg
. (B.3)

where RMS(a,b,c) is the individual RMS values of the a, b, c phases, and avg is the

average of the RMS over the three phases.

Signal to noise ratio is an engineering term for the power ratio between a signal

(meaningful information) and the background noise. It is defined as,

SNR(dB) = 10 log10(
Psignal

Pnoise

) (B.4)

where P is the average power.
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