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ABSTRACT

Sensorless Fault Diagnosis of Centrifugal Pumps. (May 2007)

Parasuram Padmanabhan Harihara, B.E., Osmania University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Alexander G. Parlos

Analysis of electrical signatures has been in use for some time to assess the

condition of induction motors. In most applications, induction motors are used to

drive dynamic loads, such as pumps, fans, and blowers, by means of belts, couplers and

gear-boxes. Failure of either the electric motors or the driven loads is associated with

operational disruptions. The large costs associated with the resulting idle equipment

and personnel can often be avoided if the degradation is detected in its early stages,

prior to reaching catastrophic failure conditions. Hence the need arises for cost-

effective schemes to assess not only the condition of the motor but also of the driven

load.

This work presents an experimentally demonstrated sensorless approach for model-

based detection of three different classes of faults that frequently occur in centrifugal

pumps. A fault isolation scheme is also developed to distinguish between motor re-

lated and pump related faults. The proposed approach is sensorless, in the sense that

no mechanical sensors are required on either the pump or the motor driving the pump.

Rather, fault detection and isolation is carried out using only the line voltages and

phase currents of the electric motor driving the pump, as measured through standard

potential transformers (PT’s) and current transformers (CT’s) found in industrial

switchgear.

The developed fault detection and isolation scheme is insensitive to electric power

supply variations. Furthermore, it does not require a priori knowledge of a motor or
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pump model or any detailed motor or pump design parameters; a model of the system

is adaptively estimated on-line. The developed algorithms have been tested on three

types of staged pump faults using data collected from a centrifugal pump connected

to a 3 − φ, 3 hp induction motor. Results from these experiments indicate that the

proposed model-based detection scheme effectively detects all staged faults with fault

detection times comparable to those obtained from vibration analysis. In addition to

the staged fault experiments, extended healthy operation reveals no false alarms by

the proposed detection algorithm. The proposed fault isolation method successfully

classifies faults in the motor and the pump without any mis-classification.
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CHAPTER I

INTRODUCTION

A. Motivation

Motor current signature analysis (MCSA) and electrical signal analysis (ESA) have

been in use for some time to estimate the condition of induction motors based on

spectral analysis of the motor current and voltage waveforms. In almost all applica-

tions, motors are always coupled to other dynamic systems. Consequently, it would

be more beneficial if the drivepower system as a whole is monitored. A drivepower

system includes the electronic drive and control packages, motors, shafts, couplers,

belts, chains, gear drives, bearings, pumps, conveyors, etc. As time passes, all of the

individual system components of the drivetrain degrade and finally some component

catastrophically fails resulting in an unscheduled shutdown. The large costs asso-

ciated with the resulting idle equipment and personnel can often be avoided if the

degradation is detected in its early stages [1]. Hence there is a need for an effective

diagnosis scheme not only for condition assessment of the motor, but also for the rest

of the drivetrain. This work deals with the sensorless diagnosis of faults that occur

in centrifugal pumps driven by induction motors.

A point to note is that the proposed approach is “sensorless” in the sense that no

mechanical or process-based sensors are used for the detection and isolation of faults

that occur within centrifugal pumps. Only the motor electrical signals are used. The

motor line voltages and phase currents can be measured using potential transformers

(PT’s) and current transformers (CT’s), which are standard installations in most of

the industries and are easily accessible.

The journal model is IEEE Transactions on Automatic Control.
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A lot of effort has been invested in detecting and diagnosing incipient faults in

centrifugal pumps through the analysis of vibration data, obtained using accelerome-

ters installed in various locations on the pump. Fault detection schemes based on the

analysis of process data, such as pressure, flow and temperature have also been de-

veloped. In some cases, speed is used as an indicator for the degradation of the pump

performance. All of the above mentioned schemes require sensors to be installed on

the system. Installation of these sensors leads to an increase in overall system cost.

Additional sensors need cabling, which also contributes towards increasing the cost

of the system. These sensors have lower reliability, and hence fail more often than

the system being monitored, thereby reducing the overall robustness of the system.

In some cases it maybe difficult to access the pump to install sensors. One such

example is the case of submersible pumps wherein it is difficult to install or maintain

sensors once the pump is underwater. To avoid the above-mentioned problems, the

use of mechanical sensors has to be avoided to the extent possible. Since many of the

industrial pumps currently in use are centrifugal pumps (about 90% [2]) and most are

driven by induction motors, the present work concentrates on analyzing the motor

line currents and line voltages to detect and diagnose faults occurring in centrifugal

pumps.

A fault diagnosis scheme consists of three stages, which are described below:

1. Stage 1 - Fault Detection: This stage involves analyzing the fault features ex-

tracted from the sampled signals and detecting the presence of a fault in the

system. The output of this stage informs the plant supervisor or the manager

that the system under supervision is not performing up to its standards. There

is no further information as to which component within the system is faulty and

what type of fault is present.
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2. Stage 2 - Fault Isolation: Once it has been established that there is a fault

in the system the next stage is to locate the fault and determine the faulty

component. This would save time for the maintenance personnel in deciding

the course of action to be taken to get the system back online. Moreover, the

equipment/production downtime would be reduced drastically as the person-

nel would not be dismantling many components to establish the cause of the

downtime.

3. Stage 3 - Fault Identification: Once the faulty component is determined, the

downtime can be further reduced if the maintenance personnel have informa-

tion about the type of fault. For example whether the fault is of mechanical

or electrical origin. This would enable them to be ready with the necessary

spare parts or the repair personnel to replace or repair the faulty part of the

component.

This work deals only with the first two stages of the fault diagnosis scheme.

B. Problem Definition

The objective of this work is to develop and validate an efficient, sensorless fault

detection and isolation scheme for operational and mechanical faults that occur within

centrifugal pumps. The developed scheme must not generate false alarms arising due

to changes in the power supply or load and/or load pulsations. At the same time,

the scheme must have a high probability of fault detection and enable the distinction

between motor and pump faults.
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C. Literature Survey

Most of the literature on fault detection of centrifugal pumps is based on techniques

that require the measurement of either vibration or other process based signals. There

are very few references that deal with sensorless or non-invasive/non-intrusive tech-

niques to diagnose faults in centrifugal pumps. Moreover, in all the literature pre-

sented, the motor is considered to be “healthy”. No experiments are performed to

determine whether the fault exists in the motor or in the pump. Faults are only staged

in the pump and this knowledge is used in the detection of pump faults. But in reality,

this information is seldom available. In [3], the authors review the latest techniques

that are employed in pump diagnostics. A list of typical pump problems that develop

in the pump along with the conventional method of detection is presented.

In [4], the development and application of signal processing routines for the con-

dition monitoring of water pumps used in submarines is discussed in detail. Eroded

impeller condition of a Bryon Jackson Sea Water Pump, which is a centrifugal pump,

found in submarines is investigated. The eroded condition affects the mechanical load

and the amount of torque provided by the three phase induction motor. It is postu-

lated that changes in the load torque would lead to changes in the input power driving

the induction motor. Hence fault features related to eroded impeller conditions are

extracted from the power spectrum using the signal processing algorithms developed

and these features are used as indicators for fault diagnosis. A classification scheme

based on the nearest neighborhood technique is also developed. Using this technique,

90% of the test cases are classified correctly. A neural network-based scheme is also

developed to improve the classification accuracy.

In [5, 6, 7, 8], the authors point out that the operation of the pump away from its

best efficiency point (BEP) has been a significant source of pump problems. Unsteady
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hydraulic forces are the dominant sources of overall loads for centrifugal pumps. In

this work, motor current and power analysis has been shown to be an alternative for

the detection of some of the operational and structural problems related to pumps.

Some of the cases considered are:

• Load stability versus flow rate,

• Equipment misalignment and

• Clogged suction strainer.

A comparative study between the vibration spectrum, power spectrum and the torque

ripple spectrum is undertaken in the detection of the above-mentioned case studies.

In these studies, the underlying assumption is that the motor speed, current, power

and power factor change in response to load changes or fluctuations. The idea is to

monitor the load related peaks in the power or current spectrum. Since the motor

power changes relatively linearly with load as opposed to the nonlinear relationship

between the current and the load, the motor power is considered as the parameter to

be monitored. The running speed harmonic is one of the indicators monitored in the

power spectrum to establish the condition of the pumps under consideration. It is con-

cluded that although vibration spectra obviously provided critical equipment health

information, the motor current and the power spectra analysis offered an attractive

alternative in diagnosing the condition of the pumps.

Some of the submersible pumps in operation today are at a depth of more than

1000 meters. Therefore the use of vibration sensors for pump and motor protection

and condition monitoring is difficult due to the extreme conditions and remote loca-

tions. Motor current signature analysis (MCSA) offers an attractive alternative for

the condition monitoring of these pumps. For example, if a pump is running under
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improper conditions, the torque transmitted from the motor to the pump will be

influenced. Non-stationary torque changes cause non-stationary changes in the rotor

speed inducing amplitude modulation of the motor current. In [9], motor currents are

analyzed to detect some of the faults that occur in centrifugal pumps, namely, partial

flow operation, reverse rotation, disturbed inflow condition, cavitation, air suction

and bearing failures. The energy content of the current signal in the frequency range

of 2 Hz to 10 Hz is considered as an indicator. Depending on the changes in the noise

floor level in certain operating regions of the pump, the above-mentioned faults are

diagnosed.

The work in [10] deals with the development of a multi-model fault diagnosis

system of an industrial pumping system. The system under consideration is a seawater

pumping system in operation at the Nuclear Electric “Heysham 2” power station.

The system is based around the operation of two centrifugal pumps with associated

valves, motors and pipework. This system can have two different type of faults;

incipient, slowly-developing faults whose effects may be difficult to distinguish from

normal operating condition changes and abrupt severe faults which must be detected

immediately. A detailed nonlinear and linear simulation model of the two-pump

system is developed, of which the linear model is used as the basis for fault detection

and isolation. Two different approaches to model-based fault detection are outlined

based on observers and parameter estimation. For the observer based methods, the

motor current, the suction and the discharge pressures are monitored. A vector

of residuals was formed from the outputs of the observer and the actual outputs

(in these cases, simulations). The deviation of these residuals from zero indicates

the presence of a fault. Similarly a simplified model was developed for parameter

estimation case. The relationship between the model coefficients and the physical

parameters of the system was developed. Residual signals were formed by comparing
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each on-line calculated parameter with the respective known parameter values derived

from known fault free situations. The results showed that the majority of these faults

were identified by their effect on the different residuals. The authors also point out

that the observer method and the parameter estimation method can be combined for

more effective fault diagnosis.

In [11], the motor current is used as a diagnosing signal to estimate the following

faulty conditions in pumps:

• cavitation (including low-level cavitation as a separate fault),

• blockage (including low-level blockage as a separate fault) and

• damaged impeller.

Fault signatures are established by relating the spectral features to individual faults

and by analyzing their behaviour in the presence of faults. Eight attributes are chosen

to characterize the three faults considered. A fuzzy logic system is then designed to

classify the faults. The consistency of the selected attributes is established so that

they could be used as inputs to the fuzzy logic system, which performs the evaluation

based on the rules set and finally makes a decision on the pump condition. The fuzzy

logic system is developed using data collected from a centrifugal pump and is tested

and evaluated with data collected from another centrifugal pump. The probability of

fault detection varies from 50% to 93%. The authors finally conclude that adjustments

to the rules or the membership functions are required so that differences in the pump

design and operating flow regimes can be taken into consideration. They also point

out that, in industrial setups the pump type, size and performance specifications are

fixed and are unlikely to undergo any change.

In [12, 13], electrical signature analysis (ESA) is extended to condition monitoring

of aircraft fuel pumps. While considerable amount of data are acquired from both



8

main and auxiliary pumps, the data analysis is concentrated on data obtained from

the auxiliary pumps. Among the various degraded conditions observed, the bearing

wear is selected to demonstrate the effectiveness of ESA in determining the pump

condition. Moreover, inspection of the auxiliary pumps shows that the front bearing

wear is more common than the rear bearing wear, since the front bearing/journal

clearance is mostly greater than the rear bearing/journal clearance in almost all the

cases considered. After considerable study, it is established that the best indicator

of front bearing wear in the motor current spectrum is not any specific frequency

peak but is the base or floor of the spectrum. The noise floor of the demodulated

current spectrum at dead-head (zero flow) conditions is observed to increase in all

the pumps having degraded front bearings. The authors also point out that methods

for detecting other pump degradations would be developed.

In [14], a model-based approach using a combination of structural analysis, ob-

server design and analytical redundancy relation (ARR) design is used to detect faults

in centrifugal pumps driven by induction motors. Structural considerations are used

to divide the system into two cascaded connected subsystems. The variables connect-

ing the two subsystems are estimated using an adaptive observer derived from the

equations describing the first subsystem. The fault detection algorithm is based on

an ARR which is obtained using Groebner basis algorithm. Four different types of

faults, namely, clogging inside the pump, dry running, rub impact and cavitation are

staged to test the validity of the algorithm. The measurements used in the develop-

ment of the fault detection method are the motor terminal voltages and currents and

the pressure delivered by the pump.

In [15], a fault detection scheme has been discussed, which assumes that the

torque and the speed of the motor can be measured and that either the differential

pressure between the suction and discharge, or the pump flow can be measured. The
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measured process variable is compared to that which is computed based on the motor

speed and torque. An important point to note is that, an inherent assumption is

made regarding the health of the motor. It is assumed that the motor is healthy. The

measured parameters also change if the motor develops a fault or if the load level is

changed.

In [16], a diagnosis scheme to detect the low flow and/or cavitation condition in

centrifugal pumps using the current and the voltage data of the motor is patented.

These signals are conditioned, which includes amplification, anti-aliasing, etc. They

are sampled at a rate of approximately 5 kHz. From the sampled voltage and the

current signals, a power signal is determined by multiplying the voltage and the

current values. The power signal is then re-sampled to 213.33 Hz. This signal is then

used to compute a 1024 point FFT, with a frequency resolution of around 0.208 Hz.

The spectral energy within the band of about 5 to 25 Hz is calculated and the noise

energy in this region is compared to the baseline signal. If the difference exceeds a

certain fixed threshold value, a warning signal is raised. The authors also propose

an alternate method for detecting the low flow/cavitation using a digital band-pass

filter as opposed to an FFT to generate the output that represents the energy content

around the 5 to 25 Hz range. In this case though, the signal is re-sampled to 500

Hz and the region of interest is reduced to 5 to 15 Hz as the filter must attenuate

frequencies over 25 Hz without a complex transfer function. In [17], the authors

describe a fault detection system for diagnosing potential pump system failures using

fault features extracted from the motor current and the predetermined pump design

parameters.

Most of the literature presented above deal with detecting pump faults either

by using vibration and process measurements or by using physics based models. The

drawbacks of using vibration and process sensors were outlined earlier and the need to
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avoid mechanical sensors was established. The models developed depend on the pump

design parameters, which are not easily available and hence the detection schemes

presented in the literature are not easily portable to other pump systems. Some of the

studies however, use motor electrical signals to detect pump faults, but these detection

schemes are based on either tracking the variation of the characteristic fault frequency

or computing the change in the energy content of the motor current in certain specific

frequency bands. The fault frequency depends on the design parameters, which are

again not easily available. For example, the rolling element bearing fault frequency

depends on the bearing diameter, pitch, number of rollers, etc. This information is

not available, unless the pump is dismantled. Changes in the energy content of certain

frequency bands could also result due to changes in the power supply or changes in the

load even without any fault in the pump. Hence, this would result in the generation

of frequent false alarms. Moreover, none of the literature mentioned above deal with

the distinction between motor and pump faults.

D. Research Objectives

Based on the previous section, it can be seen that there is not only a strong need

to develop a non-intrusive/non-invasive and sensorless fault detection algorithm to

detect faults in centrifugal pumps but also the developed scheme must be insensitive

to false alarms and must be independent of the motor and pump design parameters.

Moreover, a fault isolation scheme has to be developed to distinguish between motor

faults and pump faults. The research objectives can be summarized as follows:

• Develop a sensorless fault detection and isolation method to

– detect faults in centrifugal pump.

– distinguish between motor faults and pump faults.
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• The desired performance characteristics are:

– exhibit high probability of fault detection.

– exhibit low probability of false alarms.

– continuous monitoring system.

– independent of motor and pump design information.

E. Proposed Approach

The objectives of the proposed research can be achieved by dividing them into three

phases, which are as explained below:

1. Phase 1: The first task consists of controlled experiments of the various an-

ticipated healthy conditions of the centrifugal pump. The pump curves at the

healthy state of the pump will be established through these experiments and

the best efficiency region of the pump will be determined. Performance metrics

pertaining to the cavitation conditions will be established in order to approxi-

mately quantify the effects of operational faults in centrifugal pumps.

2. Phase 2: In this phase, the motor line currents and line voltages will be sam-

pled and analyzed to extract fault features pertaining to the operational and

structural problems of the pump. The first step would be to carry out signal

segmentation of the motor currents and analyze only the stationary parts of

the signal. Digital signal processing techniques such as FFT analysis will be

used to extract the different fault features. The second step will be to develop a

generalized early fault detection scheme based on the extracted fault features.

This will be based on recent work in [18, 19] that describes the development of

a sensorless system for the detection of both mechanical and electrical incipient
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faults developing in induction motors. The detection effectiveness of the system

has been experimentally demonstrated on motors of varying power rating [18].

Furthermore, the false alarm reduction effectiveness of the system has also been

experimentally demonstrated [19].

3. Phase 3: This is the final phase, which deals with the design of a fault isolation

algorithm to distinguish between faults occurring in the pump and the motor.

Higher order spectra will be used to distinguish between motor and pump faults.

F. Research Contributions

This work concentrates on developing and validating a sensorless fault diagnosis al-

gorithm for centrifugal pumps that is based on the analysis of the motor currents

and voltages only and it is independent of a priori motor and pump model and/or

parameters. The contributions of this work can be summarized as follows:

• Use of the motor currents and voltages to detect some of the most commonly

encountered faults in centrifugal pumps.

• Design and evaluation of a fault isolation scheme, to differentiate between faults

in centrifugal pumps and motors that are used to drive them.

• The fault detection and isolation algorithms are:

– insensitive to motor electric power supply variations.

– insensitive to pump load changes or load fluctuations.

– independent of a priori motor and pump models and/or design parameters.

Thus the proposed fault diagnosis approach is considered quite portable to motor-

pump systems of different size and manufacturer.
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G. Organization of Dissertation

In Chapter II, a brief overview of centrifugal pumps and principles of operation are

discussed. Some of the common failure modes of centrifugal pumps are also presented.

In Chapter III, an overview of signal-based and model-based fault detection meth-

ods are described. The basic principle involved in detecting pump faults using motor

electrical signals is also discussed in detail.

In Chapter IV, the details of the proposed model-based fault detection and iso-

lation methods are presented. The development of the fault detection and isolation

indicators are described in some detail.

In Chapter V, the experimental results obtained in this research are presented

in detail. A brief discussion of the experimental setup used for the validation of the

proposed fault detection and isolation methods is also discussed.

In Chapter VI, a summary of the work, conclusions drawn from this research and

directions for future research are presented.
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CHAPTER II

PUMP OPERATION AND FAILURE MODES

A. Pump Classification

Pumps are mainly used to transfer liquids from low pressure zones to high pressure

zones. They are classified based on the principle by which energy is added to the

fluid being pumped. The two principal families are kinetic energy pumps and posi-

tive displacement pumps. A pump classification tree is shown in Figure 1. Positive

displacement pumps perform work by expanding and then compressing space within

the pump. They actually capture the liquid and physically transport it through the

pump to the discharge nozzle. Reciprocating pump is an example of such a type of

pump. Kinetic energy pumps can be further subdivided into centrifugal pumps (the

vast majority of pumps) and special effects pumps. Jet pumps, reversible centrifugal,

gas lift and electromagnetic pumps are some examples of special effect pumps. Cen-

trifugal pumps generate pressure by accelerating and then decelerating the movement

of the liquid through the pump. These pumps can be further classified based on the

position of the pump shaft (horizontal or vertical), the way in which liquid enters the

eye of the impeller (single-suction or double suction), type of flow (axial or radial or

mixed), number of impellers (single-stage or multi-stage), etc. The impellers used in

these pumps are also classified as closed, semi-open and open. A closed impeller has

side walls that extend from the eye to the outer edge of the vane tips; an open impeller

does not have side walls, whereas a semi-open impeller has side walls extending only

on one side. Since about 90% of the pumps used in industry are centrifugal pumps [2],

the present research concentrates on diagnosing faults arising in centrifugal pumps.

Specifically, the centrifugal pump under consideration is a single-stage, single suction,
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Fig. 1. Pump classification tree [20].
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nonself-priming, open impeller, radial flow pump.

B. Centrifugal Pumps - Basics and Principles of Operation

The principle pumping unit of a centrifugal pump is the volute and the impeller,

as shown in Figure 2. The liquid enters into the eye of the impeller and is trapped

between the impeller blades. The blades impart speed to the liquid as it moves

towards the tip of the blade. As the liquid accelerates in velocity, a zone of low

pressure is created in the eye of the impeller (the Bernoulli principle, as the velocity

goes up, pressure goes down). The liquid leaves the outer diameter of the impeller

at high speed and immediately slams into the internal casing of the volute. At this

point, the liquids centrifugal velocity is equal to zero and the velocity is converted to

pressure. Since the motor is spinning, the liquid still has rotary velocity. The liquid

is then conducted around the internal volute housing in an ever increasing escape

channel. As the pathway increases, the rotary velocity decreases and more pressure is

added to the liquid, which leaves through the discharge nozzle prepared to overcome

the resistance in the system [2, 21].

The operation of pumps is governed by laws known as “affinity laws”. These are

a group of rules that can be used to determine the operational characteristics of the

pump when the pump velocity changes. These rules are shown below:

Q ∝ N

H ∝ N2 (2.1)

BHP ∝ N3

where ’Q’ is the liquid volume measured in gallons per minute (gpm), ’H’ is the total

head measured in feet, ’N’ is the shaft velocity measured in revolutions per minute
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Fig. 2. Inside of a centrifugal pump [22].

(rpm) and ’BHP’ is the brake horsepower measured in horse power (hp).

The performance of a pump is characterized by means of the interrelations be-

tween the pump head, efficiency, flow and the brake horsepower. These interrelations

can be graphed on a chart and this chart is commonly referred to as the pump-

characteristic curves. The pump-characteristic curve is actually four curves on a

common graph:

1. The Head-Flow Curve; it is called the H-Q curve,

2. The Efficiency Curve,

3. The Energy Curve, and

4. The Pump’s Minimum Requirement Curve; this is called Net Positive Suction

Head Required, NPSHr.
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A typical centrifugal pump performance chart is shown in Figure 3. As flow increases,

the total head starts to drop gradually. The brake horsepower (BHP) generally in-

creases linearly with flow. The efficiency curve is in the form of a bell curve, with

the peak point termed as the best efficiency point (BEP). The net positive suction

head required (NPSHr) remains flat till the BEP zone. Once the curve crosses the

BEP value, the NPSHr increases exponentially. It is advisable to operate a pump at

or near the BEP zone. Operation of a pump to the far left or far right of the BEP

zone is detrimental and the consequences of such an operation are discussed in some

detail in later sections.

Fig. 3. Typical performance curves of a centrifugal pump [23].
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C. Common Failure Modes in Centrifugal Pumps

Pump failures can occur either due to improper operational conditions or mechanical

damage. Some of the most common adverse consequences arising due to poor main-

tenance and improper operation of pumps are described in the following subsections

in no particular order.

1. Cavitation

Cavitation is defined as the formation and subsequent collapse or implosion of vapor

bubbles in the pump. It occurs because the absolute pressure on the liquid falls

below the liquids vapor pressure. If cavitation occurs in a pump, then its efficiency is

reduced. It can also cause sudden surges in flow and pressure at the discharge nozzle.

The effects of cavitation are noise and vibration. There are five recognized types of

cavitation [2]. Each type of cavitation is briefly explained below:

• Vaporization cavitation: This is also known as the “classic cavitation” and it is

mainly caused from the inadequate net positive suction head available (NPSHa).

This type of cavitation accounts for around 70% of all pump cavitation prob-

lems. The damage from vaporization cavitation can be seen behind the impeller

blades towards the eye of the impeller.

• Internal recirculation cavitation: This is a low flow condition where the dis-

charge flow of the pump is restricted and the liquid is forced to re-circulate

from high pressure zones in the pump into the low pressure zones across the

impeller. This type of cavitation originates from two sources. First, the liquid

is circulating inside the volute of the pump at the speed of the motor and it

rapidly overheats. Second, the liquid is forced to pass through tight tolerances

at very high speed. The heat and the high velocity cause the liquid to vapor-



20

ize. With open impellers, the damage can be seen on the leading edge of the

impeller blades towards the eye of the impeller and on the blade tips towards

the impellers outer diameter (OD). On enclosed impellers, the damage reveals

itself on the wear bands between the impeller and the volute casing.

• Vane passing syndrome: This can exist when the blade tips at the OD of the

impeller are passing too close to the cutwater on the pump casing. The free

space between the impeller blade tips and the cutwater should be around 4%

of the impeller diameter.

• Air aspiration: If a mixture of air and liquid enters the impeller, then the

centrifugal forces generated by the rotating blades throw the heavier liquid out-

ward, thus trapping the air in the center of the pump. Under certain conditions,

enough air is trapped in the eye of the impeller, that it separates the liquid in

the suction line completely from the liquid at the outer radii of the impeller.

Depending on the amount of air trapped in the eye of the impeller, this dis-

placed air can fully or partially block the inlet to the impeller vanes. In the

first case, the pump is not able to deliver any liquid. In the second case, the

pump may start to deliver reduced amount of liquid provided that it can de-

velop sufficient head to overcome the resistance of the system. There are two

sources of air entering a centrifugal pump: air pockets and air leakage. Air

pockets can occur in the suction line, the pump casing or the discharge line.

Air leaks into the piping and pump in diverse forms and at different points [23].

This type of cavitation manifests itself similar to the vaporization cavitation,

but the solution is different. To prevent this type of cavitation, all the points

of entrance and escape has to be sealed effectively.

• Turbulence cavitation: This results from the turbulence caused by formation of
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vortexes in the suction flow and/or inadequate piping, sharp elbows, restrictions,

etc.

If a pump operates under cavitation conditions for sufficient amount of time, the

following can occur:

• Pitting marks on the impeller blades and on the internal volute casing wall of

the pump,

• Premature bearing failure,

• Shaft breakage and fatigue failures in the pump, and

• Premature mechanical seal failure.

These problems arise from one or more of the following:

• A reduction in the pressure at the suction nozzle,

• An increase in the temperature of the pumped liquid,

• An increase in the velocity or flow of the fluid,

• Undesirable flow conditions caused by sharp elbows in the suction piping, and

• The pump is inadequately sized for the system.

2. Very Low or Zero Flow Operation

This condition occurs when a pump does not deliver the required flow rate or does

not pump sufficient amount of liquid even at the maximum speed. This arises when

a pump is operating far to the left of the BEP zone. This results from severely

over-designing the pump for the system. Under partial load conditions, excessive
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recirculation of the liquid can be observed. This causes the liquid to overheat. The

liquid enters the impeller at an angle smaller than the blade angle. This creates a dead

space in the region, where cavitation usually begins to develop. The pump suffers

from high head and pressure, radial loading, shaft deflection and high vibrations that

can affect the motor and the pump bearings. All these conditions lead to loss of

pumping efficiency. The problems caused by recirculation increase with increasing

pump size and speed.

3. Dry Running

Dry running occurs when a pump is operating under insufficient or no liquid in the

pump. The nonself-priming centrifugal pumps can only operate if the volute of the

pump is completely filled with liquid. If the volute is not completely filled with the

fluid to be pumped then dry running occurs thereby causing significant damage to

the internal components of the pump, resulting in decrease of pumping efficiency. If

this condition is prolonged, then the pump eventually breaks down altogether [24].

Apart from the operational problems discussed above, some of the other com-

monly encountered problems include reverse rotation, which results in a low flow of

approximately 60% of the design flow during startup [25] and disturbed inflow and

outflow conditions, wherein the suction and the discharge are clogged. In addition to

these failures, some of the mechanical problems encountered in the case of centrifugal

pumps are discussed briefly in the following subsections.

4. Bearing Failures

The pump bearings used are either sleeve bearings or rolling element bearings. Ball

bearings have almost completely replaced the sleeve bearings in pumps designed to-

day. Rolling element bearings have round balls or rollers, which move within the



23

inner ring or race and outer ring or race. The inner ring mounts onto, centers and

rotates with the spinning shaft, while the outer ring is stationary and press-fit into

the bore of the pump. Even though the cost of the bearings might be relatively low,

the direct and indirect costs associated with the replacement of the bearings can be

substantial. Most likely, the failure is the result of abnormal operating conditions or

lack of proper bearing maintenance. Some of the most common causes of premature

bearing failure include improper mounting of the bearing on the shaft, dirt and abra-

sion, which accounts for roughly 90% of bearing failures as indicated by some studies

[2], inadequate lubrication, etc.

5. Damage to the Pump Impeller

The impeller is the “heart” of the pump. Any failure to the impeller results in the

reduction of flow, thereby resulting in a decrease in the efficiency of the pump. There

are various types of failure modes associated with the pump impeller. Some of them

are itemized below:

• The impeller is mounted loosely onto the shaft,

• The geometry of the impeller gets altered due to internal wear and tear, and

• Cracks develop in the impeller vanes.

6. Degradation of Mechanical Seals

Mechanical seals are preferred over conventional packing seals, form a barrier between

the rotary and stationary parts in the pump. The seal must block leakage at the

following three interface points:

• the rotary and stationary faces of the seal,
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• the stationary element and the seal chamber housing of the pump, and

• the rotary element and the shaft or sleeve of the pump.

Most of the manufactured mechanical seals incorporate o-rings as secondary seals.

By design, the weakest point in the centrifugal pump is the mechanical seal. There-

fore, any instability in the rotating element, caused by either mechanical or process

imbalance can lead to premature seal failure. About 80% of the pumps employed in

the chemical industry are withdrawn because of mechanical seal failures [26]. About

half of all pumps pulled out of service are either leaking or could not hold pressure or

pump liquid. This is most likely an o-ring failure. Some of the most common causes

of seal failure include cavitation, running the pump dry and running the pump with

closed discharge for extended periods of time [25].

Some of the other commonly encountered problems include reverse rotation,

which results in a low flow of approximately 60% of the design flow during startup [25];

disturbed inflow and outflow conditions, wherein the suction and the discharge are

clogged; motor and pump shaft misalignment, which can lead to premature bearing

and mechanical seal failures; and shaft deflection.

A recent study on pump failure modes indicate that the most common cause of

pump failure is the failure of the sealing device [27]. Figure 4 shows the different

types of pump failures as given in [27]. However, failure of the seals does not occur

due to inherent product weakness, but due to the fact that about 91% of the time

the seal is being pushed to premature failure. Figure 5 shows some of the causes for

premature seal failure as mentioned in [27]. Only about 8% of the times, the seal

fails due to inherent faulty component when compared to about 40% of the times due

to operational conditions such as cavitation, etc and about 24% of the times due to

mechanical problems like bearing damage or impeller damage.
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Fig. 4. Common types of pump failures.

Fig. 5. Causes for premature seal failure.
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CHAPTER III

OVERVIEW OF FAULT DETECTION METHODS

A. Introduction

Maintenance practices employed in various industries have varied over the past decade.

These practices can be broadly classified as

• Reactive Maintenance: This is basically the “run till failure” approach. No

maintenance action is taken until the equipment fails and once the equipment

breaks down it is either repaired or replaced depending on the amount of budget

allocated. Although it may seem that money is being saved on maintenance

costs and labor costs, actually more money is spent in the long run on the repair

costs and the purchase of new equipment. The life of the equipment is actually

shortened while waiting for the equipment to break-down. This results in more

frequent equipment replacements. One of the major concerns of this approach

is the unplanned downtime of equipment resulting in loss of production and

hence reactive maintenance results in equipment being operated inefficiently for

extended periods resulting in increased energy costs.

• Preventive Maintenance: This refers to routine scheduled maintenance. Equip-

ment are tested for their performance on a time-based schedule or are tested

based on the machine run-time. Although this type of maintenance procedure is

better than reactive maintenance, it still cannot prevent unplanned downtime of

equipment and includes unnecessary maintenance activities which might result

in the damage of other components.

• Predictive or Proactive Maintenance: This approach is based on the fact that
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Table I. Maintenance procedures employed in industry [28].

Maintenance Procedure Percentage (%)

Reactive Maintenance 55%

Preventive Maintenance 31%

Predictive Maintenance 12%

Other 2%

equipments are periodically or continuously monitored and if any anomaly is

detected, maintenance is scheduled. Predictive maintenance differs from pre-

ventive maintenance because the maintenance needs are based on the actual

condition of the equipment rather than some pre-determined schedule. This

method can substantially reduce the unplanned downtime of equipment thereby

enabling greater plant availability and smoother plant operations. In addition

it can enhance energy efficiency by reducing the time equipments operate with

damaged components. This approach is also referred to as Condition Based

Maintenance (CBM).

Recent studies [28] indicate that the predominant form of maintenance proce-

dures employed in industries is still reactive maintenance. Table I gives a breakdown

of the maintenance programs used in various industries. The present work primarily

deals with formulating a centrifugal pump fault detection and isolation method that

can be used within a continuous CBM system.

The different detection scenarios available for any fault detection method are

shown in Figure 6. It can be concluded that, for the fault detection method to perform

effectively, it must exhibit a high probability of fault detection and a low probability
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Fig. 6. Fault detection scenarios.

of false alarms. If the detection scheme is too sensitive then it is likely to generate

false alarms which in turn would lead to operators questioning the effectiveness of

the algorithm. At the same time if the detection scheme is too insensitive, the false

alarms will be reduced but then there is a chance of missing anomalies and faults that

might lead to a failure. Missed faults may lead to critical equipment failures leading

to downtime. As a result, a balance must be achieved in designing a fault detection

scheme that is sensitive to faults but insensitive to false alarms.

B. Classification of Fault Detection Methods

The fault detection methods can be broadly classified into two groups, namely, signal-

based fault detection methods and model-based fault detection methods. A brief

overview of the two methods are described in the following two subsections.
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1. Signal-Based Fault Detection Methods

Signal-based fault detection techniques are based on processing and analyzing raw

system output measurements, such as motor currents, vibration signals and/or other

process-based signals. No explicit system model is used in these techniques. Fault

features are extracted from the sampled signals and analyzed for the presence or lack

of a fault. The basic schematic of a signal-based fault detection method is as shown

in Figure 7.

Fig. 7. Signal-based fault detection method.

The output measurements are the sampled signals that are analyzed to check for

the presence or lack of a fault within the system. However, these system output signals

are impacted by changes in the operating conditions that are caused due to changes

in the system inputs and disturbances. Hence, if one were to analyze only the system

output signals for the presence of a fault, then it would be difficult to distinguish

the fault related features from the input and disturbance induced features. This

would result in the generation of frequent false alarms, which would in turn result in

the plant personnel losing confidence over the fault detection method. If the system

inputs are considered to be ideal, i.e.,there are no changes in the input and a constant

input is supplied to the system and the disturbances are also assumed to be constant,

then the signal-based detection schemes can be used in the detection of system faults
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with 0% false alarm rates. However, in reality such a case is not possible. The input

variations cannot be controlled and harmonics are injected into the system inputs

due to various reasons. Moreover, the system disturbances are also never constant.

Hence these variations affect the system output signals and result in the generation

of false alarms.

2. Model-Based Fault Detection Methods

The framework of a model-based fault detection method is as shown in Figure 8. The

Fig. 8. Model-based fault detection framework.

basic principle of a model-based fault detection scheme is to generate residuals that are

defined as the differences between the measured and predicted outputs. The system

model could be a physics-based model or an empirical model of the actual system

being monitored. The model defines a relationship between the system outputs and

the system faults, system disturbances and system inputs. The measured variables
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are the system inputs and outputs and the predicted variables are the outputs of the

system model. Ideally, these residuals are only affected by the system faults and not

affected by any changes in the operating conditions due to changes in the system

inputs and disturbances. That is, the generated residuals are only sensitive to faults

while being insensitive to system input or disturbance changes [29]. If the system is

“healthy”, then the residuals would be approximated by white noise. Any deviations

of the residuals from the white noise behavior could be interpreted as a fault in the

system.

In [30], signal-based and model-based fault detection schemes are compared to a

flip-of-a-coin fault detector as applied to induction motor fault detection. The results

of the study can be extended to centrifugal pump fault detection also. Receiver

operating characteristic (ROC) curves are plotted for all the three types of detection

schemes and their performances are compared with respect to the probability of false

alarms and probability of fault detection. For false alarm rates of less than 50%, the

flip-of-a-coin fault detector outperformed the signal-based detection scheme for the

cases under consideration. It was possible to achieve 100% fault detection capability

using the signal-based fault detection method, but at the same time there was a very

high probability of false alarms (about 50%). On the contrary, the model-based fault

detection method operated with 0% false alarm rates and had approximately 89% of

fault detection capability. If the constraint on the false alarm probability was relaxed

to about 10%, then it was possible to achieve 100% fault detection capability using

the model-based detection technique.
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C. The Basic Principle of Detecting Pump Faults Using Motor Electrical Signals

To obtain a better and an intuitive understanding of a fault detection method de-

veloped in this research, consider the system shown in Figure 9. The system under

Fig. 9. Generalized system for pump fault detection.

consideration consists of a driver and a driven load. In this work, the driver is an

induction motor and the driven load is a centrifugal pump. The pump is connected

to the motor by means of a mechanical coupling. If the motor and the pump are

both “healthy”, then the system would perform as per the design specifications. The

output of the motor, which is the torque produced, would be as expected. Similarly,

the outputs of the pump, which are the flow rate and the pressure difference would be

as per the characteristics curves of the pump provided by the manufacturer. However,

if the motor is faulty then the output torque would not be the same as compared to a

“healthy” motor and would have extra harmonics pertaining to the fault. Similarly,

if the pump is not “healthy”, then it would not be able to produce the required work

horsepower. Moreover, the torque transmitted from the motor to the pump will also

be influenced through the pump speed. Hence, a fault in either the pump or the

motor will affect the torque produced by the induction motor. Any changes in the

motor torque will be reflected as changes in the motor currents. Hence fault detection

schemes based on analyzing the motor currents to detect centrifugal pump faults have
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gained significant importance and attention over the last few years. In this study, the

basic principle of model-based fault detection schemes previously used for detecting

motor faults, is used in the development of techniques to detect pump faults.

Based on the above discussions, it can be concluded that a model-based fault

detection scheme outperforms a signal-based fault detection schemes as regards to

the generation of false alarms. The objective of this work is to develop a method that

would be capable of detecting centrifugal pump faults with detection effectiveness of

greater than 90% and 10% or lower rate of false alarms. Moreover, the use of sensors

is to be avoided and only the motor electrical signals, which can be sampled using

standard industrial installations, are to be used in the development of the method.
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CHAPTER IV

PROPOSED FAULT DETECTION AND ISOLATION METHOD

A. Proposed Model-Based Fault Detection Scheme

The framework of the proposed model-based fault detection scheme is the same as

that shown in Figure 8, except that the system under consideration is an induction

motor-centrifugal pump system and the system model is empirically obtained. The

flowchart for the proposed model-based fault detection method is shown in Figure 10.

The data acquisition block consists of sampling the motor electrical signals and

vibration signals from the motor-pump system. The electrical signals (three phase

currents and three line voltages) and the vibration signals (x, y and z-axis vibration

signals) are sampled simultaneously, for comparison purposes.

The data preprocessing block includes downsampling the sampled signals to lower

frequencies for further processing. The downsampled signals are further scaled to

per-unit values. This demonstrates the feasibility of applying the fault detection

algorithm to motor-pump systems of different power ratings and different make and

manufacturers. In other words, since the fault detection method uses only the per

unit values of the electrical signals, the algorithm can be applied to systems with

any rated voltage and rated current. The scaling factors used to convert the signal

to per-unit values are obtained during the training phase of the model development.

Only the rated voltage, rated current and the CT and PT turn ratios are required to

obtain these scaling factors. These constitute nameplate information and are easily

accessible in most industrial facilities.
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Fig. 10. Proposed model-based fault detection method.
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1. Description of the Fault Detection Indicator

As mentioned earlier, any change in the system load would induce harmonic changes in

the motor torque which would in turn induce harmonic changes in the motor current.

Most of the available literature is based on extracting and tracking the variation of

the characteristic frequency associated with a particular fault in the system. There

are two main disadvantages associated with this approach. One is the fact that motor

and/or pump design parameters or physical model parameters are required to obtain

such characteristic frequencies. Secondly, owing to the non-stationary nature of the

motor electrical signals, tracking one frequency component for fault detection would

enable successful identification of the fault but this would also lead to the generation

of large number of false alarms. To counter the above-mentioned drawbacks the

proposed fault indicator is defined as follows:

Fault Detection Indicator (FDI) =
1

3

∑

a,b,c

∑
I2
k

I2
f

, (4.1)

where a,b and c are the three phases of the motor current, Ik is the RMS value of

the kth harmonic component in the motor current, If is the fundamental frequency

component of the motor current and fs is the sampling frequency of the signal.

2. Model Input Parameters

The inputs to the system model are various transformed signals computed from the

raw voltages and raw currents such as voltage level, voltage imbalance, etc.

The voltage level is computed by obtaining the average of the voltage RMS of

the three phases. The typical voltage level range is from 0.9 p.u. to 1.1 p.u., where

1.0 p.u. is the rated voltage level. The voltage RMS is computed using the formula
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given below:

Voltage RMS =

√√√√ 1

N

N∑

i=1

V 2
i , (4.2)

where Vi is the ith sample of the voltage signal and ‘N’ is the total number of samples.

Overvoltage is defined as an increase in the voltage level greater than 110% at the

rated frequency for a duration longer than 1 minute. Similarly an undervoltage is a

decrease in the voltage level to less than 90% at the rated frequency for a duration

of longer than 1 minute. Overvoltages are usually due to load switching such as

switching off a large load or energizing a capacitor bank. Overvoltages are caused

because either the system is too weak to handle the desired voltage regulation or the

voltage controls are inadequate. Undervoltages occur as a result of events that are

opposite to the events causing overvoltages [31].

The average value of the motor current RMS over the three phases is also used as

one of the inputs to the system model. The current RMS is computed using equation

(4.2), except that Vi is replaced with Ii, which is the ith sample of the motor current

signal.

The typical voltage supply is usually well balanced in magnitude and phase.

However, for many reasons, some degree of voltage imbalance occurs at the point of

utilization that is varying with time. Voltage imbalance is the achilles heel of rotating

equipment and even a slight degree of imbalance could harm a three-phase equipment

operating at full capacity. The national electrical manufacturer’s association (NEMA)

defines voltage imbalance as the maximum deviation from the average of the three

phase voltages divided by the average of the three phase voltages. Voltage imbalance,

expressed in percent, is given as follows:

Voltage Imbalance (%) =
max |V RMS

X − V RMS
mean |

V RMS
mean

× 100, (4.3)
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where V RMS
mean is the average of the three phase voltage and the subscript X stands for

the three phases. The primary source of imbalance is the use of single phase loads

on a three phase circuit. Voltage imbalance could also result from blown fuses. The

impact of this problem is evident by the large industry in manufacturing of devices

that monitor phase balance to protect motors. Any voltage imbalance of more than

5% is considered excessive.

Ideally, voltage and current waveforms must be perfectly sinusoidal in nature.

However, due to the increase in electronic and other non-linear loads, these waveforms

are distorted. This deviation from the ideal sine wave can be characterized by the

spectral content of the deviation. There are basically four primary types of waveform

distortion [31]:

• DC Offset - The presence of a dc voltage in an ac power system is termed as dc

offset. This can occur as a result of asymmetry of electronic power converters.

The presence of dc offset could be detrimental to transformer cores, as they

might saturate in normal operation due to the unwanted bias present. This

could further lead to additional heating and loss of transformer life.

• Integer and Inter Harmonics - Integer harmonics are sinusoidal voltages or cur-

rents having frequencies that are integer multiples of the fundamental frequency

or the carrier frequency (usually 60 Hz). Interharmonics are those frequency

components that are not integer multiples of the fundamental frequency. They

can appear as discrete frequencies or as a wideband spectrum. The integer

harmonics are due to the nonlinear characteristics of the devices and loads con-

nected to the power system, whereas the sources of the interharmonic distortion

are static frequency converters, induction motors, etc. Harmonic distortion lev-

els in the signal can be characterized by means of a metric called the total
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harmonic distortion (THD). The THD, expressed in percent, is given as

Total Harmonic Distortion (THD) (%) =
1

Vf

√√√√
kmax∑

k>1

V 2
k × 100, (4.4)

where Vf is the RMS value of the fundamental frequency component and Vk

is the RMS value of the kth harmonic component. Since the magnitude of the

integer harmonics are much higher than that of inter-harmonics, a different

metric must be used to characterize the amount of distortion caused only by

the inter-harmonics.

• Notching - Notching is defined as the periodic voltage disturbances caused by

the normal operation of power electronic devices when current is commutated

from one phase to another. Since notching occurs continuously, it can also be

characterized through the harmonic spectrum of the voltage. The frequency

components of notching are very high.

• Noise - Noise is defined as unwanted electrical signals with broadband spectral

content lower than 200 kHz. These are superimposed upon the power system

voltage or current phase conductors or found on neutral conductors or signal

lines .

The signals are unbiased to remove the dc offset and are downsampled to lower

frequencies to remove the effect of notching (if present) and high frequency noise.

3. Development of the Predictive Model

As described in the previous section, the model describes a relation between the

baseline (or “healthy”) response of the system and the various system inputs. In

other words, the model relates the time varying fault indicator as a function of the
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time varying system inputs. The model structure can be expressed as

FDI(k) = f(ui(k), ui(k − 1), ..., ui(k − n)); i = 1, ..., N (4.5)

where “f (.)” is the unknown function to be modeled, u(.) are the time series of the

inputs, n is the net delay in the inputs, k is the discrete-time and N is the number of

inputs used.

In this study, the function “f (.)” is modeled as a polynomial of the various inputs

taking the form of a polynomial NARX. The model parameters of the function “f (.)”

are to be estimated online during commissioning.

The accuracy of the model output depends on the nature (accuracy, volume,

etc) of the raw data used in the training or estimation phase. Hence the system is

operated in a sufficiently wide range to cover the entire operating envelope of interest.

The proposed model is developed using data collected from the baseline system. The

developed model predicts the baseline fault indicator estimate for a given operating

condition characterized by the model inputs. The model is validated using data that

are different from the one used in its development. The model prediction error is

defined as

Error (%) =
|yi − ŷi|√∑N

i=1 y2
i

× 100; i = 1, ..., N. (4.6)

where yi is the measured variable and ŷi is the model predicted variable. Figure 11

and Figure 12 show the histogram of the prediction errors of the model at 20% and

40% of the rated load level, respectively.

No fault data are used to train the model. Hence for anomalies in the pump or

motor, the output of the model will be the system baseline fault indicator for the

given operating condition. No motor or pump design parameters are used in the

development of the baseline model. Hence this model can be easily ported to other
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Fig. 11. Histogram of model prediction error at 20% of rated load level.
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motor-centrifugal pump systems, as only the measured motor voltages and currents

are used in model development. However, each motor-centrifugal pump system will

have a different baseline model, which can be adaptively developed using the measured

motor electrical signals.

4. Decision Making

The model predicted output is compared to the FDI extracted from the measured

signals and the residuals between the two are computed. If the system is “healthy”,

then the residual signal would be closed to a white noise signal. However, if there is

a fault in the system, then the residual will deviate from the white noise behavior. If

this deviation exceeds a certain threshold then a “fault” alarm is issued. Otherwise,

the system is considered “healthy” and the procedure is repeated. If the detection

threshold is chosen to be large, then although the false alarm rates are reduced, there

is a very high probability of missing a fault. Similarly, if the detection threshold is

chosen very small then along with good fault detection capability, there is a very

high probability of generating false alarms. Hence a balance has to be achieved

in deciding the detection threshold. One factor in choosing the threshold is the

intended application of the detection method or the system that is being monitored.

For example, in space applications a high rate of false alarms is acceptable as people’s

life are at stake. Hence the threshold can be chosen small to detect any anomaly.

In utility industries however, false alarms are not tolerated and hence a somewhat

higher threshold is preferred. The detection method might not detect the fault as

soon as the fault initiates, but might detect it as the fault degrades and well before

any catastrophic failure.



43

B. Proposed Model-Based Fault Isolation Scheme

The output of the model developed in the previous section is affected by either a fault

in the induction motor or a fault in the centrifugal pump or any other component

affecting the motor output. For the purpose of this study only motor and pump faults

are assumed. Hence, it is not possible to isolate a developing fault. To distinguish

between faults in the motor and faults in the pump, a localized model of one of the

components is required wherein the output of the model is affected only by the faults

in that component and is insensitive to the faults in the other. In this study, since

no measurement is available from the centrifugal pump, a localized model for the

induction motor is developed. The output of this model is only sensitive to faults in

the motor and is insensitive to faults in the centrifugal pump. Figure 13 shows the

overall schematic of the proposed fault detection and isolation method. The fault

isolation method is used to distinguish between motor and pump faults only when a

fault within the system is detected. If the system is “healthy”, then the next data set

is analyzed to check for the presence or lack of fault and the fault isolation method

is not used.

1. Development of the Localized Induction Motor Model

Consider an induction machine such that the stator windings are identical, sinu-

soidally distributed windings, displaced by 120o, with Ns equivalent turns and re-

sistance, rs. Consider the rotor windings as three identical sinusoidally distributed

windings displaced by 120o, with Nr equivalent turns and resistance, rr. The voltage

equations are given as

vabcs = rsiabcs + pλabcs (4.7)

vabcr = rriabcr + pλabcr (4.8)
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Fig. 13. Overall schematic of proposed fault detection and isolation method.
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where p is the first derivative operator, subscript s denotes variables and parameters

associated with stator circuits, subscript r denotes the variables and parameters as-

sociated with the rotor circuits. rs and rr are diagonal matrices each with equivalent

nonzero elements and

(fabcs)
T = [fas fbs fcs]

(fabcr)
T = [far fbr fcr] (4.9)

where f represents either voltage, current or flux linkages.

For a magnetically linear system, the flux linkages may be expressed,




λabcs

λabcr


 =




Ls Lsr

LT
sr Lr







iabcs

iabcr


 , (4.10)

where Ls and Lr are the winding inductances which include the leakage and magne-

tizing inductances of the stator and rotor windings, respectively. The inductance Lsr

is the amplitude of the mutual inductances between the stator and rotor windings.

Ls and Lr are constants and Lsr is a function of the mechanical rotor position, θm(t).

Details of the variables are described in [32].

The vast majority of induction motors used today are singly excited, wherein

electric power is transformed to or from the motor through the stator circuits with

the rotor windings short-circuited. Moreover, a vast majority of single-fed machines

are of the squirrel-cage rotor type. For a squirrel cage induction motor, vabcr = 0.

Substituting equation (4.10) into equations (4.7) and (4.8), we get,

vabcs = rsiabcs + Ls(piabcs) + (pLsr)iabcr + Lsr(piabcr), (4.11)

0 = rriabcr + (pLT
sr)iabcs + LT

sr(piabcs) + Lr(piabcr). (4.12)
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At steady-state, equations (4.11) and (4.12) can be expressed as,

Ṽs(t) = (rs + jωsLs)Ĩs(t) + (jωsLsr)Ĩr(t), (4.13)

0 = jωrL
T
srĨs(t) + (rr + jωrLr)Ĩr(t). (4.14)

The detailed derivation can be found in [32].

In equation (4.14), assuming that (rr+jωrLr) is invertible, Ĩr(t) can be expressed

as,

Ĩr(t) = − jωrL
T
sr

rr + jωrLr

Ĩs(t). (4.15)

Substituting equation (4.15) into equation (4.13), we have,

Ṽs(t) = (rs + jωsLs +
ωsωrLsrL

T
sr

rr + jωrLr

)Ĩs(t). (4.16)

Assuming (rs+jωsLs+
ωsωrLsrLT

sr

rr+jωrLr
) is invertible, the following relationship between

stator voltages and currents can be obtained,

Ĩs(t) = [rs + jωsLs +
ωsωrLsrL

T
sr

rr + jωrLr

]−1Ṽs(t). (4.17)

Ĩs(t) = [Z]−1Ṽs(t). (4.18)

where Z is a function of the machine parameters which in turn are functions of the

mechanical rotating angle of the rotor, θm(t). Equation (4.18) represents a modulator

wherein the current spectrum will be composed of both the input voltage frequen-

cies and also other frequency components due to the modulation. The modulated

frequencies will appear as side-bands in the current spectrum around each frequency

component corresponding to the input voltage signal. Hence an induction motor can

be generalized as a modulator as shown in Figure 14, where U(n) is the system input,

the stator voltages, A(n) is the signal containing the spatial harmonics of the motor

and Y(n) is the system output, the stator currents.
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Fig. 14. Induction motor modulator model.

Any fault in the rotor of the induction motor or in the motor bearings would

result in the generation of additional spatial irregularities. This would induce addi-

tional spatial harmonics in the motor air-gap flux. These additional harmonics would

modulate the voltage frequencies and appear as sidebands in the stator current spec-

trum. Higher order spectra are used to detect these modulated frequencies in the

stator current spectrum.

2. Use of Higher Order Spectra Analysis

Higher-order spectra is a rapidly evolving signal processing area with growing applica-

tions in science and engineering. The power spectral density or the power spectrum

of deterministic or stochastic processes is one of the most frequently used digital

signal processing technique. The power spectrum estimation methods can be clas-

sified into a number of different categories, namely, maximum-likelihood methods,

maximum-entropy methods, harmonic decomposition methods, etc. In power spec-

trum estimation, the process under consideration is treated as a superposition of

statistically uncorrelated harmonic components and the distribution of power among

these frequency components is then estimated. The phase relationships between fre-

quency components are suppressed. The information contained in the power spectrum

is essentially present in the autocorrelation sequence. This is sufficient for the com-
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plete statistical description of a Gaussian process of known mean. However, there are

practical situations where the power spectrum or the autocorre1ation domain is not

sufficient to obtain information regarding deviations from Gaussianness and the pres-

ence of nonlinearities in the system that generates the signals. Higher order spectra

(also known as polyspectra), defined in terms of higher order cumulants of the process,

do contain such information. Particular cases of higher order spectra are the third-

order spectrum also called the bispectrum, defined as the Fourier transform of the

third-order cumulant sequence of a stationary random process, and the trispectrum

(fourth-order spectrum), which is the Fourier transform of the fourth-order cumulant

sequence of a stationary random process. The power spectrum is, in fact, a member

of the class of higher order spectra, i.e., it is the second-order spectrum [33].

The main reasons for using higher order spectral analysis in signal processing are

itemized below [33]:

• to suppress Gaussian noise processes of unknown spectral characteristics in

detection, parameter estimation and classification problems; the bispectrum also

suppresses non-Gaussian noise with symmetrical probability density function

(pdf),

• to reconstruct the phase and magnitude response of signals or systems, and

• to detect and characterize the nonlinearities in time series.

In this study higher order spectra are used to detect the phase relationship be-

tween harmonic components that can be used to detect motor related faults. One of

the most widely used method in detecting phase coupling between harmonic compo-

nents is the bispectrum estimation method. In fact, bispectrum is used in detecting

and characterizing quadratic phase coupling.
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Consider a discrete, stationary, zero-mean random process, x(n). The bispectrum

of x(n) is defined as

B(ω1, ω2) =
∞∑

τ1=−∞

∞∑

τ2=−∞
c(τ1, τ2) exp[−j(ω1τ1 + ω2τ2)], (4.19)

where,

c(τ1, τ2) = E[x(n)x(n + τ1)x(n + τ2)], (4.20)

where E[.] denotes the expectation operator. A class of techniques named “direct”

can be used to estimate the bispectrum. This technique uses the discrete fourier

transform (DFT) to compute the bispectrum as follows:

B(k1, k2) = E[X(k1)X(k2)X
∗(k1 + k2)], (4.21)

where X(k) is the DFT of x(n).

From equation (4.21), it can be concluded that the bispectrum only accounts for

phase couplings that are the sum of the individual frequency components. However,

motor related faults manifest themselves as harmonics that modulate the fundamental

frequency and appear as sidebands at frequencies given by |fe ± mfv|, where fe is

the fundamental frequency and fv is the fault frequency. Hence, the bispectrum

estimate given by equation(4.21) detects only half of the coupling, as it does not

detect the presence of the other half given by the difference of the two frequency

components. Moreover, information about the modulation frequency has to be known

to use this bispectrum estimate correctly. This point can be illustrated with the

following example. Consider the following two signals,

x1(n) = cos(2π60n + φ1) (4.22)

x2(n) = B + cos(2π20n + φ2) (4.23)



50

where, φ1 and φ2 are arbitrary phase angles. The signal, x1(n) is considered to be an

unbiased signal as is the case in power system applications. In this example, x1(n) is

analogous to the carrier signal and x2(n) is analogous to the signal that modulates

the carrier signal. The product of these two signals results in,

x(n) = x1(n)x2(n)

= B cos(2π60n + φ1) + cos(2π60n + φ1) cos(2π20n + φ2)

= B cos(2π60n + φ1) +
1

2
cos(2π80n + φ1 + φ2)

+
1

2
cos(2π40n + φ1 − φ2). (4.24)

For simplicity, the constant B is assumed to be equal to 1. In the resultant signal, the

40Hz and the 80Hz components are obtained due to the modulation of the 20Hz com-

ponent with the 60Hz carrier frequency. From equation (4.21), it can be concluded

that for the bispectrum to correctly identify this modulation relationship, the carrier

frequency and the modulation frequency information have to be known. However,

in the example shown above, the final signal x(n), does not contain any information

about the modulation frequency. Hence the bispectrum cannot be used to correctly

identify the modulation relationship as is evident from Figure 15. The bispectrum

plot is typically displayed as a three-dimensional plot with frequency on the x and y

axes and the magnitude on the z axis. For simplicity, this study uses two-dimensional

contour plots with frequency on the x and y and the magnitude coming out of the

page. Figure 15 shows a peak at frequency pair (40Hz, 40Hz), indicating that the

signal is made up of only 40Hz frequency component and that 40Hz is the modu-

lation frequency, which is not the case. Hence to correctly identify the modulation

relationship, a modified bispectrum estimator is used [34].
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Fig. 15. Modulation frequency detection using bispectrum.

3. Description of the Fault Isolation Indicator

The modified bispectrum estimator also referred to as the amplitude modulation

detector (AMD) is defined as follows:

̂AMD(k1, k2) = E[X(k1 + k2)X(k1 − k2)X
∗(k1)X

∗(k1)]. (4.25)

From equation (4.25), it can be seen that both the sidebands of the modulation

are accounted for in the definition. Figure 16 shows the modified bispectrum for

the example considered in the previous subsection. The peak at the frequency pair

(60Hz, 20Hz) indicates that the 20Hz frequency component modulates the 60 Hz

frequency component. Moreover, no information about the modulation frequency is

utilized in computing the modified bispectrum. This is very useful since the motor

related fault frequencies which modulate the supply frequency are very difficult to
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compute. These frequencies are dependent on the design parameters, which are not

easily available. For example, the fault frequency pertaining to a motor rolling element

bearing depends on the number of balls in the bearing, the ball diameter, the pitch

diameter, etc. Hence it is desirable to design an algorithm which does not require

the motor design parameters. Therefore, in this study, various forms of the AMD

indicator depicted in equation(4.25) are used to detect motor related faults.
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Fig. 16. Modulation frequency detection using the modified bispectrum or the ampli-

tude modulation detector.

The reason that the AMD correctly identifies the modulation relationship is that

it detects phase coupling. If phase coupling exists between frequency components,

then the AMD component at those frequencies will have zero phase and maximum

peak. To illustrate this, consider the equation (4.25) and represent it in terms of its
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phase and magnitude, as follows:

E[|X(k1 +k2)|ej 6 (k1+k2)|X(k1−k2)|ej 6 (k1−k2)|X∗(k1)|e−j 6 (k1)|X∗(k1)|e−j 6 (k1)] (4.26)

Rearranging the terms results in,

E[|X(k1 + k2)||X(k1 − k2)||X∗(k1)||X∗(k1)|ej(6 (k1+k2)+6 (k1−k2)−6 (k1)−6 (k1))]. (4.27)

If there is phase coupling between the frequency components k1 and k2, then

6 (k1 + k2) = 6 (k1) + 6 (k2), and (4.28)

6 (k1 − k2) = 6 (k1)− 6 (k2). (4.29)

Substituting equations (4.28) and (4.29) in equation (4.27), results in zero phase and

the final expression is the expectation of the product of the magnitudes. Hence, if the

frequency components, k1, k1 + k2 and k1 − k2 exists in the spectrum, and if there is

phase coupling between the frequency components, k1 and k2, then the detector will

exhibit a peak at AMD(k1, k2), indicating that frequencies k1 and k2 are modulated

components.

The AMD spectrum is a two dimensional matrix. The frequency resolution of

AMD can be calculated by ∆f = fs

N
[33], where fs is the sampling frequency and N

is the total number of samples. A good frequency resolution will lead to a large AMD

matrix, which cannot be implemented easily and would require large memory and a

very fast processor. In this study, we are interested only in the frequency components

that are modulated with one specified frequency; for example, the supply fundamental

frequency. Therefore, it is possible to use only a one dimensional AMD, to calculate

the AMD spectra that are modulated only with the supply fundamental frequency.

The induction motor has been modelled as the modulator shown in Figure 14.



54

Any fault in the rotor or the motor bearings would lead to the generation of spatial

harmonics which modulate the frequencies corresponding to the input voltage and

manifest as sidebands in the motor current. Since the spatial harmonics pertaining

to the fault are unknown, the AMD is used to detect if any such modulation relation-

ship exists, which does not require any information about the modulation frequency

component. Detailed derivations of these AMD indicators are given in [35].

C. Vibration-Based Signal Analysis

The effectiveness of the model-based scheme is compared to the effectiveness of a

continuous vibration monitoring scheme. A tri-axial accelerometer is mounted on top

of the pump to continuously monitor the vibration level of the pump, both during the

normal operation and during the staged fault experiments. Similarly, an accelerom-

eter is mounted on the motor close to the bearing housing to monitor the change in

the vibration level as the motor bearing condition degrades. The vibration levels in

the x, y and z directions are recorded and the aggregate vibration level is used as an

indicator to detect the presence of a fault. The indicator is defined as follows:

Vibration Indicator (VI) =
1

3

∑
x,y,z

√√√√ 1

N

N∑

i=1

V ib2
X,i (4.30)

where V ibX,i is the ith sample of the vibration signal in the X direction, where X

stands for the three axes x, y, z, and N is the total number of samples. Since the

vibration level of the system varies after each re-assembly and cannot be controlled,

a fixed threshold cannot be used for detection. Hence, an adaptive threshold is used.

In this study, a multiple of the standard deviation of the baseline vibration is used as

the detection threshold.
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CHAPTER V

EXPERIMENTAL RESULTS

A. Description of the Experimental Setup

A schematic diagram of the experimental setup used in this research is shown in

Figure 17. The experimental setup consists of a centrifugal pump driven by a 3− φ,

2 pole, 3 hp induction motor energized by constant frequency voltage from the power

mains. A variable height reservoir is used as the suction and discharge sump and the

height of the reservoir can be varied so as to increase or decrease the load on the

motor. Pressure gauges are mounted on the suction and discharge side of the pump

along with a flow meter to obtain the characteristic curves of the centrifugal pump. A

throttle valve is located on the suction side of the pump. The valve position is varied

to stage cavitation problems in the centrifugal pump. Similarly, a pneumatically

controlled valve is located on the discharge side of the pump. This valve position is

changed to increase or decrease the flow rate of the pump, which in turn results in the

increase or decrease of the load on the motor. A triaxial accelerometer is placed on the

pump housing close to the eye of the impeller and one on top of the motor bearing

housing, to measure the vibration level of the pump and the motor. The motor

line voltages and phase currents are measured using potential transducers (PT) and

current transducers (CT), respectively. The output signals from these sensors are

passed through a signal conditioning unit that anti-aliases the signals using an eighth

order elliptic filter. A 16-channel LabV IEW TM data acquisition system is used to

record the three line voltages, the three phase currents and the six vibration signals.

Figure ?? shows the photograph of the experimental setup used in this research.
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Fig. 17. Schematic of the motor-pump-fluid loop experimental setup.
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Fig. 18. Photograph of the motor-pump-fluid loop experimental setup.
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B. “Healthy” Pump Experiments

Experiments are first conducted to validate the effectiveness of the proposed fault

detection scheme in generating low rates of false alarms. The experiments with a

“healthy” pump are run for about 100 hours over a period of 12 days. In these exper-

iments, the motor is considered to be “healthy” as well. Different loading conditions

are also staged to test the performance of the proposed fault detection method in

recognizing the change in the load. Data from these experiments are used to analyze

the false alarms generated by the detection system. Over 15 − 20 case studies are

actually conducted to obtain statistically significant results. A couple of cases are

shown to illustrate the performance effectiveness of the proposed method in not gen-

erating a false alarm when the system is “healthy”. Figure 19 and Figure 20 show the

fault detection indicator change (FDIC) with respect to the baseline, for a “healthy”

system when the load on the motor is about 20% and 40% of rated value, respectively.

Note that the FDIC is below the threshold, as expected.

1. Impact of Power Quality Changes

As mentioned in the previous chapter, motor currents are affected not only by the

faults in the system, but also by changes in the power supply and load. In industrial

environments, the input voltages to a motor are affected by other equipment con-

nected to the same voltage bus. Many equipments inject a lot of harmonics into the

bus, which affects the motor stator voltages and currents in an unpredictable manner.

Experiments are conducted to study the effect of harmonic distortion on the detection

capability of the proposed method. In these experiments, the motor-pump system

is “healthy” and the load on the motor is approximately 45% of the rated value.

Table II lists sample test results of an experiment, which is conducted to study the
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Fig. 19. Proposed FDIC at 20% of rated load.
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Fig. 20. Proposed FDIC at 40% of rated load.
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Table II. Motor input voltage parameters.

Data Average Average Average Average Average

Set Voltage Current Voltage Voltage Voltage

No. RMS (p.u.) RMS (p.u.) Imbalance (%) THD (%) NSR (%)

1 0.9912 0.4455 0.573 2.569 0.000624

2 0.9912 0.4453 0.560 2.567 0.000574

3 0.9911 0.4462 0.563 2.559 0.001057

4 0.9910 0.4464 0.568 2.545 0.002267

5 0.9908 0.4458 0.574 2.573 0.000650

6 0.9908 0.4461 0.563 2.568 0.000936

7 0.9904 0.4455 0.552 2.561 0.000653

8 0.9904 0.4454 0.554 2.564 0.000706

9 0.9928 0.4456 0.561 2.564 0.002936

10 0.9924 0.4458 0.566 2.552 0.004013

effects of noise related harmonics found in motor voltages. The 10 data sets shown

are collected over a period of 1 hour. The experimental results show that the average

values of the voltage RMS, current RMS, voltage imbalance and voltage THD do

not vary much, but the average voltage noise-to-signal ratio (NSR) varies by about

600%. This variation in the NSR results in harmonic changes in the motor currents,

which in turn leads to the generation of false alarms. This is illustrated in Figure 21.

The top portion of the figure shows the FDIC with respect to the baseline without

taking into account the changes in the power quality. This shows the existence of a

fault, thereby generating a false alarm. The bottom portion of the figure shows the

FDIC for the same case, but this time the proposed model-based detection scheme is
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Fig. 21. Power quality variations; FDIC without considering power supply distortion

changes (top); Proposed FDIC with proposed model-based fault detection

approach (bottom).
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used. This results in the FDIC remaining well below the detection threshold, thereby

avoiding any false alarm.

2. Impact of Load Variations

Load changes induce changes in the harmonics of the motor current, which can be

similar to certain fault induced harmonics. Experiments with only load changes

without any power supply variations, are difficult to stage, because our laboratory

is not equipped to control power supply variations. Hence experiments with both

power supply variations and load changes are staged to study their effects on the

motor currents. Figure 22 shows the voltage spectrum of two different data sets, one

at 20% of the rated load level and the other at 40% of the rated load level. The motor

and the pump are both “healthy”. It can be seen that there is very little variation or
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Fig. 22. Voltage spectra; 20% rated load level (top); 40% rated load level (bottom).
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difference in the two spectra. However, in Figure 23, which shows the current spectra

for the same two data sets, there is a significant amount of difference between the

two. Note that the current spectrum at 40% rated load level has more harmonics

than the spectrum at 20% rated load level. Hence, if one were to just analyze the

current spectrum for changes, then this would look like a fault but in reality this

change in the harmonic content is only a manifestation of the load change and some

slight variations in the power quality.
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Fig. 23. Current spectra; 20% rated load level (top); 40% rated load level (bottom).

This is more clearly illustrated in Figure 24, which shows the combined effects

of load variations and power quality changes on the FDIC. The top portion of the

figure shows the FDIC when these operating condition changes are not accounted for.

This shows the existence of a fault, which is a false alarm. The bottom portion of

the figure shows the FDIC if the proposed model-based detection scheme is applied
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to the same case. In this case, the FDIC is below the detection threshold thereby

avoiding the generation of a false alarm.
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Fig. 24. Load and power supply variations; FDIC without considering load and power

supply variations (top); Proposed FDIC with proposed model-based fault de-

tection approach (bottom).

C. Staged Pump Fault Experiments

Once the effectiveness of the model-based fault detection scheme in reducing false

alarms is established, experiments are conducted to validate the detection effective-

ness of the proposed scheme. Three different failure modes of centrifugal pumps,

namely, cavitation, damaged impeller and damaged bearing, are staged to validate

the performance of the proposed model-based fault detection algorithm in detecting

the presence of a fault. Each staged pump failure mode is described in some detail

in the following subsections.
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1. Pump Cavitation

Cavitation is defined as the formation and subsequent collapse or implosion of vapor

bubbles in the pump. Cavitation occurs because the absolute liquid pressure falls

below the liquid’s vapor pressure. When cavitation occurs in a pump, its efficiency is

reduced. If the pump operates under cavitation conditions for sufficiently long period,

then this could lead to premature bearing and seal failure.

In this study, the severity of cavitation experienced by the pump is quantified by

means of suction pressure measurements. The suction pressure is varied by throttling

the flow at the suction side of the pump to create cavitation in the pump. There

are two ways by which it is determined that the cavitation is in fact occurring and

that it is occurring at the impeller. One is the generation of the rattling sound at

the eye of the impeller when the cavitation experiments are conducted. The second

is through measurements and analysis of the vibration signal. Since the triaxial

accelerometer is placed near the eye of the impeller, any change in the vibration level

would indicate the presence of cavitation at the impeller rather than at the elbows

or the valve. Three different cavitation levels are staged with each level experiencing

more severe cavitation than the previous one. Table III summarizes the three levels

of the cavitation with respect to the suction pressure.

Extensive experiments have been conducted to verify the fault detection effec-

tiveness of the proposed system. The experiments using a pump that exhibits various

levels of cavitation are run for about 280 hours over a period of 1 month. Several

experiments are performed for repeatability and to obtain statistically significant re-

sults.



66

Table III. Cavitation levels staged.

Case Study Suction Pressure

(psi)

Healthy or Baseline 3

Cavitation Level 1 -1

Cavitation Level 2 -2

Cavitation Level 3 -3

2. Pump Impeller Cracks

Impeller damage occurs due to corrosion or when the centrifugal pump is used to

transfer fluids that contain solids. Development of impeller cracks is a serious failure

mode and it might lead to the loss of material from the impeller blade. This would in

turn result in the pump producing reduced work horsepower thereby resulting in loss

of flow and loss of efficiency. Hence in this study, cracks in the impeller blades are

developed to study the effectiveness of the proposed method in detecting such faults.

The results are compared to the vibration-based signal analysis method. Figure 25

shows the different cracks staged on the pump impeller. The numbers marked depict

the sequence in which the cracks on the impeller are staged. Figure 26 shows the

dimension of each staged crack. Each crack is of approximately the same dimension.

Different sets of experiments are staged with each subsequent set consisting of more

cracks than the set before. Six different faults are staged on the impeller to test

the detection effectiveness of the proposed scheme. Table IV outlines the fault types

staged on the pump impeller. Four experiments are conducted for each fault type to

demonstrate the repeatability and to obtain statistically significant results. Figure
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Fig. 25. Schematic of pump impeller with cracks.

Fig. 26. Dimension of crack staged on the impeller blade.
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Table IV. Impeller fault types.

Fault No. Fault Type

Fault 1 One crack

Fault 2 Two cracks

Fault 3 Three cracks

Fault 4 Four cracks

Fault 5 Six cracks

Fault 6 Ten cracks

27 shows the photograph of the pump impeller with the staged cracks.

Fig. 27. Photograph of the staged impeller cracks.

3. Pump Bearing Damage

Rolling element bearings consist of an inner race, an outer race and set of rollers on

a train between the two races. Bearing damage could occur due to various reasons.

Some of these include, contamination, improper lubrication, brinelling, etc. Bearing

failures can be broadly classified as single-point defects and generalized roughness
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faults. In this study, the detection of generalized roughness faults, which is commonly

encountered in industrial practice is demonstrated. Recent studies [36, 37, 38] indicate

that the electric discharge machining (EDM) process is the most destructive process

for damaging a bearing. For EDM to occur, the rollers must be separated from the

raceways by a thin film of lubricant. This thin film acts as a dielectric and allows the

bearing to act like a capacitor. When the voltage drop across the bearing exceeds

the dielectric strength of the bearing, EDM occurs and it damages the bearing. In

this study, AC shaft current is passed through the bearing to accelerate the failure

process.

Figure 28 and Figure 29 show the schematic and the photograph of the experi-

mental setup with the bearing damage circuit.

The induction motor has two bearings, a 6203 bearing on the fan side and a 6205

bearing on the load side. Both of these bearings are replaced with hybrid ceramic

bearings to electrically insulate the bearings from the stator. One of the 6203 bearings

in the centrifugal pump is also replaced with a hybrid ceramic bearing. The front

bearing of the centrifugal pump is the test bearing under consideration. AC current

is injected into the motor shaft through an external single phase AC power source.

Since the motor side is electrically insulated, current flows through the test bearing

on the centrifugal pump and returns through the pump casing. Two power resistors

are placed to limit the shaft current. Using the EDM technique, the amount of time

it takes to damage a bearing depends on two factors. One is the magnitude of the

shaft current and the other is the amount of grease present in the bearing. In [36], it

is stated that with 12 A shaft current, it takes about 2 to 3 weeks to damage a new

bearing. In this study, AC current of magnitude of about 6A is injected through the

test bearing. To reduce the time to failure of the bearing, some grease is removed

from the test bearing. To accomplish this, the bearing is immersed in a degreasing
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Fig. 28. Bearing damage circuit schematic.
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Fig. 29. Photograph of the experimental setup with the bearing damage circuit.

solution to remove all the grease. The bearing is then filled with a known amount of

grease. The volume of the bearing is obtained and then a percentage of the volume is

chosen as the amount of the grease to be filled. In this study, the bearing is repacked

with an approximate fill of 3% to 5% by volume. The factory standard is about 20%

to 40% by volume [35]. In this study, with the injected current fixed at 6 A and

the bearing grease fill fixed at about 3% to 5% by volume, the failure time for the

bearing is reduced to about 24 to 36 hours. Four sets of experiments are conducted

to demonstrate the repeatability and to obtain statistically significant results.
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D. Fault Detection Results

1. Pump Cavitation Results

Figure 30 shows the vibration level change for the first set of experiments. The pump

does not exhibit any cavitation during the first 100 hours. The first level of cavitation

is staged around the 101st hour, the second level of cavitation around the 160th hour

and the third cavitation level at around the 220th hour.
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Fig. 30. Experiment 1 of pump cavitation fault; Vibration level change.

Note that, the vibration level suddenly increases even before the fault is staged,

thereby producing a false alarm. If we account for this false alarm and re-compute

the vibration detection threshold, then the vibration-based signal analysis detects the

presence of cavitation at around the 101st hour, immediately after its introduction.

This false alarm phenomenon is not observed in the proposed fault detection method.



73

Figure 31 shows the proposed FDIC for the same case for all the induced cavitation

fault levels. Cavitation can be detected at around the 116th hour using the proposed

method.
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Fig. 31. Experiment 1 of pump cavitation fault; Proposed FDIC.

Figure 32 shows the vibration level change for the second set of experiments

and Figure 33 shows the equivalent FDIC for the same case for all the cavitation

fault levels. The fault can be detected at around the 102nd hour using the vibration

indicator and around the 105th hour using the proposed fault detection method. In

both sets of experiments, the proposed technique detects the presence of cavitation

during the very initial stages, although it slightly lags the vibration-based signal

analysis.
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Fig. 32. Experiment 2 of pump cavitation fault; Vibration level change.
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Table V. Pump impeller cracks; time instant of staged fault.

Fault Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6

Type

Fault Staging 101 198 258 317 368 422

Time (Hour)

2. Pump Impeller Cracks Results

Table V shows the time instant at which each impeller crack fault type is staged. As

more cracks are staged on the impeller blades, some amount of imbalance is created

in the impeller, which in turn induces changes in the torque transmitted from the

motor. As the number of cracks increases, this imbalance increases and the severity

of the fault increases.

Figure 34 shows the vibration level change for all of the impeller fault types

for the first set of experiments. Note that the vibration signal increases beyond the

detection threshold even before the fault is staged. After some time, the vibration

level drops below the threshold. None of the first 5 faults can be detected using the

vibration indicator. Only Fault 6 is detected at around the 420th hour. Figure 35

shows the proposed FDIC for all impeller fault types for the same case. The proposed

method detects the presence of the fault at around the 137th hour. Note that there is

a slight drop in the FDIC for fault 5. This could be attributed to the location of the

5th and the 6th cracks staged. The 5th and the 6th staged cracks on the impeller blade

are diametrically opposite to the 1st and the 2nd staged cracks. Hence this improves

the balance of the impeller compared to the first four cracks. Eventhough the balance

is not perfect, it is sufficient to cause the cancelation of the two sequences of staged
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Fig. 34. Experiment 1 of pump impeller fault; Vibration level change.
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Fig. 35. Experiment 1 of pump impeller fault; Proposed FDIC.
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faults.

Figure 36 and Figure 37 shows the vibration level change and the proposed

FDIC for all of the impeller fault types for the second set of experiments. Even in

this experiment, the vibration indicator does not detect the first 5 faults and detects

fault 6 at around the 422nd hour. While the proposed method detects the impeller

fault at around the 140th hour.
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Fig. 36. Experiment 2 of pump impeller fault; Vibration level change.

3. Pump Damaged Bearing Results

Figure 38 shows one of the bearings damaged using the EDM process. Surface rough-

ness of the outer race and inner race can be seen and no significant pits are seen on

the surfaces. Figure 39 shows the vibration level change and the proposed FDIC for

the first bearing damage experiment. In this experiment, the AC current is injected
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Fig. 37. Experiment 2 of pump impeller fault; Proposed FDIC.

Fig. 38. A bearing damaged using the EDM process.
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at around the 11th hour. The fault is detected around the 14th hour using the pro-

posed detection method and around the 16th hour using the vibration indicator. The

vibration level change exceeds the detection threshold during certain time instants,

but immediately falls below the threshold thereafter. This cannot be considered as

a false alarm since the vibration level change does not remain above the threshold

sufficiently long enough to call it a false alarm.
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Fig. 39. Experiment 1 of pump bearing fault; Vibration level change in the early stage

(top) ; Proposed FDIC (bottom).

Figure 40 shows the vibration level change and the proposed FDIC for the second

bearing damage experiment. In this experiment, the AC current is injected at around

the 11th hour. The fault is detected at around the 14th hour using the proposed

detection method and at around the 13th hour using the vibration indicator.
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(top) ; Proposed FDIC (bottom).
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4. Summary of All Fault Detection Case Studies

All case studies used to demonstrate the detection effectiveness of the proposed fault

detection method are summarized in Table VI. For the cavitation and bad impeller

case studies, the fault initiation time is the time instant when the first fault level is

staged. Whereas for the damaged bearing cases, the fault initiation time refers to the

time instant when the AC current is injected through the bearing. For the cavitation

case studies, the average detection time is around hour 111 using the proposed method

and around hour 102 using the vibration indicator. For the cracked impeller cases, the

average detection times are around hour 135 and hour 422 using the proposed method

and vibration indicator, respectively. Similarly, for the damaged bearing cases, the

detection times are around hour 13 and hour 16 using the proposed method and

vibration indicator, respectively.

In the cracked impeller and the damaged bearing case studies, the vibration

indicator lags the proposed method while in the case of cavitation, the vibration

indicator detects the fault earlier. However, the vibration detection threshold used

in the industry is much higher than the ones used in this study. The usual practice

in the industry is to use a vibration detection threshold of about 200%. The reason

for this is the sensitivity of vibration analysis in generating frequent false alarms.

If this detection threshold is used, then the vibration-based signal analysis will not

detect any of the faults staged. However, the proposed method is able to detect the

incipient faults that are staged well in advance without running the risk of generating

false alarms.
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Table VI. Summary of fault detection case studies.

Staged Case Fault Proposed FDI Vibration

Fault Study Initiation Detection Detection

Time (Hr) Time (Hr) Time (Hr)

Cavitation 1 101 116 101

2 101 105 102

Impeller 1 101 137 420

Cracks 2 101 140 422

3 101 135 420

4 101 126 424

Bearing 1 11 14 16

Damage 2 11 14 13

3 11 15 21

4 11 12 13
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E. Fault Isolation Results

Once the effectiveness of the proposed fault detection method is established, the

next step is to validate the performance of the fault isolation method. The proposed

method presented in the previous section detects the presence of a fault in the system,

but it does not give any information as to which component in the system has a fault.

That is, it does not distinguish between a fault in the motor and a fault in the

pump. Whether there is a motor or a pump fault, the proposed FDIC goes above the

detection threshold thereby raising an alarm. The proposed fault isolation indicator

distinguishes between motor related faults and pump related faults. Note that the

fault isolation is performed only when the proposed detection method detects the

presence of fault within the system. In this study, bearing faults are used to evaluate

the performance of the proposed fault isolation method. Four different cases are

studied to validate the fault isolation effectiveness as follows:

1. Case 1 - “Healthy”: In this case, there is no fault in the system. Both the motor

and the pump are “healthy”.

2. Case 2 - Fault in Motor: The motor bearing is damaged, whereas the pump is

“healthy”.

3. Case 3 - Fault in Pump: The pump bearing is damaged, while the motor is

“healthy”.

4. Case 4 - Fault in Motor and Pump: Both the motor and pump bearings are

damaged.
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1. Case 1 - “Healthy” System

“Healthy” experiments are divided into two groups. The first group of experiments

are conducted to study the effects of loading changes on the fault isolation indicator

(FII). Four separate experiments are performed at 20%, 36%, 38% and 40% loading

levels. The 20% load level is considered as the baseline and the percentage change

in the FII with respect to this baseline is computed. Similarly, the current RMS

percentage change and the voltage RMS percentage change are computed. Figure

41 and Figure 42 shows the percentage change in the voltage RMS and the current

RMS, respectively.
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Fig. 41. Voltage RMS at different loading levels.

Figure 43 shows the proposed fault isolation indicator change (FIIC) with respect

to the 20% load level baseline condition. As the current RMS increases, the proposed

FII also increases thereby showing a strong linear relationship as shown in Figure 44.
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0 20 40 60 80 100
−10

−5

0

5

10

15

20

25

Samples

F
au

lt 
Is

ol
at

io
n 

In
di

ca
to

r 
C

ha
ng

e 
(%

)

36%
Load

38%
Load

40%
Load

20%
Load

Fig. 43. Proposed FIIC at different loading levels.
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The second group of experiments are conducted with the system in “healthy”

condition in order to explore the generated rates of false alarms. Over 15 case studies

are conducted to ensure repeatability and to obtain statistically significant results.

Figure 45 shows the proposed FIIC with respect to a baseline for three such experi-

ments. Figure 46, Figure 47 and Figure 48 show the details of Figure 45 for each of

the individual data sets. The deviations of the proposed FII with respect to the mean

for each of the three data sets are very small. A detection threshold is not set as the

“healthy” baseline may vary depending on the motor load. Hence adaptive detection

thresholds are used to check whether the proposed FII exceeds these threshold values.

A multiple of the standard deviation of the “healthy” baseline is considered as the

detection threshold for the proposed FII.
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Fig. 45. Proposed FIIC for three “healthy” data sets.
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Fig. 46. Proposed FIIC for data set 1.
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Fig. 47. Proposed FIIC for data set 2.
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Fig. 48. Proposed FIIC for data set 3.
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2. Case 2 - Fault in the Motor

This case study deals with damaging a motor bearing, while the pump bearing is

“healthy”. The load side 6205 bearing is damaged using the EDM process. AC

current of about 8 A to 12 A is passed through the test bearing to accelerate the

failure process. The fan side 6203 bearing is replaced with a hybrid ceramic bearing

to electrically insulate it from the stator and to force the injected current through

the test bearing. Three different experiments are staged at different loading levels,

one at 0%, one at 20% and one at 40% of the rated load level. As the condition of

the bearing deteriorates, the output torque produced by the motor reduces, which

in turn results in the pump producing less work output. Since there is no feedback

from the fluid loop (adjusting the flow rate), the motor output power reduces as the

bearing degrades. This leads to a decrease in the motor current.

The top portion of Figure 49 shows the proposed FDIC for the 0% load condition.

The AC current is injected through the test bearing at around the 5thhour. The

proposed method detects the presence of a fault in the motor-pump system at around

the 12th hour. However, the proposed FDIC alone is not sufficient to isolate the fault.

The fault could be either in the motor or the pump. Hence, further investigation is

required to isolate the fault. The developed fault isolation model is a localized model

of the induction motor and hence, the proposed FII is only sensitive to faults in the

motor, while being insensitive to faults in the pump. Therefore, if the fault in the

system is present in the motor, then the proposed FII must increase and be larger

than that obtained during the baseline ”healthy” operation. Based on the middle and

the bottom portion of Figure 49, it can be concluded that after the fault initiation,

since the proposed FII increases inspite of the drop in the current RMS, the fault is

in fact in the motor and not in the pump.



90

0 5 10 15 20 25
0

10

20

Time (Hours)

F
D

IC
 (

%
)

 

 
Detection Threshold

0 5 10 15 20 25
0.302

0.304

0.306

0.308

C
ur

re
nt

 R
M

S
 (

p.
u.

)

Time (Hours)

0 5 10 15 20 25

0

5

10

F
IIC

 (
%

)

Time (Hours)

Fault Detected

AC Current
Injected

Fig. 49. Motor bearing fault - 0% load level; Proposed FDIC (top); Current RMS
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Figure 50 and Figure 51 show the proposed FDIC, current RMS change and the

proposed FIIC for the 20% and 40% load conditions, respectively. The AC current
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Fig. 50. Motor bearing fault - 20% load level; Proposed FDIC (top); Current RMS

change (middle); Proposed FIIC (bottom).

for both the experiments is injected through the test bearing at around the 9thhour.

In both these experiments the proposed method detects the presence of a fault within

the system at around the 12th hour and 13th hour, respectively. It can be noted that,

since the proposed FII is sensitive to faults in the motor, the proposed FIIC increases

beyond the baseline “healthy” value eventhough the current RMS decreases after the

initiation of the fault, thereby indicating that the fault is in the motor.
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change (middle); Proposed FIIC (bottom).
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3. Case 3 - Fault in the Pump

In this case study, the pump bearing is damaged using the EDM process described

in the previous chapter. As the pump bearing is damaged the work output of the

pump reduces which in turn results in the decrease of the input mechanical power.

This decrease in the input power leads to a decrease in the motor current. Three

separate experiments are performed to ensure repeatability and to obtain statistically

significant results. AC current of about 6 A is passed through the test bearing to

accelerate its failure. The AC current for all the experiments is injected through the

test bearing at around the 11thhour.

Figure 52 shows the proposed FDIC, current RMS change and the proposed FIIC

for the first pump bearing damage experiment. The top portion of the figure shows

that the proposed fault detection method detects the presence of the fault within

the system at around the 14th hour. As explained in the previous subsection, this

information alone is not sufficient to isolate the fault and hence the fault isolation

method has to be employed to distinguish between motor and pump faults. Since

the proposed FII is insensitive to faults in the pump, the proposed FIIC should not

increase and exceed the value obtained during the baseline “healthy” operation of the

motor-pump system. Based on the middle and the bottom portion of Figure 52, it

can be concluded that since the proposed FII decreases with the decreasing current

RMS after the initiation of the fault, the fault is in fact in the pump and not in the

motor.

Figure 53 and Figure 54 show the proposed FDIC, current RMS change and

the proposed FIIC for the second and the third pump bearing damage experiments,

respectively. In both these experiments the proposed method detects the presence

of a fault within the system at around the 14th hour and 15th hour, respectively.
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Fig. 52. Experiment 1 of pump bearing fault; Proposed FDIC (top); Current RMS

change (middle); Proposed FIIC (bottom).
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Fig. 53. Experiment 2 of pump bearing fault; Proposed FDIC (top); Current RMS

change (middle); Proposed FIIC (bottom).
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It can be noted that, since the proposed FII is insensitive to faults in the pump,

the proposed FIIC decreases with the current RMS after the initiation of the fault,

thereby indicating that the fault is in the pump and not in the motor.
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Fig. 54. Experiment 3 of pump bearing fault; Proposed FDIC (top); Current RMS

change (middle); Proposed FIIC (bottom).

4. Case 4 - Fault in the Motor and the Pump

In this case study, the motor load side bearing and the pump bearing are damaged

simultaneously. Due to the different sizes of the bearing (6203 bearing in the pump

and 6205 bearing in the motor), the failure rate of the bearings could not be controlled

accurately and hence one bearing damaged more than the other. Moreover, due to the

smaller size, the pump bearing fails earlier than the motor bearing. Three different
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experiments are conducted to obtain statistically significant results, out of which

only two are presented here. Figure 55 shows the vibration level change for one of the

experiments. The AC current is injected at around the 11th hour. The pump bearing

vibration crosses the detection threshold at around the 13th hour, whereas the motor

bearing vibration crosses the detection threshold at around the 15th hour.

0 2 4 6 8 10 12 14 16

−10

0

10

20

30

Time (Hours)

V
ib

ra
tio

n 
D

ev
ia

tio
n 

(%
)

 

 
Vibration Level Change for Motor Bearing
Detection Threshold

0 2 4 6 8 10 12 14

−10

0

10

20

30

Time (Hours)

V
ib

ra
tio

n 
D

ev
ia

tio
n 

(%
)

 

 

Vibration Level Change for Pump Bearing
Detection Threshold

AC Current
Injected

Fault
Detected

AC Current
Injected

Fault
Detected

Fig. 55. Experiment 1 of motor and pump bearing fault; Vibration level change for

motor bearing (top); Vibration level change for pump bearing (bottom).

Figure 56 shows the proposed FDIC, current RMS change and the proposed

FIIC for the first set of experiments. The proposed fault detection method detects

the bearing fault at around the 13th hour as shown in the top portion of the figure.

After the initiation of the fault, since the pump bearing starts to fail first (as can

be seen from the vibration plots), the proposed FII being insensitive to the pump

fault starts to decrease as the load on the motor decreases. After a while, the motor

bearing starts to fail. At this time, the proposed FII being sensitive to motor faults



98

0 5 10 15 20 25
0

10

20

Time (Hours)

F
D

IC
 (

%
)

 

 

Detection Threshold

0 5 10 15 20 25
0.42

0.43

0.44

C
ur

re
nt

 R
M

S
 (

p.
u.

)

Time (Hours)

0 5 10 15 20 25
−3

−2

−1

0

1

F
IIC

 (
%

)

Time (Hours)

AC Current
Injected

Fault
Detected

Fig. 56. Experiment 1 of motor and pump bearing fault; Proposed FDIC (top); Cur-

rent RMS change (middle); Proposed FIIC (bottom).
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starts to increase. But the pump bearing continues to degrade further. Hence due to

the cancelation effect, the FIIC starts to flatten out thereby indicating the existence

of the fault in both the motor and the pump.

Figure 57 shows the vibration level change for the second set of experiments.

The AC current is injected at around the 11th hour. The pump bearing vibration
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Fig. 57. Experiment 2 of motor and pump bearing fault; Vibration level change for

motor bearing (top); Vibration level change for pump bearing (bottom).

crosses the detection threshold at around the 12th hour, whereas the motor bearing

vibration crosses the detection threshold at around the 13th hour. Even in this case,

the pump bearing starts to fail earlier than the motor bearing. Figure 58 shows the

proposed FDIC, current RMS change and the proposed FIIC for the second motor

and pump bearing damage experiment. Using the proposed detection method, the

bearing fault is detected at around the 13th hour. Since the pump bearing fails first,

the proposed FIIC being insensitive starts to decrease and when the motor bearing
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also starts to fail, the proposed FIIC stabilizes thereby indicating that both the motor

and the pump is faulty.
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Fig. 58. Experiment 2 of motor and pump bearing fault; Proposed FDIC (top); Cur-

rent RMS change (middle); Proposed FIIC (bottom).

F. Summary of All Fault Isolation Case Studies

Four cases are studied to evaluate the performance of the fault isolation algorithm.

Based on the results presented in the previous subsections, the following observations

can be made:

• If the system is “healthy”, i.e., both the motor and the pump are “healthy”, then

the proposed FDIC is below the detection threshold. There is no requirement



101

to investigate the isolation problem.

• If a fault exists in the motor, then the proposed FDIC exceeds the detection

threshold. The proposed FII being sensitive to motor faults increases beyond

the value obtained during the baseline “healthy” operation. The motor current

decreases as the load reduces due to the initiation of the fault. Hence there is

a negative correlation between the current RMS and the proposed FII.

• If a fault exists in the pump, then the proposed FDIC exceeds the detection

threshold. However, the proposed FII is insensitive to pump faults and hence

decreases with the decreasing motor current as even in this case, the motor

load reduces due to the initiation of the fault. Hence there is a strong positive

correlation between the motor current and the proposed FII.

• If a fault exists in both the motor and the pump, then the proposed FDIC

exceeds the detection threshold similar to the other cases. Considering that the

fault initiates initially in the pump and then in the motor, the proposed FII

starts to decrease first due to the pump fault and then stabilizes when a motor

component also starts to fail. Hence the correlation between the motor current

and the proposed FII is not strong.

The fault isolation results are summarized in Table VII.

G. Impact of Motor and Centrifugal Pump Faults on Motor and System Efficiency

As the components within a system begin to deteriorate, the system efficiency starts

to decrease. Hence early fault detection systems have found considerable applications

in detecting incipient faults and alerting plant personnel to schedule the required

maintenance. In this study, the effects of bearing degradation on motor and overall
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Table VII. Summary of fault isolation case studies.

Proposed Proposed Correlation Diagnosis

FDI FII (FII vs Current RMS)

Below Threshold N/A N/A “Healthy”

Above Threshold Increases Negative Motor Fault

Above Threshold Decreases Positive Pump Fault

Above Threshold Decreases Weak Positive Motor and Pump Fault

or Increases or Negative

system efficiency are studied. Two sets of experiments are conducted, one with only

the motor bearing damaged and the other with both motor and pump bearing dam-

aged. The data from the experiment with only the motor bearing damaged is used

to compute the change in motor efficiency, while the data from the experiment with

both the motor and the pump bearings damaged is used to compute the change in

the overall system efficiency.

Efficiency is defined as the ratio of the output power to the input power. Effi-

ciency of the motor is given as:

Motor Efficiency =
Mechanical Output Power

Electrical Input Power
. (5.1)

The efficiency of a centrifugal pump is given as:

Pump Efficiency =
Work Horsepower

Brake Horsepower
, (5.2)

where the work horsepower is given as

Work Horsepower =
Q×H × sp.gr

3960
, (5.3)



103

Table VIII. Impact of bearing degradation on motor efficiency.

Motor Electrical Mechanical Motor Motor

Condition Input Output Vibration Efficiency

Power (hp) Power (hp) Level (V) (%)

“Healthy” 1.15 0.91 0.09 79.1

Faulty 1.14 0.86 1.11 75.4

where, Q is the flow in gpm, H is the total differential head in ft and sp.gr is the

specific gravity of the fluid being pumped.

The overall system efficiency is then given as:

System Efficiency =
Work Horsepower

Electrical Input Power
. (5.4)

In this study, water is the fluid used in the pump. Hence the sp.gr is equal to

1. The motor electrical input power and the mechanical output power are calculated

based on IEEE standard 112 [39], outlined in Appendix A. Table VIII shows the

impact of motor bearing degradation on motor efficiency. The motor bearing vibration

increases from 0.09V to 1.11V, which is an increase of about 1100%. The decrease

in the motor efficiency due to bearing degradation is about 3.7%. Table IX shows

the impact of motor and pump bearing damage on the overall system efficiency. The

change in the motor bearing vibration is about 333% and the change in the pump

bearing vibration is about 125%. The change in the overall system efficiency is about

3.3%.

One would expect that, if both the pump bearing and the motor bearing are

damaged, the drop in the efficiency would be larger than, if only the motor bearing

is damaged. However, the efficiency drop is also related to the severity of the bearing
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Table IX. Impact of bearing degradation on overall system efficiency.

Motor and Motor Electrical Pump Motor Pump System

Pump Input Output Vibration Vibration Efficiency

Condition Power (hp) Power (hp) Level (V) Level (V) (%)

“Healthy” 1.27 0.77 0.03 0.08 60.6

Faulty 1.24 0.71 0.13 0.18 57.3

damage. As is evident from the vibration level, the bearing is more severely damaged

in the first experiment when compared to the experiment in which both the motor and

the pump bearing are damaged. However, the efficiency drop in both cases studied

is comparable.

H. Application of the Proposed Fault Isolation Method to Other Pump Fault Types

The proposed model-based fault isolation method is tested for the three failure modes

considered in this study. In this section, the proposed FIIC for the impeller fault case

and the cavitation failure mode are shown. Again, since the proposed FII is insensitive

to any failure in the pump, the fault cannot be detected using the propsoed FII. Since

the input power required decreases because of the fault in the pump, the proposed

FII decreases with the motor current RMS. Figure 59 shows the current RMS change

and the proposed FIIC for two of the impeller fault cases with respect to the baseline

“healthy” case. Figure 60 shows the current RMS change and the proposed FIIC for

one of the cavitation fault levels.

Note that, for all the fault cases shown in the two figures, the current RMS drops

as the input power decreases due to the fault in the pump (pump produces reduced

work horsepower) and the proposed FII being insensitive to the pump faults also
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Fig. 59. Pump impeller fault; Current RMS change (top) ; Proposed FIIC (bottom).
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decreases.

I. Industrial Case Study

The proposed fault detection and isolation method uses only the measured motor

electrical signals to detect faults in centrifugal pumps and to distinguish between

motor and pump faults. No specific motor and/or pump model or design parameters

are used in the development of these methods. Hence it can be easily ported to other

similar motor-centrifugal pump systems of different power rating and manufacturer.

Data from a motor-pump system installed at the Texas A&M University campus

power plant is collected to ensure the portability of the proposed approaches. The

motor is a 3 − φ, 400 hp induction motor energized by constant frequency voltage

from the power mains and drives a boiler feedwater pump. CT’s and PT’s are used

to sample the motor currents and voltages, respectively.

Figure 61 shows the proposed FDIC for the sample data set. A load increase is

detected on January 31, 2007 and hence the proposed method accounts for this load

change and re-initializes the proposed FDIC. The proposed detects the presence of a

fault within the system on February 1, 2007. The motor was shutdown for repairs on

February 20, 2007. Hence the proposed method issues an alarm 19 days in advance.

As mentioned earlier, the proposed FDIC alone is not sufficient to isolate the fault.

Hence the proposed FII is computed. Figure 62 shows the current RMS change

and the proposed FIIC for the data from February 15, 2007 to February 16, 2007.

Referring to Table VII, it can be concluded that since the proposed FIIC increases,

the fault is in the motor and not in the pump.
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power plant.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

A new approach for sensorless fault detection and isolation of centrifugal pumps is

proposed.

A. Summary of Research

The objective of this research is to develop a model-based sensorless fault detection

and isolation method for centrifugal pump problems. The developed model uses only

the measured motor electrical signals and does not make use of motor and/or pump

model and design parameters. Three pump failure modes are explored.

In Chapter I of the dissertation, a brief introduction on the state-of-the-art tech-

niques used in the detection of centrifugal pump faults is discussed. The research

objectives and a roadmap of the proposed method are also outlined. Finally, the

contributions of this work are listed.

Chapter II describes an overview and the working principle of a centrifugal pump.

The common failure modes of this type of pumps are also discussed in detail.

In Chapter III, an overview of fault detection methods is discussed. Differences

between signal-based fault detection and model-based fault detection methods are

outlined. Finally, the motivation for using a model-based fault detection scheme for

centrifugal pump faults is described.

In Chapter IV, the proposed model-based fault detection method is explained

in some detail. The development of the predictive model is described followed by

the description of the fault indicator used in the detection of pump faults. This is

followed by a detailed discussion of the proposed model-based fault isolation method.

Finally, a description of the fault isolation indicator is provided.
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In Chapter V, the experimental setup used to validate the performance of the

proposed method is described. The staged fault detection results and the fault isola-

tion results are also presented in detail. Vibration-based signal analysis is used as a

reference for all of the experimental results.

B. Conclusions

The results of this study allow us to offer the following conclusions:

• The developed model-based fault detection method is capable of detecting in-

cipient centrifugal pump faults with 100% detection capability and 0% false

alarms.

• For the cracked impeller and the bearing damage case studies, the proposed

detection method detects the presence of the fault before the vibration indicator

detects the fault. However, for the cavitation case studies, the proposed method

lags the vibration-based monitoring system, but it detects pump cavitation well

in advance before any catastrophic failure.

• The developed model-based fault isolation method successfully distinguishes

between motor faults and pump faults.

• The proposed approach uses only motor electrical signals. No motor and/or

pump design parameters are used in the development of the fault detection and

isolation method. Hence it can be easily ported to other similar motor-pump

systems.
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C. Recommendations for Future Work

This work shows that the developed sensorless fault detection and isolation method is

capable of detecting faults in centrifugal pumps and also distinguish between motor

faults and pump faults. Some of the topics for future research include:

• Identification of the specific type of centrifugal pump fault.

• Prediction of remaining useful life before failure.

• Detection and identification of other types of centrifugal pump faults, such as

seal failures.
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APPENDIX A

MOTOR MECHANICAL OUTPUT POWER AND ELECTRICAL INPUT

POWER CALCULATIONS

Table X and Table XI outlines the steps required to calculate the motor output

power and the electrical input power based on the IEEE 112 standard. The parameter

k1 used in the calculations is a constant equal to 234.5 for 100% IACS conductivity

copper or 225 for aluminium, based on a volume conductivity of 62%. The last

column in the tables describe how the test points are obtained. The different test

points, described in the second column, can be obtained either by measuring the value

using a multimeter or by using a pre-determined formulae.
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Table X. Motor mechanical output power calculations.

Steps Test Point Source or Calculation

1 Specified temperature, ts, in oC From IEEE 112 chart

2 Line-to-Line voltage, in V Measurement

3 Frequency, in Hz Compute from FFT of voltage signal

4 Synchronous speed, ns, in r/min 120×Frequency
Number of poles

5 Stator resistance, in Ohms Measurement

6 Ambient temperature, in oC Measurement

7 Stator winding temperature, tt in oC Measurement

8 Observed speed, in r/min Measurement

9 Observed slip, in r/min (4)− (8)

10 Observed slip, in p.u. (9)/(4)

11 Corrected slip, in p.u. (10)× [k1+(1)]
[k1+(7)]

12 Corrected speed, in r/min (4)× [1− (11)]

13 Torque, in N/m Measurement

14 Shaft power, in W (13)× (12)/9.549
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Table XI. Motor electrical input power calculations.

Steps Test Point Source or Calculation

1 Specified temperature, ts, in oC From IEEE 112 chart

2 Line-to-Line voltage, in V Measurement

3 Frequency, in Hz Compute from FFT of voltage signal

4 Synchronous speed, ns, in r/min 120×Frequency
Number of poles

5 Stator resistance, in Ohms Measurement

6 Ambient temperature, in oC Measurement

7 Stator winding temperature, tt in oC Measurement

8 Line current, in A Measurement

9 Stator power, in W
∫

v(t)i(t)dt

10 Stator I2R loss, in W at tt 1.5× (8)2 × (5)× [k1+(7)]
[k1+(6)]

11 Winding resistance at ts (5)× [k1+(1)]
[k1+(6)]

12 Stator I2R loss, in W at ts 1.5× (8)2 × (5)× (11)

13 Stator power correction (12)− (10)

14 Electrical input power, in W (9) + (13)
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