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ABSTRACT

In this dissertation, we analyze the spectrum of the Laplace operator on graphs.

In particular, we are interested in generic eigenpairs.

We consider a wide range of vertex conditions on vertices of a quantum graph.

Furthermore, we also investigate the eigenfunctions, showing that generically they do

not vanish on vertices, unless this is unavoidable due to presence of looping edges. In

the proof, the simplicity of eigenvalues and non-vanishing of eigenvalues are tightly

interconnected; each property is assisting in the proof of the other (the proof is done

by induction). The proof is geometric in nature and uses local modications of the

graph to reduce it to previously considered cases. We also consider an application

of the result to the study of the secular manifold of a graph, showing that for large

classes of graphs, the set of smooth points of the manifold has exactly two connected

components.

The spectrum of a symmetric quantum graph is also considered. We aim to give

explicit and computation-oriented formulas for extracting the part of a Schrödinger

operator on a graph which corresponds to a particular irreducible representation of

the graph’s symmetry. Starting with a representation of the symmetry by its action

on the space of directed bonds of the graph, we find a basis which block-diagonalizes

both the representation and the bond scattering matrix of the graph. The latter

leads to a factorization of the secular determinant into factors that correspond to

irreducible representation of the symmetry group.
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1. INTRODUCTION

In discrete mathematics, a graph is a set of vertices (also called nodes) which

are connected by edges, which may be directed or undirected. In applications, they

can be used to model many types of relations and processes in physical, biological,

social and information systems. A communication network in computer science, a

local connection between interacting parts of a physics system, and the functional

connection between brain areas in computational neuroscience, can all be described

by graphs. In some applications, an edge is merely a symbolic link signifying a

connection between two vertices. In the graphs that we study, the edges are physical

one-dimensional objects, characterized by their lengths. Furthermore, a family of

operators will be defined on the graph and the spectra of such operators will be

studied. This chapter provides an overview of a selection of applications and current

topics of interest of research on graphs. For more applications, see [22].

1.1 Quantum graphs

In mathematics and physics, a quantum graph is a metric graph together with

a differential operator acting on functions defined on the edges and satisfying some

matching conditions at the vertices. Quantum graphs have been used as a sim-

pler setting to study complicated phenomena. Linus Pauling was the first person

to use quantum graphs as models of free electrons in organic molecules [27] in the

1930s, where the molecules were modelled as vertices connected by paths with elec-

trons obeying a one-dimensional Schrödinger equation with some potential. In [78],

Ruedenberg and Scherr considered the free-electron network model for conjugated

molecules and derived joint conditions (for branching points) and boundary condi-

tions (for free endpoints).
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In quantum chaos, a branch of physics studying the manifestation of classically

chaotic motion in the quantum mechanics, quantum graphs have been used as model

systems since the pioneering work of Kottos and Smilansky [60]. They showed that

quantum graphs provided a simple model displaying most of the phenomena en-

countered in quantum chaos in closed systems. Later in [62], they turned quantum

graphs into a scattering system and showed that they displayed all the features

which characterize quantum scattering systems with an underlying classical chaotic

dynamics. They also derived exact expressions for the scattering matrix and an exact

trace formula (already known to mathematicians, see below), and they used them

to investigate the origin of the connection between Random Matrix Theory and the

underlying classical chaotic dynamics. From there, all aspects of quantum chaos have

been covered: spectral statistics [18, 24, 26, 42, 59], wavefunction statistics [14, 19],

and chaotic scattering [62]. To give some examples, in [18], Berkolaiko and Keating

investigated the two-point spectral statisics for star graphs in the limit as the num-

ber of edges tends to infinity and used combinatorial techniques to evaluate both

the diagonal (same orbit) and off-diagonal (different orbit) contributions; in [80],

Schanz and Smilansky considered the Schrödinger operator on graphs and studied

the spectral statistics of a unitary operator which represented the quantum evolution;

such an operator is the quantum analogue of the classical evolution operator of the

corresponding classical dynamics on the same graph; in [63], Kottos and Smilansky

proposed and investigated a system that is convenient to study the generic behavior

of chaotic scattering systems and their semiclassical description, and so on. For more

details about quantum chaos, interested read should consult [52].

Another area of physics where quantum graphs models featured recently is Ander-

son localization. In 1958, Anderson discussed the behavior of electrons in a crystal

with impurities [3]. He was the first person to suggest the possibility of electron
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localization inside a semiconductor under certain conditions. Since then, Anderson

localization has been used as a general wave phenomenon that arises in different

areas. In [91], Wiersma et al. reported direct experimental evidence for Anderson

localization of light in optical experiments performed on very strongly scattering

semiconductor powders. Anderson localization has been observed in microwaves by

Dalichaouch et al. in [30], in which they reported measurements of the electric-field

energy density for microwave radiation localized in essentially two-dimensional space

and detected regions of high energy density representing the signature of localized

modes. Anderson localization has also been used for sound waves. Weaver, in [90],

studied Anderson localization of ultrasound. On graphs, in [51], Hislop and Post

proved that certain random models associated with radial, tree-like, rooted quantum

graphs exhibit Anderson localization at all energies. They also proved Anderson

localization for the random necklace model. Aslo on graphs, in [1], Aizenman et

al. considered the Laplacian on a rooted metric tree with random edge lengths and

showed the stability of the absolutely continuous spectrum for weak disorder. In [57],

the spectral properties of the Laplacian on a class of quantum graphs with random

metric structure were studied by Klopp and Pankrashkin. They showed that, under

certain technical assumptions, the bottom of the spectrum is pure point with ex-

ponentially decaying eigenfunctions. Another important class of quantum graphs is

given by Zd-lattices. Exner, Helm, and Stollmann studied the situation on a cubic-

lattice quantum graph where each edge carried a random potential and showed the

Anderson localization near the bottom of the spectrum [36].

Quantum graphs have been used to model thin structures. Smilansky and Solomyak

studied a model system transiting from a network of channels with finite width to

the corresponding graph consisting of infinitely thin wires in [84]. In [46], Grieser

explained some common ideas and methods used in different areas where thin tubes
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occur. He also explained some recent results, mainly from mathematical physics and

spectral geometry. Exner and Post considered a family of compact manifolds which

shrinks with respect to an appropriate parameter to a graph in [37]. Rubinstein and

Schatzmann considered thin superconducting rings of arbitrary smooth shape in [76].

They also had basic estimates and convergence of the Laplacian spectrum in [77].

The interested reader should also see the review [64] by Kuchment, where a brief

survey on graph models for wave propagation in thin structures was presented.

Recently, quantum graphs are used in studying nanostructures. Amovilli, Leys,

and March, in [2], explained how a quantum network could be used as simple model

to calculate complex band structures and provided applications to graphene, boron

nitride, and polyacetylene chains. Although physical properties of carbon nanotubes

were examined by Saito, G. Dresselhaus, and MS Dresselhaus in [79], carbon nan-

otubes have also been analyzed using quantum graphs by Kuchment and Post [66] and

by Do and Kuchment [33]. Later, Iantchenko and Korotyaev considered the zigzag

half-nanotubes in a uniform magnetic field which was described by the magnetic

Schrödinger operator with a periodic potential plus a finitely supported perturba-

tion and described all eigenvalues in [53].

The first mathematical approach to the study of the Laplacian on a metric graph

is due to Roth in 1984, who derived a trace formula for the spectrum of the Lapla-

cian [75]. The Laplace operator or Laplacian is a differential operator given by the

divergence of the gradient of a function on Euclidean space. Such an operator is

named after the French mathematician Pierre-Simon de Laplace, who first applied

the operator to the study of celestial mechanics [67]. He also formulated Laplace

equation, whose solutions, called “Harmonic functions”, have found innumerable ap-

plications in mathematics and physics. The operator occurs in differential equations

that describe many physical phenomena: electric potentials, the diffusion equation
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for heat, wave propagation, quantum mechanics, and so on. Studying operators of

Schrödinger type, i.e. the Laplace operator with electric potential, on metric graphs

is a growing subfield of mathematical physics.

When talking about an operator, one often mentions its eigenvalues. If applying

an operator to a function works the same as a constant being multiplied by that

function, we say that the constant is an eigenvalue of the operator and that function

is the corresponding eigenfunction. The spectrum of a linear operator A in H consists

of all complex number λ such that the operator A − λIH does not have a bounded

inverse. For precise definitions and results concerning quantum graphs and their

spectra, we refer the reader to a paper by Kuchment [65].

Diffusion problems on topological networks (one-dimensional networks) has been

introduced by Lumer in 1980, see [69]. Later, following the work of Roth, Nicaise es-

tablished different estimates of the eigenvalues of the Laplacian on a finite topological

network in [70] and von Below deduced a characteristic equation for the spectrum of

an eigenvalue problem on c2-networks in [89]. Gerasimenko and Pavlov showed that

for a compact graph with semibounded potentials the spectrum of the nonstandard

Schrödinger operator was discrete and analyzed the Schrödinger equation on non-

compact graphs in [41]. Kostrykin and Schrader [58] classified all vertex matching

conditions giving rise to a self-adjoint Laplace operator on a metric graph. Another

classification was found by Harmer [49], who used an explicit parameterisation of the

Lagrange Grassmannian in terms of unitary matrices. Yet another parametrization

of all self-adjoint vertex conditions was suggested in [65] and improved in [40]. The

authors of [29] discovered a new form of boundary conditions, called the PQRS-form,

and gave a natural scheme to design generalized low and high pass quantum filters.

Quantum graphs have been actively used to study properties of dispersion re-

lation of periodic structures. In physics, dispersion relation is the relationship be-
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tween oscillation frequency and wave vector. It occurs when pure plane waves of

different wavelengths have different propagation velocities. Properties of dispersion

relation on periodic graphs are studied by many mathematicians. In [66], Kuch-

ment and Post provided a simple explicit derivation of the dispersion relations for

Schrödinger operators on the graphene structure. Do and Kuchment studied the

dispersion relations and spectra of invariant Schrödinger operators on a graphyne

structure (lithographite) and provided a description of different parts of the spec-

trum, band-gap structure, and Dirac points in [34]. In her recent work, Do further

described the dispersion relations and spectra of periodic Schrödinger operators on

a graphyne nanotube structure in [33]. In [50], Harrison et al. discussed the fre-

quently arising question on the spectral structure of periodic operators. The authors

answered the question, do the edges of the spectrum occur at the set of “corner”

high symmetry points, in the negative, providing some counter examples. It was also

shown that the situation of spectral edges appeared at high symmetry points was

stable under small perturbations in some cases.

Existence of gaps in the spectra of operators of mathematical physics plays im-

portant role in many areas, as it may be applied to constructions of thin branching

structures. Based on the process of graph decoration, i.e., gluing to each vertex of

the original graph a copy of a compact “decoration graph”, Schenker and Aizenman

presented a mechanism for the creation of gaps in the spectra of self-adjoint operators

defined over a Hilbert space of functions on a graph in [82]. Similarly, Ong created

spectral gaps by replacing each vertex of a graph with a finite graph in his thesis

[71]. In [35], authors further presented some results on creating and manipulating

spectral gaps for a quantum graph by inserting appropriate internal structures into

its vertices.

Quantum graphs have been especially fruitful models for studying the properties
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of zeros of the eigenfunctions. Some recent results include bounds on the number of

nodal domains, specific formulae for some classes of graphs, variational characteri-

zations, and inverse problems are developed. Nodal domains are connected domains

of a metric graph on which a function has a constant sign, or equivalently, the

connected components that remain after removing the set of points on which the

eigenfunction is zero. An extension of Sturm Oscillation Theorem to quantum tree

graph was obtained by Pokornyi and Pryadiev [73, 74] and by Schapotschnikow [81],

who showed that the n-th eigenfunction on a tree has exactly n nodal domains. The

upper bound on the number of nodal domains in Rd was adapted to metric graphs

by Gnutzmann, Weber and Smilansky [43]. In [15], Berkolaiko studied Schrödinger

operators on general graphs and found a lower bound for the number of nodal do-

mains of the n-th eigenfunction. In [7], Band et al. provided a new interpretation

for the nodal deficiency in the case of quantum graphs: it equals the Morse index of

an energy functional on a suitably defined space of graph partitions. This discovery

was extended to nodal domains of Laplacian on manifolds by Berkolaiko, Kuchment,

and Smilansky [23]. In [25], Berkolaiko and Weyand proved an analogue of the mag-

netic nodal theorem on quantum graphs (see [16]), namely, the number of zeros of

the n-th eigenfunction of the Schrödinger operator on a quantum graph is related to

the stability of the n-th eigenvalue under perturbation of the operator by magnetic

potential. Using this theorem, Band proved that if the n-th eigenfunction of a graph

has n − 1 zeros, then the graph is a tree in [4]. This is the converse theorem of

the Sturn’s oscillation theorem on trees of [73, 74, 81]. It should be noted that all

these results are valid under the assumptions that the eigenvalue is simple and the

eigenfunction does not vanish on vertices, see Section 1.2.
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1.2 Simple eigenvalues

If the multiplicity of an eigenvalue is one, we say the eigenvalue is simple, other-

wise it is called degenerate. One of the fundamental questions of the spectral theory

is that of presence in the spectrum of degenerate (or repeated) eigenvalues. Uhlen-

beck, in [87], established generic simplicity of eigenvalues of the Laplace-Beltrami

operator on compact manifolds, with respect to the set of all possible metrics on

the manifold. Some generic properties of eigenfunctions were also established. For

a more general result, see [88]. Since then, various extensions and generalizations of

this result have been proven for different circumstances. In [47], Guillemin, Legen-

dre, and Sena-Dias used the first variational formula to reprove an important result

of Uhlenbeck’s and imposed a question regarding the simple spectrum of a generic

Kähler metric.

On graphs, the question of simplicity of eigenvalues was considered by Friedlander

in [39], who proved that the eigenvalues are simple generically with respect to the

perturbation of the edge lengths of the graph with Neumann conditions. The proof is

based on perturbation theory. In [38], Friedlander considered the extremal properties

of the eigenvalues of a graph with Neumann conditions. An outline of a shorter proof,

under the same conditions, was released by Colin de Verdière [32]. In Section 3, we

further generalize the result to a wider range of vertex conditions, namely the δ-type

conditions on vertices of the graph. We also investigate the eigenfunctions, showing

that generically they did not vanish on vertices, unless this was unavoidable due to

presence of looping edges. Both of these results are important in applications, in

particular all recent results on the number of zeros of graph eigenfunctions assume

both the simplicity of eigenvalues and non-vanishing of eigenfunctions on vertices as

a precondition [4, 8, 10, 11, 15, 25].

8



1.3 Representations, symmetries, and degenerate eigenvalues

A representation is a (linear) action of a group on a vector space. The represen-

tation theory of finite groups is a subject started in the late eighteen hundreds. The

pioneers in the subject were G. Frobenius, I. Schur, and W. Burnside. Representa-

tion theory plays an important role in the classification of finite simple groups. For

example, it applies to Burnside’s pq-Theorem, where p, q are prime numbers, which

states that a non-abelian group of order paqb cannot be simple. It is also a fundamen-

tal tool with applications to many areas of mathematics and statisics. Applications

of representation theory to graph theory can be found in [31]. Some applications

toward the computation of eigenvalues of Cayley graphs are given in [85].

Representations arise naturally in many branches of both mathematics and physics.

One of the chief applications of representation theory is to exploit symmetry of a

quantum system to facilitate computation of its spectrum. In addition, studying the

representations of a group can give information about the group itself. For example,

if G is a finite group, then the structure of this group algebra, which is the set of all

linear combinations of finitely many elements of G with coefficients in a field, can be

described in terms of the irreducible representations of G. For more details on how

the representation theory relates to quantum mechanics, see [92].

It is well known that an operator possessing a large group of symmetries has

degeneracies in the spectrum. Every eigenspace forms a representation for the group

of symmetry. Usually (but not always) there are eigenspaces corresponding to all

irreducible representations. If the irreducible representation has dimension bigger

than two, the corresponding eigenvalue must be degenerate. If an eigenspace give rise

to a reducible representations, such degeneracy is called accidental. It is a common

physical conjecture that accidental degeneracies do not happen in a typical system.

9



In constrast, later in this dissertation, we will show that there will be persistent

accidental degeneracy in the spectrum of symmetric graphs. It can be confirmed

that the same eigenvalues come from different representations.

A related question is that of existence of isospectral graphs. Ever since 1966

Marc Kac asked his famous question: “Can one hear the shape of a drum?” [55],

physicists and mathematicians have approached this problem from different aspects.

Another way to interpret the question is to ask if the Laplacian on every planar

domain with Dirichlet boundary conditions is uniquely determined by its spectrum.

Attempts were made to reconstruct the shape of an object from its spectrum and

to find different objects that are isospectral, i.e., have the same spectrum. In 1985,

Sunada described a method for constructing isospectral Riemannian manifolds [86].

In 1992, based on Sunada’s theorem, Gordon, Webb and Wolpert presented the

first pair of isospectral two-dimensional planar domains [44, 45]. A set of seventeen

isospectral families of planar domains, both Neumann and Dirichlet isospectral, was

obtained later by Buser et al. [28]. Jakobson et al. and Levitin et al. found

sets of four planar domains that are mutually isospectral by mixing the Neumann

and Dirichlet boundary conditions [54, 68]. Gutkin and Smilansky answered Kac’s

question in the positive for generic quantum graphs with rationally independent edge

lengths [48]. Based on representation theory arguments, Band, Parzanchevski, and

Ben-Shach presented a method which generalized Sunada’s method and enabled one

to construct isospectral objects, such as quantum graphs and drums in [12, 72].

Representations can also be used to study the spectrum of a symmetric graph. In

[6], authors aim to give explicit and computation-oriented formulas for extracting

the part of a Schrödinger operator on a graph which corresponds to a particular

representation of the graph’s symmetry. The foundations of this work are laid out

in Section 4 of this thesis.
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1.4 Outline

In this dissertation, we discuss the degeneracies in the eigenvalue spectrum of

quantum graphs. First we introduce some definitions that will be used through-

out the dissertation and the concept of operators and functions acting on graphs in

Section 2. We also provide some basic examples. In Section 3, we present results re-

garding the generic properties of the eigenvalues and eigenfunctions of a graph under

a modification of the lengths of edges. In Section 4, we consider symmetric graphs

and investigate the factorization of their secular determinant and its connection with

the irreducible representations of the graph of symmetries. Finally in Section 5, we

give a summary and talk about future work.
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2. PRELIMINARIES: OPERATORS ON GRAPHS

We start by introducing some common graph notions and notation used through-

out the dissertation.

2.1 Definitions

Definition 2.1.1. A graph Γ consists of a finite set of vertices (or nodes) V = {vi}

and a set E = {ej} of edges connecting the vertices. We allow multiple edges and

loops (edges connecting a vertex to itself). The degree dv of a vertex v is the number

of edges incident to it. A loop contributes twice to the degree of its vertex. Two

vertices u and v are adjacent if there is at least one edge directly connecting them.

Remark 2.1.2. Below shows that one can turn a quantum graph with loops and

multiple edges into an equivalent graph without those.

Definition 2.1.3. A path is a sequence {x1, x2, . . . , xn} such that

(x1, x2), (x2, x3), . . . , (xn−1, xn)

are edges of the graph and the xi’s are distinct. A cycle is a path on a graph that

begins and ends at the same vertex.

Definition 2.1.4. A tree is a graph which is connected and has no cycles.

Definition 2.1.5. The graph Γ is said to be a metric graph if each of its edges e is

assigned a positive length le ∈ (0,∞].

We will use x or xe to denote the coordinate on the edge e. The coordinate starts

from one end-vertex of the edge, which is chosen arbitrarily.

12



Definition 2.1.6. A metric graph is infinite if it has infinitely many vertices. Oth-

erwise the graph will be called finite. A metric graph is compact if the graph is finite

and each edge has finite length.

Definition 2.1.7. The space L2(Γ) on Γ consists of functions that are measurable

and square integrable on each edge e and such that

‖f‖2
L2(Γ):=

∑
e∈E

‖f‖2
L2(e)<∞.

The inner product of two functions on a metric graph Γ is defined by

〈f, g〉 =
∑
e∈E

∫
e

f(x)g(x)dx.

The Sobolev space H1(Γ) consists of all continuous functions of Γ that belong to

H1(e) for each edge e and such that

‖f‖2
H1(Γ):=

∑
e∈E

‖f‖2
H1(e)<∞.

We denote by H̃k(Γ) the space

H̃k(Γ) :=
⊕
e∈E

Hk(e),

which consists of the functions f on Γ that on each edge e belong to the Sobolev

space Hk(e) and such that

‖f‖2
H̃k :=

∑
e∈E

‖f‖2
Hk(e)<∞.

Definition 2.1.8. An operator H with domain D is self-adjoint if 〈Hf, g〉 = 〈f,Hg〉
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for all functions f, g ∈ D and the domain of the adjoint H∗ is also equal to D.

Definition 2.1.9. A quantum graph is a metric graph equipped with a self-adjoint

differential operator (usually of Schrödinger type) defined on the edges and with

matching conditions specified at the vertices.

In this dissertation, we will study the Laplace operator H defined by

H : f 7→ −d
2f

dx2
, (2.1.1)

acting on the functions that belong to the Sobolev H2(e) space on each edge e and

satisfying the δ-type boundary conditions with coefficients αv at the vertices of the

graph, i.e., 
f(x) is continuous at v∑
e∈Ev

df

dxe
(v) = αvf(v)

, (2.1.2)

where for each vertex v, the parameter αv is a fixed real number. Here the sum is

taken over the set Ev of all edges e incident to the vertex v and the derivatives are

assumed to be taken in the directions away from the vertex. We will frequently en-

counter the special case when αv = 0, which is known as the Neumann (or Kirchhoff)

condition.

Remark 2.1.10. Neumann condition (equation (2.1.2) with αv = 0) at a vertex of

degree 2 is equivalent to f being continuously differentiable at v. Therefore, a graph

with a Neumann vertex of degree 2 is equivalent to a graph which has no vertex at

this location, just a continuous edge. We will often use this fact in reverse, choosing a

point on an edge and declaring it to be a vertex of degree 2 with Neumann condition.

We will call such a vertex a trivial vertex. Introduction of such trivial vertices can

turn a graph with multiple edges and loops into a graph without such. This is
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convenient for numerical computations where multiple edges can cause unnecessary

complications. We will sometimes use the notation (u, v) to denote the edge from

the vertex u to the vertex v, implicitly assuming that all multiple edges have been

converted by the introduction of vertices of degree two.

Definition 2.1.11. A point λ ∈ C is said to be an eigenvalue of H, if the kernel

of the operator H − λI is non-trivial. The elements of this kernel are said to be the

eigenfunctions corresponding to the eigenvalue λ. The spectrum of H consists of

all complex λ ∈ C such that the operator H − λI does not have a bounded inverse.

Definition 2.1.12. Two linear operators are called isospectral if they have the same

spectrum.

Definition 2.1.13. The eigenpair (λ, f) is called generic if the eigenvalue λ is simple

and the corresponding eigenfunction f is different than zero on every vertex. Such

λ and f in a generic pair are also called generic. A quantum graph is generic if all

of its eigenpairs are generic.

The graphs we consider are undirected. However, it is physically relevant to

talk about waves propogating on an edge in a certain direction. This motivates the

following definition.

Definition 2.1.14. A bond is an edge of a graph together with an assigned direction.

The reversal b of the bond b is the same edge with the opposite direction. Each edge

thus gives rise to two bonds. The incoming bonds at a vertex v is the set of bonds

such that the direction is pointing into the vertex while the outgoing bonds is the set

of bonds such that the direction is pointing away from the vertex.

Definition 2.1.15. A complete graph Kn with n vertices is a simple undirected

graph in which every pair of distinct vertices is connected by a unique edge.
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Definition 2.1.16. Let λ = k2. Consider the 2|E|-dimensional complex space, with

dimensions indexed by bonds. The bond scattering matrix S is defined to be

Sb′,b =


2/d− 1 if b′ = b̄

2/d if b′ follows b and b′ 6= b̄

0 otherwise

while the matrix D(k) is diagonal with entries

D(k)b,b = eikLb ,

where Lb the length of the edge b. The edge b′ follows b if the end-vertex of b is

the start vertex of b′. The scattering matrix S(k) for a graph, assuming no multiple

edges or loops, with Neumann vertex conditions is

S(k) := SD(k).

The secular determinant is the determinant of S(k), i.e.

Σ(k) = det (I− S(k)) .

Theorem 2.1.17 ([22]). Consider the eigenvalue problem −d
2f

dx2
= λf on a graph

with vertex conditions (2.1.2). Then λ = k2 is an eigenvalue if and only if k is a

root of the secular equation

Σ(k) = 0.
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2.2 Examples

The eigenvalue problem we will be considering in this dissertation is

Hf := −f ′′ = λf = k2f, (2.2.1)

where for convenience we substituted λ = k2, together with the boundary condition

(2.1.2). This is a second order linear equation with constant coefficients which for

k > 0 is readily solved by

f(x) = C1 cos(kx) + C2 sin(kx). (2.2.2)

We give some examples here.

Example 2.2.1 (A trivial graph — an interval). An interval [0, L] is the simplest

example of a graph; it has two vertices (the endpoints of the interval) and one edge.

The continuity condition is empty at every vertex since there is only one edge. We

impose Neumann conditions at both vertices, i.e.


f ′(0) = 0

−f ′(L) = 0

.

The minus sign appeared because we agreed to direct the derivatives into the edge.

Consider the eigenvalue problem (2.2.1). Applying the first vertex condition

f ′(0) = 0 to (2.2.2), we get C2 = 0 and f(x) = C1 cos
(√

λx
)

. The second vertex

condition becomes C1

√
λ sin

(√
λL
)

= 0, which imposes a condition on k. We thus

get the eigenvalues

λ = (kπ/L)2
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with the corresponding eigenfunctions

f(x) = cos (kπx/L)

defined up to an overall constant multiplier (as befits eigenvectors and eigenfunc-

tions).

There is one other eigenvalue in the spectrum that we missed: λ = 0 with the

eigenfunction f(x) ≡ 1.

Example 2.2.2 (A star graph with Neumann conditions at endpoints). Consider

now a first non-trivial example: a star graph with 3 edges meeting at a central vertex,

see Figure 2.1.

L1

L2

L3

Figure 2.1: A star graph with three edges.

Consider the eigenvalue problem (2.2.1) again. Let fi be the eigenfunction lies on

edge Li for i = 1, 2, 3. Applying Neumann conditions f ′i(0) = 0 to equation (2.2.2)

at the end vertices, we get

fi(x) = Ai cos(kx), i = 1, 2, 3

for some constants A1, A2 and A3. Note that two conditions are imposed at the

18



central vertex, namely, Neumann condition and continuity condition, i.e.


−f ′1(L1)− f ′2(L2)− f ′3(L3) = 0

f1(L1) = f2(L2) = f3(L3)

,

which implies that


A1 cos(kL1) = A2 cos(kL2) = A3 cos(kL3)

A1 sin(kL1) + A2 sin(kL2) + A3 sin(kL3) = 0

. (2.2.3)

Dividing the first equation in (2.2.3) by the second cancels the unknown constants,

resulting in

tan(kL1) + tan(kL2) + tan(kL3) = 0. (2.2.4)

Squares of the roots k of this equation (which cannot be solved explicitly except when

all L’s are equal) are the eigenvalues of the star graph. If L := L1 = L2 = L3, then

(2.2.4) implies that 3 sin(kL) = 0. The eigenvalues are multiple with multiplicity 2,

and they are

λ = (kπ/L)2 .

If Li’s are rationally independent of each other, then the eigenvalues are simple.

Example 2.2.3 (lasso (lollipop) graph). Assume that on the graph Γ, see Fig-

ure 2.2, the Dirichlet condition is assigned at vertex v1 and the Neumann condition

is assigned at vertex v2. Let l1, l2 be lengths of the corresponding edges and f be the

eigenfunction. Note that we can always add a vertex v3 anywhere on the circle with

Neumann condition without affecting the conditions for the eigenfunctions on Γ.

First, we may compute S,D(k), and the secular determinant according to the
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Figure 2.2: A graph with non-Neumann vertex conditions.

definitions.

S =



0 −1/3 2/3 2/3

1 0 0 0

0 2/3 2/3 −1/3

0 2/3 −1/3 2/3


,

D(k) =



eikl1 0 0 0

0 eikl1 0 0

0 0 eikl2 0

0 0 0 eikl2


,

and

Σ(k) =
1

3

(
eikl2 − 1

) (
3eik(2l1+l2) − ei2kl1 + eikl2 − 3

)
. (2.2.5)

Second, let us consider the eigenvalue problem (2.2.1) again. Since Γ has reflection

symmetry, for every eigenfunction f of Γ, f is either odd or even.

Case 1: f is odd, i.e. f(Rx) = −f(x) for each point x on the graph. Since R

preserves the points on edge (v1, v2),

f1(x) = 0
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on the edge. This means that the eigenfunction lies only on the circle, say f2(x). By

continuity, f1(v2) = f2(0) = 0. Then equation (2.2.2) with Dirichlet condition at v2

becomes

f2(x) = C2 sin
(√

λx
)
.

At vertex v3, we know that −f2(v3) = f2(Rv3) = f2(v3), which implies that f2(v3) =

f2(l/2) = 0. Then for k ∈ N
√
λ = 2kπ/l2. (2.2.6)

Case 2: f is even, i.e. f(Rx) = f(x) for each point x on the graph. For edge

(v1, v2), if we set x = 0 at v1, then the Dirichlet condition at v1 implies that the

solution to equation (2.2.1) becomes

f1(x) = A sin
(√

λx
)

for some constant A. Smiliar argument shows that f ′(l/2) = 0. If we set x = 0 at v3

on the circle, then the solution to equation (2.2.1) is

f2(x) = B cos
(√

λx
)

for some constant B. Note that these two eigenfunctions f1, f2 lie on edge (v1, v2)

and on the circle respectively. From the Neumann condition at v2 and continuity

condition at v2, we have


A cos

(√
λl1

)
− 2B sin

(√
λl2/2

)
= 0

A sin
(√

λl1

)
= B cos

(√
λl2/2

) .

This implies that
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2 sin
(√

λl1

)
sin
(√

λl2/2
)
− cos

(√
λl1

)
cos
(√

λl2/2
)

= 0. (2.2.7)

We claim that the eigenvalues of equations (2.2.6) and (2.2.7) will be disjoint,

after changing the lengths of edges. Indeed, substitute (2.2.6) into equation (2.2.7),

we see that

− cos (2kπl1/l2) cos (kπ) = 0,

which implies that cos (2kπl1/l2) = 0. If we choose l1, l2 to be rationally independent,

then the latter condition is never satisfied.

Example 2.2.4 (Quotient graphs of the complete graph K4). Consider the complete

graph K4 with Neumann conditions on each vertex, see the left of Figure 2.3, where

1, 2, 3, 4 are vertices and a, b are corresponding edge lengths.

Figure 2.3: The complete graph K4 and a quotient graph.

By definition, the secular determinant can be computed as

Σ(k) =
1

27
·
(
3eik(2a+b) − ei2ak + eibk − 3

)
·
(
eibk − 1

)
·
(
3ei2(a+b)k + 2eik(2a+b) + ei2ak − ei2bk − 2eibk − 3

)2
.

(2.2.8)
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Here, we describe another way to obtain the factorizations of the secular deter-

minant. Consider the subgraph of Gamma which is shown on the right of Figure 2.3.

We impose vertex conditions shown on the left of Figure 2.4, where N stands for

Neumann condition.

Figure 2.4: K4 is covered by f and h.

If we have eigenfunctions f and h on the graph shown on the left of Figure 2.4,

then K4 can be covered by f and h as shown on the right of Figure 2.4 by transplant-

ing them around. It is easy to see that the resulting function on the entire graph

Gamma is an eigenfunction.

Let us calculate the eigenvalues of the graph on the left of Figure 2.4. Let f and

h be defined by

f(x) = A1 cos(kx) +B1 sin(kx),

h(x) = A2 cos(kx) +B2 sin(kx)

Neumann vertex conditions on the left of Figure 2.4 implies that


h′(a) = 0

f ′(b/2) = 0

.
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Neumann vertex condition and continuity condition on vertex 3 implies that


2f ′(0) + h′(0) = 0

f(0) = h(0)

.

Combine all these conditions, we get



−A2 sin(ka) +B2 cos(ka) = 0

−A1 sin(bk/2) +B1 cos(bk/2) = 0

2B1 +B2 = 0

A1 = A2

.

This means that λ = k2 must satisfies

2 cos(ak) sin(bk/2) + cos(bk/2) sin(ak) = 0.

Using the identities

sin(x) =
eix − e−ix

2i

and

cos(x) =
eix + e−ix

2
,

we can rewrite the expression as

ei2ak − eibk − 3ei(2a+b)k + 3 = 0,

which is a factor of S(k).

If we have an eigenfunction f and h = 0 on the graph as shown on the left of
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Figure 2.5, where D stands for Dirichlet condition, then K4 can be covered by f and

g as shown on the right of Figure 2.5 by transplanting them around. Again we get

a valid eigenfunction of the entire graph.

Figure 2.5: K4 is covered by f and 0.

From the vertex conditions, we get


f(0) = 0

f(b/2) = 0

.

This implies that

sin(bk/2) = 0

or

eibk − 1 = 0,

which is another factor of S(k).

If we have eigenfunctions f1, f2 and h on the graph as shown on the left of Fig-

ure 2.6, then K4 can be covered by f1, f2 and g as shown on the right two subgraphs of

Figure 2.6 by transplanting them around. This time we get two linearly independent

eigenfunctions of the whole graph.
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Figure 2.6: K4 is covered by f1, f2 and h.

Define

fi(x) = Ai cos(kx) +Bi sin(kx) for i = 1, 2

and

h(x) = A3 cos(kx) +B3 sin(kx).

Continuity conditions at vertices 3, 4 imply that


f1(0) = f2(0)

f2(0) = h(0)

h(a) = 0

.

Continuity conditions in the middle of edges (1, 3) and (2, 3) imply that


f2(b/2) = 0

f ′2(b/2)− f ′1(b/2) = f ′1(b/2)

.

Neumann condition at vertex 3 implies that

f ′1(0) + f ′2(0) + h′(0) = 0.
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Combine all these conditions together, we get



A1 = A2

A2 = A3

A3 cos(ak) +B3 sin(ak) = 0

A2 cos (bk/2) +B2 sin (bk/2) = 0

−A2 sin (bk/2) +B2 cos (bk/2) = 2 (−A1 sin (bk/2) +B1 cos (bk/2))

B1 +B2 +B3 = 0

.

Then λ = k2 must satisfies

sin(ak) + cos(ak) sin(bk) + 2 cos(bk) sin(ak) = 0

or

ei2ak − ei2bk − 2eibk + 2ei(2a+b)k + 3ei2(a+b)k − 3 = 0.

Since we have two linear independent eigenfunctions, the corresponding eigenvalues

are twice degenerate, giving rise to the factor

(
ei2ak − ei2bk − 2eibk + 2ei(2a+b)k + 3ei2(a+b)k − 3

)2

in S(k).

These graphs corresponds to irreducible representations of the group of symme-

tries of the original graph through a construction called “quotient graph” by Band et

al. [12]. In Section 4, we study these ideas on the level of scattering matrices S(k).
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3. SIMPLICITY OF EIGENVALUES AND NON-VANISHING OF

EIGENFUNCTIONS OF A QUANTUM GRAPH∗

The question we address here is when is it typical (with respect to variation of

edge lengths) for a graph to have simple spectrum and to have eigenfunctions that

do not vanish on vertices of the graph. To motivate our results, we first consider

examples which turn out to be the only cases one needs to take special care about.

3.1 Main results

Definition 3.1.1. A loop is a chain of vertices v, v1, . . . , vn, v connected by edges,

with each of the intermediate vertices v1, . . . , vn having degree 2. We include the

possibility of having n = 0, in which case v is connected to itself by a looping edge.

By Remark 2.1.10, a looping edge is equivalent to a loop with intermediate vertices

with αvj = 0, see Figure 3.1.

⇐⇒

αv2 = 0

αv1 = 0

v v

Figure 3.1: If the vertex conditions αv1 = αv2 = 0 with deg(v1) = deg(v2) = 2, the
loop is equivalent to a looping edge.
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Example 3.1.2. Let L be a graph consisting of one looping edge with no vertices. We

will call such a graph a circle. By Remark 2.1.10 it can be equivalently represented

as a cycle graph (a number of vertices connected into a closed chain) with all vertices

having αv = 0. It is easy to see that the spectrum of the graph is

0,

(
2π

`

)2

,

(
2π

`

)2

,

(
4π

`

)2

,

(
4π

`

)2

, . . .

where ` is the length of the looping edge. We note that the double degeneracies in

the spectrum cannot be resolved by changing the edge length.

The eigenfunctions can be represented as

C1 cos
(√

λx
)

+ C2 sin
(√

λx
)

= A sin
(√

λx+ θ
)
, (3.1.1)

with constants C1 and C2 (or A and θ) arbitrary. Here λ is the eigenvalue and the

origin x = 0 can be put in an arbitrary location on the graph. It is important to note

that for any eigenvalue λ 6= 0 and any point on the graph, there is an eigenfunction

which vanishes at that point.

Example 3.1.3. Consider a graph Γ with a looping edge L, see Figure 3.1. We

assume that there are no other (non-trivial) vertices on the loop. The condition at

the attachment point v is of δ-type with arbitrary αv.

If ` is the length of the loop, then (2πn/`)2 is an eigenvalue of Γ for any integer

n > 0. We demonstrate this by constructing an eigenfunction of Γ. On the loop

we take the function f to be equal to the eigenfunction of the corresponding circle,

equation (3.1.1), chosen to vanish at the attachment point v. The function f is

extended to the rest of the graph Γ by setting it to 0 identically. This obviously
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makes f continuous and, since f is an eigenfunction with respect to the loop,

∑
e∈Ev(Γ)

df

dxe
(v) =

∑
e∈Ev(L)

df

dxe
(v) = 0 = αf(v) (3.1.2)

for any α. We thus have an eigenfunction of Γ which is supported exclusively on the

loop L; in particular it is zero on all vertices of Γ. Moreover, such an eigenfunction

cannot be destroyed by changing the edge lengths of graph Γ.

We also note, that the eigenfunction that is supported exclusively on one loop is

unique (for a given value of λ). This can be easily seen as the eigenfunction satisfies

the Dirichlet problem on the looping edge, which has simple spectrum (see Example

2.2.3).

It turns out that having no other vertices on the loop is an essential feature of

Example 3.1.3.

Lemma 3.1.4. Let Γ be a graph with δ-type conditions at vertices. Suppose L is

loop in Γ which has at least one vertex with αv 6= 0 on it, other than the attachment

vertex. Then there is a small modification of edge lengths of Γ, after which Γ has no

eigenfunctions f supported exclusively on the loop L.

This lemma, proved in Section 3.3, motivates the following definition.

Definition 3.1.5. A pure loop is a loop with no vertices vj having αvj 6= 0, other

than, possibly, the attachment point v. In fact, in what follows, by a “loop” we will

always mean a pure loop, unless explicitly stated otherwise. As mentioned already,

a graph consisting of one pure loop is called a circle; a graph consisting of an impure

loop will be called an impure loop graph.

Now we are able to formulate our main result.
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Theorem 3.1.6. Let Γ be a connected graph with δ-type conditions at vertices. If Γ

is not equivalent to a circle, then, after a small modification of edge lengths, the new

graph Γ̃ will satisfy the following genericity conditions

(i) σ(Γ̃) is simple, and

(ii) for each eigenfunction f of Γ̃,

(a) either f(v) 6= 0 for each vertex v, or

(b) supp f = L for only one loop L of Γ̃.

More precisely, in the space of all possible edge lengths, the set on which the above

conditions are satisfied is residual (also called comeagre).

Remark 3.1.7. In [39], Friedlander proved that the spectrum of a connected metric

graph with Neumann vertex conditions that is different from a circle can be made

simple after a small pertubation. We extend his result to graphs with arbitrary δ-

type vertex conditions and we show that the eigenfunctions are generic. Our proofs

are more elementary than those of [39].

Remark 3.1.8. A residual or comeagre set is a set whose complement is meagre. In

other words, a residual set is a countable intersection of open dense sets. Informally, a

residual set is “large”. In particular, since all spaces we will be dealing with (namely,

the space of all possible lengths or the space of all points on a graph) are complete

metric spaces, by Baire Category Theorem a residual set is dense.

We will show that in the vicinity of any choice of edge length, there is a residual

set of lengths on which the theorem holds. As a direct consequence, it holds on a

residual set with respect to the whole space of all possible edge lengths, which can

be identified with RE
+.
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3.2 Tools and ideas of the proof

In this section we collect the main tools and explain the basic ideas behind the

proofs.

Lemma 3.2.1. Let x be a point on the edge e. Then, in any neighborhood of x there

is a residual set of y such that for all eigenfunctions fn either fn(y) 6= 0 or fn ≡ 0

on the edge e.

Similarly, given a sequence of values {φn}, all of them non-zero, there is a residual

set of y such that for all normalized eigenfunctions fn with λn > 0 we have fn(y) 6=

φn.

Proof. Fix a neighborhood of x. Any eigenfunction f that is not identically zero on e

has only finitely many zeros in the neighborhood: otherwise there is an accumulation

point for zeros at which f = f ′ = 0 and, therefore, f ≡ 0. The union of the zero

points over all possible n is a countable set. On the other hand, the neighborhood

has uncountably many points to choose from.

The second part of the lemma is proved analogously, only one need not worry

about fn vanishing identically on the edge.

The proof of Theorem 3.1.6 is built around modifications made to the structure

of a graph. The following theorem describes the type of modification we find useful

and its effect on the spectrum. We denote by Γα a compact quantum graph with

a distinguished vertex v. Arbitrary self-adjoint conditions are fixed at all vertices

other than v, while v is endowed with the δ-type condition with coefficient α.

Theorem 3.2.2 (Berkolaiko–Kuchment [21] and [22, Theorem 3.1.8]). Let Γα′ be

the graph obtained from the graph Γα by changing the coefficient of the condition at

vertex v from α to α′. If −∞ < α < α′ ≤ ∞ (where α′ = ∞ corresponds to the
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Dirichlet condition), then

λn−1(Γα′) ≤ λn(Γα) ≤ λn(Γα′). (3.2.1)

If the eigenvalue λn(Γα) is simple and its eigenfunction f is such that either f(v) or∑
f ′(v) is non-zero, then the inequalities can be made strict,

λn−1(Γα′) < λn(Γα) < λn(Γα′). (3.2.2)

If α′ < α, the inequalities are adjusted accordingly,

λn(Γα′) < λn(Γα) < λn+1(Γα′). (3.2.3)

3.3 Proofs of the main results

We begin by establishing the following auxiliary result.

Lemma 3.3.1. Let Γ be an impure loop graph, i.e. a graph consisting of one loop

with at least one vertex with coefficient αv 6= 0. After a small adjustment of edge

lengths, its eigenvalues can be made simple.

Proof. We prove the lemma by induction on the number of vertices with αv 6= 0.

Let Γ1 be a loop with one vertex v and ` be the length of the loop. Parametrize

the loop with a coordinate x such that x = 0 corresponds to v, x > 0 in the clockwise

direction and x < 0 in the anticlockwise direction. Since Γ1 has reflection symmetry,

every eigenfunction is either odd or even, see Figure 3.2.

If f is odd, it satisfies f(−x) = −f(x) for each point x. In particular, f(0) = 0

and, by continuity, f(`/2) = f(−`/2) = −f(`/2) = 0. Solving the equation Hf =
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Figure 3.2: A loop with one vertex and the structure of the odd (left) and even
(right) eigenfunctions.

λf , we have f(x) = sin(
√
λx) and

√
λ = 2kπ/`, k ∈ N. (3.3.1)

If f is even, i.e. f(−x) = f(x) for every point x. Since f ′(`/2) = −f ′(−`/2) by

symmetry and f ′(`/2)− f ′(−`/2) = 0 by Neumann vertex condition at `/2, we have

f ′(`/2) = 0. At x = 0, ∑
e∈E0

df

dxe
(0) = α0f(0),

i.e. 2f ′+(0) = α0f(0), where f ′+ denotes the one-sided derivative taken at 0 in the

positive direction. Solving the equation Hf = λf , we have

2
√
λ sin

(√
λ`/2

)
= α0 cos

(√
λ`/2

)
. (3.3.2)

The roots of equation (3.3.2) cannot coincide with (3.3.1): the substitution of
√
λ =

2kπ/l into (3.3.2) results in 0 = ±α0, which contradicts our assumptions. Hence we

proved the base case for the induction.

Suppose the statement is true for any impure loop graph with n nonzero vertex
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conditions. Consider Γ, an impure loop graph with n+ 1 nonzero vertex conditions.

Pick any vertex v and change its vertex condition to Neumann; using inductive

hypothesis, adjust the edge lengths to obtain a graph Γ′ with simple spectrum. By

Lemma 3.2.1 it is now possible to pick a point near the former position of the vertex

v, where none of the eigenfunctions are zero. Note that the eigenfunctions cannot

vanish on an open subset of the graph, since the unique continuation holds for the

impure loop graph. Now we change the vertex condition at the new v back to αv

and use the strict inequalities in Theorem 3.2.2 to conclude that the spectrum is still

simple.

We are now ready to prove Lemma 3.1.4.

Proof of Lemma 3.1.4. Split the loop L at the attachment point v from Γ, see Fig-

ure 3.3. Assign Neumann vertex condition to the former attachment point on the

loop and keep other vertex conditions unchanged.

Figure 3.3: Modifications to graph Γ.

Apply Lemma 3.3.1 to L so that σ(L′) is simple for the changed length loop L′.

Furthermore, by Lemma 3.2.1, we can pick a point v0 near the former attachment

point so that each eigenfunction f of L′ is nonzero at v0. Attach L′ back to Γ \L at

v0. Then the new graph Γ′ satisfies the same vertex conditions everywhere as Γ.
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If there exists an eigenfunction g of Γ′ with supp g = L′, then necessarily g(v0) = 0

and g is an eigenfunction of the loop L′ (see equation (3.1.2)), which is a contradic-

tion.

Before we start the proof of the main theorem, we make some observations.

Remark 3.3.2. If λ = 0, then the corresponding eigenfunction f of Γ is a constant

on every edge, which therefore must be the same (non-zero!) constant throughout

the graph by continuity. We conclude that the eigenvalue λ = 0 is simple and f is

non-zero on every vertex. Hence, Theorem 3.1.6 holds for λ = 0.

Now, we are ready to prove the main theorem.

Proof of Theorem 3.1.6. We may assume λ 6= 0 by Remark 3.3.2.

We will prove the result by an induction on the number of edges of the graph. If

Γ consists of one edge which is not a loop, the statement holds by classical Sturm-

Liouville theory. The case of a loop with no non-trivial δ-type vertices is specifically

excluded by the assumptions of the theorem. The case of a loop with one vertex v

with a non-zero δ-type condition we view as a pure loop with an attachment point

(just not attached to anything!). The spectrum is simple by Lemma 3.3.1, while part

(ii)(b) of the theorem is true automatically. A loop with more than one non-zero

condition is already a graph with at least two edges.

The plan for the inductive step is as follows. First we establish part (i) for a

graph Γ if both parts of the theorem hold for every graph with a smaller number of

edges. Then we will establish part (ii) assuming, in addition to the above, that the

spectrum of Γ is simple.

Consider Γ, a connected graph with n edges, satisfying δ-type conditions with

coefficients αv for each vertex v. For the proof of part (i) we consider three cases.
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Part (i), case 1. Γ has no loops or cycles, i.e. it is a tree.

Choose an edge e leading to a leaf (a vertex of degree 1) of the tree and split it

from the tree. The new one-edge graph we denote by Γ1 while the rest of the tree is

denoted by Γ2. The attachment point v of that edge is split into two vertices, v1 ∈ Γ1

and v2 ∈ Γ2, see Figure 3.4. We assign Neumann condition to vertex v1. The vertex

v2 inherits the δ-type condition with the constant αv (which may also be 0), while

all other vertices keep their previous conditions.

Figure 3.4: Part (i), case 1: splitting away an edge from a tree.

Adjust the edge lengths of Γ1 and Γ2 so that

1. both graphs Γ1 and Γ2 satisfy (i) and (ii), and

2. σ(Γ1) ∩ σ(Γ2) = {0}.

Note that σ(Γ1) is a set of strictly decreasing functions of the edge length and will

have a nonempty intersection with the discrete set σ(Γ2) on a meagre set of lengths

of e. Altogether, conditions (1) and (2) above are satisfied on a residual set of edge

lengths.

Glue v1 and v2 back together and call the resulting vertex ṽ. The new graph Γ̃ has

the same vertex conditions as Γ. We claim that the spectrum of Γ is simple. Assume
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the contrary, λ ∈ σ(Γ̃) is multiple with corresponding eigenfunctions fi. Then we

can find a non-zero linear combination f =
∑
aifi, which is still an eigenfunction of

Γ̃, such that it is also an eigenfunction with respect to the graph Γ1, i.e. f ′(ṽ) = 0

along the edge e. Since

αvf(ṽ) =
∑
e′∈Eṽ

df

dxe′
(ṽ) =

∑
e′∈Eṽ\{e}

df

dxe′
(ṽ),

the function f is also an eigenfunction with respect to the graph Γ2.

If f is non-zero on both Γ1 and Γ2, condition (2) is violated. If f is zero on one

of them, it is zero on ṽ which violates condition (1). Therefore, the spectrum of Γ̃ is

simple.

Part (i), case 2. Γ contains at least one loop.

For each loop L of Γ, we repeat the steps of the previous case, namely,

1. split L away from the rest of Γ at the attachment point v, see Figure 3.5. For

Γ \ L, keep αv vertex condition for the attachment point v1 and keep all other

vertex conditions unchanged. Adjust the lengths of Γ \ L so that

Γ \ L satisfies (i) and (ii),

2. assign Neumann vertex condition to the attachment point v2 on L; adjust L so

that

σ(L) ∩ σ(Γ \ L) = {0},

and glue L back to Γ.

The above conditions can be satisfied for each loop on a residual set of lengths

of the graph Γ. Therefore, it can be satisfied for all loops L simultaneously on the
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Figure 3.5: Part (i), case 2: splitting away a loop.

intersection of residual sets which is also residual.

Let us first consider λ that is an eigenvalue of some loop L. By Example 3.1.3,

λ = (2πn/L)2 ∈ σ(Γ). Here we abuse the notation slightly by using L to denote

both the subgraph containing the looping edge and the length of that edge.

We want to show that the above λ is simple in the spectrum σ(Γ). Assume the

contrary, there is at least one eigenfunction f which is not identically zero on Γ \ L.

Transform f by flipping the loop; this is still an eigenfunction which we will denote

by f̃ . The function g = (f + f̃)/2 has the following properties: it is an eigenfunction

of Γ, not identically zero on Γ\L, and its derivatives into the edge L from both sides

agree, i.e.

g′L(0) = −g′L(L).

Moreover, we know that g on the edge L takes the form g = sin(2πnx/L+ θ) which

by direct computation implies that

g′L(0) = −g′L(L) = 0.

Therefore, the function g satisfies the δ-type conditions at the attachment point v
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also with respect to the graph Γ \ L. Thus we get λ ∈ σ(Γ \ L) in contradiction to

condition (2) above.

Now, if λ is not an eigenvalue of any loop of Γ, and is multiple, we can find f =∑2
i=1 aifi such that f satisfies Neumann vertex condition with respect to some loop

L. It must be identically zero on L (otherwise λ is an eigenvalue of L), therefore at

the attachment point f(v) = 0. Since f is an eigenfunction on the graph Γ\L, which

satisfies (ii), it must be supported on some other loop L′, resulting in a contradiction.

Part (i), case 3. Γ contains at least one cycle and no loops.

Pick a vertex v on the cycle such that deg(v) ≥ 3. Split Γ at v so that deg(v1) = 2,

deg(v2) ≥ 1, and the graph is still connected (this is possible precisely because v is

on a cycle). For the new graph Γ′, assign Neumann vertex condition to v1 and αv

vertex condition to v2, and keep other vertex conditions unchanged, see Figure 3.6.

The vertex v1 is now trivial, hence Γ′ has effectively one edge less than Γ. We can

thus use induction and adjust Γ′ to satisfy conditions (i) and (ii).

Figure 3.6: Part (i), case 3: splitting a graph with a cycle; each of the new vertices
is not on a loop.

First, we show that we can always find a new vertex v′1 near v1 so that f(v′1) 6=

f(v2) for each eigenfunction f of Γ′. Because our modification of Γ may have created
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loops, we need to consider three possibilities:

1. neither v1 nor v2 is on a loop. Then Γ′ has no loops. Since Γ′ satisfies (i) and

(ii), f(v2) 6= 0. By Lemma 3.2.1, there exists v′1 so that f(v′1) 6= f(v2).

2. only one of v1 and v2 is on a loop. After relabeling, we may assume that v1 is

on a loop we denote L and v2 is not on a loop. Since Γ′ satisfies (i) and (ii), for

each eigenfunction, is not identically 0 in the neighborhood of v1 and we can

again apply Lemma 3.2.1, whether f(v2) is zero or not.

3. both of v1 and v2 are on (pure!) loops, see Figure 3.7. Then αv = 0 and both

v1 and v2 may be adjusted. Since the eigenfunction cannot vanish identically

around both v1 and v2 at the same time, we can again use Lemma 3.2.1 to

make adjustments until f(v′1) 6= f(v′2).

Figure 3.7: Part (i), case 3: splitting a graph with a cycle; both new vertices are on
loops.

Now glue v′1 and v2 (or v′2, if appropriate) together and call the vertex ṽ. Note

that the new graph Γ̃ has the same vertex conditions as Γ. Assume that λ ∈ σ(Γ̃) is

multiple with eigenfunctions fi. Similarly to above, we can find f =
∑
aifi, still an
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eigenfunction of Γ̃, such that it satisfies Neumann condition with respect to edges

that were connected to v′1, ∑
e∈Ev′1

df

dxe
(v′1) = 0.

Then f also satisfies αv vertex condition at v2. Therefore, f is an eigenfunction of

Γ′, which means f(v′1) 6= f(v2), contradicting the fact that f is continuous at ṽ for

Γ̃. Hence λ is simple.

Proof of part (ii). We will show the statement on a single vertex basis, that

is we fix a vertex v and show that each eigenfunction is either non-zero at v or is

supported on a loop. This is achieved by small modifications of the graph and holds

on a residual set of lengths. As a result will hold at every v on an intersection of

residual sets, which is also residual.

First, we assume that the vertex v has Neumann conditions. We may assume

that the spectrum of Γ is simple. Also, after a series of modifications we may assume

that for each edge e of the graph, Γ\e satisfies (i) and (ii). If removing e disconnects

the graph, we assume that each of the two components satisfies the assumptions. In

the special case when removing an edge creates a new loop, we also ask that the loop

states do not vanish at the point where the edge was attached (again achievable by

a small movement of the attachment point).

Now let (λ, f) be the n-th eigenpair of Γ such that f vanishes at the chosen vertex

v, f(v) = 0.

Case 1: f |e ≡ 0 for some edge e incident to v.

Now f(u) = f(v) = 0 for the end points u, v of the edge e and f is also an

eigenfunction of Γ \ e. Since Γ \ e satisfies (i) and (ii), supp f = L for a loop L in

Γ \ e. If this loop is present in Γ, we have nothing further to prove. If the loop is

not present in Γ, then either u or v lies on the loop and we get a contradiction with
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the conditions imposed on Γ \ e above.

Case 2: f |e 6≡ 0 for each edge e incident to v.

Parametrizing the edges incident to v so that x = 0 at v, we have



− d2

dx2
f = λf =: k2f∑

e∈Ev

df

dxe
(0) = 0

f(0) = 0

, (3.3.3)

and therefore

fe(x) = Ae sin(kx) and
∑
e∈Ev

Ae = 0.

Note that each coefficient Ae 6= 0 since f |e 6≡ 0. At v, we will shorten the edges

with f ′e = Ae > 0 and lengthen edges with f ′e < 0 in a way which will be controlled

by a (small) parameter ε. Namely, we ask that fe(ṽ) = ε, where ṽ denotes the new

position of the vertex v and the function fe is kept as before, see Figure 3.8.

v

} ε

ṽ

Figure 3.8: Part (ii), case 2: modifying the edge lengths so that fe(v) becomes equal
to ε.

In this way, f is still continuous at ṽ and satisfies δ-type vertex condition for

some parameter α′, which we compute as follows. The new position of the vertex ṽ

43



on edge e is determined by the equation fe(xe) = ε, or

xi = 1/k arcsin(ε/Ai).

We now find the coefficient α′v from the condition

∑
e∈Ev

df

dxe
(ṽ) = α′vf(ṽ) = α′vε,

leading to

α′v =
1

ε

∑
e∈Ev

f ′e(ṽ) =
1

ε

∑
e∈Ev

kAe cos(kxe) = −kε
2

∑
e∈Ev

1

Ae
+O(ε2) = O(ε).

We now consider two families of graphs, continuously depending on the parameter

ε: Γ′ which has the modified edge lengths and the Neumann condition at the vertex

v and Γ′′ which in addition to changed lengths has α′v = α′v(ε) condition computed

above.

If the parameter ε is small enough, the eigenvalues of three graphs Γ, Γ′(ε) and

Γ′′(ε) are still in correspondence. More precisely, for any k and small enough ε, the

eigenvalue λk(Γ1) is closer to λk(Γ2) than to any other eigenvalue of Γ2 for any two

graphs Γ1 and Γ2.

We now claim that the n-th eigenfunction of Γ′ doesn’t vanish on v. Indeed, if

f(v) = 0, then it is also an eigenfunction of Γ′′ (condition (2.1.2) will be satisfied

for any αv) and must have index n due to the correspondence of eigenvalues, but

we explicitly constructed the n-th eigenfunction of Γ′′ above to have value ε on the

vertex v. This completes the proof of case 2.

Finally, we have to consider the vertex v with non-Neumann condition: αv 6= 0.
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In this case we make edge length adjustments to the graph Γ0 obtained from Γ by

setting αv = 0. Once condition (ii) is satisfied for Γ0 at v, it is also satisfied for Γ

at v. Indeed, if an eigenfunction of Γ vanishes at v, it automatically becomes the

eigenfunction of Γ0, still vanishing at v, which is a contradiction.

3.4 An application: connectedness of the secular manifolds

In this section we will deal only with graphs with Neumann or Dirichlet vertex

conditions. For such a graph Γ it is possible to find the eigenvalues λ = k2 as the

solutions of the equation

FΓ(k) := C det
(
e−ikL/2I− eikL/2S

)
= 0, (3.4.1)

where all matrices have dimension 2E with E being the number of edges of the graph;

they should be thought as operating on vectors indexed by the directed edges of the

graph (each edge corresponds to two directed edges, refer to previous definition of

bonds in Section 2). The matrix I is the identity matrix, L is the diagonal matrix

populated with the edge lengths and S is a unitary matrix with real entries of known

form [61] (the precise form is irrelevant to our discussion). The constant C can be

chosen so that FΓ is real for real k.

Each length appears in the matrix L twice: once for each direction of the edge. As

a consequence, the diagonal matrix eikL has two entries eik`e for each edge e. Substi-

tuting k`e with the torus variables κe ∈ [0, 2π), we get the function ΦΓ(κ1, . . . ,κE)

such that

ΦΓ(k`1, . . . , k`E) = FΓ(k).

The solutions ~κ of ΦΓ(~κ) = 0 form an algebraic subvariety ΣΓ of the torus TE.

We call ΣΓ the secular manifold of the graph Γ. The study of ΣΓ as a tool of
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understanding eigenvalues of a quantum graphs was pioneered by Barra and Gaspard

[13]. An important question is weather the secular manifold is reducible, i.e. if Φ

can be decomposed as a product of two analytic functions.

It has been conjectured by Colin de Verdière [32] that the secular manifold is

reducible if and only if the graph has a symmetry which is preserved under any

change of edge lengths. It can be shown (see [32] for a partial proof) that such a

symmetry only exists if the graph is an interval, a circle, a mandarin [10] or has some

loops. It is also conjectured that the set of the non-smooth points has co-dimension

2 with respect to the manifold ΣΓ.

In this section we prove a related result for a family of quantum graphs. We start

with some terminology from [32] (whose term for ΣΓ is “determinant manifold”). A

point of ΣΓ is smooth if the differential of ΦΓ at this point is non-zero. A point ~κ 6= 0

is smooth if and only if 1 is a non-degenerate eigenvalue of the graph Γ with edge

lengths set to `e = κe or, more generally, if λ = k2 is an eigenvalue of Γ with lengths

`e such that ~κ = k`e mod 2π. In what follows we will omit the “modulo 2π” from

the description of points on the torus, to keep the notation compact.

Theorem 3.4.1. Let the graph Γ have no loops and have a vertex of degree one.

Then the set of smooth points of ΣΓ has two connected components.

Example 3.4.2. Consider a star graph with three edges (v0, v1), (v0, v2) and (v0, v3)

(see Figure 3.9) with Neumann condition at the central vertex v0 and Dirichlet con-

ditions at the leaves v1, v2, v3.

There are three edges and therefore three torus variables. As we shown in Section

2, the secular function of such a graph has the form

Φstar,D(~κ) =
3∑
j=1

sin(κj) sin(κj+1) cos(κj+2), (3.4.2)
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v0

v1

v2

v3 v1 v2

Figure 3.9: A star graph with three edges and a mandarin graph with three edges.

where indices of κ are taken modulo 3. The secular manifold for the graph is shown

in Figure 3.10. There are four sheets visible but they match pairwise under the

torus periodicity. The two sheets touch each other through the conical points of

non-smoothness. Similar pictures result if we consider the star graph with Neumann

conditions at the leaves, which results in the secular determinant

Φstar,N(~κ) =
3∑
j=1

cos(κj) cos(κj+1) sin(κj+2) = Φstar,D(~κ − π/2). (3.4.3)

Proof of Theorem 3.4.1. Choose the edge lengths in such a way that

1. the eigenvalue spectrum of Γ is simple and eigenfunctions do not vanish at

vertices,

2. the edge lengths are rationally independent.

Denote the vector of the edge lengths by ~̀0.

Condition (2) implies that the flow k 7→ k~̀0 is ergodic on the torus, and its

intersections with the secular manifold are dense in it. The closure of the odd-

numbered intersections (within the set of smooth points of ΣΓ) forms one component

and the even-numbered intersections, the other. We will prove that they are mutually

disjoint and connected.
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Figure 3.10: Secular manifold of the star graph is shown on the left. It is over
[−π, π]3. Of the four sheets visible, the first and third are parts of the same sheet
by the torus periodicity; same for the sheets two and four. A detail of the plot over
[−π/2, π/2]3 is shown on the right.

It is known (see, for example, [4] or [32]) that the gradient of ΦΓ has either all

non-negative components or all non-positive components. Since kn =
√
λn are simple

roots of the real-valued function FΓ(k) = ΦΓ(k~̀0), the derivatives F ′Γ(kn) alternate in

sign and therefore the gradient is non-negative on one of the components we defined

and non-positive on the other. At a point of intersection of the two components, the

gradient must vanish which contradicts the definition of the components.

Let now ~κ1 and ~κ2 be the two points on the same component (without loss of

generality, take the component of even-numbered eigenvalues). Surround them by

small open neighbourhoods U1 and U2, such that Uj ∩ΣΓ are connected and contain

only smooth points of the same component. From definition of the components we

can find two eigenvalues λ2n1 = k2
1 and λ2n2 = k2

2, n1 < n2, such that kj~̀0 ∈ Uj ∩ΣΓ,

j = 1, 2. We now need to show that the points k1
~̀

0 and k2
~̀

0 can be connected by a

path on ΣΓ which does not pass through any singular points.
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Denote by v the vertex of degree 1 and by e1 the edge leading to it. The vertex

condition at v can be written as

cos(θ/2)
df

dxe1
(v) = sin(θ/2)f(v), (3.4.4)

with θ = θv equal to 0 for Neumann and π for Dirichlet. Now we start with the

eigenvalue λ = k2
2 and continue it analytically by changing θ. According to [21,

Thm 6.1] (see also [22, Thm 3.1.13]), the eigenvalue λ(θ) is an analytic function

unless there exists an eigenfunction of the graph Γ which satisfies both Dirichlet and

Neumann conditions (and thus any other δ-type conditions) at the vertex v. Such

an eigenfunction would have to be identically zero on the edge e1, which we ruled

out in condition (1) above. Therefore, λ(θ) is analytic and passes through every

eigenvalue of Γ at the points θ = 2πn + θv, n ∈ Z, n ≥ n0. In particular, for

n = ñ := 2(n1 − n2) < 0 we will have λ(θ) = k2
1.

We will now map this λ-path, parametrized by θ decreasing from θv to 2πñ+ θv,

to a path on the secular manifold ΣΓ. Starting with an eigenfunction f on Γ with

the vertex condition at v specified by θ, we prolong the edge e1 to have the length

`e1(θ) := `0,e1 +
θv − θ

2
√
λ(θ)

. (3.4.5)

A direct calculation shows that the eigenfunction f continued as a sine wave with

the same amplitude past the old location of the vertex v will satisfy condition (3.4.4)

with θ = θv at the new location of v.

Define the vector-function ~̀(θ) by using (3.4.5) for the component corresponding

to e1 and keeping all other components equal to the corresponding components of

~̀
0. The above discussion shows that the point ~κ(θ) =

√
λ(θ)~̀(θ) will remain on the
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secular manifold for all θ between θv and 2πñ+ θv and will pass only through points

of multiplicity 1, which are exactly the points of smoothness. This path connects the

points k1
~̀

0 and k2
~̀

0 as required. The seeming mismatch of lengths at θ = 2πñ+θv is

due to the modular arithmetic on the torus; here we use the fact that ñ is even.

Remark 3.4.3. An identical theorem can be proved for a graph with a bridge, i.e.

an edge whose removal disconnects the graph. The method of proof is the same

with a point an the bridge being the location where the variable δ-type condition

is introduced and the resulting eigenfunction is related to the eigenfunction of the

original graph with a longer edge. Whether the same result holds for graphs without

such edges (such as the tetrahedron graph — the complete graph on 4 vertices) is

still unknown.

Example 3.4.4. The following example shows that there is no direct link between

reducibility of the secular manifold and its connectedness. For the mandarin graph

with three edges (see Figure 3.9), the secular determinant is reducible: it decomposes

into a product of the secular determinants of Dirichlet and Neumann stars due to

the reflection symmetry,

Φmandarin(~κ) = Φstar,D(~κ/2) · Φstar,N(~κ/2),

see equations (3.4.2) and (3.4.3). Note that while the conditions of Theorem 3.4.1

(or Remark 3.4.3) are not satisfied, the secular manifold still has two connected

components, see Figure 3.11.
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Figure 3.11: Secular manifold of the mandarin graph is shown. The top is shown
over [0, 2π]3 and, to provide another perspective, the bottome is over [−π/2, 3π/2]3.
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4. SYMMETRY OF QUANTUM GRAPHS AND FACTORIZATION OF THE

SPECTRAL DETERMINANT

We study the spectral determinant of symmetric compact quantum graphs with

Neumann vertex conditions. We find that it factorizes into a product of factors cor-

responding to irreducible representation of the group of symmetry. The factorization

is traced back to a block-diagonal form of the scattering matrix. We present and

prove a computational algorithm for finding the change of basis which brings the

scattering matrix to this block-diagonal form.

4.1 Examples

To motivate our results, we first consider some examples. We remind the reader

that the spectrum of a graph with Neumann vertex condition can be found via secular

determinant by the following theorem.

Theorem 4.1.1 ([22]). Consider the eigenvalue problem (2.2.1) on a graph with

Neumann vertex conditions (2.1.2), i.e. αv = 0 for each v on the graph. Then

λ = k2 is an eigenvalue iff k satisfies the secular equation

det((I− S(k))) = 0.

Example 4.1.2. Consider the lollipop graph with Neumann conditions everywhere

as we shown in Section 2. We see that the secular determinant factorizes as show in

equation (2.2.5). The lollipop graph is symmetric with respect to flipping the loop.

The group of symmetries is thus isomorphic to Z2.

Example 4.1.3. Consider the star graph with three edges and Neumann vertex

conditions, see Figure 4.1.
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Figure 4.1: A star graph with edges of equal length.

Let the all edge lengths be equal to a. The secular determinant can be computed

as

det(I− S(k)) = −(eika + 1)(eika − 1)(ei2ka + 1)2.

Because of the square term, the spectrum cannot be simple by Theorem 4.1.1. The

group of symmetries, in this case, is

S3 = {(1), (12), (13), (23), (123), (132)}.

Example 4.1.4. Consider the complete graph Γ = K4 with Neumann conditions on

vertices 1, 2, 3, 4, where vertex 4 is located at the center. Let a, b be the lengths of

inside edges and outside edges. As we compute in Section 2, the secular determinant

is

det(I− S(k)) =
1

27
·
(
3eik(2a+b) − ei2ak + eibk − 3

)
·
(
eibk − 1

)
·
(
3ei2(a+b)k + 2eik(2a+b) + ei2ak − ei2bk − 2eibk − 3

)2
.

Because of the square term, the spectrum cannot be simple by Theorem 4.1.1, ir-

respectively of the choice of lengths a and b. This graph is symmetric under any

permutation of vertices 1,2, and 3. Hence the group of symmetries is S3. We will

consider this example in more details below.
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Now, the question is whether we can interpret the factorizations of the secular

determinant. We introduce some definitions from representation theory, see [85].

Definition 4.1.5. A representation of a groupG is a homomorphism ρ : G→ GL(V )

for some (finite-dimensional) complex vector space V . The dimension of V is called

the degree of ρ.

A representation ρ : G→ GL(V ) of a group G is said to be irreducible if the only

G-invariant subspaces of V are {0} and V .

The character χρ : G→ C of ρ is defined by setting χρ = Tr(ρ).

Theorem 4.1.6 ([85]). Let ρ1, . . . , ρn be a complete set of representatives of the

equivalence classes of irreducible representations (irreps) of G. Then

ρ ∼ mρ1ρ1 ⊕mρ2ρ2 ⊕ · · · ⊕mρsρn,

where

mρj = 〈χρ, χρj〉 :=
1

|G|
∑
g∈G

χρ(g)χρj(g)

for each j = 1, . . . , n. Consequently, the decomposition of ρ into irreducible con-

stituents is unique and ρ is determined up to equivalence by its character.

Example 4.1.7. Consider the graph Γ = K4 in Example 4.1.4 again. We will

construct a representation and explore the connections between the factorizations of

secular determinant (2.2.8) and the multiplicities mj’s in the decomposition of the

representation (4.1.6).

As mentioned above, for a 6= b the symmetric group of the graph Γ is G = S3,

where we describe a symmetry transformation as a permutation of vertices. For

example, if we apply g = (12) ∈ S3 to Γ, we switch the vertex 1 with vertex 2, i.e.

flipping Γ along edge e34, see Figure 4.2.
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Figure 4.2: Apply g = (12) ∈ S3 to Γ.

Consider the vector space V = C12. We relabel the standard basis for C12 using

the notation eij for the basis vector corresponding to the bond (i, j) of the graph.

We order bonds as follows. Denote by N the number of vertices of Γ. First list all

eij’s such that for each i = 1, · · · , N, j runs through i+ 1 to N . Second, reverse all

the bonds by listing all eij’s such that for each j = 1, · · · , N, i runs through j + 1 to

N . The identity matrix is then

I12×12 = (e12, e13, e14, e23, e24, e34, e21, e31, e41, e32, e42, e43).

We define a representation M = {Mg : g ∈ S3} as a permutation of the basis

vectors which reflects the permutation of bonds by the action of g. For example,

M(12) represents the graph Γ after applying group action g = (12) ∈ S3 so that

M(12) = (e21, e23, e24, e13, e14, e34, e12, e32, e42, e31, e41, e43).

Note that the character of M is just the number of basis vectors fixed by M .

There are three irreps of G = S3, namely, the identity representation Ri

Ri = {ρi(g) = (1) : g ∈ S3},
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the sign representation Rs

Rs = {ρs(g) = (sign(g)) : g ∈ S3},

where

sign(g) =

 1 if g is even

−1 if g is odd
,

and a 2-D representation R2d

R2d =



(1) 7→

 1 0

0 1

 , (12) 7→

 0 1

1 0

 , (13) 7→

 0 ω

ω2 0

 ,

(23) 7→

 0 ω2

ω 0

 , (123) 7→

 ω 0

0 ω2

 , (132) 7→

 ω2 0

0 ω




,

where ω is the primitive cubic root of 1.

Using the character table of S3, see Table 4.1, we may compute each mρ as stated

in Theorem 4.1.6.

mi = 〈χM , χi〉 = 1/6
(
χM(1)

χi(1) · 1 + χM(12)
χi(12) · 3 + χM(123)

χi(123) · 2
)

= 3,

ms = 〈χM , χs〉 = 1/6
(
χM(1)

χs(1) · 1 + χM(12)
χs(12) · 3 + χM(123)

χs(123) · 2
)

= 1,

m2d = 〈χM , χ2d〉 = 1/6
(
χM(1)

χ2d(1) · 1 + χM(12)
χ2d(12) · 3 + χM(123)

χ2d(123) · 2
)

= 4.

Therefore, we have

M ∼ 3Ri ⊕Rs ⊕ 4R2d. (4.1.1)

We may also compute each mρ using the following method. According to the
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S3 (1) (12) (123)
size of conjugacy class 1 3 2

χi 1 1 1
χs 1 −1 1
χ2d 2 0 −1
χM 12 2 0

Table 4.1: Character table of S3.

character table, see Table 4.1, we know that


mi +ms + 2m2d = 12

mi −ms = 2

mi +ms −m2d = 0

,

which implies that 
mi = 3

ms = 1

m2d = 4

.

Compare the factorizations (2.2.8) of the secular determinant of Γ with the de-

composition (4.1.1) of the representation M . We will show that

Ri corresponds to 3eik(2a+b) − ei2ak + eibk − 3,

Rs corresponds to eibk − 1,

and

R2d corresponds to
(
3ei2(a+b)k + 2eik(2a+b) + ei2ak − ei2bk − 2eibk − 3

)2
.
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We will also show that

(a) the dimensions of the irreps are the same as the powers of the corresponding

factors.

(b) the multiplicities of the irreps mj’s are the degrees of the polynomials inside the

parentheses, where the polynomials are expressed in terms of variables

za = eika and zb = eikb.

4.2 Main results

To extract the part of the operator S(k) acting on a space C12 corresponding to a

representation ρ, we need to find the subspace of C12 which transforms according to

ρ. More precisely, we are looking for “equivariant vectors” φ1, . . . , φd such that the

matrix φ =
[
φ1 . . . φd

]
satisfies Mgφ = φρ(g), where m = dimX and d = dim ρ.

For a m× d matrix φ =
[
φ1 · · · φd

]
, we define the reshuffling operator

τd(φ) :=


φ1

...

φd

 =
d∑
j=1

ej ⊗ φj,

where ej = (0 · · · 0 1 0 · · · 0)T with 1 on the jth spot is a d-dimensional vector.

Lemma 4.2.1. Let S be a subset of the group of symmetry G. Then φ satisfies

intertwining relation Mgφ = φρ(g) for each g ∈ S if and only if

τd(φ) ∈
⋂
g∈S

ker
(
Id ⊗Mg − ρ(g)T ⊗ Im

)
.
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Proof. Note that

Mgφ = φρ(g) for each g ∈ S

⇔Mg

[
φ1 · · · φd

]
=
[
φ1 · · · φd

]
ρ(g)

⇔ for each r = 1, . . . , d, Mgφ
r =

(
(ρ(g))1,r φ

1 + · · ·+ (ρ(g))d,r φ
d
)

⇔


Mgφ

1

...

Mgφ
d

 =


(
ρ(g)T

)
1,1
φ1 + · · ·+

(
ρ(g)T

)
1,d
φd

...(
ρ(g)T

)
d,1
φ1 + · · ·+

(
ρ(g)T

)
d,d
φd



⇔ Id ⊗Mg


φ1

...

φd

 = ρ(g)T ⊗ Im


φ1

...

φd


⇔ τd(φ) ∈

⋂
g∈S

ker
(
Id ⊗Mg − ρ(g)T ⊗ Im

)
.

The following theorems, see [83], will be used frequently in our proofs.

Theorem 4.2.2 (Schur’s Lemma, First Form). Let U be an irreducible representation

of G on X. Let T ∈ Hom(X) obey

TU(x) = U(x)T all x ∈ G.

Then T = cI for some constant c.

Theorem 4.2.3 (Schur’s Lemma, Second Form). Let U, V be two inequivalent irreps

of a finite group G on spaces X, Y . If T : X → Y is such that

TU(x) = V (x)T all x ∈ G,
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then T = 0.

Lemma 4.2.4. Let M be a representation of the symmetric group G. For each irrep

ρ of G, we define

Φρ :=
⋂
g∈G

ker
(
Id ⊗Mg − ρ(g)T ⊗ Im

)
, (4.2.1)

where d = dim ρ and m = dimM . Let {φρ,j}nj=1, where n = dim Φρ > 0, be an

orthogonal basis of Φρ normalized to ||φρ,j||2 = d. Reshuffle each φρ,j, which is a

md× 1 vector, into a matrix Ψρ,j = τd (Φρ,j) with columns denoted by φiρ,j, i.e.

τd (Φρ,j) = ψρ,j =
[
φ1
ρ,j φ

2
ρ,j · · · φdρ,j

]
.

Then for each ρ, we have

ψ∗ρ,j1ψρ,j2 = δj1,j2Id, (4.2.2)

and for all irreps ρ1 6= ρ2 and j1, j2 ∈ {1, . . . , n},

ψ∗ρ1,j1ψρ2,j2 = Od1×d2 , (4.2.3)

where Od1×d2 is the zero matrix of size d1 × d2.

Proof. Inspired by Schur’s Lemma (see Theorem 4.2.2), for each fixed irrep ρ, we

start with

Mgψρ,j = ψρ,jρ(g). (4.2.4)

Since both representations, Mg and ρ(g), are unitary, we have M∗
g = Mg−1 and

ρ(g)∗ = ρ(g−1). Replacing g by g−1 in equation (4.2.4), we get

M∗
gψρ,j = ψρ,jρ(g)∗.
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Taking adjoints, we obtain

ψ∗ρ,jMg = ρ(g)ψ∗ρ,j. (4.2.5)

Now,

ψ∗ρ1,j1ψρ2,j2ρ2(g) = ψ∗ρ1,j1Mgψρ2,j2 by equation (4.2.4)

= ρ1(g)ψ∗ρ1,j1ψρ2,j2 . by equation (4.2.5)

If ρ1 6= ρ2, Theorem 4.2.3 implies that

ψ∗ρ1,j1ψρ2,j2 = Od1×d2 .

If ρ1 = ρ2 = ρ, Theorem 4.2.2 implies that

ψ∗ρ,j1ψρ,j2 = aId

for some constant a. The trace on the left side is

Tr
(
ψ∗ρ,j1ψρ,j2

)
= 〈φ1

ρ,j1
, φ1

ρ,j2
〉+ 〈φ2

ρ,j1
, φ2

ρ,j2
〉+ · · ·+ 〈φdρ,j1 , φdρ,j2〉

= 〈φρ,j1 , φρ,j2〉

= δj1,j2d

using the fact that {φρ,j}nj=1 is an orthogonal basis of Φρ while the trace on the right

is

Tr(aId) = ad.

Therefore, a = δj1,j2 .
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Remark 4.2.5. Let S be the set of generators of G, then

⋂
g∈G

ker
(
Id ⊗Mg − ρ(g)T ⊗ Im

)
=
⋂
s∈S

ker
(
Id ⊗Ms − ρ(s)T ⊗ Im

)
.

One direction
⋂
g∈S

ker
(
Id ⊗Mg − ρ(g)T ⊗ Im

)
⊇ ⋂g∈G ker

(
Id ⊗Mg − ρ(g)T ⊗ Im

)
is clearly true. To prove the other direction, note that for each j = 1, 2 and gj ∈ G,

Mρ(gj)φ = φMα(gj) implies that Mρ(g1g2)φ = φMα(g1g2) since

Mρ(g1g2)φ = Mρ(g1)Mρ(g2)φ

= Mρ(g1)φMα(g2)

= φMα(g1)Mα(g2)

= φMα(g1g2).

For each φ ∈ ⋂
s∈S

ker
(
Id ⊗Ms − ρ(s)T ⊗ Im

)
, φ satisfies Mρ(s)τ

−1(φ) = τ−1(φ)Mα(s)

for all s ∈ S by Lemma 4.2.1. Then M(g)φ = φM(g) for all g that are products of

generators, that is all g ∈ G. Therefore, φ ∈ ⋂
g∈G

ker
(
Id ⊗Mg − ρ(g)T ⊗ Im

)
.

Corollary 4.2.6. Vectors {φrρ,j} are orthonormal, i.e.

〈φr1ρ1,j1 , φ
r2
ρ2,j2
〉 =

 1 if ρ1 = ρ2, j1 = j2, r1 = r2

0 otherwise
.

Proof. By writing out equations (4.2.2) and (4.2.3), we see the statement is true.

Theorem 4.2.7. For each irrep ρ, let Φρ and φ1
ρ,j, . . . , φ

d
ρ,j be defined as in Lemma

4.2.4 for a representation M . For each fixed ρ, define

Ψ̃ρ :=
(
φ1
ρ,1 · · · φdρ,1 φ1

ρ,2 · · · φdρ,2 · · · · · · φ1
ρ,n · · · φdρ,n

)
.
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Now assume that the irrep ρ runs from ρ1, . . . , ρL for some L, where L is the number

of irreps of the group G. If we define

Ψ :=
(

Ψ̃ρ1 · · · Ψ̃ρL

)
,

then Ψ is unitary and it will block diagonalize M . Furthermore, for each irrep ρ,

mρ = n = dim Ψρ,

where mρ is the multiplicity in Theorem 4.1.6.

Proof. Note that equations (4.2.2) and (4.2.3) show that Ψ is unitary.

For a fixed irrep ρ, we know that

Id ⊗Mg


φ1
ρ,j

...

φdρ,j

 = ρ(g)⊗ Im


φ1
ρ,j

...

φdρ,j


by the definition of Φρ. More precisely, writing the equality out, we have


Mgφ

1
ρ,j

...

Mgφ
d
ρ,j

 =


ρ(g)1,1φ

1
ρ,j + · · ·+ ρ(g)d,1φ

d
ρ,j

...

ρ(g)1,dφ
1
ρ,j + · · ·+ ρ(g)d,dφ

d
ρ,j

 ,

which implies that

Mgφ
r
ρ,j =

d∑
s=1

ρ(g)s,rφ
s
ρ,j

for each r = 1, . . . , d.
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Now, for two irreps ρ1, ρ2 (including the case ρ1 = ρ2),

(
φr2ρ2,j2

)∗
Mgφ

r1
ρ1,j1

=
d∑
s=1

ρ1(g)s,r1
(
φr2ρ2,j2

)∗
φsρ1,j1 = δρ1,ρ2δj1,j2ρ1(g)r2,r1 .

Note that each φρ,j, j = 1, . . . , n is of size m × 1. If we list all φρ,j’s as defined

in Ψ, we see from the above equation that each nonzero block is of size d× d, where

d = dim ρ. There are n = dim Ψρ blocks, indexed by j, corresponding to ρ. These

blocks are identical. Since the decomposition into irreps is unique by Theorem 4.1.6,

we know that mρ = n = dim Ψρ.

In fact, as we can see from the following theorem, not only M can be block diag-

onalized, but also S(k). Note that the vectors {φrρ,j} should be ordered differently.

Theorem 4.2.8. For each irrep ρ, let Φρ and φ1
ρ,j, . . . , φ

d
ρ,j be defined as in Lemma

4.2.4 for a graph Γ. For each fixed ρ, define

Φ̃ρ :=
(
φ1
ρ,1 · · · φ1

ρ,n φ2
ρ,1 · · · φ2

ρ,n · · · · · · φdρ,1 · · · φdρ,n
)
.

Now assume that the irrep ρ runs from ρ1, . . . , ρL, where L is the number of irreps

of the group G. If we define

Φ :=
(

Φ̃ρ1 · · · Φ̃ρL

)
,

then Φ is unitary and it will block diagonalize the scattering matrix S(k) of Γ. Fur-

thermore, blocks of the same irreps are identical.

Proof. Note that equations (4.2.2) and (4.2.3) show that Φ is unitary.
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Since the graph Γ is symmetric with respect to g ∈ G, we know that

MgS(k) = S(k)Mg

for each g ∈ G. Now,

ψ∗ρ1,j1S(k)ψρ2,j2ρ2(g)∗ = ψ∗ρ1,j1S(k)Mgψρ2,j2 by equation (4.2.4)

= ψ∗ρ1,j1MgS(k)ψρ2,j2

= ρ1(g)∗ψ∗ρ1,j1S(k)ψρ2,j2 . by equation (4.2.5)

By Theorem 4.2.2 and Theorem 4.2.3, we know that

ψ∗ρ1,j1S(k)ψρ2,j2 = δρ1,ρ2C(S(k), j1, j2)I (4.2.6)

for some constant C depending on S(k), j1, and j2. That is,

〈φr1ρ1,j1 , S(k)φr2ρ2,j2〉 = δρ1,ρ2δr1,r2C(S(k), j1, j2).

We can see from equation (4.2.6) that we get d blocks, indexed by r, and that

blocks from the same irreps are identical.

Example 4.2.9. Consider again the star graph from Example 4.1.3. Let all edge

lengths be equal to a. The group of symmetry is S3. We will find the null spaces as

indicated in Lemma 4.2.4 and apply Theorem 4.2.7 and 4.2.8.

Note that the number of elements in the representation set M = {Mg : g ∈ S3}

is 6, which is the size of S3. We only list the generators of the set M here. Other

representations Mg ∈M can be otained similarly by switching corresponding column
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vectors.

M(1) = I6

= (e(14) e(24) e(34) e(41) e(42) e(43)),

M(12) = (e(24) e(14) e(34) e(42) e(41) e(43))

=



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


,

M(13) = (e(34) e(24) e(14) e(43) e(42) e(41))

=



0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0


.

The character of M is shown as in Table 4.2.

By Theorem 4.1.6, we know that

M ∼ 2Ri ⊕ 2R2d.

We may compute S and D(k) as follows.
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S3 (1) (12) (123)
size of conjugacy class 1 3 2

χi 1 1 1
χs 1 −1 1
χ2d 2 0 −1
χM 6 2 0

Table 4.2: Character table of M .

S =



0 0 0 −1/3 2/3 2/3

0 0 0 2/3 −1/3 2/3

0 0 0 2/3 2/3 −1/3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


and

D(k) = eikaI6.

For the identity representation Ri, equation (4.2.1) (for Φi) becomes

Φi = ker

M(12) − I12

M(13) − I12

 =: span
{

(φ1
i,1 φ1

i,2)
}
,

where

φ1
i,1 = 1/

√
3(0, 0, 0, 1, 1, 1)T ,

φ1
i,2 = 1/

√
3(1, 1, 1, 0, 0, 0)T .

Here we may take the kernel over the generators (12) and (13) of S3 by Remark 4.2.5.
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For the sign representation Rs, equation (4.2.1) (for Φs) becomes

Φs = ker

M(12) + I12

M(13) + I12

 = {0}.

For the 2d representation R2d, equation (4.2.1) (for Φ2d) becomes

Φ2d = ker

I2 ⊗M(12) − ρT2d(12)⊗ I12

I2 ⊗M(13) − ρT2d(13)⊗ I12



= ker



M(12) −I12

−I12 M(12)

M(13) −ω2I12

−ωI12 M(13)


=: span


φ1

2d,1 φ1
2d,2

φ2
2d,1 φ2

2d,2


 ,

where

φ1
2d,1 = 1/

√
3(0, 0, 0, ω, ω2, 1)T ,

φ1
2d,2 = 1/

√
3(ω, ω2, 1, 0, 0, 0)T ,

φ2
2d,1 = 1/

√
3(0, 0, 0, ω2, ω, 1)T ,

φ2
2d,2 = 1/

√
3(ω2, ω, 1, 0, 0, 0)T .

By Theorem 4.2.7, the matrix

Ψ :=
(
φ1
i,1 φ1

i,2 φ1
2d,1 φ2

2d,1 φ1
2d,2 φ2

2d,2

)
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=
1√
3



0 1 0 0 ω ω2

0 1 0 0 ω2 ω

0 1 0 0 1 1

1 0 ω ω2 0 0

1 0 ω2 ω 0 0

1 0 1 1 0 0


should block diagonalize M . Indeed, we have

Ψ∗M(12)Ψ =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0




and

Ψ∗M(13)Ψ =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 ω2 0 0

0 0 ω 0 0 0

0 0 0 0 0 ω2

0 0 0 0 ω 0




.

Note that the blocks of Ψ∗MgΨ are the matrices ρ(g)T of the suitable ρ (two ρi and

two ρ2d).

According to Theorem 4.2.8, if we rearrange the vectors {φrρ,j}, then the matrix

Φ := (φ1
i,1 φ1

i,2 φ1
2d,1 φ1

2d,2 φ2
2d,1 φ2

2d,2)
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=

√
3

3



0 1 0 ω 0 ω2

0 1 0 ω2 0 ω

0 1 0 1 0 1

1 0 ω 0 ω2 0

1 0 ω2 0 ω 0

1 0 1 0 1 0


should block diagonalize S(k). Indeed, we have

Φ∗S(k)Φ =



0 eika 0 0 0 0

eika 0 0 0 0 0

0 0 0 eika 0 0

0 0 −eika 0 0 0

0 0 0 0 0 eika

0 0 0 0 −eika 0


.

Example 4.2.10. Consider the group action G = S3 acting on the complete graph

K4 again; see Example 4.1.4. We will find the null spaces as indicated in Lemma

4.2.4 and apply Theorem 4.2.7 and 4.2.8.

For the identity representation, equation (4.2.1) (for Φi) becomes

Φi ∈ ker

M(12) − I12

M(13) − I12

 =: span
{(
φ1
i,1 φ1

i,2 φ1
i,3

)}
,

where

φ1
i,1 = 1/

√
3(1/
√

2, 1/
√

2, 0, 1/
√

2, 0, 0, 1/
√

2, 1/
√

2, 0, 1/
√

2, 0, 0)T ,
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φ1
i,2 = 1/

√
3(0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0)T ,

φ1
i,3 = 1/

√
3(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1)T .

For the sign representation, equation (4.2.1) (for Φs) becomes

Φs ∈ ker

M(12) + I12

M(13) + I12

 =: span
{(
φ1
s,1

)}
,

where

φ1
s,1 = 1/

√
6(−1, 1, 0,−1, 0, 0, 1,−1, 0, 1, 0, 0)T .

For the 2d representation, equation (4.2.1) (for Φ2d) becomes

Φ2d = ker

I2 ⊗M(12) − ρT2d(12)⊗ I12

I2 ⊗M(13) − ρT2d(13)⊗ I12



= ker



M(12) −I12

−I12 M(12)

M(13) −ω2I12

−ωI12 M(13)


=: span


φ1

2d,1 φ1
2d,2 φ1

2d,3 φ1
2d,4

φ2
2d,1 φ2

2d,2 φ2
2d,3 φ2

2d,4


 ,

where

φ1
2d,1 = 1/

√
3(ω2, 0, 0, ω, 0, 0, 0, 1, 0, 0, 0, 0)T ,

φ1
2d,2 = 1/

√
3(0, ω2, 0, 0, 0, 0, ω, 0, 0, 1, 0, 0)T ,

φ1
2d,3 = 1/

√
3(0, 0, ω2, 0, ω, 1, 0, 0, 0, 0, 0, 0)T ,
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φ1
2d,4 = 1/

√
3(0, 0, 0, 0, 0, 0, 0, 0, ω2, 0, ω, 1)T ,

φ2
2d,1 = 1/

√
3(ω, 0, 0, ω2, 0, 0, 0, 1, 0, 0, 0, 0)T ,

φ2
2d,2 = 1/

√
3(0, ω, 0, 0, 0, 0, ω2, 0, 0, 1, 0, 0)T ,

φ2
2d,3 = 1/

√
3(0, 0, ω, 0, ω2, 1, 0, 0, 0, 0, 0, 0)T ,

φ2
2d,4 = 1/

√
3(0, 0, 0, 0, 0, 0, 0, 0, ω, 0, ω2, 1)T .

By Theorem 4.2.7, the matrix

Ψ :=
(
φ1
i,1 φ1

i,2 φ1
i,3 φ1

s,1 φ1
2d,1 φ2

2d,1 φ1
2d,2 φ2

2d,2 φ1
2d,3 φ2

2d,3 φ1
2d,4 φ2

2d,4

)
should block diagonalize M . Indeed, for example, we have

Ψ∗M(12)Ψ =

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0





.

According to Theorem 4.2.8, if we rearrange the vectors {φrρ,j}, then the matrix

Φ := (φ1
i,1 φ1

i,2 φ1
i,3 φ1

s,1 φ1
2d,1 φ1

2d,2 φ1
2d,3 φ1

2d,4 φ2
2d,1 φ2

2d,2 φ2
2d,3 φ2

2d,4)

should block diagonalize S(k). Indeed, we have
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Φ∗S(k)Φ =



A
S(k)
i,3×3 0 0 0

0 B
S(k)
s,1×1 0 0

0 0 C
S(k)
2d,4×4 0

0 0 0 C
S(k)
2d,4×4


,

where A
S(k)
i,3×3, B

S(k)
s,1×1, and C

S(k)
2d,4×4 are block matrices defined as below.

A
S(k)
i,3×3 =


0 0 eiak

2
√

2eibk/3 eibk/3 0

−eiak/3 2
√

2eiak/3 0

 ,

B
S(k)
s,1×1 =

(
eibk
)
,

and

C
S(k)
2d,4×4 =



−(1 +
√

3i)eibk/9 0 2eibk/9 −(1 +
√

3i)eibk/18

−(1 +
√

3i)eiak/9 0 −eiak/9 (1 +
√

3i)eiak/9

0 −eiak/3 0 0

(1 +
√

3i)eibk/18 0 2eibk/9 (1 +
√

3i)eibk/9


.

4.3 More symmetries for the tetrahedron

Note that the complete graph K4 can support more symmetries than S3. More

precisely, if we let all edges be of equal length, the complete group of symmetries is

S4, which is generated by permutations (12), (13), and (14). This is a permutation

of all four vertices. In this section, we apply Lemma 4.2.4 to the tetrahedron.

There are five irreps of S4, namely, the identity representation Ri
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Ri = {ρi(g) = (1) : g ∈ S3},

the sign representation Rs

Rs = {ρs(g) = (sign(g)) : g ∈ S3},

where

sign(g) =

 1 if g is even

−1 if g is odd
,

a 2-D representation R2d

R2d =

 (12) 7→

 0 1

1 0

 , (13) 7→

 0 ω

ω2 0

 , (14) 7→

 0 ω2

ω 0


 ,

where ω is the primitive cubic root of 1, and two 3-D representations R3d,1 and R3d,2

as follows

R3d−1 =

 (12) 7→


0 1 0

1 0 0

0 0 −1

 , (13) 7→


−1 0 0

0 0 1

0 1 0

 , (14) 7→


0 0 1

0 −1 0

1 0 0


 ,

and

R3d−2

=

 (12) 7→


0 −1 0

−1 0 0

0 0 1

 , (13) 7→


1 0 0

0 0 −1

0 −1 0

 , (14) 7→


0 0 −1

0 1 0

−1 0 0


 .

The characters of the irreps are listed in Table 4.3, where we use the same repre-
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sentation M = {Mg : g ∈ S4} as in Example 4.1.7.

S4 (1) (12) (123) (1234) (12)(34)
size of conjugacy class 1 6 8 6 3

χi 1 1 1 1 1
χs 1 −1 1 −1 1
χ2d 2 0 −1 0 2
χ3d−1 3 −1 0 1 −1
χ3d−2 3 1 0 −1 −1
χM 12 2 0 0 0

Table 4.3: Character table of S4.

By Theorem 4.1.6, we know that

M ∼ Ri ⊕R2d ⊕R3d−1 ⊕ 2R3d−2.

Note that the sign representation Rs is absent from the expansion.

Similarly, we may find the vectors, up to a normalization factor, as stated in

Lemma 4.2.4.

φ1
i,1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

φ1
2d,1 = (1, ω2, ω, ω, ω2, 1, 1, ω2, ω, ω, ω2, 1)T ,

φ2
2d,1 = (1, ω, ω2, ω2, ω, 1, 1, ω, ω2, ω2, ω, 1)T ,

φ1
3d−1,1 = (1, 0,−1, 1, 0, 1,−1, 0, 1,−1, 0,−1)T ,

φ2
3d−1,1 = (−1, 1, 0, 0,−1, 1, 1,−1, 0, 0, 1,−1)T ,

φ3
3d−1,1 = (0,−1, 1, 1,−1, 0, 0, 1,−1,−1, 1, 0)T ,

φ1
3d−2,1 = (0,−1, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0)T ,
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φ1
3d−2,2 = (−1, 0,−1, 1, 0,−1, 1, 0, 1,−1, 0, 1)T ,

φ2
3d−2,1 = (0, 0,−1, 1, 0, 0, 0, 0,−1, 1, 0, 0)T ,

φ2
3d−2,2 = (−1,−1, 0, 0, 1, 1, 1, 1, 0, 0,−1,−1)T ,

φ3
3d−2,1 = (−1, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1)T ,

φ3
3d−2,2 = (0,−1,−1,−1,−1, 0, 0, 1, 1, 1, 1, 0)T .

If we reshuffle the vectors φrρ,j’s as stated in Theorem 4.2.7, then

Ψ :=
(
φ1
i,1 φ1

2d,1 φ2
2d,1 φ1

3d−1,1 · · · φ3
3d−1,1 φ1

3d−2,1 · · · φ3
3d−2,1 φ1

3d−2,2 · · · φ3
3d−2,2

)
should block diagonalize M . For example,

Ψ∗M(12)Ψ =

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 1





.

Furthermore, by listing the above vectors φrρ,j’s one-by-one as stated in Theorem

4.2.8,

Φ :=
(
φ1
i,1 φ1

2d,1 φ2
2d,1 φ1

3d−1 · · · φ3
3d−1,1 φ1

3d−2,1 φ1
3d−2,2 · · · φ3

3d−2,1 · · · φ3
3d−2,2

)
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should block diagonalize S(k). Indeed, we see that

Φ∗S(k)Φ =



A
S(k)
i,1×1 0 0 0

0 B
S(k)
2d,2×2 0 0

0 0 C
S(k)
3d−1,3×3 0

0 0 0 D
S(k)
3d−2,6×6


,

where

A
S(k)
i,1×1 = eibk(1),

B
S(k)
2d,2×2 = −eibk

 1 0

0 1

 ,

C
S(k)
3d−1,3×3 = eibk


1 0 0

0 1 0

0 0 1

 ,

and

D
S(k)
3d−2,6×6 = eibk/3



−1 −2
√

2 0 0 0 0

2
√

2 −1 0 0 0 0

0 0 −1 −2
√

2 0 0

0 0 2
√

2 −1 0 0

0 0 0 0 −1 −2
√

2

0 0 0 0 2
√

2 −1


.

We represent the factorization of the determinants of S(k)’s for S3 and S4 graph-

ically in Figure 4.3. Note that the top expression is the secular determinant of S(k)

for S3 acting on K4. It factorizes according to three irreps Rs, Ri and R2d. If we

set a = b, which means all edge lengths are equal in K4, then each factor of S(k)
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if

Figure 4.3: Factors of secular determinants of S3 and S4.

will factorizes further. The resulting factors are corresponding to irreps of the new

secular determinant of S(k) for S4 acting on K4. If we put all these factors together,

that is exactly the new secular determinant of S(k) for S4, which is shown at the

bottom.

4.4 Induced representations

There is another way to interpret Figure 4.3 using “induced representations”. We

introduce the definition first.

Let G be a finite group and H be a subgroup of G with a representation of R.

Since the character completely identifies a representation, we may define IndGHR, the

induction of the representation R from H to G, by

χIndG

HR
(g) =

n∑
i=1

χR
(
t−1
i gti

)
,
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where g ∈ G, n = |G : H|, χR
(
t−1
i gti

)
= 0 for all t−1

i gti 6∈ H, {ti}n1 are the represen-

tatives for the left cosets of H in G. It can be shown that (see [12])

dimIndGHR = dimR · |G : H|.

Consider the example of K4, Ri, the identity representation of S3, is viewed as a

subgroup of S4. We have

n = dimIndS4
S3
Ri = dimRi · |S4 : S3| = 1 · 4 = 4.

Since S4 does not have irreps of dimension 4, IndS4
S3
Ri is reducible. Choose the

representatives

t1 = (1), t2 = (14), t3 = (24), t4 = (34)

for the cosets of S3 in S4 so that

{tiS3}4
i=1 = S4.

The character of the induced representation is therefore

χIndS4
S3
Ri

(e) =
4∑
i=1

χRi
(e) = 4,

χIndS4
S3
Ri

((12)) =χRi
((12)) + χRi

((14)(12)(14)) + χRi
((24)(12)(24))

+ χRi
((34)(12)(34))

=χRi
((12)) + χRi

((24)) + χRi
((14)) + χRi

((12))

=1 + 0 + 0 + 1

=2,
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χIndS4
S3
Ri

((123)) =χRi
((123)) + χRi

((234)) + χRi
((143)) + χRi

((124))

=1 + 0 + 0 + 0

=1,

χIndS4
S3
Ri

((1234)) =χRi
((1234)) + χRi

((1423)) + χRi
((1432)) + χRi

((1243))

=0 + 0 + 0 + 0

=0,

and

χIndS4
S3
Ri

((12)(34)) =χRi
((12)(34)) + χRi

((13)(24)) + χRi
((14)(23)) + χRi

((12)(34))

=0 + 0 + 0 + 0

=0.

Using character table of S4, see Table 4.3, we know that

IndS4
S3
Ri = RS4

i ⊕RS4
3d−2. (4.4.1)

Similar computations show that

IndS4
S3
Rs = RS4

s ⊕RS4
3d−1

and

IndS4
S3
R2d = RS4

2d ⊕RS4
3d−1 ⊕RS4

3d−2.

These computations provide an additional explanation for the factorizations in

Figure 4.3. As we mentioned before, the secular determinant of the tetrahedron
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graph with S3 symmetry factorizes according to three irreps Rs, Ri, and R2d. If

we let a = b, each of these factors factorizes further. The factors occuring in the

further factorization of the Ri term correspond to the irreps occurring in the induced

representation of Ri, equation (4.4.1). The same rule applies to other factorizations.

Note that the factor corresponding to RS4
s is 1 and is not shown in the diagram.
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5. SUMMARY

In Section 3, we proved that after a small modification of lengths of edges of a

finite quantum graph, the spectrum can be made simple and each eigenfunction will

never be zero on any vertex unless it is supported on a loop. Both of these results

are important in applications, in particular all recent results on the number of zeros

of graph eigenfunctions assume both the simplicity of eigenvalues and non-vanishing

of eigenfunctions on vertices as a precondition, see [4, 8, 11, 15, 25].

In Section 4, we explicitly find a way to block diagonalize the scattering matrix of

a symmetric graph and therefore to factorize the secular determinant. Our method

of constructing vector spaces to block diagonalize the representation matrix is new.

Current theorem states that the block diagonalization can be done, but there is no

explicit way of saying how to do it. We found an explicit way to achieve this goal.

The secular equation is an efficient way to find the spectrum of a quantum graph

numerically. It is also very useful to study the spectral statistic analytically for some

graphs. For example, Barra and Gaspard [13] introduced an interpretation of the

secular determinant equation as an ergodic flow piercing a compact manifold (more

precisely, an algebraic variety) on a torus. This interpretation leads to many surpris-

ing and very general results, including those of [5] and [9]. For more applications,

see [17, 19, 20, 56].

In the work in process with Chris Joyner and Ram Band, we relate the blocks in

the block-diagonal matrix S(k) to the quotient graph construction of [12]. We also

see accidental degeneracies in the graph with a large symmetry. We will construct

more examples with persistent (accidental) degeneracies.

The following further questions can be asked. Suppose that we increase the
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symmetries of the graph. The factors of the secular determinant will factorize further

and possibly rearrange. Can we predict the way in which the rearrangement will

happen? In an example we saw that it is connected with the notion of induced

representations. Is this true in general? We also observed on several examples that

the secular determinant of the scattering matrix S(k) always has three factors for

complete graphs with large symmetries. Why is it the case? What is the minimum

size of symmetry group to achieve this?
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ing rings. Journal de Mathématiques Pures et Appliquées, 77(8):801–820, 1998.

[77] Jacob Rubinstein and Michelle Schatzman. Variational problems on multiply

connected thin strips I: Basic estimates and convergence of the laplacian spec-

trum. Archive for Rational Mechanics and Analysis, 160(4):271–308, 2001.

[78] Klaus Ruedenberg and Charles Scherr. Free-electron network model for con-

jugated systems I. theory. The Journal of Chemical Physics, 21(9):1565–1581,

1953.

[79] Riichiro Saito, Gene Dresselhaus, and Mildred Dresselhaus. Physical properties

of carbon nanotubes, volume 35. World Scientific, London, England, 1998.

[80] Holger Schanz and Uzy Smilansky. Spectral statistics for quantum graphs: Pe-

riodic orbits and combinatories. Philosophical Magazine B, 80(12):1999–2021,

2000.

[81] Philipp Schapotschnikow. Eigenvalue and nodal properties on quantum graph

trees. Waves in Random and Complex Media, 16(3):167–178, 2006.

92



[82] Jeffrey Schenker and Michael Aizenman. The creation of spectral gaps by graph

decoration. Letters in Mathematical Physics, 53(3):253–262, 2000.

[83] Barry Simon. Representations of finite and compact groups. Number 10. Amer-

ican Mathematical Society, Providence, RI, 1996.

[84] Uzy Smilansky and Michael Solomyak. The quantum graph as a limit of a

network of physical wires. Contemporary Mathematics, 415(5):283–291, 2006.

[85] Benjamin Steinberg. Representation theory of finite groups: an introductory

approach. Springer Science & Business Media, New York, 2011.

[86] Toshikazu Sunada. Riemannian coverings and isospectral manifolds. Annals of

Mathematics, 121(1):169–186, 1985.

[87] Karen Uhlenbeck. Eigenfunctions of laplace operators. Bulletin of the American

Mathematical Society, 78(6):1073–1076, 1972.

[88] Karen Uhlenbeck. Generic properties of eigenfunctions. American Journal of

Mathematics, 98(4):1059–1078, 1976.

[89] Joachim Von Below. A characteristic equation associated to an eigenvalue prob-

lem on c2-networks. Linear Algebra and Its Applications, 71:309–325, 1985.

[90] Richard Weaver. Anderson localization of ultrasound. Wave Motion, 12(2):129–

142, 1990.

[91] Diederik Wiersma, Paolo Bartolini, Ad Lagendijk, and Roberto Righini. Local-

ization of light in a disordered medium. Nature, 390(6661):671–673, 1997.

[92] Eugene Wigner. Group theory and its application to the quantum mechanics of

atomic spectra, volume 5. Elsevier, New York, 2012.

93




