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ABSTRACT

It is in recent years that harvesting energy from ambient energy sources (e.g., solar,

wind, or vibration) has been commercialized, which is a promising technique to fulfil sus-

tainable operations for many kinds of electrical systems. To advocate reducing the emis-

sion of greenhouse gases, people in communication society are seeking to accommodate

and take advantage of this new technology for wireless systems, such as sensor networks,

Internet of Things, and heterogeneous networks.

In this dissertation, we focus on energy harvesting (EH) based wireless networks,

where multiple users are powered by energy harvesters and share limited spectrum re-

sources. In this system, the design of efficient access schemes plays a crucial role in

optimizing the system performance. Moreover, different from the conventional wireless

systems, there are two random processes that must be jointly counted in the transmission

design: the channel fading and the dynamics of the EH powered battery.

Specifically, we narrow down the design onto two typical network setups. First, in

a single channel access scenario, an ad hoc network with multiple transmitter-receiver

pairs is considered, where all EH-based transmitters share one channel by random access.

Two EH rate models are applied: Constant and i.i.d. (i.e., independent and identically

distributed) EH rate models. To quantify the roles of both the energy and channel state

information, a distributed opportunistic scheduling framework is proposed such that the

average throughput of the network is maximized.

Second, in a multi-channel access scenario, we study an uplink transmission under

a heterogeneous network hierarchy, where each EH-based mobile user (MU) is capable

of both deterministically accessing to a large network via one private channel, and dy-

namically accessing a small network with a certain probability via one common channel
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shared by multiple MUs. Considering a time-correlated EH model, we study an oppor-

tunistic transmission scheme to maximize the average throughput for each MU by jointly

exploiting the statistics of the system states.

Finally, back to the single channel access setup, we investigate the multiuser energy

diversity by analyzing the fundamental scaling law of the throughput over the number

of EH-based users under both centralized and distributed access schemes. We reveal the

throughput gain coming from both the increase of total available energy harvested over

time/space and the combined dynamics of batteries.
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1. INTRODUCTION∗

It is in recent years that energy harvesting (EH) has raised substantial research inter-

ests since it is expected to have abundant applications in future wireless communication

networks to power transceivers by utilizing the environmental energy such as solar, ther-

mal, wind, and kinetic energy. Compared against systems with the conventional power

supplies that convert fossil fuels into electric energy, EH-based systems are not only more

environment friendly, but also more cost-effective by cutting down the service provider

utility bills [17]. For example, in cellular networks, solar panels and wind farms have been

deployed to power base stations, which could considerably lower the expenses on energy

bills as well as reduce the level of carbon dioxide emissions. For other systems, e.g, wire-

less sensor networks, Internet of Things [27], and heterogeneous networks [18], it is ex-

pected that EH could also be a good substitute of the conventional power supplies [42,54],

prolonging the operation time to almost infinity, at least theoretically.

Despite the promising potential, there are two major challenges that hold back the

operation of EH wireless systems.

1) EH Uncertainty. The power generated by EH is non-deterministic in general due to

the dynamic and intermittent characteristics of renewable energy sources, which may not

provide a stable power supply for the wireless system. This implies that communications

may suffer from unreliability due to the random shortage of energy. Some existing works

have studied the impact of such uncertainty brought by EH. For example, the authors

in [18] studied a heterogeneous network with multiple base stations (BSs) powered by EH

solely. The non-outage probabilities of BSs were derived to analyze the availability region

∗Part of this chapter is reprinted, with permission, from [Hang Li, Chuan Huang, Fuad Alsaadi, and
Shuguang Cui, “Performance analysis for energy harvesting communication systems: from throughput to
energy diversity”, in Global Telecommunications Conference, IEEE, Dec. 7-10, 2015]
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of the network. For a large-scale ad hoc network, the author in [32] defined a notion called

transmission probability to capture the portion of time when the sensor node has enough

energy and transmits at a constant power level.

2) EH Constraints. These new transmission constraints mean that the available energy

at the system up to any time is bounded by its accumulatively harvested energy by then.

This is in contrast to conventional communication systems with fixed energy sources, in

which the available energy at any time is either unbounded or only limited by the remain-

ing energy in the storage device (e.g., battery). Many existing works have investigated

the throughput optimal or suboptimal transmission strategies under EH constraints. For

instance, the optimal throughput has been investigated in point-to-point channel [30, 44],

Gaussian relay channel [31], and multiuser scenario [37]. In [57], a comprehensive re-

view was provided on the recent development of EH communications, where throughput-

optimal power allocations and scheduling policies were thoroughly discussed under var-

ious setups. Therefore, for EH-based wireless networks, the EH constraint should be

carefully taken into account in the design of access schemes.

In this dissertation, we focus on the design of opportunistic scheduling for EH-based

networks. First, we design a distributed opportunistic scheduling for a general ad hoc

network, where all EH-based users share a common wireless channel for communications.

Second, we consider a heterogeneous network that provides multiple wireless accesses for

mobile users. To efficiently exploit the channel resources, we propose an opportunistic

transmission schemes to maximize the throughput of each user. Finally, we investigate the

fundamental the scaling law of the throughput over the number of users, which describes

how the scheduling schemes exploit the multiuser energy diversity.

The main body of the dissertation includes three parts.

• In the first part, an ad hoc network with multiple transmitter-receiver pairs is con-
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sidered, in which all transmitters are capable of harvesting renewable energy from

the environment and compete for one shared channel by random access.

In particular, we focus on two different scenarios: the constant EH rate model where

the EH rate remains constant within the time of interest and the i.i.d. EH rate model

where the EH rates are independent and identically distributed across different con-

tention slots. To quantify the roles of both the energy state information (ESI) and

the channel state information (CSI), a distributed opportunistic scheduling (DOS)

framework with two-stage probing and save-then-transmit energy utilization is pro-

posed.

Then, the optimal throughput and the optimal scheduling strategy are obtained via

one-dimension search, i.e., an iterative algorithm consisting of the following two

steps in each iteration: First, assuming that the stored energy level at each trans-

mitter is stationary with a given distribution, the expected throughput maximization

problem is formulated as an optimal stopping problem, whose solution is proved to

exist and then derived for both models; second, for a fixed stopping rule, the energy

level at each transmitter is shown to be stationary and an efficient iterative algorithm

is proposed to compute its steady state distribution. Finally, we validate our analysis

by numerical results and quantify the throughput gain compared with the best-effort

delivery scheme.

• In the second part, an multi-channel scenario is studied. Particulary, the hetero-

geneous system, where small networks (e.g., small cell or WiFi) boost the sys-

tem throughput under the umbrella of a large network (e.g., cellular systems), is

a promising architecture for the next generation wireless communication network-

s, where green and sustainable communication is a key aspect. Renewable energy

based communication via energy harvesting (EH) devices is one of such green tech-
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nology candidates.

In this part, we study an uplink transmission scenario under such a heterogeneous

network hierarchy, where each mobile user (MU) is powered by a sustainable energy

supply, capable of both deterministic access to the large network via one private

channel, and dynamic access to a small network with certain probability via one

common channel shared by multiple MUs. Considering a general EH model, i.e.,

energy arrivals are time-correlated, we study an opportunistic transmission scheme

and aim to maximize the average throughput for each MU, which jointly exploits the

statistics and current states of the private channel, battery level, and EH rate, together

with the availability of the common channel. Applying a simple yet efficient “save-

then-transmit” scheme, the throughput maximization problem is cast as a “rate-of-

return” optimal stopping problem. The optimal stopping rule is proved to has a time-

dependent threshold-based structure for the case with general Markovian system

dynamics, and degrades to a pure threshold policy for the case with independent

and identically system dynamics. As performance benchmarks, the optimal power

allocation scheme with conventional power supplies is also examined.

• Based on the above results, it is found that in EH networks, the multiuser diversity

comes from not only the channel effect, but also from the dynamics of the stored

energy. In the third part, we study multiuser diversity with respect to the energy

availability. To facilitate the analysis, we eliminate the effect of fading channel by

considering additive white Gaussian noise (AWGN) channel models only.

We investigate the scaling of the available energy across all the users and the scaling

of average throughput. Specifically, we reveal the throughput gain coming from the

increase of total available energy harvested over time/space and from the combined

dynamics of batteries. Considering both centralized and distributed access schemes,

4



the scaling of the average throughput over the number of transmitters is studied,

along with the scaling of corresponding available energy in the batteries.
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2. SINGLE-CHANNEL ACCESS: AD HOC WIRELESS NETWORKS∗

2.1 Introduction

In this chapter, we focus on a typical ad hoc wireless network where multiple transmitter-

receiver pairs share one common channel for communication purpose. To better distin-

guish the contribution of our study, it is helpful to briefly go over the existing literatures

about the EH-based communication systems.

For the point-to-point wireless systems, the authors in [30] [44] considered the through-

put maximization problem over a finite horizon for both the cases that the harvested energy

information is non-causally and causally known to the transmitter, where the optimal so-

lutions were obtained by the proposed one-dimension search algorithm and dynamic pro-

gramming (DP) techniques, respectively. In [31], the authors extended the results to the

classic three-node Gaussian relay channel with EH source and relay nodes, where the op-

timal power allocation algorithms were proposed. With a more practical circuit model by

considering the half-duplex constraint of the battery, the authors in [40] proposed a save-

then-transmit protocol, which divides each transmission frame into two parts: the first one

for harvesting energy and the other for data transmission. For wireless networks with EH

constraints, the authors in [33] investigated the performance of some standard medium

access control protocols, e.g., TDMA, framed-Aloha, and dynamic-framed-Aloha.

In related works on ad hoc networking, opportunistic scheduling has been known as

an effective method to utilize the wireless resource [4, 38, 58]. In particular, a distribut-

ed opportunistic scheduling (DOS) scheme was introduced in [65, 66], where only local

∗ c⃝[2016] IEEE. Reprinted, with permission, from [Hang Li, Chuan Huang, Ping Zhang, Shuguang Cui,
and Junshan Zhang, “Distributed opportunistic scheduling for energy harvesting based wireless networks: a
two-stage probing approach.” Networking, IEEE/ACM Transactions on, 24(3):1618–1631, June 2016]
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channel state information (CSI) is available to each transmitter. By applying optimal stop-

ping theory [20], it has been shown in [65, 66] that the optimal solution for the expected

throughput maximization problem has a threshold-based structure. When channel estima-

tion is imperfect, the authors in [55] proposed a two-level channel probing framework that

allows the accessing transmitter to perform one more round of channel estimation before

data transmission to improve the quality of estimated CSI and possibly increase the sys-

tem throughput. The optimal scheduling policy of the two-level probing framework was

proven to be threshold-based as well by referring to the optimal stopping with two-level

incomplete information [53].

Different from the conventional energy supplies (e.g., non-rechargeable batteries, pow-

er grid) in the conventional networks [4, 38, 55, 58, 65, 66], we consider the network pow-

ered by energy harvesters that could generate electric energy from different renewable en-

ergy sources. Among various types of renewable energy sources, we consider two typical

energy harvesting rate models in this chapter1:

1. Constant energy harvesting rate model: The EH rate (specifically, the amount of

harvested energy per unit time) can be approximated as a constant within the entire

time duration of interest. For example, the power variation coherence time of wind

and solar EH systems is on the order of multiple seconds [7, 16], while the duration

of one communication block is about several milliseconds. Thus, over thousands of

communication blocks, the EH rate keeps almost the same.

2. Independent and identically distributed (i.i.d.) energy harvesting rate model: Com-

pared to the constant rate model, the EH rate for this case changes much faster, i.e.,

comparable to the duration of one communication block. For example, the ener-

gy from light, thermal, kinetic, or ambient-radiation sources, usually changes every
1A more general case is that the transmitter only has causal information about EH rates, which could be

modeled as a Markov process. This model has been used in the point-to-point wireless system [30, 44].
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several milliseconds. Accordingly, EH rates can be modeled as an i.i.d. [33, 44]

random process.

With the above two EH models, we investigate the DOS problem for a heterogeneous

EH-based network, where the channel gains across different links and the EH rates across

different transmitters are non-identical. The system works in a two-stage pattern as fol-

lows. In the first stage, all transmitters adopt random access and do channel probing (CP),

during which the successful link can obtain the CSI via channel contentions, similar to

those in [55,65,66]. In the second stage, the successful transmitter at the first stage has the

option to spend certain time to harvest more energy, i.e., executes energy probing (EP);

and then, with the updated energy state information (ESI), it decides either to transmit in

the rest of the transmission block, or to stop probing and give up the channel. With EP,

since the total duration of the transmission block is fixed, although spending more time on

harvesting energy could increase the energy level, it decreases the portion of the time for

data transmission, which leads to a tradeoff to optimize.

We propose a DOS framework for an ad hoc network powered by energy harvesters,

which efficiently utilizes both the CSI and the ESI at each transmitter. In this framework,

we adopt a “save-then-transmit” scheme, i.e., the transmitter keeps harvesting energy be-

fore it initiates the transmission that uses up all the available energy in the battery. Note

that such a greedy power utilization scheme is suboptimal in general, while it is sensible

when the number of transmitters is large.

The main contributions are summarized as follows:

1. First, by assuming that the battery state at each transmitter is stationary with a certain

distribution, the throughput maximization problem for the considered network is

cast as a rate-of-return problem. We prove the existence of the optimal stopping

rules for both EP and CP, and further obtain:

8



• For the constant EH model, the optimal stopping rule of EP is determined by

maximizing the throughput over the transmission block before starting EP, and

it is either zero or a finite value according to the given CSI and ESI. Then,

based on the stopping rule of EP, the optimal stopping rule of CP is shown to

be a pure threshold policy (the threshold does not change over time) and the

transmission decision is made right after each round of CP.

• For the i.i.d. EH model, the optimal stopping rule for EP is shown to be dy-

namic and threshold based, which is obtained by solving a stopping problem

over a finite-time horizon. The stopping rule of CP is also threshold based and

obtained based on the decision of EP, i.e., either transmit or start a new CP.

Unlike the constant case, the transmission decision under i.i.d. EH model is

made during the process of EP.

2. Next, with a fixed stopping rule, we show the existence of the steady-state distribu-

tion of the battery state by constructing a “super” Markov chain with its states being

jointly determined by all transmitters. Moreover, we propose an efficient iterative

algorithm to compute the steady-state distribution, executed at each transmitter in

parallel. Particularly, it is shown that with the constant EH model, if the network

consists of n transmitters and each one is with m possible energy states, the com-

putational complexity for one iteration of the proposed algorithm is on the order of

O (n2m2), which is more efficient (when n and m are large) than that of the super

Markov chain case, whose complexity for one iteration is on the order of O (2m2n).

3. Finally, by exploiting the structure of the rate-of-return problem, we show that the

maximum throughput and the optimal scheduling strategy of the DOS framework

could be obtained for both the two EH rate models, via one-dimension search by

repeating the above two steps.
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The rest of this chapter is organized as follows. Section 3.2.1 introduces the system

model. In Section 3.2.2, the throughput maximization problem is formulated and solved

under the assumption that the stationary distribution of the battery at each transmitter is

known. Then, with the obtained stopping rule, we prove in Section 2.4 the existence of

the steady-state distribution for each transmitter, and propose an iterative algorithm to

compute it. Section 2.5 discusses the computation for the optimal throughput. In Section

2.6, numerical results are provided to validate our analysis and evaluate the throughput

gain of our proposed scheduling scheme against the best-effort delivery. Finally, Section

2.7 concludes the chapter.

2.2 System Model

We consider a heterogeneous single-hop ad hoc network, where all the I transmitter-

receiver pairs have independent but not necessarily identical statistical information of CSI

and ESI. All pairs contend for one shared channel by random access. For each link, the

transmitter is powered by a renewable energy source and utilizes a small rechargeable

battery to temporally store the harvested energy. Note that the transmitter could keep

harvesting energy until it initiates a data transmission. In addition, we do not consider the

effect of inefficiency in energy storage and retrieval, nor the energy consumed other than

data transmission, which can be approximately neglected by properly adjusting the energy

model [30, 31, 33, 44]. Denote the duration of one channel contention as l > 0, and the

length of one transmission block as L, which is an integer multiple of l.

As illustrated in Fig. 2.1, the DOS procedure of the whole network takes place in two

stages: First, each transmitter probes the channel via random access and harvests energy at

the same time; and then the successful transmitter may start the EP (to potentially increase

the average transmission rate over the transmission block2) before the data transmission

2If the successful transmitter experiences a bad channel condition and a low energy level, it may skip the
transmission.
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Figure 2.1: One realization for the DOS with two-stage probing.

process.

2.2.1 Channel Probing

In the first stage, a successful channel contention is defined as follows: All transmitters

first independently contend for the channel until there is only one contending in a particular

time slot. Furthermore, one round of CP is defined as the process to achieve one successful

channel contention. Denote the probability that transmitter i contends for the channel as qi,

1 ≤ i ≤ I , with 0 ≤ qi ≤ 1. As such, the probability that the i-th transmitter successfully

occupies the channel is given by Qi = qi
∏

j ̸=i(1−qj). Then, the probability to achieve one

successful channel contention at each time slot is given by Q =
∑I

i=1Qi, and it is easy to

check that Q ≤ 1 [1]. Accordingly, for the n-th round of CP, n ≥ 1, we use Kn to denote

the number of time slots needed to achieve a successful channel contention, which is a

random variable and satisfies the geometric distribution with parameter Q [55, 65, 66]. In

this way, the expected duration of one round of CP is given as l/Q. Denote the transmitted

signal at transmitter i as xi, and the received signal yi is thus given by yi = hixi + zi,

where hi is the complex channel gain and zi is the circularly symmetric complex Gaussian

(CSCG) noise with zero mean and variance σ2 at the receiver. Across different links,

{hi}1≤i≤I are independent with finite mean and variance, while not necessarily identically

distributed. After one round of CP, the successful transmitter can perfectly estimate the
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corresponding channel gain via certain feedback mechanisms, and thus hi is assumed a

known constant during the whole transmission block. After CP, the successful transmitter

chooses one of the following actions based on its local CSI and ESI:

(a) releases the channel (if the CSI and ESI indicate that the transmission rate is lower

than a threshold) and let all links re-contend; or

(b) directly transmits until the end of the transmission block; or

(c) holds the channel, starts EP.

Note that to complete one data transmission, it may take n rounds of CPs as depicted in

Fig. 2.1. It is worth noting that each transmitter keeps harvesting energy until it starts a

transmission, and after each round of CP, only the successful transmitter makes a choice

among three actions as listed above.

2.2.2 Energy Probing

When the successful transmitter decides not to take action (a) or (b) defined above, it

starts the second stage EP, i.e., action (c), to obtain more energy. During this stage, the

transmitter chooses to continue harvesting energy slot by slot, and then ends EP by action

(a) or (b), i.e., either releasing the channel or transmitting over the rest of the transmission

block. As it is depicted in Fig. 2.1, one transmission is fulfilled with n rounds of CPs and

mn extra slots of EP.

For transmitter i, let Bi
n,m ∈ ∆ denote the energy level of the battery after the n-th

round of CP and m additional time slots for EP, where ∆ = {0, δ, 2δ, · · · , Bmaxδ} is the

set of all possible energy states, with δ being the minimum energy unit and Bmaxδ the

capacity of the battery. We use Ei
t to denote the EH rate of transmitter i at time t. As noted

in the previous section, we consider the following two types of scenarios:

1. Constant EH rate model: {Ei
t}t≥1 are constants for each i, i.e., Ei

t = Ei ∈ ∆ for

all t ≥ 1, and {Ei} can thus be learned and assumed non-causally known before

12



transmissions.

2. I.i.d EH rate model: The EH rates among different transmitters are independent. For

transmitter i, {Ei
t}t≥1 are i.i.d. across t, with finite mean and the probability mass

function (PMF) Pr{Ei
t = eδ} = F i(e), where e ∈ {0, 1, 2, · · · }.

Under the save-then-transmit scheme, the energy level will keep non-decreasing and drop

to zero after the transmission, which forms a Markov chain (as described in Section 2.4

later). Thus, the energy level Bi
n,m can be written as

Bi
n,m = min

{
Bi

n,0 + l

m∑
k=0

Ei
k, Bmaxδ

}
, (2.1)

where n ≥ 1, 0 ≤ m ≤ L/l, and min{x, y} denotes the smaller value between two

real numbers x and y. Note that Bi
n,0 indicates the energy level after the successful con-

tention round before taking any action. If m = 0, i.e., transmitter i does not do EP, we let∑m
k=0E

i
k = Ei

0 = 0.

2.3 Transmission Scheduling

In this section, we target to derive the optimal scheduling policy that maximizes the av-

erage throughput for the considered network with the proposed two-stage access strategy,

conditioned on the given battery state distribution. We point out that the results obtained in

this section are based on the assumption that the energy level at transmitter i is stationary

with a given distribution Πi, for 1 ≤ i ≤ I , which will be validated in Section 2.4.

2.3.1 Problem Formulation

After the n-th round of CP and m additional time slots, the CSI and the ESI at the

successful transmitter are given as F i
n,m =

{
hi
n, B

i
n,m

}
. Note that the channel gain hi

n is

now indexed by n, which is determined at the end of the n-th round of CP and assumed

13



fixed during the whole data transmission block. In particular, F i
n,0 =

{
hi
n, B

i
n,0

}
denotes

the initial information right after the n-th round of CP. For convenience, we omit the index

i for either the CSI or the ESI in the sequel, and retrieve it when necessary.

By adopting the save-then-transmit scheme at the transmitters to fully take advantage

of each channel use, the transmission rate over L/l time slots with state Fn,m is defined as

Rn(m) =

(
1− ml

L

)
log

(
1 + |hn|2

Bn,m

(L−ml)σ2

)
. (2.2)

When ml = L, we set Rn(m) = 0 since there is no transmission in this case.

Remark 2.3.1 Some important properties of Rn(m) are listed as follows.

• E [Rn(m)] < ∞ and E [(Rn(m))2] < ∞, which results from the fact that hn has

finite mean and variance and the energy level Bn,m is also finite.

• {Rn(m)}n≥1 are approximately independent random variables over n. To see this,

recall that the channel gains and the battery states are independent across different

transmitters at a given time slot; moreover, the probability is small for a transmitter

to occupy the channel in two consecutive contentions when the number of user pairs

is large. For example, in an ad hoc network with K pairs where each pair fairly

competes for the channel use with probability 1/K, such a probability is 1
K2 (1 −

1/K)2(K−1) [1], which is as small as 0.0625 even when K = 2. Thus, {Fn,m}n≥1

are nearly independent over n, which implies that {Rn(m)}n≥1 are independent

over n.

Let N be the stopping rule for CP, and Mn be the stopping rule for EP associated with

the n-th CP for 1 ≤ n ≤ N , which together tell the transmitter when to start the data

transmission. Then, under these stopping rules, the transmission rate would be RN(MN),

and we let TN be the total time duration for completing one data transmission. Here,
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TN contains the duration of N − 1 rounds of CP, which is given by l
∑N−1

n=1 Kn, and

l
∑N−1

n=1 Mn time slots in which the transmitter probes the energy but gives up the channel

after EP. Also, after the N -th round of CP with the time KN l, the transmitter may use MN

slots for the EP and transmit within the duration L − MN l afterwards. Accordingly, we

obtain

TN = l
N−1∑
n=1

Mn + l
N∑

n=1

Kn + L. (2.3)

If such a process is executed J times with RNj
(MNj

)L bits transmitted at each transmis-

sion, 1 ≤ j ≤ J , we obtain the average throughput λ per transmission of the network:

L
∑J

j=1RNj
(MNj

)∑J
j=1 TNj

−→ λ =
LE [RN(MN)]

E [TN ]
a.s.

as J → ∞ by the renewal theory [9]. Again, we point out that the energy level is stationary

at the Nj-th round of CP for j ≥ 1, as we assumed.

Our target is to maximize λ by adjusting the stopping rule N and {Mn}1≤n≤N . It is

easy to see that maximizing λ is in fact a “rate-of-return” stopping problem [20, 21] (for

which the specific definition is given later). Instead of directly solving this problem, we

examine the “net reward” of the considered network, which is given as

rN(λ) = RN(MN)L− λTN

=(RN(MN)− λ)L− λl

[
KN +

N−1∑
n=1

(Kn +Mn)

]
, (2.4)

for some λ > 0. The term (RN(MN)− λ)L can be interpreted as the reward of transmis-

sion, λlKn as the cost of CP, and λlMn as the cost of failed EP for 1 ≤ n ≤ N −1. We set

r−∞(λ) = −∞ since it is irrational that the system does not send any data forever. Then,
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we define the maximum value of the expected net reward with λ > 0 as

S∗(λ) = sup
N∈N ,{Mn}1≤n≤N

E [rN(λ)] , (2.5)

where sup(·) denotes the least upper bound for a set of real numbers, and

N , {N : N ≥ 1, E [TN ] < ∞,

for Mn ∈ [0, L/l] with 1 ≤ n ≤ N} . (2.6)

Remark 2.3.2 One important property of problem (2.5) is time invariance. We observe that

before the system starts the N -th round of CP, the accumulated cost λl
∑N−1

n=1 (Kn +Mn)

over the past N − 1 rounds of CP has already been finalized, with no need to be further

considered in the remaining decision process. Moreover, {Rn(Mn)}1≤n≤N are indepen-

dent over n as we mentioned before; it follows that the expected optimal reward before

the N -th round of CP is the same as that of any previous round of CP. In other words,

the system can obtain the expected optimal reward S∗(λ) whenever a new round of CP is

about to start. Therefore, we conclude that problem (2.5) is time invariant.

Recall from Section 3.2.1 that after each round of CP, the successful transmitter will

choose one of three actions (i.e., transmitting, giving up the channel, or starting EP) ac-

cording to the stopping rule of CP, which needs the expected reward of EP depending

on the stopping rule of EP. Thus, we will first introduce the formulation and the optimal

stopping rule for EP, and then for CP.

2.3.1.1 Formulation for EP

When the successful transmitter starts EP after the n-th round of CP, where 1 ≤ n ≤

N , it will end up with one of the two actions: transmitting or giving up the channel without

transmission. Specifically, we define the expected optimal reward at the k-th slot of EP,
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0 ≤ k ≤ L/l, as

Uk(Fn,k) = max
k≤Mn≤L/l

E [max {(Rn(Mn)− λ)L,

−λlMn + S∗(λ)} | Fn,k] , (2.7)

where −λlMn+S∗(λ) is the expected value of giving up the channel after Mn slots of EP.

If k = 0, U0(Fn,0) denotes the maximum of the expected net reward right after the n-th

round of CP. In other words, we want to find the optimal stopping rule M∗
n of EP which

attains

U0(Fn,0) = max
0≤Mn≤L/l

E [max {(Rn(Mn)− λ)L,

−λlMn + S∗(λ)} | Fn,0] . (2.8)

Note that M∗
n exists since problem (2.8) is an optimal stopping problem over a finite time

horizon [20, 45].

2.3.1.2 Formulation for CP

By choosing {M∗
n}1≤n≤N , we define

λ∗ = sup
N∈N

LE [RN(M
∗
N)]

E [TN ]
, N∗ = arg sup

N∈N

LE [RN(M
∗
N)]

E [TN ]
. (2.9)

Note that if the optimal stopping rule N∗ /∈ N , we would claim that N∗ does not exist.

Thus, λ∗ is the optimal average throughput of the original rate-of-return problem.

The connection between the transformed problem (2.5) and the original problem (2.9)

is introduced in the following lemma. It is worth noticing that with the optimal stopping

rule {M∗
n}1≤n≤N for EP, problem (2.5) boils down to a one-level stopping problem with

stopping rule N .
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Lemma 2.3.1 (i) If there exists λ∗ such that S∗(λ∗) = 0, this λ∗ is the optimal throughput

defined in (2.9). Moreover, if S∗(λ∗) = 0 is attained at N∗(λ∗), the stopping rule N∗

defined in (2.9) is the same as N∗(λ∗), i.e., N∗ = N∗(λ∗).

(ii) Conversely, if (2.9) is true, there is S∗(λ∗) = 0, which is attained at N∗ given by

(2.9).

This lemma directly follows Theorem 1 in Chapter 6 of [20].

The next proposition secures the existence of the optimal stopping rule for CP.

Proposition 2.3.1 With the EP stopping rule {M∗
n}0≤n≤N , the optimal stopping rule N∗(λ)

for problem (2.5) exists. Moreover, for N ≥ 1, the following equation holds

S∗(λ) = U0(FN,0)− λlKN . (2.10)

The proof is given in Appendix A.

Remark 2.3.3 The equation (2.10) is obtained from the optimality equation of the CP.

The calculation of the optimal throughput relies on this equation, which will be shown in

Section 2.5.

Now, we are ready to derive the optimal stopping rules N∗ and {M∗
n} that jointly

maximize the expected value of rN(λ) for the two different EH models. As we mentioned

above, the stopping rule N for CP relies on the form of MN (the stopping rule for EP).

We will find the optimal stopping rule M∗
N before N∗. After obtaining the forms of the

optimal stopping rules, the calculation for the optimal throughput will be discussed.

2.3.2 Optimal Stopping Rule for Constant EH Model

For notation simplicity, we omit the index N of CP when we derive the stopping rule

M in this subsection. Then, we will derive the stopping rule N based on the results of EP.
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When the EH rate is constant, the transmission rate R(M) is deterministic for a given

F0 over the transmission block. Then, we obtain a simplified version of U0(F0) (2.8) as

U0(F0) = max
0≤M≤L/l

max {(R(M)− λ)L,−λlM + S∗(λ)} .

The value of U0(F0) can be obtained simply by comparing −λlM + S∗(λ) and (R(M)−

λ)L, whose values can be computed individually. Clearly, the first one achieves its maxi-

mum S∗(λ) at M = 0. For the second term, only R(M) is changing over M with a given

F0. Therefore, we settle down to the following auxiliary problem:

V ∗ = arg max
0≤V≤L/l

R(V ). (2.11)

Then, we could use the optimal V ∗ to find M∗ without difficulty. Note that when V l = L,

it follows that R(V ) = 0 according to our definition in Section 3.2.1, which implies that

V = L/l cannot be optimal, and thus we take 0 ≤ V ≤ L/l − 1. We first consider a

related continuous version of R(V ) by relaxing V l/L as ρ, 0 ≤ ρ < 1:

max
0≤ρ<1

R(ρ) = max
0≤ρ<1

(1− ρ)

· log
(
1 + |h|2min{B0 + ρLE,Bmaxδ}

(1− ρ)Lσ2

)
. (2.12)

After solving (2.12), we will show how to obtain the optimal solution of problem (2.11).

First, we establish some properties for the objective function of problem (2.12).

Proposition 2.3.2 For arbitrary a, b ≥ 0, we have that

1. the function y(x) = (1−x) log
(
1 + a+bx

1−x

)
is concave over [0, 1), and limx→1− y′(x) <

0;

2. the function g(x) = (1−x) log
(
1 + a

1−x

)
is concave and non-increasing over [0, 1).
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The proof is given in Appendix A.

Since ρ ∈ [0, 1), when Bmaxδ−B0

LE
≥ 1, R(ρ) is simply concave over ρ on [0, 1) accord-

ing to part 1) of Proposition 2.3.2. When Bmaxδ−B0

LE
< 1, according to Proposition 2.3.2,

RN(ρ) is concave over
[
0, Bmaxδ−B0

LE

]
, and is non-increasing on

[
Bmaxδ−B0

LE
, 1
)
. Thus, R(ρ)

cannot achieve its maximum on
(
Bmaxδ−B0

LE
, 1
)
. Therefore, we treat this fact as a new

constraint over ρ, and rewrite problem (2.12) as

maxG(ρ) = max(1− ρ) log

(
1 + |h|2 B0 + ρLE

(1− ρ)Lσ2

)
s.t. B0 + ρLE ≤ Bmaxδ, 0 ≤ ρ < 1. (2.13)

Next, we establish the following proposition to solve problem (2.13), where the ob-

tained solution is optimal for problem (2.12) as well.

Proposition 2.3.3 The optimal solution ρ∗ for problem (2.13) is given by:

ρ∗ =

 min
{
ρ0,

Bmaxδ−B0

LE

}
, when C+D

1+C
≥ log(1 + C);

0, otherwise,

where C = |h|2B0

Lσ2 , D = |h|2E
σ2 , and ρ0 is the unique solution for the equation log

(
1 + C+Dρ

1−ρ

)
=

C+D
1−ρ+C+Dρ

when C+D
1+C

≥ log(1 + C).

The proof is given in Appendix A.

Based on the optimal solution ρ∗, the optimal V ∗ for R(V ) in (2.11) can be obtained

easily: We only need to compare R(⌊ρ∗L/l⌋) against R(⌈ρ∗L/l⌉), and V ∗ should attain

the larger value. Specifically, we have the following result.
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Proposition 2.3.4 The optimal V ∗ of the problem (2.11) is given by

V ∗ =


⌊ρ∗L/l⌋ , if R(⌊ρ∗L/l⌋) ≥ R(⌈ρ∗L/l⌉);

⌈ρ∗L/l⌉ , if R(⌈ρ∗L/l⌉) > R(⌊ρ∗L/l⌋);

0, otherwise.

(2.14)

where ρ∗ is obtained by Proposition 2.3.3. Thus, the optimal stopping rule M∗ is given by

M∗ =

 0, if (R(V ∗)− λ)L < S∗(λ);

V ∗, otherwise.
(2.15)

The optimal reward U0(F0) with constant EH rate model is

U0(F0) = max {(R(V ∗)− λ)L, S∗(λ)} . (2.16)

Next, the following proposition formally quantifies the optimal stopping rule N∗ and

the equation to compute the optimal throughput λ∗.

Proposition 2.3.5 The optimal stopping rule to solve problem (2.5) is given by

N∗ = min {n ≥ 1 : Rn(V
∗) ≥ λ∗} , (2.17)

with V ∗ given in Proposition 2.3.4. Moreover, λ∗ satisfies the following equation

I∑
i=1

QiE
[(
Ri (V ∗)− λ∗)+] = λ∗l

L
, (2.18)

where the function (x)+ means max{x, 0} for some real number x, and Qi is the probabil-

ity of a successful channel contention at transmitter i, defined in Section 3.2.1. The index

n for Ri (V ∗) in (2.18) is removed since {Rn (V
∗)}n≥1 are ergodic for 1 ≤ i ≤ I .
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Proof: Following (2.16) in Proposition 2.3.4, the stopping rule N∗ has the form

N∗ = min {n ≥ 1 : (Rn(V
∗)− λ∗)L ≥ S∗(λ∗)} . (2.19)

Thus, we can obtain N∗ by plugging S∗(λ∗) = 0 into (2.19), which results in (2.17).

Finally, equation (2.18) can be obtained by plugging S∗(λ∗) = 0 into (2.10) and taking the

expectation on both sides. �

Remark 2.3.4 Note that the stopping rule (2.19) implies that each transmitter has the same

threshold that is globally determined even when all transmitters have different statistics of

the CSI and ESI. The intuition is similar to that in [65]: In order to guarantee the overall

system performance, the transmitter with a bad channel condition and a low energy level

should “sacrifice” its own reward, while the one with good conditions should transmit

more data.

Directly following Propositions 2.3.4 and 2.3.5, the next proposition gives the DOS

under the constant EH model.

Proposition 2.3.6 After the n-th round of CP, it is optimal for the successful transmitter to

take one of the following two options:

1. release the channel immediately if Rn(V
∗) < λ∗ (which is equivalent to M∗ = 0),

and let all transmitters perform the next round of CP;

2. otherwise, transmit after V ∗ slots for EH, where V ∗ is given by Proposition 2.3.4.

2.3.3 Optimal Stopping Rule for i.i.d. EH Model

Similarly as in the previous subsection, we first consider problem (2.8) to find the

optimal stopping rule M∗, then the optimal stopping rule N∗ afterwards.
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Under the i.i.d. EH model, U0(F0) has the form in (2.8). As we mentioned in Section

2.3.1, it is a finite-horizon stopping problem [20, 45], and the solution of problem (2.8)

could be directly generalized in the next proposition.

Proposition 2.3.7 For 0 ≤ k ≤ L/l and some λ > 0, the optimality equation for problem

(2.8) is given by

Uk(Fk) = max {(R(k)− λ)L,−λkl + S∗(λ),

E[Uk+1(Fk+1) | Fk]} , (2.20)

and the optimal stopping rule has the following form:

M∗ = min {0 ≤ k ≤ L/l :

Uk(Fk) = max{(R(k)− λ)L,−λkl + S∗(λ)}} . (2.21)

The stopping rule M∗ given in (2.21) suggests that the EP would stop at M∗ by either

transmitting or giving up the channel, which also indicates the final decision for the current

round of CP. Thus, the optimal stopping rule N∗ could be obtained by reorganizing (2.21).

Proposition 2.3.8 The optimal stopping rule of CP under the i.i.d. EH model has the form

as:

N∗ = min {n ≥ 1 : UM∗(Fn,M∗) = (Rn(M
∗)− λ∗)L} , (2.22)

where M∗ is the optimal stopping rule of EP given in Proposition 2.3.7. The optimal

throughput λ∗ satisfies the following equation

I∑
i=1

QiE
[
E
[
max{Ri(M∗)− λ∗,−λ∗M∗l/L} | F0

]+]
=

λ∗l

L
. (2.23)

The proof is analogous to the constant EH rate case, which is omitted here.
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The next proposition, which directly follows Propositions 2.3.7 and 2.3.8, concludes

the overall DOS under i.i.d. EH model.

Proposition 2.3.9 After the n-th round of CP, it is optimal for the successful transmitter to

take one of the following two options:

1. if max {(Rn(0)− λ∗)L,E[U1(Fn,1) | Fn,0]} < 0, release the channel immediately

and let all transmitters start the next round of CP.

2. otherwise, start EP following the optimal stopping rule M∗
n given in Proposition

2.3.7.

Remark 2.3.5 Propositions 2.3.6 and 2.3.9 summarize the DOS under the constant and

i.i.d. EH models, respectively. We observe that under the constant EH model, the EP

could be “forecasted” by finding the optimal V ∗; then the decision of transmission would

be made before starting EP. On the contrary, when the EH rates are i.i.d., such decision

can only be made step by step during the EP.

2.4 Battery Dynamics

In this section, we validate the assumption made in Section 3.2.2 that the energy level

at each transmitter is stationary with some distribution. Firstly, we show that under the

constant EH model, the energy level stored at each transmitter forms a Markov chain over

time, while the state transition probabilities for different transmitters are coupled together.

However, we propose an iterative algorithm to compute the corresponding steady-state

distribution, which is shown converging to the global optimal point. Then, we extend our

analysis to the case with i.i.d. EH rate model.

2.4.1 Battery with Constant EH Model

Note that after CP, if the successful transmitter releases the channel immediately, then

the next round of CP starts, and the battery continues to be charged. If the transmitter starts
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Figure 2.2: State transition of the energy level under the constant EH rate model.

the transmission, its energy level will become zero at the end of the transmission block

according to Section 3.2.1. During this time, all other transmitters will keep harvesting

energy within this period. Thus, the energy level transition over the transmission block

can be determined. To simplify our analysis, the transmission block is treated as one time

slot with length L for the purpose of counting battery state transitions. In addition, we

assume that the battery works in half-duplex mode, i.e., it cannot be charged when the

transmitter transmits data.

For transmitter i with EH rate Ei, 1 ≤ i ≤ I , the set of its energy states is given by

Bi
t ∈ ∆i =

{
0, Eil, 2Eil · · · ,

⌊
Bmaxδ
Eil

⌋
Eil, Bmaxδ

}
, where t ≥ 1 is the slot index. The

state transition is depicted in Fig. 2.2. In addition, we denote the distribution of the energy

level for transmitter i at time t as Πi
t =

[
πi
t,0 · · · πi

t,Bmax

]
.

Next, we consider the state transition probability. Suppose that transmitter i is at ener-

gy level ui ∈ ∆i, there are three events that may happen at time slot t:

(i) It occupies the channel and transmits. According to Section 3.2.1, transmitter i

consumes all the energy for the transmission, and transfers to the energy level 0 after the

transmission. Thus, the transition probability is given by

piui,0
= Qip

i
tr(ui), (2.24)

where Qi is the probability that the i-th transmitter occupies the channel, and pitr(ui) is the

probability that it successfully transmits with the energy level ui. Furthermore, according
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to (2.17), pitr(ui) can be computed as

pitr(ui) = P
{
Ri(V ∗) ≥ λ∗}

=P

{
log

(
1 + |hi|2 ui + V ∗lEi

(L/l − V ∗)lσ2
i

)
≥ λ∗

1− V ∗l
L

}
, (2.25)

where V ∗ is defined by (2.14) in Proposition 2.3.4. Note that in (2.25), |hi|2 is the only

random variable and its distribution is known.

(ii) Other transmitters occupy the channel and transmit. If anyone among the oth-

er I − 1 transmitters sends data, transmitter i will harvest EiL units of energy during

this period, and then attain level vi = min {u+ EiL,Bmaxδ}. Suppose that the j-th

transmitter transmits. Similar to the first case, the probability of transmission performed

by the j-th transmitter is given by Qj

∑Bmax

b=0 πj
t,bp

j
tr(bE

jl), where bEjl ∈ ∆j and thus

b ∈
{
0, 1, 2, · · · ,

⌊
Bmaxδ
Ej l

⌋
, Bmax

}
. Since there are in total I − 1 transmitters, the transi-

tion probability for the transmitter i from level ui to vi is given by

piui,vi
=
∑
j ̸=i

Qj

Bmax∑
b=0

πj
t,bp

j
tr(bE

jl). (2.26)

(iii) No transmission happens. In this case, transmitter i just harvests Eil units of

the energy and goes into state wi = min {ui + Eil, Bmaxδ}. The probability of this case

happening can be directly obtained as

piui,wi
= 1− piui,0

− piui,vi
. (2.27)
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Note that when ũi = vi = wi, the transition probability is just given by

piui,ũi
= piui,vi

+ piui,wi

= piu,vi + 1− piui,0
− piui,vi

= 1− piui,0
. (2.28)

In this way, we can compute all {piui,ũi
} for 1 ≤ i ≤ I , where ui ∈ ∆i and ũi ∈

{0, vi, wi, Bmaxδ}. The transition probability matrix is nothing but Pi
t = {piui,ũi

} with

dimension
(⌈

Bmaxδ
Eil

⌉
+ 1
)
×
(⌈

Bmaxδ
Eil

⌉
+ 1
)
. Obviously, Pi

t is a stochastic matrix, i.e, a

square matrix in which all elements are nonnegative and the row sum is 1. However, Pi
t

depends on t since piui,vi
depends on the state distribution Πj

t for all j ̸= i. Therefore,

{Bi
t}t≥0 is a non-homogeneous Markov chain, whose state evolution is given by

Πi
t+1 = Πi

tP
i
t, t ≥ 0. (2.29)

We propose Algorithm 2.1, which is summarized in Table I, to compute the steady-

state distribution for all transmitters. Here, the infinity norm is applied, which is defined

as ∥ a ∥∞= max1≤i≤n |ai| for a = [a1 · · · an].

Proposition 2.4.1 For any given initial state distribution Πi
0, Π

i
t =

[
πi
t,0 · · · πi

t,Bmax

]
that

is generated by Algorithm 2.1, converges to a unique steady-state distribution Πi for all

1 ≤ i ≤ I .

The proof is given in Appendix A.

Remark 2.4.1 The steady-state distribution for all transmitters can be obtained by the

iterative computation Πt+1 = ΠtP over the “super” Markov system as well, which is

constructed in Appendix D. However, this is not as efficient as Algorithm 2.1. From the

27



Table 2.1: Algorithm 2.1: Compute the steady-state distribution for all transmitters.

• Initialize Πi
0 for 1 ≤ i ≤ I , ε, and compute piui,0

by (2.24) for all ui ∈ ∆i and
1 ≤ i ≤ I;

• Set t = 0, compute Pi
0 by (2.26)–(2.28) for all 1 ≤ i ≤ I , and compute Πi

1 by (2.29)
for all 1 ≤ i ≤ I . Then:

– While max1≤i≤I ∥ Πi
t+1 − Πi

t ∥∞> ε, repeat:

1. t = t+ 1;
2. Update Pi

t by (2.26)–(2.28) for all 1 ≤ i ≤ I;
3. Compute Πi

t+1 by (2.29) for all 1 ≤ i ≤ I;

– end.

• Algorithm ends.

computational complexity point of view, suppose that each transmitter has m energy levels,

and there are n transmitters in total. The number of the states in the “super” Markov chain

is mn. If there is only one processer, the floating-point calculation for one iteration of the

state distribution for the “super” Markov chain is approximately on the order of O (2m2n).

On the contrary, by using Algorithm 2.1, (2.26) requires n2m2 calculations, and updating

{Pi
t} requires about nm calculations according to (2.27). In addition, {Πi

tP
i
t} requires

2nm2 calculations. Overall, one iteration for all transmitters is approximately on the

order of O (n2m2), which is more efficient than the case for the “super” Markov chain

especially when m and n are large. Moreover, our algorithm can also be operated in a

parallel way, i.e., computing Πi
t+1 = Πi

tP
i
t for 1 ≤ i ≤ n at the same time over different

cores.

2.4.2 Battery with i.i.d. EH Model

The argument that the battery state evolves as a Markov process for the random case

is analogous to that of the constant case in the previous subsection. The main difference
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is that the probability pitr(ui) defined by (2.25) is changed, which needs to be further

developed under the i.i.d. EH rate model.

We now consider the calculation of pitr(ui). When transmitter i grabs the channel with

energy level ui, according to the stopping rule M∗ (2.21) and N∗ (2.22), the transmitter

checks the condition max {(R(0)− λ)L,−λl + E[U1(F1) | F0]} ≥ 0. If it is true, the

transmitter starts EP until the M∗-th slot and transmits when (R(M∗)− λ∗)L ≥ −λ∗M∗l

according to (2.22). Specifically, given U0(ui, |hi|2) ≥ 0, the transmitter continues EP

at slot k for 0 ≤ k ≤ M∗ − 1, which is equivalent to max{(R(k) − λ∗)L,−λ∗kl} <

E[Uk+1(Fk+1) | Fk], where Fk = {ui + l
∑k

j=0E
i
j, |hi|2}. Then, at slot M∗ = m ≤ L/l,

the transmitter stops EP and transmits when (R(m)−λ∗)L ≥ max{−λ∗ml,E[Um+1(Fm+1) |

Fm]}. Thus, we obtain

pitr(ui) =

∫ ∞

0

P
{

Transmits at M∗ | U0(ui, d|hi|2) ≥ 0
}
·

P
{
U0(ui, d|hi|2) ≥ 0

}
f(|hi|2)d|hi|2, (2.30)

where f(|hi|2) is the probability density function (PDF) of the channel power gain. The

probability P {U0(ui, d|hi|2) ≥ 0} can be computed based on Proposition 2.3.7. For nota-

tion simplicity, we omit the condition U0(ui, d|hi|2) ≥ 0, and the first term in the integral

of (2.30) can be expanded as

P {Transmits at M∗} =

L/l∑
m=0

(
m−1∏
k=0

P {αk < 0}

)
P {βm ≤ 0} (2.31)

where αk = max{(R(k) − λ∗)L,−λkl} − E[Uk+1(Fk+1) | Fk], and βm = max{−λml,

E[Um+1(Fm+1) | Fm]}−(R(m)−λ∗)L. Note that in P {αk < 0}, R(k) and E[Uk+1(Fk+1) |

Fk] are random since they are the functions of
∑k

j=0E
i
j , where

{
Ei

j

}
1≤j≤k

are i.i.d. with

a known distribution and Ei
0 = 0. Thus, P {αk < 0} can be computed. Using the simi-
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lar argument, it is easy to see that P {βm ≤ 0} can be computed as well. Therefore, the

probability given in (2.31) is computable. Overall, we could obtain pitr(ui) after plugging

(2.31) into (2.30).

After obtaining pitr(ui), the transition probability {piui,ũi
}, where ui ∈ ∆, and ũi ∈

{0, ui, ui + δ, · · · , Bmaxδ}, can be calculated similarly as the case of constant EH rate. In

addition, Algorithm 2.1 and Proposition 2.4.1 could be modified, such that they could suit

the i.i.d. EH model, which is omitted.

2.5 Computation of the Optimal Throughput

The optimal throughput λ∗ hinges upon the optimal stopping rules in (2.17) and (2.22).

Thus, to fully obtain the optimal scheduling policy of the proposed DOS, we next turn our

attention to computing the value of λ∗.

By Propositions 2.3.5 and 2.3.8, λ∗ can be obtained by solving (2.18) or (2.23) under

the constant or i.i.d. EH model, respectively. Next, we briefly introduce the idea why there

exists λ∗ such that the equation (2.18) or (2.23) holds, and how to search λ∗. For brevity,

we focus the constant EH rate case.

Note that R(V ∗) is a function of random variables hi and Bi
0; we could calculate the

expectation on the left-hand side of (2.18) for each given λ ≥ 0. Such expectation requires

the distribution of Bi
0, i.e., the steady-state distribution Πi, which could be approximately

computed as shown in Section 2.4. In addition, for a given λ, an upper bound of this

expectation can be obtained by fixing Πi = [0, · · · 0, 1]. As λ increases from zero to

infinity, this upper bound decreases to zero at some λ̃ < ∞. Since the right-hand side

of (2.18) is strictly increasing over λ within the range [0,+∞), there at least exists one

λ∗ satisfying (2.18). Therefore, an exhaustive one-dimension search can be applied to

obtain the optimal throughput over the range
[
0, λ̃
]
. Note that during each iteration of the

exhaustive search, Algorithm 2.1 (given in Section 2.4) is used to obtain the steady-state
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distribution for a given λ ∈
[
0, λ̃
]
, and then we check if the equation (2.18) or (2.23)

holds. Finally, λ∗ should be the largest one in
[
0, λ̃
]

that makes the equation (2.18) or

(2.23) hold.

In summary, the above search can characterize the optimal stopping rules given in

Propositions 2.3.5 and 2.3.8, which completes the proposed DOS framework.

2.6 Numerical Results

In this section, we first validate Propositions 2.3.5 and 2.3.8 to show that the optimal

throughput λ∗ exists and can be found via one-dimension search. Second, we investigate

the throughput gain of our proposed DOS with two-level probing over the best-effort deliv-

ery method, where the data is transmitted whenever the channel contention is successful.

Note that such a method can be realized in the proposed DOS framework by fixing M = 0

and setting N = 1 in (2.17) and (2.22). Let λ0 denote the throughput obtained by the

best-effort scheme, which can be calculated as

λ0 =

∑I
i=1

Qi

Q
E
[
L log

(
1 + |hi

n|2
Bi

n,0

Lσ2

)]
l
Q
+ L

. (2.32)

In general, a typical button cell battery has the capacity of 150 mAh with the end-point

voltage of 0.9 V, which is equal to 150 mAh × 3600 s/h × 0.9 V = 486 J. A thin-film

rechargeable battery can offer 50 µAh with 3.3 V, which is equal to 0.594 J. Since a

typical transmission time interval is on the time scale of milliseconds, we let the energy

unit be δ = 10−3 J in the simulation. Accordingly, we set the capacity of the battery

Bmaxδ = 105δ, which falls between the capacity volume of a thin-film battery and that

of a button cell battery. Also, the current commercial solar panel can provide power from

1 W to about 400 W, which is equivalent to 1δ·ms−1 ∼ 400δ·ms−1. According to this

fact, in our simulation, we let the EH rate vary within the range [0, 40δ]. In addition, the
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Figure 2.3: λ vs. the average throughput.

channel gains are i.i.d for different links and the channel power gains follow an exponential

distribution with mean 5. The variance of the noise is set to be 10 mW. The length of one

time slot is unified as l = 1 ms and the length of a transmission block is L = 100l.

2.6.1 Validation of Propositions 2.3.5 and 2.3.8

In Fig. 2.3, we illustrate the variation of the average throughput as the “threshold”

λ changes. Without loss of generality, we first consider a homogeneous network with

10 user pairs, i.e., all pairs are identical. For the constant EH model, the EH rate is set

to be E = 10δ for all transmitters. For the i.i.d. EH case, we choose the Bernoulli

model [35, 50]: The EH rate is either zero or of a finite value with probability 0.5. In our

simulation, we consider three cases for the mean values in i.i.d. EH model: 7.5δ, 10δ, and

20δ.

First, we observe in Fig. 2.3 that as λ increases from zero, the average throughput is

increasing then decreasing. Then, the optimal point is achieved at λ∗, where the average

throughput is at its apex that is also approximately of the same value as λ∗. Taking the

case of i.i.d. EH model with mean 20δ as an example in Fig. 2.3, the value of the optimal

throughput λ = λ∗ is approximately 4.5, and the actual optimal average throughput is
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Figure 2.4: The throughput gain vs. EH rate of the third transmitter.

about 4.5 as well. Therefore, this observation validates our Propositions 2.3.5, 2.3.8 and

discussions in Section 2.5. Second, we observe that the average throughput is almost the

same when the mean of the EH rate in the i.i.d. EH model is equal to the EH rate in the

constant EH model. Thus, the type of EH rate models does not directly determine the

average throughput performance.

2.6.2 Throughput Gain

We use λEP to denote the throughput where only EP is adopted, i.e., setting N = 0

and M = M∗, and λCP to denote the throughput where only CP is adopted, i.e., setting

N = N∗ and M = 0. Thus, the throughput gains are defined as:


GEP = λEP−λ0

λ0
, gain from EP;

GCP = λCP−λ0

λ0
, gain from CP;

GDOS = λ∗−λ0

λ0
, gain from CP + EP.

(2.33)

In Fig. 2.4, we evaluate the above throughput gains for the network with I = 3 user

pairs. Recall from Section 3.2.1 that our analysis is applicable for I ≥ 2. Since the con-
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stant and i.i.d. EH rate models could attain the same throughput performance over λ, we

only consider the constant EH model in this case. Particularly, we study a heterogeneous

case where the first two transmitters have the same EH rates 2δ, while the EH rate of the

third transmitter varies from 2δ to 100δ.

We observe in Fig. 2.4 that as the EH rate of the third transmitter increases, GEP

almost keeps constant and can achieve a gain about 19%. It implies that after the channel

contention, the successful transmitter with any EH rate could do EP to enhance its average

transmission rate over the transmission block. Thus, the ESI of the successful transmitter

does not have obvious impact on the throughput. However, we notice that GCP achieves

its maximum when all transmitters are identical (with the same EH rate 2δ) and then

decreases slowly as the EH rate of the third transmitter increases. The intuition is that

when the difference among EH rates becomes larger, the stopping rule of CP will more

likely let the transmitter with relatively low energy level to give up the channel, which

results in a longer time on CP and then the throughput gain is lower than the case when

all transmitters are identical. Regarding GDOS , our proposed DOS with two-stage probing

can achieve the highest throughput gain among three schemes. It is worth noticing that

as the EH rate of the third transmitter increases, the efficiency of DOS becomes more

apparent, although slowly, than the scheme with pure CP, which implies that the second

stage probing brings more benefits. Our intuition is that a larger difference among the

EH rates leads to a bigger difference of energy levels. Since EP allows the successful

transmitter with relatively lower energy level to possibly harvest more energy after CP, EP

will plays a more important role as the difference among the EH rates increases.

In Fig. 2.5, we illustrate how the size of the network influences the throughput gains.

In this scenario, we start from a three-pair network with EH rates 2δ, 2δ, and 80δ, respec-

tively. Then, we keep adding pairs with EH rate 2δ at the transmitter side. We observe

that the throughput gain GCP is increasing a little as the size of the network is increasing.
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Figure 2.5: The throughput gain vs. the size of the network.

It is reasonable since CP could utilize the multi-user diversity of both channel gains and

energy levels. We see that GCP increases slowly, since we only add a low-EH-rate trans-

mitter at each time. We also observe that GEP is decreasing. The reason is that the more

transmitters in the network, the less probability to transmit for each transmitter, and then

more transmitters would maintain a high energy level. Thus, EP is rarely triggered after

a channel contention. For the same reason, GDOS would approach GCP as the size of the

network increases.

2.7 Conclusion

In this chapter, we proposed a DOS framework for a heterogeneous single-hop ad hoc

network, in which each transmitter is powered by a renewable energy source and access-

es the channel randomly. Our DOS framework includes two successive processes: All

transmitters first probe the channel via random access, and then the successful transmitter

decides whether to give up the channel or to optimally probe the energy before data trans-

mission. The optimal scheduling policy of the DOS framework is obtained as follows:

First, assuming the battery state is stationary at each transmitter, the expected through-

put maximization problem was formulated as a rate-of-return optimal stopping problem,
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which was solved for both the constant and i.i.d. EH rate models; second, by fixing the

stopping rule, the stored energy level at each transmitter was shown to own a steady-state

distribution as time goes to infinity, where we also proposed an efficient iterative algo-

rithm for its computation; finally, the optimal throughput and the scheduling policy is

obtained via one-dimension search with the above two steps (i.e., finding the form of the

optimal stopping rule and calculating the steady-state distribution) repeated in each iter-

ation. Numerical results were also provided to validate our analysis; the proposed DOS

with two-level probing was shown to outperform the best-effort delivery method.
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3. MULTI-CHANNEL ACCESS: HETEROGENEOUS NETWORKS

3.1 Introduction

3.1.1 Motivations

Heterogeneous networks (HetNets), where small networks (e.g., femtocell or WiFi)

composed of low-power access points (APs) are placed under the coverage of a large

network (e.g., cellular network), evolve into a new type of network deployment that could

enhance the overall system capacity with reasonable cost and power consumption [2, 24].

Standardization bodies, such as ETSI and 3GPP, have paid much attention to this shifting

of network paradigm and have made femtocells part of the current and future cellular

standards, like UMTS and LTE/LTE-A. Now, commercial femtocell deployments could

be found globally, operated by various cellular carrier companies [3].

In a cellular network, a mobile user (MU) is usually assigned a dedicated channel to

access the base station (BS), while this link may experience bad channel conditions due

to the possible severe path loss and fading between the MU and the BS. In such cases,

however, the desired quality-of-service (QoS) could still be satisfied by allowing the MU

to access a nearby AP in an underlying small network via a common channel, whose

channel condition is relatively good. Essentially, the MU in the above HetNet constructs

a multi-channel access scheme: The messages from MU could be directly delivered to the

cellular BS, or if available, to a nearby low-power AP as well [39]. In general, there are

two modes of access control for small networks (e.g., for femtocells): restricted access,

i.e., only pre-registered users could access the corresponding AP [3, 39]; and open access,

i.e., any local users in the small network could gain the access. It is worth noting that

the small network could either share the same band with the large network, or operate

over a band orthogonal to the large network: e.g., WiFi uses the unlicensed band [8] and
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femtocells could be allocated with different bands from the large network via orthogonal

frequency division multiple access (OFDMA) or time division multiple access [3, 62]. In

practice, the MU may fail to establish a dedicated link to the small network due to the

limited spectrum resources or the relatively large distance to the AP, which introduces

another type of channel randomness beyond channel fading in the conventional cellular

system.

Another significant advantage enabled by the aforementioned HetNet is that the MU

could potentially enjoy a longer lifetime since its power consumption is reduced by com-

municating with the local AP instead of the distanced BS. However, since the lifetime of

an MU is still limited by the stored energy in the batteries [30], the MU should seek an “ac-

tive” way to recharge itself, especially in a green fashion. Such renewable energy powered

nodes will play critical roles in the next generation wireless system, which is designed

to be environment friendly and to support diversified applications such as machine-to-

machine communications and Internet of things (IoT). A promising “self-charging” tech-

nology is energy harvesting (EH), which can efficiently convert certain renewable energy

sources (e.g., solar, radiation, and vibration) to electric energy [54]. In this way, the MU

could prolong the battery life almost infinitely, and fulfil the increasing demands of green

systems [60]. Compared with the conventional constant power supply, such a renewable

energy supply raises a new design constraint as pointed out in previous chapters: The con-

sumed energy up to any time should be bounded by the harvested energy until this point,

which is named as the EH constraint [30].

In this chapter, we study a simple uplink HetNet scenario depicted in Fig. 3.1, where

each EH-based MU has an individual link, namely a private channel, to the large network

BS for deterministic access. Moreover, a local AP of a small network offers a common

channel, which is randomly shared by all nearby MUs. Here we consider a scenario that

each MU could access the common channel with a certain probability at each time slot.
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Figure 3.1: The uplink HetNet with multi-channel access, where each MU is powered
by energy harvesters, and accesses to the BS and AP via private and common channels,
respectively.

Thus, based on this multi-channel access setup, the MU could fulfil a transmission by

using the harvested energy via either its private channel solely or via both the private and

common channels simultaneously. Joint information processing is done in a cloud-based

radio access network (C-RAN) platform [15, 29].

On the MU side, there are two types of state information that could be causally known

before the transmission: the channel state information (CSI) of the links to the large net-

work and the small network (if the AP was successfully occupied by the MU); and the

energy state information (ESI), i.e., the EH rate (the harvested energy per unit time) and

the battery state at the MU. Therefore, the MU could decide when to start a transmission

with both CSI and ESI at hand. Obviously, a longer waiting time before transmission-

s to probe those information may accumulate a higher transmission power, and create a

higher likelihood to secure the common channel, while it may reduce the average effec-

tive throughput since the effective transmission time is decreased. Thus, this leaves us an

interesting tradeoff to optimize: channel-energy probing time vs. transmission time. In

addition, we consider a “save-then-transmit” scheme such that each transmission would
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consume all the harvested energy at the MU. This suboptimal power utilization scheme is

able to deploy the largest instantaneous transmit power such that the short-term transmis-

sion rate is maximized, and is more tractable for analysis as well.

3.1.2 Contributions

First, we propose an opportunistic transmission scheme for the multi-channel HetNet

uplink powered by sustainable energy supplies, and aim to enhance the average throughput

for each user by jointly exploiting the stochastic CSI and ESI. More precisely, the through-

put maximization is cast as a “rate-of-return” optimal stopping problem. With Markovian

private channel and EH models, the optimal stopping rule is proved to exist and have a

state-dependent threshold-based structure with both the finite and infinite battery capaci-

ties. The optimal throughput is proved to be strictly increasing over the access probability

of the common channel.

Second, we study the case when the private channel gains and the EH rates are re-

spectively independent and identically distributed (i.i.d.) across different communication

blocks. The corresponding optimal stopping rule is proved to be a pure-threshold policy,

i.e., the threshold does not change over time, which could be found via a one-dimension

search. With such a fixed threshold, the mean probing time is proved to be decreasing

polynomially over the access probability to the common channel. We also show via simu-

lations that the randomness of EH rates, termed “EH diversity”, influences the throughput

performance and could be exploited by our proposed pure-threshold policy: Specifically,

we find that the more dynamically the EH rate varies, the higher the average throughput

that the MU could achieve.

Finally, we study the case with conventional constant power supplies, showing that the

optimal power allocation has a “water-filling” structure, where the water level is jointly

determined by the statistics of both the private and common channels, and the common
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channel access probability.

3.1.3 Related Works and Organization

Most of existing works related to the uplink of heterogeneous cellular networks (HC-

Ns) assume certain deterministic access control of the underlying small networks [3, 12,

49, 62]. From the views of both the femtocell owner and the overall network operator, au-

thors in [62] evaluated the femtocell performance with open and restricted accesses. It was

shown that with nonorthogonal (in terms of frequency or time) multiple access, i.e., CD-

MA, for mobile users, the open access benefits both the femtocell owner and the network

operator; and for the orthogonal case, time-division multiple access (TDMA) or orthog-

onal frequency-division multiple access (OFDMA), the femtocell access control (open or

restricted) is closely related to the user density. In [12], by adopting open access, the out-

age behaviors of both femtocell and macrocell users were analyzed by using the stochastic

geometry to model the locations of both the femtocell APs and the cellular users. The

authors also presented several interference avoidance methods to enhance the per-user ca-

pacity. In [49], each macrocell user was assumed one direct link to the marcocell BS, and

one relay link to the femtocell AP. Playing a non-cooperative game against the others, each

user could seek its preferred open-access femtocell and split the rates between the BS and

the AP to maximize its own utility. In contrast to these existing works, here we consider

users with random, not deterministic, access to the local AP, which is more realistic in

WiFi based HetNets.

On the other hand, the study of wireless transmitters powered by renewable energy

has also drawn a lot of attention in recent years. Particularly, with noncausal (i.e., of-

fline) knowledge on energy arrival processes, the throughput maximization problem was

investigated for both non-fading and fading channels in [30, 44], in addition to the classic

three-node Gaussian relay channel [31]. With causal (i.e., online) knowledge, the optimal
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throughput in fading channels over finite-time horizons was obtained via dynamic pro-

gramming techniques in [30, 44]. A save-then-transmit protocol was proposed in [40],

where each communication block is divided into two parts: the first one for harvesting

energy and the other for data transmission. Here, on the contrary, we consider the save-

then-transmit strategy over infinite number of communication blocks.

In some cases, wireless users may first potentially ask for more channel resources and

then transmit. In [26], the authors discussed how a transmitter probes a relay channel

with some additional time cost when its direct channel is undesirable. In addition, similar

channel selection problems for WiFi and cognitive radio were investigated in [34] and [52],

respectively. For [26,34,52], the key idea is that the sender may spend time on probing the

channel quality before starting a transmission. We here adopt a similar idea; however, we

need to face a different and more challenging scenario: Besides the large network channel

quality, we also need to probe the resource availability in the small network, and the local

battery status that is dynamic due to the energy arrival and withdrawal.

The remainder of this chapter is organized as follows. The specific system model

and the problem formulation are described in Section 3.2. The throughput optimization

problem is solved for both Markovian and i.i.d. models in Section 3.3. The optimal power

allocation with traditional power supplies is discussed in Section 3.4. Finally, Section 3.5

concludes the chapter.

3.2 System Model and Problem Formulation

3.2.1 System Model

As shown in Fig. 3.1, an uplink HetNet communication scenario is considered: One

private channel to the large network BS is assigned to each EH-based MU, and one com-

mon channel to a given small network AP is randomly accessed by all nearby users. All

private and common channels are orthogonal in frequency, slotted equally in time, and
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synchronized. The duration of each time slot is unified. Moreover, in each slot, an MU

can access at most one local AP through the common channel with probability ps, called

the access probability. Similar to a WiFi system, the MU cannot hold the common channel

all the time, and it is required to release the channel after one successful access.

Under the above setup, an MU can fulfill a transmission: 1) via the private channel

only; 2) or via both the private and common channels.

• In case 1), the received signal in the t-th time slot at the BS is given by

yt = ht

√
Ptxt + zt, (3.1)

where ht is the channel gain of the MU-to-BS link, Pt is the transmit power, xt is

the transmitted signal with zero mean and unit variance, and zt is the circularly sym-

metric complex Gaussian (CSCG) noise with zero mean and unit variance. Define

{Ht = |ht|2} on a state space H with finite mean and variance.

• In case 2), the received signal in the t-th time slot at the BS is the same as (3.1), and

that at the AP is given by

yct = hc
t

√
P c
t x

c
t + zct , (3.2)

where hc
t is the channel gain of the MU-to-AP link, P c

t is the transmit power over

the common channel, xc
t and zct are defined similar as (3.1). Define {Hc

t = |hc
t |2} on

a space Hc with finite mean and variance.

Here, we assume that Ht follows a more general Markovian model [63] while Hc
t follows

an i.i.d. model, due to the fact that the MU-to-BS link usually experiences a much longer

distance such that the channel may be under correlated shadowing, while the MU-to-AP

link does not, given its much shorter distance. The CSI includes both Ht and Hc
t . For
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simplicity, the time on channel probing for CSI is negligible compared to the length of one

time slot.

We use {Bt}t≥1 to denote the energy level at the battery for the considered MU at the

beginning of time slot t, and the energy level is quantified into unit steps, i.e., Bt ∈ B =

{0, δ, 2δ, . . . , Bmaxδ}, where δ is the smallest energy unit, and Bmax could be either a finite

integer or infinity. For the case of Bmax = +∞, it is a good approximation when the bat-

tery capacity is large enough compared with the EH rate, e.g., an AA-sized NiMH battery

has a capacity of 7.7 kJ, which requires a couple of hours to be fully charged by some com-

mercial solar panels [51]. During time slot t, the MU can harvest Et amount of energy. The

sequence {Et}t≥1 is modeled as a homogeneous Markov process. Due to hardware limita-

tions, the EH rate is represented over a finite state space E ⊆ {E : E = kδ, k ∈ N
∪
{0}}.

The energy state information (ESI, i.e., EH rate and battery status) is causally known by

the MU.

A power consumption model based on [36] is considered such that when the MU is

transmitting, the circuit power is C > 0. Moreover, probing the private and common

channels for CSI requires an instant power S > 0 (since we assume that the time on

probing is negligible). At time slot t, the MU probes the channels if Bt > S+C; otherwise,

it only harvests energy. It is assumed that if the MU probes channels, it can perfectly obtain

CSI of the private and common channels (if accessed w.p. ps).

Accounting the circuit power and probing power, we consider a “save-then-transmit”

scheme over multiple time slots: The MU probes channels (if Bt > S + C) and harvests

energy simultaneously, and then uses up the total available energy in the battery for each

transmission. Such a scheme has the nature of maximizing the short-term transmission

rate, and is practical in certain applications1. As such, if we let t = 1 as the first time slot

1For example, such scheme works when an MU needs to report a message approximately periodically,
since the mean of save-then-transmit periods can be quantified, which will be shown later.
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after one data transmission, Bt can be written as

Bt = min

{
t−1∑
i=1

Ei − S

t−1∑
i=1

1{Bi>S+C}, Bmaxδ

}
. (3.3)

When t = 1, there is B1 = E0, where E0 is the accumulated energy during transmission

slot in last save-then-transmit period. The MU decides when to stop “saving” and to start

a transmission according to CSI and ESI. Based on the above discussions, at the beginning

of time slot t, an MU acts as follows:

• If Bt > S + C, probe channels, and decide between the two operations based on

CSI and ESI:

1. transmit immediately during the current time slot (via either the private channel

or both the private and common channels); or

2. skip transmission, and release the common channel if it has been secured by

the MU.

• Otherwise, do not probe and skip transmission.

In Fig. 3.2, we show one realization of the probing and access process, in which two users

are assigned with two private channels, respectively, and share one common channel. In

particular, MU 1 transmits only through its private channel at time T and MU 2 transmits

via both its private and the common channel at time K.

3.2.2 Problem Formulation

We use Shannon capacity formula to represent the instant transmission rate Rt of the

MU at time slot t. Then, based on the above channel model and applying a joint decoder
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Figure 3.2: A realization of the proposed multi-channel access system.

at the receivers, the rate Rt with unit bandwidth is expressed as

Rt = log (1 +HtPt) + log (1 + ϕtH
c
tP

c
t ) , (3.4)

where the indicator ϕt following Bernoulli distribution such that ϕt = 0 with probability

(w.p.) 1− ps and ϕt = 1 w.p. ps. Due to the adopted save-then-transmit scheme, it is easy

to see that Pt+ϕtP
c
t = (Bt−S−C)+. When ϕt = 0, it follows Pt = (Bt−S−C)+, since

only the private channel is available; and when if ϕt = 1, the power allocation follows the

“water-filling” scheme given in the next lemma.

Lemma 3.2.1 When the MU can access both the private and common channels, i.e., ϕt =

1, it is optimal to allocate power as follows:

• If
∣∣∣ 1
Hc

t
− 1

Ht

∣∣∣ < (Bt − S − C)+, we have that Pt =
1
2

(
(Bt − S − C)+ + 1

Hc
t
− 1

Ht

)
and P c

t = 1
2

(
(Bt − S − C)+ + 1

Ht
− 1

Hc
t

)
;

• If
∣∣∣ 1
Hc

t
− 1

Ht

∣∣∣ ≥ (Bt − S − C)+ and Ht > Hc
t , we have Pt = (Bt − S − C)+ and

P c
t = 0;

• If
∣∣∣ 1
Hc

t
− 1

Ht

∣∣∣ ≥ ((Bt − S − C)+ and Ht < Hc
t , we have Pt = 0 and P c

t = (Bt −

S − C)+.
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Lemma 3.2.1 can be proved by using standard convex optimization techniques and

thus the proof is omitted for brevity. For notation simplicity, we define state of the MU,

including CSI and ESI, at time t as Ft = {ϕt, Bt, Et−1, Ht, H
c
t } ∈ F = {0, 1} × B × E ×

H×Hc. In this way, Rt = R(Ft) is uniquely determined by Ft. In addition, we make the

following assumption:

Assumption: The steady-state distribution of {Bt} exists.

It follows that the steady-station distribution of {Ft} also exists given that {Et} and

{Ht} are stationary, respectively. We will verify this assumption later by showing that our

proposed transmission scheme will result in a stationary {Bt}.

Let T be some stopping rule indicating the time slot to stop probing and to start the

transmission. Then, the transmission rate at the time slot T would be R(FT ). If we adopts

this stopping rule T for infinitely many times, we obtain

limL→∞
1
L

∑L
l=1R(FTl

)

limL→∞
1
L

∑L
l=1 Tl

=
E[R(FT )]

E[T ]
= λ,

where the expectation is taken over the joint stationary distribution of Ft and T , and λ is

the average throughput per save-then-transmit period. The maximum throughput λ∗ and

the optimal stopping rule T ∗ are defined as

λ∗ , sup
T≥1

E[R(FT )]

E[T ]
, T ∗ , arg sup

T≥1

E[R(FT )]

E[T ]
. (3.5)

In the next section, we will find T ∗ and λ∗.

3.3 Optimal Stopping Rule and Throughput

The problem defined in (3.5) is a “rate-of-return” problem and could be converted

into a standard optimal stopping problem [20, 21]. For a certain λ > 0, we let GT (λ) =
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R(FT )− λT , and consider a new problem:

sup
T≥1

E[GT (λ)]. (3.6)

Under this interpretation, R(FT ) can be regarded as the offer at time T , λT is the cost, and

GT (λ) is the net reward. We let G∞ = −∞ since it is irrational that a transmitter does not

send any data forever. The following lemma, which is directly from Theorem 1 of chapter

6 in [20], connects problems (3.5) and (3.6):

Lemma 3.3.1 i) If (3.5) holds, it follows that when λ = λ∗ > 0, supT≥1 E[GT (λ
∗)] = 0

and the supremum is attained at the same T ∗ in (3.5); and ii) conversely, if for some

λ = λ∗ > 0, supT≥1 E[GT (λ
∗)] = 0 and it is attained by some T ∗, then (3.5) holds.

Therefore, we will focus on finding the optimal stopping rule T ∗ for problem (3.6) and

λ = λ∗ > 0 such that supT≥1 E[GT (λ
∗)] = 0. In the rest of this section, we first solve

problem (3.6) with Markovian private channel states and EH rates. Then, we consider the

corresponding i.i.d. case.

3.3.1 Solutions for Markovian Case

Given some λ > 0, we define the remaining expected maximum reward starting at

time t as

Vt(Ft) = sup
T≥1

E [R(FT )− λT | Ft] . (3.7)

The following proposition shows the existence and the form of the optimal stopping rule,

whose proof is given in Appendix B.

Proposition 3.3.1 The optimal stopping rule for problem (3.6) exists with either Bmax <
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+∞ or Bmax = +∞. Moreover, it has the following form

T ∗ = min {t ≥ 1 : R(Ft)− λ∗ = V1(Ft)} . (3.8)

Moreover, the optimal throughput λ∗ satisfies

λ∗ = E [max {R(F1),E [V1(F2) | F1]}] , (3.9)

where F1 is the initial state of the save-then-transmit period, which is a random vector

defined over the space F1 ⊆ F with a certain stationary distribution.

It is observed from (3.8) that the optimal stopping rule for problem (3.6) is state-

dependent and has a threshold-base structure with a parameter λ∗. The structure is derived

based on the optimality equation [20], or equivalently, the dynamic programming equation

[6, 59]. The next proposition gives some properties of λ∗.

Proposition 3.3.2 λ∗ is uniquely determined by equation (3.9) and is strictly increasing

over ps.

Proof: We first show the uniqueness of λ∗. We observe equation (3.9) that its left-hand

side is monotonically increasing from zero to positive infinity over λ∗ ∈ [0,+∞). In the

right-hand side of (3.9), notice that

E [V1(F2) | F1] = E
[
sup
T≥1

E [R(FT )− λ∗T | F2]

∣∣∣∣F1

]
,

which is obtained according to (3.7). It follows that the right-hand side of (3.9) is mono-

tonically deceasing from a finite number, i.e.,

E
[
max

{
R(F1),E

[
sup
T≥1

E [R(FT ) | F2]

∣∣∣∣F1

]}]
,
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to negative infinity over λ∗ ∈ [0,+∞). Thus, there exists a unique λ∗ that makes equation

(3.9) hold.

For the monotonicity of λ∗ over ps, please see Appendix B. �

Remark 3.3.1 Although λ∗ is unique, the computation of λ∗ is in general extremely difficult

since the stationary distribution of the battery is unknown and the battery capacity could

be infinite. Proposition 3.3.2 also shows the strict monotonicity of the optimal throughput

λ∗ over the access probability ps, which implies that the common channel is helpful for

sure in general.

Next, we will show the stationary distribution of {Bt} exists. Note that when Bmax is

finite, the transition probability of the energy level is also determined under the stopping

rule T ∗ and the stationary distribution of Et. Moreover, all attainable states of the battery

form a positive recurrent class. Thus, {Bt} has a steady-state distribution.

When Bmax is infinite, our proposed transmission scheme can still keep {Bt} station-

ary. From the perspective of queueing theory, the average discharging rate is the same

as the recharging rate since in each save-then-transmit period, all energy will be used for

transmission. Therefore, the stationary distribution of {Bt} exists. Moreover, it can be

approximated as a Brownian motion.

3.3.2 Solutions for i.i.d. Case

In this subsection, we focus on the case when {Ht}t≥1 and {Et}t≥1 are both i.i.d.,

respectively. As a special case of the one studied in the previous subsection, the optimal

stopping rule of this case still exists. Taking one step further, the corresponding optimal

stopping rule is simplified to bear a pure-threshold structure.

Proposition 3.3.3 When {Ht}t≥1 and {Et}t≥1 are i.i.d. with finite means and variances,
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respectively, the optimal stopping rule T ∗ for problem (3.6) has the following form:

T ∗ = min {t ≥ 1 : R(Ft) ≥ γ} . (3.10)

where γ is a fixed real number.

The proof is given in Appendix B. Moreover, we note that the expected value of T ∗

corresponds to the average length of the save-then-transmit period, i.e., the mean delay.

The next proposition (proved in Appendix B.4) shows that for a fixed threshold, the delay

performance is improved with the proposed multi-channel access.

Proposition 3.3.4 Given a fixed γ > 0, E [T ∗] is decreasing polynomially over ps.

Following Proposition 3.3.3 and Lemma 3.3.1, we have

0 = sup
T∈T1

E[R(FT )− λ∗T ]

= E [R (FT ∗) I (R(FT ∗) ≥ γ)]− λ∗E[T ∗],

where I(·) is the indicator function. Then, we obtain

λ∗ = max
γ≥0

E [R (FT ∗) I (R(FT ∗) ≥ γ)]

E [T ∗]
. (3.11)

Conjecture: λ∗ is a quasi-concave function over γ.

Our conjecture will be validated via numerical results in Section 2.6. Such a conjec-

ture enables us to apply simple search method, e.g., bisection search, to find the optimal

threshold.
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3.4 Throughput with Conventional Power Supply

In this section, we investigate the throughput of the MU with a conventional power

supply (i.e., a conventional battery) in the discussed multi-channel access system, which

will serve as performance benchmarks for our proposed schemes. Note that we only need

to change the EH constraints into the average power constraint, and keep the same channel

and access models as before.

Under the conventional power supply, the MU does not need to work in a save-then-

transmit cycle, and is able to probe channels at each time slot. Accordingly, now the

target is to find the average throughput over the entire operation time. With the instant

transmission rate Rt given by (3.4), finding the optimal power allocation is equivalent to

solving the following optimization problem:

max
Pt,P c

t

lim
K→∞

1

K

K∑
t=1

(log (1 +HtPt) + log (1 + ϕtH
c
tP

c
t )) (3.12)

s.t. lim
K→∞

1

K

K∑
t=1

(
Pt + ϕtP

c
t + 1{min{Pt,P c

t }>0}C + S
)
≤ B; (3.13)

Pt, P
c
t ≥ 0, for t = 1, . . . , K,

where B is the average power limit. The optimal power allocation is given in the next

proposition.

Proposition 3.4.1 The optimal power allocation of problem (3.12) is given as

P ∗
t =

(
1

ξ∗
− 1

Ht

)+

, P c,∗
t =


(

1
ξ∗

− 1
Hc

t

)+
, if ϕt = 1,

0, if ϕt = 0,
(3.14)

where ξ∗ satisfies the average power constraint (3.13).

Proof: For any feasible solution {Pt, P
c
t }, there exists a ξ such that P{min{Pt, P

c
t } >
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0} = P{Ht > ξ}+ psP{Hc
t > ξ}. With this ξ, constraint (3.13) is rewritten as

E [Pt + ϕtP
c
t ] ≤ B − S − C (P{Ht > ξ}+ psP{Hc

t > ξ}) . (3.15)

Then, problem (3.12) with the above constraint could be easily solved following the classic

water-filling solution [25], where the optimal solution is given by

P ′
t =

(
1

ξ′
− 1

Ht

)+

, P c′

t =


(

1
ξ′
− 1

Hc
t

)+
, if ϕt = 1,

0, if ϕt = 0,

where ξ′ satisfies (3.15). Then, it remains to show that ξ′ = ξ and the value is unique.

We first show ξ′ ≥ ξ by contradiction. Suppose that ξ′ < ξ. By applying power

allocation {P ′
t , P

c′
t }, the average total power consumption is given by

E
[
P ′
t + ϕtP

c′

t + 1{min{P ′
t ,P

c′
t }>0}C + S

]
=B + C (P{Ht > ξ′} − P{Ht > ξ}+ ps(P{Hc

t > ξ′} − P{Hc
t > ξ}))

>B,

which violates constraint (3.13). Thus, we obtain ξ′ ≥ ξ. If ξ′ > ξ, it follows that

E
[
P ′
t + ϕtP

c′

t + 1{min{P ′
t ,P

c′
t }>0}C + S

]
=B + C (P{Ht > ξ′} − P{Ht > ξ}+ ps(P{Hc

t > ξ′} − P{Hc
t > ξ}))

≤B,

which means that some energy is wasted, and ξ′ is not the optimal threshold. Thus, there

must be ξ′ = ξ in order to utilize all available energy. Note that the optimal ξ∗ is unique.

It is observed that if ξ∗ increases from zero to infinity, the left-hand side of equation (3.13)
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monotonically decreases from positive infinity to zero, which implies that there exists a

unique ξ = ξ∗ to make the above equation hold. Thus, the proposition is proved. �

3.5 Conclusion

In this chapter, we considered a HetNet uplink with multi-channel access, where each

EH-powered MU has deterministic access to a private channel linked to the cellular BS,

and random access to a common channel linked to a local AP. As such, the MU could ful-

fil a transmission via its private channel or both private and common channels. By jointly

taking advantage of channel-energy variation and common channel sharing, we proposed

an opportunistic transmission scheme that allows the transmitter to properly probe the

channel-energy state, such that the average transmission rate is maximized. In particular,

we formulated the average throughput maximization problem as an optimal stopping prob-

lem of rate-of-return. By applying the optimal stopping theory, we proved that the optimal

stopping rule exists and has a state-dependent and threshold-based structure in general.

Moreover, when the private channel gains and EH rates are i.i.d., respectively, the optimal

stopping rule turned out to be a simple pure-threshold policy. We also found the optimal

power allocation scheme for the transmitter powered by a conventional power supply, to

serve as the performance benchmark.
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4. MULTIUSER ENERGY DIVERSITY IN ENERGY HARVESTING WIRELESS

COMMUNICATIONS

4.1 Introduction

For conventional systems with constant power supplies, the multiuser diversity can

be exploited when multiple users have independently fading channels. When more users

present, it is more likely that the scheduler could find a user with a favorable channel

condition. Therefore, the sum or average capacity increases as the number of users getting

large. The multiuser diversity gain mainly comes from the effective channel gain [56], i.e.,

from hi to max1≤i≤N hi, where hi denotes the channel power gain. In particular, multiuser

diversity with random access or random number of users has been studied in [43, 46], and

the scaling of the throughput over the number of users was shown to be on the order of

O(log(N) + log log(N)) [46].

Obviously, if all users have identical additive Gaussian channels, there is no multiuser

diversity gain, given that all signal channels are the same and the transmission power is

constant. However, when powered by energy harvesters, transmitters may have different

battery levels because the energy harvesting (EH) rates are random. Then, the variation

of battery levels among different users may result in a potential throughput gain over the

benchmark, i.e., a point-to-point EH communication system.

In this chapter, we revisit the concept of multiuser diversity in EH communications,

but from a new angle. We study multiuser diversity with respect to the energy availability.

To facilitate the analysis, we eliminate the effect of fading channel by considering additive

white Gaussian noise (AWGN) channel models only. We investigate the scaling of the

available energy across all the users and the scaling of average throughput.

Specifically, assuming that the EH rates are i.i.d. across different users and over time,
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we explore the multiuser diversity gain over AWGN channels under both the centralized

and distributed access schemes:

• For the centralized case, we first discover the stationary distribution of the overall

battery level, and further analyze the asymptotic behavior of the overall battery level

when the number of users goes to infinity. We show that both the greedy schedul-

ing, i.e., choosing the user with the highest available energy at each time, and the

rate-suboptimal TDMA access schemes, are all able to explore the multiuser ener-

gy diversity, where the average throughput increases on a scale of log(µN), with µ

denoting the mean of energy arrival rate and N denoting the number of users.

• For the distributed case, the distribution of energy levels is derived as a function of

the channel contention probability, and we show that multiuser energy diversity can

be efficiently exploited if the contention probability is on the scale of O
(

1
N

)
.

The rest of this chapter is organized as follows. The system model is given in Section

4.2. Then, the multiuser energy diversity is discussed under both centralized and distribut-

ed access schemes in Section 4.3. Finally, this chapter is concluded in Section 4.4.

4.2 System Model

In a common multiuser scenario, where multiple transmitter-receiver pairs share one

channel for communications, the interference, usually described as packet collisions a-

mong users, dominates the unreliability of communication, which significantly impairs

the system throughput performance. Thus, we are interested in studying how multiuser

diversity affects the system throughput.

To eliminate the multiuser diversity imposed by the channel effect and focus on that

form the EH effect, an AWGN channel is adopted for each communication link. Moreover,

if two or more transmitters transmit at the same time slot, collisions occur and no data get
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through1, where length of a time slot is unified (such that the power per slot is of the same

magnitude as the corresponding energy per time slot). Suppose that at time slot t, only the

n-th transmitter transmits, the received signal y(n)t is given by

y
(n)
t =

√
P

(n)
t x

(n)
t + z

(n)
t , (4.1)

where P
(n)
t is the transmission power, x(n)

t is the transmit signal of unit power, and z
(n)
t

is the circularly symmetric complex Gaussian (CSCG) noise with zero mean and unit

variance. The transmission rate over one time slot could be expressed as log
(
1 + P

(n)
t

)
[56].

We assume that the EH rates among different transmitters are i.i.d., and each transmit-

ter has a battery with infinite battery capacity2. Specifically, let E(n)
t denote the EH rate of

the n-th transmitter at time slot t, which is a Bernoulli random variable such that an energy

unit arrives with probability p. Furthermore,
{
E

(n)
t

}
are assumed to be also i.i.d. across

time. In addition, the transmitter is able to work in an energy-full-duplex fashion [57], i.e.,

it can supply and harvest energy at the same time. Let B(n)
t denote the energy level of the

n-th user at the beginning of time slot t. The power for data transmission at each slot fol-

lows a greedy strategy, i.e., the transmitter uses all available energy for data transmission

when it accesses the channel.

4.3 Multiuser Energy Diversity

In this section, we investigate the multiuser energy diversity under the centralized and

distributed access schemes, respectively.

1This is a typical channel model for studying medium access protocols [46].
2It is worth pointing out that if the transmitter has no battery but with a constant channel, the analysis is

similar to the case with a constant power supply but over i.i.d. fading channel.
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4.3.1 Centralized Access

Assume that the central controller is able to know the energy state information (ESI) of

all transmitters at the beginning of each time slot. Here, we consider a greedy scheduling:

In each time slot, the controller picks the transmitter with the highest energy level. As such,

the transmission power can be written as Mt = max1≤n≤N

{
B

(n)
t

}
, and the instantaneous

rate is given by

Rgr
t (N) = log (1 +Mt) . (4.2)

We use µ = p to denote the mean of EH rate, and σ2 = p(1 − p) to denote the variance.

Noth that our analysis in this subsection is not limited to the Bernoulli energy arrival

model; it works for any arrival model with finite mean and variance.

We aim to analyze the stationary asymptotic behavior of Rgr
t (N). The key is to under-

stand how Mt behaves with a large N when t → ∞. First, we quantify the battery levels

when t → ∞. The following lemma provides a clue to discover the distribution of the

battery levels.

Lemma 4.3.1 Energy levels of all transmitters are stable, i.e., limt→∞ P
{
B

(n)
t = ∞

}
= 0

for any n ∈ {1, 2, . . . , N}.

The proof is given in Appendix C. Note that this lemma also holds for the case when EH

rates are only i.i.d. across time, but not i.i.d. across different transmitters.

Following Lemma 4.3.1, we have the next proposition.

Proposition 4.3.1 When
{
E

(n)
t

}
are i.i.d. across different transmitters and over time,

under the greedy scheduling policy {Mt}, there is

lim
t→∞

P
{
B

(n)
t = Mt

}
=

1

N
, (4.3)

for any n ∈ {1, 2, . . . , N}.
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Proof: Since the energy levels of all transmitters are stable as t → ∞ by Lemma 4.3.1, it

follows that each transmitter could be chosen to transmit with non-zero probability. Also,

given that EH rates are i.i.d. across different transmitters and over time, we obtain by

symmetry that limt→∞ P
{
B

(n)
t = Mt

}
= 1

N
for any 1 ≤ n ≤ N . �

Remark 4.3.1 This also implies that the stationary probability that a transmitter achieves

the highest energy level among all transmitters is 1/N . Then, the waiting time for a

transmitter to fulfil a transmission satisfies a geometric distribution with parameter 1/N .

In the following, we only keep the transmitter index n when it is necessary for the

presentation; otherwise we remove it since all transmitters are identical to our interests.

Based on Proposition 4.3.1 and Remark 4.3.1, we obtain the distribution of energy levels

at an arbitrary transmitter, which is given as

Bt
d→ B =



E1,
1
N

;

E1 + E2,
1
N

N−1
N

;

E1 + E2 + E3,
1
N

(
N−1
N

)2;
· · · , · · · ,

(4.4)

as t → ∞, where the notation d→ denotes the convergence in distribution. In other words,

we have

B =
S∑

i=1

Ei, (4.5)

where S ∼ Geo( 1
N
). Then, we obtain

Mt
d→ M = max

1≤n≤N

{
B(n)

}
as t → ∞, (4.6)

in which B(n) is from (4.5) for transmitter n. Next, we first analyze the asymptotic behav-

ior of M when the number of transmitters gets large; and then consider the scaling of the
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throughput.

4.3.1.1 Scaling of energy level

It is necessary to discover how the energy level B behaves as N → ∞; then we move

on to M . In the next lemma, we present the strong law of large numbers (SLLN) for the

random sum B.

Lemma 4.3.2 Given µ = E[E] < ∞, the stationary energy level B satisfies

B − µS

S

N→∞−→ 0 a.s., (4.7)

where S ∼ Geo( 1
N
).

The proof is given in Appendix C. Lemma 4.3.2 also implies that E[B] = Nµ. Next, we

present the central limit theorem for the random sum B.

Proposition 4.3.2 Given {Et} are i.i.d. and µ = E[Et] < ∞, B satisfies

B − µS

σ
√
S

d→ X, (4.8)

as N → ∞, where X ∼ N (0, 1).

The proof is given in Appendix C.

Based on Proposition 4.3.2, we obtain that

M − µS

σ
√
S

= max
1≤n≤N

{
B(n) − µS

σ
√
S

}
d→ max

1≤n≤N
{Xn} , as N → ∞,

where Xn ∼ N (0, 1). Moreover, we can further approximate the distribution of max1≤n≤N {Xn}

according to the next lemma [10, 19].
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Lemma 4.3.3 If Xn ∼ N (0, 1) for 1 ≤ n ≤ N , the distribution of ZN = max{X1, X2, . . . , XN}

satisfies

P {aN(ZN − bN) < x} → exp(−e−x) (4.9)

as N → ∞, where aN and bN are normalizing variables, which are given as

aN =
√
2 lnN

bN =
√
2 lnN − ln lnN + ln 4π

2
√
2 lnN

.

Based on Lemma 4.3.3, we obtain the following proposition.

Proposition 4.3.3 The optimal transmit power M satisfies

aN

(
M − µS

σ
√
S

− bN

)
d→ Y, as N → ∞, (4.10)

where aN and bN are given in Lemma 4.3.3, and the CDF of Y is exp(−e−x) for x ∈

(−∞,+∞).

Proof: It can be directly proved by using Proposition 4.3.2 and Lemma 4.3.3. �

4.3.1.2 Scaling of expected throughput

With the results about the transmission power M , we are now ready to investigate how

the average throughput behaves. By Jensen’s inequality, an upper bound of the optimal

throughput can be derived as

Rgr(N) = lim
t→∞

Rgr
t (N) = E [log (1 +M)]

≤ log (1 + E [M ]) = R̂gr(N). (4.11)
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Note that the upper bound R̂gr(N) could be very tight when E [M ] is large, and thus we

only focus on the behavior of R̂gr(N). The next lemma [48] is used to bound the mean of

M .

Lemma 4.3.4 If Xn ∼ N (0, 1) for 1 ≤ n ≤ N , then the mean of ZN = max{X1, X2, . . . , XN}

satisfies

E[ZN ] ≤
√
2 lnN + o(1) (4.12)

for large N , where o(1) denotes the function such that limN→∞ o(1) < ϵ for any ϵ > 0.

By Lemma 4.3.4, when N is large, we have

E
[
M − µS

σ
√
S

]
= E

[
max

1≤n≤N
{Xn}

]
≤

√
2 lnN + 1. (4.13)

Therefore, we obtain an approximated upper bound for E[M ], i.e., for large N ,

E[M ] / µN + σE
[√

S
] (√

2 lnN + 1
)

= µN + o(N). (4.14)

Note that this approximation is more accurate if the variable S is deterministic to be N .

Furthermore, we could bound E[M ] from below such that

µN ≤ E[M ],

since µN = E[B] ≤ E[M ]. Finally, it follows that

R̂(N) = O (log(µN)) , (4.15)
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where O (log(µN)) denotes the function such that limN→∞
O(log(µN))
log(µN)

< ∞.

Another centralized scheme considered here is the fixed TDMA, where each user trans-

mits periodically. In this case, the transmission power is B =
∑N

i=1Ei for any user, and we

have E[B] = Nµ, which implies that the transmission rate grows on the scale of log(µN).

Since the gap σ
√
N
(√

2 lnN + 1
)

of the transmission power in (4.14) grows slowly, it is

expected that the throughput achieved by TDMA is almost the same as the greedy schedul-

ing when N → ∞. One of the advantages of TDMA compared to the greedy algorithm is

that TDMA has less complexity since the controller does not need to track the energy level

of each user. The performance of TDMA will be also numerically validated in Section

4.3.3.

4.3.2 Distributed Access

Suppose that the n-th user contents for the channel use with probability qn at the very

beginning of each time slot; then the successful contention probability of the n-th user is

Qn = qn
∏
j ̸=n

(1− qj). (4.16)

Here, we assume that channel contention consumes negligible time and energy as we focus

on investigating the order-wise throughput performance. If the n-th transmitter successful-

ly occupies the channel, it transmits during the current time slot by using all its available

energy (i.e., greedy power utilization). Under this access and power control scheme, the
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Figure 4.1: The transition of energy levels.

average throughput across the whole system is given by

R(N) =
N∑

n=1

qn
∏
j ̸=n

(1− qj)E
[
log
(
1 +B(n)

)]
≤

N∑
n=1

Qn log
(
1 + E

[
B(n)

])
= R̂d(N) (4.17)

Again, it is worth noticing that when E
[
B(n)

]
is large, R(N) ≈ R̂d(N). Then, we aim to

discover the asymptotic behavior of R̂d(N).

Following the Bernoulli energy arrival model, the state transition of energy levels is

depicted in Fig. 4.1. Accordingly, the transition probability matrix of the energy level is

given by

W =

1− p p 0 · · ·

Qn (1−Qn)(1− p) (1−Qn)p

Qn 0 (1−Qn)(1− p) (1−Qn)p

... . . .


(4.18)

We can observe that this Markov chain is irreducible and aperiodic. Moreover, we obtain

the stationary distribution of energy levels from the following proposition.
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Proposition 4.3.4 There exists a unique stationary distribution π = [π0 π1 π2 · · · ], where

π0 =
Qn

p+Qn

, (4.19)

πi =

(
(1−Qn)p

1− (1−Qn)(1− p)

)i
π0

1−Qn

, (4.20)

for i = 1, 2, . . ..

The proof is given in Appendix C.

Next, we analyze the scaling laws of the battery energy and the average throughput.

Note that

lim
N→∞

Qn = 0. (4.21)

Then, we compute the average energy level as

E[B(n)] =
p

1− (1−Qn)(1− p)

Qn

p+Qn

+
∞∑
i=2

i

(
(1−Qn)p

1− (1−Qn)(1− p)

)i
π0

1−Qn

=
p

Qn + p

(
p

Qn

+ 1− p

)
≈pQ−1

n , (4.22)

when Qn is small. If all users apply the same channel contention strategy, it follows that

R̂d(N) =
N∑

n=1

Qn log
(
1 + E

[
B(n)

])
= NQn log

(
1 + E

[
B(n)

])
≈ NQn log

(
pQ−1

n

)
(4.23)

when N → ∞. Next, we consider some specific random access strategies and discuss how

the multiuser energy diversity can be exploited.
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4.3.2.1 ALOHA (uniform contention)

When transmitters contend with probability qn = 1/Nα, for α > 0, we obtain Qn =

1
Nα

(
1− 1

Nα

)N−1. The next proposition provides the optimal α which maximizes (4.23).

Proposition 4.3.5 Define α∗ as

α∗ = argmax
α>0

R̂d(N), (4.24)

for large N . Then, there is α∗ = 1, and the maximum average throughput is given as

R̂d(N) ≈ 1

e
log (peN) . (4.25)

Proof: Note that we have

lim
N→∞

(
1− 1

Nα

)N−1

= lim
N→∞

e(N−1) log(1− 1
Nα )

≈ lim
N→∞

e−
N−1
Nα

= lim
N→∞

e−N1−α

,

where the second approximation results from limx→0
log(1+x)

x
= 1. Thus, we obtain

lim
N→∞

(
1− 1

Nα

)N−1

=


0, 0 < α < 1;

e−1, α = 1;

1, 1 < α.

Next, we check R̂d(N) in (4.23) for all possible α.
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When 0 < α < 1 and N is large, we obtain

R̂d(N) ≈ NQn log
(
pQ−1

n

)
=

N1−α

eN1−α log
(
peN

1−α
)
→ 0

as N → ∞.

When 1 < α, similar to the case 0 < α < 1, it can be verified that R̂d(N) → 0 as

N → ∞.

When α = 1, we obtain Qn → 1
N

1
e
. It follows that E[B] ≈ peN , which leads to (4.25).

In all, the proposition is proved. �

4.3.2.2 Energy-aware contention

Here, we consider an energy-aware contention such that the transmitter only contends

for the channel use when the battery B ≥ pe logN , which means that the transmitter

acts only when its energy level is higher than a threshold. If the energy level meets the

threshold, the transmitter will contend for the channel use with probability 1
N

. Therefore,

the overall channel contention probability for user n is given by

qn =
1

N
P
{
B(n) ≥ pe logN

}
=

1

N

p

p+Qn

(
(1−Qn)p

1− (1−Qn)(1− p)

)pe logN

.

It is expected that the energy-aware contention strategy is strictly better than ALOHA

in terms of average throughput. Note that when N is large, it follows that

qn ≈ 1− ϵ

N
,

where ϵ is dependent on N . Then, the total number of transmitters that would join channel
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contentions is N(1− ϵ). The successful channel contention for user n is given by

Qn =
1− ϵ

N

(
1− 1− ϵ

N

)N(1−ϵ)−1

≈ 1− ϵ

N
e−(1−ϵ)2 ,

since limN→∞
(
1− 1−ϵ

N

)N(1−ϵ)−1
= e−(1−ϵ)2 . Therefore, we obtain

E[B] ≈ e(1−ϵ)2

1− ϵ
pN,

and

R̂d(N) ≈ (1− ϵ)e−(1−ϵ)2 log

(
e(1−ϵ)2

1− ϵ
pN

)
. (4.26)

Unfortunately, it is extremely difficult to directly prove that when N is large, the average

throughput in (4.26) should be strictly larger than that in (4.25). Instead, we numerically

verify this result by testing the following two normalized functions based on (4.25) and

(4.26):

f1(x) = log(N), f2(x) =
1

x
log(xN),

for x ∈ (0, 1], where N is a large number such that N > 1
x

for all chosen x. In Fig. 4.2,

we draw the values of functions f1 and f2 over (0, 1], where the minimum x is set to be

0.001, and N is set to be 1001. Obviously, f2 stays above f1 over the entire region as long

as N is large enough.

From the above observation, we conclude that when N is large, the throughput in (4.26)

could be strictly larger than that in (4.25). In addition, we also numerically compare the

throughput performance of different contention strategies in the next subsection, where it

will be shown again that the improved energy-aware contention scheme outperforms the
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Figure 4.2: Comparison of functions f1 and f2.

ALOHA uniform scheme.

4.3.3 Discussions

In this subsection, we provide more insights on the average throughput based on the

results in the previous two subsections, and discuss where the multiuser energy diversity

gain comes from.

First, we numerically compare the average throughput under different centralized and

distributed schemes in Fig. 4.3. Here, we set two benchmarks. The first benchmark is the

throughput when each user has a fix power supply under the centralized access scheme.

This is also equivalent to the point-to-point case since the throughput is always a constant

over an AWGN channel given a fixed transmission power. The second benchmark is the

throughput achieved by a point-to-point EH communication system over an additive Gaus-

sian channel, where the transmitter adopts a greedy power utilization stratety3. The second

benchmark is lower than the first one due to the concavity of the throughput function and

3Note that for Gaussian channel, the greedy power utilization strategy is not a capacity achieving pow-
er allocation strategy. The capacity achieving power allocation strategy is discussed in [47, 57], and the
corresponding throughput is the same as the first benchmark.
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Figure 4.3: The average throughput in different access schemes.

the randomness of the transmission power.

We observe that all the scheduling schemes discussed in the previous two subsections

can somehow exploit the multiuser energy diversity. For the centralized schemes, the

greedy scheduling can achieve better performance than TDMA, while their performances

get close when N is large, which agrees with our discussion in Section 4.3.1. For the

distributed schemes, the energy-aware access achieves a slightly higher throughput than

ALOHA, which also validates our analysis in the previous section. In addition, we also

observe that the distributed scheme has a throughput loss against centralized schemes as

N → ∞, which results from the channel contentions in random access schemes. This

observation is similar to the case with conventional multiuser diversity in fading channels,

where the ALOHA has a throughput loss 1
e

compared to the centralized protocol [46].

Moreover, in Fig. 4.4, we numerically compare the average throughput when the trans-

mission power is normalized by the average waiting time, which is N . Such normalization

eliminates the throughput contribution of the increase of total available energy accumu-

lated over time. We observe that only the centralized greedy scheduling can achieve a
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Figure 4.4: The average throughput with normalized transmission power in different ac-
cess schemes.

throughput gain over both benchmarks, and TDMA only has a gain over the second bench-

mark while it can approach the first benchmark. This implies that compared to the second

benchmark, the multiuser energy diversity gain comes from two aspects:

1. The increase in total available energy accumulated over time (power gain);

2. The improvement in effective transmission power (diversity gain):

• for the greedy scheduling, improved from E
(1)
t to max1≤n≤N

1
N
B

(n)
t ;

• for TDMA, improved from E
(1)
t to 1

N

∑N
t=1E

(1)
t .

Note that the normalized average throughput of two centralized schemes is “upper-bounded”

by that achieved by a fixed power supply as N → ∞, which implies that multiuser diver-

sity gain mainly comes from the power gain when N is large. We also observe that the

distributed schemes have a “negative” diversity gain when we eliminate the effect of ener-

gy accumulation. It implies that the ALOHA-based access cannot effectively explore the

randomness of energy levels since the users are not coordinated well.
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Next, we make some remarks on the asymptotic distributions of the transmission power

under either centralized or distributed access schemes. The main result is given in the next

proposition.

Proposition 4.3.6 When EH rates are i.i.d. across transmitters and over time, the trans-

mission power has a heavy-tailed distribution when N → ∞ under either the centralized

optimal access scheme or the distributed access scheme.

The definition of a heavy-tailed distribution is as follows (see Appendix 5 in [5]): The

random variable B has a heavy-tailed distribution if

lim
x→∞

eλxP {B > x} = ∞ (4.27)

for all λ > 0. Thus, the key idea of the proof is to verify that the asymptotic distribution

of the transmission power satisfies (4.27), and the detailed proof is given as follows.

Proof: For the centralized case, it is straightforward to show that the distribution

exp (−e−x) is “heavy-tailed”. For the distributed case, we have

P {B > x} =

(
(1−Qn)p

1− (1−Qn)(1− p)

)x

· 1− (1−Qn)(1− p)

Qn

π0

(1−Qn)
→ 1

as N → ∞, for x > 2, due to (4.21). Therefore, we have

lim
x→∞

lim
N→∞

eλxP {B > x} = lim
x→∞

eλx = ∞

for any λ > 0, which proves the proposition. �

Remark 4.3.2 Proposition 4.3.6 considers the probability of “rare event” that some trans-

mitter has a very high instantaneous transmission power, which leads to a burst through-

put.
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4.4 Conclusions

In this chapter, the multiuser energy diversity gain was investigated. For centralized

access schemes, it was shown that the average throughput increases on a scale of log(µN),

and the multiuser diversity gain comes from two aspects: the increase of total available en-

ergy accumulated over time; and the improvement in effective transmission power. Under

the distributed access schemes, the average throughput could increase as well when the

access strategy is carefully designed.
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5. CONCLUSION AND FUTURE DIRECTION∗

In this dissertation, we studied the opportunistic scheduling for EH-based wireless

networks in two different scenarios and investigate the multiuser energy diversity.

The first scenario is an ad hoc network with multiple transmitter-receiver pairs, in

which all transmitters are capable of harvesting renewable energy from the environmen-

t and compete for one shared channel by random access. A distributed opportunistic

scheduling (DOS) framework with two-stage probing and save-then-transmit energy u-

tilization was proposed by quantifying the roles of both the energy and channel state in-

formation.

The second is an uplink transmission scenario under a heterogeneous network hierar-

chy, where each EH-based mobile user (MU) has deterministic access to the large network,

but only dynamic access to a small network with certain probability shared by multiple

MUs. Applying a simple yet efficient “save-then-transmit” scheme, the throughput max-

imization problem is cast as a “rate-of-return” optimal stopping problem. The optimal

solution is investigated for the general Markovian channel states and energy arrivals, fol-

lowed by the i.i.d. case.

Finally, the scaling law of the throughput of the EH-based network is studied under

both centralized and distributed access schemes. It is found that the multiuser diversity

gain comes from two aspects: the increase of total harvested energy accumulated over

time; and the improvement in effective transmission power.

Besides the above studies on EH-based wireless communications, this new and high-

potential subject still has many research problems that are worth of investigating. We

∗Part of this chapter is reprinted, with permission, from [Hang Li, Jie Xu, Rui Zhang and Shuguang Cui,
“A general utility optimization framework for energy harvesting based wireless communications.” Commu-
nications Magazine, IEEE, 53(4):79–85, 2015]
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briefly present some promising directions or future work as the closing of this dissertation.

1) Case with EH Receiver. Most existing studies on EH based communications have

considered EH at the transmitter side only, by assuming that the receivers are powered by

a stable energy supply. When the receiver is powered by EH, a similar EH constraint like

in the EH transmitter case needs to be applied, but with a key difference that the energy

used at the receiver is for decoding the signal instead of sending it at the transmitter. As

a preliminary work along this new direction, [41] showed that the detection and decoding

operations dominate the energy cost for EH receivers, and the energy cost is nondecreasing

over both the sampling rate and the decoding complexity. Thus, the communication rate

should be designed by taking into account the energy availability at both the EH transmitter

and EH receiver.

2) Cross-Layer Design. In practical systems, the data arrives at the transmitter with

random timing and amounts in general. In such cases, the transmitter needs to deal with the

uncertainties in both energy and data arrivals, and it is thus beneficial to jointly schedule

the energy usage and data packet transmission based on the channel conditions [28]. As

another example, consider a wireless network with multiple EH transmitters sharing the

same limited channel resources for communications, for which there is a necessity for the

design of energy-aware medium access control (MAC) to optimize the system throughput.

In general, a cross-layer design approach should be further investigated to achieve more

efficient operation of EH based communication systems.

3) Hybrid Energy Sources and Imperfect Energy Storage Devices. Due to the random

and intermittent characteristics of practical EH sources, using renewable energy alone

may not be sufficient to provide reliable operation of wireless systems with large power

demands, e.g., in base stations. To maintain their reliable operations, it is wise to use hy-

brid energy sources by efficiently integrating the renewable energy with the conventional

energy (such as fuel generators). On the other hand, energy storage devices (ESDs) with
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imperfect charging-discharging efficiency and a finite capacity may be employed in the

system. In general, how to optimally design the energy management policies with hybrid

energy sources and/or imperfect ESDs to achieve the maximum utility in EH based com-

munications still remains largely open, while some initial results have been obtained [14].

4) RF EH with Dedicated WET. In addition to the conventional EH sources such as

wind and solar power as well as ambient radio frequency (RF) transmissions, deploying

dedicated power transmission nodes in the network for delivering controllable energy over

the air to distributed communication devices (e.g., sensors) has drawn growing interest-

s recently. The devices can either harvest RF energy from the signal transmitted by the

power transmission nodes, or decode the information in it, or even use part of the energy

harvested to decode the information and the remaining energy to transmit or relay other

information [64]. The RF signal enabled WET is a very promising technique for powering

low-power wireless communication devices such as those in sensor networks and person-

al/body area networks, even with its practically limited energy transfer efficiency, which

actually could be alleviated by some new techniques such as highly directional massive

MIMO [64]. Clearly, such WET powered communication brings a new avenue for the

future research of EH based systems.
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APPENDIX A

SOME PROOFS FOR CHAPTER 2

A.1 Proof of Proposition 2.3.1

For the first part of Proposition 2.3.1, it follows by Theorem 1 in Chapter 3 of [20]

that N∗(λ) exists and S∗(λ) is attained by this N∗(λ) if the following two conditions are

satisfied:

(C1) lim supN→∞ rN(λ) ≤ r−∞(λ) a.s.;

(C2) E
[
supN≥1 rN(λ)

]
< ∞,

where rN(λ) is given by (2.4). As we pointed out in Section 3.2.1, the energy level BN,0 is

stationary for N ≥ 1. Although {RN(M
∗
N)}N≥1 are independent, it may not be identically

distributed with respect to hN and BN,0. However, it is not too difficult to show that

(C1) and (C2) hold. The idea is that we first consider that every transmitter has the same

statistics; then we apply the channel contention probability as the summation coefficients

over all transmitters.

For (C1), if we assume that all transmitters have the same statistics as transmitter i,

then {Ri
N(M

∗
N)}N≥1 become i.i.d.. Since E [Ri

N(M
∗
N)] < ∞ according to Section 3.2.2,

and the accumulated cost λTN = λl
(
KN +

∑N−1
n=1 (Kn +M∗

n)
)
→ ∞ as N → ∞ a.s.,

we obtain that P {lim supN→∞ riN(λ) = −∞} = 1. Recall from Section 3.2.1 that the

channel is occupied by transmitter i with probability Qi and
∑I

i=1
Qi

Q
= 1, we obtain that

1 =
I∑

i=1

Qi

Q
P
{
lim sup
N→∞

riN(λ) = −∞
}

= P
{
lim sup
N→∞

rN(λ) = −∞
}
,

which proves that (C1) holds.
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For (C2), it can be shown that

E
[
sup
N≥1

riN(λ)

]
= E

[
sup
N≥1

((
Ri

N(M
∗
N)− λ

)
L− λTN

)]
≤ E

[
sup
N≥1

(
Ri

N(M
∗
N)− λ(lN + L)

)]
, (A.1)

due to the fact that Kn ≥ 1 and M∗
n ≥ 0 for 1 ≤ n ≤ N . Since E

[
(Ri

N(M
∗
N))

2
]
< ∞,

it follows that the right-hand side of (B.1) is finite by Theorem 1 in Chapter 4 of [20].

Similar to the technique in the proof of (C1), we have

E
[
sup
N≥1

rN(λ)

]
=

I∑
i=1

Qi

Q
E
[
sup
N≥1

riN(λ)

]
< ∞,

which shows that (C2) also holds.

For the second part, we know that with the cost λlKN at the N -th CP for any N ≥

1, the successful transmitter could choose one of three actions: transmits immediately

with reward (RN(0)− λ)L; or gives up the channel immediately, and obtains the optimal

expected net reward S∗(λ) based on the property of time invariance described in Section

2.3.1; or starts EP and obtains the expected net reward E [U1(FN,1) | FN,0]. Thus, by the

optimal stopping theory [20, 21], S∗(λ) satisfies the optimality equation under (C2) as

S∗(λ) = −λlKN +max {S∗(λ), (RN(0)− λ)L,E [U1(FN,1) | FN,0]} ,

which is equivalent to (2.10).
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A.2 Proof of Proposition 2.3.2

For 1), we show the concavity of function y(x) by checking its second-order derivative

over [0, 1), which is given by

y′′(x) = − (a+ b)2

(1− x) [a+ 1 + (b− 1)x]2
≤ 0.

Therefore, y(x) is concave over [0, 1) [11]. To prove the second part of 1), we check the

first-order derivative of y(x), which is given by

y′(x) = − log

(
1 +

a+ bx

1− x

)
+

a+ b

1− x+ a+ bx
. (A.2)

It is easy to see that as x → 1−, the first term of the right-hand side of (A.2) goes to

negative infinity, while the second term is bounded. Hence, y′(x) is strictly negative as

x → 1−. Therefore, part 1) is proved.

Next, we prove 2). By checking the second-order derivative of g(x), we obtain

g′′(x) = − a2

(1− x)(a+ 1− x)2
≤ 0,

which implies that g(x) is concave. For the second part of 2), we consider the first-order

derivative of g(x), which is given by

g′(x) = − log

(
1 +

a

1− x

)
+

a

1− x+ a
. (A.3)

Since g′′(x) ≤ 0, it follows that

max
0≤x<1

g′(x) = g′(0) = − log (1 + a) +
a

1 + a
.
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Moreover, due to the fact that d
da

(
− log (1 + a) + a

1+a

)
= − a

(1+a)2
≤ 0 for arbitrary

a ≥ 0, we obtain

max
0≤x<1

g′(x) = g′(0) ≤
(
− log (1 + a) +

a

1 + a

)∣∣∣∣
a=0

= 0,

which proves the second part of 2).

A.3 Proof of Proposition 2.3.3

According to Part 1) of Proposition 2.3.2, we obtain that G(ρ) is concave over ρ ∈

[0, 1), which means that G′(ρ) = dG(ρ)
dρ

is decreasing over [0, 1) and attains its maximum

at ρ = 0. Then, finding the maximum of G(ρ) boils down to two cases:

1. G′(ρ)|ρ=0 < 0: It follows that G(ρ) is decreasing over [0, 1), and ρ∗ = 0 is the

optimum.

2. G′(ρ)|ρ=0 ≥ 0: The point ρ0, satisfying G′(ρ)|ρ=ρ0
= 0, lies on the right-hand side

of ρ = 0. By Part 1) of Proposition 2.3.2, G′(ρ) < 0 as ρ → 1−, which implies

that ρ0 ∈ [0, 1). Since the optimal point ρ∗ ≤ Bmaxδ−B0

LE
due to (2.13), it follows that

ρ∗ = min
{
ρ0,

Bmaxδ−B0

LE

}
.

Note that G′(ρ)|ρ=0 ≥ 0 is equivalent to C+D
1+C

≥ log(1 + C), where C = |h|2B0

Lσ2 ≥ 0,

D = |h|2E
σ2 ≥ 0, and G′(ρ)|ρ=ρ0

= 0 is equivalent to

log

(
1 +

C +Dρ0
1− ρ0

)
=

C +D

1− ρ0 + C +Dρ0
. (A.4)

Next, we show that when C+D
1+C

≥ log(1 + C), (A.4) has a unique solution. For ρ ∈

[0, 1), the left-hand side of (A.4) is increasing over ρ from log (1 + C) to +∞. For its

right-hand side, we have the following two cases:
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1. D ≥ 1: The right-hand side of (A.4) decreases from C+D
1+C

to 1. Since C+D
1+C

≥

log(1 + C), there exists a unique solution ρ0 for (A.4);

2. 0 ≤ D < 1: The right-hand side of (A.4) increases from C+D
1+C

to 1. If the first-order

derivative of the left-hand side of (A.4) is always greater than that of the right-hand

side, there must be only one solution for (A.4) when C+D
1+C

≥ log(1 + C). Thus, we

check their first-order derivatives: For the left-hand side of (A.4), we obtain

d

dρ
log

(
1 +

C +Dρ

1− ρ

)
=

C +D

(1− ρ) (1 + C + (D − 1)ρ)
; (A.5)

for the right-hand side, we have

d

dρ

(
C +D

1− ρ+ C +Dρ

)
=

(C +D)(1−D)

(1 + C + (D − 1)ρ)2
. (A.6)

Thus, by calculating the difference between (A.5) and (A.6), we arrive at

C +D

(1− ρ) (1 + C + (D − 1)ρ)
− (C +D)(1−D)

(1 + C + (D − 1)ρ)2

=
(C +D)2

(1− ρ) (1 + C + (D − 1)ρ)2
≥ 0. (A.7)

Therefore, there exists a unique solution ρ0 satisfying (A.4).

In conclusion, the proposition is proved.

Remark: Since it is proved that ρ0 is unique in (A.4), ρ0 can be found just by adopting

a simple one-dimension searching method, e.g., bisection search.

A.4 Proof of Proposition 2.4.1

To prove this proposition, we construct an axillary “super” Markov chain in which

each state is a “super” vector of aggregated energy levels across the whole network, whose
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transition probability matrix does not change over time t. Afterwards, we prove that such

a “super” Markov chain has a unique steady-state distribution. Then, we show that for

any time t in the original Markov chain, one iteration for updating Πi
t for 1 ≤ i ≤ I in

Algorithm 2.1 is equivalent to the evolution of the state distribution in the “super” Markov

chain, thereby proving the convergence of Algorithm 2.1.

To construct such a “super” Markov chain, we need to jointly consider the states of

energy levels across all transmitters. Let Σ denote the set of all possible battery states

over the whole system, i.e.,

Σ = {u = (u1 · · · uI) : u1 ∈ ∆1, · · · , uI ∈ ∆I} . (A.8)

Furthermore, we use Bt to denote the battery state of the system at time t, and thus we have

Bt ∈ Σ. Note that the number of elements in Σ is
(⌈

Bmaxδ
E1l

⌉
+ 1
)
× · · · ×

(⌈
Bmaxδ
EI l

⌉
+ 1
)
.

Suppose that Bt = u. There are I + 1 possible events at time t: A transmission is

performed by transmitter i, where 1 ≤ i ≤ I , or no transmission happens.

If the i-th transmitter transmits, there is Bt+1 = vi, where vi ∈ Σ and

vi =



min{u1 + E1L,Bmaxδ}

· · ·

0

· · ·

min{uI + EIL,Bmaxδ}



T

,

in which the i-th element is zero. According to (2.24), the corresponding transition prob-

ability is given by

pu,vi
= Qip

i
tr(ui), 1 ≤ i ≤ I. (A.9)
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If no transmission happens, all transmitters just harvest energy for one time slot. Then,

we obtain Bt+1 = w, where w ∈ Σ and

w =



min{u1 + E1l, Bmaxδ}

· · ·

min{ui + Eil, Bmaxδ}

· · ·

min{uI + EI l, Bmaxδ}



T

.

The corresponding transition probability is just the complement of the transmission prob-

ability over all other possible I cases, which is given by

pu,w = 1−
I∑

i=1

Qip
i
tr(ui). (A.10)

Therefore, {Bt}t≥0 is a unichain [22], i.e., a finite-state Markov process that contains a

single recurrent class. By calculating the transition probability for each u ∈ Σ, we obtain

the transition probability matrix P for {Bt}t≥0. Clearly, P is a stochastic matrix and

is invariant over time. Therefore, there exists a unique probability vector Π such that

Π = ΠP holds [22]. In fact, Π is the steady-state distribution of {Bt}t≥0.

So far, we have constructed a “super” Markov chain {Bt}t≥0 for the whole system,

for which the steady-state distribution exists and is unique. Therefore, by the iteration
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Πt+1 = ΠtP, we have limt→∞ Πt = Π. Thus, it suffices to show that

Πt+1 = ΠtP ⇔



Π1
t+1 = Π1

tP
1
t ,

· · ·

Πi
t+1 = Πi

tP
i
t,

· · ·

ΠI
t+1 = ΠI

tP
I
t .

t ≥ 0, (A.11)

If (A.11) is true, the state distribution of each transmitter converges to the unique steady-

state distribution.

Next, we are going to show that both the directions “⇒” and “⇐” of (A.11) hold.

For notational simplicity, we omit the time index t. In fact, the direction “⇐” is the

same as constructing the “super” Markov chain as discussed earlier. If the system is at

state u =
(
b1E

1l · · · bIEI l
)
, where bi ∈

{
0, 1, 2, · · · ,

⌊
Bmaxδ
Eil

⌋
, Bmax

}
, 1 ≤ i ≤ I , the

probability Π(u) is the joint probability over all transmitters, i.e., Π(u) =
∏I

i=1 π
i
bi

. The

way of constructing transition probability matrix P is given by (A.9) and (A.10), which

can be obtained directly from (2.24) for {Pi}. Thus, both Π and P can be obtained from

the right-hand side of (A.11).

For the direction “⇒” of (A.11), we need to show how we obtain {Πi} and {Pi} from

the left-hand side of (A.11). We consider {Πi} first. Given the state distribution Π of

the system, there exists an one-to-one mapping from each element of Σ to that of Π. Let

Π(u) denote the probability of the system staying at state u ∈ Σ. Obviously, there is∑
u∈ΣΠ(u) = 1. Then, we consider the subset of Σ such that transmitter i stays at state

u ∈ ∆i, i.e.,

Σui=u = {u = (u1 · · ·ui · · ·uI) : u1 ∈ ∆1, · · · , ui = u, · · · , uI ∈ ∆I} . (A.12)
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Clearly, (A.12) satisfies
∪

u∈∆i
Σui=u = Σ. Then, the probability that transmitter i stays

at state u = bEil, where b ∈
{
0, 1, 2, · · · ,

⌊
Bmaxδ
Eil

⌋
, Bmax

}
, is equal to the probability that

the system is staying at Σui=u, i.e.,

πi
b = P {Σui=u} =

∑
u∈Σui=u

Π(u). (A.13)

In this way, we can obtain the state distribution Πi for transmitter i such that Πi =

[πi
0 · · · πi

b · · · πi
Bmax

].

Next, we consider {Pi}. When transmitter i stays at the energy state u ∈ ∆i, it can

transfer to state 0, v1, or v2 , where v1 = min {u+ EiL,Bmaxδ}, and v2 = min {u+ Eil, Bmaxδ}.

Accordingly, from Σui=u, there are three possible cases:

1. Σui=u → Σui=0: For each state u ∈ Σui=u, there is only one possible route to Σui=0

with probability Qip
i
tr(u) such that transmitter i transmits and goes into state 0. In

fact, such transition probability does not change for any u ∈ Σui=u. Thus, by taking

all possible states into account, the transition probability can be computed by

piu,0 = P {Σui=u → Σui=0 | Σui=u} =
Qip

i
tr(u)P {Σui=u}
P {Σui=u}

= Qip
i
tr(u), (A.14)

which is equal to (2.24).

2. Σui=u → Σui=v1: For each state u ∈ Σui=u, there are I − 1 possible routes to

Σui=v1 . We pick the route caused by transmitter j ̸= i, i.e., the j-th transmitter

transmits. Suppose that at state u, the transmitter j is in the energy state bEjl ∈ ∆j .

The probability of staying at Σui=u,uj=bEj l is given as πj
bP {Σui=u} by (A.13). Thus,

the transition Σui=u,uj=bEj l → Σui=v1,uj=0 describes the transition of transmitter

i from state u to state v1 caused by transmitter j with energy level uj = bEjl.
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Similarly as in (A.14), the transition probability for this case is given by

P
{
Σui=u,uj=bEj l → Σui=v1,uj=0 | Σui=u,uj=bEj l

}
=
Qjp

j
tr(bE

jl)P
{
Σui=u,uj=bEj l

}
P
{
Σui=u,uj=bEj l

}
=Qjp

j
tr(bE

jl).

When we extend to other transmitters besides i, and consider all possible states

for each transmitter, we obtain the probability of the one step transition Σui=u →

Σui=v1 as

P {Σui=u → Σui=v1 | Σui=u}

=
P {Σui=u → Σui=v1 , Σui=u}

P {Σui=u}

=
1

P {Σui=u}
∑
j ̸=i

Bmax∑
b=0

(
P
{
Σui=u,uj=bEj l

}
· P
{
Σui=u → Σui=v1 | Σui=u,uj=bEj l

})
=

1

P {Σui=u}
∑
j ̸=i

Bmax∑
b=0

(
P
{
Σui=u,uj=bEj l

}
· P
{
Σui=u,uj=bEj l → Σui=v1,uj=0 | Σui=u,uj=bEj l

})
=

1

P {Σui=u}
∑
j ̸=i

Bmax∑
b=0

πj
bP {Σui=u}Qjp

j
tr(bE

jl)

=
∑
j ̸=i

Bmax∑
b=0

πj
bQjp

j
tr(bE

jl). (A.15)

Thus, (A.15) is equivalent to (2.26).

3. Σui=u → Σui=v2: The transition probability for this case can be obtained by taking

the complement of (A.14) and (A.15), which is equivalent to (2.27).
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Therefore, we obtain all possible transitions for transmitter i at time t, for which the cor-

responding transition probabilities can be computed as well. Thus, {Πi} and {Pi} are

obtained from Π and P, which proves the direction “⇒” of (A.11).

Overall, the convergence of Algorithm 2.1 is proved.
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APPENDIX B

SOME PROOFS FOR CHAPTER 3

B.1 Proof of Proposition 3.3.1

According to the optimal stopping theory [20,21], the existence of the optimal stopping

rule could be proved by checking the following two conditions: For a given λ > 0,

C1: E
[
supT≥1 GT (λ)

]
< ∞;

C2: lim supT→∞ GT (λ) ≤ G∞ = −∞ a.s..

We first check C1 and C2 for Bmax < +∞ and Bmax = +∞, respectively.

• Bmax < +∞: For C1, we have supT≥1GT (λ) ≤ supT≥1R(FT ). Since the channel

gains are finite a.s., and the battery capacity is finite, the expectation of the transmis-

sion rate is finite as well, which proves that C1 holds. For C2, we only need to show

that for any large negative real number ν < 0, there exists a K ≥ 0 a.s. such that for

all T ≥ K, GT (λ) = R(FT )− λT < ν. In fact, for any T , E [R(FT )] < ∞, which

implies that P {R(FT ) = ∞} = 0. However, the term λT will increase to infinity

as T → ∞. Thus, when T ≥ K, R(FT )− λT can be as small as we want a.s., i.e.,

R(FT )− λT < ν a.s., which proves that C2 holds.

• Bmax = +∞: For this case, we check C2 first. Recall the expression of R(FT ) in

(3.4) and BT is given as

BT =
T−1∑
i=1

Ei − S

T−1∑
i=1

1{Bi>S+C},
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then, we have

R(FT )− λT

≤ log

(
1 +HT (BT − S − C)+

2λT/2

)
+ log

(
1 +Hc

TϕT (BT − S − C)+

2λT/2

)
≤ log

(
1 +HT (EmaxT − S − C)+

2λT/2

)
+ log

(
1 +Hc

TϕT (EmaxT − S − C)+

2λT/2

)
, a.s.. (B.1)

By noticing the maximum EH rate Emax < +∞ and using L’Hôpital’s rule [13], the

first term in (B.1) satisfies

lim
T→∞

1 +HT (EmaxT − S − C)+

2λT/2
≤ lim

T→∞

HTEmax

λ ln 2
2

2λT/2
= 0.

We could apply a similar check for the second term of (B.1). Thus, C2 hold-

s. For C1, we could use the above results of C2 and obtain that ∀ϵ > 0, there

exists an N > 0 such that E
[
supT≥1 GT (λ)

]
< E

[
sup1≤T≤N(R(FT )− λT )

]
+

ϵ. Since the channel gains are finite a.s., and for all 1 ≤ T ≤ N , E[BT ] =

E
[∑T−1

i=1 Ei − S
∑T−1

i=1 1{Bi>S+C}

]
< ∞, we obtain E

[
sup1≤T≤N(R(FT )− λT )

]
<

∞, which implies that C1 holds.

Therefore, both C1 and C2 hold for either Bmax < +∞ or Bmax = +∞, which implies

that the optimal stopping rule exists.
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Next, we derive the optimal stopping rule. Consider the remaining maximum expected

reward Vt(Ft) given by (3.7), which is further rewritten as

Vt(Ft) = sup
T∈Tt

E [R(FT )− λ(T − (t− 1)) | Ft]− λ(t− 1)

= sup
T∈T1

E [R(FT )− λT ) | Ft]− λ(t− 1)

= V1(Ft)− λ(t− 1). (B.2)

Meanwhile, Vt(Ft) satisfies the dynamic programming equation [6, 59]:

Vt(Ft) =max {R(Ft)− λt,E [Vt+1(Ft+1) | Ft]} . (B.3)

Therefore, the optimal stopping rule has the following form

T ∗ =min {t ≥ 1 : R(Ft)− λt = Vt(Ft)}

=min {t ≥ 1 : R(Ft)− λt = V1(Ft)− λ(t− 1)}

=min {t ≥ 1 : R(Ft)− λ = V1(Ft)} ,

where the second equation holds due to (B.2). By letting λ = λ∗, we obtain the form of

T ∗ as shown in (3.8).

Finally, we compute λ∗. By Lemma 3.3.1, λ∗ makes the following equation hold:

0 = sup
T∈T1

E[GT (λ)]

=E [max {R(F1)− λ∗,E [V2(F2) | F1]}]

=E [max {R(F1)− λ∗,−λ∗ + E [V1(F2) | F1]}] .
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Thus, we could obtain λ∗ by some simple rearrangements.

B.2 Proof of Proposition 3.3.2

Recalling Proposition 3.3.1 that the optimal stopping rule T ∗ has the form given in

(3.8) and thus is finite a.s.. Then, given some ϵ > 0, there exists an M ≥ 2 such that for

all t ≥ M , we have P(T ∗ = t) < ϵ. Therefore, when we consider the expected value of

V1(F1), we could just focus on a finite horizon, i.e., 1 ≤ t ≤ M . Then, by the dynamic

programming algorithm [6, 20, 59], we have

V1(Ft) = max {R(Ft),E [V1(Ft+1) | Ft]} − λ∗, for t = 1, 2, . . . ,M − 1

V1(FM) = R(FM)− λ∗.

Now, we show that λ∗ is strictly increasing over ps by contradiction. First, we fix λ∗,

and let ps increase to ps + ∆, where ∆ is a small positive real number. Then, we move

backward. Note that at step t = M , V1(FM) only depends on FM and does not change

with ps. At t = M − 1, we observe that

E [V1(FM) | FM−1]

=(ps +∆)E [R(HM , Hc
M)−R(HM , 0) | FM−1] + E [R(HM , 0) | FM−1]− λ∗.

Note that the private channel could not be strictly better than the common channel [3], i.e.,

it is unrealistic that minHM∈H HM > maxHc
M∈Hc H

c
M . It follows that

E [R(HM , Hc
M)−R(HM , 0) | FM−1] > 0. (B.4)

Thus, we have that E [R(FM)− λ∗ | FM−1] strictly increases as ps increases to ps +∆.

Suppose that at t = k for 2 ≤ k ≤ M − 1, E [V1(Fk+1) | Fk] strictly increases as ps
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increases to ps +∆. Since the expected value of R(Fk) also strictly increases following a

similar argument as we discussed at step t = M − 1, we have that the expected value of

max {R(Fk),E [V1(Fk+1) | Fk]} strictly increases. Then, at t = k − 1, we have

E [V1(Fk) | Fk−1] = E [max {R(Fk),E [V1(Fk+1) | Fk]} | Fk−1]− λ∗, (B.5)

which strictly increases and thus implies that such an increment holds for all t = 1, 2, . . . ,M−

1.

At the step t = 1, we have

E[V1(F1)] = E [max {R(F1),E [V1(F2) | F1]}]− λ∗, (B.6)

where E [max {R(F1),E [V1(F2) | F1]}] should also strictly increase as ps increase to ps+

∆. However, we recall from Proposition 3.3.1 that E[V1(F1)] = 0, which is attained by

T ∗ and λ∗. It implies that in order to make E[V1(F1)] = 0, the value λ∗ should not be

fixed and must strictly increase accordingly, which contradicts the assumption in the first

step that λ∗ is fixed. Thus, λ∗ strictly increases as ps increases. Finally, this proposition is

proved by letting ϵ → 0 (i.e., M is large enough).

B.3 Proof of Proposition 3.3.3

Since the optimal stopping rule is given by (3.8) based on Proposition 3.3.1, we could

further rearrange the rule as

T ∗ = inf {t ≥ 1 : V1(Ft)−R(Ft) + λ∗ = 0}

= inf {t ≥ 1 : Λ(Ft) = 0} .
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The function Λ(·) is defined by Λ(Ft) = V1(Ft)−R(Ft)+λ∗, where Ft = {ϕt, Bt, Et−1, Ht, H
c
t } ∈

F . The following properties of Λ(Ft) play a key role in the proof of this proposition:

1. Λ(Ft) ≥ 0 for all Ft;

2. E[Λ(Ft) | Bt] < +∞ for all Bt ≥ 0. Moreover, E[Λ(Ft) | Bt] = 0 when Bt is large

enough;

3. E[Λ(Ft+1) | Ft] < +∞ for all Bt ≥ 0. Moreover, E[Λ(Ft+1) | Ft] = 0 when Bt is

large enough;

4. Λ(Ft) = 0 when R(Ft) is large enough.

If all the above properties are true, it follows that ∀ϵ > 0, there exists γ ≥ 0 such that

Λ(Ft) ≤ ϵ whenever R(Ft) > γ, which implies that the stopping rule T ∗ has the form

given by (3.10) (similar to the technique used in [21]). In the following, we prove the four

properties.

For Property 1), it is straightforward to see that

Λ(Ft) = V1(Ft)−R(Ft) + λ∗

= max
{
R(Ft)− λ∗

F1
,−λ∗ + E [V1(Ft+1) | Ft]

}
−R(Ft) + λ∗

= max {0,E [V1(Ft+1) | Ft]−R(Ft)} ≥ 0. (B.7)

For Property 2), suppose that the transmitter does not stop channel-energy probing

until time t; then starting at t, we should have T ∈ Tt = {T ≥ t : E [T ] < ∞}. Thus,

E[Λ(Ft) | Bt] could be written as

E[Λ(Ft) | Bt] =
∑
n≥t

P(T = n)E[Λ(Ft) | Bt, T = n] < ∞,
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due to P(T = +∞) = 0. Then, with a fixed T = n such that t ≤ n < ∞, along with

Property 1), E[Λ(Ft) | Bt, n] is expanded as

0 ≤E[Λ(Ft) | Bt, n]

=E [R(Fn)−R(Ft)− λ∗n | Bt] + λ∗

≤(1− ps)E
[
log

(
1 +HBn

1 +HBt

)]
(B.8)

+ps

(
E
[
log

(
1 +HPn

1 +HPt

)
+ log

(
1 +HcP c

n

1 +HcP c
t

)])
, (B.9)

where the second inequality holds due to −λ∗n + λ∗ ≤ 0 for n ≥ t. Note that we do not

put the time index n on H and Hc since {Ht}t≥1 and {Hc
t }t≥1 are i.i.d., respectively. Next,

we want to show that both (B.8) and (B.9) are finite and could be as small as we want with

a large Bt, which would complete the proof for 2).

• For (B.8): by plugging Bn = Bt +
∑n−1

i=t Ei − S
∑n−1

i=t 1{Bi>S+C}, we obtain

(B.8) = (1− ps)E

[
log

(
1 +

H
(∑n−1

i=t Ei − S
∑n

i=t 1{Bi>S+C} − C
)+

1 +HBt

)]
< +∞

since H has finite mean and {Ej}t≤j≤n−1 are i.i.d. with finite mean as well. More-

over, if Bt → ∞, (B.8) → 0.

• For (B.9): Since Pn + P c
n = (Bn − C − S)+, and both H and Hc have finite

means, respectively, it follows that (B.9) is finite. When the transmitter occupies the

common channel at time T ≥ t, there are three possible events by Lemma 3.2.1:

If
∣∣ 1
Hc − 1

H

∣∣ ≥ (Bn − C − S)+, allocating all power to one of the two channels;

otherwise, allocating the power to both channels at a certain ratio. Note that the

probability of any above event happening does not depend on n if Bt is large enough.
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To see this point, we let

Q = P
(∣∣∣∣ 1Hc

− 1

H

∣∣∣∣ < (Bt − C − S)+
)
,

q1 = P
(∣∣∣∣ 1Hc

− 1

H

∣∣∣∣ ≥ (Bt − C − S)+, H > Hc

)
,

q2 = P
(∣∣∣∣ 1Hc

− 1

H

∣∣∣∣ ≥ (Bt − C − S)+, H < Hc

)
.

When Bt is large, there is

P

(∣∣∣∣ 1Hc
− 1

H

∣∣∣∣ <
(
Bt +

n−1∑
i=t

Ei − S
n∑
i=t

1{Bi>S+C} − C

)
+

)
≈ Q,

and similarly, we have

P
(∣∣∣∣ 1Hc

− 1

H

∣∣∣∣ ≥ (Bn − S − C)+, H > Hc

)
≈ q1,

P
(∣∣∣∣ 1Hc

− 1

H

∣∣∣∣ ≥ (Bn − S − C)+, H < Hc

)
≈ q2.

Then, by applying Q, q1 and q2, we can expand (B.9) as

(B.9) ≈

ps

(
q1E

[
log

(
1 +H(Bn − S − C)+

1 + hBt

)]
+ q2E

[
log

(
1 +Hc(Bn − S − C)+

1 + hcBt

)])
+ psQE

[
log

(
1 +H(Bn − S − C)+ + H

Hc

) (
1 +Hc(Bn − S − C)+ + Hc

H

)(
1 +HBt +

H
Hc

) (
1 +HcBt +

Hc

H

) ]
.

Similarly as the reasoning in (B.8), we obtain that (B.9) → 0 as Bt → ∞.

Therefore, we conclude that E[Λ(Ft) | Bt] is finite and could be arbitrarily small when Bt

is large enough.
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For 3), we expend E[Λ(Ft+1) | Ft] as

E[Λ(Ft+1) | Ft] = E[Λ(Ft+1) | Bt]

=
∑
e∈E

P (Et = e)E[Λ(Ft+1) | Bt],

since only {Bt} are correlated over time. By Property 2), we know E[Λ(Ft+1) | Bt] is

finite and thus E[Λ(Ft+1) | Ft] is finite since E is a finite space. Moreover, by Property

2), we have E[Λ(Ft+1) | Bt] → 0 as Bt → ∞. Therefore, it follows that E[Λ(Ft+1) | Ft]

could be as small as we want when Bt is large enough.

By now, we are ready to show Property 4). We could rewrite (B.7) as

Λ(Ft) = max {0,E [V1(Ft+1) | Ft]−R(Ft)}

= max {0,E [Λ(Ft+1) +R(Ft+1)− λ∗ | Ft]−R(Ft)} .

Next, we show Property 4) by contradiction. Suppose that Λ(Ft) > 0 for all R(Ft) ≥ 0,

then we have

E [Λ(Ft+1) +R(Ft+1) | Ft] > R(Ft) + λ∗. (B.10)

For the left-hand side (LHS) of (B.10), E [R(Ft+1) | Ft] is finite for any fixed Bt, and

E [Λ(Ft+1) | Ft] is either a finite number or a arbitrarily small positive number if Bt is

large enough. Then, we choose K < +∞ and Bt = Bmax such that the LHS of (B.10) is

upper-bounded by K. With such K and Bt, we have

K > E [Λ(Ft+1) +R(Ft+1) | Ft] > R(Ft) + λ∗. (B.11)
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However, for the right-hand side (RHS) of (B.10) with the same Bt, R(Ft) could be ar-

bitrarily large if Ht and Hc
t are large enough. Then, there always exists an M > 0 such

that when Ht, H
c
t > M , R(Ft) > K, which leads to the contradiction with the inequality

(B.11). Therefore, we obtain that Λ(Ft) = 0 when R(Ft) is large enough.

Overall, we have shown that all four properties hold, and we conclude that the optimal

stopping rule has a pure-threshold structure given by (3.10).

B.4 Proof of Proposition 3.3.4

Given some γ > 0, we let qt(ps) = P (R(Ht, ϕtH
c
t ) ≥ γ). Based on the form of the

stopping rule T ∗ given by (3.10), we obtain

E [T ∗] = q1(ps) +
∞∑
t=2

tqt(ps)
t−1∏
n=1

(1− qn(ps)).

Since E [T ∗] < ∞, it follows that ∀ϵ, ϵ0 > 0, there exists N > 0 such that P (T ∗ = t) =

qt(ps)
∏t−1

n=1(1−qn(ps)) < ϵ for all t ≥ N , and
∑∞

t=N tqt(ps)
∏t−1

n=1(1−qn(ps)) < ϵ0. Note

that the generality still holds to let qN(ps) = ϵ since P(T ∗ = N) = ϵ
∏N−1

n=1 (1− qn(ps)) <

ϵ. Then, we have

E [T ∗] = q1(ps) +
N∑
t=2

tqt(ps)
t−1∏
n=1

(1− qn(ps)) + ϵ0

=ϵ0 + q1(ps) + (1− q1(ps)) · ( 2q2(ps) + (1− q2(ps))·

· · · ( (N − 1)qN−1(ps) + (1− qN−1(ps))Nϵ ) · · · ) .

We introduce Ut = tqt(ps) + (1 − qt(ps))Ut+1 = t + (1 − qt(ps)) (Ut+1 − t), where we

notice Ut+1 − t > 0. With this notation, we have E [T ∗] = ϵ0 + U1.

Next, we show the monotonicity of E [T ∗] by using the mathematical induction in a

“backward” fashion: From a very large number N back to t = 1. First, we check UN . It is
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true since UN = Nϵ, which is independent with ps. Then, suppose that Uk+1 is decreasing

over ps for k = 2, . . . , N − 1; we check Uk = k+ (1− qk(ps))(Uk+1 − k). For qk(ps), we

have

qk(ps) =P (R(Hk, 0) ≥ γ)+

ps (P (R(Hk, H
c
k) ≥ γ)− P (R(Hk, 0) ≥ γ)) ,

where P (R(Hk, H
c
k) ≥ γ) ≥ P (R(Hk, 0) ≥ γ) due to R(Hk, H

c
k) ≥ R(Hk, 0). It follows

that qk(ps) is an increasing linear function of ps, and then 1 − qk(ps) is deceasing. Since

both (1−qk(ps)) and (Uk+1−k) are nonnegative and decreasing, Uk is decreasing as well.

Moreover, Uk is a polynomial function of ps due to the linearity of qk(ps) and the iteration

function, i.e., Uk = k + (1 − qk(ps))(Uk+1 − k). Thus, we obtain that E[T ∗] = U1 + ϵ0

is a polynomial function and decreasing over ps. By letting ϵ0 → 0, we are done with the

proof for this proposition.
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APPENDIX C

SOME PROOFS FOR CHAPTER 4

C.1 Proof of Lemma 4.3.1

We prove this proposition by contradiction. Suppose that transmitter 1 does not satisfy

the condition, i.e., limt→∞ P
{
B

(1)
t = ∞

}
> 0. Note that such an event will happen only

when transmitter 1 keeps saving for an infinite number of time slots starting from, say,

the k1-th time slot, given the condition that the EH rate has finite nonnegative mean µ and

variance σ2. That is, as t → ∞, we have

{
B

(1)
t = ∞

}
⇔

{
t−1∑
i=k1

E
(1)
i = ∞

}
.

Moreover, if the event
{∑t

i=k1
E

(1)
i = ∞

}
happens as t → ∞, according to the access

scheme Mt, it is equivalent to the event that the energy level of transmitter 1 is never the

highest among those of all transmitters after time k, i.e.,

{
t−1∑
i=k1

E
(1)
i = ∞

}
⇔

{
t−1∑
i=k1

E
(1)
i ≤ max

n ̸=1

{
B

(n)
t

}
= ∞

}

as t → ∞. Then, if the event
{
maxn ̸=1

{
B

(n)
t

}
= ∞

}
happens, there must exist at least

one transmitter, say the 2-nd transmitter, such that it starts saving from time k2 for an
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infinite number of time slots, i.e.,

{
t−1∑
i=k1

E
(1)
i ≤ max

n ̸=1

{
B

(n)
t

}
= ∞

}

⇒

{
t∑

i=k1

E
(1)
i ≤

t−1∑
i=k2

E
(2)
i = ∞

}
as t → ∞.

Similar to the case of transmitter 1, if the 2nd transmitter also saves for an infinite number

of time slots, there must be

{
t−1∑
i=k2

E
(2)
i ≤ max

n ̸=1,2

{
B

(n)
t

}
= ∞

}
as t → ∞.

Analogously, it directly implies that all N transmitters must keep saving energy for infinite

numbers of times slots. However, this cannot happen since by using the optimal access

{Mt}t≥1, a transmitter is chosen to fulfil a transmission in each time slot. Hence, all N

transmitters cannot keep saving energy forever, which contradicts the assumption that the

event
{
B

(1)
t = ∞

}
exists as t → ∞. Therefore, the lemma is proved.

C.2 Proof of Lemma 4.3.2

We need to show that for ∀ϵ > 0,

P
{

lim
N→∞

∣∣∣∣B − µS)

S

∣∣∣∣ > ϵ

}
= 0. (C.1)

Let Xi = Ei − µ. Note that SLLN holds for X1, X2, . . . , Xk, i.e.,
∑k

i=1Xi/k → 0 as

k → ∞ with probability 1, which implies

∞∑
k=1

P

{∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ > kϵ

}
< ∞. (C.2)
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Define

Ak =

{∣∣∣∣∣
S∑

i=1

Xi

∣∣∣∣∣ > Sϵ, S = k

}
; FN =

∪
k≥N

Ak.

Then, we have

P
{

lim
N→∞

∣∣∣∣B − µS

S

∣∣∣∣ > ϵ

}
= P

{
∞∩

N=1

FN

}
= P {Ak i.o.} ,

where i.o. stands for “infinitely often”. Next, we need to show P {Ak i.o.} = 0.

∞∑
k=1

P {Ak} =
∞∑
k=1

P

{∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ > kϵ | S = k

}
P {S = k}

≤
∞∑
k=1

P

{∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ > kϵ

}
< ∞.

Therefore, P {Ak i.o.} = 0, which implies that the convergence (4.7) holds by the Bore-

Cantelli lemma [61].

C.3 Proof of Proposition 4.3.2

Let
B − µS

σ
√
S

=
S∑

i=1

Ei − µ

σ
√
S

=
S∑

i=1

Yi√
S

(C.3)
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Then, we calculate its characteristic function as

E

[
exp

(
t

S−1∑
i=1

Yi√
S

)]
= E

[
S∏

i=1

exp

(
Yi√
S

)]

=
∞∑
s=1

E

[
s∏

i=1

exp

(
Yi√
s

)∣∣∣∣∣S = s

]
P {S = s}

=
∞∑
s=1

(
E
[
exp

(
Yi√
s

)])s

P {S = s}

=
∞∑
s=1

(
1− t2

2s
+ o

(
t2

s

))s

P {S = s} . (C.4)

Note that for a large s, we have the approximation:
(
1− t2

2s
+ o

(
t2

s

))s
≈ e−

t2

2 when

s ≥ K. Thus, we obtain

(C.4) =
K−1∑
s=1

(
1− t2

2s
+ o

(
t2

s

))s

P {S = s}

+
∑
s≥K

e−
t2

2 P {S = s} . (C.5)

Further, by letting N → ∞, we have

lim
N→∞

(C.5) = lim
N→∞

K−1∑
s=1

(
1− t2

2s
+ o

(
t2

s

))s

P {S = s}

+ e−
t2

2 lim
N→∞

∑
s≥K

P {S = s}

=e−
t2

2 lim
N→∞

P {S ≥ K} = e−
t2

2 .

Thus, we obtain that the characteristic function of B−µS

σ
√
S

converges to e−
t2

2 as N → ∞.

Finally, by the Lévy’s continuity theorem (Chapter 18 in [61]), we obtain the conclusion.
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C.4 Proof of Proposition 4.3.4

The model given by Fig. 4.1 is an Markov chain with an infinite countable state space,

and it has a unique stationary distribution if and only if it has at least one positive recurrent

state according to Theorem 26.3 in [23]. However, it is difficult to directly show that a

state is positive recurrent. Thus, we first derive the form of the stationary distribution

π = [π1 π2 · · · ], and then show that it is unique.

Assume
∑∞

i=0 πi = 1. Then, by solving π = πW , where W is the transition probability

matrix given by (4.18), we have

π0 =
Qn

p+Qn

, π1 =
p

1− (1−Qn)(1− p)
π0

π2 =
(1−Qn)p

1− (1−Qn)(1− p)
π1

π3 =
(1−Qn)p

1− (1−Qn)(1− p)
π2

· · ·

Thus, we obtain that π is given by (4.19) and (4.20). Next, we check
∑∞

i=0 πi = 1, which
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can be verified as follows:

∞∑
i=0

πi =π0 +
p

1− (1−Qn)(1− p)
π0+

∞∑
i=2

(
(1−Qn)p

1− (1−Qn)(1− p)

)i
π0

(1−Qn)

=π0 +
p

1− (1−Qn)(1− p)
π0+

(1−Qn)p
2

1− (1−Qn)(1− p)

π0

Qn

=
1

p+Qn

(
Qn +

Qnp

Qn + (1−Qn)p

+
(1−Qn)p

2

Qn + (1−Qn)p

)
=

1

p+Qn

(Qn + p)2 −Qnp(Qn + p)

Qn + (1−Qn)p
= 1.

Thus, π is a stationary distribution. We observe that state zero is positive recurrent since

1
π0

< ∞, and thus the stationary distribution π is unique by Theorem 26.3 in [23].
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