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ABSTRACT

The continuing scaling of VLSI technology and the increase of design complexity

have rendered the robustness of analog circuits a significant design concern. Analog

circuits with strong parasitic effects can be modeled using a multi-loop structure,

which is more sophisticated than the traditional single feedback loop structure and

results in a more complex small signal stability analysis from the noise perspective.

A Loop Finder algorithm has been proposed to allow designers to detect and iden-

tify noise-sensitive return loops, which are also called ”unstable” loops in previous

works,without the need to add breakpoints in the circuit. Besides, efficient pole dis-

covery and impedance computation methods have been explored so that the Loop

Finder algorithm can deal with very large scale analog circuits in a reasonable amount

of time. However, this algorithm only works for circuits that can be described using

a linear time-invariant (LTI) system model. Many practical circuits, such as switch

capacitor filters, mixers and so on, have time-varying behaviors. To describe such

circuits, a linear time-varying (LTV) system model needs to be employed.

In this research, we first examine the stability property of LTV systems in time

domain, mostly based upon the Floquet Theory. We then take an in-depth look at

the transfer function of an LTV system in the frequency domain and build the link

between it and the Floquet theory. Finally, we propose an efficient algorithm for

identifying noise-sensitive loops in linear time-varying circuits. This methodology

provides a unifying solution for loop-based noise analysis for both LTI and LTV

circuits.
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1. INTRODUCTION

1.1 Motivation

Small signal stability analysis, which is used for the noise-sensitive circuit loop

analysis in this work, is usually a necessary phase in the analog circuit design process.

Traditional methods [1] [2] to do so require a decent understanding of the circuit to

be analyzed and work not well for very large scale circuits with a large number of

feedback loops. At the same time, as the feature sizes of transistors shrinks and the

size of analog circuits grows rapidly, the effect of parasitics in the circuits becomes

more and more dominant. It may influence the performance of analog circuits in

several aspects, such as speed, accuracy, stability, power consumption and so on. In

this work, the noise sensitivity, which is an aspect of the small signal stability, of

analog circuits with strong parasitic effects is analyzed in detail.

Parasitics may be coupled and connected with transistors to form more feedback

loops than we expect, which makes the circuits more complicated and need to be

modeled as a multi-loop structure instead of the traditional single-loop structure.

The noise-sensitive blocks are more likely to exist in certain parts of these circuits.

In this case, running noise-stability analysis for such high-performance analog

circuits is a necessary. Since traditional methods don’t meet the growing needs, an

automatic noise-sensitivity checking tool is needed for not only detecting whether

noise-sensitive property exists, but also point out which part of the circuit is poten-

tially noise-sensitive for any large scale analog circuits with multi-loop structures.

One thing to be mentioned is that, in previous works [3] [4], ”noise-sensitivity” is

called ”stability”. To avoid confusions with some important definitions in the analog

circuit design area, we rename some concepts in [3] [4], which will be introduced in
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detail in the following several chapters.

1.2 Loop finder algorithm for linear time-invariant circuits

An automatic noise sensitivity checking algorithm called Loop Finder [3] has been

come up with to deal with this problem. The algorithm can not only detect which

part of the circuit is noise-sensitive, but also pick up the noise-sensitive loops without

knowing the circuit well. What’s more, an efficient implementation [4] using some

advanced computation techniques, such as model order reduction, parallel computing

and so on, is accomplished to make the algorithm speed up a lot and work well for

very large scale circuits with potentially over thousands of feedback loops.

However, the Loop Finder algorithm is based on that the small signal model

of most analog circuits can be described using a linear time-invariant (LTI) system

model. LTI system transfer functions are used for the noise sensitivity analysis. How-

ever, not all of analog circuits can be modeled using LTI systems. The small signal

models of some circuits can be non-linear, while some can be linear but time-varying.

What if we want to perform noise-sensitivity analysis on such kinds of circuits? In

this situation, the Loop Finder algorithm is not applicable and we need to think

about some new methods.

1.3 Linear time-varying analog circuits

In this research, we mainly focus on the loop-based noise-sensitivity analysis of

linear circuits with time-varying behaviors.

For some crucial analog and RF circuit blocks, such as mixers, switch-capacitor

filters, their small signal models can’t be expressed as LTI systems because of the

time-varying performance. However, they can be modeled as linear time-varying

(LTV) systems from a certain point of view. The following double balanced mixer [5]

is a good example to illustrate this situation.
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Figure 1.1: A double balanced mixer

In the mixer as shown in Figure 1.1, we can treat VLO as the large signal input,

and VRF as the small signal input. To get its small signal model, we can linearize

the mixer based on the time-varying large signal VLO at each time point. Since VLO

is changing with time, the small signal model is also time-varying. Such a circuit is

called a linear time-varying (LTV) circuit.

What’s more, the most part of LTV circuits that designers concern also have

periodic behaviors. For example, the clock signal in a switch capacitor circuit is

always periodic, while the VLO in a double balanced mixer is also periodic. To

be more accurate, these kinds of circuits are called linear time-periodically-varying

(LTPV) circuits. In our work, LTV circuits also refer to LTPV circuits.

3



1.4 Research on linear time-varying circuits

LTV circuits and LTV systems are not widely researched due to their relatively

narrow application areas compared to other topics. However, there are still lots of

critical progresses have been made for the modeling and stability analysis of them.

In 1950, Zadeh proposed an approach to the analysis of linear time-varying net-

works, which is essentially an extension of the frequency analysis techniques com-

monly used in linear time-invariant networks [6]. In this work, the transfer function

H(jω, t) of LTV systems is defined, which makes LTV systems can be analyzed eas-

ily in frequency domain. H(jω, t) can be treated as an extension to the classic LTI

transfer function H(jω). It possesses many of the fundamental properties of H(jω).

What’s more important is that it can be used in a similar manner to capture the

input and output relationship of an LTV network just as LTI cases.

In [7] and [8], the LTV transfer function H(jω, t) is used to solve the problem

of how to perform model order reduction on RF circuits. Most RF circuits are

actually LTPV circuits, such as the mixers described before. The periodic behaviors

of them result in a Fourier expansion form of H(jω, t), which is derived in [8]. In

this form, H(jω, t) can be expressed as the summation of LTI systems followed by

memory-less multiplications with ejiω0t, in which ω0 is the fundamental frequency of

the corresponding circuit. By using this expression, the connection between LTI and

LTPV systems becomes tighter.

When it comes to the stability analysis of the LTPV system, the most important

related work is Floquet Theory [9]. The original Floquet Theory talks about the

stability property of the LTPV systems that can be described using Ordinary Dif-

ferential Equation (ODE) as ẋ(t) = A(t)x(t) in time domain. In [10] and [11], works

have been done to demonstrate that the Floquet Theory is also helpful to analyze
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the stability of those LTPV systems in frequency domain.

However, LTPV circuits are usually modeled as Differential Algebraic Equation

(DAE), which is a generalized form of ODE. Their core parts can be written as

B(t)ẋ(t) = A(t)x(t), in which B(t) may not be full rank. In this case, the original

Floquet theory cannot be applied. In Lamour’s work [12], The Floquet Theory for

Index-1 DAE is derived. Some concepts in the original Floquet Theory are redefined

so that they can be used for DAE cases. This theory is actually the ground truth of

our work.

In this research, we shall combine the LTPV transfer function H(jω, t) and the

Floquet theory in the DAE case to perform the loop-based noise-sensitivity analysis

for LTPV circuits.

1.5 Basic concepts in the stability analysis of linear systems

In this section, we shall introduce some concepts in the stability analysis of linear

systems since they are basic and important in our work.

1.5.1 Stability of linear circuits

A linear circuit can always be modeled as a linear system and draw as a block

diagram. Let’s consider a linear circuit with single-input and single-output. It can

be described using a block diagram shown in Figure 1.2. If the linear circuit is stable,

Figure 1.2: Diagram of a linear circuit
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for any given bounded inputs u(t) (voltages or currents), its outputs y(t) will also

be bounded and convergent to certain values y as time goes to infinity. y is called

the steady state of the circuit. For linear circuits, such kind of stability is called

”expotential stability”. There is another definition of stability called ”marginally

stability”. Marginally stability describes the convergence speed of an exponential

stable circuit, it can be measured by some margin concepts such as phase margin and

gain margin. In our work, the noise-sensitivity is somehow referred to the marginally

stability of linear circuits.

1.5.2 Transfer function and node impedance of linear circuits

A transfer function describes the input/output relationship of a linear circuit as

shown in Figure 1.2 in frequency domain. The transfer function of LTI circuits can

be defined as (1.1), in which y(s) and u(s) are the Laplace transform of output/input

of the corresponding circuit separately.

H(s) =
y(s)

u(s)
(1.1)

If the input of an LTI circuit is a current injected to a certain node A while the

output is the voltage of the same node, H(s) is representing the impedance of node

A. The node impedance transfer function of an LTI circuit can also be noted as Z(s).

We shall show that the transfer function and node impedance of LTV circuits can

also be defined in a similar manner.
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1.5.3 Poles of linear time-invariant circuits

For linear invariant-circuits, the transfer function H(s) can always been repre-

sented using a lumped high order fractional form, which is shown in (1.2).

H(s) =
ans

n + an−1s
n−1 + ...+ a1s+ a0

bnsn + bn−1sn−1 + ...+ b1s+ b0
(1.2)

In this form, the zeros of the denominator are called ”poles” of the circuit. An

LTI circuit is exponentially stable if and only if it has poles with strictly negative

real parts. For marginally stability, the ”zeros” of the circuit, which are the zeros of

the numerator will also be considered. Pole-zero analysis is a classic method for the

stability analysis of LTI circuits. We will prove that it also works for LTPV circuits

in this work.

In chapter II, we shall first introduce the Loop Finder algorithm for LTI circuits,

which works as the foundation of our proposed algorithm for LTPV circuits. In chap-

ter III, we shall describe the theory background and several phases of our algorithm

in detail. Some concepts are redefined and developed based on the previous LTI

work. In chapter IV, we shall present the experiment results produced by running

our algorithm on several practical circuits. Finally, the conclusion is discussed in

chapter V.
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2. LOOP FINDER ALGORITHM FOR LINEAR TIME-INVARIANT CIRCUITS

In this chapter, we shall describe the previous work done by Albert and Pari-

jatte [3] [4], which is the Loop Finder algorithm for LTI circuits. This work is a

foundation to our algorithm since we extend and rename several concepts based on

their framework. We shall start off by introducing single loop theory, which is the

traditional stability analysis method for LTI circuits. We shall then discuss the sys-

tem transfer function of LTI systems and its second order approximation. In the last,

we shall provide a deeper loop-based analysis of the noise sensitivity properties of any

LTI systems. Several concepts, such as ”noise-sensitive poles” and ”noise-sensitive

loops”, will be discussed.

2.1 Single loop theory

Traditionally, analog circuits are modeled as single loop structures by designers

for stability analysis. A typical negative feedback single loop system is shown in

Figure 2.1. The feedback loop contains two parts. One is the main path A, which

Figure 2.1: A typical negetive feedback loop in LTI circuits

refers to the open loop gain of the system. The other is the return path β, which is

also called the feedback factor of the system. The feedback equation of the system

8



is shown in (2.1). Using this equation, the transfer function G of this single loop

system can be written as (2.2).

(V IN − βV OUT )A = V OUT (2.1)

G =
V OUT

V IN
=

A

1 + βA
(2.2)

G describes the relationship of the input and output of this feedback system,

which is actually an LTI system. The zeros of 1 + βA are the poles and contain the

stability information of the system. Efficient ways to measure the stability of such a

circuit are using some ”margin” concepts, such as phase margin and gain margin.

However, when circuits become larger, more and more parasitics and transistors

are connected and coupled with each other, which results in a large amount of feed-

back loops formed. A multi-loop structure system model is more accurate than the

single-loop structure system to represent such kinds of circuits. In this circumstance,

single loop theory is no longer applicable.

Though single loop theory cannot be used in a multi-loop structure circuit, using

transfer function to analyze the stability of circuits is illuminating for us since it’s

a good way to avoid ”spot checking [2]”. ”Spot checking” is a time-consuming way

for the stability analysis of multi-loop structure circuits. Test inputs are given and a

huge number of transient simulations are needed to be run for each suspected loop in

the circuits. This method is impractical for circuits with potentially over thousands

of feedback loops.

To sum up, if we want to analyze the stability of multi-loop structure circuits

efficiently, a more accurate transfer function needs to be come up with to model

them.

9



2.2 System transfer function for linear time-invariant circuits

2.2.1 The LTI transfer function

In the Loop Finder algorithm [3], the system transfer function of LTI circuits

is used. From the perspective of control theory, a linear time-invariant circuit can

be modeled as a constant feedback network, which also refers to an LTI system and

may contain a large number of loops. The network can be described using differential

algebraic equations(DAE) as following:

Cẋ(t) = −Gx(t) +Bu(t) (2.3)

y(t) = LTx(t) (2.4)

In the DAE above, Gn×n contains the memory-less elements such as resistors.

Cn×n contains memory elements such as capacitors and inductors. x(t) contains state

variables(node voltages, branch currents). u(t) and y(t) are the input and output of

the circuit separately. Bn×1 and Ln× are vectors for single-input and single-output

case. They map the relationships between the input/output and the state variable

x(t).

Laplace transform can be performed on x(t), y(t) and u(t) so that they become

x(s), y(s) and u(s) separately. The DAE is also transformed into frequency domain

as (2.5) and (2.6). The system transfer function H(s) can be computed and has the

form as shown in (2.7).

sCx(s) = −Gx(s) +Bu(s) (2.5)

y(s) = LTx(s) (2.6)

H(s) =
y(s)

u(s)
= LT (G+ sC)−1B (2.7)

10



Since we are considering single-input and single-output case, if B ad L are chosen

corresponding to a node in the circuit, the node impedance transfer function can be

written as (2.8).

Z(s) =
res(s)

(s− p1)(s− p2)(s− p3)...(s− pn)
(2.8)

The denominator part of Z(s) stands for the pole information of the circuit. To

compute pi for i = 1, 2, 3, ..., n, a generalized eigenvalue problem described in (2.9)

needs to be solved.

GX = λCX (2.9)

In (2.9), λ is the eigenvalue of the system. There are at most n non-zero eigen-

values λi, i = 1, 2, 3..., n, which also refer to the poles pi of the system.

(G+sC)−1 remains the same for all node impedance transfer functions of a circuit,

which means that all nodes are sharing the same poles. At the same time, res(s),

which is the residue information of the node impedance transfer function, may vary

among different nodes.

By using H(s), a multi-loop structure circuit is modeled and treated as a whole.

No information will be lost in this process. What’s more, C and G are easy to be

extracted from standard analog circuit simulators, since they are how the circuit is

represented in the simulator naturally.

2.2.2 Second order approximation for LTI systems

Second order systems are commonly used in the feedback network stability anal-

ysis, since they deal with two-pole circuits which are commonly used by designers.

Even for the complicated circuits with further more than 2 poles, the second order

approximations can still be used to capture the stability performance accurately [4].

The transfer function H(s) for a single-input and single-output second order
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system is shown in (2.10).

H(s) =
res(s)

s2 + 2ζω0s+ ω0
2

(2.10)

p1,2 = pr ± ipi (2.11)

ω0 = |p1,2|, ζ = − pr
|p1,2|

(2.12)

The denominator of H(s) has two zeros p1 and p2, which are the poles of the

system. They are conjugate to each other and can be written as (2.11).

There are two important parameters, ω0 and ζ, in H(s). ω0 is defined as the

magnitude of p1,2, which is called natural frequency. ζ is called damping factor and

defined as the ratio of the negative real part of p1,2 and ω0.

Figure 2.2: A second order system’s bode plot
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In Figure 2.2, a classic second order system bode diagram is shown. It can be

found that a peaking behavior shows at frequency ω = ω0 when damping factor

ζ is small. A threshold value ζth = 0.7 is often used by designers to measure the

peaking. When ζ is less than ζth, the peaking behavior is considered to be large.

If the second order system is the model of a circuit, a large peaking in frequency

domain is corresponded to a ringing or overshooting behavior in the output waves

of certain circuit nodes in time domain. It means that when a small noise signal

with frequency near ω0 is injected, the output of the circuit may be influenced and

have some undesired behaviors. Thus, when such kind of peaking shows in the bode

diagram of a second order system, we say that the system is potentially noise-sensitive

and its pole is called a potentially noise-sensitive pole(a complex pole pair can be

represented by any one of them since they always show up in pair).

2.3 Loop-based noise sensitivity analysis of linear time-invariant circuits

In the previous section, the LTI transfer function H(s) and its second order case

are described. The noise sensitivity property of the second order system is also

introduced in detail. Now we shall start to analyze the noise sensitivity of any LTI

systems.

2.3.1 Second order approximation of any linear time-invariant systems

Just like (2.8), for a given LTI circuit, each node impedance transfer function

Z(s) of it can be written in a lumped high-order linear fraction form. To make it

easier to be investigated, a further factorization can be performed on Z(s) and it can

be written in the following form:

Z(s) =

NR∑
i=1

ki
s− pi

+

NC∑
j=1

resj(s)

s2 + 2ζjω0js+ ω2
0j

(2.13)
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ω0j = |pj|, ζj = −pj,r
|pj|

(2.14)

It means that Z(s) can be expressed as the linear combination of several first-order

systems and second-order systems. Each second-order system has its own natural

frequency ω0j and damping factor ζj. NR corresponds to the number of first order

sub-systems while NC refers to the number of second order sub-systems in the whole

system.

The second order system parts can potentially contribute to the noise-sensitive

behavior of the whole node impedance since they may have peaking behaviors in

frequency domain. Just as described before, a second order system is considered to

be potentially noise-sensitive for 0 < ζ < 0.7. The natural frequency ω0 tells us where

the noise-sensitive behavior is and whether it will degrade the circuits’ performance

within our frequency range of interest [0, ωmax] or not. In general, if any second

order systems in the node impedance Z(s) satisfy the following 2 conditions (2.15),

their corresponding poles are said to be potentially noise-sensitive poles for this node

impedance transfer function [4].

ζ < 0.7, ω0 < ωmax (2.15)

To compute the potentially noise-sensitive poles of a node impedance transfer

function, all poles need to be computed first. Then the poles satisfying the above

conditions are potentially noise-sensitive. The pole information will be further used

for the noise-sensitive loop detection in the circuit.

2.3.2 Noise-sensitive pole in linear time-invariant systems

Since several second order systems are combined to form the node impedance

transfer function, not all potentially noise-sensitive poles will contribute to the bad
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noise performance at each node. The following figure can help to explain this situa-

tion.

Figure 2.3: Several second order systems at a circuit node

Figure 2.3 shows the bode diagrams of several potentially noise-sensitive second

order systems of a node impedance Z(s). Let’s have a look at the second order system

hj first. A peaking shows in its bode diagram at its natural frequency ω0j. At the

same time, other second order systems also have certain magnitudes at ω0j, which

are not peaking behaviors. The total impedance of the node at ω0j is proportional

to the summation of these magnitudes. Since the peaking behavior of hj contributes

the most to the value of impedance at ω0j, the node is treated as noise-sensitive at

ω0j.

A concept called noise-sensitive pole, which refers to dominant pole in [3] [4] is
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defined to describe the second order system like hj in a node impedance transfer

function.

Definition(Noise-sensitive pole): If a potentially noise-sensitive second order sys-

tem h contributes the most to the node impedance at its corresponding natural

frequency ω0, the complex pole of it is called the noise-sensitive pole for the node

impedance transfer function.

Based on this concept, the pole of hk in Figure 2.3 is not a noise-sensitive pole.

Even a peaking shows at ω0k in its bode diagram, the value is much less than the

magnitude of hj at the same frequency. It means the peaking of hk is not dominant

to the node impedance value at ω0k. The circuit node will still be considered as

noise-insensitive at ω0k.

Noise-sensitive poles are a subset of potentially noise-sensitive poles, and they are

the real source of noise-sensitivity in any node impedance transfer functions. Each

circuit node may have several noise-sensitive poles. They reflect the noise sensitivity

property of this node at distinct natural frequencies separately.

2.3.3 Noise-sensitive loop in LTI circuits

Now, let’s have a deeper look at what the noise-sensitive pole means to an LTI

circuit. Consider p is a noise-sensitive pole to the Z(s) of node A, and ωp is the

corresponding natural frequency. If a small signal input noise with frequency ω

near ωp is given to A, the output of A also has frequency ω. Since there is a peaking

showing at ωp, the magnitude of Z(jω) is large at this frequency. It means the output

of A will be much larger than input and has a ringing behavior in time domain.

As shown in Figure 2.4, a group of circuit nodes with the same noise-sensitive

pole p1 are considered together. If an input noise signal is given to any circuit nodes

in this group, the signal will traverse through each other node and propagate in this
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Figure 2.4: Noise-sensitive loops in LTI circuits

process. Finally, the signal will come back to node A and has much larger value

than the input. In this case, the loop formed by these circuit nodes is said to be

noise-sensitive since if a signal goes through the loop, its value will be growing and

the ringing behavior will not decay. The definition of the noise-sensitive loop, which

refers to the ”unstable loop” [3] [4] in LTI circuits is shown as following.

Definition(Noise-sensitive loop): In an LTI circuit, a noise-sensitive loop is a

group of circuit nodes which have the same noise-sensitive pole.

We can find that some other nodes have the same noise-sensitive pole p2 in Fig-

ure 2.4. They are gathered to form another noise-sensitive loop. These two loops

are coupled with each other since some circuit nodes have both p1 and p2 as their

noise-sensitive poles.

One thing to be noted here is that the nodes in a noise-sensitive loop may not

be physically connected. To be more accurate, they are actually a group of nodes

which have a similar behavior corresponding to the input noise signal near a certain

frequency. If the noise-sensitive loops are reported to analog designers, they may

have some insights about the results and can make modifications and improvements
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to the circuits.

2.3.4 Procedure for identifying noise-sensitive loops in LTI circuits

Noise-sensitive loops are the final output of the Loop finder algorithm. They

represent the noise-sensitive part of an LTI circuit. To identify them, the following

procedure can be followed:

• For a given LTI circuit, extract the G and C matrices via DC simulation.

• Compute all the poles from the linearized circuit and selectively pick out the

potentially noise-sensitive poles.

• Compute residues and impedance value for all circuit nodes. To get the residue

value, the following formula (2.16) can be used [4].

Z(s) =
n∑

j=1

kj
s− λj

(2.16)

In (2.16), kj = rj× lj, l = XHL, r = −(GX)−1ΛB. X is the eigenvector matrix

in which each column corresponds to an eigenvalue λ.

• Ignore second order systems with very low DC impedance value. For a second

order system with very low impedance value, even there may be a peaking

behavior at the natural frequency, it contributes almost nothing to the node

impedance, since its absolute value is so small. A threshold value rdc can be

set up to filter out such kinds of second order systems. If the DC impedance of

a second order system is less than rdc, it can be ignored. The value of rdc may

vary in different applications. For LTI circuits, rdc are always set to be 0.1.

• At last, noise-sensitive complex poles for each node impedance transfer function

can be determined. The circuit nodes with the same noise-sensitive poles can
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be grouped to form noise-sensitive loops.
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3. IDENTIFICATION OF NOISE-SENSITIVE LOOPS IN LINEAR

TIME-VARYING CIRCUITS

In the previous chapter, the Loop Finder algorithm for LTI circuits is introduced.

It can be treated as a foundation to our corresponding algorithm in LTV circuits,

which will be discussed in this chapter. We shall start with the LTV transfer func-

tion [6] [7] [8], which is a generalized form of the LTI transfer function H(s). We shall

then introduce the Floquet Theory [12] [9], which is a classic theory on the stability

property of LTV systems, and its application in frequency domain. The concepts

of ”noise-sensitive pole” and ”noise-sensitive loop” are extended to the LTV case.

What’s more, the noise-sensitive loop detection algorithm for LTV circuits will be

introduced. At last, we shall explain the procedure for the noise-sensitive loop iden-

tification algorithm in LTV circuits. Since almost all the widely used LTV circuits

have periodic behaviors, the ”LTV” in this chapter also refers to ”LTPV”.

3.1 System transfer function for LTV circuits

3.1.1 Definition of the LTV transfer function

Before introducing the LTV transfer function, we shall first review the definition

of the LTI transfer function H(S). No matter what kind of system(single-loop or

multi-loop) H(s) stands for, it can be defined using (3.1).

H(jω) =

∫ ∞

−∞
h(t− p)e−jω(t−p)dp (3.1)

In (3.1), s is set to be jω. H(jω) represents the value of H(s) at frequency ω.

h(t − p) is the impulse response of the system. It can be applied to describe an

LTI system because its value only depends on the difference between t and p. t is
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the time that the system is observed, while p is the time that the input impulse

δ(p′ − p) occurs. The equation means that the LTI transfer function H(s) is the

Fourier transform of the impulse response of the corresponding system.

In a similar manner, the LTV transfer function can also be defined as the Fourier

transform of the impulse response of a corresponding LTV system [6], which is de-

scribed in (3.2).

H(jω) =

∫ ∞

−∞
h(t, p)e−jω(t−p)dp (3.2)

In (3.2), h(t, p) denotes the impulse response of the LTV system. It is different

from h(t−p) in LTI case since its value depends on t and p separately. The integration

in (3.2) is performed on p, so a time-varying transfer function H(jω, t) is produced

as the result.

In fact, the LTV transfer function H(jω, t) represents a natural extension of the

LTI transfer function H(jω) [6]. It possesses many of the basic properties of the LTI

system. What’s more important is that it can be used to describe the response of an

LTV system to any prescribe input, just like the H(jω) in LTI case.

3.1.2 Description of input/output relationships of LTV systems using H(jω, t)

In this subsection, we shall derive how to use the LTV transfer function H(jω, t)

to represent input/output relationship of a given LTV system. The conclusion is

further used in the derivations of other useful results.

Let x(t) and u(p) to be the input and output separately. The relationship of x(t)

and u(p) can be firstly written as (3.3), which is a fact to any linear systems.

x(t) =

∫ ∞

−∞
h(t, p)u(p)dp (3.3)

u(p) =
1

2π

∫ infty

−infty

U(jω)ejωpdω (3.4)
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u(p) can be represented by the inverse Fourier transform of its frequency domain

form U(jω) as (3.4). Substitute (3.4) into (3.3), we can get (3.5). It is easy to be

found that the last part of (3.5) is actually H(jω, t) times an exponential part as

described in (3.6). Finally, we can get the conclusion as shown in (3.7). It describes

how to use H(jω, t) to represent the output x(t) [6].

x(t) =
1

2π

∫ ∞

−∞
U(jω)dω

∫ ∞

−∞
h(t, p)ejωpdp (3.5)

∫ ∞

−∞
h(t, p)ejωpdp = H(jω, t)ejωt (3.6)

x(t) =
1

2π

∫ ∞

−∞
H(jω, t)U(jω)ejωtdω (3.7)

For LTI systems, there is a similar classic conclusion, which is shown in (3.8).

Since the LTV system is a more generalized form of the LTI system, we can treat

(3.8) as a specific case of (3.7).

x(t) =
1

2π

∫ ∞

−∞
H(jω)U(jω)ejωtdω (3.8)

3.1.3 DAE for LTV circuits

Just like the LTI circuits, the small signal models of LTV circuits can also be

expressed using DAE. For an LTV circuit, its DAE has the following form [7]:

d

dt
(C(t)x(t)) = −G(t)x(t) +Bu(t) (3.9)

y(t) = LTx(t) (3.10)

In (3.9) and (3.10), everything is the same as (2.3) and (2.4) except that G(t)
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and C(t) are time-varying. The reason for them to be time-varying is that the

operating points of LTV circuits are always changing as time grows. At different

time points, linearizing the circuit may result in different small signal models, which

are represented by different G and C matrices. These matrices are combined to form

G(t) and C(t) to describe the LTV circuits.

3.1.4 System transfer function for LTV systems

If we consider the state variable x(t) in (3.9) as the output and u(t) as the input,

a corresponding transfer function W (jω′, t) can be used to represent x(t), as shown

in (3.11).

x(t) =
1

2π

∫ ∞

−∞
W (jω′, t)U(jω′)ejω

′tdω′ (3.11)

To get rid of the integration, let U(jω′) to be an impulse signal in frequency

domain that occurs at ω′ = ω [7], which is shown in (3.12).

U(jω′) = uimpδ(ω
′ − ω) (3.12)

x(t) =
1

2π
uimpW (jω, t)ejωt (3.13)

Substitute (3.12) into (3.11), x(t) can be written as (3.13). It stands for the

output of the LTV system descried by (3.9) when input is a small exponential signal

with frequency ω.

Set s = jω and substitute (3.13) into (3.9), W (jω, t) has the form as shown in

(3.14). Since y(t) in (3.10) is the final output of the whole LTV system described

by the DAE (3.9)(3.10), The transfer function of the whole system H(jω, t) can be

written as (3.15) [7].

W (s, t) = [G(t) + sC(t) +
d

dt
(C(t))]−1B (3.14)
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H(s, t) = LTW (s, t) = LT [G(t) + sC(t) +
d

dt
(C(t))]−1B (3.15)

In (3.14) and (3.15), a derivative linear operator d
dt
(C(t)) shows in the inversion

parts. Its definition is as (3.16) [8].

d

dt
(C(t))[x] =

d

dt
(C(t)x) (3.16)

If we compare H(s, t) with the LTI transfer function H(s) in (2.7), there are

mainly two differences. One is that C and G are time-varying in LTV case, while

they are constant in LTI case. The other is that a derivative operator shows in the

inversion part of the LTV transfer function H(s, t). These differences are reasonable

since that if G(t) and C(t) are constant with t, the derivative part will disappear and

the LTV system will reduce to a corresponding LTI system. From this perspective,

we can also conclude that LTV system is a more generalized form of the LTI system.

Just as mentioned before, almost all of the LTV circuits we concern are also

periodic. To get a more specific form of the transfer function for LTPV circuits,

further processing can be performed on H(s, t).

For an LTPV system, H(s, t) is periodic with t. What’s more, G(t) and C(t) are

also periodic. Let’s denote the fundamental frequency of the LTPV system is ω0, the

above three can be written in their Fourier expansion forms, which are described in

(3.17) [8].

H(s, t) =
∞∑

i=−∞

Hi(s)e
jiω0t, G(t) =

∞∑
i=−∞

Gie
jiω0t, C(t) =

∞∑
i=−∞

Cie
jiω0t (3.17)

Substitute (3.17) into (3.15), the Fourier expansion form of H(s, t) can be written

as (3.18). Each Hi(s) is the coefficient of corresponding harmonic, which is called the
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harmonic transfer function of the LTPV system. Hi(s) can be written as (3.19) [8].

H(s, t) =
∞∑

i=−∞

Hi(s)e
jiω0t (3.18)

Hi(s) = Li
T [(GFD + ΩCFD) + sCFD]

−1BFD (3.19)

All parts of Hi(s) in (3.19) are listed in (3.20) − (3.24) [8].CFD and GFD are

called the Toeplitz form of C(t) and G(t) separately. They are two infinite matrices

formed by the harmonic coefficients of C(t) and G(t). BFD is an infinite vector with

the central part to be B. LL is an infinite diagonal matrix in which the ith diagonal

block is Li.

GFD =



. . .
...

...
...

...

· · · G0 G−1 G−2 G−3 · · ·

· · · G1 G0 G−1 G−2 · · ·

· · · G2 G1 G0 G−1 · · ·

· · · G3 G2 G1 G0 · · ·
...

...
...

...
. . .


(3.20)

CFD =



. . .
...

...
...

...

· · · C0 C−1 C−2 C−3 · · ·

· · · C1 C0 C−1 C−2 · · ·

· · · C2 C1 C0 C−1 · · ·

· · · C3 C2 C1 C0 · · ·
...

...
...

...
. . .


(3.21)
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Ω = jω0



. . .

−2I

−I

0

I

2I

. . .



(3.22)

BFD = [..., 0, 0, BT , 0, 0, ...]T (3.23)

LL =



. . .

L

L

L

L

L

. . .



(3.24)

For each harmonic transfer function Hi(s) in H(s, t), we can also compare it

with the LTI transfer function H(s) in (2.7). If (GFD + ΩCFD) is considered to be

the equivalent G, while CFD is considered to be the equivalent C, Hi(s) and H(s)

actually have the same form. If all harmonic coefficients except the DC components

of G(t) and C(t) are 0, the LPTV transfer function will reduce to an LTI transfer

function automatically, since the LTI system is a specific case of the LTPV system.

Based on the above illustrations, some remarks about the LTPV system can be

summarized as following:
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• Any LTPV systems can be decomposed into LTI systems followed by memory-

less multiplications with ejiω0t [8]. The LTI system is a specific case of the

LTPV system.

• The reason for harmonics existing in the LTPV transfer function is that the

LTPV system produces harmonic frequency shifts, while the LTI system doesn’t

produce new frequency.

• Ideally, an LTPV system has infinite number of poles shared by all harmonic

transfer functions, since CFD and GFD are infinite. An important property

about the poles of the LTPV system is that if p is a pole, then p± jiω0 are also

poles of the system, in which i = 1, 2, 3, 4.... This property is really helpful for

computing the poles of LTPV systems and there will be a brief proof later.

• In real life, infinite dimension matrices cannot be computed and analyzed.

Truncations can be performed on CFD and GFD, which means only the first

n harmonics that we are interested in can be preserved. If N harmonics are

considered, the size of GFD and CFD will be (2N + 1)n× (2N + 1)n. The size

of Li and BFD will be (2N + 1)n × 1 for single-input and single-output case.

n is the size of G(t) and C(t). If the truncation is performed appropriately,

the accuracy of stability analysis of the corresponding LTPV system can be

ensured.

3.1.5 Procedure for computing the LTPV transfer function

To compute the transfer function of the LTPV system, the following procedure

can be followed:

• For a given circuit, do transient simulation and record the G and C matrices

for an amount of time after it’s stabilized as G(t) and C(t).
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• Do FFT on G(t) and C(t), extract our interested harmonic coefficients to form

GFD and CFD with finite dimensions.

• By choosing proper L and B, the value of H(s, t) at any frequencies and any

time points can be computed.

3.2 Stability of LTPV systems

From the previous sections, we know that an LTPV system can also be represented

with its transfer function H(s, t). The poles of an LTPV system can be computed

from H(s, t), which is similar to the LTI system case.

Poles in LTI systems contain the stability information, that is, if the real parts

of all poles are less than 0, the LTI system is treated as stable. In this section, we

shall introduce the stability property of the LTPV system and demonstrate that the

poles of LTPV systems also contain the stability information.

3.2.1 Floquet theory

The Floquet theory [9] is widely used in the analysis of stability of dynamical

systems with periodic behaviors. The original Floquet theory is a branch of the

theory of ordinary differential equations (ODE) relating the class of solutions to

periodic linear differential equations of the form ẋ(t) = Ax(t), in which A(t) is a

periodic matrix. In [12], the Floquet theory has been extended to deal with the

DAE shown in (2.3)(2.4), and serves as the ground truth to our research.

The DAE for a single-input single-output LTPV circuit is re-written in (3.25)(3.26).

We are giving some more detailed descriptions about them.

d

dt
(Cn×n(t)x(t)) = −Gn×n(t)x(t) +Bn×1u(t) (3.25)

y(t) = LT
n×1x(t) (3.26)
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Cn×n(t) and Gn×n(t) are both n× n matrices. Ln×1 and Bn×1 are both constant

n× 1 vectors. Gn×n(t) is a non-singular matrix, which means for all t ∈ R, Gn×n(t)

is non-singular. Since we are considering DAE instead of ODE, some equations of

the system may be algebraic, and Cn×n(t) may not be non-singular. We set the rank

of Cn×n(t) is r, in which r <= n and it is true for all t ∈ R.

d

dt
(Cn×n(t)x(t)) = −Gn×n(t)x(t) (3.27)

The homogeneous part of (3.25) can be extracted and written in (3.27). Just like

in LTI case, the homogeneous system in (3.27) is the core part of the corresponding

system (3.25)(3.26). A concept for the LTPV system called fundamental matrix

X(t) [12] is defined in (3.28).

Fundamental matrix for the LTPV system:

Xn×n(t) = [x1(t), x2(t), x3(t)..., xr(t), 0..., 0]n×n (3.28)

In (3.28), each xi(t), i = 1, 2, 3.., r is a n × 1 column vector and a solution to

the system (3.27). All xi(t) are linear independent to each other. The last (n − r)

columns of X(t) are zero-vectors since C(t) has a rank of r. Actually all xi(t) form a

set of basis to the solution space of (3.27), which means any solutions of (3.27) can

be represented as a linear combination of the columns of X(t).

A main contribution of the Floquet theory is the Floquet Theorem. The Floquet

Theorem for periodic DAE case is described as following [12]:

Floquet Theorem: The fundamental matrix X(t) of the DAE in (3.27) can be
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written in the form:

X(t) = R(t)

eQt 0

0 0

 (3.29)

R(t) is a n× n bounded, non-singular, periodic matrix, in which period is T and

R(t) = R(t+ T ). Q is a r × r non-singular constant matrix.

The eigenvalues Λ of Q are called the characteristic exponents of the system [12].

They are the same as the poles in the LTI system. If the real parts of all characteristic

exponents are less than 0, X(t) has a decay behavior as time grows, which means

the system is stable.

3.2.2 Extract characteristic exponents from the LTV transfer function

The characteristic exponents can also be computed using the LTPV transfer

function H(jω, t). To demonstrate it, another theorem needs to be introduced.

Theorem [12]: An equivalent realization of the LTPV system described by the

DAE (3.25)(3.26) exists, the system parameters transform toG′ =

−Q 0

0 I(n−r)×(n−r)

,
C ′ =

Ir×r 0

0 0

 via the periodic change of variable: z(t) = R−1(t)x(t). And the DAE

of the equivalent system is:

d

dt
(C ′

n×nx(t)) = −G′
n×nz(t) +Bn×1R

−1(t)u(t) (3.30)

y(t) = LT
n×1R(t)z(t) (3.31)

This is a beautiful theorem. It means that all LTPV systems have their own

equivalent realizations that all time-varying behaviors are just showing at the in-

put/output parts, while the core parts of them are constant and work as LTI systems.
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If we do Fourier expansions to R(t) and R−1(t), the LTPV transfer function H ′(s, t)

representing this DAE can be computed as (3.32)(3.33).

H ′(s, t) =
∞∑

i=−∞

H ′
i(s)e

jiω0t (3.32)

H ′
i(s) = L′

i
T
[(G′

FD + ΩC ′
FD) + sC ′

FD]
−1B′

FD (3.33)

Since G′ and C ′ are constant, all harmonics except DC components of them are

0, which makes G
′
FD and C ′

FD diagonal matrices as shown in (3.34)(3.35). It gives

benefits for computing the poles of this equivalent realization, which are also the

poles of the original system.

G′
FD =



. . .

G
′

G
′

G
′

G
′

G
′

. . .



(3.34)

C ′
FD =



. . .

C
′

C
′

C
′

C
′

C
′

. . .



(3.35)
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To get the poles, the following generalized eigenvalue problem needs to be solved.

(G′
FD + ΩC ′

FD)X = λC ′
FDX (3.36)

(G′ + ijω0C
′)X = λC ′X, i = ...,−3,−2,−1, 0, 1, 2, 3, ... (3.37)

Since all matrices are diagonal, (3.36) can be split into several sub-problems, each

of them has the form like (3.37). The only difference between these sub-problems

is the value of i. It means that if p is a pole by solving a sub-problem like (3.37),

p± jiω0 will be poles in other sub-problems. Since the union of these poles are the

poles of the system, we can conclude that if p is a pole of the system, p ± jiω0 are

also the poles of the system. This result is really useful for computing and verifying

the poles of an LTPV system.

To be more specific, we can write down (3.37) using their realistic forms, which

is shown in (3.38).

(

Q 0

0 I(n−r)×(n−r)

+ ijω0

Ir×r 0

0 0

)X = λ

Ir×r 0

0 0

X (3.38)

It can be concluded that the poles of an LTPV transfer function are the char-

acteristic exponents of the system, which means that H(jω, t) contains the stability

information of the corresponding LTPV system. This property is similar to the LTI

case.

3.2.3 Loop-based noise sensitivity analysis for LTPV circuits

As we described before, each LTPV transfer function can be decomposed into LTI

systems followed by memory-less multiplications with ejiω0t. Each harmonic transfer

function Hi(s) has the same form as the LTI transfer function H(s) if the concept of
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equivalent G and C is used. Actually the concept of ”noise-sensitive pole” can also

be applied to Hi(s).

If H(jω, t) represents the node impedance of an LTPV circuit, it can be written

as (3.39)(3.40).

H(s, t) =
∞∑

i=−∞

Hi(s)e
jiω0t (3.39)

Hi(s) =

NC∑
j=1

resj(s)

s2 + 2ζjω0js+ ω2
oj

(3.40)

In (3.40), just like (2.13), each Hi(s) can be factorized into the combination of

several second order systems(first-order subsystems are ignored since they won’t con-

tribute to the noise-sensitive behaviors). If p is a noise-sensitive pole of Hi(s), Hi(s)

will have a peaking at ω = ωp, which is the natural frequency corresponding to p.

However, it becomes much more complicated when we want to define ”noise-sensitive

loops” for LTPV systems. The main reason is that LTPV systems produce harmonic

frequency shifts.

Figure 3.1: A noise-sensitive loop in an LTPV circuit
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Figure 3.1 can be used to illustrate the problem. This graph shows a group of

nodes in an LTPV circuit. The corresponding natural frequency of a noise-sensitive

pole is used to represent the pole itself. At first, each circuit node has a noise-sensitive

pole ω in their DC component H0(s), which means that if the input frequency is

near ω, the output of each node has a noise-sensitive component with the same

frequency. Thus, these circuit nodes can be grouped to form a ”noise-sensitive loop”,

which is similar to the LTI case. Besides this noise-sensitive loop, there are more

noise-sensitive loops in this LTPV circuit. If ω is also a noise-sensitive pole of H1(s)

of node a, the output of node A will also have a noise-sensitive component with

freqency near ω + ω0. At the same time, let’s denote ω + ω0 is a noise-sensitive pole

of H−1(s) of node B, which means that if the input frequency is near ω + ω0, the

output of B will have a noise-sensitive component near ω. In this case, the input

noise signal will also have another ”path” to traverse through node A and B: a signal

with frequency ω is injected to A, its frequency becomes ω + ω0 and serves as the

input of node B, when it comes out from B, its frequency goes back to ω and the

signal can traverse through other nodes. This process can be treated as the injected

noise goes through another noise-sensitive loop with frequency shifting. Even the

circuit node set is the same as the previous case, we say that there are two different

noise-sensitive loops in the circuit.

This instance shows that for an LTPV system, a noise-sensitive loop may get

involved with several different frequencies, that is, different noise-sensitive poles.

The relationship of these frequencies is that they are harmonic frequencies to each

other. A concept called ”noise-sensitive pole group” is defined to clarify this fact.

Definition(Noise-sensitive pole group): A noise-sensitive pole group is a set of

noise-sensitive poles in which any two of them are harmonic frequency to each other.

This concept is defined for the whole LTPV transfer function, a noise-sensitive
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pole of any Hi(s) will be grouped into a noise-sensitive pole group of the system.

Based on the definition of the noise-sensitive pole group, the noise-sensitive loop

concept for LTPV systems can also be defined.

Definition(Noise-sensitive loop in LTPV circuits): a noise-sensitive loop is the

maximum loop formed by the circuit nodes which have noise-sensitive poles in the

same noise-sensitive pole group.

There are two kinds of noise-sensitive loops: one is the noise-sensitive loops with-

out frequency shifting, which is similar to the LTI case; the other is the noise-sensitive

loop with frequency shifting, it only exists in the noise-sensitive pole group with more

than 1 noise-sensitive poles.

One thing needs to be noted is that even if two loops are using the same set of

circuit nodes in some cases, if they are formed because of different frequency shifts,

they are considered to be 2 different noise-sensitive loops.

Since the frequency shifting is considered for noise-sensitive loop identification in

the LTPV system, simply grouping the nodes to form noise-sensitive loops cannot be

applied. A more complicated algorithm is needed for detecting noise-sensitive loops

in this case.

3.2.4 Noise-sensitive loop detection algorithm for LTPV systems

Let’s restate the problem needs to be solved: Given a set of circuit nodes, find

the maximum noise-sensitive loops for each noise-sensitive pole group.

To solve this problem, a circuit can be mapped to a graph, then the problem will

transform into finding the maximum loops in a graph. How to map the circuit to an

appropriate graph is the most critical thing. An algorithm will be discussed in the

following. It gives the procedure of mapping a circuit to a graph G(V,E) in which

noise-sensitive loops can be detected. In the graph G, V is the set of nodes, while E
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is the set of edges.

For a given circuit, a graph is built for each noise-sensitive pole group. To illus-

trate how the mapping process works, we consider a simple case of two circuit nodes

A, B, and the noise-sensitive pole group is (ω, ω + ω0). The two poles in this group

are the noise-sensitive poles of H1(s) and H−1(s) for both node A and B.

Figure 3.2: Node A with noise-sensitive pole ω

For circuit node A with input frequency ω, its mapping process is shown in Figure

3.2. It can be mapped to a small graph in G(V,E). Each node in the graph has

3 properties: name, frequency and type. ”name” is the name of the corresponding

circuit node in the circuit. ”frequency” is the input or output frequency of a circuit

node. ”type” describes which part of a circuit node the graph node is representing,

that is, the input or output part. In a similar manner, the mapping of node A with

noise-sensitive pole (ω + ω0) can be described in Figure 3.3.

Assuming node B is in the same situation as A, it can be mapped to small graphs

in G(V,E) using the same policy. There will be 4 small graphs in G(V,E). Then

the algorithm will connect those small graphs. The criteria is that if two nodes have

the same frequency but different names and types, there will be an edge from the

”output” node to the ”input” node, which is represented by the dash line in Figure
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Figure 3.3: Node A with noise-sensitive pole ω + ω0

3.4. In this example, there are two noise-sensitive loops formed by these two nodes

with different frequency shifts.

Figure 3.4: The whole graph for a noise-sensitive pole group

The pseudo code of the graph building algorithm is in Algorithm 1. It has two

steps. Firstly, for each node in the circuit, a corresponding small graph is estab-

37



Algorithm 1 Graph building Algorithm

1: procedure Node graph G(V, E) = Graph Building ( noise-sensitive
pole group H, circuit A )

2: for each node n in A do
3: for each noise snsitive pole p in H do
4: Build small graph(n, p);
5: end for
6: end for
7: for each node n and n.type == output do
8: for each node m and m.type == input do
9: Connect(n,m);
10: end for
11: end for
12: end procedure

lished. Then the algorithm will connect small graphs as described before. The two

sub-routines are shown in Algorithm 2 and Algorithm 3.

Algorithm 2 Small graph building

procedure Build small graph(n,p)
2: Add vi(input, n.name, ωp) to V

for each harmonic inpedance function do
4: if p is a dominant pole for it

Add vo(output, n.name, ωhar) to V
6: Add edge < vi, vo > to E

end if
8: end for

If no vo added, delete vi
10: end if

end procedure

In this way, the loops in G(V, E) are all noise-sensitive loops of the original

circuit. Finding the largest loops in G is equivalent to detecting the noise-sensitive

loops in the circuit for a noise-sensitive pole group.
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Algorithm 3 Connect small graphs

procedure Connect(n,m)
If n.name! = m.name and n.freq = m.freq

3: Add edge < vi, vo > to E
end if

end procedure

The graph G(V,E) has some features which can help to improve the efficiency of

finding loops in it. Firstly, the graph is a directed graph. Then the maximum length

of loops in G(V,E) is 2n, in which n is the circuit node number in the original circuit.

Last but not the least, since all edges are between ”input” and ”output” nodes, the

graph is a bipartite graph, the lengths of all loops are even.

An algorithm for finding the maximum loops in G(V,E) is developed based on

the work in [13]. The flow chart of the algorithm is described in Figure 3.5.

Figure 3.5: Flow chart of maximum loop finder algorithm
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Before introducing the algorithm, some definitions need to be introduced first [13].

For a directed graph G(V,E), a path is an alternating of vertices and edges, beginning

and ending with a vertex, i.e.: v1e1v3e2v4. The length of a path is the number of

edges in the path. A simple path is a path that all vertices except head and tail are

distinct. A cycle is a simple path that head and tail are the same. An open path is

a simple path that is not a cycle. a K-cycle is a cycle with length k.

The main idea of the algorithm is building k-cycles from (k − 1) simple paths

iteratively. A queue is used to store identified paths in the graph. Nodes are ordered

by their index in the graph to avoid detecting repeated loops. ”input” nodes are put

into the queue at first, then for each path(contains only one node at beginning) in

the queue, the adjacent list of the tail node will be searched to form longer paths. At

the same time, if there is an edge between the head and tail, a cycle is identified. The

cycles are recorded in the cycle list, which is a list. If a longer cycle is detected, the

previous cycles can be discarded. The final cycles left in cycle list are the maximum

loops in the graph and can be mapped back to the loops in the circuit. These loops

can be reported as noise-sensitive loops in a noise-sensitive pole group of the LTPV

circuit.

A good feature of the algorithm is that it doesn’t need to explore the whole

graph so that number of cases needed to be numerated is reduced. What’s more, the

algorithm is good for the parallel realization since all paths can be handled indepen-

dently. These features give the algorithm a great potential for finding noise-sensitive

loops in the LTPV circuits efficiently.

3.3 Noise-sensitive loop identification algorithm for LTPV circuits

To sum up, the noise-sensitive loop identification algorithm for LTPV circuits

can be described as following:
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• Initialize the objective LTPV circuit and compute its GFD and CFD matrices.

In our realization, this part is independent. Its efficiency is mainly determined

by the circuit simulator we use. The produced circuit node name list and

matrices will work as the input of the rest phases.

• Compute noise-sensitive poles, which are used to identify noise-sensitive pole

groups for the whole system.

• Calculate harmonic node impedances for each node in the circuit.

• Build a graph for each dominant pole group of the circuit.

• Perform maximum loop detection algorithm on each graph and output all cycles

left.

• Map the cycles back to noise-sensitive loops in the circuits, report all noise-

sensitive loops to designers.

Designers may have some insights about the noise-sensitive loops reported and

can make further improvements to the circuits.

3.4 Time complexity analysis

There are mainly 3 phases in our algorithm for noise-sensitive loops identifica-

tion in LTPV circuits. They are pole computation, impedance computation and

noise-sensitive loop identification.

For the pole computation, the classic QZ method [4] is used. The time complexity

of the algorithm is O(n3), in which n is the size of the corresponding system. In our

case, the size of the system is the actual size of GFD and CFD. If the size of C(t)

and G(t), which is mainly decided by the circuit node number, is set to be N , while

the harmonics we reserved in truncated GFD and CFD are m at each side of DC
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component, the time complexity of QZ method in our application is O([(2m+1)N ]3).

Since the value of m are always fixed and set to be around 8, the time complexity of

this phase is mainly determined by the circuit scale.

For the impedance computation part, we need to compute the impedances for

each circuit node at each noise-sensitive pole in each harmonic impedance transfer

function Zi(s). According to (2.16), each computation operation takes O(n2) time

since the multiplication of a matrix and a vector needs to be performed. n is the

size of matrices and can be expressed as n = (2m + 1)N as described before. If

the circuit node number is set to be num cir, while the number of noise-sensitive

pole is num poles and number of harmonic transfer function is har num. The time

complexity of these phase is O([(2m + 1)N ]2 × num cir × num poles × har num).

num poles is mainly decided by the stability performance of the circuit and cannot

be predicted, but we can expect that a well-designed circuit normally have just a

few noise-sensitive poles. At the same time, har num is set to be 2 in our case. It

means the time complexity of the impedance computation is mainly determined by

the circuit scale, which is the same as the previous phase.

For the noise-sensitive loop identification part, the worst case for time complexity

will be O(exp(V )), which means it is an exponential time complexity problem. In

the worst case, the graph is a complete graph and V is the number of vertices in

the graph. However, since the sizes of vertices and edges in the graph we build are

mainly decided by the noise-sensitive part of the circuit and usually small comparing

with the circuit size itself, the worst case hardly happens. For a well-designed circuit,

this phase is normally the least time-consuming part.
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4. EXPERIMENT RESULTS

In this chapter, we shall present three applications of the noise-sensitive loop

identification algorithm for LTPV circuits. We first adopt a simple LTPV RLC

network, to intuitively demonstrate the application of the proposed algorithm and

show what kinds of noise-sensitive loops we can expect in an LTV circuit. The

second circuit example is a double-balanced mixer with parasitic effects, which is

used to show that the algorithm can help to identify the noise-sensitive loops formed

by the parasitics in a time-varying circuit network. The last circuit example is

a switch capacitor gain stage with classic two-stage Op-amp and NMOS switches.

This example is used to show that our algorithm is able to aid the design process

for implementing stable LTPV circuit blocks. The last two applications are designed

using a commercial 90nm technology with 1.2V supply.

4.1 Parameter settings

A C++ implementation of our algorithm has been realized in Linux environment.

Before discussing the circuit examples, we may firstly define and set some parameters

in our algorithm.

• Freq range ωi. This parameter describes the frequency range we are interested

for detecting noise-sensitive poles. In our applications, ωi = [1, 10G]rad/s,

which is about (0.15− 1.5GHz).

• Har bound b. This parameter indicates the number of harmonic frequencies we

are concerning. In our applications, it is set to be 2, which means that we are

considering 2 harmonics at each side of DC component of each node impedance

transfer function.
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• Har err tol e. This parameter is the threshold value for judging if two fre-

quencies ω1, ω2 are harmonic to each other. If ω1−(ω2+iω0)
min(ω1,ω2)

< e, for any

i = −b, ...0, ...b, ω1 and ω2 are treated as harmonic to each other. In our

applications, e = 0.01.

There are some other parameters may vary among different cases, and will be dis-

cussed later.

4.2 A simple LTPV RLC circuit network

Before discussing the LTPV RLC network, we may first see an LTI circuit.

Figure 4.1: An LTI RLC network

Figure 4.1 depicts an LTI RLC ciruit. In this circuit, there are four small loops

and a large loop formed by resistors, capacitors and inductors. The poles of this

circuit are shown in Table 4.1. There are totally 4 poles, out of which two real poles

p3 and p4 are mainly caused by C3, C2 and their surrounding resistors, while C1, L1

and the surrounding resistors mainly contribute to the complex pole pair p1,2. The
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natural frequency ω0 of the complex pole pair p1,2 is 1.302GHz, and the damping

factor ζ is 0.3947. Since ω0 < 1.5GHz and ζ < 0.7, p1,2 is actually a dominant pole

of this LTI circuit.

Table 4.1: Pole list of the LTI RLC network
Name Re Im
p1 -3.2298e9 7.5183e9
p2 -3.2298e9 -7.5183e9
p3 -2.9575e8 0
p4 -1.7239e5 0

By running the Loop Finder algorithm for LTI circuits [3], a noise-sensitive loop

can be identified for the noise-sensitive pole p1,2. The largest loop in the circuit

(a, b, c, e, f, g, h) is the noise-sensitive loop. For the LTI case, our algorithm can also

be used to detect noise-sensitive loops since LTI circuit is a specific case of LTPV

circuit. And by using our algorithm, the same noise-sensitive loop is identified.

To create an LTPV case, we added some time-varying behaviors to the LTI circuit

in Figure 4.1. Four constant resistorsR2, R6, R7 andR8 are changed to resistors with

sine wave time-varying behaviors. At first, weak time-varying behaviors are added to

the circuit, in whichR2 = 20+2sin2ωt, R6 = 30+2sinωt, R7 = 300+20sin2ωt, R8 =

10+2sinωt. ω is the basic operation frequency of the circuit and its value is 500MHz.

The purpose of adding such kinds of time-varying behaviors to some resistors is that

we want the whole circuit to be operated at both the fundamental frequency ω and

a harmonic frequency 2ω. Since the sine wave is periodic and circuit is formed by

linear devices resistors, capacitors and inductors only, the circuit becomes a linear

time-periodically varying circuit. For this case, since the time-varying behavior is

really weak, we expect that the noise-sensitive loop should be the same as the LTI
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case with a reasonable small error. Actually the result given by our algorithm is

the same as what we expect. The only noise-sensitive pole in the circuit is as Table

4.2. We can find that the noise-sensitive pole is almost the same as the one in LTI

case. This case demonstrates that our algorithm is accurate to capture the noise

sensitivity information of LTPV circuits.

Table 4.2: Noise-sensitive pole list of the near LTI RLC network
Name Re Im ω0 ζ
p1 -3.2296e9 7.5171e9 1302.1261MHz 0.3947

To make the time-varying behavior stronger, we increase the magnitude of the sine

waves in resistors. For instance, we set R2 = 20 + 19.9sin2ωt, R6 = 30 + 29.9sinωt,

R7 = 300 + 299.9sin2ωt, R8 = 10 + 9.9sinωt. Our algorithm can be further used to

analyze the noise sensitivity of this circuit.

From the previous chapter we know that for an LTPV system, if p is a pole, then

p± ijω0 are also poles of it. If there is noise-sensitive pole p in the circuit, it’s very

likely that p ± ijω0 will also be noise-sensitive poles for the circuit. Compared to

LTI circuits of the same size, LTPV circuits normally have more noise-sensitive poles

and those poles can form different noise-sensitive pole groups.

For this LTPV case, there are two noise-sensitive pole groups and 2 noise-sensitive

loops identified.

Firstly, there is a noise-sensitive pole group with 2 noise-sensitive poles, and their

values are shown in Table 4.3. a noise-sensitive loop with frequency shifting exists in

this group. It can be expressed as [h(503MHz, 503MHz),d(503MHz, 1GHz),a(1GHz,

503MHz),f(503MHz,503MHz),g(503MHz,503MHz),h]. In this noise-sensitive loop,
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natural frequencies 1GHz and 503MHz are get involved and there are frequency

shifts at node a and d.

Table 4.3: Pole list of the first noise-sensitive pole group
Name Re Im ω0 ζ
p1 -4.5063e8 -6.2837e9 1002.6472MHz 0.0715
p2 -4.5198e8 -3.1416e9 505.192MHz 0.1424

If we want to figure out the reason for the appearance of this noise-sensitive

pole group and the corresponding noise-sensitive loop, we firstly have a look at the

imaginary parts of these poles. We can write these poles as pr + jpi. Actually for all

these poles, their pi can be written as pi = iπ × ω, in which ω is the fundamental

frequency of the system. According to the property of the poles in LTPV systems,

there must be a real pole with value pr in the system, too. It means that because of

the special property of poles in the LTPV system, more potentially noise-sensitive

poles may appear in the circuits. Besides, since the frequencies of these two poles are

very close to the fundamental frequency 500MHz and the harmonic frequency 1GHz

of the system, the peaking behaviors of the corresponding second order systems some

nodes, such as a and d, can be dominant near the two frequencies. These two aspects

are combined to make this noise-sensitive loop show up in the circuit.

Besides the above noise-sensitive pole group, there is another group with only

one noise-sensitive pole in it. Its information is shown in Table 4.4. We can find that

only noise-sensitive loop with no frequency shift exists. The noise-sensitive loop is

actually corresponding to the original noise-sensitive loop in the LTI case.
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Table 4.4: The second noise-sensitive pole group
Name Re Im ω0 ζ Noise-sensitive loop
p3 -3.2227e9 -7.3839e9 1282.2361MHz 0.4000 (a,b,c,e,f,g,h)

4.3 A double-balance mixer with parasitic effects

Double-balance mixers are widely used in RF communication systems for fre-

quency conversion. Just as described before, the small signal model of mixers can be

modeled as LTPV systems. A double-balanced mixer itself has no feedback loops.

But because of the existence of parasitics, some feedback loops may be formed by

transistors and parasitics together. If such a circuit is time-invariant, noise-sensitive

loops can be easily identified using the existing algorithm. However, since there

are time-varying behaviors in mixers, our method is really needed to help identify

noise-sensitive behaviors for this kind of circuits.

Figure 4.2: A double balanced mixer with parasitic effects
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Figure 4.2 shows a Gilbert cell double balanced mixer with parasitic effects. The

inductors that are series with the supply and the series RLC path are added to

model the wirebonds used to connect an integrated circuit to the leadframe of a

typical package [3]. The series resistor R7 and capacitor C5 are added to model the

parasitics between two nodes in the circuit. Local signal VLO+ and VLO− are sine

signal with peak-to-peak value 600mV and frequency 500MHz, which means the

fundamental frequency of this LTPV system is 500MHz.

By running our algorithm, there are two noise-sensitive loops without frequency

shifting are identified. Their corresponding noise-sensitive pole information is shown

in Table 4.5.

Table 4.5: Two noise-sensitive pole groups in the mixer
Name Re Im ω0 ζ
p1 -1.2430e9 -6.8700e9 1.111GHz 0.1781
p2 -4.6736e9 -7.8508e9 1.454GHz 0.5115

The first noise-sensitive loop of this circuit is highlighted in the schematic view in

Figure 4.3. We can find that the supply-related nodes are in this loop, which means

the inductor wirebonds and their parasitics can potentially cause noise-sensitive be-

havior in the circuit if noise injected. At the same time, some nodes in the mixer

itself are also get involved. Since the loop contains time-varying behavior, it cannot

be identified using previous methods. In this case, running our algorithm is a neces-

sary. Normally in ”real-life” cases, the dumping ratio of the noise-sensitive pole may

be larger than 0.1781, but they may still result in excessive supply ringing in circuit

designs and need careful consideration [3].

The second noise-sensitive loop is highlighted in Figure 4.4. It’s caused mainly
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Figure 4.3: The first noise-sensitive loop

by the parasitic resistor R7 and capacitor C5. These kinds of parasitics may happen

between the nodes in lots of LTPV circuits. Since there are time-varying behav-

iors between the two nodes a and b, only our method can be used to capture the

noise-sensitive behaviors.

4.4 A switch capacitor gain stage

Figure 4.5 shows a switch capacitor gain stage. All switches are NMOS type, and

the core part of this circuit is a classic two-stage Op-amp with miller compensation,

which is shown in the dashed circle. In Figure 4.5, C1 is used for compensation to

ensure that the Op-amp has enough phase margin so that the negative feedback loop

in the circuit is stable, which refers to noise-sensitive in our background. Op-amps

are also always used in LTI circuit blocks. This circuit is used to demonstrate that

our loop-based noise sensitivity analysis algorithm can also help to identify if the

phase margin of the Op-amp is enough for the negative feedback loop for this LTPV
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Figure 4.4: The second noise-sensitive loop

circuit to be noise-sensitive.

This circuit is time periodically-varying because of the switches. The NMOS

switches in the circuit are driven by a two-phase non-overlapping clock signal as

shown in Figure 4.6. The signal makes the state of the circuit periodically changing.

The function of this circuit is sampling the input signal from vi at the rising edge of

phi1 and output it at the rising edge of phi2 so that the input signal is discretized.

The frequency of the clock signal is 1MHz, while the rising and falling time of it are

10µs.

To design this circuit, a proper Op-amp is needed to be designed first. In this

design, what we care is whether the Op-amp has enough phase margin or not. By

performing AC analysis on the Op-amp, we firstly got that the phase margin of this

Op-amp is 62 degrees when the load capacitor is 1pF . By running our algorithm on

this switch-capacitor circuit, 2 noise-sensitive pole groups are identified and only one

pole exists in each of them separately, which means there are 2 noise-sensitive loops
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Figure 4.5: A switch capacitor gain stage

in the circuit.

Table 4.6: The first noise-sensitive pole group
Name Re Im ω0 ζ
p1 -1.147e7 1.524e7 3.035MHz 0.6015

The first noise-sensitive pole group are shown in Table 4.6. The noise-sensitive

loop with frequency shift in this group in highlighted in Figure 4.7. We can find

that this noise-sensitive loop contains the nodes at the two sides of switches. It’s

reasonable since these nodes have dramatically impedance changes due to the varying

magnitudes of the clock signals and the natural frequency of the pole are located at

the vicinity of the harmonics of 1MHz, which is the fundamental frequency of the

circuit. To make the noise-sensitive behavior not that obvious, the clock signals with
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Figure 4.6: Non-overlap clock signal

relatively slow rising and falling edges may need to be applied.

The second noise-sensitive pole group and its noise-sensitive loop is different from

the others. The dominant pole information and the loop is marked in Figure 4.8.

We can find that the loop is actually the negative feedback loop formed by the

Op-amp and the feedback capacitor C5. Since a switch is in parallel with C5, the

loop has time-varying behavior. This noise-sensitive loop is formed because of its

corresponding noise-sensitive pole. If we look into the pole deeper, we can find its

damping factor ζ is 0.69, which is less but very close to 0.7.

If we recall the basic concept of the stability of second order systems, for LTI

systems, the phase margin of the corresponding Op-amp can be expressed as (4.1)

using ζ [4]. A damping factor ζ with value 0.7 corresponds to a phase margin of 65

degrees. A ζ with value 0.69 means that the phase margin is very close to 65 degrees

but less than it. Actually the noise-sensitive loop identified by our algorithm can
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Figure 4.7: A noise-sensitive loop contains switch nodes

be treated as the LTI noise-sensitive part of the circuit. We can use the concept in

LTI circuit to explain this noise-sensitive loop. Thus, to fix this noise-sensitive loop,

the value of C1 can be slightly increased so that the phase margin of the Op-amp

becomes larger to make the whole loop noise-insensitive.

φpm = tan−1(2ζ(
1

(4ζ4 + 1)1/2 − 2ζ2
)
1/2

) (4.1)

After c increases to 600fF , the second noise-sensitive loop disappears, and the

only noise-sensitive behavior of the circuit is from the switches.

For the LTPV negative feedback loop as shown in Figure 4.8, it can be treated

as a loop with time-varying loads. Traditionally, we cannot solve this kind of loop

at one time since the circuit contains time-varying behaviors. However, by using our

method, the switch capacitor circuit can be evaluated as a whole, the time-varying

loop can be directly deal with and the noise-sensitive behavior can be measured easily.

Designers can selectively adopt the information that we offer to further improve the

circuit’s performance.
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Figure 4.8: Noise-sensitive negative feedback loop

4.5 Verification of noise-sensitive loops in time domain

In the previous sections, we perform our algorithm on three circuit examples.

However, to demonstrate their correctness, we need to verify these results from a

different point of view. In this section, we do transient simulation and try to observe

these noise-sensitive loops from time-domain directly to prove that our algorithm

is correct. The double balanced mixer is used to illustrate the verification since its

noise-sensitive behaviors are relatively apparent for observation.

Figure 4.9 shows the circuit we use. As we introduced before, there are two

noise-sensitive loops without frequency shifts in the mixer. Their pole information

is shown in Table 4.5. Node a an node b in Figure 4.9 are included in the first

loop, while node c and node d are included in the second loop. It means that if

we give a small injected current noise with frequency closed to the corresponding

noise-sensitive pole to any nodes in the loop, output of all the nodes in the loop

will have relatively large overshooting behavior in time domain. This phenomenon
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Figure 4.9: A double balanced mixer

can be observed if nodes in the noise-sensitive loop are also physically connected.

In Figure 4.9, Small sine wave currents signal with 1mA magnitude and frequency

closed to two noise-sensitive poles(1.11GHz and 1.454GHz) are given to node a and

node c separately. The output wave at node b and noded are chosen to be observed

for verification.

For the output voltage of node b, the plot is shown in Figure 4.10. Since node

b is included in the noise-sensitive loop with natural frequency ω0 = 1.111GHz,

we can find that the output waveform of b has larger variation when the input is

1.11GHz(the solid line). When the noise frequency is far from 1.11GHz(The dash

and dot lines), the variation of magnitude is relatively small. For LTPV circuits, the

voltage variation may still exist at each node when no noise is injected, the input

noise will further increase the variation and introduce new frequency components to

the varying state. When the noise frequency is near the natural frequency, this kind

of variation of magnitude is more obvious.

In a similar manner, the output of node d has a larger variation of magnitude
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Figure 4.10: Output waveform of node b

with input frequency close to 1.454GHz(the solid line in Figure 4.11). These two

simple examples show that the noise-sensitive loops identified by our algorithm can

be observed in time domain in the circuit. It means our algorithm can be used to

capture the noise-sensitive behaviors in LTPV circuits efficiently.

4.6 Running time results

A conclusion of the running time of performing our algorithm on three circuit

examples is shown in Table 4.7. The environment for running our algorithm is a

Linux server with 4GB memory and Intel(R) Core(TM) i5 650 3.2GHZ CPU. We can

find that the most time consuming pat is the second phase impedance computation.

The most dominant factor to influence the runtime is the size of the system, which

is partially determined by the circuit node number. Since usually the noise-sensitive

part is small in the circuit, the loop identification phase is not that time-consuming.
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Figure 4.11: Output waveform of node d

Table 4.7: Running for different circuit examples

Application
node
num.

sys.
size

phase1
(s)

phase2
(s)

phase3
(s)

total
(s)

RLC network 9 187 0.292 2.754 0.012 3.058
double-bal. mixer 19 510 7.355 142.333 0.001 149.689
switch-cap. gain stage 13 306 1.265 16.86 0.001 18.126

4.7 Summary

In this section, three circuit examples of our algorithm are discussed in detail.

From these cases, we can conclude that our method is really needed for the noise-

sensitive behavior detection of LTPV circuits. The noise-sensitive loops identified by

our algorithm includes not only loops caused by parasitics, but also loops caused by

inherent design problems. Combined with the insights of designers, noise-sensitive

behaviors in LTPV circuits can be fixed.

Besides those common parameters, there is another crucial one needs to be dis-

cussed. From the previous discussion, we know that there is a threshold value (we
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name it rdc) in the noise-sensitive pole computing process. If the DC impedance

of a second-order system is less than rdc, we shall ignore this system since its low

impedance value is not enough for the peaking behavior to be dominant.

Actually this value is crucial for identifying reasonable noise-sensitive loops in

circuits and it may vary from one circuit to another. In LTI case, rdc is always set

to be 0.1 according to [4]. However, for the LTPV cases, it needs to be reset for

different circuits. rdc’s values for the three circuit examples is shown in Table 4.8.

Table 4.8: rdc for different circuit examples
Application rdc
RLC network 0.15
double-balanced mixer 2
switch-capacitor gain stage 15

The main accordance for the setting of this value is that we want the algorithm

to capture the most important noise-sensitive behaviors. For example, in the switch

capacitor gain stage, the second noise-sensitive loop is mainly the negative feedback

loop, the node impedances for these nodes are over 200. For some other circuit nodes,

they have impedance value about 15 or below, which are much less than 200. Since

for the same noise-sensitive pole, the cause of these nodes to have large impedance

value are the same. If we can fix the most obvious part, the rest part also get fixed.

In this case, we can set rdc = 15 to get rid of those less-noise-sensitive nodes and

capture the core part of this problem. In the design process, this parameter can be

controlled by designers to determine how many nodes in a noise-sensitive loop and

how many noise-sensitive loops will be reported. To get a more appropriate method

for setting this value, a large number of ”real-life” circuits may need to be tested
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in the future, which can make our algorithm more robust and suitable for industry

applications.
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5. CONCLUSION

As can be seen, our new proposed algorithm meets the needs of identifying noise-

sensitive behaviors, which can also be called unstable behaviors, in the circuits that

can be modeled as LTPV systems. It can detect noise-sensitive loops not only caused

by the coupling of parasitics and transistors, but also by inherent design issues, which

makes it a helpful tool for designers during the whole circuit design process.

However, to make the algorithm more applicable to realistic products in industry,

further works still need to be done. Firstly, a large number of test cases from the real

world may need to be run to help tune the parameters and find the short-comes of

our algorithm. Additionally, efficient computation technologies, such as model-order

reduction, more advanced pole discovery algorithm, need to be researched and ap-

plied to our algorithm so that it can deal with very large scale LTPV circuits in real

life. What’s more, parallel computing is suitable to several phases of our algorithm,

such as pole discovery, impedance computing and maximum unstable loop detection

algorithm. And it can further speed up the whole noise-sensitive loop identification

process.

To sum up, our algorithm for identifying noise-sensitive(unstable) loops in LTPV

circuits has been demonstrated to be able to detect efficient unstable information

from the LTPV circuit. It has a great potential for the further usage in industry and

improving the quality of analog circuit designs.
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