
OPTIMAL STATE ESTIMATION FOR PARTIALLY OBSERVED BOOLEAN

DYNAMICAL SYSTEMS IN THE PRESENCE OF CORRELATED

OBSERVATION NOISE

A Thesis

by

LEVI DANIEL MCCLENNY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ulisses Braga-Neto
Committee Members, Edward Doughtery

Erchin Serpedin
Erick Moreno-Centeno

Head of Department, Miroslav Begovic

August 2016

Major Subject: Electrical Engineering

Copyright 2016 Levi Daniel McClenny

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M Repository

https://core.ac.uk/display/79653608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Recently, state space signal models have been proposed to characterize the be-

havior of discrete-time boolean dynamical systems. The current system model is one

in which the system is observed in the presence of noise. The existing algorithms,

however, rely on an assumption of independent and identically distributed (i.i.d.)

white noise processes. The existing recursive MMSE process of estimating a boolean

dynamical system (in the presence of i.i.d. noise) is called the Boolean Kalman Filter

(BKF). Here we address a different sort of noise, one that is correlated in time to

other observation noise, specifically through an AR(1) time series process. In this

thesis, we propose modifications to the state-space model that will allow the exist-

ing Boolean Kalman Filtering recursive process to adapt to handle time-correlated

noise. Additionally, we will propose a modification to the Boolean Particle Filtering

approximation to compensate for the same correlated noise AR(1) process.

In addition, this document will address a new software package created in the

R programming language that will allow the scientific community easier (and free)

access to the algorithms created by the Genomic Signal Processing Lab at Texas

A&M University. These algorithms will be explained in this document, with results

of the algorithms derived from the use of the package.

ii

DEDICATION

This document is dedicated to my parents. Without their love and support I would

never have made it to where I am today.

I also dedicate this document to my friends, who I have leaned on throughout this

process in both good times and bad.

“I give it all for them. They give it all for me.”

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Mahdi Imani for the unrelenting sup-

port in the development of the package and the correlated noise algorithms. Mahdi’s

expertise guided me throughout the entire process of developing the contents of this

document, and without his help I never would have made it through this process.

I would also like to thank Dr. Ulisses Braga-Neto for his patience and exper-

tise when times got tough. Without his guidance I would not have been able to get

to a presentable product, and without his faith in me I never would have had the

opportunity to perform this research and learn all that I have.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . viii

1. INTRODUCTION . 1

1.1 Boolean Regulatory Networks . 1
1.2 Probabilistic Boolean Networks . 4
1.3 Partially Observed Boolean Dynamical Systems 5

1.3.1 State Model of a Partially Observed Boolean Dynamical System 5
1.3.2 Observation Model of a Partially Observed Boolean Dynamical

System . 5
1.4 Partially Observed Boolean Dynamical System Optimal Estimation . 6

2. THE PROBLEM OF CORRELATED OBSERVATION NOISE 8

2.1 Boolean Kalman Filter in the Presence of Correlated Observation Noise 8
2.1.1 Boolean Kalman Filter Background 8
2.1.2 Modifications for Correlated Noise 11
2.1.3 Results . 14

2.2 Boolean Particle Filter in the Presence of Correlated Observation Noise 16
2.2.1 Particle Filtering Background 16
2.2.2 Modifications for Correlated Noise 20
2.2.3 Results . 21

3. R PACKAGE: BOOLFILTER . 24

3.1 Boolean Kalman Filter . 24
3.1.1 Description . 24

v

3.1.2 Results . 24
3.2 Boolean Kalman Smoother . 27

3.2.1 Description . 27
3.2.2 Results . 27

3.3 Particle Filtering Approximation . 29
3.3.1 Description . 29
3.3.2 Results . 29

3.4 Multiple Model Adaptive Estimation 32
3.4.1 Description . 32
3.4.2 Results . 32

4. CONCLUSION . 33

4.1 Time-Correlated Boolean Kalman Filter 33
4.2 Time-Correlated Boolean Particle Filter 34
4.3 R Package: BoolFilter . 34

REFERENCES . 35

APPENDIX 1 . 38

vi

LIST OF FIGURES

FIGURE Page

1.1 p53 Activation/Repression Pathways and State Transitions 2

2.1 Comparison of T-C BKS with naive BKS as Randomness Increases . 15

2.2 Seconds Required for Computation, Various Correlated Filter Types,
100 Observations . 22

3.1 Optimal State Estimator Trajectories, p = 0.01 24

3.2 Optimal State Estimator Trajectories, p = 0.1 25

3.3 Optimal State Estimator Trajectories, p = 0.01, dna dsb = 1 25

3.4 Optimal State Estimator Trajectories, p = 0.1, dna dsb = 1 26

3.5 Comparison of BKS vs BKF Estimate Trajectories 28

3.6 Seconds Required for Computation, Various Naive Filter Types, 100
Observations . 30

3.7 Example Output of MMAE Functionality in BoolFilter 32

4.1 Mammalian Cell Cycle . 38

vii

LIST OF TABLES

TABLE Page

2.1 Performance of the Time Correlated (T-C) BKF and the naive BKF . 14

2.2 Performance of the Time Correlated (T-C) BKF v.s. the T-C Particle
Filter . 21

3.1 Performance of the BKF and the BKS with additive Bernoulli noise . 28

3.2 Performance of the Particle Filter (Varying N) vs. BKF 31

viii

1. INTRODUCTION

1.1 Boolean Regulatory Networks

Genetic interactions are constantly regulated within the cellular environment, and

many, if not all, regulatory networks are essential to cellular function. These complex

interactions are the subject of extensive research by the scientific community, and of

particular interest are regulatory networks that control essential cellular process, such

as cell cycle, stress response, DNA repair, etc. Kauffman introduced the concept of

Boolean Regulatory Networks in 1969 [11], which quickly emerged as a very effective

model of the complex dynamical systems present in cellular networks. This model

consists of genes stable in two transcriptional states - activated or suppressed [12]

[5]. These two discrete states can be represented as a boolean 0 (OFF) or 1 (ON),

and the interactions between discrete time steps are governed by discrete boolean

logical gates. These interactions between states are predefined by the logical gates,

therefore Boolean Regulatory Networks are deterministic in nature. The only hint

off randomness that might exist is in the initial distribution of the states, which can

be modeled using an initial joint probability distribution consisting of all the possible

nodes, each of which has its own unique boolean function, and after that the boolean

network will step through the states in a deterministic fashion [16].

The boolean network model can be expressed as a deterministic vector time series

by

Xk = f (Xk−1) , (1.1)

for k = 1, 2, . . ., and where f : {0, 1}d −→ {0, 1}d is the network function de-

scribed above, e.g. a vector of boolean functions that govern the relationship between

1

discrete time points.

An example of a deterministic boolean regulatory network that is heavily re-

searched is the p53-mdm2 transcriptional network in the presence of DNA double

strand breaks. The gene p53 is key in suppressing unregulated tumor cell replication.

It is worth noting that anywhere from 30 to 50 percent of common human cancers

can be accredited to the loss of p53 functionality [20]. The activated/deactivated pat-

ters for each of the genes p53,MDM2, ATM, and WIP1 summarize the dynamic

in response to a DNA double strand break [1] [13]. In this network, there is clearly

a dimensionality d = 4 and the state at a given time k can be represented as a

boolean vector Xk = (ATMk, p53k,WIP1k,MDM2k), where the subscript k is used

to express the genes value at time k. The additional input representing the DNA

double strand break can be represented with uk = dna dsbk for each time point k.

Figure 1.1 shows the proposed given the boolean network model proposed in [13].

Figure 1.1: p53 Activation/Repression Pathways and State Transi-
tions

In figure 1.1, we see the activation and deactivation interactions between different

2

genes effecting the production of p53 in (a), as well as the boolean state transition

trajectory in normal operation (b) and in the event of a DNA double strand break

(c). From the interactivity pathway diagram, we see that MDM2 has a suppressing

effect on p53, and the presence of p53 can activate MDM2. This is referred to

as the p53 − MDM2 negative-feedback regulatory loop, which is responsible for

keeping p53 at low levels. However, ATM is capable of suppressing MDM2 in the

presence of a DNA double strand break, dna dsb = 1 or figure 1.1.c above. ATM

is the transducer gene for dna dsb, which will cause the normal regulation of p53

via MDM2 to become inactive, due to the suppressing effect that ATM has on

MDM2. This results in oscillatory behavior of the p53 gene through WIP1, and

MDM2. However, given no stress on the network in the form of dna dsb = 1, we can

see that a single attractor, 0000, exists such that all other states are transient. This

is shown in figure 1.1.b. However, we can see in the second case, there is a cyclic

attractor corresponding to the activation of p53, WIP1, and MDM2. Therefore this

boolean network contains two basins of attraction, reliant on the status of the DNA

damage signal dna dsb. This model can be represented as a connectivity matrix, in

which all interactions are represented by a 1, 0, or -1, corresponding to activation,

no connectivity, or suppression respectively, as shown below:

Q =



ATM p53 WIP1 MDM2

ATM 0 0 −1 0

p53 1 0 1 −1

WIP1 0 1 0 0

MDM2 −1 1 1 0



3

1.2 Probabilistic Boolean Networks

There could potentially be multiple competing functions as a predictor of a given

gene, and with this in mind a new idea of how to model the transitions from state to

state is proposed in [17]. In the event that there are multiple potential predictors of

a gene’s next state. At a given time step, any function in a set of potential functions

could be selected for the transition to the next step. In order to compensate for

the inherent uncertainty in attempting to predict a transition, the approach is to

absorb that uncertainty into the predictor itself. The process is to find a series of

genes, based off of sample data, that performs somewhat well in predicting a target

gene. These are combined into a nonlinear network of boolean functions - meaning

a combination of a series of somewhat simple predictors into a larger one capable of

predicting the target genes. [17].

Once a decent idea of the genes that can act as predictors is known, a probabilistic

boolean model can be created in which the dynamic behavior can be modeled with

a Markov chain, allowing us to apply the theory of Markov decision processes to

the network [15]. We said above that a PBN is essentially a collection of boolean

networks, and at any time point the transition to the next time point acts according

to the rules of one of the boolean networks comprising the PBN [16] [17]. This

implies that the ‘governing’ boolean network is chosen at random from a series of

boolean functions according to a fixed and predefined probability distribution. In

this fashion, the inherant uncertainty is compensated for in network transitions, be it

from biological considerations or some other unknown factor. A small probability p

is applied that allows each gene to change randomly at any instant to compensate for

this biological uncertainty. This creates a system in which all states communicate, in

turn creating a completely ergodic Markov chain process with a unique steady state

4

distribution [15] [18].

1.3 Partially Observed Boolean Dynamical Systems

Models have been proposed to extend the concept of Boolean Networks past

compensation of only process noise described above, but also allows us to compensate

for the partial observation of a state variable and random process noise. Such a model

is originally proposed in [3].

1.3.1 State Model of a Partially Observed Boolean Dynamical System

As described above, the state transition can be modeled in such a way to com-

pensate for the inherent process noise in the transition from state to state due to

latent variables and biological interference. We assume this is modeled by a state

process {Xk; k = 0, 1, . . .}, where Xk ∈ {0, 1}d is a Boolean vector of size d. The

evolution of the state process is governed by the equation

Xk = f (Xk−1,uk1) ⊕ nk (state model) (1.2)

for k = 1, 2, Here, nk ∈ {0, 1}d is Boolean transition noise, “⊕” indicates

component-wise modulo-2 addition, uk ∈ {0, 1}p and f : {0, 1}d+p −→ {0, 1}d are

the input and network function, respectively, and {nk,vk; k = 1, 2, . . .} is assumed

to be white noise, e.g. it is independent process in time.

1.3.2 Observation Model of a Partially Observed Boolean Dynamical System

The difference between a Boolean Dynamical System and a Probabilistic Boolean

Network is that a Boolean Dynamical System operates under the assumption that the

system state is only partially observable, and that these observations are taken in the

presence of some sort of measurement or sensor noise. In light of this assumption,

let Yk be the observation of Xk at time k. This defines an observation process

5

{Yk; k = 1, 2, . . .}. The observation Yk is derived from the state variable Xk by the

following equation:

Yk = h (Xk,vk) (observation model) (1.3)

for k = 1, 2, Here, nk ∈ {0, 1}d is Boolean transition noise.

In the Boolean Kalman Filter section, both the state model and observation

model will be combined to yield the proposed signal model for which the Boolean

Kalman Filter is the optimal recursive MMSE estimator.

1.4 Partially Observed Boolean Dynamical System Optimal Estimation

It is well known that if a system is linear with gaussean noise, the optimal recur-

sive MMSE estimator is the Kalman Filter [10]. The extended Kalman filter (EKF)

came about to handle partially observed nonlinear dynamical systems. The EKF ap-

proach is to apply a first order Taylor-series expansion to perform a linearization at

each time step, on which a traditional Kalman filter is applied [9]. However, EKF ap-

proaches cannot be applied to a boolean dynamical system due the non-differentiable

nature of the transition functions. There are a series of derivativeless filters that could

be capable of handling the non-differentiable nature of Partially Observed Boolean

Dynamical Systems, called Sigma-Point Kalman Filters (SPKF) [19], however the

SPKF algorithms are, thusfar, limited to non-discrete distributions. Since the dis-

tributions in Partially Observed Boolean Dynamical Systems are discrete in nature,

the SPKF theory cannot be applied.

The Boolean Kalman Filter [3] and the Boolean Kalman Smoother [8] are the opti-

mal recursive MMSE estimator of these non-linear, derivativeless Partially Observed

Boolean Dynamical Systems. These systems belong to a class of Hidden Markov

6

Models, in which it is well known that a matrix implementation of a backward-

forward procedure is the optimal estimator [2]. The BKF/BKS algorithms share a

striking similarity to these backward-forward estimators that are typically used to

estimate the state of a HMM. However, it is worth noting that there exists an extra

matrix multiplication step that allows for MMSE computation, whereas traditional

HMM estimation is in the Maximum A-Posteriori (MAP) sense. This MAP step

has a tendency to be computationally intensive for high dimensional state spaces.

Also, a unique property of the MMSE in the boolean case provides the MAP in each

boolean state variable seperately, which is not typically a property of the global MAP

estimator.

An approach to Partially Observed Boolean Dynamical System approximation

can be found in Sequential Monte-Carlo Methods, which can approximate the equa-

tions in the nonlinear prediction step. This approach is more commonly referred to

as Particle Filtering [14]. These algorithms are incredibly useful, however they exist

only to serve as approximations of the optimal MMSE estimator [4]. More informa-

tion on the approximation of Partially Observed Boolean Dynamical Systems will

come about later in this document.

7

2. THE PROBLEM OF CORRELATED OBSERVATION NOISE

One of the fundamental assumptions of the Boolean Kalman Filter derived in [3]

is that the noise processes for both the state and observation processes {nk,vk; k =

1, 2, . . .} (discussed in (1.2) and (1.3), combined below in (2.10)) are white noise

processes, uncorrelated in time. However, real-world applications could exist in which

the noise at each time point is not completely uncorrelated in time, but rather

dependent on some auto-regressive process. Here, we develop a modification to

the existing Boolean Kalman Filter to allow for time-dependent noise processes -

specifically a first-order autoregressive time series function, commonly referred to as

an AR(1) process .

2.1 Boolean Kalman Filter in the Presence of Correlated Observation Noise

2.1.1 Boolean Kalman Filter Background

Assume that the system is described by a state process{Xk; k = 0, 1, . . .}, where

Xk ∈ {0, 1}d is a Boolean vector of size d — in the present case of a gene regula-

tory network, the components of Xk represent the activation/inactivation state, at

discrete time k, of the genes comprising the network. The state is observed indi-

rectly through the observation process {Yk; k = 1, 2, . . .}, where Yk is a vector of

measurements. The state is assumed to be updated and observed at each discrete

time through the following nonlinear signal model:

Xk = f (Xk−1,uk) ⊕ nk (state model)

Yk = h (Xk,vk) (observation model)

(2.1)

8

for k = 1, 2, Here, nk ∈ {0, 1}d is Boolean transition noise, “⊕” indicates

component-wise modulo-2 addition, uk ∈ {0, 1}p and f : {0, 1}d+p −→ {0, 1}d are

the input and network function, respectively, whereas h is a general function mapping

the current state and observation noise vk into the measurement space. The noise

processes {nk,vk; k = 1, 2, . . .} are assumed to be “white” in the sense that the noises

at distinct time points are uncorrelated random variables. It is also assumed that

the noise processes are uncorrelated with each other and with the initial state X0.

The optimal filtering problem consists of finding an estimator X̂k = h(Y1, . . . ,Yk)

of the state Xk that minimizes the conditional mean-square error (MSE):

MSE(Y1, . . . ,Yk) = E
[
||X̂k −Xk||2 | Yk, . . . ,Y1

]
(2.2)

at each value of Y1, . . . ,Yk.

The BKF provides the minimum MSE state estimator and may be computed

exactly in a recursive fashion, as shown in [3]. Briefly, let (x1, . . . ,x2d) be an arbitrary

enumeration of the possible state vectors. For each time k = 1, 2, . . . define the

posterior distribution vectors (PDV) Πk|k and Πk|k−1 of length 2d by means of

(Πk|k)i = P
(
Xk = xi | Yk, . . . ,Y1

)
, (2.3)

(Πk|k−1)i = P
(
Xk = xi | Yk−1, . . . ,Y1

)
, (2.4)

for i = 1, . . . , 2d. Let the prediction matrix Mk of size 2d×2d be the transition matrix

of the Markov chain defined by the state mode

(Mk)ij = P (Xk = xi | Xk−1 = xj)

= P
(
nk = xi ⊕ f(xj,uk)

)
,

(2.5)

9

for i, j = 1, . . . , 2d. Additionally, given a value of the observation vector y, let

the update matrix Tk(y), also of size 2d × 2d, be a diagonal matrix defined by the

observation model

(
Tk(Yk)

)
jj

= p
(
Yk | Xk = xj

)
(2.6)

for j = 1, . . . , 2d. Finally, define the matrix A of size d× 2d via A =
[
x1 · · ·x2d

]
.

The following result, which appears in [3], gives a procedure to compute the

MMSE state estimator.

Theorem 1. (Boolean Kalman Filter.) The optimal minimum MSE estimator

X̂k of the state Xk given the observations Y1, . . . ,Yk up to time k is given by

X̂k = E
[
Xk | Yk, . . . ,Y1

]
, (2.7)

where v(i) = Iv(i)>1/2 for i = 1, . . . , d. This estimator and its optimal conditional

MSE can be computed by the following procedure.

1. Initialization Step: The initial PDV is given by (Π0|0)i = P
(
X0 = xi

)
, for

i = 1, . . . , 2d.

For k = 1, 2, . . ., do:

2. Prediction Step: Given the previous PDV Πk−1|k−1, the predicted PDV Πk|k−1

is given by Πk|k−1 = Mk Πk−1|k−1.

3. Update Step: Given the current observation Yk =yk, let βk = Tk(yk) Πk|k−1.

The updated PDV Πk|k is obtained by normalizing βk to obtain a probability

measure: Πk|k = βk/||βk||1.

10

4. MMSE Estimator Computation Step: The MMSE estimator is given by

X̂k = AΠk|k (2.8)

with optimal conditional MSE

MSE(Y1, . . . ,Yk)

= ||min{AΠk|k, (AΠk|k)
c}||1 ,

(2.9)

where the minimum is applied component-wise, and the complement of a vector

v is defined by (vc)i = 1− vi, for i = 1, . . . , d.

2.1.2 Modifications for Correlated Noise

To accommodate the issue of correlated noise, we will augment the existing state

space model of the Boolean Kalman Filter to accommodate the new proposed noise

time dependency. This will effectively double the number of variables in the state

space, all of which will be boolean for this particular application of Bernoulli noise.

In order to accommodate for the correlated noise, we will add a parameter vk to the

state space model that is dependent on vk−1 plus some random Bernoulli perturbation

ηk. This will modify our model from what was previously

Xk = f (Xk−1,uk) ⊕ nk (state model)

Yk = Xk ⊕ vk (observation model)

(2.10)

where vk was independent and identically distributed noise and ⊕ is component-wise

modulo-2 addition (for the boolean case), to a process now dependent on the value

of vk−1. Our new observation model will therefore be modified to where vk is defined

11

as

vk = vk−1 ⊕ ηk (correlated observation model) (2.11)

Overall, the recursive process that the Boolean Kalman Filter utilizes does not

change, however we must re-evaluate what is put into the algorithm, specifically

modifying both the predict matrix Mk (2.5) and the update matrix Tk(y) (2.6).

The new state model is given below:

Xk

vk


︸ ︷︷ ︸

Zk

=

f (Xk−1)

vk−1


︸ ︷︷ ︸

f ′(Zk−1)

⊕

nk

ηk


(2.12)

Where Zk is our new state space defined as:

Zi =
(
Xi,vi

)
Zj =

(
Xj,vj

) (2.13)

Our observation model is now defined by some function h′ (Zk) as shown below.

Yk = Xk ⊕ vk ,︸ ︷︷ ︸
h′(Zk)

(2.14)

This definition of h′ (Zk) shown above (with modulo-2 addition) is specific to

Bernoulli noise.

2.1.2.1 The Predict Matrix: Mk

One of the steps in modifying the existing Boolean Kalman Filtering algorithm

to compensate for and AR(1) correlated noise process is to augment the state space

to include these new boolean variables. This implies that we will add n additional

boolean variables to the state space, where n is the number of genes. Therefore, for

12

the 4 gene p53-mdm2 network, we will have 8 boolean variables to represent each

state in the new transition matrix. This implies that the new transition matrix will

be 22n x 22n. In this new state space, the first n boolean variables will represent

the state of the system, and the second n variables will represent the observation

noise of the system. These two sets of n variables will be binded together to create

the transition matrix Mk (eqn 2.5) in the augmented Boolean Kalman Filter. The

formal definition of each of the entries in the new transition matrix is:

(Mk)ij = p|x
i−f(xj)|1 (1− p)d−|xi−f(xj)|1 q|v

i−vj |1 (1− q)d−|vi−vj |1 (2.15)

Notice that this takes both the process noise parameter p and the observation

noise parameter q into account, whereas the naive Boolean Kalman Filter only ac-

counts for process noise p in the calculation of the matrix Mk.

2.1.2.2 The Update Matrix: Tk(y)

The update matrix Tk(y) (eqn 2.6) is utilized in the update step in the recur-

sive Boolean Kalman Filtering process to calculate the posterior distribution of the

probability of the states within the state space given a particular observation Yk. In

the naive case, the update matrix was derived in much the same way as the predict

matrix, except that it was dependent only on the observation noise probability dis-

tribution and the observation itself. Since this matrix multiplication step gives the

posterior probability of moving to a unique state, as opposed to state-to-state tran-

sition like in the predict matrix, this matrix is diagonal in nature. However, in the

case of correlated noise, we seek out the possible combinations of state variables and

noise that can potentially yield the given observation Yk. This will yield a vector of

0s and 1s, where the 1s are possible combinations of state and observation noise that

13

could produce the given observation. Making a diagonal matrix of this vector and

applying it in the same fashion as the naive Boolean Kalman Filter will yield the

proper posterior distribution of the states for that time point. The formal definition

of the diagonal update matrix is given below:

(Tk)ii =
d∏
j=1

[
1− |Yk(j)− (Xi(j) ⊕ vi(j))|

]
(2.16)

2.1.3 Results

Randomly generated datasets from the p53-MDM2 network transition function

(containing process noise) were generated, and time-correlated observation noise was

applied (using modulo-2 addition) to simulate time-correlated noisy data. This was

used to test the functionality of the Time Correlated BKF in comparison to the naive

BKF. Results are shown in this section - shown as average probability of correct

prediction, and referred to as performance.

First, a comparison of the the performance between the Time Correlated BKF

(T-C BKF) and the Naive BKF, with additive time correlated Bernoulli noise is

shown in table 2.1.

dna dsb = 0 dna dsb = 1

Process
Noise p

Observation
noise q

T-C
BKF

Naive
BKF

T-C
BKF

Naive
BKF

0.01 0.01 0.95 0.41 0.95 0.29

0.01 0.1 0.94 0.56 0.87 0.30

0.1 0.01 0.91 0.28 0.91 0.34

0.1 0.1 0.60 0.15 0.46 0.10

Table 2.1: Performance of the Time Correlated (T-C) BKF and the naive BKF

14

From this table, it is clear that the Correlated Noise BKF significantly outper-

forms the naive BKF in every combination of process and observation noise (where

observation noise is now the parameter ηk shown in the observation model in equa-

tion 4.1).

An interesting phenomena to note is the increase of the correct prediction rate

of the naive BKF as the observation noise increases. This can be accredited to the

increase in randomness as the observation noise parameter approaches 1
2
. Between

the range of ηk = 0.4 to ηk = 0.5 the T-C BKF and the naive BKF take on very

similar prediction rates. This is a logical phenomena, since the randomness in this

range of the applied observation noise effectively removes the correlation, closely

mimicking the randomness that the naive BKF expects. This is shown in figure 2.1

Figure 2.1: Comparison of T-C BKS with naive BKS as Randomness Increases

15

2.2 Boolean Particle Filter in the Presence of Correlated Observation Noise

2.2.1 Particle Filtering Background

As the number of state variables increases, the computation of the BKF becomes

intractable or computationally expensive (due to the large size of transition and

update matrices in the BKF algorithm), and one has to resort to approximation

methods. A common and popular approach for performing this approximation is

called sequential importance sampling (SIS).

Considering the full posterior distribution at time k−1, P (X0:k−1 |Y1:k−1), SIS is

designed to approximate the posterior distribution at time k− 1, P (X0:k−1 |Y1:k−1),

with a weighted set of particles from the state space and update particles for an

approximation of the posterior distribution at the next time step, P (X0:k |Y1:k),

in a recursive manner. The SIS method is based on a concept called importance

sampling, which is commonly used when the direct sampling of target distribution

is difficult. The idea is approximating a target distribution p(x) using sample drawn

from proposed distribution q(x), which is much easier than sampling directly from the

actual target. The discrepancy created by sampling from the proposed distribution

instead of the actual target distribution is compensated by weighing each sample.

Assuming xi as a particle, the weight can be obtained as Wi ∝ π(xi)
q(xi)

, where π(x) is a

function that is proportional to p(x) (i.e. p(x) ∝ π(x)). Thus, importance sampling

approximates the posterior distribution at time k − 1 as:

P (X0:k−1 |Y1:k−1) ≈
N∑
i=1

W̃k−1,i δx0:k−1,i
, (2.17)

where N is the number of particles, W̃k−1,i specifies the normalized weight of the

ith particle (xk−1,i) at time step k − 1 and δx0:k−1,i
is a delta function centered at

16

x0:k−1,i. The key idea of SIS is using the normalized weights {W̃k−1,i}Ni=1 and particles

{xk−1,i}Ni=1 at time k − 1 and approximating the posterior distribution at next time

step (P (X0:k |Y1:k)). The following factorization of the proposal distribution declares

the basis for obtaining the new particles:

q(X0:k | Y1:k) = q(Xk | X0:k−1,Y1:k)

× q(X0:k−1 | Y1:k−1) ,

(2.18)

The above equation implies that the next set of particles can be obtained by sampling

new particles ({xk,i}Ni=1) from q(Xk |X0:k−1,Y1:k), known as the proposal distribu-

tion. After sampling the current particles, the whole set of particles, {x0:k,i}Ni=1 is

created by putting the obtained particles in current time step next to the previous

particles. Note that according to importance sampling, the new weights of particle

can be obtained as:

Wk,i ∝
P (x0:k,i |Y1:k)

q(x0:k,i |Y1:k)
, for i = 1, ..., N . (2.19)

To be able to express equation (2.19) recursively, one can write P (Xk |Yk) based on

P (Xk−1 |Yk−1) as:

P (X0:k | Y0:k)

=
P (Yk | X0:k,Y0:k−1)P (X0:k | Y1:k−1)

P (Yk | Y1:k−1)

=
P (Yk | X0:k,Y0:k−1)P (Xk |X0:k−1,Y1:k−1)

P (Yk |Y1:k−1)

× P (X0:k−1 |Y1:k−1)

=
P (Yk | Xk)P (Xk | Xk−1)

P (Yk | Y1:k−1)
P (X0:k−1 | Y1:k−1) .

(2.20)

17

By substituting equations (2.18) and (2.20) into equation (2.19), the weights of par-

ticles at time step k can be obtained based on the weights at time k − 1 as:

Wk,i ∝
P (Yk |xk,i)P (xk,i |xk−1,i)
q(xk,i |x0:k−1,i,Y1:k)

Wk−1,i , (2.21)

for i = 1, ..., N ; where the particles at time k, xk,i, are drawn from proposal distri-

bution (xk,i ∼ q(Xk |X0:k−1,Y1:k)). Assuming that the proposal at time k is only

a function of the state at time k − 1, (q(Xk |X0:k−1,Y1:k) = q(Xk |Xk−1)), equa-

tion (2.21) can be rewritten as:

xk,i ∼ P (Xk | Xk−1 = xk−1,i),

Wk,i ∝ P (Yk |xk,i)Wk−1,i ,

(2.22)

for i = 1, ..., N . This Using the weights obtained in equation (2.22), the posterior

probability at time k can be approximated as:

P (Xk |Y1:k) ≈
N∑
i=1

W̃k,i δxk,i
. (2.23)

where {W̃k,i}Ni=1 is obtained by normalizing {Wk,i}Ni=1. Note that, the particle filter

with dynamic model P (Xk | Xk−1) as a importance distribution are known as boot-

strap filters [6]. We develop our particle filter based on this importance distribution.

After a few iterations of the SIS method, we can reach a state where only few

of the particles contain a significant amount of the weight, and the wights of all

the other particles are very small. This problem is commonly referred to as the

degeneracy problem. The intensity of the degeneracy can be measured by using the

18

effective sample size which is defined as follows:

Neff =
1∑N

i=1(W̃k,i)2
, (2.24)

Since
∑N

i=1 W̃k,i sum to 1, Neff is between 1 and N . The smaller Neff , the more

degenerate particles are. The most common way of handling the degeneracy problem

is using a ‘resampling’ process. In the resampling process, the new set of particles

will be drawn (with replacement) from the approximate current distribution. Thus,

N new particles will be drawn from the current particles based on their weights and

they will be the new set of particles to approximate the current posterior distribution.

Once the particles are resampled, the process continues recursively as before. Re-

sampling can happen as many times as necessary to maintain the recursive process’

integrity throughout the calculation of the approximation of X.

19

2.2.2 Modifications for Correlated Noise

2.2.2.1 Predicting the Next Time Step

In order to compensate for the correlated noise, the ‘step forward’ step, which

is the SMC (or SIS) approximation of the transition matrix required to calculate

the next time point, needed to be modified. This modification takes the existing

‘step forward’ SIS approach and adds the new dimensions described in our new

observation model. This, once again, doubles the number of dimensions of the ‘step

forward’ step, where the first n dimensions are the states of the genes and the second

n dimensions are the values of the observation noise. These two halves of the state

space are ‘stepped forward’ in their own individual way, by using the model to

step forward the first n gene states and a random Bernoulli perturbation to step

forward the next n observation states. The SIS approximation approach allows for

calculations in significantly higher dimensionality, due to an approximation of the

predicted next step, rather than a direct (and exact) calculation. This approximation

approach dramatically reduces the computation time of lower dimensional networks,

and enables the approximation of higher-order networks that were previously too

dimensionally complex to be calculated in an exact recursive MMSE fashion.

2.2.2.2 Incorporating the Observation

Again, in a similar fashion to the time-correlated Boolean Kalman Filter, the

observation at a given time point is included in the particle filtering approximation

to generate a posterior probability distribution of the next possible states, from which

the most likely next state is the prediction output of the algorithm. This is, again,

implemented in a recursive fashion - the same fashion as the time-correlated Boolean

Kalman Filter for each observation Yk.

20

2.2.3 Results

2.2.3.1 4 Gene Regulatory Network

The Time-Correlated Boolean Kalman Particle Filter results are shown below

in table 2.2. Both the T-C BKF and the T-C PF algorithms were ran and an

optimal estimate/approximation was derived using the same observations Yk, to

ensure performance difference accuracy between the T-C BKF and the T-C PF with

varying levels of particles N . The simulations were ran using the 4-gene p53-MDM2

network described in section 1.1. It is clear that the approximation of the SIS

method does under-perform the MMSE estimate of the Time-Correlated Boolean

Kalman Filter. We can also see that as the number of particles N increases, the

approximation does approach the MMSE value of the T-C Boolean Kalman Filter,

but does not attain it. Past N = 10, 000 the algorithm begins to take a signifiganly

longer amount of time to approximate, and the extra computational intensity of

increasing the particles could potentially be deemed to not warrant the marginal

increase in performance of the T-C Particle Filter.

p q T-C PF
N = 10

T-C PF
N = 100

T-C PF
N = 1000

T-C BKF

0.01 0.01 0.82 0.88 0.94 0.97

0.01 0.1 0.81 0.88 0.91 0.93

0.1 0.01 0.27 0.65 0.86 0.92

0.1 0.1 0.23 0.42 0.55 0.60

Table 2.2: Performance of the Time Correlated (T-C) BKF v.s. the T-C Particle
Filter

21

It is worth noting that one of the main benefits to this SIS approximation algo-

rithm is how much less computationally intensive the approximation method is than

the MMSE method. Figure 2.2 shows, graphically, the difference in computation

times for the performance displayed in table 2.2. The T-C BKF is not extremely

computationally intensive in this 4 genes correlated noise application, despite the

additional dimensionality added by the modifications required to handle the noise

correlation. The T-C BKF requires approximately 2.26 seconds to compute the op-

timal MMSE estimator of X, whereas the T-C Particle Filter (with N = 1000) only

requires 1.242 seconds to compute and approximation that falls within a few percent

error of the optimal estimator.

Figure 2.2: Seconds Required for Computation, Various Correlated Filter Types, 100
Observations

22

2.2.3.2 10 Gene Regulatory Network

It is quickly worth noting that a test of the high-dimensionality application of

the Time-Correlated Particle Filter was implemented. The method was used on

a 10 gene network with additive correlated noise, and the resulting computation

took slightly more than 20 seconds to calculate a single state estimate for a single

observation (with N = 1000). For a 100 observation data set Yk, this implies that

the computation time would be over 2014 seconds, or around 33 minutes, simply to

compute an approximation of the MMSE estimator. The optimal MMSE estimate

of this same 10 gene correlated noise network (which would have a predict matrix

of size 220 x 220) proved too much for a 2013 MacBook Air (with 4 Gb of RAM) to

compute without crashing. Therefore, it is clear that the value of this algorithm lies

in the fact that it at least allows computation of a 10-gene network on this particular

machine, whereas the T-C BKF physically failed to run.

More tests of the particle filtering approximation as applied to a 10-gene network

(in the presence of i.i.d. noise) will be discussed in section 3.3.

23

3. R PACKAGE: BOOLFILTER

3.1 Boolean Kalman Filter

3.1.1 Description

The Boolean Kalman Fliter algorithm is intended to generate an optimal MMSE

estimate of a partially observed boolean dynamical system. The R package can

handle user-defined networks, and is currently capable of handling gaussian and

bernoulli noise.

3.1.2 Results

In order to show the Boolean Kalman Filter in action, the p53-MDM2 model

is first used to generate gene expression data, with additive Bernoulli noise. The

Boolean Kalman Filter output is graphed in figure 3.1 by gene, where the black

is the original trajectory Xk, the blue-dashed trajectory is the optimal estimator

for an observation noise q = .01 and the red-dashed is the optimal estimator for a

observation noise value q = 0.1.

Figure 3.1: Optimal State Estimator Trajectories, p = 0.01

24

Again we yield an optimal estimate, this time increasing process noise to p = 0.1.

This is shown in figure 3.2, and we can see yields a slightly more chaotic estimator,

however the singleton attractor at 0000 still shows through the noise.

Figure 3.2: Optimal State Estimator Trajectories, p = 0.1

Now, we will activate dna dsb and again yield an optimal estimator. We repeat

this experiment for both a low process noise (p = .01), shown in figure 3.3, and high

process noise (p = .01), shown in figure 3.4.

Figure 3.3: Optimal State Estimator Trajectories, p = 0.01, dna dsb = 1

25

Figure 3.4: Optimal State Estimator Trajectories, p = 0.1, dna dsb = 1

26

3.2 Boolean Kalman Smoother

3.2.1 Description

The Boolean Kalman Smoother (BKS) [8] implements a backward/forward ap-

proach to optimally estimating Partially Observed Boolean Dynamical Systems. The

algorithm must be run offline due to the backwards estimation that occurs within

the algorithm. The BKS algorithm takes the existing BKF algorithm and runs it

both from k = 1, 2, ...,m − 1,m and also from k = m,m − 1, ..., 2, 1, developing

an estimation for each time step in both directions, then combining the individual

estimates into one final state estimation, which is typically more accurate than the

uni-directional Boolean Kalman Filter on its own.

3.2.2 Results

A comparison of the accuracy of the estimates from the uni-directional (forward)

Boolean Kalman Filter and the bi-directional Boolean Kalman Smoother is shown in

table 3.1. We can see from the table that the Boolean Kalman Smoother outperforms

the Boolean Kalman Filter in all noise combinations, both in the presence of a DNA

double strand break and not.

A time-series plot of the trajectory estimate (broken down by gene) is shown in

figure 3.5 where the black trajectory is Xk, the blue trajectory is the BKF estimate,

and the red trajectory is the BKS estimate.

27

dna dsb = 0 dna dsb = 1

Process
Noise p

Observation
noise q

BKF BKS BKF BKS

0.01 0.01 0.96 0.98 0.96 0.98

0.01 0.1 0.93 0.96 0.92 0.96

0.1 0.01 0.95 0.96 0.95 0.96

0.1 0.1 0.66 0.77 0.65 0.77

Table 3.1: Performance of the BKF and the BKS with additive Bernoulli noise

Figure 3.5: Comparison of BKS vs BKF Estimate Trajectories

28

3.3 Particle Filtering Approximation

3.3.1 Description

The Particle Filtering approximation is a SIS (SMC) approach to approximating

the optimal Boolean Kalman Filtering MMSE estimate. The Particle Filter uses

SIS methods to approximate a forward transition in time, as opposed to generating

a predict matrix, which generates a step forward in time for the Boolean Kalman

Filter. The benefit of this approach (which is discussed in depth in section 2.2.1)

is that it is significantly faster at generating a close approximation of a smaller

network, and allows for computation of higher dimensionality networks in which the

BKF might fail (due to hardware limitations) or be computationally inefficient (e.g.

taking hours or days to complete).

3.3.2 Results

In this section, the Particle Filtering approximation was implemented on simu-

lated data from the 10-gene mammalian cell cycle regulatory network described in

appendix 1. The optimal MMSE Boolean Kalman Filtering algorithm is capable of

handling a network of this size (as long as the noise is i.i.d.), however the approxi-

mations of the network are quite accurate and run in a fraction of the time. This,

again, is one of the major benefits of the Particle Filtering approximation approach,

we can utilize it to compute networks very quickly that, if run with the BKF, could

take significantly longer to compute. This is shown in the results below. Figure 3.6

shows the difference in computation times for various levels of the N in the parti-

cle filter, compared with the optimal estimation of the BKF. Here, we notice that

the time of computation for a 10-gene network in the Boolean Kalman Filter takes

approximately 140 seconds, or 2.33 minutes. The Boolean Kalman Filter generates

a transition matrix of 210 x 210 for this case. Compare this result to the result of

29

the time-correlated BKF in section 2.2, and we notice that with only 2 additional

dimensions the time of computation increases from 2.268 seconds to the 2.33 minutes

we see here. This shows the exponential rate of computation time required for addi-

tional dimensions. Simply increasing from 8 dimensions to 10 dimensions increases

the computation time by around 6100%.

Figure 3.6: Seconds Required for Computation, Various Naive Filter Types, 100
Observations

Shown in table 3.2 are the performance rates for the Particle Filter at various

values of N , compared to the optimal estimate from the Boolean Kalman Filter.

The results are shown for varying values of process and observation noise. Here,

as in previous instances of the naive BKF and PF algorithms, it appears that the

observation noise is the main issue when deriving an estimate. Even with higher

30

process noise, as long as the observation noise is low the estimate (or approximation)

turns out to be sufficient.

p q Particle
Filter
N = 10

Particle
Filter
N = 100

Particle
Filter
N = 1000

Particle
Filter
N = 10000

Optimal
BKF

0.01 0.01 0.65 0.87 0.90 0.90 0.94

0.01 0.1 0.60 0.80 0.83 0.84 0.85

0.1 0.01 0.32 0.70 0.88 0.90 0.92

0.1 0.1 0.23 0.33 0.36 0.37 0.40

Table 3.2: Performance of the Particle Filter (Varying N) vs. BKF

Another phenomona that is noteworthy here is that the Particle Filtering approx-

imation takes a fraction of the time yet yields approximations that are quite close

to the optimal estimate from the Boolean Kalman Filter. This shows the benefits of

the PF algorithm addressed earlier in this section, as well as section 2.2, in which it

is mentioned that there is a tradeoff between accuracy of the estimate and compu-

tational intensity. In some instances, the Particle Filtering approximation might be

sufficient, despite a slightly less accurate performance, due to hardware constraints

or other factors.

31

3.4 Multiple Model Adaptive Estimation

3.4.1 Description

MMAE uses a bank of Boolean Kalman Filters running in parallel to approximate

various parameters of a model [7]. This process is called systems identification and

is very useful in many applications, not limited to genetic networks.

3.4.2 Results

Below is an example of MMAE performing model selection functionality. In this

example, network 1 was used to generate data, and networks 2 and 3 were randomly

generated connectivity matrices. All 3 networks were fed into the MMAE algorithm

and, as shown in figure 3.7, the algorithm determined that network 1 was the proper

fit to the data with probability very close to 1.

Figure 3.7: Example Output of MMAE Functionality in BoolFilter

32

4. CONCLUSION

4.1 Time-Correlated Boolean Kalman Filter

This document discussed modifications to the naive, i.i.d observation noise Boolean

Kalman Filter discussed in [3] to accommodate noise that is correlated in time, specif-

ically by an AR(1) process. This could be described by the new observation process:

vk = vk−1 ⊕ ηk (correlated observation model) (4.1)

Where ηk is a random Bernoilli perturbation. This modification of the observation

process involved augmenting the state space of the Boolean Kalman Filter to allow

for the the noise at a given time to be considered a variable of the state space,

instead of a random addition to the observation noise process, as in the naive filter.

This doubled the number of variables in the state space, since each state variable of

the process had its own observation noise value. Once the modifications were made

to the state space, the state transition matrix M and the update matrix T could

be derived, and the Boolean Kalman Filtering algorithm was run with these new

parameters.

Interestingly, as the amount of noise added to the AR(1) process (ηk) increased,

the performance of the naive BKF and the Time-Correlated BKF converged in value.

This is due to the fact that with an increasing randomness in the Bernoulli variable

added to the AR(1) process (ηk), the randomness of the (formerly) time correlated

noise becomes almost completely random, which is what the naive BKF expects.

Therefore, as the parameter value approaches 0.5, the performances of the two filters

eventually converge.

33

4.2 Time-Correlated Boolean Particle Filter

The Naive Boolean Kalman Particle Filter modifications are much the same as

the modifications required for the Time-Correlated Boolean Kalman Filter. The

Particle Filter is an approximation method, utilizing a sequential Monte-Carlo ap-

proach to approximating the optimal solution found by the Boolean Kalman Filter.

The modifications were much the same in order to expand the filter to accommodate

time-correlated noise. Augmenting the state space of the particle filter and the ’step

forward’ function of the particles was required to accommodate for the additional

state variables. The update step of the algorithm was modified in the same way as

the Time-Correlated BKF to accommodate for the additional dimensionality of the

added state variables. The particle filter is then run in the same fashion as the naive

sense.

The SMC approach to approximation of the optimal solution allows for signifi-

cantly higher dimensionality. In a test of a 10 gene time-correlated genetic network,

the T-C BKF algorithm failed to run entirely, whereas the particle filter did manage

to approximate a solution, albeit extremely slowly. However, herein lies the value of

the approximation algorithm, it was at least able to derive a solution, whereas the

optimal algorithm crashed and failed to run entirely due to the dimensionality.

4.3 R Package: BoolFilter

This document also addressed a new R package, to be called BoolFilter that will

allow for the easy and free distribution of the work done in the Genomic Signal

Processing Lab at Texas A&M on the subject of POBDS. The package contains a

means of inputting boolean networks in an easy-to-read boolean format, and contains

numerous functions to work with them, including Boolean Kalman Filtering [3],

Boolean Particle Filtering [4], and MMAE [7] algorithms.

34

REFERENCES

[1] Eric Batchelor, Alexander Loewer, and Galit Lahav. The ups and downs of

p53: understanding protein dynamics in single cells. Nature Reviews Cancer,

9(5):371–377, 2009.

[2] Leonard E Baum, John Alonzo Eagon, et al. An inequality with applications

to statistical estimation for probabilistic functions of markov processes and to

a model for ecology. Bulletin of the American Mathematical Society, 73(3):360–

363, 1967.

[3] Ulisses Braga-Neto. Optimal state estimation for boolean dynamical systems.

2011 45th Asilomar Conference on Signals, Systems and Computers, pages

1050–1054, 2011.

[4] Ulisses Braga-Neto. Particle filtering approach to state estimation in boolean

dynamical systems. Global Conference on Signal and Information Processing

(GlobalSIP), 2013 IEEE, pages 81–84, 2013.

[5] Adrien Fauré, Aurélien Naldi, Claudine Chaouiya, and Denis Thieffry. Dynam-

ical analysis of a generic boolean model for the control of the mammalian cell

cycle. Bioinformatics, 22(14):e124–e131, 2006.

[6] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to

nonlinear/non-gaussian bayesian state estimation. Radar and Signal Processing,

IEEE Proceedings F, 140(2):107–113, 1993.

[7] Mahdi Imani and Ulisses Braga-Neto. Optimal gene regulatory network infer-

ence using the boolean kalman filter and multiple model adaptive estimation.

35

2015 49th Asilomar Conference on Signals, Systems and Computers, pages 423–

427, 2015.

[8] Mahdi Imani and Ulisses Braga-Neto. Optimal state estimation for boolean

dynamical systems using a boolean kalman smoother. 2015 IEEE Global Con-

ference on Signal and Information Processing (GlobalSIP), pages 972–976, 2015.

[9] Andrew H Jazwinski. Stochastic Processes and Filtering Theory. Courier Cor-

poration, Mineola, NY, 2007.

[10] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-

lems. Journal of Basic Engineering, 82(1):35–45, 1960.

[11] Stuart A Kauffman. Metabolic stability and epigenesis in randomly constructed

genetic nets. Journal of Theoretical Biology, 22(3):437–467, 1969.

[12] Stuart A. Kauffman. The Origins of Order: Self Organization and Selection in

Evolution. Oxford University Press, New York, NY, 1993.

[13] Ritwik K Layek, Aniruddha Datta, and Edward R Dougherty. From biological

pathways to regulatory networks. Molecular BioSystems, 7(3):843–851, 2011.

[14] Ping Li, Roger Goodall, and Visakan Kadirkamanathan. Estimation of parame-

ters in a linear state space model using a rao-blackwellised particle filter. Control

Theory and Applications, IEEE Proceedings-, 151(6):727–738, 2004.

[15] Ranadip Pal, Aniruddha Datta, and Edward R Dougherty. Optimal infinite-

horizon control for probabilistic boolean networks. Signal Processing, IEEE

Transactions on, 54(6):2375–2387, 2006.

[16] Ilya Shmulevich, Edward R Dougherty, Seungchan Kim, and Wei Zhang. Prob-

abilistic boolean networks: a rule-based uncertainty model for gene regulatory

networks. Bioinformatics, 18(2):261–274, 2002.

36

[17] Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. From boolean to prob-

abilistic boolean networks as models of genetic regulatory networks. Proceedings

of the IEEE, 90(11):1778–1792, 2002.

[18] Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. Gene perturbation and

intervention in probabilistic boolean networks. Bioinformatics, 18(10):1319–

1331, 2002.

[19] Rudolph Van Der Merwe. Sigma-point Kalman filters for probabilistic inference

in dynamic state-space models. PhD thesis, Oregon Health & Science University,

2004.

[20] Robert Weinberg. The Biology of Cancer. Garland Science, New York, NY,

2013.

37

APPENDIX 1: Mammalian Cell Cycle Network

A gene connectivity diagram for the Mammalian Cell Cycle network is shown

below:

Cdc20

Cdh1
CycA

UbcH10

CycE

E2F

Rb

p27

CycD

CycB

Figure 4.1: Mammalian Cell Cycle

With a connectivity matrix as follows:

Q =



CycD Rb p27 E2F CycE CycA Cdc20 Cdh1 UbcH10 CycB

CycD 1 −1 −1 0 0 0 0 0 0 0

Rb 0 0 0 −1 −1 −1 0 0 0 0

p27 0 1 1 1 1 0 0 1 0 0

E2F 0 0 0 0 1 1 0 0 0 0

CycE 0 −1 −1 0 −1 0 0 0 0 0

CycA 0 −1 −1 −1 −1 1 0 −1 1 0

Cdc20 0 0 0 0 0 −1 0 1 1 0

Cdh1 0 0 0 0 0 −1 −1 0 −1 −1

UbcH10 0 0 0 0 0 −1 0 0 1 0

CycB 0 −1 −1 −1 0 0 1 −1 1 0


38

