
QR DECOMPOSITION FRAMEWORK FOR EFFICIENT IMPLEMENTATION

OF LINEAR SUPPORT VECTOR MACHINES USING DUAL ASCENT

A Thesis

by

VENKATA NAGA SAI PRITHVI SAKURU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Rabi N Mahapatra
Co-Chair of Committee, Raktim Bhattacharya
Committee Member, Vivek Sarin
Head of Department, Dilma Da Silva

August 2016

Major Subject: Computer Science

Copyright 2016 Venkata Naga Sai Prithvi Sakuru

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79653597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Support Vector Machines (SVMs) is a popular method to solve standard machine

learning tasks like classification, regression or clustering. There are many algorithms

to solve the linear SVM classification problem. However, only a few algorithms

are optimized on both per iteration cost and convergence. While fast convergence

is essential for solving any optimization problem, per iteration cost is critical in

resource-limited environments like dedicated embedded solutions for machine learn-

ing problems. In this thesis, we propose a novel approach to solve large-scale linear

SVM classification problems. The proposed algorithm has low per iteration cost and

also converges faster than existing state-of-art solvers.

There are two significant contributions from this thesis. First, we analyzed and

improved the performance of the dual ascent (DA) algorithm, which would serve as

the optimizing engine for solving SVM classification problem. An analytical model

to evaluate the optimum step size and synchronization period for solving a generic

quadratic programming optimization problem using DA is presented. Second, we

implement SVM using the improved Dual Ascent algorithm. We also introduce a

novel approach to tackle low dimensional classification problems of large data sizes

via QR decomposition technique.

ii

ACKNOWLEDGEMENTS

First and foremost I would like to express my gratitude to my advisor Dr. Rabi

Mahapatra for the continuous support and motivation throughout the course of re-

search. His experience and knowledge has taught me a lot and made be a better

researcher. Besides my advisor, I would like to thank my committee co-chair Dr.

Raktim Bhattacharya and committee member Dr. Vivek Sarin for their valuable

ideas and inputs without which this research would not have been possible.

I would like to specially thank my fellow labmate Jyotikrishna Dass for all the

stimulating discussions, long meetings relating to the research. These discussions

prompted me to widen my research from various perspectives. Special thanks to

Dr. Kooktae Lee for his insightful thoughts on the research and his motivating

interactions.

I would also like to ackowledge Texas A&M High Performance Research Com-

puting (http://hprc.tamu.edu/) for the computing platform and the resources used

in performing necessary experiments.

Last but not the least I would like to express my heartfelt thanks to my parents,

my sister and my friends for their love, encouragement and support throughout.

iii

NOMENCLATURE

ADMM Alternating Method of Multipliers

AWS Amazon Web Services

DA Dual Ascent Algorithm

DCD Dual Coordinate Descent

EC2 Elastic Cloud Compute

HPC High Performance Computing

IB InfiniBand interconnect

IoT Internet of Things

LAN Local Area Network

LSDA Lazy Synchronized Dual Ascent

MPI Message Passing Interface

QP Quadratic Programming

QR QR decomposition

SMO Sequential minimization optimization

SVM Support Vector Machines

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . x

1. INTRODUCTION . 1

2. RELATED WORK . 4

2.1 Lazily Synchronized Dual Ascent . 4
2.2 QR-SVM Framework . 5

3. LAZILY SYNCHRONIZED DUAL ASCENT 7

3.1 Introduction - Dual Ascent . 7
3.1.1 Dual Decomposition . 8
3.1.2 Quadratic Programming Using Dual Ascent 9

3.2 Proposed - Lazily Synchronized Dual Ascent 11
3.2.1 Stopping Criteria of LSDA . 12
3.2.2 Stability of LSDA . 13
3.2.3 Convergence of LSDA . 14
3.2.4 Optimal Synchronization Period 15
3.2.5 Theoretical Speedup of LSDA 18
3.2.6 LSDA in a Single Processor Environment 20

3.3 Experimental Results . 21
3.3.1 Implementation . 21
3.3.2 Experimental Setup and Hardware 22
3.3.3 Results and Discussion . 23

3.4 Conclusion . 33

v

4. QR - SVM . 34

4.1 Introduction - Support Vector Machines 34
4.1.1 Mathematical Formulation . 36

4.2 Linear SVM . 40
4.2.1 Challenges . 42

4.3 Proposed QR-SVM . 42
4.3.1 Motivation . 42
4.3.2 QR-SVM Formulation for L2-SVM 43
4.3.3 Benefits of QR-SVM . 44

4.4 Optimization Using Dual Ascent . 46
4.4.1 Optimal Step Size of Optimization Algorithm 49

4.5 Complexity Analysis . 51
4.6 Experiments . 51

4.6.1 Results and Discussion . 52
4.7 Conclusion . 58

5. CONCLUSION AND FUTURE WORK 59

5.1 Future Scope . 59

REFERENCES . 61

APPENDIX A. QR DECOMPOSITION . 67

A.1 Householder Transformation . 68

vi

LIST OF FIGURES

FIGURE Page

3.1 Process distribution of a separable QP problem. 10

3.2 Distribution of iterations of dual ascent algorithm with a synchroniza-
tion period P . 12

3.3 Optimal synchronization period, P ∗ as derived in equation (3.16).
Here, A1 = |1− λ(M)P | and A2 = |1− λ̄(M)P |. 17

3.4 Theoretical speedup of LSDA when compared with conventional DA
algorithm. 20

3.5 Block schematic of EOS cluster. Source: Texas A&M High-Performance
Research Computing (http://hprc.tamu.edu/) 24

3.6 Variation of number of iterations to converge with synchronization
period. 25

3.7 Convergence of LSDA algorithm and DA algorithm. LSDA algorithm
approaches the solution significantly faster than DA algorithm. 25

3.8 Convergence of LSDA algorithm with synchronization periods 70(op-
timal) and 100. It was observed that for synchronization period 100,
the convergence is slower than DA algorithm. 26

3.9 Variation of computation time and synchronization period 27

3.10 DA algorithm in AWS platform: total execution time i.e., sum of
computation time and communication time vs cluster size. 28

3.11 LSDA Algorithm in AWS platform: total execution time i.e., sum of
computation time and communication time vs cluster size. 28

3.12 Variation of computation time with cluster size (N) and synchroniza-
tion period (P) . 29

3.13 DA algorithm in HPC platform: total execution time i.e., sum of
computation time and communication time vs cluster size. 31

vii

3.14 LSDA Algorithm in HPC platform: total execution time i.e., sum of
computation time and communication time vs cluster size. 31

3.15 Speedup(AWS) of overall execution time of LSDA with respect to DA
algorithm. 32

3.16 Speedup(HPC cluster) of overall execution time of LSDA with respect
to DA algorithm. 32

4.1 Illustration of SVM classifier. 35

4.2 Illustration of generic classifiers. 35

4.3 Illustration of soft margin SVM. 38

4.4 QR-SVM technique on L2-SVM transforms a 6 × 6 dense and non-
separable coefficient matrix into a sparse block diagonal matrix, where,
the first 2 × 2 block is full rank and the second 4 × 4 block is a
diagonal submatrix. Dense regions are colored. The two blocks in the
transformed matrix on the right are outlined in blue. Here, n = 6 and
d = 2. 45

4.5 QR-SVM framework comprises of two main stages, namely, 1. QR de-
composition of the original input matrix X̂ into Householder reflectors
and a matrix R, and 2. Dual Ascent method to solve the QR-SVM
problem for obtaining the normal w to the hyperplane and identifying
set of support vectors. 47

4.6 QR-SVM scales linearly with number of instances, n in the dataset.
A synthetic dataset with fixed dimensionality, d=18 and increasing n
was used to test scalability with number of instances. 54

4.7 QR-SVM scales quadratically with dimensionality, d of the dataset.
A synthetic dataset with fixed number of instances, n=100,000 and
increasing d was used to test scalability with dimensionality. 54

4.8 Comparision of performance of QR-SVM and LIBLINEAR with di-
mensionality. A synthetic dataset with number of instances fixed at
100,000 and varying dimensionality was used to make this compari-
sion. QR-SVM outperforms LIBLINEAR till a dimensionality of 700. 55

4.9 Convergence of QR-SVM for HIGGS dataset: using QR-SVM we con-
verge to a reasonable value of the optimal cost within 20 iterations. . 55

viii

4.10 Convergence rates of QR-SVM vs LIBLINEAR. QR-SVM converges
relatively faster compared to LIBLINEAR. Here, we illustrate for 250
iterations. LIBLINEAR was not able to converge to the optimal cost
value in 1500 iterations while QR-SVM converged to the optimum in
80 iterations. 56

A.1 Sparsity map of QR decomposition. 68

A.2 Householder transformation on a vector in 2D space. 69

ix

LIST OF TABLES

TABLE Page

4.1 QR-SVM training time details . 56

4.2 Comparison - QR-SVM and LIBLINEAR 57

x

1. INTRODUCTION

With the advancement in computing systems, several industries and organiza-

tions started to invest heavily in data analytics to develop data-driven solutions to

problems such as expenditure balancing, real-time solutions to customer problems,

business intelligence and also to explore new horizons to expand businesses. Ma-

chine learning has also interleaved itself into other areas of science and engineering.

For example, genetic engineers extensively use data analytics for pattern recognition

and gene modeling[22]. Computer architecture community is nowadays adopting

machine learning techniques for branch prediction[13] and malware detection [15].

Hence, there is a constant need to improve the performance of such data analytic

tasks either from an algorithmic perspective or through dedicated computing re-

sources.

Large-scale optimization algorithms are the crux of many statistical and machine

learning problems. Many of the optimization algorithms used in SVM modeling are

iterative in nature. Several researchers target different aspects of the algorithm to

improve the performance further. The classic trade off is the per-iteration cost and

rate of convergence [11]. Most of the existing algorithms fall at the two extremities of

this paradigm. The low per-iteration cost algorithms are used only for developing an

approximate yet reasonable model while the fast convergence algorithms which can

generate highly accurate models require powerful computing systems to deal with

high computation costs. Hence, new algorithms are needed which can both reduce

the per-iteration cost as well as have a quick rate of convergence.

A general shift towards dedicated hardware is observed in the recent years to fur-

ther improve the performance of the optimization algorithms and thereby providing

1

real-time solutions to these data-intensive problems [2, 27]. While a majority of them

target a particular application, a few like [35] target a generic optimization engine

and build a framework for modeling hardware. With the increasing computing power

and rise in popularity of the Internet of Things (IoT), embedded data processors on

smart devices are the need of the future. Such embedded data processors can be

used to obtain meaningful information from the raw data collected by IoT sensor

devices. Smart filtering mechanisms [3] are required in such scenarios to remove un-

necessary/obvious data and only send important data points to the centralized IoT

server. These filters can easily be modeled using embedded data processors. Such

requirements reinforce the need for algorithms with low computation costs and good

convergence rates based on which dedicated hardware can be built.

The future of computing systems is moving from today’s symmetric multiproces-

sors to tightly integrated heterogeneous processor systems and further into exascale

computing [19, 31]. The algorithms should, therefore, be adaptable to distribution,

decomposition and parallelization with each task solving a subproblem in various

multiprocessor architectures. These distributed algorithms rely on synchronization

between processors to maintain consensus and this synchronization accounts for the

majority of communication overhead in the form of idling across processors. This

synchronization overhead in distributed optimization problems can sometimes ac-

count for almost 60% of the total execution times[32] and hence, become a bottleneck

when scaled to a large number of processors. We present a relaxed synchronization

approach to alleviate this communicate bottleneck and thereby improving the per-

formance in distributed environments. As this relaxed synchronization methodology

is generic and at an algorithmic level, distributed environments ranging from massive

supercomputing clusters to small embedded multiprocessors can leverage its benefits.

In this thesis, we explore the capabilities of relaxed synchronization in case of

2

distributed optimization using dual ascent algorithm. This distributed optimization

framework will serve as the computing engine to solve an SVM classification problem.

Based on the need and the nature of the problem, the distributed optimization

framework can be scaled from a single processor to as large as the hardware can

support. In case of single processor system, this relaxed synchronization methodology

manifests itself as a technique to compute the optimal step size.

The main contributions of this thesis are:

1. Formulation of lazily synchronized dual ascent algorithm(LSDA) for solving a

large-scale quadratic programming problem.

2. Experimental validation of the theoretical results to show that the number of it-

erations, and thereby execution time, can be significantly reduced using optimal

step size for an optimization problem. Experimental results from two environ-

ments, 1) cloud cluster on Amazon web services(AWS) and 2) supercomputing

cluster courtesy of Texas A&M High-Performance Research Computing, are be

presented.

3. A novel QR decomposition approach to model the quadratic programming

problem in linear large-scale SVM classifications (QR-SVM) and its solution

via LSDA algorithm formulated in step (1).

4. Analytical derivation of optimal step size for solving QR-SVM in a single pro-

cessor environment.

5. Comparision of performance and accuracy of the newly proposed QR-SVM with

existing state of the art solver using standard, publicly available benchmarks.

3

2. RELATED WORK

2.1 Lazily Synchronized Dual Ascent

Dual Ascent is a standard approach for solving constrained optimization problem

which dates back to 1960s. Recently, due to the advances in computing systems,

there is a renewed interest in proximal techniques like dual ascent(DA), alternating

direction method of multipliers(ADMM), Dykstra’s alternating projections method

and others[9] to solve large distributed optimization problems. Dual Decomposition

is a powerful extension of DA algorithm which distributes the optimization problem

into sub-problems. These sub-problems take the form of broadcast-gather archi-

tecture. Dantzig et.al [14] popularized dual decomposition methods for large-scale

linear programming problems. Nedić et.al [36] discussed this approach in their recent

survey on distributed techniques. Augmented Lagrangian and method of multipli-

ers improve the dual ascent algorithm making it more robust to solve optimization

problems which are not strictly convex[9]. ADMM is a manifestation of the method

of multipliers which has been used in several fields to solve distributed optimization

problems including SVM [45]. Goldstein et.al. [23] proposed some extensions and pa-

rameter selection techniques to improve the performance of ADMM and Alternating

Minimization Algorithms(AMA).

The traditional dual decomposition method of dual ascent does distribute the op-

timization problem. However, it requires us to synchronize after every iteration step.

Lazily Synchronized Dual Ascent(LSDA) relaxes this constraint by synchronizing at

an interval of P , thereby reducing the communication between processor nodes. Our

experiments show that we can reduce the communications up to almost 90% when

dealing with well-conditioned optimization problems. While the LSDA algorithm is

4

developed in the spirit of distributed systems, we can extend the same analytical

results even for a non-distributed, single processor systems. It can be shown that

the analytical derivations in such single processor systems lead to optimal step size

selection (analogous to optimal synchronization period in distributed systems) for

the optimization problem.

In this thesis, we provide analytical derivation to obtain the optimal synchro-

nization period P for the LSDA algorithm and empirically validate these results in

a distributed environment with varying cluster sizes.

2.2 QR-SVM Framework

Support Vector Machines(SVM) close to the current form was introduced by

Boser, Guyon and Vapnik [7] in 1992. Over the next few years, the model was devel-

oped by introducing the kernel trick, loss functions and slack variables to improve the

performance and robustness of the classifiers[5]. However, with the growing dataset

sizes, the performance of SVM solvers hit a snag. To counter these performance

issues, Vapnik [12] suggested a chunking approach to reducing the dataset sizes by

purging non-support vector data points from the training sets. Osuna et.al [18] pro-

posed operating on subsets individually one at a time, while rest of the data points

and their weights are left unchanged. One of the most prominent contributions on

algorithmic enhancements for SVMs was the sequential minimization optimization

(SMO) by Platt [37] which takes the decomposition method proposed by Osuna to

the extreme and optimizes only two points at a time. LIBSVM, which incorporates

SMO, is a popular machine learning library targeted mainly for beginners in the field

of machine learning [10]. There have been several extensions and hybrids of SMO

improving the performance and stability further. One of the prominent modifications

widely used was proposed by Keerthi et.al. [30].

5

Recently, much of the research in this area is targetted towards solving linear

SVM classifiers rather than non-linear classifiers. As clearly explained in [44], for

large scale SVM problems, training a non-linear classifier is a tedious and time-

taking process. It has been observed that for several rich dimensional datasets, the

accuracy of linear SVM classifiers is on par with that of non-linear SVM models. Also,

training linear classifiers is much faster as it does not involve kernel transformations

on the data points. Bottou [8] presented a stochastic gradient descent approach for

solving linear SVM. Joachims [28] introduced a cutting plane method for solving

large-scale linear SVM problems. SVMperf is an implementation of this cutting

plane technique. Hsieh et.al [25] presented a coordinate decent approach for solving

the dual problem of SVM and showed that they outperform other classifiers when

dealing with high dimensional datasets. LIBLINEAR [20] is the publicly available

library which implements this dual coordinate descent (DCD) method. However, it

was found that the dual coordinate descent method is not stable for non-document

datasets especially when the number of dimensions is low [11].

In this thesis, we present a novel QR-SVM approach to solving the dual SVM

problem targeting problems which cannot be solved using DCD method, i.e., datasets

with low dimensionality.

6

3. LAZILY SYNCHRONIZED DUAL ASCENT *

3.1 Introduction - Dual Ascent

Dual Ascent(DA) is an algorithm to solve linear constrained convex optimization

problems. Consider a convex optimization problem

min
x

f(x)

subject to Ax = b

(3.1)

where x ∈ Rn is the primal variable which minimizes the objective function f while

satisfying the constraint Ax = b where A ∈ Rm×n and b ∈ Rn. It should be noted

that the function f : Rn → R is a strict convex function and hence any local minimum

is in fact a global minimum.

The Lagrangian for problem (3.1) is given as

L(x,y) = f(x) + yT (Ax− b) (3.2)

where y ∈ Rm is the Lagrangian or dual variable. The size of dual variable y is

dependent on the number of constraints in the original optimization problem, m.

Solving the optimization problem in (3.1) is equivalent to solving its dual problem

as given below:

max
y

(
inf
x
L(x,y)

)
(3.3)

If y∗ is the optimal solution to the dual problem (3.3) and assuming strong duality

*Part of the content in this chapter is reprinted with permission from “A relaxed synchroniza-
tion approach for solving parallel quadratic programming problems with guaranteed convergence”
by Kooktae Lee, Raktim Bhattacharya, Jyotikrishna Dass, V N S Prithvi Sakuru, and Rabi N
Mahapatra. 30th International Symposium on Parallel & Distributed Processing (IPDPS), c© 2016
IEEE.

7

holds, the optimal primal variable x∗ can be obtained by solving

x∗ = argmin
x
L(x,y∗)

Finally, to solve the optimization problem for x∗ and y∗ the following gradient

steps can be used:

xk+1 = arg min
x
L(x,yk)

yk+1 = yk + ηk(Axk+1 − b)

(3.4)

where ηk > 0 is the step size for the kth iteration. These update steps are contin-

ued till the dual variable y converges to an ε-accurate solution i.e., |yk+1 − yk| ≤ ε.

Notice that the optimization problem considered is an equality constrained problem.

By ensuring each of the dual variable yi is greater than or equal to 0, the dual ascent

algorithm can be extended to inequality constrained (Ax ≤ b) optimization prob-

lem i.e., the update steps for an inequality constrained optimization problem are as

follows:

xk+1 = argmin
x
L(x,yk)

yk+1
i = max(0, ŷk+1

i)

(3.5)

where ŷk+1 = yk + ηk(Axk+1 − b).

3.1.1 Dual Decomposition

Dual Decomposition is a powerful extension of dual ascent algorithm used to

distribute the optimization problem into sub-problems each of which can be solved

in parallel. If the convex function f in (3.1) is separable, then the objective of the

8

minimization problem can be written as

f(x) =
∑
i

fi(xi)

where primal variable x = (x1;x2; ...xi; ...). Each partitioned sub-vector xi can be

updated in parallel without any dependency on other sub-vector partitions.

The coefficient matrix in the constraint equation is trivially separable and can be

written as

A = [A1, A2, ...Ai, ...]

Hence, the update steps in case of dual decomposition can be formulated as:

xk+1
i = argmin

xi

Li(xi,yk)

yk+1 = yk +
N∑
i=1

ηki

(
Aix

k+1
i − b

N

) (3.6)

where N is the number of sub-vector partitions of variable x. As clearly observed

in (3.8), each of the x update can be done in parallel by independent worker nodes.

However, for dual variable update, the components of x from each individual worker

nodes should be gathered. The newly updated value of dual variable should then

again be broadcasted to the worker nodes for the next iteration. Hence, dual decom-

position clearly follows a broadcast-gather architecture in distributed environments.

3.1.2 Quadratic Programming Using Dual Ascent

This section explores a specific example of dual ascent; solving a quadratic pro-

gramming problem using dual ascent. A quadratic programming (QP) problem is an

optimization problem which minimizes or maximizes a quadratic objective function

subject to linear constraints. A standard QP problem can be formulated as

9

Figure 3.1: Process distribution of a separable QP problem.

min
x

1

2
xTQx + cTx

subject to Ax = b

(3.7)

The update steps for solving the QP problem (3.7) using dual ascent are

xk+1 = argmin
xi

Li(xi,yk) = −Q−1(ATyk + c)

yk+1 = yk + ηk(Axk+1 − b)

To apply dual decomposition, the objective function f should be separable. The

objective function in (3.7) is separable if the Q matrix is block diagonal. A block

diagonal matrix Q would imply that the components of x pertaining to one block

are independent of the components in the other block and hence can be solved in

10

parallel. The update steps in case of a block diagonal Q matrix are

xk+1
i = −Q−1i (ATi y

k + ci)

yk+1 = yk +
[N∑
i=1

ηi

(
Aix

k+1
i − b

N

)] (3.8)

where Qi is the ith block in the block diagonal matrix Q. Figure 3.1 pictorially shows

this distribution.

3.2 Proposed - Lazily Synchronized Dual Ascent

This section details the proposed lazy synchronization technique and provides

the analytical analysis of the algorithm for Quadratic Programming (QP) problems.

From equations in (3.8), it is observed that the update equation of y can be in-

terpreted as part of a discrete-time system and the convergence of the iterations

is dependent on the stability of this system. Such analogy between discrete-time

systems and iterative algorithms can be observed in Lee et.al. [33].

In a typical implementation of equation (3.8), x-updates are computed in parallel

and then synchronized to calculate the y-update. This sequence is carried out for

every iteration. Lazy synchronization strategy relaxes this requirement and the x-

updates are synchronized only at certain time period P . Hence, the update equation

of the dual variable y can now be written as

yk+1 = yk +
[N∑
i=1

ηi

(
Aix

tP+1
i − b

N

)]
(3.9)

where tP ≤ k < (t+ 1)P, t ∈ N0

The total iterations can be grouped into synchronization steps and intermediate

11

Figure 3.2: Distribution of iterations of dual ascent algorithm with a synchronization
period P

steps as shown in figure 3.2. So, for a given intermediate iteration i.e., tP ≤ k <

(t+ 1)P , y update is carried out with the most recently updated values of xi, x
tP+1
i .

On reaching the next synchronization step, (t+ 1)P , each individual xi is computed

and communicated across nodes, and the updated values i.e., x
(t+1)P+1
i are now used

for the subsequent y updates during the itermediate iterations.

3.2.1 Stopping Criteria of LSDA

The algorithm is bound to terminate when change in the dual variable is small

defined by

||yk+1 − yk||2 ≤ ε

where ε is the stopping threshold. From equation (3.9), it can be observed that

during intermediate iterations that the change in the dual variable is a constant

determined by xtP+1. Hence, the stopping criterion of the LSDA algorithm can be

12

redefined as ∣∣∣∣∣∣ N∑
i=1

ηi

(
Aix

tP+1
i − b

N

)∣∣∣∣∣∣
2
≤ ε (3.10)

Note that the convergence is bound to occur only on the synchronization steps

when xtP+1 changes to x(t+1)P+1, as x is the only variable in equation (3.10). The

error during the intermediate iterations is fixed and same as that of the error at the

last synchronization step.

3.2.2 Stability of LSDA

Stability of LSDA determines the algorithms ability to converge to the optimal

solution. Increasing the synchronization period, P decreases the amount of commu-

nication between iterations. However, if the period P crosses a certain threshold,

then dual variable y will start to diverge and the algorithm will fail to converge to

the optimum value. The below lemma 1 establishes the stability of LSDA algorithm.

Lemma 1 [32] The dual variable y update for LSDA algorithm is stable if and only

if

ρ
(
I − P

N∑
i=1

ηi(AiQ
−1
i ATi)

)
< 1 (3.11)

where ρ(·) represents the spectral radius.

Proof: Consider a discrete-time dynamic system of the form yk+1 = Ayk + b,

where A is a time-invariant matrix and b is a constant vector. The stability of such

a system is determined by the spectral radius of the matrix A. yk converges to y∗ if

and only if the spectral radius of A is less than 1 i.e., ρ(A) < 1.

From equation (3.8), xtP+1
i = −Q−1i (ATi y

tP
i + ci). Subsituting xtP+1

i in equation

(3.9), the dual variable update equation can be written as

13

yk+1 = yk +
N∑
i=1

ηi

(
− AiQ−1i (ATi y

tP + ci)−
b

N

)
where tP ≤ k < (t+ 1)P

Towards the end of the iterations in a synchronization period i.e. k = (t+1)P−1,

the y update can be analytically written as

y(t+1)P = ytP + P

N∑
i=1

ηi

(
− AiQ−1i (ATi y

tP + ci)−
b

N

)
(3.12)

= ytP + P
N∑
i=1

ηi

(
− AiQ−1i ATi y

tP
)

+ P
N∑
i=1

ηi

(
− AiQ−1i ci −

b

N

)
= ytP − P

N∑
i=1

ηi

(
AiQ

−1
i ATi

)
ytP − P

N∑
i=1

ηi

(
AiQ

−1
i ci +

b

N

)

⇒ y(t+1)P =
(
I − P

N∑
i=1

ηi(AiQ
−1
i ATi)

)
ytP − P

N∑
i=1

ηi

(
AiQ

−1
i ci +

b

N

)
(3.13)

From the above equation (3.13), the stability of LSDA algorithm can be deter-

mined as

ρ
(
I − P

N∑
i=1

ηi(AiQ
−1
i ATi)

)
< 1

3.2.3 Convergence of LSDA

While the stability analysis in section 3.2.2 ensures convergence of LSDA algo-

rithm, convergence to the same optimal solution as that of the conventional dual

ascent algorithm can be proved through the following proposition.

Proposition 1 [32] Given a QP problem and ensuring the stability of LSDA as

defined in lemma 1 for that QP problem, the dual variable y of LSDA algorithm

14

converges to the same optimal value as that of conventional DA algorithm.

Proof: As the stability condition for LSDA algorithm is satisfied, it is bound to

converge to a certain value of dual variable y as t→∞

y∗ = lim
t→∞

y(t+1)P

From equation (3.13)

⇒y∗ =
(
I − P

N∑
i=1

ηi(AiQ
−1
i ATi)

)
y∗ − P

N∑
i=1

ηi

(
AiQ

−1
i ci +

b

N

)
⇒P

(N∑
i=1

ηi(AiQ
−1
i ATi)

)
y∗ = −P

N∑
i=1

ηi

(
AiQ

−1
i ci +

b

N

)
⇒
(N∑
i=1

ηi(AiQ
−1
i ATi)

)
y∗ = −

N∑
i=1

ηi

(
AiQ

−1
i ci +

b

N

)
⇒y∗ = −

(N∑
i=1

ηi(AiQ
−1
i ATi)

)−1 N∑
i=1

ηi

(
AiQ

−1
i ci +

b

N

)
(3.14)

A similar analysis of dual update equation of conventional DA algorithm shown

in (3.8) would result in the same optimal value of dual variable y∗. Hence, it can be

concluded that both LSDA and conventional DA algorithms converge to the same

optimal value of dual variable y∗.

While a direct analytical result of y∗ can directly be obtained from (3.14) itera-

tion are often preferred as calculation of inverse might be expensive and practically

infeasible for large QP problems.

3.2.4 Optimal Synchronization Period

Optimal Synchronization Period, P ∗ corresponds to that synchronization period

with would minimize the communication between the nodes while also ensuring fast

15

convergence of the algorithm. Consider the matrix M =
∑N

i=1 ηiAiQ
−1
i ATi . From

lemma 1, it has been established that the stability of the LSDA is dependent on

the spectral radius of M and that the spectral radius should be less than 1. It

follows that, lower the spectral radius of matrix (I −MP), higher is the stability of

the LSDA algorithm and hence, the algorithm is bound to converge faster. Hence,

the optimal synchronization period of LSDA is that period P ∗ where the spectral

radius is minimum. It should be noted that the domain of P is the set of Natural

numbers i.e., P ∈ N and if P ∗ = 1 then the LSDA algorithm behaves similar to the

conventional DA algorithm.

Theorem 1 [32] For a given separable QP problem, the optimal synchronization

period P ∗ for LSDA algorithm is given as

P ∗ = max arg min
P∈N

max{|1− λ(M)P |, |1− λ̄(M)P |} (3.15)

where M =
∑N

i=1 ηiAiQ
−1
i ATi , λ(·) and nλ̄(·) represent the minimum and maximum

eigenvalues of the matrix respectively.

Proof: The optimal synchronization period P ∗ corresponds to the minimal spec-

tral radius of matrix (I −MP). This can be analytically written as

P ∗ = arg min
P∈N

ρ(I −MP)

16

Figure 3.3: Optimal synchronization period, P ∗ as derived in equation (3.16). Here,
A1 = |1− λ(M)P | and A2 = |1− λ̄(M)P |.

From the definition of spectral radius,

P ∗ = arg min
P∈N

max
v

∣∣∣vT (I −MP)v

||v||2
∣∣∣

= arg min
P∈N

max
v

∣∣∣1− vT (MP)v

||v||2
∣∣∣

= arg min
P∈N

max
v

∣∣∣1− vTMv

||v||2
P
∣∣∣

where v is the eignevector of the matrix (I−MP). Given the symmetric semi-positive

definite matrix M, the below expression is valid

λ(M) ≤ vTMv

||v||2
≤ λ̄(M)

⇒ λ(M)P ≤ vTMv

||v||2
P ≤ λ̄(M)P

Hence, the optimal synchronization period P ∗ is given as

17

P ∗ = arg min
P∈N

max{|1− λ(M)P |, |1− λ̄(M)P |} (3.16)

The maximum of the possible synchronization period is chosen in such cases to

ensure least amount of communication. Figure 3.3 is a graphical presentation of the

expression in (3.16).

3.2.5 Theoretical Speedup of LSDA

To determine the theoretical speedup of LSDA algorithm we use the below defi-

nitions

• k∗DA: the total number of iterations up to termination of Dual Ascent algorithm.

• k∗LSDA: the total number of iterations up to termination of LSDA algorithm.

• tpDA: computation time per iteration of Dual Ascent algorithm.

• tpLSDA: computation time per iteration of LSDA algorithm.

• tcDA: communication time per iteration of Dual Ascent algorithm.

• tcLSDA: communication time per iteration of LSDA algorithm.

• TDA: Total execution time of Dual Ascent algorithm.

• TLSDA: Total execution time of LSDA algorithm.

The total execution time of conventional dual ascent algorithm is given as

TDA = k∗DA(tpDA + tcDA)

and the total execution time of LSDA algiorithm is given as

TLSDA = k∗LSDA

(
tpLSDA +

tcLSDA
P ∗

)
18

We divide the per iteration communication time by the synchronization period P ∗

because out of the total number of iteration we communicate only at time intervals

of P ∗. Hence, the speedup is given as

Speedup =
TDA
TLSDA

=
k∗DA(tpDA + tcDA)

k∗LSDA

(
tpLSDA +

tcLSDA

P ∗

) (3.17)

Substituting rk = k∗DA/k
∗
LSDA, rp = tpDA/t

p
LSDA, rDA = tcDA/t

p
DA and rLSDA =

tcLSDA/t
p
LSDA in (3.17)

Speedup = rkrp

(
1 + rDA

1 + rLSDA

P ∗

)
(3.18)

From equation (3.18), it can be observed that with an increase in the synchro-

nization period, the speedup also increases assuming the ratio of the number of

iterations rk is fixed with the change in synchronization period. Cluster size N de-

fines the number of subproblems the original QP problem is divided into. With an

increase in the cluster size, the amount of computation required on each cluster node

decreases while the communication increases as now we need to synchronize between

larger number of nodes. Hence, the ratio of communication time to computation

time for both DA algorithm (rDA) and LSDA algorithm (rLSDA) increases. But due

to the factor P ∗, it is observed that the speedup tends to increase with cluster size

N as long as the computation time is dominant over communication time. But at a

certain cluster size, communication time dominates over the computation time and

the speedup thereafter tends to flatten out. This trend can be observed in figure 3.4.

19

Computation-
dominant

area

Communication-
dominant

area

Cluster Size N

S
PE

E
D

U
P

Figure 3.4: Theoretical speedup of LSDA when compared with conventional DA
algorithm.

3.2.6 LSDA in a Single Processor Environment

The idea of lazy synchronization is presented mainly targeting distributed en-

vironments where the cluster sizes are greater than 1. However, the concept of

minimum spectral radius for fast convergence can also be applied to dual ascent al-

gorithm in single processor environments. From equation (3.12), substituting N = 1

we get

y(t+1)P = ytP + Pη1

(
− A1Q

−1
1 (AT1 y

tP + c1)− b
)

(3.19)

Redefining Q1 as Q, A1 as A, c1 as c and considering Pη1 as η̄, equation (3.19) is

analogus to a conventional DA update step with a step size of η̄

y(t+1)P = ytP + η̄
(
− AQ−1(ATytP + c)− b

)
By computing the optimal synchronization period as discussed in section 3.2.4 in

this setting, we would obtain optimal step size for the dual ascent algorithm in the

20

form of η∗ = P ∗η.

3.3 Experimental Results

The experiments to validate the analytical results of LSDA algorithm were per-

formed on two different platforms with varying cluster sizes N = {10, 20, 32, 40}.

The QP problem was fixed throughout the experiments. First, the tests were run

on Amazon Cloud Compute cluster platform with conventional gigabit interconnect.

This platform was close to everyday commodity computers connected with gigabit

ethernet connections. The second set of tests were performed in HPC cluster plat-

form which supports InfiniBand Communication. Both LSDA and DA algorithms

converge to the same solution of the dual variable on termination. Irrespective of

cluster size and platform LSDA algorithm consistently outperformed DA algorithm

while converging to the same ε-accurate solution.

3.3.1 Implementation

The LSDA and DA algorithms were implemented in C++11 supported by Ar-

madillo(v5.4002) [39] linear algebra library. The Communication across nodes was

handled via Message Passing Interface (MPICHv3)[42]. Algorithm 1 shows the pseu-

docode for the proposed LSDA algorithm.

The AllReduce method is used for synchronization between the nodes. This

AllReduce operation uses the SUM operator to combine multiple sumLocals to

compute sumGlobal. AllReduce is a blocking operation which implies all the in-

dividual nodes wait till the AllReduce operation is complete, thereby ensuring

guaranteed synchronization when invoked. As clear from the pseudocode line 11,

termination of LSDA algorithm is only dependant on the sumGlobal value which

changes only when the iteration k = tP , where t = 0, 1, 2, 3.... Hence, the LSDA

terminates only during a synchronization step (k = tP) and not during intermediate

21

Algorithm 1 LSDA algorithm

1: function LSDA(Qi,Ai,ci,b,P ,ε,ηi)
2: y ← y0; error ←∞; k = 0;
3: sumLocal← 0̄; sumGlobal← 0̄;
4: while error > ε do
5: if k%P == 0 then
6: xi = −Q−1i (ATi y + ci)
7: sumLocal = ηi(Aixi + b

N
)

8: AllReduce(sumLocal, sumGlobal)

9: y = y + sumGlobal
10: error = |sumGlobal|2
11: k+ = 1

iterations (tP < k < (t+ 1)P).

3.3.2 Experimental Setup and Hardware

Synthetically generated random matrices with values uniformly distributed be-

tween [-1,1] were used as input datasets for QP problem. The problem specifics

are

1. Number of instances, n = 200,000.

2. Step size, η = 0.27.

3. Optimal Synchronization Period, P ∗ = 70.

4. Stopping threshold, ε = 1e-5.

5. Cluster Size, N = {10,20,32,40}

Cluster sizes were chosen such that the data can be evenly distributed among the

cluster nodes i.e., factors of n.

The experiments were run on two different hardware platforms − 1) Amazon

Cloud Platform and 2) HPC Cluster Platform.

22

3.3.2.1 Amazon Cloud Platform

40 node Amazon Web Services(AWS) Elastic Cloud Compute(EC2) instances

were used[26]. The EC2 instances were created using the t2.micro configuration with

each instance backed by Intel Xeon processors with a clock speed of 3.33GHz. Each

instance was supported by 8GB disk memory with 1GB main memory. The instances

were connected using gigabit ethernet and originated from the same data center in

Oregon. This hardware platform was aimed to mimic the commodity computers

connected using basic LAN.

3.3.2.2 HPC Cluster

EOS supercomputing cluster provided by Texas A&M High Performance Research

Computing consists of 8-core 64-bit Nehalem processor. The nodes were connected

by InfiniBand (IB) interconnect with a duplex speed of up to 5 GiB/s. Intel MPI

was used in this case rather than MPICH as it supports IB interconnect. Though

the EOS cluster offers computer nodes up to 314, we restricted the experiments to

40 nodes to ensure a fair comparison with AWS platform. Figure 3.5 shows a block

schematic of the EOS cluster.

3.3.3 Results and Discussion

Results include analysis of 1) Synchronization Period, 2) Computation Time, 3)

Communication Time and 4) Speedup with varying cluster sizes to compare the

performance of LSDA algorithm against DA algorithm.

3.3.3.1 Synchronization Period

The number of iterations skipped between two successive inter-node communica-

tion is defined by the synchronization period P .

http://hprc.tamu.edu/

23

F
ig

u
re

3.
5:

B
lo

ck
sc

h
em

at
ic

of
E

O
S

cl
u
st

er
.

S
ou

rc
e:

T
ex

as
A

&
M

H
ig

h
-P

er
fo

rm
an

ce
R

es
ea

rc
h

C
om

p
u
ti

n
g

(h
tt

p
:/

/h
p
rc

.t
am

u
.e

d
u
/)

24

Figure 3.6: Variation of number of iterations to converge with synchronization period.

Figure 3.7: Convergence of LSDA algorithm and DA algorithm. LSDA algorithm
approaches the solution significantly faster than DA algorithm.

25

Figure 3.8: Convergence of LSDA algorithm with synchronization periods 70(opti-
mal) and 100. It was observed that for synchronization period 100, the convergence
is slower than DA algorithm.

It was observed that synchronization period was the only factor effecting the

number of iterations when stopping threshold (ε) and step size (η) are fixed. The

cluster size should have no effect on the termination of LSDA algorithm as expected.

This is because sumGlobal in Algorithm 1 would remain the same irrespective of the

number of cluster nodes. Figure 3.6 shows the variation of the number of iterations to

converge with cluster size. This is close to the theoretical result shown in figure 3.3.

It is observed that for the synthetic dataset considered the optimal Synchronization

period is 70. Also, from theoretical derivation, it was found that the matrix M for

this dataset (from section 3.2.4) is a scalar value of 0.0143 which leads to optimal

synchronization period to be 70. This validates the theoretical results on optimal

synchronization period.

Figure 3.7 shows the convergence trend of LSDA algorithm (with P = 70) and

26

Figure 3.9: Variation of computation time and synchronization period

DA algorithm. The algorithm converges to the optimal solution y∗ in 211 iterations

while DA took 868 iterations. This behavior validates that LSDA algorithm is both

numerically stable and accurate even with the relaxed synchronizations. Figure 3.8

shows that for synchronization periods much larger than the optimal period, the

conventional DA algorithm might perform better than LSDA algorithm.

3.3.3.2 Computation Time

The time spent in calculations other than the AllReduce step in Algorithm 1 is

considered as Computation time.

Variation with Synchronization Period: For a given cluster size and chang-

ing synchronization period, we observe that computation time follows the similar

trend as that of the number of iterations. This is evident from figures 3.9 and 3.6.

The minimum computation time occurs at a synchronization period of 70 (optimal

value). The variation of computation time with cluster size and synchronization

period can be seen in figure 3.12.

27

Figure 3.10: DA algorithm in AWS platform: total execution time i.e., sum of com-
putation time and communication time vs cluster size.

Figure 3.11: LSDA Algorithm in AWS platform: total execution time i.e., sum of
computation time and communication time vs cluster size.

28

F
ig

u
re

3.
12

:
V

ar
ia

ti
on

of
co

m
p
u
ta

ti
on

ti
m

e
w

it
h

cl
u
st

er
si

ze
(N

)
an

d
sy

n
ch

ro
n
iz

at
io

n
p

er
io

d
(P

)

29

Variation with Cluster Size: Given that the optimal synchronization period

P is 70, the computation time was analyzed with changing cluster sizes at this value

of P . As the cluster size increases, the data load on each cluster minimizes and

hence the computation time decreases as cluster size increases. This is a trend which

can be seen both in LSDA and DA algorithm as shown in 3.10 and 3.11. When

compared with the computation time of DA algorithm, we see a significant decrease.

This decrease is mainly attributed to reduced number of iterations. This trend is

observed irrespective of the platform used as evident from figures 3.13 and 3.14.

3.3.3.3 Communication Time

The time spent in the inter-node communication, i.e. synchronization in case of

LSDA and DA algorithms, is defined as Communication Time.

Figure 3.11 shows communication time of LSDA algorithm with increasing clus-

ter size N . However, this trend is not strictly followed due to other traffic and noise

on the network which is non-deterministic. In HPC platform, we see that the com-

munication time is closer to the expected behavior yet not strictly followed. Figures

3.13 and 3.14 show the communication time in HPC cluster platform.

3.3.3.4 Speedup

Figure 3.15 shows the speedup of execution time which is the sum of computation

time and communication time achieved by LSDA algorithm over the DA algorithm.

We see that a speedup of around 160×(± 12.5) is obtained in case of AWS platform.

It should be noted that the speedup is almost constant. Such flattened speedup is the

theoretically expected trend as observed in section 3.2.5. The flattening of speedup

shows that the cluster sizes selected fell in the communication dominant region. In

the case of HPC cluster platform, we observe a stark difference as the computation

time dominates over the communication time. This domination of the computation

30

Figure 3.13: DA algorithm in HPC platform: total execution time i.e., sum of com-
putation time and communication time vs cluster size.

Figure 3.14: LSDA Algorithm in HPC platform: total execution time i.e., sum of
computation time and communication time vs cluster size.

31

Figure 3.15: Speedup(AWS) of overall execution time of LSDA with respect to DA
algorithm.

Figure 3.16: Speedup(HPC cluster) of overall execution time of LSDA with respect
to DA algorithm.

32

time over the communication time is mainly due to the high performance computing

flavored InfiniBand(IB) interconnect used in the HPC platform for communication.

Figure 3.16 shows the speedup of LSDA algorithm over DA algorithm solving the

same problem as that of AWS cluster in an HPC cluster platform. The speedup

tends to increase as we fall in the computation dominant region, evident from figure

3.14. This validates our theoretical results on speedup in section 3.2.5.

3.4 Conclusion

In this chapter, we introduced a lazy synchronization technique to solve quadratic

programming problem using dual ascent algorithm. Analytical proofs show that this

approach ensures faster convergence of the optimization problem than conventional

DA algorithm. We both analytically and empirically prove that communication time

is greatly reduced using LSDA algorithm. For the experimental data used, we show

that empirically communication time is reduced by almost 99% as we synchronize

only three times in case of LSDA algorithm rather than 868 times in case of DA

algorithm. With the optimal synchronization period, we also reduce the total number

of iteration to converge to an ε-accurate solution. In addition, we also prove both

analytically and empirically that irrespective of the cluster size we would still attain

a constant speedup.

33

4. QR - SVM

4.1 Introduction - Support Vector Machines

Support Vector Machines (SVMs) is a popular machine learning classification

technique first introduced by Boser, Guyon and Vapnik [7]. The primary objective

of an SVM model is to maximize the separation margin between the data points

of different classes thereby forming the best possible separation hyperplane. Hence,

d-dimensional data points are separated by a (d− 1)-dimensional hyperplane. This

method is a form of supervised learning where the class label of each of the data points

is available before the training phase begins. The original SVM was designed for a

binary classification problem. To solve a multivariate (more than 2 classes) classifi-

cation problem two commonly used strategies are one-versus-one and one-versus-all

[6, 17] techniques where multiple SVM models are trained either sequentially or in

parallel.

Though SVM is commonly used to solve classification problems, the idea, i.e.

optimal margin, is not restricted to supervised classifiers alone. There are several

variations like support vector clustering [4], support vector regression [16] and one-

class SVM [40] which solve clustering, regression modelling and anomaly detection

problems respectively.

Figure 4.1 illustrate a simple SVM model of 2-dimensional data where H1 denotes

the 1-dimensional maximal margin hyperplane classifying the data. In figure 4.2,

hyperplanes H2 and H3 also classify the data; however, they are not the best possible

solution with least generalization error. Generalization error in a supervised learning

context indicates the accuracy of the model in predicting the results of unseen data

i.e., out-of-sample error [1].

34

Figure 4.1: Illustration of SVM classifier.

Figure 4.2: Illustration of generic classifiers.

35

The advantages of using SVM as a classification technique apart from the math-

ematical simplicity are:

1. Low generalization error is observed as the model tries to find the maximum

separation margin. This also accounts for robust results as compared against

other classifiers.

2. SVM models can easily handle non-linear data spread using the kernel trick.

3. The support vectors (points which lie on the boundary and determine the hy-

perplane) can be used to differentiate between “interesting” and “non-interesting”

points. These support vectors essentially carry most of the information in the

dataset and can be used in incremental learning [41].

4.1.1 Mathematical Formulation

Given n training data points in d-dimensional space belonging to two classes

{−1,+1} i.e., given data points (x1, y1), (x2, y2) . . . (xi, yi) . . . (xn, yn) where each xi ∈

Rd and yi ∈ {−1, 1}.The objective is to find a vector w and a bias b such that

wTx+ b = 0 (4.1)

is the maximal margin hyperplane.

The values w and b are normalized such that the support vectors (data points on

the boundary) satisfy the equation

|wTx+ b| = 1 (4.2)

The modulus in equation (4.2) is necessary so that the support vectors from

both the classes are considered. Given this normalization, the margin between the

36

hyperplane in (4.1) and support vectors reduces to 1
||w||22

. Hence, the SVM can now

be formulated as a maximization problem:

max
w

1

||w||22

subject to yi(w
Txi + b) ≥ 1 for n = 1, 2, ...n

The above quadratic optimization can be re-written in a more standard mini-

mization problem as

min
w

1

2
wTw (4.3)

subject to yi(w
Txi + b) ≥ 1 for n = 1, 2, ...n

The bias b which is typically associated with the hyperplane can be induced into

the vector w by adding an additional dimensionality to the input data point xi

xi ← [xi; 1] =⇒ w ← [w; b]

Eq (4.3) is often referred to as hard margin SVM where the data points are

linearly separable in the d-dimensional space. However, this is not the case in most

of the real-world classification problems. Hence, hinge loss is introduced into the

objective function to penalize the misclassifications. Such objective functions are

called soft margin SVM. In the case of hard margin SVM (eq (4.3)), there are no

misclassifications to begin with, and hence, no loss function is needed.

A soft margin SVM problem is now an unconstrained minimization problem given

as

37

Figure 4.3: Illustration of soft margin SVM.

min
w

1

2
||w||22 + C

n∑
i=1

ξi(w;xi; yi) (4.4)

where ξi(w;xi; yi) represents the loss function associated with the optimization

problem and C represents the penalty parameter i.e., how much is a data point

penalized for a classification error. Hence, when the penalty parameter C is increased

the classifier becomes more strict. Figure 4.3 illustrates the use of soft margin SVM.

For a low penalty parameter C, the classifier considers the best margin solution even

though there are some data points within the margin. If the penalty parameter was

high, the SVM model would not have allowed such points within the margin.

The common loss functions(ξi) used in SVM training are l1-loss(L1-SVM) or l2-

loss(L2-SVM).

38

l1-loss:

max(0, 1− yiwTxi)

l2-loss:

max(0, 1− yiwTxi)
2

The dual form of optimization problem in (4.4) is

min
α

1

2
αT Ẑα + eTα

subject to L ≤ αi ≤ U

(4.5)

where Ẑ = Z + D, e is a vector with of negative ones, L is the lower bound of

the dual variable and U is the upper bound. Zij = yiyjk(xi,xj) where k represents

the kernel function. For linear-SVM, the kernel function k is the dot product of

the vectors xi and xj. Diagonal matrix D, lower bound L and upper bound U are

dependent of the type of loss function associated with the SVM problem. In case of

L1-SVM, D = 0n, L = 0 and U = C while for L2-SVM, D = diag(1/2C)n, L = 0

and U =∞.

The dual form in (4.5) might not be as intuitive as the primal SVM. However,

there are several advantages of solving the dual form of SVM over the primal SVM.

The dual variable α denotes the hidden weight of each data point in determining the

classifier. If αi is zero, it indicates that the data point xi is towards the interior and

away from the margin and if αi is greater than zero, it shows that xi is a support

vector and is either on or close to the margin. As explained earlier, these support

vectors are useful in decomposition algorithms [43, 24], incremental learning [38, 41].

Another reason for solving the dual problem is to leverage the kernel trick for

39

non-linear classifiers. SVM is essentially a linear classifier. If the data is not linearly

separable, then its mapped to a higher dimensional space where it can be linearly

separable and then an SVM model is trained in that high dimensional space. It is

not easy to transform data to higher dimensional space and sometimes there can

even be infinite number of dimensions. Using the kernel trick, a kernel function k

can be found, such that

k(xi,yi) = 〈ϕ(xi), ϕ(xj)〉

where 〈·, ·〉 represents the inner product and ϕ is the transformation to higher

dimensional space ϕ : Rd → RD. Hence, even without explicit knowledge about ϕ

a non-linear classifier can still be trained by using the function k on the original set

of data points X in the d dimensional space. Though kernel trick is very useful, for

large scale datasets calculating the SVM problem turns computationally infeasible.

Hence, we prefer either solving a linear SVM problem in such cases.

4.2 Linear SVM

Linear SVM involves finding the maximal margin hyperplane in the original input

data space. The kernel function in the dual form of linear SVM in (4.5) takes the

form

k(xi,xj) = 〈xi,xj〉

We can rewrite equation (4.5) specific to linear SVM for l1-loss and l2-loss as

l1-loss:

min
α

1

2
αT
(
diag(y)XXTdiag(y)T

)
α + eTα

subject to 0 ≤ αi ≤ C

40

l2-loss:

min
α

1

2
αT
(
diag(y)XXTdiag(y)T

)
α +

1

2
αT
(1

2C
In

)
α + eTα

subject to 0 ≤ αi ≤ ∞

where X = [xT1 ;xT2 ;xT3 ...xTn], y = {yi ∈ {−1, 1}|i = 1...n} and C is the penalty

parameter. Substituting X̂ = diag(y)X,

l1-loss:

min
α

1

2
αT
(
X̂X̂T

)
α + eTα (4.6)

subject to

 −In
In

α ≤ C

 0n

1n


l2-loss:

min
α

1

2
αT
(
X̂X̂T

)
α +

1

2
αT
(1

2C
In

)
α + eTα (4.7)

subject to − Inα ≤ 0n

L2-SVM provides a simpler constraint formulation which specifies each αi corre-

sponding to each data xi must be non-negative. Moreover, the optimization problem

in L2-SVM is strongly convex and smooth when compared to L1-SVM, which makes

it easier to solve. For these specific reasons we elaborate proposed QR-SVM mainly

for L2-SVM, however, the similar methodology can be extended to L1-SVM as well.

41

4.2.1 Challenges

Matrices X and X̂ are based on the input of SVM classification problem. The

dimension of these matrices is (n × d) where n is the number of input instances

and d is the dimensionality of each data point. In a majority of SVM classification

problems, the number of instances is much larger than the dimensionality of a data

point, i.e. d � n. The X̂X̂T in equations (4.6) and (4.7) is a dense (n × n)

matrix which is tightly coupled and hence can’t be decomposed into independent

sub-problems of smaller size trivially. Working on the whole (n×n) data matrix not

only leads to high computational complexities but also loading this O(n2) matrix to

memory is practically infeasible. Also, the quadratic coefficient matrix X̂X̂T is also

rank deficient and hence non-invertible. This makes the dual ascent algorithm highly

unstable. To address the above issues, we propose QR-SVM framework comprising of

a) QR decomposition technique to efficiently transform the dense coefficient matrix

into a sparse form and b) dual ascent method to solve the above optimization problem

relatively faster than the state of the art solver.

4.3 Proposed QR-SVM

Some basic preliminary concepts of QR decomposition and various algorithms

used to for this decomposition are detailed in appendix A. In this section we first

present the motivation for using QR decomposition in Linear SVM, followed by the

formulation and benefits of proposed QR-SVM framework for L2-SVM.

4.3.1 Motivation

In a majority of SVM classification problems, the number of instances is much

larger than the dimensionality of a data point, i.e. d� n. For such SVM problems,

the input data set X and the corresponding X̂ are tall skinny matrices. On applying

42

QR decomposition on X̂ we get

X̂n×d = Qn×nRn×d

The R matrix from QR decomposition, is an upper triangular matrix of size n×d.

The maximum number of possible non-zero elements in this R matrix is d(d + 1)/2

making it highly sparse when compared to the original matrix X̂ with a maximum of

nd non-zero elements as d� n. So, if we transform the vector α (equations (4.6) and

(4.7)) from the original vector space of the SVM problem to a vector space with basis

defined by the orthogonal matrix Q, i.e. α̂ = QTα , we will be dealing with a much

smaller data matrix in terms of R. This transformation of vector spaces will thereby

sparsify the computations involved in solving the transformed SVM problem. As the

data size reduction is dependent on the ratio of d : n, tall-skinny SVM problems

yield high computation benefits from this QR decomposition approach.

4.3.2 QR-SVM Formulation for L2-SVM

QR decomposition on a TS-dense X̂ factorizes it into two matrices, namely, Q

and R i.e., X̂ = QR. Here, Q is an orthogonal matrix of size n × n and R is a

upper triangular matrix of size n× d. The quadratic programming (QP) problem in

equation (4.7) now becomes

1

2
αT
(
X̂X̂T

)
α +

1

2
αT
(1

2C
In

)
α + eTα (4.8)

=
1

2
αT
(
QRRTQT

)
α +

1

2
αT
(1

2C
In

)
α + eTα

=
1

2
(αTQ)

(
RRT

)
(QTα) +

1

2
αT
(1

2C
In

)
α + eTα

43

On substituting QTα = α̂, cost function of L2-SVM QP problem formulates to

1

2
α̂T
(
RRT

)
α̂ +

1

2
α̂TQT

(1

2C
In

)
Qα̂ + (QT e)

T
α̂ (4.9)

subject to −Qα̂ ≤ 0n

Defining ê = QT e and using QTQ = In,

1

2
α̂T
(
RRT +

1

2C
In

)
α̂ + (ê)T α̂ (4.10)

subject to −Qα̂ ≤ 0n

The QP problem in (4.10) can be interpreted as a combination of two QP problems

where the first QP problem deals with the first d components of the vector α̂ and

the second QP problem targets the next n− d components of the vector α̂.

4.3.3 Benefits of QR-SVM

From (4.10), it can be observed that by transforming the basis of α to αhat, we

were able to move the problem to a vector space where the

In equation (4.10), RRT is a symmetric sparse matrix of size n where the first

d × d submatrix is dense while rest of the elements in the matrix are all zeros. In

other words, coefficient matrix of the quadratic term in equation (4.10) is a block

diagonal matrix comprising of two diagonal blocks: 1) a d× d symmetric and dense

submatrix, (RRT)d+(1/2C)Id and 2) a diagonal submatrix (1/2C)In−d. The benefits

of the proposed QR-SVM formulation are listed below.

1. Sparsity: We have transformed a dense n × n quadratic coefficient matrix

X̂X̂T + (1/2C)In in equation (4.8) to a sparse matrix as in equation (4.10)

which consists of a small dense d × d block, as illustrated in Figure 4.4. The

44

Figure 4.4: QR-SVM technique on L2-SVM transforms a 6 × 6 dense and non-
separable coefficient matrix into a sparse block diagonal matrix, where, the first
2 × 2 block is full rank and the second 4 × 4 block is a diagonal submatrix. Dense
regions are colored. The two blocks in the transformed matrix on the right are
outlined in blue. Here, n = 6 and d = 2.

sparse coefficient matrix in the proposed QR-SVM consumes (d2 + 1)/(n2)

fraction of the memory assigned to the original dense coefficient matrix.

2. Separability: We have also rendered the aforementioned non-separable quadratic

coefficient matrix into a block separable form by using the proposed QR-SVM

formulation. One can exploit this separability to independently solve the two

sub-problems in parallel at each iteration dual ascent algorithm.

3. Invertibility: On applying QR-SVM, the low-rank quadratic coeffcient matrix

becomes block-separable where the two sub-blocks are now invertible. The first

block (RRT)d + (1/2C)Id is full-rank in d and the second block (1/2C)In−d is

trivially invertible. The invertibility of the quadratic coefficient matrix makes

the dual-ascent algorithm stable by allowing the computation of the minimiza-

tion step in equation (4.12).

The proposed QR-SVM formulation can be implemented without any additional

memory compared to the original problem in equation (4.8). The given input data

X̂ can be replaced by the set of d− Householder reflectors (i.e. Q) and the ma-

45

trix R, which together occupy the same nd− memory space as X̂. In addition, it

is observed that one can recover the values of α (to identify corresponding support

vectors) from α̂ by simply pre-multiplying α̂ with series of d− Householder reflec-

tors with a computational cost of O(nd). This cost is a lot cheaper compared to

the O(n2) computational cost incurred if one directly pre-multiplied the matrix Q

instead. Finally, one can efficiently compute the normal w to the linear classifier

by directly pre-multiplying RT to α̂. It is worth noticing that calculation of RT α̂

can be simplified to RT
d α̂d i.e. O(d2), given the special structure of matrix R. The

QR-SVM process workflow is illustrated in Figure 4.5.

4.4 Optimization Using Dual Ascent

As detailed in chapter 3, Dual Ascent (DA) algorithm can be used to solve

Quadratic Programming optimization problems if the quadratic coefficient matrix

is invertible. Both the standard SVM problem in (4.8) and QR-SVM in (4.10) are

QP problems. However, it is not possible to solve the standard SVM problem ((4.8))

directly as quadratic coefficient matrix X̂X̂T + (1/2C)In is rank deficient and not

invertible. In case of QR-SVM, the quadratic coefficient matrix in QR-SVM is in-

vertible and hence can be solved by LSDA algorithm. The Lagrangian L of QP

problem in equation (4.10) is written as follows

L(α̂, β) =
1

2
α̂T
(
RRT +

1

2C
In

)
α̂ + (ê)T α̂ + βT (−Qα̂) (4.11)

where, β ≥ 0n is the Lagrangian dual variable.

Dual ascent update steps for QR-SVM are

46

F
ig

u
re

4.
5:

Q
R

-S
V

M
fr

am
ew

or
k

co
m

p
ri

se
s

of
tw

o
m

ai
n

st
ag

es
,

n
am

el
y,

1.
Q

R
de

co
m

po
si

ti
on

of
th

e
or

ig
in

al
in

p
u
t

m
at

ri
x

X̂
in

to
H

ou
se

h
ol

d
er

re
fl
ec

to
rs

an
d

a
m

at
ri

x
R

,
an

d
2.

D
u

al
A

sc
en

t
m

et
h
o
d

to
so

lv
e

th
e

Q
R

-S
V

M
p
ro

b
le

m
fo

r
ob

ta
in

in
g

th
e

n
or

m
al
w

to
th

e
h
y
p

er
p
la

n
e

an
d

id
en

ti
fy

in
g

se
t

of
su

p
p

or
t

ve
ct

or
s.

47

Step 1: Minimization of Lagrangian

α̂k+1 = arg min
α̂
L(α̂, βk) = −

(
RRT +

1

2C
× In

)−1
(−QTβk + ê) (4.12)

Step 2: Dual variable update

βk+1 = βk + η(−Qα̂k+1) (4.13)

where η > 0 is the step size and the superscript k = 0, 1, 2... is the iteration counter.

β0 is initialized to 0n. To satisfy the inequality constraint on each of the dual variable

βi being non-negative , βi is replaced with max(0, βi) during every iteration.

While the above update equation (4.12) appear as a single operation to calculate

α̂, the actual computation can be distributed among available computation nodes

and calculated in parallel independent of each other. Given the block diagonal struc-

ture of matrix
(
RRT + 1

2C
× In

)
, the update equation (4.12) can be split into two

major subproblem where subproblem 1 computes the first d elements of α̂ and sub-

problem 2 computes the rest of the n−d elements of α̂. Hence, the update equations

of the dual ascent algorithm now become

Step 1: Minimization of Lagrangian

α̂k+1
1 = −

(
RRT

d +
1

2C
× Id

)−1
(−QT

1 β
k + êd)

α̂k+1
2 = −2C(−QT

2 β
k + ên−d)

(4.14)

Step 2: Dual variable update

βk+1 = βk + η(−Qα̂k+1) (4.15)

48

where α̂ = [α̂1; α̂1] and Q = [Q1;Q2]; Q1 ∈ Rn×d and Q2 ∈ Rn×(n−d). The update

equation of α̂2 in is a simple vector arithematic with can be further distributed

trivially.

4.4.1 Optimal Step Size of Optimization Algorithm

The update steps of the dual ascent algorithm in (4.12) and (4.13) can be opti-

mized with respect to step size based on the LSDA formulation based on derivations

in Chapter 3, section 3.2.6. The below lemma and corollary will provide the deriva-

tion for the optimal step size η∗ used in (4.13).

Lemma 2 (Scaling factor for optimal step size) To ensure the minimum number

of iterations involving sequential dual variable update step, the scaling factor P ? for

optimal step size is obtained by

P ? = max arg min
P∈N

max{|1− λmin(M)P |, |1− λmax(M)P |} (4.16)

where, M := η
(
RRT + 1

2C
In

)−1
, η > 0 is step size and λmin(·) and λmax(·) denote

the smallest and the largest eigenvalues of the square matrix M , respectively.

On solving equation (4.16), we get the following result.

Corollary 1 For any η > 0 , the optimal step size η? can be computed using

η? = P ?η, P ? ∈ N (4.17)

where,

P ? =


1 if 0 < λ̄−1 < 2⌊
λ̄−1
⌋

if λ̄−1 ≥ 2

49

and λ̄ = (λmax(M) + λmin(M))/2

Proof:

On plotting the functions f1(P) = |1− λmin(M)P | and f2(p) = |1− λmax(M)P |,

we can observe that the intersection of the above two functions occurs at point

A(λ̄−1, λmaxλ̄
−1 − 1).

max{f1(P), f2(P)} =


1− λmin(M)P if 0 < P ≤ Ax

λmax(M)P − 1 if P > Ax

,where, Ax = λ̄−1

Minimum value of max{f1(P), f2(P)} occurs at point of intersection A. In other

words,

arg min max{f1(P), f2(P)} = Ax.

Since, P ? ∈ N as per Lemma 2, we must ensure that for 0 < Ax < 2, optimal scaling

factor P ? = 1. When Ax ≥ 2, P ? is assigned the highest integral value lesser than

Ax, i.e., P ? =
⌊
λ̄−1
⌋
.

This value which is lesser than Ax ensures that the scaling factor is optimum,

P ?, and will result in optimal step size, η?, leading to stability and convergence

of dual ascent method. It is worth noting that given the special structure of M

comprising of inverse of a block separable sparse matrix (positive semi-definite),

λmin(M) = 2ηC/(1 + 2Cλmax(RR
T)) and λmax(M) = 2ηC . For practical values of

C in the proposed formulation, λmax(M) � λmin(M). Hence, λ̄−1 ≈ 1/(ηC) can be

used as a good approximation for faster convergence of the dual ascent method.

50

4.5 Complexity Analysis

The cost of a single iteration of QR-SVM is the combined computation cost of

the two update steps defined in equations (4.12) and (4.13). Premultiplying Q (or

QT) to a vector v by using Householder reflectors requires O(nd) operations, where

n is the size of vector v and d is the number of Householder reflectors [29]. The cost

of computing each of (−QTβk) in equation (4.12) and (−Qα̂k+1) in equation (4.13)

is O(nd). Given the block diagonal structure of RRT + 1
2C
In, the computation in

equation (4.12) can be split into following:

Subproblem 1: The first d components of α̂k+1 are computed by solving a

system with the d × d coefficient matrix RRT
d + 1

2C
Id. By computing and storing

Cholesky factors of this matrix before starting the iterations, the system can be

solved in O(d2) operations. Cholesky factorization of the coefficient matrix is one

time calculation that is carried out in the beginning of the dual ascent algorithm at

cost of O(d3).

Subproblem 2: Calculation of the remaining (n−d) components of α̂k+1 requires

O(n− d) ≈ O(n) operations since d� n.

The overall computation cost of update equation (4.12) is O(nd + d2). Also,

the computation cost of equation (4.13) is trivially O(nd). Combining the above

two computation cost for equations (4.12) and (4.13) and including the initial QR

decomposition cost, we see that QR-SVM using dual ascent method requires O(nd2+

knd) operations where k is the number of iterations. The trend is empirically validate

in section 4.6.1.2.

4.6 Experiments

The experiments of QR-SVM were performed on a uniprocessor system with

LSDA algorithm optimized to work with optimal step size as discussed in sections

51

3.2.6 and 4.4.1. Given the block diagonal structure of the quadratic coefficient ma-

trix in QR-SVM formulation, the implementation of LSDA algorithm in QR-SVM

framework can be extended to multiprocessor systems for additional computational

benefits.

The experiments were conducted in three phases. The first phase involved testing

the performance of the QR-SVM on synthetic datasets of varying sizes, i.e. to test

the scalability of QR-SVM with data sizes. The second and third phases involved

comparision of QR-SVM with the state of the art solver, LIBLINEAR[20]. In the

second phase, we compared the convergence trends of the two algorithms while in

the third phase, the performance and accuracies were compared. We also tried to

compare with other solvers like SVM light[28] and LIBSVM[10]. However, the time

taken to converge for these libraries was too long. Also, it must be pointed out that

the LIBLINEAR algorithm was set to terminate at a preset maximum number of

iterations. The result at the end of this maximum iteration was used to compare

with QR-SVM.

QR-SVM was implemented in C/C++ to ensure a fair comparison with the im-

plementation of LIBLINEAR which is also implemented in C/C++ and is available

as an open source library. The linear algebra computations in QR-SVM were han-

dled using armadillo library[39]. Both the programs were run on a single core of an

8-core Intel Nehalem processor with 12GB memory.

4.6.1 Results and Discussion

4.6.1.1 Scalability of QR-SVM with data sizes

Scalability with n: The effect on training time of QR-SVM was analyzed us-

ing a synthetic dataset with a fixed dimensionality, d=18 and increasing number of

instances, n. It is observed that QR-SVM training time increases linearly with the

52

number of data points as shown in Figure 4.6. As a result, our proposed framework

is capable of handling growing data sizes efficiently making it suitable for big data

applications.

Scalability with d: With increasing dimensionality or the number of features

in a data point, the training time of QR-SVM is observed to grow quadratically as

shown in Figure 4.7. This trend validates our discussion in section 4.5. However,

as we are addressing the low dimensional problem space through the proposed QR-

SVM framework, the benefits from the fast overall convergence rate of the algorithm

outweighs the quadratic cost. Using the same benchmarks, we compared the perfor-

mance of QR-SVM and LIBLINEAR and observed that for a dataset with 100k data

points, LIBLINEAR tends to outperform QR-SVM when the number of dimensions

increases beyond 700. This trend can be observed in Figure 4.8. It should be noted

that this dimensionality threshold (dt) of 700 is not fixed and is dependent on the

number of instances. By increasing the number of instances, the value of dt tends to

increase.

4.6.1.2 Comparison with LIBLINEAR - Convergence of QR-SVM

As shown in Figure 4.9, it was observed that for most of the problems, we can

reach a reasonable value of the objective function within 10 iterations of dual ascent

method. Figure 4.10 compares the convergence rates of QR-SVM with LIBLINEAR.

QR-SVM was able to converge to the optimal cost of the objective function for

HIGGS dataset[34] within 80 iterations while LIBLINEAR couldn’t converge even

after 1500 iterations.

4.6.1.3 Comparison with LIBLINEAR - Performance and accuracy of QR-SVM

A few benchmark datasets were picked up from standard SVM repository[10, 34].

We selected datasets for binary classification problems which were low in dimension-

53

Figure 4.6: QR-SVM scales linearly with number of instances, n in the dataset. A
synthetic dataset with fixed dimensionality, d=18 and increasing n was used to test
scalability with number of instances.

Figure 4.7: QR-SVM scales quadratically with dimensionality, d of the dataset. A
synthetic dataset with fixed number of instances, n=100,000 and increasing d was
used to test scalability with dimensionality.

54

Figure 4.8: Comparision of performance of QR-SVM and LIBLINEAR with dimen-
sionality. A synthetic dataset with number of instances fixed at 100,000 and varying
dimensionality was used to make this comparision. QR-SVM outperforms LIBLIN-
EAR till a dimensionality of 700.

Figure 4.9: Convergence of QR-SVM for HIGGS dataset: using QR-SVM we con-
verge to a reasonable value of the optimal cost within 20 iterations.

55

Figure 4.10: Convergence rates of QR-SVM vs LIBLINEAR. QR-SVM converges
relatively faster compared to LIBLINEAR. Here, we illustrate for 250 iterations.
LIBLINEAR was not able to converge to the optimal cost value in 1500 iterations
while QR-SVM converged to the optimum in 80 iterations.

ality but large with respect to the number of data points, i.e., datasets which fit the

tall-skinny topology. The selected benchmarks were split into training and testing

datasets either as recommended in the repository or with a ratio of 85:15 otherwise.

In Table 4.1, we show the QR decomposition time (tQR), dual ascent iterations time

(tDA) and the overall training time (tQR + tDA) for the selected benchmarks.

Table 4.1: QR-SVM training time details

Dataset Size n d tQR (s) tDA (s)
tQR + tDA

(s)

skin nonSkin 3.2 MB 200,000 3 0.50 0.81 1.31

covtype.binary 75.2 MB 500,000 54 14.64 30.61 45.25

SUSY 2.39 GB 4,500,000 18 14.82 365.53 380.35

HIGGS 8.04 GB 10,500,000 28 89.05 642.30 731.35

56

Table 4.2: Comparison - QR-SVM and LIBLINEAR

Dataset

Training

Time

QR-SVM

Training

Time LIB-

LINEAR

Speedup

Testing

Accuracy

QR-SVM

Testing

Accuracy

LIBLINEAR

skin nonSkin 1s 42s∗ 42× 92.42 77.76

covtype.binary 45s 3m 46s∗ 5× 63.23 61.94

SUSY 6m 20s 47m 2s∗ 7× 78.71 78.74

HIGGS 12m 11s 2h 37m 37s∗ 13× 64.06 63.34

∗ Convergence not achieved in 1500 iterations.

Table 4.2 presents the comparison between the training time and the testing

accuracy of the QR-SVM with those of LIBLINEAR. In this work, our focus is on

improving the convergence time of linear SVC problems. It can be observed that the

proposed QR-SVM framework allows for fast training of SVC model compared to

LIBLINEAR while providing relatively better testing accuracy for linear classifiers.

The stopping thresholds of both QR-SVM and LIBLINEAR were set to 0.01 i.e., if ck

is the value of cost function in equation (4.8) at the kth iteration, then the algorithm

will converge at the criterion |ck+1 − ck| ≤ 0.01. As mentioned earlier, Fan’s[20]

LIBLINEAR implementation was designed to stop at a preset maximum iteration.

We chose the termination count as 1500 for our evaluation. We observed that for all

the benchmark datasets used, LIBLINEAR implementation prematurely terminated

at the maximum iteration count even before converging to the optimal solution. For

the proposed QR-SVM, convergence was achieved much faster in a relatively smaller

number of iterations. The convergence comparison for HIGGS dataset is shown in

Figure 4.10.

57

4.7 Conclusion

In this chapter, we proposed a QR decomposition framework for linear support

vector classification problems that uses Householder transformation to convert a

dense, non-separable and low-rank matrix to a highly sparse and separable matrix,

with invertible subproblems. In addition, we provide optimal step size for solving

dual ascent method for faster convergence. We experimentally demonstrate that the

proposed QR-SVM framework scales linearly with dataset size n making it suitable

to handle big data problems with a tall-skinny structure.

58

5. CONCLUSION AND FUTURE WORK

In this thesis, we presented a novel implementation of SVM classification problems

via a QR decomposition framework. In the process of formulating this framework, we

also explored the concept of relaxed synchronization and improved the traditional

dual ascent algorithm. Below is a summary of the research contributions of this

thesis.

1. An analytical model of lazily synchronized dual ascent algorithm for solving

quadratic programming problem with the derivation for optimal synchroniza-

tion period was introduced. The strategy presented not only reduced the com-

munication between distributed compute nodes but also improved the rate of

convergence of the algorithm. Experimental results were presented to validate

all the theoretical conclusions.

2. A QR decomposition framework for solving large-scale SVM classification prob-

lems with low dimensionality was formulated. Leveraging the benefits of LSDA

algorithm, we experimentally showed that the QR-SVM formulation outper-

formed the state of the art solver - LIBLINEAR. A through complexity analysis

of this algorithm was also presented which showed that the algorithm’s execu-

tion time scales linearly with the number of data points in the dataset.

5.1 Future Scope

Currently, the QR-SVM framework has been implemented to run efficiently in

uniprcessor systems with a potential parallelization which would yield additional

benefits. The next step in the process of improving QR-SVM is to move towards

59

a parallelized version of QR-SVM by distributing the iterative update calculations

during the optimization stage.

In the future, we also plan to explore other machine learning tasks which involve

solving a QP problem and validate the efficiency of LSDA algorithm in solving those

tasks. Eventually, we plan to use LSDA as an optimizing engine and develop ded-

icated hardware to further improve the performance of solving these data intensive

machine learning problems. Such dedicated hardware solutions can be built in two

stages

• The optimizer module which is an implementation of LSDA algorithm in a

generic form. This module can be reused based on the higher level application

the hardware is targetted to solve.

• The application module which is an application specific hardware which is ded-

icated to solving higher level tasks. In the case of QR-SVM, this module is

expected to QR decompose a data matrix into the R matrix and the House-

holder reflectors, and pass on this information to the optimizer module.

Such a solution is modular as the optimizer module remains fixed irrespective of

application the hardware is expected to solve. The application module, on the other

hand, is more specific to the task and needs to be swapped in and out based on the

high-level application.

60

REFERENCES

[1] YS Abu-Mostafa, M Magdon-Ismail, and HT Lin. Learning from data, volume 4.

AMLBook Singapore, 2012.

[2] Shereen Moataz Afifi, Hamid Gholamhosseini, and Roopak Sinha. Hardware

Implementations of SVM on FPGA : A State-of-the-Art Review of Current

Practice. International Journal of Innovative Science Engineering and Technol-

ogy (IJISET), 2(11), 2015.

[3] Mohammad A. Alsheikh, Shao W. Lin, Dusit Niyato, and Hp Tan. Machine

Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applica-

tions. IEEE Communications Surveys & Tutorials, 16(4):1996–2018, 2014.

[4] Asa Ben-Hur, David Horn, Hava T Siegelmann, and Vladimir Vapnik. Support

vector clustering. Journal of Machine Learning Research, 2:125–137, 2001.

[5] Kristin Bennett and O. L. Mangasarian. Robust linear programming discrim-

ination of two linearly inseparable sets. Optimization Methods and Software,

1(1):23–34, 1992.

[6] Christopher M Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006.

[7] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A Training

Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual

ACM Workshop on Computational Learning Theory, pages 144–152, New York,

New York, USA, jul 1992. ACM Press.

61

[8] Léon Bottou. Large-scale machine learning with stochastic gradient descent.

Proceedings of COMPSTAT’2010, pages 177–186, 2010.

[9] Stephen Boyd, N Parikh, B Peleato E Chu, and J Eckstein. Distributed Op-

timization and Statistical Learning via the Alternating Direction Method of

Multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122, jan

2010.

[10] Chih-Chung Chang and Chih-Jen Lin. LIBSVM. ACM Transactions on Intel-

ligent Systems and Technology, 2(3):1–27, apr 2011.

[11] Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate Descent Method

for Large-scale L2-loss Linear Support Vector Machines. Journal of Machine

Learning Research, 9:1369–1398, 2008.

[12] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine

Learning, 20(3):273–297, 1995.

[13] B. J Culpepper and M. Gondree. SVMs for Improved Branch Prediction. Uni-

versity of California, UCDavis, USA, ECS201A Technical Report, 2005.

[14] GB Dantzig and P Wolfe. Decomposition principle for linear programs. Opera-

tions research, 1960.

[15] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waks-

man, Simha Sethumadhavan, and Salvatore Stolfo. On the feasibility of online

malware detection with performance counters. In Proceedings of the 40th An-

nual International Symposium on Computer Architecture - ISCA ’13, volume 41,

page 559, New York, New York, USA, 2013. ACM Press.

[16] Harris Drucker, Christopher J C Burges, Linda Kaufman, Alex J Smola, and

Vladimir Vapnik. Support Vector Regression Machines. In M I Jordan and

62

T Petsche, editors, Advances in Neural Information Processing Systems 9, pages

155–161. MIT Press, 1997.

[17] Kai-Bo Duan and S. Sathiya Keerthi. Which Is the Best Multiclass SVM

Method? An Empirical Study. Multiple Classifier Systems, 3541:278–285, 2005.

[18] E.˜Osuna, R.˜Freund, and F.˜Girosi. An Improved Training Algorithm for Sup-

port Vector Machines. Neural Networks for Signal Processing VII — Proceedings

of the 1997 {IEEE} Workshop, pages 276˜–˜285, 1997.

[19] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-stover. GPU Cluster

for High Performance Computing. IEEE Supercomputing, 00(1):47, 2004.

[20] C.-J Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin. LIBLINEAR:

A library for large linear classification. Journal of Machine Learning Research,

9:1871–1874, 2008.

[21] Walter Gander. Algorithms for the qr decomposition. In Seminar für Ange-

wandte Mathematik: research report, 1980.

[22] David Goldberg and John Holland. Genetic Algorithms and Machine Learning.

Machine Learning, 3:95–99, 1988.

[23] T O M Goldstein, Brendan O Donoghue, Simon Setzer, and Richard Baraniuk.

Fast alternating direction optimization methods. SIAM Journal of Imaging

Sciences, 7(3):1588–1623, 2014.

[24] Hans Peter Graf, Eric Cosatto, Leon Bottou, Igor Durdanovic, and Vladimir

Vapnik. Parallel Support Vector Machines : The Cascade SVM. In Advances

in Neural Information Processing Systems, pages 521–528, 2005.

[25] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sun-

dararajan. A Dual Coordinate Descent Method for Large-scale Linear SVM. In

63

Proceedings of the 25th International Conference on Machine Learning - ICML

’08, number 2, pages 408–415, New York, New York, USA, jul 2008. ACM Press.

[26] Amazon Web Services Inc. Amazon elastic compute cloud documentation, 2015.

[27] Kevin M. Irick, Michael DeBole, Vijaykrishnan Narayanan, and Aman Gayasen.

A hardware efficient support vector machine architecture for FPGA. Proceed-

ings of the 16th IEEE Symposium on Field-Programmable Custom Computing

Machines, FCCM’08, pages 304–305, 2008.

[28] Thorsten Joachims. Training linear svms in linear time. In Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 217–226. ACM, 2006.

[29] Steven G. Johnson. 18.335J - Introduction to Numerical Methods, Fall 2010.

MIT OpenCourseWare: Massachusetts Institute of Technology, 2010.

[30] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improve-

ments to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computa-

tion, 13(3):637–649, mar 2001.

[31] Peter Kogge, K Bergman, S Borkar, Dan Campbell, W Carson, W Dally, M Den-

neau, P Franzon, W Harrod, K Hill, Jon Hiller, Mark Richards, and Allan

Snavely. ExaScale Computing Study : Technology Challenges in Achieving Ex-

ascale Systems. Government Procurement, TR-2008-13:278, 2008.

[32] Kooktae Lee, Raktim Bhattacharya, Jyotikrishna Dass, VNS Prithvi Sakuru,

and Rabi N Mahapatra. A relaxed synchronization approach for solving paral-

lel quadratic programming problems with guaranteed convergence. Parallel &

Distributed Processing (IPDPS), 2016 IEEE 30th International Symposium on,

p. to appear, IEEE, 2016.

64

[33] Kooktae Lee, Raktim Bhattacharya, and Vijay Gupta. A switched dynami-

cal system framework for analysis of massively parallel asynchronous numerical

algorithms. Proceedings of the American Control Conference, 2015-July:1095–

1100, 2015.

[34] M. Lichman. UCI machine learning repository, 2013.

[35] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdan-

bakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. Tabla: A unified template-

based framework for accelerating statistical machine learning. In 2016 IEEE In-

ternational Symposium on High Performance Computer Architecture (HPCA),

pages 14–26. IEEE, 2016.

[36] A Nedic and A Ozdaglar. 10 Cooperative distributed multi-agent. Convex

Optimization in Signal Processing and Communications, 2010.

[37] John C Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines. Advances in Kernel Methods Support Vector Learning,

208:1–21, 1998.

[38] S. Ruping. Incremental learning with support vector machines. Proceedings

2001 IEEE International Conference on Data Mining, pages 0–1, 2001.

[39] Conrad Sanderson. Armadillo: An open source c++ linear algebra library for

fast prototyping and computationally intensive experiments. Technical report,

NICTA, 2010.

[40] B Schölkopf, J C Platt, J Shawe-Taylor, a J Smola, and R C Williamson. Es-

timating the support of a high-dimensional distribution. Neural computation,

13(7):1443–1471, jul 2001.

65

[41] Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung. Handling Concept Drifts

in Incremental Learning with Support Vector Machines. In Proceedings of the

Fifth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 317–321, New York, New York, USA, aug 1999. ACM Press.

[42] The MPI forum. MPI: A Message-Passing Interface Standard. Technical report,

University of Tennessee, Knoxville, TN, USA, 1994.

[43] V N Vapnik. Estimation of Dependences Based on Empirical Data, New York:

Springer-Verlag. 1982.

[44] Guo Xun Yuan, Chia Hua Ho, and Chih Jen Lin. Recent advances of large-scale

linear classification. Proceedings of the IEEE, 100(9):2584–2603, 2012.

[45] Caoxie Zhang, Honglak Lee, and KG Shin. Efficient distributed linear classifica-

tion algorithms via the alternating direction method of multipliers. International

Conference on Artificial Intelligence and Statistics, 2012.

66

APPENDIX A

QR DECOMPOSITION

A matrix decomposition technique to transform a matrix A, into two factor ma-

trices Q and R where Q is an orthogonal matrix and R is an upper triangular matrix.

A = QR

If A is a rectangular matrix of size n× d, then the Q matrix is of size n×n while

the matrix R is of size n × d. Figure A.1 shows the sparsity map of the Q and R

matrix structures.

Some of the techniques to compute the QR decomposition of a matrix are the

Gram-Schmidt process, the Householder’s transformation and Given’s rotation. Each

of the techniques has their own merits and issues[21]. Householder transformation is

particularly chosen for the following merits:

1. Greater numerical stability than Gram-Schmidt process.

2. Smaller memory footprint compared to both Gram-Schmidt and Givens rota-

tion. Using Householder transformation, we can save the Householder reflectors

(rather than the explicit Q matrix) and R matrix in the same memory space

as that of the original matrix A.

3. Less number of arithmatic operations.

4. Efficient to apply Q and QT to a vector (which is the bulk of the calculations

in our formulation detailed in chapter 4.5)

67

Figure A.1: Sparsity map of QR decomposition.

Algorithm 2 QR Decomposition - Householder

1: for k = 1 : d do
2: vk = Ak:n,k
3: vk(1) += sign(x(1))||x||2
4: vk = vk/||vk||2
5: Ak:n,k:d = Ak:n,k:d − 2vk(v

T
kAk:n,k:d)

A.1 Householder Transformation

Householder Transformation is a QR decomposition technique which considers

each column of the original matrix, A as a vector and transforms it into an upper

triangular matrix one column at a time. This upper triangular matrix thus formed

is the R matrix while each of the reflector matrices used in the transformation can

be combined to form the Q matrix of the QR decomposition. The basic idea is to

find the reflector hyperplane corresponding to each of the column vector such that

the reflection of the vector will lie on the axis of the first element, thereby ensuring

zeros on rest of the elements. A simple illustration can be seen in figure A.2.

For a rectangular matrix with d < n, there are d Householder reflectors, i.e. one

68

Figure A.2: Householder transformation on a vector in 2D space.

Algorithm 3 Calculation of QT b - Householder

1: for k = 1 : d do
2: bk:n = bk:n − 2vk(v

T
k bk:m)

for each of the columns. Algorithm 2 corresponds to the QR decomposition of a

matrix using Householder transformations. The computation cost of this algorithm

is O(nd2). Note that the Q matrix is not explicitly computed. We are only computing

and storing the Householder reflectors vk.

After Householder decomposition, the matrix A can be written as a product of

multiple reflector matrices and an R matrix as follows

A = QdQd−1...Q2Q1R

Here, each of Qk is a matrix of size n × n which can be generated using the kth

69

Algorithm 4 Calculation of Qb - Householder

1: for k = d : 1 do
2: bk:n = bk:n − 2vk(v

T
k bk:m)

Householder reflector as

Qk =

 Ik−1 0

0 Fk


n×n

where Fk = I − 2
vkv

T
k

vTk vk

The Q matrix is never explicitly calculated for most practical cases due to large

computation and memory costs. Rather, Q matrix is applied to a vector directly at

a reduced cost of O(nd) as shown in algorithms 3 and 4.

70

