
PREDICTING THREAD CRITICALITY AND FREQUENCY SCALABILITY

FOR ACTIVE LOAD BALANCING IN SHARED MEMORY MULTITHREADED

APPLICATIONS

A Thesis

by

NIMISH GIRDHAR

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Paul Gratz
Committee Members, Jiang Hu

Daniel Jimenez
Head of Department, Miroslav M. Begovic

August 2016

Major Subject: Computer Engineering

Copyright 2016 Nimish Girdhar

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&amp;M Repository

https://core.ac.uk/display/79653589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

With advancements in process technologies, manufacturers are able to pack many

processor cores on a single chip. Consequently, there is a paradigm shift from sin-

gle processor to single chip multiprocessors (CMP). As mobile industry is moving

towards CMPs, the challenge of working in a low power/energy budget while still de-

livering good performance, has taken the precedence. Therefore, energy and power

optimization has become a primary design constraint along with performance in

CMP design space. CMPs get performance benefit from running multithreaded pro-

grams which utilizes Thread Level Parallelism(TLP). But these parallel programs

have inherent load imbalance between threads due to synchronization which de-

grades performance as well as energy consumption. The solution is to develop en-

ergy efficient algorithms which can detect and reduce this imbalance to maximize

performance while still giving energy savings. Dynamic thread criticality prediction

is an approach to detect the load imbalance by identifying the critical threads which

cause performance/energy degradation due to synchronization. Cores running criti-

cal threads can then be run on high power states using Dynamic Voltage Frequency

Scaling, thus balancing the execution times of all thread. But in order to create an

accurate balance and utilize DVFS efficiently, one also needs to know the impact of

voltage/frequency scaling on thread’s performance gain and power usage. Thread

frequency scalability prediction can give a good estimate of the performance improve-

ments that DVFS can provide to each thread. We present an active load balancing

algorithm which uses thread criticality and frequency scalability prediction to get the

maximum possible performance benefit in an energy efficient manner. Results show

that balancing the load in an accurate way can give energy savings as high as 10%

with minimal performance loss as compared to running all cores at high frequency.
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NOMENCLATURE

CMP Chip Multi Processor

MPSOC Multi Processor System On Chip

DVFS Dynamic Voltage Frequency Scaling

TLP Thread Level Parallelism

PCSLB Predicting thread Criticality and frequency Scalability for active

Load Balancing

FS Frequency Scalability

V Voltage

F Frequency

r Pearson’s correlation coefficient

ρ Spearman’s correlation coefficient

SST Sum of Squares Total

SSE Sum of Squares Error

RMSE Root Mean Square Error
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1. INTRODUCTION

Performance growth in past had mostly come from increasing transistor density

with the help of process technology scaling. Performance per watt saw almost an

exponential increase due to the phenomenon known as Dennard Scaling [7]. Through-

out 1990s the microprocessor frequency was the sole metric for performance. In that

era of the Megahertz wars, higher frequency meant a faster and better computer.

With advancements in process technology, the size of the chip decreased while tran-

sistors per chip increased. This together with the continuous frequency increase

boosted the power dissipation to threatening levels. This led to a paradigm shift

to Megawatts war with power becoming a primary design constraint. As speeding

up processor frequency further was no longer an option, computer architects moved

to a new approach. Adding multiple processing cores on the same chip would give

better throughput while keeping the power under the limits. This search for more

performance and limitations of single core processors, gave rise to Chip Multipro-

cessor (CMP) technology. In recent times, manufacturers have tried to put more

and more cores on chip, which gives more performance but on the cost of increased

simultaneous active switching, thus again posing power threats. Recently, mobile

industry has also shown a lot of interest in CMPs, which puts them into more energy

and power constrained environment. This has posed a serious limit to the multi-core

scaling, resulting in some part of the chip inactive most of the time, know as Dark

Silicon [10]. These limitations have caused researchers to move towards more power

and energy efficient designs.

Chip multiprocessors can provide high throughput by utilizing the thread level

parallelism (TLP) in the applications. The programs are split into multiple indepen-
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dent tasks which can run on different cores simultaneously. This puts a great onus on

the software to provide enough parallelism to efficiently use the available resources

on chip. A typical parallel program needs certain constructs such as semaphores,

locks (only certain number of threads are allowed to acquire them, others have to

wait), barriers(all threads have to reach the barrier before any thread can get past

it) and critical sections (executed by only one thread at a time), to maintain the

correctness of the program. The thread stall times caused by these synchronization

primitives can become the bottleneck and determine the overall speed up achieved

by the parallel program, as stated by Amdhal’s law [27]. It also causes wastage of

energy as thread just spins while waiting for other threads.

1.1 Thread criticality prediction

The imbalance between the threads caused by the synchronization constructs dis-

cussed above can cause significant performance and energy degradation. The threads

which are responsible for causing this imbalance are termed as critical threads. The

aim of thread criticality prediction is to identify the critical threads that cause other

threads to wait. These detected critical threads can be potential candidates for var-

ious other performance and power optimization techniques. The critical thread can

be run on a core running on higher frequency [1], migrated to a more advanced and

high performance core [32] in an asymmetric multiprocessor domain or provided with

prioritized resource allocation in a shared resource environment [9]. This research

project focuses on using per core DVFS to scale voltage and frequency [14] [31]. Crit-

ical threads can be run on higher voltage/frequency to get maximum performance

benefit or other non critical threads can be slowed down to save energy. In the

lifetime of a program, multiple different threads can become critical based on the

program behavior, so a dynamic algorithm is more appropriate as it can adapt to
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the varying program characteristics. Bois et al. in [8] have presented an algorithm

which detects the load imbalance by identifying the time spent by a thread in doing

useful work and the number of other threads it causes to wait due to synchroniza-

tion, to determine the criticality of the thread. The core running the critical thread

is then operated on the higher voltage/frequency level to achieve better performance.

This approach however neglects the impact of the voltage/frequency scaling on the

thread’s performance and energy consumption, which makes this algorithm energy

inefficient and inaccurate in achieving a perfect balance.

1.2 Motivation for frequency scalability prediction

Thread criticality prediction alone can not be efficient in making DVFS decisions

as there are phases in the program which do not depend on voltage/frequency scaling

of the core. As described by David et al. in [17] and other works[26],[6], the execution

of a program can be divided into scalable (Tscalable) and non scalable (Tnon scalable)

phases. Frequency scalability factor can be defined as:

FrequencyScalability(FS) =
T scalable

T scalable + T non scalable

0 < FS < 1 (1.1)

Scalable phase of the program can be denoted by the cpu intensive portion which

can be sped up in proportion to frequency scaling, whereas the non scalable part is

due to the memory intensive behaviour caused by off core accesses and thus inde-

pendent of the core frequency scaling. To get more insight, we conducted a study

of the frequency scalability variations in state of the art multithreaded benchmarks,

PARSEC [3] and SPLASH-2 [33], by using the frequency scalability model derived in

section 3. Figures 1.1-1.6 show per core frequency scalability variation of ocean cp,

lu ncb,fmm from SPLASH-2 and bodytrack, dedup, fluidanimate from PARSEC on

a 4 core machine. As can be seen, we can clearly distinguish the scalable and non
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scalable phases of the program. We have also shown the critical thread in each sec-

tion based on the criticality stacks algorithm [8]. It can be seen that there are many

cases where a thread is critical as well as non-scalable, so scaling it to the highest

frequency as done in [8], will not be efficient.

Figure 1.1: Criticality and frequency scalability variation in ocean cp

In order to check how does the thread criticality prediction reacts to the fre-

quency scalability variation, we ran the criticality stacks algorithm [8] on scalable and
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Figure 1.2: Criticality and frequency scalability variation in fluidanimate

non scalable phase for ocean cp benchmark to compare their performance, power and

energy. Figure 1.7 shows that the performance and energy improvement of the crit-

icality stack drops significantly for non scalable phase while still consuming almost

same power and energy. This shows that thread criticality prediction is not sufficient

for making DVFS decisions. To further strengthen the claim, we ran the same ex-

periments but with very low offchip latencies, to neglect the effect of non scalability.

As shown in figure 1.8, the criticality stack performs equally well for scalable and

non scalable phases. This explains that thread criticality prediction neglects the fre-
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Figure 1.3: Criticality and frequency scalability variation in lu ncb

quency scalability variation in the program and thus make wrong scaling decisions

costing heavily on power and energy without getting much performance benefit. This

approach is thus ineffective in attaining a perfect load balance across the threads.

In this work we develop an accurate load balancing algorithm which utilizes thread

criticality and frequency scalability prediction. Determining how thread performance
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Figure 1.4: Criticality and frequency scalability variation in fmm

scales with different voltage/frequency can give useful insights that can be used to

decide an optimal operating point for critical as well as non-critical threads. Such an

algorithm can provide maximum performance benefit while still giving energy and

power savings. On these lines, following are the key contributions of this work:

• We develop a generalized frequency scalability model for state of the art mul-

tithreaded benchmarks using static analysis and curve fitting.
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Figure 1.5: Criticality and frequency scalability variation in dedup

• An accurate load balancing algorithm is orchestrated using thread criticality

[8] and frequency scalability prediction, as provided by the above model.

• We present the performance, power and energy results and compare them with

a famous prior work [15].

The results in section 5 show that having an accurate load balancing algorithm
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Figure 1.6: Criticality and frequency scalability variation in bodytrack

can give energy savings as high as 10% with minimal performance loss as compared

to the upper bound, where all cores run at the highest frequency available.

The rest of the thesis is organized as follows. Section 2 gives a literature sur-

vey of prior work on DVFS, thread criticality and scalability analysis. Section 3

discusses about the static scalability modeling to accurately predict performance of

parallel workloads. Section 4 provides description of our active load balancing algo-

rithm (PCSLB), using thread criticality prediction and scalability model developed

9



Figure 1.7: Performance and energy comparison for scalable and non scalable phase in
ocean cp

Figure 1.8: Performance and energy comparison for scalable and non scalable phase in
ocean cp with low off chip latencies

in section 3. In section 5, we present the experimental setup and results showing the

performance, power and energy analysis of PCSLB and comparison with prior work

[15]. At the end we present the Conclusion and future work in section 6.
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2. PREVIOUS WORK

Performance and power improvements in multicore architectures have been a

widely studied topic. There are many ways researchers have tried to use Dynamic

Voltage and Frequency Scaling to get better performance and save energy. Thread

criticality prediction is one such approach for parallel workloads. This section will

go over some historical works on DVFS followed by the research in the area of thread

criticality prediction and frequency scalability analysis.

2.1 Dynamic voltage frequency scaling on chip multiprocessors

During the ”Megahertz war” around late 90’s, the microprocessor clock frequency

was continuously rising. Intel introduced Pentium 4 in 2000 which could run on clock

frequency as high as 2.8 GHz. This frequency rise along with increasing transistors

on chip, adversely affected the clock distribution network complexity. To get around

this problem and continue increasing the clock frequency further, researchers started

migrating from single clocked globally synchronous systems to globally-asynchronous,

locally-synchronous (GALS) systems [16]. One approach that uses GALS clocking

style is Multiple Clock Domain (MCD) processors [30] , where each functional block

is clocked separately. This technique not only solves the problem of clock distribution

but also introduces a new degree of freedom: each domain can work on independent

voltage and frequency levels. This was how Dynamic Voltage and Frequency Scaling

became an important approach for power/performance improvement. Since then the

researchers have been trying to solve the open problem of ”when and how to change

the voltage and frequency” to maximize performance in a given power budget.

Initially, offline DVFS schemes were devised to find the right switching times.

Semeraro et al. in [30] uses reconfiguration tools to construct a dependence directed
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acyclic graph (DAG) from the program trace which is then analyzed to find the criti-

cal path and the paths with ”slack”. Accordingly frequency and voltage are scaled to

save energy and maximize the performance. Magklis et al. [25] use profiling to insert

reconfiguration instructions into the program which decide the voltage/frequency

levels while the program is running. This required the application to go through

”training runs” to identify phases of different voltage/frequency settings.

Even though the offline techniques save on the hardware complexities, they are

very application specific. In contrast, online DVFS techniques captures runtime

characteristics which makes them more realistic and compatible with all applications.

Semeraro et al. [29] proposed such an online-algorithm to find the optimal domain

frequency by using processor queue utilization as a metric. The algorithm, which

they call as ”Attack/Decay”, exploits the co-relation between the number of entries

in the queues with the optimal frequency for that domain. The idea behind this

technique is that by looking at the behavior of the issue queues, we can decide what

frequency that domain should run on. For example if the number of entries in a queue

is stationary, that means the receiver and sender domains are at optimal frequencies.

If the queue is emptying that means the sender is slower than the receiver domain

and vice versa. Wu et al. [34] asserts that the above technique is heuristic-based as

it is based on manually selected rules and threshold values which makes it hard to

scale and improve according to the dynamic behavior. They propose a more rigorous

and analytical approach to model the queues and the domains. They then formulate

linear equations connecting the demand and frequency of a domain and solve them

using a Proportion-Integral-Derivative (PID) controller.

Grochowski et al. [13] adds a new direction by looking at the scalar and parallel

phases of the code and design a microprocessor that can adapt to them. The idea is

that we can decide the amount of energy resources allocated based on the parallelism

12



of the code. The relationship is formalized as:

P = EPI ∗ IPS (2.1)

Here EPI is the average energy spent per instruction, IPS is average number of

instructions executed per second and P is the power budget which is fixed. For a

scalar code, IPS is low so we can Increase the EPI to improve performance without

hurting the power. Similarly parallel code has high IPS, so its better to spend less

EPI to be in the power limits. This paper estimates the combination of asymmetric

cores and DVFS to be most promising design approach to achieve good latency and

throughput performance together. So in phases of low parallelism, its better to run

the program on the large core with high voltage and frequency, while for parallel

code run small cores with low voltage and frequency settings.

Isci et al. [15] introduced the concept of global power manager on chip, that

checks the power and performance of each core by using a feedback-control tech-

nique. Several different global dynamic power management policies are evaluated

and claimed that they perform better than static policies. It also includes per-core

DVFS to assign power modes to individual cores. Their best performing policy,

MaxBIPS, finds the optimal combination of DVFS levels for all the cores on chip

using an exhaustive search and predicts the power and BIPS (Billion Instructions

Per Second) values for all the possible combinations of DVFS levels. This can help

in extracting the best possible application performance while in the limits of power

budget. While this approach works well for few cores, this is not a scalable solution

if the number of cores increase. We compare against this work and show that our

approach does better in energy savings with less performance cost, by utilizing the

information about thread criticality and frequency scalability.
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2.2 Thread criticality prediction

Thread criticality is one concept which has been an open problem for researchers

since late 2000s. With many parallel applications coming up, workload imbalance

has become an important source of energy inefficiencies for CMPs. The threads of a

parallel program generally share information among each other which causes these

threads to execute at different speeds. So predicting which threads or processes

are critical and what are the speed difference from non-critical threads, can offer

potential performance increase while maintaining the power of the chip. The very

first work in this area was done by Li et al [20] which used the knowledge of the

time taken by threads to reach the thrifty barriers in parallel program to calculate

per-core frequency. These barriers are used to synchronize the critical sections in

parallel programs. The thread reaching the barrier at the last is considered to be

critical and the cores running other non-critical threads can be slowed down or shut

down to save the chip power. Li at al. [20] shut down the cores reaching the barrier

earlier than the critical thread, whereas Liu et al. [23] slow down the non-critical

cores using DVFS. While these technique provide considerable power savings, the

thread criticality prediction is done by a simple last-value predictor which uses the

current barrier stall times, that is the time a core is waiting on the barrier for

other cores to arrive, to estimate the future times. So all threads have to run on

the normal frequency until the barrier is reached. To resolve this, authors in [5]

proposes a method to dynamically check the running threads for the imbalance at

intermediate check points which they call as meeting points. This approach was

tested with parallel loops and meeting points were inserted at the end of the loop by

the software. This helped to count the number of loop iterations completed by a given

thread which can be used to calculate the criticality before the barrier is reached.

14



Significant energy power savings were achieved, but this scheme was only intended

for parallel loops. The concept of thread criticality prediction was generalized by

Bhattacharjee et al [2]. This paper presents a study of different possible architectural

parameters which can have a high impact on thread criticality. Cache miss was found

to be the most effective metric since more the cache misses, slower the thread will

be. The design consisted of criticality counters which kept a track of the L1 and L2

cache misses for each thread. On each interval, these counter values are scanned to

find the critical thread. Even though this work provided a good insight into what

can be possible parameters to consider, the dynamic approach using cache misses

is not fully convincing as cache misses are mostly invariant to the core frequency.

Bois et al [8] provided a different approach for thread criticality prediction with the

introduction of criticality stacks. They provided an offline approach which combines

active running time of the thread with the number of dependent threads waiting on

it. Though this gives a good estimate of the load imbalance among the threads,

using it online with DVFS will not be energy efficient as this approach does not take

into account the off chip accesses of the threads which makes it unscalable and less

sensitive to voltage/frequency. In our approach, we use the load imbalance detected

by the criticality stacks and utilize the scalability information of each thread to make

accurate DVFS decisions which leads to better load balance.

2.3 Thread frequency scalability prediction

Having a good estimate of how much a thread’s performance changes with scal-

ing it’s voltage/frequency is very critical in order to make energy and power efficient

DVFS decisions. Failure to do that might lead to energy and power wastage and

even performance degradation as it can adversely affect the balance between the

thread. There have been quite a few works on predicting performance impact of fre-

15



quency scaling. Lee et al. [19] did an extensive study of various microarchitectural

parameters which can accurately predict the performance and power for different

applications. They derived regression models to validate the strengths and signif-

icance of different predictors. In contrast to an offline analysis, Kihwan Choi et.

al. [6] proposed a dynamic regression based algorithm which models the frequency

scalability of a chip by the ratio of off chip access time to on chip time spent on

computation. Another very intuitive way to predict the frequency scalability which

was presented in [11] was to look at the commit bandwidth. The stalls due to un-

able to commit instructions can be one of the cause of the non scalability. These

stalls can be due to outstanding memory instructions which are non scalable. Com-

mit stalls are not an accurate prediction technique as there might be independent

instructions committing under an outstanding memory access. Leading loads [12]

[18] [28], provides an abstract view of non-scalability by taking into account the off

chip latency of the first load miss in the series of load instructions. The latencies

of such leading loads are accumulated to predict the non-scaling time. Rustam et.

al. [26] asserts that the leading load assumes a constant memory access times which

can be inaccurate for the realistic memories. They proposed an algorithm CRIT,

which accumulates the variable latency of load misses that are on the critical path

of dependent memory instructions. All these techniques have been mostly studied

for single threaded applications. Multi-threaded applications behave very differently

due to the inherent imbalance caused by the inter thread synchronizations. In a very

recent work, Akram et. al. extended CRIT algorithm[26] for multi threaded work-

load by taking into account the synchronizations between the threads, to predict the

system performance on different frequencies.

In our work, we developed a regression based frequency scalability model similar

to [19] for multi-threaded workloads and used it to predict each thread’s performance

16



on different frequency settings. We will see in the next section how the model differ for

parallel applications in contrast to the model developed for single threaded workloads

[19].

17



3. FREQUENCY SCALABILITY MODELING

This section presents our study of various micro architectural parameters that

can affect the frequency scalability of a thread in widely used parallel workloads [3]

[33], similar to what was done by Lee et al. in [19] for single threaded applications.

Frequency scalability tells an estimate of how much the performance can be scaled

directly with frequency. Given two frequencies F1 and F2 such that F1>F2, and time

taken by the application corresponding to these frequencies as T1 and T2 respectively,

the frequency scalability can be expressed as:

FS =
T 2 − T 1

T 1 ∗ (
F1
F2
− 1)

F1 > F2 (3.1)

Our aim is to predict frequency scalability of a thread dynamically using available

hardware monitors. In order to that, we need a linear relationship between scalability

and the monitors as follows:

FS = α1 + α2p1 + α3p2 + ...... (3.2)

In above equation, [p1, p2.....] are different predictor variables which are pro-

vided by hardware monitors, [α2, α3.....] are the coefficients which tell the impact

of each predictor on the scalability and α1 gives the weight of non-modeled part of

the program. We will discuss how to model this linear relationship in this section.

Hardware specifications we chose for modeling are shown in table 3.2. We selected

the predictor variables as shown in table 3.1. Benchmarks from parallel workload

suite SPLASH [33] and PARSEC [3] as shown in table 3.3 were selected for modeling.
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Predictor Description

branch miss rate Number of branches mispredicted per total branches

commit per cycle Number of instructions committed per cycle

commit bw stalls Stalls due to unable to commit an instruction

conflictingLoads Dependent loads unable to issue

conflictingStores Dependent stores unable to issue

cpu mem ratio Ratio of cpu instruction to memory instructions

fu busy cnt Number of times functional unit was busy causing stall

IQFullEvents Number of times Instruction Queue is full

LQFullEvents Number of times Load Queue is full

SQFullEvents Number of times Store Queue is full

load store ratio Ratio of loads to stores ratio

l1 data MPKI Total private data cache misses per kilo instruction

l1 inst MPKI Total private instruction cache misses per kilo instruction

l2 data MPKI Total shared L2 data misses per kilo instruction

l2 inst MPKI Total shared L2 instruction misses per kilo instruction

tlb MPKI Total instruction and data tlb misses per kilo instruction

Table 3.1: Characteristics examined to model frequency scalability

3.1 Sampling

Parallel programs can have varied dynamic behaviour as we showed in section

1.2. The sampling should be done in such a way that can capture information

for all these different phases. To find an optimal sampling period, we analyzed

different benchmarks and found out that 1 million dynamic instructions are enough to

capture any of the different phases. Hence we divided the execution of all benchmarks

in sections of 1 million instructions and ran them on a set of frequency range as

mentioned in table 3.2. We compared the execution times of corresponding sections
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ISA ARM version 7

no. of cores 4

core type 4-wide out-of-order

frequency range 1.2-3.9 GHz in steps of 0.3Ghz

L1 D-cache 64 KB, private, 2 cycles

L1 I-cache 32 KB, private, 1 cycles

L2 (last level) 2MB, shared, 12 cycles

memory access 100 ns

Table 3.2: Hardware specifications for frequency scalability modeling

and substituted them in equation (3.1) to get the observed performance benefit and

recorded their predictor values.

3.2 Model derivation

The most important step in model construction consists of finding significant

relationships between the predictor variables and the response by carefully analyzing

the data space. Correlation analysis helps in identifying the predictor variables which

are highly significant in predicting the response. We then choose the variables having

high statistical relationship with the response, to participate in the final step of model

evaluation.

3.2.1 Pearson’s correlation coefficient

Pearson’s correlation gives a linear relationship between the predictor variable

and the response. The formulation for n sample values is given by:

r =
Σ(xi − x̄)(yi − ȳ)√
Σ(xi − x̄)2Σ(yi − ȳ)2

(3.3)

where,
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Suite Benchmark Input

PARSEC Bodytrack simmedium

Dedup simmedium

Ferret simmedium

Streamcluster simmedium

x264 simmedium

SPLASH-2 barnes simmedium

cholesky simmedium

fmm simmedium

lu ncb simmedium

ocean cp simmedium

Table 3.3: Benchmark specifications

r is pearson’s coefficient

Range: −1 ≤ r ≤ 1

x and y is the dataset of two variables having n samples

x̄ and ȳ are the sample mean given by 1
n
Σ(xi) and 1

n
Σ(yi) respectively

However, pearson’s correlation assumes that the distribution of x and y are known

and will give good results only when the changes in x are consistent with changes

in y. In order to find correlation between two variables such that the two variables

have a monotonic relationship where they change in a similar trend without a need

of a constant rate, Spearman’s rank order correlation is more suitable.

3.2.2 Spearman rank correlation coefficient

Spearman’s coefficient ρ quantifies monotonic relationship between X and Y such

that when Y increases, either X always increase, decrease or remain unchanged. As

it is based on ranked values instead of the actual values, it is independent of the

distribution of the variables. To calculate ρ, the absolute values of x and y are
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converted to ranked columns X and Y and difference between them is calculated and

stored in d. Assuming n ranks are distinct integers, ρ can be computed as follows:

ρ = 1− 6 ∗ Σ(di)
2

n ∗ (n2 − 1)
(3.4)

We use squared Spearman’s coefficient to quantify the predictor strengths as the

distribution of the variables are unknown. Figure 3.1 and 3.2 shows each predictor’s

strength for PARSEC [3] and SPLASH [33] benchmark respectively. Finally figure

3.3 shows the predictor strengths when the samples from all the benchmarks are

combined.

There are some important observations to be made from these graphs. L1 data

MPKI, l2 data MPKI, tlb MPKI and LQFullEvents have high significance in most

benchmarks. Number of committed instructions per cycle show good correlation

in some benchmarks. Instruction L1 and L2 MPKI are less deterministic of the

performance as they are very rare. Other parameters are not consistent so we neglect

them. Looking at the consolidated correlation of all the benchmarks together, we

choose l1 data MPKI, l2 data MPKI, LQFullEvents and tlb MPKI as potential

candidates for the frequency scalability equation. In contrast to the model developed

by Lee et al. [19], we found that committed instructions is not a significant predictor

for parallel workloads as there can be dynamic instructions due to spinning while a

thread is trying to acquire a lock. These instructions don’t contribute towards the

performance.

3.3 Model assessment

We got four variables from our analysis in previous section which are potential

candidates for the frequency scalability equation. In this section we will model

frequency scalability with different combinations of these variables and evaluate them
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Figure 3.1: Predictor strength for SPLASH benchmarks

by using multiple correlation statistic (R2) and Root Mean Square Error (RMSE).

These statistics are based on two sum of squares as follows:

• Sum of Squares Total (SST) estimates the variance between data and mean.

– SST =
∑n

i=1(yi −
1
n

∑n
i=1 yi)

• Sum of Squares Error (SSE) measures the error between the actual data and

the predicted value.
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Figure 3.2: Predictor strength for PARSEC benchmarks

– SSE =
∑n

i=1(yi − ŷi)2

3.3.1 R-squared and adjusted r-squared

The improvement of the prediction of the regression model from the mean model

is given by the difference of SST and SSE. R2 is obtained from dividing this difference
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Figure 3.3: Predictor strength for all benchmarks combined

from SST as follows:

R2 = 1− SSE

SST
(3.5)

R-squared estimates the goodness of the fit on the scale of 0 to 1 with high values

suggesting a good fit. One drawback of R-squared is that it increases with increase in

the number of predictor variables. So a value every close to 1 suggests over fitting. To

solve this, we consider Adjusted R-squared which also models the degree of freedom.

So an increase in the number of predictors will decrease the Adjusted R-squared

value.
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3.3.2 Root mean square error

RMSE measures the accuracy of the prediction. As we are developing a model

for scalability prediction, we need to know how close the predicted scalability is to

the observed value. RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3.6)

To evaluate a model we try to minimize the RMSE as much as possible. So in

this way, RMSE gives an absolute measure of the fitness of the model.

We evaluate the frequency scalability models from various possible combinations

of the set of four variables {l1 data MPKI,l2 data MPKI, LQFullEvents, tlb MPKI}

and plot their Adjusted R-squared and RMSE values in fig 3.4. As can be seen, we

get the best model with variables {l1 data MPKI,l2 data MPKI} with the highest

R2 and minimum RMSE.

The final scalability equation is as follows:

FS = α1 + α2l1dataMPKI + α3l2dataMPKI (3.7)

with their coefficients as in table 3.4. α2 and α3 are negative as the scalability

will decrease if either of the l1 or l2 data misses increase. α1 is positive, indicating

the scalability value when there are no l1 and l2 data misses.
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Estimate SE tStat pValue

α1 0.99409 4.3284e-05 22967 0

α2 -0.0054498 1.3951e-05 -390.63 0

α3 -0.089083 7.3362e-05 -1214.3 0

Table 3.4: Estimated coefficients for equation (3.7)

Figure 3.4: Adjusted R-squared and RMSE for the set of variables {l1 data MPKI,l2 data
MPKI, LQFullEvents, tlb MPKI} with 1 indicating the presence and 0 indicating the ab-
sence of the variable
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4. ACTIVE LOAD BALANCING ALGORITHM

In this section we explain our load balancing algorithm which uses thread crit-

icality prediction algorithm from criticality stacks [8] to detect the load imbalance

between threads and frequency scalability prediction to predict the performance of

a thread on different frequency.

4.1 Thread criticality algorithm

In this section we explain how we detect and measure the load imbalance in

a parallel program, using criticality stacks [8]. The whole execution time of the

program is divided into different time intervals. A thread will be in active state if it

is doing useful work and becomes inactive if it is spinning while trying to acquire a

lock. Every time any thread changes its state, a new interval begins. Each interval’s

execution time is divided by the number of active threads in that interval and allotted

to each active thread’s criticality count. In this way, criticality stacks takes into

account, the information of a thread’s useful work and number of threads waiting on

it.

Figure 4.1 shows an example of load imbalance caused in 4 threads. The criticality

count at the end of the control period shows that thread 3 is critical with the highest

criticality count followed by thread 2, 1 and 0. To quantify the load imbalance, we

define ”Slack” as the measure of how much a non-critical thread is ahead of the

critical thread. Slack can be calculated in percentage as follows:-

Slacki% =
Ccritical − Ci

Ccritical

∗ 100 (4.1)

where, i is thread number and C is Criticality count
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Figure 4.1: Criticality stack example

For the example in figure 4.1, slack for thread 0 is 32.5%, for thread 1 it is 24%

and thread 2 has a slack of 8.4%. Looking at each thread’s slack percentages, we can

tell how much imbalance the program has, at any point of time. This information

can help us making accurate DVFS decisions as we will discuss later.
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4.2 Thread performance prediction

In order to make accurate DVFS decisions for each core, apart from the load

imbalance information, we also need to know about the impact of frequency scaling

on each thread’s performance. In this section, we will discuss how we predict the

performance using the frequency scalability modeling discussed in section 3.

Section 3 models the frequency scalability equation (3.7) which predicts the scal-

ability of the thread based on the L1 and L2 (last level) data MPKI. We put the

estimated scalability value in the below equation derived from equation (3.1) to pre-

dict the execution time on the target frequency:

Ttarget = Tcurrent(FS ∗ (
Fcurrent

Ftarget

− 1) + 1) (4.2)

where, Tcurrent, Fcurrent are the current interval’s execution time and frequency of

the thread and Ttarget is the estimated execution time of the thread when run on

Ftarget frequency.

To quantify the performance benefit we get from scaling the frequency of a thread,

we define ”ExpectedGain” as percentage change in the performance in terms of

execution time. The formulation for ExpectedGain is as follows:

ExpectedGain% =
Tcurrent − Ttarget

Tcurrent
∗ 100 (4.3)

where, Tcurrent and Ttarget are the execution times of the thread at the current

and target frequency respectively.

ExpectedGain will be positive if Ttarget < Tcurrent and will be negative if Ttarget

> Tcurrent. A negative ExpectedGain means that Ftarget < Fcurrent and thus the

performance dropped.
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4.3 Achieving the balance

In above sections, we have introduced ways to quantify the load imbalance and

the performance gain by scaling the frequency. We will now put them together to

develop a dynamic algorithm which will actively try to balance the load with high

accuracy. Achieving the balance is vital for power and energy savings while getting

guaranteed performance benefit, as we will see from the results in the next section.

Algorithm 1 gives a simple and intuitive way to solve the load imbalance prob-

lem by intelligently deciding the operating frequency of each thread by taking into

account it’s Slack with respect to the critical thread and ExpectedGain at different

frequencies.

We run algorithm 1 at the end of every control period to decide frequency of each

core for the next control period. We set the control period to 3ms as it is close to OS

scheduling period and thus the DVFS can be handled by OS. The process followed

by our algorithm can be described as:

1. At the start of every control period, we record the criticality count for each

thread and calculate their Slack percentages as discussed in section 4.1.

2. We also calculate each thread’s frequency scalability factor according to equa-

tion (3.7). In order to filter out sudden changes in the scalability, we calculate

exponential moving average of the scalability as follows:

• FrequencyScalabilityi = α ∗ FrequencyScalabilityicurrent + (1 − α) ∗

FrequencyScalabilityi−1

• Here FrequencyScalabilityicurrent is the frequency scalability calculated

in current interval for thread i and FrequencyScalabilityi−1 is the ex-

ponential average calculated in the previous interval. α represents the
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Algorithm 1 Active load balancing

Require: End of Control Period . Run the algorithm after every control period

1: for i:1 to N do

2: Slacki ← Ccritical−Ci
Ccritical

∗ 100 . Calculate Slack for each thread

3: FrequencyScalabilityicurrent ← Calculate scalability for each thread using equation

(3.7)

4: FrequencyScalabilityi ←
FrequencyScalabilityicurrent+FrequencyScalabilityi−1

2 .

exponential moving average

5: end for

6: TFmax(critical)← Predicted execution time for critical thread at Fmax using equation

(4.2)

7: ExpectedGaincritical ← Predicted ExpectedGain for critical thread when run at Fmax

using equation (4.3)

8: for i:1 to N do

9: ExpectedGaini ← ExpectedGaincritical − Slacki . Calculate required

ExpectedGain for each thread

10: Ttargeti ← Calculate Target execution time based on ExpectedGaini using equation

(4.3)

11: Ftargeti ← Calculate Target frequency using Ttargeti from equation (4.2)

12: end for

smoothing factor, which we fix at 0.5.

3. Frequency for the critical thread is set to the highest frequency (Fmax) and it’s

ExpectedGain is predicted (ExpectedGaincritical).

4. ExpectedGain required for each thread (ExpectedGaini) is calculated by sub-

tracting thread’s slack (Slacki) from ExpectedGain of the critical thread
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(ExpectedGaincritical)

5. Once we have the required ExpectedGain for each thread, we calculate the

Ttarget from equation (4.3) which is substituted in equation (4.2) along with

Tcurrent, Fcurrent and FrequencyScalability, to get the target frequency (Ftarget)

for each thread.

6. We change the frequency of all the threads to the target frequencies calculated

above.

We run the critical thread always at the Fmax to maximize the performance, as

our aim is to get minimum performance loss compared to running all threads at Fmax,

with maximizing the power and energy savings. We then decide optimal frequency

for each non-critical thread such that the load is always balanced. This decision is

based on the difference between the ExpectedGain achieved by the critical thread

when run at the highest frequency and the thread’s own Slack (Slacki), as shown

in step 4. This difference can be positive as well as negative. A positive difference

would mean that scaling critical thread to Fmax will give more performance benefit to

the critical thread than the slack for the thread i. If we don’t raise the frequency of

thread i, we will again create an imbalance. So we raise the frequency of thread i such

that it’s ExpectedGain equals the difference. On a contrast, a negative difference

would mean that even if we scale the critical thread to Fmax, the load imbalance will

still be there. So it is wise to scale down the frequency of thread i such that the

performance degradation equals the difference. This will save power/energy without

hurting the performance.
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5. EXPERIMENTAL RESULTS

In this section we will discuss the experimental set up, followed by the results of

our load balancing algorithm and comparison with prior works.

5.1 Experimental setup

The baseline hardware is a 4 core CMP, ARM ISA machine with 2 level cache

hierarchy as specified in table 5.1. Each core’s private cache is split into Icache

(32KB) and Dcache(62KB) with a shared 2MB L2 cache. Each core and it’s private

cache constitute a separate voltage/frequency domain such that DVFS can be applied

independently on each domain. There are 9 Voltage and frequency levels ranging from

1.55V-0.8V and 2.66GHz-1.6GHz respectively [31] . Voltage and frequency level for

uncore i.e. L2 cache and memory, is fixed to 1GHz and does not change with DVFS.

We take a control period of 3ms, as discussed in section 3, which is well within the

scheduling range of the OS and can allow it to make DVFS changes to the core. Thus

we don’t require a hardware DVFS handler. We set the DVFS transition latency to

a fixed 1us.

We use gem5 [4] full system simulations with Out of order processor cores and

classic memory model. Linux version 3.13.0 is the OS we run, with thread migration

disabled and each thread is pinned to a different core to simplify the analysis and

get rid of complications due to context switching. For modeling power and energy,

we used Cacti [22] (version 1-6.5) and MCPAT 1.0 [21] with process technology of

32nm.

Benchmark applications are taken from widely used parallel workload suits

SPLASH-2 [33] and PARSEC 3.0 [3]. These benchmarks use Pthreads and OpenMP

thread libraries to handle synchronization, which are instrumented to add pseudo
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ISA ARM version 7

no. of cores 4

core type 4-wide out-of-order

L1 D-cache 64 KB, private, 2 cycles

L1 I-cache 32 KB, private, 1 cycles

L2 (last level) 2MB, shared, 12 cycles

DRAM 512MB, 100 ns

Core DVFS states voltage: 1.55V - 0.8V

9 levels frequency: 2.66GHz - 1.6GHz

Control period 3ms

Table 5.1: Hardware configuration for simulations

instructions to mark the start and end of the spinning phases due to locks, barriers 

and conditional variables. The applications are cross-compiled for ARM with GCC 

ARM Embedded tool chain version 4.7.3. We choose a subset of applications for 

our analysis as shown in table 5.2, which represents different kinds of scalability 

behaviour as is evident from our discussion in section 1.2.

Suite Benchmark Input Scalability variation

PARSEC Bodytrack simmedium low

Fluidanimate simmedium high

SPLASH-2 fmm simmedium low

lu ncb simmedium medium

ocean cp simmedium high

Table 5.2: Benchmark chosen for analysis

35



5.2 Evaluation

In this section we present the performance, power and energy analysis of PCSLB

for benchmarks shown in 5.2 and compare them with the best performaing DVFS

policy, Max Bips from [15].

5.2.1 Prior work: Max BIPS

Max Bips is the best performing DVFS policy as presented in [15]. It finds

the optimal combination of DVFS operating levels for the cores on chip using an

exhaustive search and predicts the power and BIPS (Billion Instructions Per Second)

values for all the possible combinations of DVFS levels. This helps in deciding the

optimal operating point such that we get the best possible performance while in the

limits of power budget. We implemented Max Bips as shown in algorithm 2. In

order to compare our results, we fixed the power budget for max bips to the power

usage of PCSLB and compared the performance degradation and the energy savings.

5.2.2 Results

Figures 5.1-5.3 show the performance, energy and power comparison in percent-

ages as compared to ”upper bound”. We define ”upper bound” as the system with 

all cores running on Fmax. From figure 5.1, it can be seen that the performance 

degradation for PCSLB is less than 0.5% for lu ncb, fluidanimate and fmm while it 

is around 2% for ocean cp and bodytrack. This shows that the load balancing algo-

rithm is trying to achieve the balance in an accurate way with minimal performance 

loss due to prediction errors. For benchmarks which have high scalability variation, 

fluidanimate and ocean cp in our case, we get high power and energy savings. For 

fluidanimate PCSLB gets 8% and for ocean cp it gets close to 11% energy savings 

which is 16X and 5X more than their performance degradation respectively. For
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Algorithm 2 Max Bips Implementation

Require: End of Control Period . Run the algorithm after every control period

1: for i:= 1 to Number of threads do

2: BIPSi ← BIPS value for this period

3: POWERi ← Power usage for this period

4: fcurrent ← Frequency current thread is running on

5: for all f in all frequency levels do

6: BIPS[f ][i]← ( f
fcurrent

) ∗BIPSi

7: POWER[f ][i]← ( f
fcurrent

)3 ∗ POWERi

8: end for

9: end for

10: Choose the frequency of each core such that the total power of the chip is below the

power budget and the BIPS is maximized.

lu ncb and fmm it gets 2% energy savings which is 4X more than their performance

degradation. These benchmarks are pretty scalable as evident from figure ??. So

PCSLB chooses Fmax for the cores most of the time. Bodytrack is also very scalable

as shown in figure ?? and there are a lot of spikes in scalability which forces PC-

SLB to make some wrong dynamic decisions even after considering the exponential

moving average as explained in Algorithm 1. This causes bodytrack to show more

performance degradation than the energy savings.

As it can be seen, PCSLB always performs better than Max bips for two major

reasons. Firstly, Max bips tries to maximize BIPS (Billion Instructions Per Second)

and as we have shown in section 3, committed instructions per cycle which is in a

way equivalent to BIPS, is not a significant performance predictor when it comes

to parallel programs as they can have many dynamic instruction due to spinning
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Figure 5.1: Performance degradation in % for PCSLB and max bips as compared to up-
per bound

which does not contribute to a thread’s performance. So making DVFS decisions

based on BIPS is not an efficient way. Secondly, it doesn’t have any knowledge of

the load imbalance in the program which can cause it to scale the frequency of a

non critical thread which will not give much performance benefit. Max bips shows

similar power savings to PCSLB as we fixed the power budget to the power usage of

PCSLB. Other than Bodytrack, Max bips show more performance degradation and

less energy savings than PCSLB.
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Figure 5.2: Energy savings in % for PCSLB and max bips as compared to upper bound

Figure 5.3: Power savings in % for PCSLB and max bips as compared to upper bound
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6. CONCLUSION AND FUTURE WORK

Parallel programs have an inherent load imbalance problem due to synchroniza-

tion overhead which becomes a bottleneck and limit the performance and energy

benefit achieved by the thread level parallelism. To solve this, one needs to detect

the load imbalance and scale frequency of individual threads accordingly. But detect-

ing load imbalance alone is not an accurate and energy efficient solution as it does

not take in account the scalability of the thread, i.e. the impact of DVFS scaling on

thread’s performance. This causes the algorithm to make wrong DVFS decisions for

non scalable phases, which are oblivious to frequency changes. So adding the scala-

bility information to the algorithm can provide huge energy savings and an accurate

load balance. In this work, we first model scalability as a function of available hard-

ware monitors for parallel workloads using static regression statistics. We then use

this model along with thread criticality prediction to devise an accurate load balanc-

ing algorithm, PCSLB. We show that we can achieve energy savings more than 10%

with very minimal performance degradation of less than 1% in most cases, as com-

pared to the upper bound where all threads are run on the highest frequency. This

proves that we can get an accurate load balance when we combine thread criticality

prediction with each thread’s scalability information.

For this work we have considered a 4 core machine and widely used parallel

benchmarks, SPLASH [33] and PARSEC [3]. Future work includes working with 8

and 16 cores to see how much more benefit we can achieve. We also wish to work

with other memory intensive benchmarks, as SPLASH and PARSEC don’t have

many applications with high scalability variations. As a future work, we would also

like to experiment with more predictor variables to see if we can model scalability in

a more accurate way.
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