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ABSTRACT

LU and Cholesky factorizations play a central role in solving linear and mixed-

integer programs. In many documented cases, the roundoff errors accrued during the

construction and implementation of these factorizations cause the misclassification

of suboptimal solutions as optimal and infeasible problems as feasible and viceversa.

Such erroneous outputs bring the reliability of optimization solvers into question and,

therefore, it is imperative to eliminate these roundoff errors altogether and to do so

efficiently to ensure practicality.

Firstly, this work introduces two roundoff-error-free factorizations (REF) con-

structed exclusively in integer arithmetic: the REF LU and Cholesky factorizations.

Additionally, it develops supplementary integer-preserving substitution algorithms,

thereby providing a complete tool set for solving systems of linear equations (SLEs)

exactly and efficiently. An inherent property of the REF factorization algorithms

is that their entries’ bit-length—i.e., the number of bits required for expression—is

bounded polynomially. Unlike the exact rational arithmetic methods used in prac-

tice, however, the algorithms herein presented do not require any greatest common

divisor operations to guarantee this pivotal property.

Secondly, this work derives various useful theoretical results and details compu-

tational tests to demonstrate that the REF factorization framework is considerably

superior to the rational arithmetic LU factorization approach in computational per-

formance and storage requirements. This is significant because the latter approach

is the solution validation tool of choice of state-of-the-art exact linear programming

solvers due to its ability to handle both numerically difficult and intricate problems.

An additional theoretical contribution and further computational tests also demon-
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strate the predominance of the featured framework over Q-matrices, which comprise

an alternative integer-preserving approach relying on the basis adjunct matrix.

Thirdly, this work develops special algorithms for updating the REF factoriza-

tions. This is necessary because applying the traditional approach to the REF factor-

izations is inefficient in terms of entry growth and computational effort. In fact, these

inefficiencies virtually wipe out all the computational savings commonly expected of

factorization updates. Hence, the current work develops REF update algorithms that

differ significantly from their traditional counterparts. The featured REF updates

are column/row addition, deletion, and replacement.
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NOMENCLATURE

AVG Average

ERA Exact rational arithmetic

gcd Greatest common divisor

IPGE Integer-preserving Gaussian elimination

LHS Left-hand side

LP Linear programming or linear program, depending on context

MIP Mixed-integer programming or mixed-integer program, depending on

context

REF Roundoff-error-free

REF-Ch Roundoff-error-free Cholesky factorization

REF-LU Roundoff-error-free LU factorization

RHS Right-hand side

SD Standard deviation

SLE System of linear equations

SPD Symmetric positive definite
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1. INTRODUCTION

1.1 Motivation

Roundoff errors, no matter how seemingly insignificant, can propagate and mag-

nify to a point where they radically affect the output of an algorithm. This snowball

effect is especially pronounced for complex and large-scale problems, which are the

purview of various interest areas in operations research and engineering. The accu-

mulation of roundoff errors often occurs due to the increased number of iterations

and intricate operations required to solve such problems, but it may also result from

poor algorithm design and implementation. The most important thing to realize

in the latter situation is that the failure to detect and correct the incidence of this

accumulation can have very serious consequences. Thus, mathematicians and com-

puter scientists have a crucial responsibility to ensure their computational tools are

as immune as possible to the deleterious effects of roundoff errors.

The dangers of accumulating roundoff errors are attested to by historical events

(e.g., [19, 55, 85]), perhaps the most cautionary of which is the failure of the Patriot

Missile Defense System during Operation Desert Storm. On February 25, 1991,

the failure of this system’s software prevented an enemy Scud missile from being

intercepted, resulting in the death of 28 Americans. According to the official report

from the U.S. General Accounting Office [19], the underlying cause was calculation

roundoff errors in the system’s range-gate algorithm, which is deployed to identify

and predict the trajectory of incoming missiles. More specifically, the source of these

errors was traced to a subroutine that converts the computer’s internal clock counter

to “real time”. This clock kept track of the tenths of seconds elapsed since the

computer was last booted using integers, but real time was kept in seconds using
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a floating-point expression. Because the conversion was performed using a 24-bit

register and the rational 1
10

has a non-terminating binary expansion, a very small

roundoff error was introduced with each passing second after the computer’s last boot

time. After 100 hours had elapsed, this resulted in a discrepancy of approximately a

third of a second in the calculated time—equating to a shift in the detection range

of over 500 meters based on the Scud missile’s velocity [6]—which was significant

enough to allow the sophisticated defense system to malfunction. Thus, a minor

calculation error gradually snowballed into a major disaster.

The preceding analysis of the Patriot Missile Defense System failure brings forth

two critical points. First, standard fixed-precision operations lead to roundoff er-

rors that can have serious unforeseen consequences when left unchecked. Second,

if the impact of roundoff errors resulting from a simple time conversion subroutine

can go largely unnoticed, this raises a concern about the unquestioned deployment

of complex roundoff error-prone optimization algorithms to make critical decisions.

This concern is grounded on more than mere speculation since roundoff errors have

been demonstrated to lead several commercial solvers to misclassify linear programs

and mixed-integer linear programs, including very simple ones, as infeasible [51, 64].

Roundoff errors may also cause these solvers to report suboptimal solutions as opti-

mal and infeasible solutions as feasible [20]. It is highly problematic that the afore-

mentioned incongruous solver outputs could potentially serve as the basis for critical

decisions encompassing numerous areas of society, including health care, finance, and

infrastructure systems. Therefore, the development of viable tools and algorithms

that minimize roundoff error, or eliminate it altogether, becomes all the more imper-

ative, given the increasing reliance on mathematical programming software to solve

large and complex problems.

The incidence of roundoff error propagation and its potential to derail an algo-
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rithm’s execution toward highly erratic outcomes is largely unpredictable. Conse-

quently, when solving an optimization problem via roundoff error-prone techniques,

there is a possibility that the output may significantly deviate from the correct solu-

tion, unbeknownst to the practitioner. We emphasize that this proclamation does not

refer simply to minor discrepancies in precision or value relative to the true solution,

but rather to the type of deviations that altogether invalidate the solver’s optimality,

feasibility, or infeasibility certificates, as the previous paragraph explains. Indeed,

small errors in solution and objective values can be widely tolerated because approxi-

mate solutions that are sufficiently close to the true value are “good enough” in most

settings (not to mention that input data of real-world problems are already subject to

measurement and human error). On the other hand, an invalid solver outcome—e.g.,

reporting a suboptimal solution as optimal or an infeasible problem as feasible—

could lead to legal, financial, and/or operational problems when implemented. It

is also important to point out that there are several applications where even slight

deviations from the exact solution are unacceptable. A non-comprehensive list of

such applications includes computer-assisted mathematics, combinatorial auctions,

health care, and compiler optimization. We refer the reader to Steffy [75] for a de-

tailed description of specific problems within these domains having this stringent

requirement.

To highlight the nontrivial levels in solution deviation that may occur when using

mathematical programming software, Table 1.1 (adapted from [75]) lists the objec-

tive values obtained by applying various solvers—or distinct versions/algorithms of

each solver—to the real-world LP instance sgpf5y6 from the Mittelman LP test set

[59]. According to Steffy [75], William Cook and Sanjeeb Dash performed some of

the solver runs, while other were retrieved from Mittelman’s log files found in [58];
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Table 1.1: Objective value deviations for LP instance sgpf5y6 (adapted from Table
1 in [75])

Solver/Algorithm Obj Value Error

CPLEX 7.1 Primal −6, 398.71 85.76

CPLEX 7.1 Dual −6, 484.44 0.03

CPLEX 9.0 Primal −6, 406.78 77.69

CPLEX 9.0 Dual −6, 484.47 0.00

CPLEX 11.0 Primal −6, 425.87 58.60

CPLEX 11.0 Dual −6, 484.46 0.01

CPLEX 12.1 Primal −6, 425.87 58.60

CPLEX 12.1 Dual −6, 484.47 0.00

CPLEX 12.4 Primal −6, 424.23 60.24

CPLEX 12.4 Dual −6, 441.56 42.91

CPLEX 12.4 Barrier −6, 460.43 24.04

Gurobi 2.0 Primal −6, 484.47 0.00

Gurobi 2.0 Dual −6, 484.47 0.00

XPress-15 Primal −6, 380.45 104.02

XPress-15 Dual −6, 344.30 140.17

XPress-20 Primal −6, 349.93 134.54

XPress-20 Dual −6, 408.02 76.45

QSopt Primal −6, 419.94 64.53

QSopt Dual −6, 480.33 4.14

CLP-1.02.01 −6, 480.95 3.52

CLP-1.12.0 −6, 481.26 3.21

GLPK-4.37 −6, 463.66 20.81

GLPK-4.44 −6, 484.47 0.00

MOSEK 6.0 −6, 292.06 192.41

SoPlex 1.2.2 −6, 473.33 11.14

we performed the CPLEX1 12.4 runs during the writing of this work using the solver’s

default settings. All the runs claimed to have obtained the optimal solution, whose

exact objective value is given by the rational (–1621116398840608/250000000000),

which equals –6, 484.47 rounding to two decimal places. The corresponding devia-

tions from the exact objective value of each run are stated in the third table column.

1IBM ILOG CPLEX Optimizer — High-performance mathematical programming solver for linear
programming, mixed-integer programming, and quadratic programming.
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer.
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The vastly dissimilar objective values listed in Table 1.1 lead to several key obser-

vations and implications. For starters, Gurobi2 2.0 is the only solver that obtained an

objective value that is accurate up to at least two decimal places for both its primal

and dual simplex algorithms. Interestingly, the dual algorithm of CPLEX 12.1 also

attained this level of accuracy, but its primal algorithm provided a solution whose

objective deviated by nearly 1% from the optimal value. This result is puzzling since

the linear programming property of strong duality guarantees that finite primal and

dual optimal objective values are equal to each other. Even more perplexingly, the

respective deviations yielded by the newer CPLEX 12.4 runs were markedly higher

than the CPLEX 12.1 runs due most likely to differing effects of roundoff errors in the

two versions—we reran the CPLEX 12.1 and confirmed the previous results to rule out

differences in computing environments and/or solver settings from the previous run.

This result seems to imply that algorithmic advances may actually exacerbate the

effects of roundoff errors on certain problems. The most concerning observation is

that various other solvers yielded even higher objective value deviations, the highest

of which is tantamount to being 3% away from optimality. It is straightforward to

see that relying on an “optimal” solution with this degree of suboptimality could

have undesirable consequences.

The takeaways and impact of the preceding example extend beyond the realm of

linear programming. In particular, mixed-integer programs are solved via variations

and extensions of the branch-and-bound algorithm, which breaks down the main

problem into a series of linear programming subproblems. Thus, by employing this

efficient process, mathematical programming solvers are repeatedly exposed to linear

programming roundoff errors and, consequently, similarly incongruous outputs can

2Gurobi — The state-of-the-art mathematical programming solver for prescriptive analytics.
http://www.gurobi.com.
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occur when solving these more complex types of problems. Additionally, roundoff

errors may also cause many cut generators—which often derive cuts directly from the

simplex tableau—to invalidly cut off feasible solutions [56]. Hence, the accumulation

of roundoff errors in linear programming can have considerable effects on the solution

of mixed-integer programming problems and on the output validity of their associated

solvers.

As the foregoing discussion explained, the potential for commercial mathemati-

cal programming solvers to be severely overrun by roundoff errors is more than just

an academic concern. For this reason, today’s practitioner needs to be aware of

this menacing prospect and become armed with efficient tools that minimize it or

prevent it altogether. While incongruous outputs like those summarized by Table

1.1 are rare, they can occur and, most disturbingly, they are virtually unrecogniz-

able from the majority of acceptable outcomes encountered when using commercial

optimization software. Moreover, based on mathematical programming solvers’ con-

tinued reliance on linear programming to tackle more general classes of problems,

such sizeable errors have widespread repercussions. In light of these observations,

this dissertation is concerned with developing efficient foundational computational

tools that are invulnerable to the worst-case pernicious effects of roundoff errors in

linear and mixed-integer programming, although they could also be applied toward

more general classes of problems. In fact, the factorization-based framework herein

developed is designed to be integrated within existing state-of-the-art exact mathe-

matical programming solvers to increase their efficiency. Thus, this dissertation seeks

to make contributions that can be readily implemented to advance the current state

of this field and thereby immediately help avoid the worst-case scenarios associated

with roundoff errors.
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1.2 Contributions and Overview of the Dissertation

This dissertation makes several contributions to the fields of numerical linear

algebra, computer science, and mathematical programming. More specifically, it

develops efficient factorization-based algorithmic tools for solving systems of linear

equations exactly; these tools are designed to improve the speed and robustness of

state-of-the-art exact mathematical programming solvers. The main contributions

can be summarized as follows:

• The Roundoff-Error-Free (REF) LU and Cholesky factorizations, which are

constructed entirely in integer arithmetic, and whose entries’ bit-length (i.e.,

the number of bits required for expression) is bounded polynomially without

the use of greatest common divisor operations.

• REF forward and backward substitution algorithms, which allow for the efficient

and exact solution of linear systems by keeping the associated entry bit-lengths

within the REF factorization bounds.

• The push-and-swap approach for updating the REF factorizations efficiently

and without accruing roundoff errors; the novel approach relies on the intro-

duction of frame matrices.

• Special row/column addition, deletion, and replacement update algorithms for

the REF LU (and Cholesky) factorizations that keep the associated entry bit-

lengths within the REF factorization bounds.

• A derivation and analysis of the rational arithmetic Crout and Doolittle LU

factorizations vis-á-vis the REF LU factorization.
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• An efficient adaptation of the Q-matrix revised simplex method for validating

basic solutions of linear programs.

• A generalization and theoretical expansions of the integer-preserving Gaussian

elimination algorithm.

The ensuing paragraphs provide an overview of the contents of this dissertation.

Section 2 opens by succinctly tracking the origin and progression of strategies

for the fundamental problem of solving a system of linear equations (SLEs). Then,

the discussion shifts to the more difficult problem of solving these systems exactly

with a special focus on the computational drawbacks associated with performing

the standard algorithms in exact rational arithmetic. Lastly, the section outlines

several alternative methods for obtaining exact solutions to SLEs including integer-

preserving Gaussian elimination, which is the underlying algorithm of the tools herein

developed.

Section 3 begins with a brief introduction to linear programming (LP). Then it re-

views different approaches for solving linear programs exactly and summarizes related

computational results. The discussion includes a description of the mixed-precision

approaches behind two state-of-the-art exact LP solvers. The discussion sheds light

on the context under which the dissertation contributions would be prospectively

implemented.

Section 4 develops new results in numerical linear algebra. In particular, we

derive the roundoff-error-free (REF) Cholesky factorization and the REF LU fac-

torization via inductive proofs. Afterward, we develop custom REF forward and

backward substitution algorithms for applying the REF factorizations toward calcu-

lating exact solutions to SLEs efficiently. Every component of the presented REF

factorization framework shares two key properties: (1) its constituent operations—
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divisions included—preserve integrality and (2) its individual matrix entries have

polynomially bounded bit-length without having to use greatest common divisor

calculations. The section also explains the connecting properties between the tradi-

tional LU and Cholesky factorizations and their REF counterparts, and it analyzes

the full computational complexity of all the therein featured REF tools.

Section 5 opens with a brief review of recent enhancements and computational

tests of efficient techniques for solving SLEs exactly, which serves primarily to set

the subsequent experimental design. The ensuing subsection establishes a direct re-

lationship between the REF LU factorization and the exact rational arithmetic forms

of two well-known LU factorizations: the Doolittle factorization and the Crout fac-

torization. This theoretical exposition is accompanied by a set of computational tests

designed to assess the computational performance and storage requirements of each

of these exact SLE solution tools. In this section, we also develop an adaptation of

the Q-matrix revised simplex method [7] (itself an extension of Edmond’s Q-matrices

[25]), which defines its efficient implementation as a basic solution validation tool for

exact LP. A corresponding set of computational tests compares said adaptation to

the REF factorization framework.

Section 6 continues the development of the REF factorization framework. In

particular, it starts by explaining why applying the traditional delete-insert-reduce

approach to update the REF factorizations can be costlier than constructing the cor-

responding factorizations from scratch. Hence, we develop the novel push-and-swap

approach for updating the REF factorizations, which achieves the computational

savings traditionally expected of factorization update algorithms while still avoiding

roundoff errors. The approach prevents further bit-length growth in the factoriza-

tion matrices’ entries by taking the recursive relationships between adjacent rows and

columns of the REF factorizations into account. The featured update operations are
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column addition, deletion, and replacement; in addition, we prove that the comple-

mentary row updates can be performed via the column updates. In the process of

deriving the REF factorization updates, the section also introduces a set of oper-

ations that augment the versatility of the integer-preserving Gaussian elimination

algorithm and of the REF factorization framework.

Section 7 concludes the work by summarizing the main contributions herein con-

tained.
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2. PRELIMINARIES

This section describes the fundamental problem of solving a system of linear

equations (SLE) as well as the more intricate related problem of obtaining its exact

solution (i.e., without roundoff errors). For the ensuing discussion, it is useful to

distinguish a specific class of roundoff-error-free (REF) algorithms within this con-

text. In particular, we will classify a REF Gaussian elimination algorithm as one

that finds an exact solution to a given full row-rank SLE with fixed dimensions and

bounded entries in a predictably-exact number of steps via row-reduction operations

(e.g., rational arithmetic Gaussian elimination, division-free Gaussian elimination,

integer-preserving Gaussian elimination). More generally, a Gaussian elimination

algorithm is one with the above properties, but which may or may not guarantee

exact solutions.

A number of notational conventions are used throughout this dissertation and are

hereby stated for the sake of clarity. Matrices are represented by uppercase letters

(e.g., A,B,L) and vectors by lowercase boldface letters (e.g., x,y, b). In addition,

The ith row of a matrix A is denoted as A(i,:) while its jth column is denoted either

as A(:,j) or as the column-vector aj. Scalars and individual matrix and vector entries

with their appropriate indices are represented as normal lowercase letters.

It is also expedient to list the following base definitions and assumptions, which

are at times slightly modified in different parts of this work.

2.1 Basic Definitions and Assumptions

Assumption 1. Let Ax = b be a nonsingular system of linear equations with left-

hand side (LHS) coefficient matrix A ∈ Zn×n, right-hand side (RHS) vector b ∈ Zn,

and variable vector x ∈ Qn.
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Definition 1. For some Gaussian elimination algorithm, let Ak be the kth-iteration

matrix, for integer 0 ≤ k ≤ n, where A0 := A. Denote the individual entries of this

matrix as aki,j, for 1 ≤ i, j ≤ n.

Definition 2. Let [A|b]k be the kth-iteration augmented matrix of a Gaussian elimi-

nation algorithm, for integer 0 ≤ k ≤ n, where [A|b]0 = [A|b]. With a slight abuse of

notation, denote the individual entries of this matrix as aki,j, for integers 1 ≤ i ≤ n

and 1 ≤ j ≤ n+ 1 (i.e., column index n+ 1 corresponds to the iterative RHS vector

that is originally b).

Definition 3. Let scalar ρk denote the pivot element selected from Ak–1 to perform

the kth iteration of some Gaussian elimination algorithm, where ρ0 := 1. The coor-

dinates of ρk, denoted as the ordered pair (rk, ck), are chosen from rows and columns

unselected in previous iterations.

Assumption 2 (temporary). Fix ρk = ak–1k,k 6= 0 (i.e., rk = ck = k), for k ≥ 1.

(Starting in Section 6.4, this assumption will be removed.)

We remark that, based on this convention, it is not necessary to perform any row

or column permutations between iterations of a Gaussian elimination algorithm;

equivalently, each corresponding permutation matrix is the identity matrix.

Definition 4. The bit-length of an integral matrix entry is given by the number of

bits required to store it.

Definition 5. The bit-length of a rational matrix entry is given by sum of the bit-

lengths of its integer numerator and integer denominator.

Definition 6. The solution size is given by the maximum bit-length required by an

individual entry of the solution vector.
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2.2 Solving Systems of Linear Equations

2.2.1 A Brief History

The solution of simultaneous linear equations impacts virtually every area of hu-

man endeavor, and it is a mathematical concern dating back to antiquity. More than

2,000 years ago, the ancient Chinese recorded in the Jiuzhang Suanshu (Nine Chap-

ters of the Mathematical Art) the first known process for solving systems of linear

equations (SLEs) [77]; the ancient text covers instances of up to five equations and

five unknowns. The development of this advanced process was tied to the solution of

agricultural problems, and its application was facilitated by the rod numeral system

[52]. Since then this algorithm has been rediscovered independently on multiple oc-

casions, and it is known today as Gaussian elimination. Most notably, in the early

1800s, C. F. Gauss, after whom the method is named, developed a formal description

of the procedure through which n linear equations with n unknowns could be me-

thodically solved. The central ideas of this process are still very much in use today

through various enhanced implementations—including, in part, the one elaborated

in this dissertation.

Like most mathematical tools of the pre-World War II era, the application of

Gaussian elimination was limited to relatively small problems due to the general

limitations of manual arithmetic. This centuries-old obstacle was swiftly removed

with the invention of the computer and, now, problems that would have taken years

to solve manually can be easily handled in a matter of seconds. However, this un-

foreseen capability also has engendered unanticipated consequences. In particular, as

Section 1 explains, in large and complex optimization problems the typical floating-

point implementation of Gaussian elimination causes individual roundoff errors that

may propagate and severely affect the validity of the solution obtained. Based on the
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size of these problems alone, the specific source of these errors may be hard to pin-

point, oftentimes leaving ad hoc software parameter-tuning as the only viable option

[49]. In light of this, there is a need for a systematic approach that guarantees exact-

ness for every problem it tackles but which is sufficiently fast to be implemented in

practice. To this end, this section describes the most prominent techniques that have

been developed with this objective in mind—though they may not achieve this goal

for every problem instance, with the exception of exact rational arithmetic Gaussian

elimination and integer-preserving Gaussian elimination. Beforehand, however, this

section outlines the Gaussian elimination step and its connection to the two preva-

lent direct methods for solving SLEs efficiently: the inverse matrix approach and

triangular matrix factorization.

2.2.2 The Gaussian Elimination Step

The strategy of Gaussian elimination for solving Ax = b efficiently is to remove

the presence of variable xk from equations Ak–1(i,:)x = bk–1i for k = 1 to n; where

1 ≤ i ≤ n, such that i 6= k. Typically, the equation Ak–1(k,:)x = bk–1k is also scaled so

that akk,k = 1, but this subsection ignores this detail for the sake of simplicity. We refer

the reader to any book on elementary linear algebra or linear programming for a more

comprehensive treatment of this algorithm and its popular variants (e.g., [2, 72, 78]).

For future reference, the ensuing paragraphs simply give a mathematical description

of one of its elimination steps according to the algorithm’s traditional definition, and

they explain how the algorithm was first utilized to calculate efficiently the solution

of systems with the same LHS matrix but with different RHS vectors. For describing

an elimination step, it is useful first to display the contents of the (k–1)th-iteration

14



matrix associated with this algorithm:

[A|b]k–1 =



a01,1 0 . . . ak–11,k . . . ak–11,n ak–11,n+1 := bk–11

0 a12,2 . . . ak–12,k . . . ak–12,n ak–12,n+1 := bk–12

...
. . . . . .

...
. . .

...
...

0 0 . . . ak–1k,k . . . ak–1k,n ak–1k,n+1 := bk–1k

0 0 . . . ak–1k+1,k . . . ak–1k+1,n ak–1k+1,n+1 := bk–1k+1

...
...

. . .
...

. . .
...

...

0 0 . . . ak–1n,k . . . ak–1n,n ak–1n,n+1 := bk–1n


where a0i,j = ai,j. According to Assumption 2, ak–1k,k is selected as the kth pivot

element and the eliminations of iteration k are performed by adding appropriate

multiples of row k to rows 1 to k–1 and rows k+1 to n so that the column k elements

ak–11,k , . . . , a
k–1
k–1,k, a

k–1
k+1,k . . . a

k–1
n,k all reduce to 0. Thus, given [A|b]k–1, the kth-iteration,

(i, j)-entry is obtained via the formula:

aki,j = ak−1i,j −
ak−1k,j

ak−1k,k

ak−1i,k , (2.1)

for 1 ≤ j ≤ n+1 and 1 ≤ i, k ≤ n such that i 6= k. Hence, after n–1 elimination

steps, the algorithm yields the following diagonal matrix:



a01,1 0 0 . . . 0 an–11,n+1

0 a12,2 0 . . . 0 an–12,n+1

0 0 a23,3
. . . 0 an–13,n+1

...
...

. . . . . .
...

...

0 0 0 . . . an–1n,n an–1n,n+1


.
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Finally, the rows of the augmented matrix are scaled so that the LHS matrix becomes

In, the identity matrix of order n, and the solution vector x equals the resulting RHS

vector.

The original technique for efficiently calculating the solution of different RHS

vectors while keeping the same LHS coefficient matrix ( i.e., the solution of each RHS

vector yields a distinct variable vector x) involves a straightforward extension of the

above algorithm. In particular, Gaussian elimination must instead be performed on

Ax = In, which is a linear system with n RHS vectors; this system can be equivalently

represented as the augmented matrix [A|In]. At its conclusion, this procedure yields

a RHS matrix equal to the inverse matrix A–1, by which the solution to Ax = b can

be calculated as:

x = A–1b. (2.2)

In summary, after obtaining A−1 via Gaussian elimination, the solution vector can

be calculated via matrix-vector multiplication for any RHS vector b. Thus, this is

known as the inverse matrix approach.

2.2.3 Triangular Matrix Factorization

In [12], André-Louis Cholesky developed an efficient method for solving a sym-

metric SLE with multiple RHS vectors that does not require storing the inverse

matrix. It works by constructing a triangular factorization of A via which the SLE

solution process is considerably simplified. Indeed, the solution of the resulting trian-

gular system or, in other words the associated triangular solve, can be construed as

reducing the process of solving n linear equations with n unknowns each to the sim-

pler process of solving n successive equations with only one unknown each. Actually,

the triangular solve must be performed twice, first using a lower triangular matrix,
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and then using an upper triangular matrix; hence, the first part of this efficient solu-

tion process is also known as forward substitution (or forward elimination) and the

second as backward substitution. Although the method turns out to be significantly

superior to the inverse matrix approach, its discovery went largely unheralded until

Alan Turing standardized its description and generalized its application to nonsym-

metric SLEs in [81]. In particular, this work specified that an invertible matrix A

can be factored as:

A = LU, (2.3)

where L is a lower triangular matrix and U is an upper triangular matrix. Such

a factorization is typically constructed by recording the pivots and intermediary

matrices associated with a reduced version of Gaussian elimination in which row-

reduction operations are performed only on the elements below and to the right of

the pivot element at each iteration. This process requires O(n3) operations, and it

reduces A to row-echelon form—i.e., yielding the upper-triangular matrix U when A

is nonsingular.

Using the LU factorization of A, Ax = b can be equivalently evaluated by suc-

cessively solving the following pair of triangular systems:

Ly = b and Ux = y,

where y ∈ Qn. Both triangular solves require O(n2) operations.

A factorization of the form given by Equation (2.3) need not be unique. However,

when L is required to be unit lower-triangular, that is when l1,1 = l2,2 = · · · = ln,n =

1, this leads to a unique type of LU factorization known as the Doolittle Factorization.
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Similarly, when U is instead required to be unit upper-triangular, this guarantees a

unique LU factorization known as the Crout Factorization (see [33] for the proofs of

uniqueness). The names of the factorizations are related to the respective algorithms

used to construct them.

2.3 Obtaining Exact Solutions

The algorithms described in the preceding subsection are typically performed

in fixed floating-point precision and, consequently, they are all subject to round-

off errors. Naturally, the simplest way to make them immune to these errors is to

work with unlimited-precision through exact rational arithmetic. This means each

matrix coefficient and RHS vector coefficient of the SLE is stored as a numerator-

denominator pair p/q such that p and q are arbitrary-length integers. Working in

exact rational arithmetic also implies each arithmetic operation is performed in a way

that no rounding errors can occur. Specifically, letting a1 = p1/q1 and a2 = p2/q2 be

two rational coefficients in canonical form—i.e., the numerator and denominator as-

sociated with each coefficient are relatively prime—the typical arithmetic operations

are carried out without roundoff error as follows:

a1 ± a2 =
p1
q1
± p2
q2

=
p1 × q2 ± p2 × q1

q1 × q2
, (2.4)

a1 × a2 =
p1
q1
× p2
q2

=
p1 × p2
q1 × q2

, (2.5)

a1 ÷ a2 =
p1
q1
× q2
p2

=
p1 × q2
q1 × p2

. (2.6)

A key detail is that the new numerator and denominator obtained at the conclusion

of each operation must be stored as separate integers in order to preserve exactness.

Within the context of an algorithm, considerable additional computational costs

are incurred after the evaluation of each numerator and denominator is completed
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in each of the above expressions. They are the byproduct of greatest common divi-

sor (gcd) calculations required to keep the bit-lengths of these integers as small as

possible. Indeed, without the use of gcd, the bit-lengths of exact rational arithmetic

Gaussian elimination algorithms would grow exponentially with the dimension of the

matrix [72]. Consequently, state-of-the-art unlimited-precision libraries like the GNU

GMP library (GMP)1 automatically employ them to reduce and keep every rational

to its canonical form [42]. To be consistent with this leading convention, this work

assumes gcd operations are concomitant with exact rational arithmetic.

We remark that, in view of the need to keep operand bit-length as small as

possible, the individual steps required to evaluate the ± operation without roundoff

error, as specified by Expression (2.4), could be replaced as follows:

a1 ± a2 =
p1
q1
± p2
q2

=
p1 × (lcm(q1, q2)÷ q1)± p2 × (lcm(q1, q2)÷ q2)

lcm(q1, q2)
,

where lcm(q1, q2) denotes a lowest common multiple function with arguments q1 and

q2. This alternative procedure generally yields smaller numerators and denominators,

but it requires two divisions and an lcm operation, which can be just as costly as a

gcd operation.

The recurring gcd operations to keep each rational’s numerator-denominator pair

in canonical form take a disproportionate amount of the run-time of any rational

arithmetic SLE solution algorithm. To help illustrate the high costs of performing gcd

operations, Table 2.1 lists the step-by-step application of the binary gcd algorithm,

which the GMP library uses for operands with small bit-lengths. The binary gcd

algorithm, which is attributed to Stein [76] but which may have been first described

in the Jiuzhang Suanshu by the ancient Chinese in the 1st Century, has O(N2)

1The GNU Multiple Precision Arithmetic Library. https://gmplib.org.
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Table 2.1: Numerical example of the binary gcd algorithm

Iteration p q Action

1 2343 147 p← p− q
2 2196 147 p← p/2

3 1098 147 p← p/2

4 549 147 p← p− q
5 402 147 p← p/2

6 201 147 p← p− q
7 54 147 p← p/2

8 27 147 q ← q − p
9 27 120 q ← q/2

10 27 60 q ← q/2

Iteration p q Action

11 27 30 q ← q/2

12 27 15 p← p− q
13 12 15 p← p/2

14 6 15 p← p/2

15 3 15 q ← q − p
16 3 12 q ← q/2

17 3 6 q ← q/2

18 3 3 q ← q − p
19 3 0 q ← q − p

complexity, where N is the larger of the operands’ bit-lengths [42]. The algorithm

finds the gcd of integers p and q by iteratively calculating their difference when both

are odd or by stripping factors of 2 when one of them is even, and then updating

these operands according to the output of the executed operation; the process repeats

until p or q is zero. If p = 0 (q = 0), then the gcd is returned as q (p) times the

product of factors of 2 common to p and q (i.e., when both are even) in the individual

steps of the algorithm.

In the featured example, the algorithm takes 19 iterations—herein characterized

as individual subtractions or divisions by 2—to conclude that 3 should be factored

from p = 2343 and q = 147 in order to obtain the canonical form of this numerator-

denominator pair, 781/49. We remark that in Table 2.1 the stripping of factors of 2

was denoted as a division for clarity even though this task can be easily accomplished

in a computer by shifting bits. Notwithstanding this shortcut, it is straightforward to

infer that for wide-ranging purposes, the efforts spent in an individual gcd calculation
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may have a relatively small payoff in terms of the magnitude of the factor they can

ultimately remove from the numerator and denominator. This statement certainly

holds for more advanced gcd algorithms with the same worst-case quadratic com-

plexity used in practice for handling operands with large bit-lengths (e.g., Lehmer’s

gcd algorithm [54]). It is not difficult to arrive at the same conclusion even for the

fastest known algorithms with subquadratic complexity of O(N(logN)2 log logN)

(e.g., Möller’s left-to-right gcd algorithm [60] and Schönhage’s half-gcd algorithm

[70]), some of which are also available within the GMP library [42]. We refer the

reader to Knuth [50] for an extended discussion and complexity analysis of special-

purpose gcd algorithms.

Due to the rather unfavorable tradeoff between computational costs and accuracy

offered by rational arithmetic, other alternatives have been developed for attempting

to solve SLEs exactly. The remainder of this subsection summarizes in brief three

tested prominent methods developed for this purpose as well as a supplementary

technique for accelerating the rational reconstruction subroutines required by two

of these methods. Then it describes an alternative algorithm, known as integer-

preserving Gaussian elimination, which serves as a foundation for all the computa-

tional tools developed in this dissertation. It is worth mentioning that, unlike the

latter algorithm, neither the first three methods nor the supplementary technique

to be presented can be strictly classified as a REF Gaussian elimination algorithm,

according to the definition provided at the beginning of this section.

2.3.1 Wiedemann’s Black-Box Algorithm

Wiedemann [86] devised a symbolic method for solving sparse SLEs over finite

fields that relies exclusively on field arithmetic and that accesses the input matrix

A only as a matrix-vector multiplication oracle. Hence, it is known as a black-
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box algorithm. By integrating the Berlekamp/Massey algorithm from coding theory

[13, 57], the method functions as a randomized algorithm that finds with high prob-

ability a random vector x such that Ax = b. More specifically, the algorithm is a

purely algebraic method that obtains the exact solution to an SLE by calculating

the minimum polynomial of a sequence of linearly generated matrix-vector products

{Aib}∞i=0 ∈ (Kn)N, for a field K. Said polynomial gives an explicit formula for solving

Ax = b since the linear equation,

c0In + c1A+ c2A
2 + · · ·+ cmA

m = 0,

implies that the exact solution is given by:

x = A−1b = −c−10 (c1b + c2Ab + · · ·+ cmA
m–1b),

where c0, c1, c2, . . . , cm ∈ K [17]. The randomized portion of this process involves

the choice of a row vector u that is used to generate the set of field elements

{a0, a1, . . . , a2m–1} with individual member ai defined as the product uAib, for 0 ≤

i ≤ 2m–1. The minimum polynomial of {Aib}∞i=0 is obtained by finding the minimum

degree linear generating polynomial of these field elements via the Berlekamp/Massey

algorithm.

The complexity of Wiedemann’s method comprises O(n log(n)) calls to the black

box for A and an extra O(n2 log(n)2) in field arithmetic operations; it is assumed

that K has at least 50n2 log(n) entries. While these complexity measures appear

promising, it has been observed that the method is much more sensitive to problem

dimension relative to other competing approaches. In effect, larger instances can have

a minimum polynomial of a higher degree, thereby requiring numerous matrix-vector
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multiplications [17]. We refer the reader to [47] or [83] for a more comprehensive

treatment of Wiedemann’s black-box algorithm.

2.3.2 Iterative Refinement

Iterative refinement is an approach that calculates a solution to x̂ ≈ x to Ax = b

of arbitrary precision via refinements yielded by a sequence of increasingly accurate

approximations. In greater detail, the method begins by calculating an approximate

solution x̂0 and a residual vector b̂0 = b − Ax̂0 (i.e., the SLE solution error or

violation) and by setting the best known approximate solution as x̂ ← x̂0. If the

violation is not sufficiently small, the process is repeated, this time toward solving

the related SLE Ax = b̂0. The corresponding approximate solution x̂1 and residual

vector b̂1 = b0 − Ax̂1 are utilized to refine the best known approximate solution to

the original problem as x̂← x̂+x1 and to determine if yet another similar iteration

is needed. This process of solution and refinement continues until the violations are

sufficiently small, that is, until b̂ < ε1, where 1 denotes the n-length one-vector and

where ε > 0 is a small pre-specified precision tolerance constant.

Iterative refinement, which was first developed by Wilkinson [87] within the con-

text of solving SLEs, was not initially intended to provide exact solutions in and

of itself. That is why Ursic and Patarra [82] paired it with rational reconstruction

with the idea of converting arbitrary-precision approximations into exact solutions.

The rationale for being able to carry out this conversion comes from the theory of

diophantine approximation and the following key theorem taken from [72]:

Theorem 2.3.1. There exists a polynomial algorithm which, for α ∈ Q and M ∈ N,

tests if there exists a rational number p/q with 1 ≤ q ≤ M and |α − p/q| < 1/2M2,

and if so, finds this (unique) rational number.

Said algorithm is applied componentwise on x̂ to recover x when the exact de-
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nominators of each entry are small, and it works by finding the continued fraction

convergent for α via the extended Euclidian algorithm (see [50]). We remark that

the above result has implications beyond iterative refinement as it can be similarly

implemented on the solutions obtained by other approximation approaches.

Working exclusively with integral SLEs, Wan [84] improved Ursic and Patarra’s

[82] hybrid strategy by modifying the iterative refinement phase into the follow-

ing three step process: (1) obtain an initial approximate solution, (2) amplify this

approximation by a scalar, and (3) adjust the amplified solution and correspond-

ing residual to integers. The refinement process must be repeated until the desired

precision tolerance is reached, after which rational reconstruction is performed to

obtain the exact solution to the SLE. A chief reason for this algorithm’s performance

edge over previous versions of exact SLE iterative refinement is that, by converting

floating-point approximate solutions to be integral, the algorithm maintains a scaled

measure of the exact error without using extended precision.

In general, iterative refinement achieves very competitive run-times. However,

since it performs nearly every computation in floating point in order to maximize

speed, it is rather sensitive to numerically difficulties, which at times can cause it to

fail [17, 82]. As a result, it cannot guarantee that the exact solution to a nonsingular

SLE will always be found.

2.3.3 P -Adic Lifting

Dixon [21] introduced a roundoff-error-free method for solving Ax = b that relies

on congruence modulo techniques, where A ∈ Zn×n and b ∈ Zn. It consists of three

main steps: (1) calculating A−1(mod p), for some prime p; (2) successively refining

the vector x̂ ∈ Z such that Ax̂ ≡ b(mod pm) for a sufficiently large m ∈ Z; and (3)

reconstructing x from the p-adic approximation x̂. An important requirement for
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choosing p in the first step is that it must not be a factor of det(A) 6= 0. However,

it is not advisable to calculate the determinant a priori; instead, different primes

can be guessed since an invalid choice can be recognized in the middle of a run.

Akin to the linear programming iterative refinement method, to described in Section

3.3.4, the second step of this method effectively builds an extended-precision solution

iteratively. Moreover, the third step of this method relies on a modular arithmetic

version of rational reconstruction; its use is justified on a result by von zur Gathen

and Gerhard [83] that is analogous to Theorem 2.3.1.

The major advantage offered by the p-adic approach is that it works exclusively

in integer arithmetic while performing most of the calculations in standard fixed pre-

cision. The method can be implemented in O(n3(log n)2) run-time, and the authors

go as far as to claim that for practical cases the run-time is proportional to n3, thus

making it very efficient in most cases. However, this competitive performance has

been shown to be associated with simpler problems and to degrade considerably as

the bit-lengths of the denominators in the solution vector increase [17].

2.3.4 Output Sensitive Lifting

Output sensitive lifting accelerates the process of rational reconstruction and,

as such, it is not a stand-alone method for solving SLEs exactly. At the same

time, it is not attached to any particular method, and it can be applied to handle

different types of approximate solutions. It was initially developed within the context

of nonsingular SLEs by Chen and Storjohann [15], who implemented it on a p-

adic lifting-based approach. Most notably, Steffy [74] expanded and bolstered the

technique to improve the performances of both the iterative refinement and p-adic

lifting approaches described in Sections 2.3.2 and 2.3.3, respectively. Output sensitive

lifting has also been applied to compute determinants in [45] and to solve SLEs over
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cyclotomic fields in [14].

The integration of the output sensitive lifting technique for solving SLEs is in-

tended to curtail various inefficiencies associated with standard rational reconstruc-

tion. Primarily, it saves the high costs associated with using a needlessly large bound

for the bit-lengths of the exact solution’s denominators; in effect, the number of steps

executed by the extended Euclidian algorithm and the required memory increase with

the chosen bound’s size. Owing to Cramer’s rule, Hadamard’s determinant inequal-

ity is often used to generate a valid bound, a case in point being the traditional

p-adic lifting algorithm devised by Dixon [21]. However, such a bound is too pes-

simistic and impractical in most cases, as attested by the probabilistic analysis and

computational tests performed in [1] and by experiments involving SLEs from linear

programming carried out in [17]. Based on these observations, output sensitive lift-

ing employs significantly smaller bounds, which significantly speeds up computation,

and which works well when the solution denominators have small bit-lengths [15].

However, depending on the specific problem at hand, the chosen bounds may turn

out to be invalid, leading to incorrect rational reconstruction output. Nonetheless,

even a failed rational reconstruction run is not necessarily wasteful since the tech-

niques developed by Steffy [74] allow for the subroutine’s early termination and for

using an aborted run’s information to warm-start subsequent attempts. With each

new rational reconstruction attempt, the employed upper bound is increased and,

hence, it eventually becomes valid. This warm-start capability is also the basis for

another major cost-saving strategy introduced by Steffy [74] of performing rational

reconstruction at intermediate steps of an SLE solution algorithm rather than exclu-

sively in its final step. The strategy is particularly useful for integration with iterative

refinement since this algorithm increases the quality of the approximate solution at

each step and since an intermediate approximation may suffice to reconstruct the
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exact solution and abort execution well before the approximate-solution error falls

below a specific threshold.

The enhanced performance of output sensitive lifting relative to standard rational

reconstruction is dependent on solution size. In particular, this advanced technique

is able to solve SLEs quickly when the solution size is small, which occurs in many

applied problems. However, it is not as effective when the solution size is relatively

large and, therefore, it retains the same worst-case complexity as standard rational

reconstruction [74]. Moreover, its performance is also highly dependent on the quality

of the approximation it receives as input. In effect, if the fixed-precision algorithm

generating the approximate solution is plagued by an exceeding amount of roundoff

errors, neither output sensitive lifting nor standard rational reconstruction will be

able to recover the correct solution.

2.3.5 Integer-Preserving Gaussian Elimination

Integer-preserving Gaussian elimination (IPGE) is an algorithm that can be cred-

ited separately to [24], [8], [61], and even to the eponymous Gauss. As its name

suggests, IPGE describes an elimination process for solving a linear system of equa-

tions Ax = b, in which all operations are guaranteed to lie in the integer domain,

given A ∈ Zm×n and b ∈ Zm, for x ∈ Qn. The final outputs of the algorithm are

an integral numerator vector and an integral denominator scalar that is common to

all the numerator vector entries—saving the denominator separately allows for the

exact expression of solutions that may be non-integral. Since the algorithm preserves

the integrality and exactness of each variable’s associated numerator and denomina-

tor, the solution is exact and free of roundoff error. Hence, IPGE solves Ax = b

exactly and allows its solution to be expressed up to any desired (or allowable) level

of precision.
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The next subsection will discuss IPGE in greater detail. For this purpose, it will

be convenient to disregard the cases for which Ax = b has no solutions, which are

detected in IPGE exactly like in other row-reduction algorithms (i.e., an all-zero row

with a nonzero right-hand side is obtained). Hence, without loss of generality, we will

assume A has full row-rank for the remainder of this section. Since adding a column

to A does not change its row rank, this assumption implies the augmented matrix

[A|b] formed by appending b to the right of A has full row-rank as well. Another

convenient assumption we make for the remainder of this section is that the first

m columns of A are linearly independent; if these columns were linearly dependent,

a column-permutation matrix would need to be defined and used similarly to the

row-permutation matrices discussed below in order to avoid pivot elements equal to

0.

2.3.5.1 Description of the Algorithm

IPGE works by performing integer-preserving row-reduction operations on the

rows above and below the pivot element, where each resulting term is then divided

by the previous pivot. Formally, given the integral full-row-rank augmented matrix

[A|b], IPGE calculates the iterative entries aki,j, for k = 1 to m, 1 ≤ i ≤ m, and

1 ≤ j ≤ n+ 1, as follows:

aki,j =

 ak–1i,j if i = k

(ρkak–1i,j − ak–1k,j a
k–1
i,k )/ρk–1 otherwise

(2.7)
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where ρk = ak–1k,k 6= 0, ρ0 = 1, and [A|b]0 = [A|b]. As a direct consequence of Equation

(2.7), the entries of columns 1 to k of [A|b]k can be obtained via the shortcut formula:

aki,j =

 ρk if i = j

0 otherwise
(2.8)

for column j ≤ k. Hence, the elements of the diagonal crossing the first k columns

of [A|bk], which are all equal to ρk, comprise the only nonzero elements among these

columns.

Due to the requirement of nonzero pivots, the augmented matrix [A|b]k is per-

muted row-wise prior to beginning iteration k+1 ≤ m, when its (k+1, k+1)-entry

is equal to zero. The replacement nonzero pivot, taken from rows k+1 to m of

column k+1, is guaranteed to exist because [A|b] has full row-rank and from the

ongoing assumption that the first m columns of A are linearly independent. Hence,

after applying the shortcut given by Equation (2.8) to obtain columns 1 to k and

then calculating the remaining entries via Equation (2.7), the kth-iteration matrix

is updated as follows:

[A|b]k ← P k[A|b]k (2.9)

where P k equals Im, the identity matrix of order m, when the (k+1, k+1)-entry of

[A|b]k is nonzero; otherwise, P k permutes row k+1 with a higher-index row so that

ρk+1 6= 0.

From our ongoing assumption, it is evident that columns 1 to m of [A|b]m form

a basis B. Denoting the associated basic and nonbasic variables as xB and xN ,

respectively, since am1,1 = . . . = amm,m = ρm are the only nonzero elements among the
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first m columns of [A|b]m, a solution to Ax = b is thus given by:

xB =
bm

ρm
and xN = 0 (2.10)

where bm denotes column n+1 of [A|b]m. The following subsection will review prop-

erties of IPGE that are relevant to this work including those that explain why the

above equations yield the REF solution to Ax = b.

2.3.5.2 Key Properties

IPGE Property 1. The divisions in IPGE are exact.

Utilizing Sylvester’s identity, Bareiss proved in [8] that the division of the expression

ρkak–1i,j −ak–1k,j a
k–1
i,k by the previous pivot ρk–1 is exact for 1 ≤ i, k ≤ m and 1 ≤ j ≤ n+1.

Based on this property, the augmented iterative matrices of IPGE are all integral

and free of roundoff errors. Hence, the final solution step given by Expression (2.10)

involves the division of an exact numerator by an exact denominator.

IPGE Property 2. IPGE entries have a special structure.

Edmonds [24] proved that each entry of IPGE is in fact equal to ±1 times the deter-

minant of a particular square submatrix of A, and is therefore integral. Specifically,

aki,j ( after the kth row permutation is applied to [A|b]k) may also be expressed as:

aki,j =


(−1)i+k det

(
(P k. . . P 1P 0A)1...k1...i–1,i+1...k,j

)
if i ≤ k

det
(

(P k. . . P 1P 0A)1...k,i1...k,j

)
otherwise

(2.11)

for 0 ≤ k ≤ m, 1 ≤ i ≤ m, and 1 ≤ j ≤ n+1; where (P k. . . P 1P 0A)1...k,i1...k,j is the

submatrix induced by rows 1 to k and i and columns 1 to k and j of P k. . . P 1P 0A

and det
(

(P k. . . P 1P 0A)1...k,i1...k,j

)
is its determinant. Clearly, from Equation (2.11), the
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sequence of pivots ρ1 to ρm is also given by the sequence of leading principal minors of

(PA)1...m1...m and, in particular, ρm = det ((PA)1...m1...m) . Hence, utilizing Equation (2.10),

the solution to Ax = b may be restated as:

xB =
bm

det ((PA)1...m1...m)
and xN = 0. (2.12)

Together with the fact that an exact basic solution can be equivalently obtained

via the equation xB = [(PA)1...m1...m]−1b = Adj ((PA)1...m1...m) b/ det ((PA)1...m1...m), Equation

(2.12) implies bm = Adj ((PA)1...m1...m) b, where Adj((PA)1...m1...m) is the adjunct matrix

of (PA)1...m1...m. Consequently, since all these quantities are exact, IPGE will yield

a solution that is accurate up to any desired level of precision. The remaining

properties and discussion require the following definitions.

Definition 7. Let σ and B̃ be the individual entry and subdeterminant, respectively,

in [A|b] with the largest magnitudes, that is:

σ = max
i,j
|a0i,j| and B̃ = argmax

([A|b]0)RC

∣∣det([A|b]0)RC
∣∣ ,

where ([A|b]0)RC is the submatrix induced by the rows and columns of [A|b]0 indexed

by R ⊆ {1 . . .m} and C ⊆ {1 . . . n}, respectively, such that |R| = |C|.

Definition 8. Let ωmax be the maximum bit-length (i.e., the maximum number of

bits) required to store an individual entry of IPGE when it is applied to [A|b] ∈

Zm×(n+1), with m ≤ n and initial elements with values lying in the interval [–σ, σ].

In more formal terms, ωmax is given by the expression:

ωmax = max d
i,j,k

log |aki,j|e.
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IPGE Property 3. The maximum bit-length of an IPGE entry, denoted

as ωmax, is polynomially bounded.

Based on the special structure of IPGE’s entries, Hadamard’s inequality [43] can be

applied to obtain upper bounds on ωmax as follows [9]:

ωmax ≤ dlog(| det(B̃)|)e ≤ dlog(
m̃

Π
h=1
‖B̃(h,:)‖)e (2.13)

≤ dlog(σmm
m
2 )e = dm log(σ

√
m)e (2.14)

where ‖B̃(h,:)‖ denotes the Euclidian norm of row h of B̃; and where m̃ is fixed as

the number of rows of B̃. Notice that the bound given by Expression (2.14) does not

depend on the number of columns in A.

The upper bound given by Inequality (2.13) is tight if and only if the rows (or

columns) of B̃ are pairwise orthogonal, and it pessimistic otherwise. In particular,

Abbott and Mulders [1] derived the expected value and variance of the bit-length

of a determinant to be proportional to m and log
√
m, respectively, for the matrix

B ∈ Zm×m generated randomly as follows: choose a large m number of points on

the surface of the unit sphere independently and uniformly, scale the points by an

arbitrary power of ten (round/truncate for integrality), and set entry (i, j) of B as

the jth coordinate of the ith point generated, for 1 ≤ i, j ≤ m. Accordingly, by

Inequality (2.13), the expectation of the IPGE bit-length over this type of random

matrices is O(m) with a variance of O(log
√
m).

The upper bound given by Inequality (2.14) pinpoints the overwhelming ad-

vantage of implementing IPGE over both division-free Gaussian elimination—i.e.,

elimination by cross-multiplication in which, in the kth step, ai,j is replaced by

ak,kai,j−ak,jai,k [72]—and rational-arithmetic Gaussian elimination without gcd cal-

culations. Specifically, the maximum entry bit-length of IPGE is bounded polynomi-
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ally while that of the other two algorithms is bounded exponentially [30]. The version

of rational arithmetic Gaussian elimination that performs recurrent gcd calculations

also achieves the IPGE upper bounds (i.e., Inequalities (2.13) and (2.14)) for the

maximum bit-lengths of each of its matrix entries’ numerator and denominator [72].

Nevertheless, IPGE remains the superior alternative because gcd calculations sub-

stantially increase computational complexity and because rational arithmetic Gaus-

sian elimination with gcd requires up to twice the storage of IPGE (i.e., IPGE’s

denominators are all equal to one and, consequently, do not need to be stored).
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3. REVIEW OF EXACT LINEAR PROGRAMMING

This section reviews the different approaches for solving linear programs (LPs)

exactly, and it summarizes certain related computational results. The discussion

tracks the evolution of state-of-the art implementations, which helps set the stage for

many of the algorithms developed in this dissertation. In addition, it helps explain

some of the main contexts in which the proposed algorithmic tool set would be

implemented and lastly how this work aims to make significant contributions to exact

linear programming, or exact LP, for short. Although the ongoing narrative assumes

a general familiarity with the field of linear programming, the opening subsection

goes over some of its most fundamental elements.

3.1 A Brief Overview of Linear Programming

Let A ∈ Qm×n be a coefficient matrix, and let x ∈ Qn and b ∈ Qm be a decision

variable vector and a RHS vector, respectively. Here and in the rest of this section,

the parameters m and n represent the number of constraints and decision variables

in a given linear program, respectively. Generally speaking, an LP may be stated in

standard form as follows:

Minimize
n∑
j=1

cjxj (3.1a)

Subject to
n∑
j=1

ai,jxj = bi i = 1 . . .m (3.1b)

xj ≥ 0 j = 1 . . . n; (3.1c)

where Expression (3.1a), which can be written in vector form as cTx, is the linear ob-

jective function; where Equations (3.1b), which can be written in matrix-vector form

as Ax = b, are the equality constraints; and, where Inequalities (3.1c), which can be
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written in vector form as x ≥ 0, are the non-negativity constraints on the decision

variables. The above LP can be extended to describe a mixed-integer programming

problem (MIP) through the addition of the following integrality requirement on a

nonempty subset of the decision variables:

xj ∈ Z j ∈ JZ ⊆ {1 . . . n}. (3.2)

A vector x0 satisfying Constraints (3.1b) and (3.1c) for an LP—and Constraints (3.2)

as well for an MIP—is said to be a feasible solution of the problem; if no such x0

exists, the problem is said to be infeasible. When there exists a feasible solution x∗

such that cTx∗ ≤ cTx for all feasible x, x∗ is said to be an optimal solution of the

problem. Moreover, if there always exists a feasible solution x′ such that cTx′ < cTx

for any feasible x, the problem is said to be unbounded.

For every LP there exists a closely related problem, known as its dual, which has

remarkably useful properties. The dual to LP Problem (3.1) is given succinctly as:

Maximize bTy (3.3a)

Subject to ATy ≤ c (3.3b)

y unrestricted; (3.3c)

where A, b, and c are the same as in the original or primal LP; and where y ∈ Qm

is the corresponding vector of dual decision variables. Problems (3.1) and (3.3) are

connected by the property of weak duality, which states that, for any feasible primal

solution x and feasible dual solution y, the relationship cTx ≥ bTy always holds.

Moreover, by the property of strong duality, if either Problem (3.1) or Problem (3.3)

has a finite optimal solution x∗ or y∗, respectively, then so does its counterpart, and
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cTx∗ = bTy∗; if either problem has an unbounded objective, then the other problem

is infeasible. A key implication of strong duality is that establishing both primal and

dual LP feasibility for the same underlying basis equates to certifying the optimality

of both problems. This central fact is repeatedly exploited by the advanced exact

LP approaches herein reviewed.

The most popular approaches for solving LP problems are the simplex algorithm

and the interior point method, which were invented by Dantzig in [18] and by Fiacco

and McCormick in [31], respectively. From a geometric standpoint, the simplex

algorithm works by moving between extreme points of the feasible region, and the

interior point method works by traversing its interior. In theory, current versions

of the interior point method have low-degree polynomial worst-case complexity [41],

while a polynomial-time version of the simplex algorithm is not yet known to exist

[48]. Nevertheless, formal empirical tests have shown that the simplex algorithm

requires roughly 3m/2 iterations (i.e., moves between extreme points) and seldom

more than 3m iterations, where m is the number of constraints. In short, the simplex

algorithm is very fast in practice [72].

The computational advantage of interior point methods is their ability to solve

very large and sparse problems the fastest of any LP algorithms [41]. Nonetheless, the

simplex method remains the superior alternative for problems of small to medium size

and, most importantly, it is most expedient when taking advantage of “warm-start”

information—i.e., prior knowledge about the solution. Conversely, interior point

methods are generally much less useful in this respect [65]. The latter fact makes the

simplex algorithm the preferred choice for performing LP sensitivity analysis and for

solving MIPs via the branch-and-bound (B&B) algorithm. In particular, since the

B&B algorithm works by solving linearly-relaxed subproblems that are marginally

different from the linear relaxation of their respective parent nodes, the simplex
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algorithm is the fundamental tool for solving MIPs efficiently.

The subject of this dissertation is the development of foundational algorithms

for the efficient roundoff-error-free solution of LPs and MIPs. Hence, the ability to

profit from prior solution knowledge is pivotal and, as such, our design is tailored

toward the simplex-based solution approach. In light of the above observations, this

work makes no further reference to interior point methods. For more details on both

of the major LP solution approaches, we refer to any advanced book on optimization

(e.g., [11, 65, 72]).

3.2 Unlimited-Precision Approaches

3.2.1 The Simplex Algorithm in Rational Arithmetic

A surefire approach for solving any rational LP without accruing roundoff errors is

to perform a variant of the simplex algorithm in which all operations are performed in

unlimited precision. The most straightforward way to implement this is to store the

coefficients ai,j, cj, and bi, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, in Problem (3.1) (or Problem

(3.3)) as exact rationals and to perform every simplex operation using exact rational

arithmetic. Hence, during every iteration of the algorithm, each matrix coefficient is

stored as a numerator-denominator pair p/q such that p and q are arbitrary-length

integers.

The above exact LP approach has been coded and tested multiple times due to

its relative simplicity. An advanced implementation was performed in [4], and it in-

volved modifying the open source QSopt LP solver1 [3] to perform every operation in

rational arithmetic via the GNU-GMP (GMP) library [42]. The authors observe that

this simple modification yields a wide variance in the solution coefficients’ bit-lengths

and high run-times. Thus, they conclude that this naive approach is impractical in

1QSopt Linear Programming Solver. http://www.math.uwaterloo.ca/∼bico/qsopt.
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most situations. A key finding in a separate implementation in [7] is that a dispro-

portionate fraction of the run-time associated with this type of approach is spent on

gcd calculations, which are required for keeping the bit-lengths of the numerators

and denominators from growing exponentially [72].

3.2.2 Q-Matrices

Azulay and Pique [7] devised an alternative to the exact-arithmetic LP solver

that relies exclusively on integer arithmetic. In particular, their exact revised simplex

method enhances the concept of Edmond’s Q-matrices [25], which are integer-valued

matrices that expand the application of IPGE (see Section 2.3.5) to LP by defining

a corresponding integral simplex tableau (obtained via IPGE) and its requisite pivot

operations—i.e., Q-pivots. Azulay and Pique improved the Q-matrix method by

replacing its previous implementation on an m × (n+m+1) full simplex tableau

associated with the linear system A + Im = b with a slimmed down version on an

m × 2m augmented matrix [B|Im], where B ∈ Zm×m is a basis of A and Im is the

identity matrix of order m. By way of this smaller Q-matrix, the simplex algorithm

can be applied in its revised form using integer arithmetic, and the respective basis

updates can be performed in O(m2) operations via Q-pivots.

At its core, the Q-matrix revised simplex method uses a streamlined IPGE-based

version of the inverse matrix approach described in Section 2.2.2. Recall that this

approach calculates and stores the inverse of a nonsingular LHS coefficient matrix,

and then it utilizes it to solve any SLE associated with this matrix—i.e., to solve for

any RHS vector—via matrix-vector multiplication, as indicated by Equation (2.2).

The difference is that the diagonalization of the LHS of [B|Im] via IPGE constructs

the adjunct matrix of B rather than its inverse, in the RHS of the transformed aug-

mented matrix. The adjunct matrix, denoted as Adj(B), is defined as the transpose
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cofactor matrix of B and, consequently, it is an integral m×m matrix. Hence, after

this initial construction, individual Q-pivots actually serve to update the adjacency

matrix so that it appropriately reflects simple changes to the working basis.

As result of Cramer’s Rule, the matrix-vector multiplication Adj(B)b yields an

integral vector x′ given by the equation:

x′ = Adj(B)b = det(B)B−1b.

This indicates that once Adj(B) has been obtained, the Q-matrix revised simplex

method can be used to calculate the exact solution to Bx = b by first carrying out the

above matrix-vector multiplication and then by including det(B) as the denominator

of all of x′’s entries.

Azulay and Pique [7] compared the run-times of the Q-matrix and rational arith-

metic revised simplex methods using 24 NETLIB instances. Their method had the top

performance for 21 of the instances, 8 of which decreased the corresponding rational

arithmetic run-times by approximately one order of magnitude. Although this imple-

mentation is not as robust as the QSopt rational arithmetic modification (based on

the numerical libraries used and the number of instances tested), it at least hints at

the potential computational advantages of replacing rational arithmetic with integer

arithmetic in exact LP subroutines.

In a subsequent section of this dissertation we develop and test an efficient adap-

tation of the Q-matrix revised simplex method. Specifically, the version herein de-

rived is intended to serve as a basic solution validation subroutine rather than a

full-fledged exact LP solver. Additionally, the featured implementation reduces the

memory requirements for constructing Adj(B) by one half and its underlying code

is programmed using the state-of-the-art unlimited-precision GMP numerical library.
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The corresponding derivation, discussion, and results can be found in Section 5.4.1.

3.3 Mixed-Precision Approaches

3.3.1 A Tool for LPs in Computational Geometry

Gärtner [34] developed a mixed-precision approach tailored to LP problems in

computational geometry; it is included in the open-source CGAL2 linear and quadratic

programming solver. Specifically, Gärtner’s approach is most useful when min(m,n)

is small—say, no more than 30—while max(m,n) is possibly very large. His method

employs floating-point arithmetic to price the nonbasic variables—thereby deter-

mining a sequence of extreme points visited by the simplex algorithm—and then

arbitrary-length integer arithmetic to validate the entering variable choice and to

both store and update the basis inverse. Based on the author’s presentation, it is ev-

ident that it is actually the adjunct matrix rather than the inverse that is stored and

updated using Edmond’s Q-matrices [24]. Hence, this approach could be character-

ized as a partial implementation of the then-unpublished Q-matrix revised simplex

method of Azulay and Pique [7].

By the author’s own admission, the small number of NETLIB instances tested in

[34] were those most advantageous computationally to their method. As a result,

even though their method beat CPLEX version 4.0.9 in a handful of instances, it is

not possible to extrapolate these conclusions to more general types of LPs. CPLEX

actually outperforms their method for a larger number of instances and by a much

wider margin, but this is to be expected since CPLEX works entirely in floating-point

arithmetic (and is not guaranteed to deliver an exact/correct solution). Moreover,

from the showcased results and a basic understanding of IPGE—upon which Q-

matrices are based—it can be deduced that their method performs better than CPLEX

2CGAL — Computational Geometry Algorithms Library. http://www.cgal.org.
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when the basis is both dense and very small for two main reasons. The first is that

CPLEX clearly cannot take advantage of sparsity as usual and the second is that the

bit-lengths of the operands are not likely to grow beyond the native precision for

small basis dimension m (recall that their bit-length upper bound is proportional to

m and not n, as evinced by IPGE Property 3).

Further computational comparisons in the same work showed a path for signifi-

cant improvement in exact LP by hinting at the advantages of employing a mixed-

precision approach rather than an unlimited-precision approach. In their study, the

unlimited-precision approach simply consists of the featured algorithm with every

simplex operation carried in exact arithmetic. In particular, for the 5 problems in

which the two approaches are featured (both of which rely on the integer-preserving

Q-matrix framework for calculating and updating adjunct matrix of the basis), the

mixed-precision approach outperforms the unlimited-precision approach by approx-

imately one order of magnitude. Thus, this suggested that considerable benefits

could be attained by switching to floating-point precision in noncritical subroutines

of exact LP, possibly influencing the development of the more advanced approach

discussed in the next subsection.

3.3.2 The Verify and Repair Strategy

Dhiflaoui et al. [20] developed a verify and repair strategy for exact LP, which

is claimed to handle medium to large-scale problems efficiently. Their approach

verifies whether the basis returned by a floating-point solver is primal and/or dual

feasible via exact arithmetic; when the verification or basic solution validation process

contradicts the floating-point solver’s output, it invokes an exact LP solver in order

to resume iterating from the current basis—i.e., to repair the solution. Thus, this

approach delays the use of exact computations to perform the simplex algorithm
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until the basis output by the floating-point solver is deemed to be invalid.

The main experiment in [20] involved measuring the run-times taken by the CPLEX

LP solve and by the basic solution validation subroutine for 19 NETLIB instances

of differing sizes. The run-times taken by the latter can be up to three orders of

magnitude higher than the former. Hence, exact computation remains the bottleneck

of this exact LP strategy. The authors did not formally compare their mixed-precision

method to an unlimited-precision LP solver and, consequently, it is not possible to

contextualize these results. Moreover, due to the relative brevity of their work and

the public unavailability of its corresponding code, it is not entirely clear how the

exact primal and dual solutions are calculated. In spite of the absence of these

and other critical details, the verify and repair strategy was instrumental in the

development of state-of-the-art exact LP solvers. This is because it was the first

to suggest that exact arithmetic should be used primarily to validate the output of

floating-point solvers rather than to perform individual operations within the simplex

algorithm.

3.3.3 LP Precision-Boosting

Koch [51] observed that simply changing the floating-point representation from

64 to 128 bits caused the SoPlex3 LP solver [88, 89] to find optimal solutions to 5

numerically difficult NETLIB problems. Applegate et al. [4] capitalized on this insight

to enhance the method of Dhiflaoui et al. [20] with the goal of minimizing the use

of unlimited-precision arithmetic. Their chief improvement vis-á-vis the verify and

repair approach is that their method avoids using an exact arithmetic LP solver

altogether when the basic solution validation process contradicts the floating-point

solver’s output. Instead, their precision-boosting method dynamically increases the

3SoPlex — The sequential object-oriented simplex class library.
http://www.zib.de/Optimization/Software/Soplex.
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working floating-point precision p in the simplex algorithm each time the final basis

requires repairing, as signaled by an independent exact evaluation of its primal and

dual solutions. In the first LP solve, p is set to the system’s native precision (e.g.,

64 bits) and with each successive call to the basis repair subroutine, the LP solver

resumes iterating from the last known basis in increased precision p← p+32k, where

k ≥ 1; the basic solution validation subroutine is triggered each time the floating-

point solver finishes executing. Thus, in the process of solving a numerically difficult

LP, the basic solution validation subroutine may be repeatedly invoked, each time

using the basis information returned by a higher-precision simplex run.

Applegate et al. [4] implemented their precision-boosting method by developing

the QSopt ex exact LP solver4. To enable both the dynamic precision boosts in

the LP solves and the exact computation of the primal and dual solutions, their

implementation makes use of arbitrary (but fixed) floating-point numbers and of

unlimited-precision rationals via the GMP library. The principal solution verification

subroutines are based on the QSopt LU factorization algorithms, which are exact

rational arithmetic adaptations of algorithms developed by Suhl and Suhl [80]. To

be precise, the authors first attempt to avoid the exact LU factorization process by

finding rational approximations of the floating-point primal and dual solutions via

the output sensitive lifting technique and then testing the validity of the solver’s

output via these approximations. This technique, described in Section 2.3.4, is an

efficient version of rational reconstruction, which is itself based on the concepts of

Diaphontine approximation—i.e., finding continued fraction convergents by applying

the extended Euclidean algorithm. This shortcut works well on easier LP instances

whose solution denominators have shorter bit-lengths, but it is less successful on

more intricate problems [15, 17, 74].

4QSopt ex Rational LP Solver. http://www.math.uwaterloo.ca/∼bico/qsopt/ex.

43



The authors tested their method on numerous instances from four classes of prob-

lems encompassing small (<1,000 constraints), medium (1,000-10,000 constraints),

and large-scale LPs (>10,000 constraints) as well as modest-sized MIPs—for these,

QSopt ex was utilized to solve each LP encountered within the B&B algorithm. A

detailed report of all their computational results can be found in Espinoza [28]. Most

notably, for nearly all 625 benchmark LP instances, QSopt ex is able to provide an

accurate solution and its accompanying certificate of optimality, infeasibility, or un-

boundedness with relatively few precision boosts to the floating-point solver: 51.9%

with none (i.e., double precision or 64 bits), 74.0% with at most one (128 bits), 81.6%

with at most two (192 bits), and 98.9% with at most three (256 bits).

The QSopt ex solver was not directly compared with the naive rational arithmetic

QSopt modification (see Section 3.2.1). However, the results of separate experiments

measuring the run-time ratios of each method versus the standard floating-point

QSopt solver suggest that the precision-boosting approach is decidedly superior. For

the rational arithmetic QSopt modification, this ratio is greater than 100 on average

and as large as 27,000 for 170 small problems; for QSopt ex, the geometric mean

of this ratio is less than 7 for 324 small to large problems. Nevertheless, for many

problems tested in the QSopt ex experiment, a disproportionate amount of run-time

is still spent performing the exact rational arithmetic verification subroutines. In

particular, 35% of the instances requiring at least one precision-boost in [28] spend

more than 30% of the run-time working with exact rational arithmetic. Because

these results include easier problems that are able to avoid the exact LU factorization

altogether, this figure is likely higher for numerically difficult problems. This appears

to be supported by the fact that nearly 10% of the instances with run-times exceeding

1,000 seconds spend more than 80% of the run-time working with exact rational

arithmetic.
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3.3.4 LP Iterative Refinement

Gleixner at al. [38] devised an approach for calculating LP solutions of arbitrary

precision that extends the concept of iterative refinement for solving systems of linear

equations introduced by Wilkinson [87] (see Section 2.3.2). The LP iterative refine-

ment method works by solving a sequence of closely related LPs in fixed precision,

with each successive one computing a correction of the previous problem’s approx-

imate solution, until the error falls below a stated tolerance. Specifically, given the

primal-dual solution vector pair (x̂, ŷ), obtained via a standard floating-point LP

solve, the method first calculates the primal and dual violations b̂ = b − Ax̂ and

ĉ = c−AT ŷ, respectively, using exact rational arithmetic. Based on these violations,

a new problem is constructed by shifting and scaling the primal and dual feasible re-

gions of the original LP; the objective function, right-hand sides, and variable bounds

are transformed in this fashion to zoom in on the violation, but the constraint matrix

is left unchanged. Afterward, the affiliated problem is solved, its output refines the

value of (x̂, ŷ), and the primal and dual violations are recalculated in exact ratio-

nal arithmetic using the updated solutions. This iterative process continues until

the solution violations are sufficiently small—i.e., until b̂, ĉ < ε1, where 1 denotes

the n-length one-vector and where ε > 0 is a small pre-specified precision tolerance

constant.

LP iterative refinement takes the floating-point solver as a black-box oracle and,

as such, it can even be paired with an interior point-based solver; that being said, a

simplex-based solver is preferable since the LPs sequentially solved are highly simi-

lar. The convergence of the LP iterative refinement method relies on the assumption

that the solver returns solutions within absolute tolerances, which is generally false

since floating-point precision is relative by design [39]. Hence, although they expect
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a modern LP solver to provide satisfactory results in practice, Gleixner et al. [39]

explain that it may produce meaningless results for very poorly-conditioned LPs. In

such problematic cases, they try re-solving with a series of different ad hoc parame-

ter settings until successful, or the process terminates without reaching the desired

tolerances. The authors also suggest, but do not test, boosting the precision of the

solver in a similar fashion as QSopt ex to deal with these numerically difficult cases.

Gleixner et al. [38, 39] implemented LP iterative refinement via an adapta-

tion to the simplex-based SoPlex solver, and they utilized the GMP [42] and EGlib5

[29] libraries for exact arithmetic and fast memory allocation, respectively. In all,

Gleixner et al. [39] performed their experiments on 1,202 instances from several stan-

dard repositories, and their method converged successfully for 1,195 of them; for the

remaining instances, the LP solver timed out or failed to return an optimal solution

following multiple settings readjustments. For the successful instances that required

at least one round of iterative refinement, the shifted geometric mean run-time (with

shifts of two seconds and 100 simplex iterations) was only 7% higher than the stan-

dard SoPlex run (i.e., without iterative refinement) when the maximum violation

was set to ε = 10−50 and 19% higher when it was set to ε = 10−250.

The above computational results are strong evidence that LP iterative refine-

ment allows floating-point solvers to provide significantly better approximations at

low cost. It is important to note, however, that the LP iterative refinement approach

does not provide or guarantee exact solutions by itself. For this reason, Gleixner

[37] tested two separate extensions via SoPlex through which solutions without vio-

lations can be obtained: exact basic solution validation and rational reconstruction

via the advanced output sensitive lifting technique (see Section 2.3.4). Both subrou-

tines can be expensive and, consequently, their use is minimized in each respective

5EGlib — Efficient General Library. http://dii.uchile.cl/∼daespino/EGlib doc.
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implementation. The basic solution validation subroutine is triggered after the solver

returns the same basis for a specified number of iterative refinement rounds, while

the rational reconstruction subroutine is performed at a geometric frequency so that

the associated effort grows linearly [37]. The former builds the exact solution by cal-

culating an LU factorization and performing two triangular solves in exact rational

arithmetic—similar to QSopt ex—and the latter takes the increasingly accurate ap-

proximate solutions yielded by iterative refinement and converts them to the exact

solution using extended fractions. In greater detail, the foregoing rational recon-

struction subroutine rounds the solution entries to the largest convergent in the

continued fraction expansion with denominators less than a pre-calculated bound.

Its efficiency is further enhanced by employing various efficient techniques including

Cook and Steffy’s version of DLCM (i.e., solution-denominator lowest common mul-

tiple) described in [17], which accelerates component-wise reconstruction by taking

advantage of the fact that the denominators of the solution vector share common

factors.

Gleixner [37] showed that basic solution validation (i.e., the exact LU factorization

approach applied via exact rational arithmetic) is preferable to rational reconstruc-

tion as an exact extension to LP iterative refinement using the 1,202 aforementioned

instances from [39]. In particular, the rational reconstruction implementation is 5%

faster only for instances that can be solved in less than .5 seconds, whereas the exact

LU factorization implementation was 46% faster over all instances. On a deeper

level, the exact LU factorization implementation leads to fewer iterative refinement

rounds on average, thereby making its overall performance more efficient. A sepa-

rate experiment in [37] on the full set of instances also revealed that LP iterative

refinement with basic solution validation is 1.85 to 3 times faster than the precision-

boosting QSopt ex solver . Nonetheless, there is ample room for improvement for
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this exact version of LP iterative refinement. For instance, although five instances

could be solved only by the exact LU factorization approach, there were still three

that could be solved only by rational reconstruction. Moreover, in 17 instances the

exact LU factorization subroutine took up more than 90% of the total run-time, and

in 4 others the two-hour time limit was reached in mid-process.

3.4 Connections with This Dissertation

If recent research is any indication, the most promising direction for exact LP

points to the continued improvement and eventual convergence of the approaches

heretofore discussed. As the above-mentioned computational results suggest, for

example, rational reconstruction should be used as a first measure of exactness veri-

fication and, when this initial check is unsuccessful, basic solution validation should

be utilized thereafter. Additionally, although LP iterative refinement with basic

solution validation is generally faster than the precision-boosting verify and repair

approach, the latter was able to solve six out of seven numerically difficult instances

that the former could not in the studies conducted by Gleixner [37]. Thus, it seems

that LP iterative refinement could benefit from precision-boosting. More generally,

the most competitive and effective exact LP implementations will be those that ap-

ply a combination of the best known techniques. Along this line of reasoning, the

present work focuses on enhancing the exact factorization subroutines used by both

the precision-boosting and iterative refinement exact LP approaches.

Both of the state-of-the-art exact LP approaches described in Sections 3.3.3 and

3.3.4 effectively compartmentalize the exact computations from the floating-point

computations. That is to say, if the exact rational arithmetic LU factorization and

the related triangular solves were replaced by another exact method for computing

the primal and dual solutions, the inputs and outputs of the LP solves would be
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unaffected in both cases. This compartmentalization also means that, generally

speaking, significant computational gains in the exact arithmetic subroutines would

result in proportional gains in the overall exact solution process, especially since

exact computations are the bottleneck of mixed-precision exact LP implementations

[17]. Hence, making major improvements to these subroutines, independent of their

prospective implementation and interface with the simplex algorithm, is a worthwhile

contribution. In light of these observations, the roundoff-error-free basic solution

validation techniques herein developed represent significant advances to the theory

and application of exact LP.
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4. ROUNDOFF-ERROR-FREE ALGORITHMS FOR SOLVING LINEAR

SYSTEMS VIA CHOLESKY AND LU FACTORIZATIONS1

Roundoff errors and their adverse effects within mathematical programming solvers

originate largely from the floating-point computations of linear programming subrou-

tines [4]. Because most solvers utilize LU and Cholesky factorizations to solve LPs,

the algorithms employed to construct and implement these factorizations should have

minimal roundoff error. Thus, in this section we present roundoff-error-free (REF)

LU and Cholesky factorizations as well as REF forward and backward substitution al-

gorithms for their implementation. To be specific, the roundoff errors these processes

eliminate are calculation truncation errors; we assume there are no inherent errors

in the data. Additionally, although the REF factorizations do not conform exactly

to the output format of standard LU and Cholesky factorizations, their implemen-

tational requirements demonstrate they share properties similar to their non-REF

counterparts and are, hence, labeled accordingly; this correspondence is explained in

detail in Section 4.4.

This section makes the following contributions. To start, the current work is the

first to present and define the REF Cholesky factorization, which allows symmetric

positive definite linear systems to be solved exactly and efficiently. Second, it pro-

vides a REF LU factorization with a more natural structure than the fraction-free

LU factorization by Zhou and Jeffrey [90]. Third, this work is the first to derive

and prove valid REF forward and backward substitution algorithms for REF LU

1Reprinted in part by permission, Adolfo R. Escobedo and Erick Moreno-Centeno, Roundoff-
error-free algorithms for solving linear systems via Cholesky and LU factorizations. INFORMS
Journal on Computing, volume 27, number 4, November, 2015. Copyright 2015, the Institute
for Operations Research and the Management Sciences, 5521 Research Park Drive, Suite 200,
Catonsville, Maryland 21228 USA.
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and REF Cholesky factorizations (which may also be applied to the fraction-free LU

factorization), along with the maximum bit-length (i.e., the maximum number of

bits) their individual entries require. Fourth, it derives computational complexity

measures that explicitly take coefficient growth into account for the REF factoriza-

tions, the REF substitution algorithms, and integer-preserving Gaussian elimination

(IPGE); as detailed in Section 2.3.5, IPGE is an efficient REF algorithm for solving

SLEs that uses only integer arithmetic. Fifth, it proves that for the class of REF

Gaussian elimination algorithms (see Section 2), there exists a family of SLEs whose

individual solution coefficients require bit-lengths no smaller than the IPGE maxi-

mum entry bit-length (see IPGE Property 3). This fact demonstrates that, for this

popular class of algorithms, the IPGE maximum entry bit-length is optimal when

obtaining exact solutions to SLEs from said family.

This section is organized as follows. Section 4.1 introduces and proves an ad-

ditional property of IPGE, which is the underlying algorithm of the featured REF

factorizations. Section 4.2 presents the REF Cholesky and REF LU factorizations

and proves their correctness. Section 4.3 introduces forward and backward substitu-

tion algorithms tailored to the REF factorizations and proves they are free of roundoff

error. In addition, Sections 4.2 and 4.3 also demonstrate that the bit-length upper

bounds of the individual entries and operands of the REF factorizations and the REF

substitution algorithms, respectively, are equal asymptotically to the maximum bit-

length of any entry encountered in IPGE. Section 4.4 lists the attributes of the REF

factorizations and explains their correspondence with those of the standard LU and

Cholesky factorizations. Section 4.5 gives corresponding computational complexity

measures that account for coefficient growth for all the featured algorithms. Lastly,

Section 4.6 concludes the present portion of the work and suggests related future

avenues of research.
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4.1 An Additional Property of IPGE

The main advantages of implemeting IPGE to solve SLEs exactly are summa-

rized by its three properties introduced in Section 2.3.5.2. The following property

further bolsters the choice of applying IPGE over other REF Gaussian elimination

algorithms, which are classified as those that solve linear systems in a predictably-

exact number of steps via row-reduction operations (see Section 2). In particular,

Theorem 4.1.1 demonstrates that there exist invertible integral matrices of any fi-

nite dimension for which any REF Gaussian elimination algorithm requires storing

entries with bit-lengths of at least dlog(| det(B̃)|)e (i.e., the largest required by any

IPGE entry), where det(B̃) is the subdeterminant with the largest absolute value

in [A|b]. To this end, in a similar vein as the IPGE bit-length bound, ωmax, define

Wmax as the scalar denoting the maximum bit-length required by a matrix entry of

a REF Gaussian elimination algorithm.

Theorem 4.1.1. Let b ∈ Zn and x ∈ Qn. Then, there exists at least one nonsingular

matrix A ∈ Zn×n such that the maximum bit-length (Wmax) of any REF Gaussian

elimination algorithm that solves Ax = b for x is bounded below by dlog(| det(B̃)|)e.

Proof. For some positive integer i ≤ n, let A be the matrix that is obtained by

replacing the ith diagonal entry of the identity matrix of order n, In, with an integer

q 6= 0 that has at least one prime factor that is relatively prime to the base of

computation. Additionally, set bi equal to a prime number p > q, such that p >

|q × bj| for all j 6= i.

By construction, since q is nonzero A is nonsingular and, in particular, det(A) =

q det(In) = q. Therefore, by Cramer’s Rule, the exact solution value of xi in the
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system Ax = b is given by:

xi =
Adj(A)(i,:)b

det(A)
=

p

q
=

det(B̃)

q

where Adj(A)(i,:) denotes the ith row of the adjunct matrix of A, and where det(B̃) =

p because p > |q× bj| for all j 6= i. Notice that det(B̃) is relatively prime to q (since

p > q and p is prime) and, therefore, the above fraction cannot be simplified further.

Moreover, since at least one of q’s prime factors is relatively prime to the base of

computation, xi has a nonterminating floating-point expansion and must be stored

as a numerator-denominator pair to avoid roundoff errors. In other words, there does

not exist a REF representation of xi with a smaller bit-length than dlog | det(B̃)|e.

This means that at some point during the row-reduction process, p (or a nonzero

multiple thereof) will be obtained and will need to be explicitly stored in order to

save the exact value of xi, thereby implying Wmax ≥ p = dlog | det(B̃)|e. �

Corollary 1 (IPGE Property 4). There exists a family of matrices (i.e., SLEs)

for which ωmax ≤ Wmax.

Proof. The statement follows from combining Inequality (2.13) with Theorem 4.1.1.

�

We remark that, by performing the appropriate row-addition operations, numer-

ous integral matrices can be constructed from the simple A matrix described in the

proof of Theorem 4.1.1 that both retain q as the determinant of A and p as the

maximum subdeterminant of [A|b]. As a result, it is not trivial for a REF Gaus-

sian elimination algorithm to detect a priori which matrices have the property that

ωmax ≤ Wmax. These observations, the avoided costs of gcd operations, and the poly-

nomial upper bound on every IPGE entry, consequently, present a compelling case
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for choosing IPGE over other REF Gaussian elimination algorithms.

A focal point to add to the preceding discussion is that maximum bit-length dif-

fers from space complexity, or total memory usage required by an algorithm. To be

precise, Corollary 1 does not imply IPGE has optimal space complexity for the high-

lighted family of matrices, and it may in fact be the case that other Gaussian REF

algorithms perform significantly better with respect to this measure. Nonetheless,

our chief aim for introducing the above result is to argue for the use of IPGE on

the basis of its polynomially bounded bit-length growth since, unlike some popular

algorithms, it does not have to perform gcd operations to ensure this property. We

refer the reader to [9] for a description of the space complexity of IPGE.

4.2 Roundoff-Error-Free Factorizations

This subsection presents the REF Cholesky and LU factorizations. It is impor-

tant to note that, while the herein defined algorithms could be applied directly to

matrices with rational entries, we restrict our attention to the integral domain in

order to take full advantage of the exact divisibility properties of IPGE (i.e., restrict-

ing the algorithm to the integral domain avoids the need to store the denominator of

each entry explicitly). Hence, we assume the input matrix A is integral. Without loss

of generality, however, the ensuing REF factorizations and substitution algorithms

still apply to rational input matrices since they can be transformed into integral

matrices by multiplying all their entries by their lowest common denominator or

by an adequate power of 10 when expressed in fractional form or in decimal form,

respectively. Since LP problems are formulated using integers or rationals as coeffi-

cients, and since similar transformations would be required to derive corresponding

REF factorizations via exact rational arithmetic methods, the nominal increment in

computational effort this preprocessing step would entail is justifiable.
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We remark that Zhou and Jeffrey [90] developed an alternative REF LU factor-

ization (although they referred to it as the fraction-free LU factorization), which both

formalized and “completed” the fraction-free quasi-factorization of Nakos et al. [63].

Due to the peculiar structure of the fraction-free LU factorization, however, when

the input matrix A is symmetric positive definite (SPD), the resulting U matrix is

not the transpose of the L matrix. Consequently, the fraction-free LU factorization

does not directly imply a corresponding fraction-free Cholesky factorization. Hence,

the upcoming paragraphs begin by introducing and proving the correctness of the

REF Cholesky factorization, henceforth denoted as REF-Ch. Afterwards, the corre-

sponding REF LU factorization, or REF-LU for short, is also presented. We contend

that the featured factorization derivations are formal yet easy to understand because

they involve formal step-by-step inductive constructions of the final matrix factors

from the respective input matrix A.

4.2.1 The REF Cholesky Factorization

As its name suggests, the REF Cholesky factorization avoids the roundoff errors

accrued by numerical Cholesky factorization algorithms. To achieve this, REF-Ch

requires the input matrix A to be integral (as well as SPD), that is, A ∈ Zn×n.

Starting with an integral matrix enables the use of IPGE-type pivoting operations,

which avoid roundoff error while polynomially bounding bit-length from above, as

explained in Section 2.3.5. Before introducing REF-Ch, we state a notational choice:

for a matrix B ∈ Zm×n+ , we take
√
B to be the element-wise square root operator

on B (thus,
√
B =

√
Bi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n). The Roundoff-Error-Free

Cholesky Factorization of SPD matrix A ∈ Zn×n is given by:

A = (L
√
D−1)(L

√
D−1)T (4.1)
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where L ∈ Zn×n is lower triangular with entries li,j = aj–1i,j ; where D ∈ Zn×n+ is

diagonal with entries di,i = ρi–1ρi; and where aki,j and ρk ∈ Z are the (i, j)-entry and

the pivot element, respectively, of the kth-iteration coefficient matrix of IPGE for

0 ≤ k ≤ n.

The matrix factors L and D of Equation (4.1) are free of roundoff errors because

they are constructed strictly from the elements of IPGE iteration matrices. Evaluat-

ing D−1, taking the square roots of its elements, and then left-multiplying
√
D−1 by

L in finite precision would yield roundoff errors. In fact, since the Cholesky factor-

ization of a SPD matrix is unique and L
√
D−1 is lower triangular, carrying out these

operations yields the traditional Cholesky factorization of A. However, as subsequent

subsections will explain, it is not necessary to perform these roundoff-error-inducing

operations nor to store D in order to utilize REF-Ch to solve a system of linear

equations. More specifically, when solving SLEs one does not need the explicit REF

Cholesky factorization, (L
√
D−1)(L

√
D−1)T , but only the L matrix, as we will show

in Sections 4.3 and 4.4. Therefore, we refer to the L matrix as the functional form of

REF-Ch (i.e., it is the only essential part of the explicit REF Cholesky factorization

needed to solve SLEs). We note that although the upcoming proof makes use of frac-

tions in its arguments, no fractional entries will arise during an actual construction

of the functional form of REF-Ch.

Theorem 4.2.1. Let A ∈ Zn×n be SPD. Then, A admits the factorization specified

by Equation (4.1).

Proof. We will first prove the following sequence of factorizations:

A = Lr(Dr)−1L̂r for r = 0 . . . n (4.2)
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where the structures of the three RHS matrices are:

Lr =



a01,1 0 . . . 0

a02,1 a12,2
. . .

... 0
...

...
. . .

...

a0r,1 a1r,2 . . . ar–1r,r

a0r+1,1 a1r+1,2 . . . ar–1r+1,r In−r
...

...
...

a0n,1 a1n,2 . . . ar–1n,r



,

L̂r =



a01,1 a01,2 . . . a01,r+1 . . . a01,n

0 a12,2 . . . a12,r+1 . . . a12,n
...

. . . . . .
...

...

0 . . . 0 arr+1,r+1 . . . arr+1,n

0 . . . 0 arr+2,r+1 . . . arr+2,n

...
. . .

...
...

. . .
...

0 . . . 0 arn,r+1 . . . arn,n



, and

Dr = [diag(ρ0ρ1, ρ1ρ2, . . . , ρr–1ρr, ρr, ρr, . . . , ρr)].

Hence, Lr ∈ Zn×n is lower triangular, Dr ∈ Rn×n is diagonal, and L̂r ∈ Zn×n.

Notice the last n− r elements of Dr are identical and, since A is symmetric, columns

1 to r of Lr are equal to rows 1 to r of L̂r (i.e., from the symmetry of A, ari,j = arj,i

for all i, j, and r). We will prove A can be factored as in Expression (4.2) by

induction on r. For this purpose, let k ∈ Z be such that 0 < k ≤ n. Additionally,

for ease of presentation we denote as In(c)
[i,n]

the n×n identity matrix, In, whose rows
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i to n (or, alternatively, whose columns i to n) have been multiplied by a scalar c.

Base case: r = 0. Notice that, based on the above matrix structures, L0 =

In, D
0 = (D0)−1 = In, and L̂0 = A0 = A. Thus, Factorization (4.2) holds trivially

since A = InInA.

Inductive step: r = k. Assume Factorization (4.2) holds for r = 0 . . . k–1. In

particular, we have:

A = Lk–1(Dk–1)−1L̂k–1 (4.3)

where Lk–1 =



a01,1 0 . . . 0

a02,1 a12,2
. . .

... 0
...

...
. . .

...

a0k–1,1 a1k–1,2 . . . ak–2k–1,k–1

a0k,1 a1k,2 . . . ak–2k,k–1 In–k+1
...

...
...

a0n,1 a1n,2 . . . ak–2n,k–1



,

L̂k–1 =



a01,1 a01,2 . . . a01,k . . . a01,n

0 a12,2 . . . a12,k . . . a12,n
...

. . . . . .
...

...

0 . . . 0 ak–1k,k . . . ak–1k,n

0 . . . 0 ak–1k+1,k . . . ak–1k+1,n

...
. . .

...
...

. . .
...

0 . . . 0 ak–1n,k . . . ak–1n,n



, and

Dk–1 = [diag(ρ0ρ1, ρ1ρ2, . . . , ρk–2ρk–1, ρk–1, ρk–1, . . . , ρk–1)].

A necessary step for obtaining L̂k from L̂k–1 is to turn the last n − k elements of
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column k into zeros. This can be accomplished by factoring L̂k–1 as follows:

L̂k–1 =



0

Ik–1
... 0
0

0 . . . 0 1 0 . . . 0

0
ak–1k+1,k

ρk In–k
...

ak–1n,k

ρk



×



a01,1 a01,2 . . . a01,k a01,k+1 . . . a01,n

0 a12,2 . . . a12,k a12,k+1 . . . a12,n
...

. . . . . .
...

...
...

0 . . . 0 ak–1k,k ak–1k,k+1 . . . ak–1k,n

0 . . . 0 0
ρkak–1k+1,k+1−a

k–1
k,k+1a

k–1
k+1,k

ρk
. . .

ρkak–1k+1,n−a
k–1
k,na

k–1
k+1,k

ρk

...
. . .

...
...

...
. . .

...

0 . . . 0 0
ρkak–1n,k+1−a

k–1
k,k+1a

k–1
n,k

ρk
. . .

ρkak–1n,n−ak–1k,na
k–1
n,k

ρk



(4.4)

where ρk = ak–1k,k > 0 since ak–1k,k is the kth leading principal minor of positive definite

matrix A (see Section 2.3.5.2). Similarly, ρ1, . . . , ρk–1 must be positive and, thus,

no pivots equal to zero arise when factoring L̂0, . . . , L̂k–1 as in Factorization (4.4)

(i.e., such a factorization does not require permutations of the rows of L̂0, . . . , L̂k–1).

Denote the left-hand and right-hand factors of Factorization (4.4) as LHF (4.4) and
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RHF (4.4), respectively. We can then factor RHF (4.4) into:

In(ρk)
[k+1,n]

−1



a01,1 a01,2 . . . a01,k a01,k+1 . . . a01,n

0 a12,2 . . . a12,k a12,k+1 . . . a12,n
...

. . . . . .
...

...
...

0 . . . 0 ak–1k,k ak–1k,k+1 . . . ak–1k,n

0 . . . 0 0 ρkak–1k+1,k+1 − ak–1k,k+1a
k–1
k+1,k . . . ρkak–1k+1,n − ak–1k,na

k–1
k+1,k

...
. . .

...
...

...
. . .

...

0 . . . 0 0 ρkak–1n,k+1 − ak–1k,k+1a
k–1
n,k . . . ρkak–1n,n − ak–1k,na

k–1
n,k



.

For i, j > k, notice ρkak–1i,j − ak–1k,j a
k–1
i,k = ρk–1aki,j by definition of the (i, j)-entry of

the kth-iteration matrix of IPGE. Hence, an equivalent representation of RHF (4.4)

is:

RHF (4.4) = In(ρk)
[k+1,n]

−1
In(ρk–1)
[k+1,n]



a01,1 a01,2 . . . a01,k . . . a01,n

0 a12,2 . . . a12,k . . . a12,n
...

. . . . . .
...

...

0 . . . 0 akk+1,k+1 . . . akk,n

0 . . . 0 akk+2,k+1 . . . akk+1,n

...
. . .

...
...

. . .
...

0 . . . 0 akn,k+1 . . . akn,n



(4.5)

= In(ρk)
[k+1,n]

−1
In(ρk–1)
[k+1,n]

L̂k (4.6)
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where Equation (4.6) follows by definition of L̂k. Similarly, LHF (4.4) is factored as:

LHF (4.4) =



0

Ik–1
... 0
0

0 . . . 0 ρk 0 . . . 0

0 ak–1k+1,k In–k
...

ak–1n,k



In(ρk)
[k,k]

−1
. (4.7)

Denote the block matrix in Equation (4.7) as L̄k, for short. Returning to the

induction hypothesis, we now have:

A = Lk–1(Dk–1)−1L̂k–1 = Lk–1(Dk–1)−1L̄kIn(ρk)
[k,k]

−1
In(ρk)
[k+1,n]

−1
In(ρk–1)
[k+1,n]

L̂k (4.8)

= Lk–1L̄k(Dk–1)−1In(ρk)
[k,n]

−1
In(ρk–1)
[k+1,n]

L̂k (4.9)

= Lk(Dk)−1L̂k (4.10)

where the second equality in Equation (4.8) is obtained by substituting for L̂k–1

with Equations (4.6) and (4.7). Equation (4.9) results from multiplying In(ρk)
[k,k]

−1

and In(ρk)
[k+1,n]

−1
and from shifting L̄k to the left of (Dk–1)−1. The latter operation

can be performed because the two matrices are commutative under multiplication:

except for elements k to n of its kth column, L̄k has the structure of an identity

matrix, while diagonal elements k to n of diagonal matrix (Dk–1)−1 are identical.

Lastly, one can verify that Lk–1L̄k = Lk and (Dk–1)−1In(ρk)
[k,n]

−1
In(ρk–1)
[k+1,n]

= (Dk)−1 and,

therefore, Equation (4.10) follows from substituting these expressions accordingly.
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Thus, Factorization (4.2) holds for r = k. Since k, such that 0 < k ≤ n, was chosen

arbitrarily, the sequence of factorizations (4.2) holds true for r = 0 . . . n.

Having proved this result, the proof of correctness of REF-Ch is completed by

observing L = Ln = (L̂n)T and D = Dn. �

4.2.2 The REF LU Factorization

The REF LU factorization (REF-LU) is similar to REF-Ch, but it only requires

A ∈ Zm×n to have full row rank; accordingly, its proof is analogous to that of REF-

Ch. The exact mathematical expression for REF-LU is:

PA = LD−1U (4.11)

where P is a permutation matrix of orderm; where L ∈ Zm×m is lower triangular with

entries li,j = aj–1i,j for j ≤ i; where D ∈ Zm×m is diagonal with entries di,i = ρi–1ρi;

where U ∈ Zm×n is upper trapezoidal with entries ui,j = ai–1i,j for i ≤ j; and, where

aki,j and ρk ∈ Z are the (i, j)-entry and the pivot element, respectively, of the kth-

iteration matrix of IPGE applied to PA.

Theorem 4.2.2. Let A ∈ Zm×n have full row rank. Then, A admits the factorization

specified by Equation (4.11).

Proof. In order to prove this statement, we will first prove the following sequence of

factorizations:

PA = Lr(Dr)−1U r for r = 0 . . .m (4.12)
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where the structures of the three right-hand side matrices are:

Lr =



a01,1 0 . . . 0

a02,1 a12,2
. . .

... 0
...

...
. . .

...

a0r,1 a1r,2 . . . ar–1r,r

a0r+1,1 a1r+1,2 . . . ar–1r+1,r Im–r
...

...
...

a0m,1 a1m,2 . . . ar–1m,r



,

U r =



a01,1 a01,2 . . . a01,r+1 . . . a01,n

0 a12,2 . . . a12,r+1 . . . a12,n
...

. . . . . .
...

...

0 . . . 0 arr+1,r+1 . . . arr+1,n

0 . . . 0 arr+2,r+1 . . . arr+2,n

...
. . .

...
...

. . .
...

0 . . . 0 arm,r+1 . . . arm,n



, and

Dr = [diag(ρ0ρ1, ρ1ρ2, . . . , ρr–1ρr, ρr, ρr, . . . , ρr)].

Hence, Lr ∈ Zm×m is lower triangular, Dr ∈ Zm×m is diagonal, and U r ∈ Zm×n.

Notice the last m− r elements of Dr are identical.

We will prove A can be factored as in Expression (4.12) by induction on r. For

this purpose, let k ∈ Z be such that 0 < k ≤ m.

Base case: r = 0. Notice that, based on the above matrix structures, L0 =

Im, D
0 = (D0)−1 = Im, and U0 = A0 = A. Thus, Factorization (4.12) holds trivially

since PA = ImImA with P = Im.
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Inductive step: r = k. Assume Factorization (4.12) holds for r = 0 . . . k–1. In

particular, we have:

PA = Lk–1(Dk–1)−1Uk–1 (4.13)

where Lk–1 =



a01,1 0 . . . 0

a02,1 a12,2
. . .

... 0
...

...
. . .

...

a0k–1,1 a1k–1,2 . . . ak–2k–1,k–1

a0k,1 a1k,2 . . . ak–2k,k–1 Im–k+1
...

...
...

a0m,1 a1m,2 . . . ak–2m,k–1



,

Uk–1 =



a01,1 a02,1 . . . a01,k . . . a01,n

0 a12,2 . . . a12,k . . . a12,n
...

. . . . . .
...

...

0 . . . 0 ak–1k,k . . . ak–1k,n

0 . . . 0 ak–1k+1,k . . . ak–1k+1,n

...
. . .

...
...

. . .
...

0 . . . 0 ak–1m,k . . . ak–1m,n



,and

Dk–1 = [diag(ρ0ρ1, ρ1ρ2, . . . , ρk–2ρk–1, ρk–1, ρk–1, . . . , ρk–1)].

A necessary step for obtaining Uk from Uk–1 is eliminating the last m−k elements
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of column k. With this in mind, Uk–1 can be factored as follows:

Uk–1=



0

Ik–1
... 0
0

0 . . . 0 1 0 . . . 0

0
ak–1k+1,k

ρk Im–k
...

ak–1m,k

ρk



×



a01,1 a01,2 . . . a01,k a01,k+1 . . . a01,n

0 a12,2 . . . a12,k a12,k+1 . . . a12,n
...

. . . . . .
...

...
...

0 . . . 0 ak–1k,k ak–1k,k+1 . . . ak–1k,n

0 . . . 0 0
ρkak–1k+1,k+1−a

k–1
k,k+1a

k–1
k+1,k

ρk
. . .

ρkak–1k+1,n−a
k–1
k,na

k–1
k+1,k

ρk

...
. . .

...
...

...
. . .

...

0 . . . 0 0
ρkak–1m,k+1−a

k–1
k,k+1a

k–1
m,k

ρk
. . .

ρkak–1m,n−ak–1k,na
k–1
m,k

ρk



(4.14)

where, for the purpose of clarity, we assume ρk = ak–1k,k 6= 0 (when ak–1k,k = 0, A is

multiplied by the appropriate permutation matrix as explained in Section 2.3.5.1).

Denote the left-hand and right-hand factors of Factorization (4.14) as LHF (4.14)
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and RHF (4.14), respectively. We can factor RHF (4.14) as:

RHF (4.14) = Im(ρk)
[k+1,m]

−1

×



a01,1 a01,2 . . . a01,k a01,k+1 . . . a01,n

0 a12,2 . . . a12,k a12,k+1 . . . a12,n
...

. . . . . .
...

...
...

0 . . . 0 ak–1k,k ak–1k,k+1 . . . ak–1k,n

0 . . . 0 0 ρkak–1k+1,k+1 − ak–1k,k+1a
k–1
k+1,k . . . ρkak–1k+1,n − ak–1k,na

k–1
k+1,k

...
. . .

...
...

...
. . .

...

0 . . . 0 0 ρkak–1m,k+1 − ak–1k,k+1a
k–1
m,k . . . ρkak–1m,n − ak–1k,na

k–1
m,k



.

Recall In(c)
[i,n]

is the n× n identity matrix, In, whose rows i to n have been multiplied

by a scalar c. For i, j > k, notice ρkak–1i,j −ak–1k,j a
k–1
i,k = ρk–1aki,j by definition of the (i, j)-

entry of the kth-iteration IPGE matrix of PA. Hence, an equivalent representation

of RHF (4.14) is:

RHF (4.14) =Im(ρk)
[k+1,m]

−1
Im(ρk–1)
[k+1,m]



a01,1 a01,2 . . . a01,k . . . a01,n

0 a12,2 . . . a12,k . . . a12,n
...

. . . . . .
...

...

0 . . . 0 akk+1,k+1 . . . akk,n

0 . . . 0 akk+2,k+1 . . . akk+1,n

...
. . .

...
...

. . .
...

0 . . . 0 akm,k+1 . . . akm,n



(4.15)

=Im(ρk)
[k+1,m]

−1
Im(ρk–1)
[k+1,m]

Uk (4.16)

where Equation (4.16) follows by definition of Uk. Similarly, LHF (4.14) can be
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factored into:

LHF (4.14) =



0

Ik–1
... 0
0

0 . . . 0 ρk 0 . . . 0

0 ak–1k+1,k Im–k
...

ak–1m,k



Im(ρk)
[k,k]

−1
. (4.17)

Denote the block matrix in Equation (4.17) as L̄k, for short. Returning to the

induction hypothesis, we have:

PA = Lk–1(Dk–1)−1Uk–1 = Lk–1(Dk–1)−1L̄kIm(ρk)
[k,k]

−1
Im(ρk)
[k+1,m]

−1
Im(ρk–1)
[k+1,m]

Uk (4.18)

= Lk–1L̄k(Dk−1)−1Im(ρk)
[k,m]

−1
Im(ρk–1)
[k+1,m]

Uk (4.19)

= Lk(Dk)−1Uk (4.20)

where the second equality in Equation (4.18) is obtained by substituting for Uk–1

with Equations (4.16) and (4.17). Equation (4.19) results from multiplying Im(ρk)
[k,k]

−1

and Im(ρk)
[k+1,m]

−1
and from shifting L̄k to the left of (Dk–1)−1. We can perform the latter

operation because the two matrices are commutative under multiplication: except for

elements k to m of its kth column, L̄k has the structure of an identity matrix, while

diagonal elements k to m of diagonal matrix (Dk–1)−1 are identical. Lastly, one can

verify Lk–1L̄k = Lk and (Dk–1)−1Im(ρk)
[k,m]

−1
Im(ρk–1)
[k+1,m]

= (Dk)−1 and, therefore, Equation

(4.20) follows from substituting these expressions accordingly. Thus, Factorization
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(4.12) holds for r = k. Since k, such that 0 < k ≤ m, was chosen arbitrarily, the

sequence of factorizations (4.12) holds true for r = 0 . . .m.

Having proved this result, the proof of correctness of REF-LU is completed by

observing L = Lm, D = Dm, and U = Um. �

Notice L and D in REF-LU are equal to their counterparts in REF-Ch, except

that the elements of D can be negative in this case. Therefore, REF-Ch could be

alternatively deduced from REF-LU. On the other hand, a REF Cholesky factoriza-

tion cannot be directly deduced from the fraction-free LU factorization, which is

the alternative REF LU factorization presented in [90]. This suggests REF-LU has

a more natural structure than the fraction-free LU factorization.

To conclude this subsection, we remark that when solving SLEs one does not

need the explicit REF LU factorization LD−1U , but only the L and U matrices, as

we will show in Sections 4.3 and 4.4. Therefore, we refer to the L and U matrices as

the functional form of REF-LU (i.e., these are the only essential parts of the explicit

REF LU factorization needed to solve SLEs).

4.3 Roundoff-Error-Free Forward and Backward Substitution

This subsection develops REF forward and backward substitution algorithms for

the REF LU factorization of a matrix with full row-rank. In addition, it derives the

maximum bit-length of each algorithm’s individual entries. The REF substitution

algorithms (and the derived bit-length bounds) also extend to the REF Cholesky

factorization of a SPD matrix A ∈ Zn×n due to the following equivalent output

formats:

A = (L
√
D−1)(L

√
D−1) = LD−1LT = LD−1U

where the right-most equality results from the fact that U is identical to LT when

the input matrix is a symmetric square matrix. Having explained this, let x ∈ Qn,
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b ∈ Zm, and A ∈ Zm×n for the remainder of this subsection.

We remark that Zhou and Jeffrey [90] described forward and backward substitu-

tion algorithms for their fraction-free LU factorization. Careful inspection reveals,

however, that their forward substitution algorithm and proof are incorrect. Addi-

tionally, although their backward substitution process does preserve integrality, this

fact does not follow from the reasoning in its proof. Hence, the REF substitution

algorithms and corresponding proofs herein presented fill significant gaps in the ex-

isting literature. An extended discussion regarding the invalidity of the fraction-free

substitution algorithms is presented at the end of this subsection.

4.3.1 REF Forward Substitution

As described in Section 4.2.2, A can be expressed by its REF LU factorization

(Factorization (4.11)), a roundoff-error free factorization of the form PA = LD−1U ,

where P is a permutation matrix, where L and D have the same structure as the lower

triangular and diagonal matrices, respectively, of the REF Cholesky factorization

(except that the entries of D can be negative in this case), and where U ∈ Zm×n is

upper trapezoidal. To enhance clarity, throughout this section we assume no pivot

elements equal to 0 arise in the application of IPGE on A. From this assumption,

we have P = Im and, thus, A = LD−1U . Additionally, this implies columns 1 to m

of A form a basis, which we henceforth denote as B.

A critical point of information to know before proceeding is that, in order to use

REF-LU to solve the linear system Ax = b, the REF substitution algorithms herein

described must be applied to the scaled linear system A det(B)x = det(B)b. Section

4.3.2 will discuss the reason for working with this scaled linear system rather than

the original system. As a form of shorthand, we will denote this scaled linear system

as Ax′ = b′, where x′ = det(B)x and b′ = det(B)b.

69



Using REF-LU, the system Ax′ = b′ can be expressed equivalently as LD−1Ux′ =

b′. The forward substitution procedures for (m × 1)-vector z in Lz = b′ and for

(m× 1)-vector y′ in D−1y′ = z, can be combined into a single forward substitution

for y′ in LD−1y′ = b′. Equivalently, one can calculate y′ = det(B)y, where (m× 1)-

vector y is obtained by standard forward substitution from the equation LD−1y = b

or, stated in algorithmic form:

yi =
di,i
li,i

(
bi −

i–1∑
j=1

li,j
dj,j

yj

)
= li–1,i–1

(
bi −

i–1∑
j=1

li,j
lj–1,j–1lj,j

yj

)
for i = 1 . . .m (4.21)

where the second equality is obtained from the fact di,i = ρi–1ρi = ai–2i–1,i–1a
i–1
i,i =

li–1,i–1li,i (notice the division outside the parenthesis is exact), and where we define

l0,0=1. As stated, however, this algorithm is not REF since the division in each of

the above individual summands is not exact. Provided that the exact value of y is

integral (which we will prove), one possible technique to make Equation (4.21) REF

is to multiply each summand’s numerator within the expression for yi appropriately

so that all the sum’s terms share the common denominator l0,0l1,1 . . . li–1,i–1 (i.e.,

multiply the first summand by l2,2l3,3 . . . li–1,i–1, the second by l0,0l3,3l4,4 . . . li–1,i–1,

etc.). The maximum bit-length upper bound of the common denominator (and that

of each numerator), however, grows to a factor of m-times the maximum bit-length

of IPGE, that is, to O(m2 log(σ
√
m)), since each entry lk,k = ak–1k,k has bit-length

dk log(σ
√
k)e for 0 < k < i. In the remainder of this subsection we develop a better

REF algorithm that requires only the bit-length associated with IPGE.

To derive the more efficient REF forward substitution algorithm, we define a

recursive relation for solving Equation (4.21), and we prove a key property associated

with the recursion. These steps then provide the insight for how to modify the

operations of the standard forward substitution algorithm to obtain an equivalent
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yet REF algorithm.

To develop a recursive definition for yi, Equation (4.21) is rewritten as:

yi =li–1,i–1

(
. . .

((
(bi)−

li,1
l0,0l1,1

y1

)
− li,2
l1,1l2,2

y2

)
− . . .− li,i–1

li–2,i–2li–1,i–1
yi–1

)

where i = 1 . . .m; and where the parentheses are placed to define the specific or-

der in which each operation is performed. Define a triangular array of intermediary

calculations Υ = υi,r, for 0 ≤ r < i ≤ m, whose ith row corresponds to the opera-

tions inside the parentheses of the ordered version of Equation (4.21), performed to

calculate yi as follows:

υi,r =

 bi if r = 0

υi,r–1 − li,r
lr–1,r–1lr,r

yr if 0 < r < i.
(4.22)

Based on this recursion, yi = li–1,i–1υi,i–1 for all i and, thus, lr–1,r–1υr,r–1 can be

equivalently inserted in place of yr in the above expression. Interestingly, each of

these recursive terms has the property that it is related to the calculation of an

IPGE entry associated with b, as the following lemma will demonstrate.

Lemma 1. The recursion Υ can be defined equivalently as υi,r = ari,n+1/lr,r for

0 ≤ r < i ≤ m; where ari,n+1 is an entry of IPGE corresponding to the rth IPGE

iteration on the ith component of b (recall, per definition of IPGE, that column n+1

corresponds to the right-hand side of the augmented IPGE iterative matrices).

Proof. Based on Expression (4.22), υi,r is calculated recursively by ascending index

i (i.e., since yr = lr–1,r–1υr,r–1) and then by ascending index r. Let t be a one-

dimensional index for Υ denoting the order in which υi,r is calculated according to
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the recursive definition (e.g., υt=1 = υ1,0, υt=2 = υ2,0, υt=3 = υ2,1, etc). Then, since Υ

is a triangular array, t =
i–1∑
j=1

j + r + 1 = i2−i
2

+ r + 1 and, in particular, the elements

along the diagonal of Υ are υi,i–1 = υ(i2+i)/2 for 1 ≤ i ≤ m. Using this alternative

indexing, we prove the theorem by induction on t. For this purpose, let k ∈ Z be such

that 1 < k ≤ (m2+m)/2 (i.e. k goes from 2 up to the total number of intermediary

calculations).

Base case: t = 1. From the definition of Υ and the entries of IPGE:

υ1 = υ1,0 = b01 = a01,n+1 =
a01,n+1

l0,0

where the final equation results from the fact l0,0 = 1. Thus, the lemma holds for

t = 1.

Inductive step: t = k. Assume the statement holds for t = 1 . . . k–1. The proof of

the inductive step is divided into two cases: (1) index k–1 corresponds to a diagonal

element of Υ, or (2) index k–1 corresponds to a non-diagonal element of Υ.

Case (1): k− 1 = (i2 + i)/2, where 0 < i < m. The result is similar to the base case,

since:

υk = υi+1,0 = bi+1 =
a0i+1,n

l0,0
.

Case (2): k − 1 = (i2 − i)/2 + r, where 0 < r < i. Evaluating υk gives:

υk = υi,r (4.23)

= υi,r–1 −
li,r

lr–1,r–1lr,r
(lr–1,r–1υr,r–1) =

ar–1i,n+1

lr–1,r–1
− li,r
lr–1,r–1lr,r

(
lr–1,r–1a

r–1
r,n+1

lr–1,r–1

)
(4.24)

=

(
lr,ra

r–1
i,n+1 − li,rar–1r,n+1

lr–1,r–1

)
1

lr,r
=

(
ar–1r,r a

r–1
i,n+1 − ar–1i,r a

r–1
r,n+1

ar–2r–1,r–1

)
1

lr,r
=
ari,n+1

lr,r
(4.25)

where in Expression (4.24) the first equality results from the definition of t, the second
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from the definition of Υ with lr–1,r–1υr,r–1 substituting for yr, and the third from the

inductive hypothesis; and where in Expression (4.25) the first equality follows from

simple algebra, the second substitutes the elements of L inside the parenthesis with

the corresponding IPGE entries, and the third applies the definition of ari,n+1 from

IPGE. Thus, the lemma holds for t = k. Since k, such that 1 < k ≤ (m2 + m)/2,

was chosen arbitrarily, the result holds true for all t. �

Utilizing the succinct definition of Υ stated in Lemma 1, the recursive relation

between the individual intermediary calculations is not explicit but is instead implied

since ari,n+1 depends on the terms ar–1i,n+1 = lr–1,r–1υi,r–1 and ar–1r,n+1 = lr–1,r–1υr,r–1

(notice that neither of these IPGE entries was calculated during the construction of

the REF factorization). In particular, from the definition of IPGE:

ari,n+1 =
ρrar–1i,n+1 − ar–1i,r a

r–1
r,n+1

ρr–1
=
lr,ra

r–1
i,n+1 − li,rar–1r,n+1

lr–1,r–1
(4.26)

where the second equality follows from the fact ρr = ar–1r,r = lr,r and ar–1i,r = li,r for

1 ≤ r ≤ i ≤ m. According to the properties of IPGE (see Section 2.3.5.2), the

division by lr–1,r–1 in Equation (4.26) is exact and, therefore, the equation is REF.

Next, in order to obtain a similar recursion to Equation (4.26) using only L’s entries,

we transform Expression (4.22) by getting rid of the division by lr,r, which is inexact

unlike the division by lr–1,r–1 in Equation (4.26). For this purpose, define a triangular

array of intermediary calculations Ψ = ψi,r = lr,rυi,r, for 0 ≤ r < i ≤ m, as follows:

ψi,r = lr,rυi,r =

 l0,0bi if r = 0

lr,rυi,r–1 − li,r
lr–1,r–1

(lr–1,r–1υr,r–1) if 0 < r < i
for i = 1 . . .m

where yr of Expression (4.22) was substituted by lr–1,r–1υr,r–1. Furthermore, since

l0,0 = 1, ψi,r–1 = lr–1,r–1υi,r–1, and ψr,r–1 = lr–1,r–1υr,r–1, this recursion can be restated
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as:

ψi,r =

 bi if r = 0

lr,rψi,r–1−li,rψr,r–1
lr–1,r–1

if 0 < r < i
for i = 1 . . .m. (4.27)

Theorem 4.3.1. The algorithm specified by Expression (4.27) evaluates Equation

(4.21) without accruing roundoff errors.

Proof. We have that ψi,i–1 = li–1,i–1υi,i–1 = yi for all i and, thus, solving Expression

(4.27) is equivalent to solving Equation (4.21). Additionally, from Lemma 1, ψi,r–1 =

ar–1i,n+1, ψr,r–1 = ar–1r,n+1, and ψi,r = ari,n+1, which proves Expression (4.27) equals REF

Equation (4.26) for 0 < r < i. Therefore, this proves that the division by lr–1,r–1 in

Expression (4.27) is exact and, since b is integral, that all the calculations therein

are REF. �

We emphasize that the output vector y resulting from REF forward substitution

in the equation LD−1y = b is obtained from the recursion given by Expression (4.27)

as follows:

yi = ψi,i–1 for i = 1 . . .m.

Moreover, based on the preceding derivation, yi is exactly the IPGE entry ai–1i,n+1, for

1 ≤ i ≤ m, which was not calculated during the construction of REF-LU.

Corollary 2. The REF forward substitution algorithm (i.e., Expression (4.27)) re-

quires the same bit-length as IPGE.

Proof. As the proof of Theorem 4.3.1 demonstrates, the calculation of every term of

Ψ corresponds to a new IPGE operation on column n+1 (i.e., the right-hand side)

of the augmented IPGE iterative matrices. Consequently, the bit-lengths of REF

forward substitution and IPGE are bounded equally. �
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4.3.2 REF Backward Substitution

Given y ∈ Zm from the REF forward substitution process described in the pre-

vious subsection, it is easy to see that traditional backward substitution for x in

Ux = y will accumulate roundoff errors since xm /∈ Z implies all subsequent opera-

tions of the substitution will be floating-point operations. One can keep all operations

in the integral domain utilizing pseudo division or rational arithmetic and then delay

division until the substitution process is finished, but this is problematic given the

rapid growth of the integers needed. Thus, here we devise a better alternative based

on IPGE. For this purpose, recall that the indices of the basic variables associated

with basis B of A, denoted as xB, are 1 to m (see Section 4.3.1). As described in

Section 2.3.5, Ax = b can be solved without roundoff errors by performing m IPGE

iterations on the augmented matrix [A|b], setting all nonbasic variables to 0, and

then carrying out the operations:

xi =
bmi
ami,i

=
bmi

det(B)
for i = 1 . . .m (4.28)

where bm and Am are the (n + 1)-index column (i.e., the right-hand side) and sub-

matrix (i.e., the left-hand side) of themth-iteration augmented IPGE iterative matrix

[A|b]m. Since xB = Adj(B)b/ det(B) from Cramer’s Rule, where Adj(B) is the

adjunct matrix of B, we have that det(B)xB = Adj(B)b. This fact motivates the

choice for solving Ax′ = b′ via forward and backward substitution rather than Ax =

b, where x′ = det(B)x and b′ = det(B)b (notice that det(B) is available from the

REF factorization of A since det(B) = um,m = lm,m). Specifically, the substitutions

applied to the scaled SLE provide an efficient mechanism to obtain bm, an integral

vector, which together with det(B) provides the REF solution to the original SLE

(see Equation (4.28)). Hence, a preliminary step of REF backward substitution is to
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obtain y′ as follows:

y′ = det(B)y = um,my

Then, the backward substitution for basic variables x′B in Ux′ = y′ is given by:

x′i =
1

ui,i

(
y′i −

m∑
j=i+1

ui,jx
′
j

)
for i = m..1. (4.29)

Note that the sum goes only to index m because xm+1 to xn equal 0 (i.e., they

are nonbasic variables). Theorem 4.3.2 will demonstrate this backward substitution

algorithm is REF. Then, Theorem 4.3.3 will demonstrate its bit-length upper bound

is d2m log σ+ (m+ 1) logme = O(m log(σ
√
m)), that is, asymptotically equal to the

IPGE bit-length bound.

Theorem 4.3.2. The backward substitution for the first m elements of (n×1)-vector

x′ (i.e., x′B) in the equation Ux′ = y′, as specified by Equation (4.29), is REF.

Proof. We prove the correctness and REF property of Equation (4.29) by induction

on k. For this purpose, let r ∈ N such that r ≤ m.

Base case: k = 2. By default, we have i = 1 and from the IPGE formula:

a21,j =
ρ2a11,j − a12,ja11,2

ρ1
=
ρ2a01,j − a22,ja01,2

ρ1

where the second equality follows from the fact that arr,j = ar−1r,j for all r. Since this

is an IPGE operation, it is free of roundoff errors.

Inductive step: k = r > i. Assume the statement holds for k = 2 . . . r − 1. The

proof of the inductive step is divided into two cases: (1) i = r − 1, or (2) i > r − 1.

Case (1): i = r− 1. The result follows the same reasoning as the base case, since we

76



have:

arr−1,j =
ρrar−1r−1,j − ar−1r,j a

r−1
r−1,r

ρr−1
=
ρrar−2r−1,j − arr,jar−2r−1,r

ρr−1
.

Case (2): i < r − 1. Once again, according to the definition of IPGE:

ari,j =
ρrar−1i,j − a

r−1
r,j a

r−1
i,r

ρr−1
(4.30)

=

ρr

(
ρr−1ai−1i,j −

r−1∑
h=i+1

ar−1h,j a
i−1
i,h

)
− ar−1r,j

(
ρr−1ai−1i,r −

r−1∑
h=i+1

ar−1h,r a
i−1
i,h

)
ρr−1ρi

(4.31)

=
1

ρr−1ρi

[
ρr−1

(
ρrai−1i,j − a

r−1
r,j a

i−1
i,r

)
−

r−1∑
h=i+1

(
ρrar−1h,j − a

r−1
r,j a

r−1
h,r

)
ai−1i,h

]
(4.32)

=
1

ρr−1ρi

[
ρr−1

(
ρrai−1i,j − a

r−1
r,j a

i−1
i,r

)
−

r−1∑
h=i+1

ρr−1arh,ja
i−1
i,h

]
(4.33)

=
1

ρi

(
ρrai−1i,j − a

r
r,ja

i−1
i,r −

r−1∑
h=i+1

arh,ja
i−1
i,h

)
=

1

ρi

(
ρrai−1i,j −

r∑
h=i+1

arh,ja
i−1
i,h

)
(4.34)

where the Equation (4.31) applied the inductive hypothesis on elements ar−1i,j and

ar−1i,r ; where Equation (4.32) combined the first and second terms inside each paren-

thesis respectively; where Equation (4.33) made use of the IPGE definition of the

product ρr−1arh,j; and where in Expression (4.34), the first equation canceled the

factor ρr−1, and the second equation included the second numerator term of the first

equation into the sum of the third numerator term. This proves the correctness of

the alternative formula for calculating ari,j. It remains only to show that the formula

is REF.

Equation (4.30) is REF because it is an IPGE operation. Since Equation (4.31)

makes two substitutions, Equation (4.32) reorders some terms, and Equation (4.33)

makes another substitution, this means the formula is still free of roundoff errors at

this point. Moreover, obtaining the first equation of Expression (4.34) involved an

exact division and its second equation simply reorganizing numerator terms. Thus,
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the formula given by the second equation of Expression (4.34) is REF, and the

theorem holds for k = r. Since r ≤ m was chosen arbitrarily, the result holds true

for all k. �

Theorem 4.3.3. The REF backward substitution algorithm requires a maximum

bit-length that is asymptotically-equivalent to the IPGE entry maximum bit-length,

ωmax.

Proof. The elements of y and U have bit-lengths bounded by ωmax since yi = ai–1i,n+1

and ui,j = ai–1i,j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Furthermore, from Equation (4.28),

x′i = det(B)xi = bmi = ami,n+1 for 1 ≤ i ≤ m. This implies the evaluation of the

numerator in Equation (4.29) involves summing at most m products of two integers

with bit-length ωmax (including the computation of y′ = det(B)y). Therefore, the

maximum magnitude of this numerator is given by:

m(σmm
m
2 )2 = σ2mmm+1

thereby yielding a bit-length upper bound for REF backward substitution of d2m log σ+

(m+ 1) logme, which alike ωmax has O(m log(σ
√
m)) length. �

It is now clear how the REF forward and backward substitution algorithms are

utilized to solve Ax = b without roundoff error. Specifically, the substitutions are

applied to the scaled system Ax′ = b′ in order to then obtain the exact solution

quotient x = x′/ det(B). Then, by storing the separate REF numerators of each

variable and their REF common denominator, the solution may be calculated up to

any level of precision.
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4.3.3 Invalidity of Previous REF Substitution Algorithms

The forward substitution formula for y in LD−1y = b associated with the

fraction-free LU factorization of full-row-rank matrix A ∈ Zn×n and right-hand vector

b ∈ Zn presented in [90] is given by the following equation:

yi =
di,i
li,i

(
bi −

i–1∑
j=1

li,jyj

)
(4.35)

where L and D−1 are two of the three matrix factors of the fraction-free factorization,

li,j is the (i, j)-entry of L, and 1 ≤ j ≤ i ≤ n. This equation mirrors the standard

forward substitution algorithm given by Equation (4.21), with one crucial exception:

the jth summand in the expression for yi is li,jyj in Equation (4.35) while it is

the fraction li,jyj/lj–1,j–1lj,j in Equation (4.21). It is straightforward to verify that

the product of the respective symbolic matrix factors L and D−1 of the fraction-

free LU factorization by Zhou and Jeffrey [90] and of our REF LU factorization

(REF-LU) are equal. Since there are no factors in the ensuing recursive relation of

the standard forward substitution for y in LD−1y = b that lead to the outright

cancellation of lj–1,j–1lj,j for all 1 ≤ j < i ≤ n, the omission of said denominators

in the forward substitution algorithm by Zhou and Jeffrey [90] is mathematically

unjustifiable. This indicates that their fraction-free forward substitution algorithm

is incorrect. Moreover, the associated proof is invalid because it follows from the

false premise that the summands associated with the calculation of yi, for all i, are

integers.

The backward substitution algorithm presented in [90] is correct, but its correct-

ness and fraction-free properties do not follow from the reasoning of its proof. In
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particular, the key step of the proof gives the following sequence of equalities:

PAx = LD−1Ux = det(A)LD−1y = det(A)Pb

where P is a permutation matrix. From this expression, it is deduced that x =

Adj(A)b, which is true based on Cramer’s Rule. However, this only proves said

backward substitution algorithm is algebraically correct (i.e., this proves that utiliz-

ing infinite precision or exact rational arithmetic the algorithm will give the exact

solution), but it does not prove that the individual operations therein are fraction-free

(i.e., preserve integrality), which is what Zhou and Jeffrey [90] claim to be proving.

In fact, there is no mention of the specific operations of their backward substitu-

tion algorithm in the proof. Therefore, the correctness and fraction-free properties

attributed to the backward substitution algorithm by Zhou and Jeffrey [90] do not

follow from the reasoning in the associated proof.

4.4 Correspondence Between the REF and Traditional Factorizations

The REF substitution algorithms developed in Section 4.3 intimate why the func-

tional forms of REF-LU and REF-Ch share the attributes of the traditional LU and

Cholesky factorizations, respectively. This subsection will discuss these correspon-

dences more formally, focusing primarily on explaining the Cholesky attributes of

REF-Ch since those of the LU factorization can be similarly inferred.

4.4.1 Storage

The traditional Cholesky factorization of SPDA ∈ Zn×n requires storing (n2+n)/2

individual entries, which represents half the number of entries needed by the tradi-

tional LU factorization of A. This subsection explains how the functional form of

REF-Ch matches these storage requirements.
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As mentioned by the previous subsections, the REF substitution algorithms also

apply to REF-Ch because the U matrix from REF-LU equals the transpose of the

L matrix for a SPD input matrix. Taking this relationship into account, The REF

substitution algorithms given by Expression (4.27) and Equation (4.29) demonstrate

that only the lower-triangular section of L needs to be stored in order to apply REF

forward and backward substitution (or to apply traditional forward and backward

substitution, for that matter). This is because instead of storing D explicitly, the

substitution algorithms generate its entries on the fly from the diagonal elements of

L. Since L has (n2+n)/2 lower-triangular entries, therefore, the number of stored

elements of the functional form of REF-Ch match those of its traditional counterpart.

Similarly, the functional form of REF-LU of A requires storing only the n2+n total

entries of L and U , as in the traditional LU factorization. Notice that the functional

form of REF-LU requires twice the storage of REF-Ch and, therefore, the latter

factorization shares the storage advantage of the traditional Cholesky factorization.

4.4.2 Number of Operations

The construction of the traditional Cholesky factorization requires n3/3 (floating-

point) operations, which represents half the operations needed by the traditional LU

factorization [40]. This subsection explains how the functional form of REF-Ch

replicates these requirements up to a constant multiple.

Based on the contents of L, the number of operations required to construct the

functional form of REF-Ch of SPD A ∈ Zn×n, is calculated by counting the number

of operations of applying a reduced version of IPGE to A. In particular, since

li,j = aj–1i,j for j ≤ i and li,j = 0 otherwise, where aj–1i,j denotes the (i, j)-entry of

the (j–1)-iteration matrix of IPGE, it is only necessary to obtain entries aki>k,j>k

during iteration k of IPGE, where 0 < k < n, and i, j ≤ n (i.e., IPGE pivoting
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operations are performed only on the elements below and to the right of the pivot

element). Consequently, accounting for the fact that the calculation of each IPGE

entry comprises four operations, the required number of operations to calculate L is

given by:

4
n–1∑
h=1

h2 =
4n3 − 6n2 + 2n

3
≤ 4n3

3
.

This is analogous to the n3/3 operations required to construct a traditional

Cholesky factorization. Similarly, at most 8n3/3 operations are needed to calcu-

late L and U of the functional form of REF-LU of A, which equals twice the number

of operations needed by the functional form of REF-Ch. Hence, the functional ver-

sion of REF-Ch matches the advantage of the traditional Cholesky factorization in

terms of number of operations as well.

A similar analysis of the REF substitution algorithms given by Expression (4.27)

and Equation (4.29), shows that the number of operations to perform REF forward

and backward substitution replicates that of traditional forward and backward sub-

stitution up to a constant multiple. The storage and number of operations associated

with the functional forms of the REF factorizations, thus, explain the connection of

the REF-Ch and REF-LUs with their traditional counterparts.

4.5 Computational Complexity

Standard data structures (e.g., doubles, fixed-precision integers, etc.) have con-

stant bit-length and, hence, they do not factor into the computational complexity

of algorithms that use them. Thus, the computational costs associated with the

calculation and implementation of traditional LU and Cholesky factorizations on a

square matrix of order n equal their number of operations, which are O(n3) and

O(n2), respectively. Associated with these simplified costs, however, is the potential

for inaccurate algorithm output due to the impact of endemic roundoff errors, as
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mentioned in the introductory part of this section (and at greater length in Section

1). Conversely, the REF LU and REF Cholesky factorizations and the related REF

substitution algorithms guarantee exactness. In exchange for accuracy, as is the

case for any other REF algorithm, the REF factorizations and substitutions require

working with operands whose individual bit-length is not fixed (as Sections 4.2 and

4.3 demonstrate, however, the bit-length of the REF factorizations and their accom-

panying REF substitution algorithms is bounded polynomially). Hence, the total

computational costs of calculating and using the REF factorizations must include

both their number of operations and the added complexity of the operands’ growth.

In order to provide the complexity of the REF factorizations, we will also derive the

complexity results for IPGE. For the ensuing complexity discussion, recall that σ is

the entry with the maximum absolute value in the input matrix.

Lee and Saunders [53] calculated O(n5 log2 σ) as the total cost of performing

IPGE on fully-dense n × n matrices with individual entries taken from the poly-

nomial domain. Their calculations assume the bit-length of each entry of IPGE

during iteration k equals k log σ, in concordance with the dense univariate model

of polynomial computation of Gentleman and Johnson [35]. However, because this

computational model ignores coefficient growth, it is our belief—and that of Dr.

B. David Saunders, as verified via a private communication—that when consider-

ing the integral domain, it is more appropriate to utilize the bit-length determined

by Hadamard’s inequality (see Section 2.3.5.2) to derive the worst-case complexity

of IPGE. Consequently, we update IPGE’s computational complexity to reflect this

more suitable maximum bit-length bound.

To be precise, the complexity measures we derive apply to matrices whose entries

are drawn from the integral domain. Moreover, our derivations takeO(w logw log logw)

as the cost of multiplying/dividing two integers of bit-length w according to the best
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known Fast Fourier transform algorithms [50, 71].

Utilizing the worst-case bit-length of each IPGE entry—denoted as H(ωmax)

based on its connection with Hadamard’s inequality—the worst-case complexity

(WCC) of IPGE, which matches that of the REF factorizations (see Section 4.4.2),

is calculated as:

WCC(IPGE/REF-LU/REF-Ch) = O(n3[H(ωmax) log H(ωmax) log log H(ωmax)])

= O
(
n4 max(log2 n log log n, log2 σ log log σ)

)
where the first equality accounts for the O(n3) multiplication/division operations

(which dominate the costs of addition/substraction), whose individual operands have

bit-lengths of at most H(ωmax) = dn log(σ
√
n)e. Similarly, since the bit-lengths of the

REF substitution algorithms are asymptotically equal to those of IPGE (see Section

4.3), the computational complexity of REF forward and backward substitution is

given by:

WCC(REF Substitution) = O(n2[H(ωmax) log H(ωmax) log log H(ωmax)])

= O
(
n3 max(log2 n log log n, log2 σ log log σ)

)
where the first equality accounts for the O(n2) multiplication/division operations

and the IPGE worst-case bit-length of the operands. As Section 2.3.5.2 explains,

however, Hadamard’s inequality yields a pessimistic bit-length for IPGE. Hence, in

practice, the typical costs of IPGE and our REF algorithms could be noticeably

lower than the above costs.

We note that for special types of sparse matrices, the costs of performing IPGE

can be reduced by a factor of up to O(n2) utilizing the more efficient form of IPGE
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developed by Lee and Saunders [53]. Hence, when calculating the REF factorizations

on certain sparse matrices, the above computational costs can be reduced by a factor

of up to O(n2) as well.

4.6 Conclusions

We remark that there exist methods for solving integer and rational linear systems

exactly other than the REF LU factorization approach or REF Gaussian elimination

approaches, in general. The most prominent of these alternatives are described in

Section 2.3 and they are divided roughly into three categories: p-adic methods—e.g.,

[21], [62], [23]—, black-box linear algebra methods—e.g., [86], [47], [46]—, and iter-

ative numerical methods—e.g., [84], [38]. Briefly stated, the first two classifications

of these major alternative approaches prioritize space complexity, while the third

seeks to lower the number of operations performed. We refer the reader to Cook

and Steffy [17], which features a comparison of the solution run-times attained via

an algorithm from each of the four main categories in the context of linear program-

ming (i.e., including an exact rational-arithmetic LU factorization-based method);

Section 5.1 briefly reports some of its findings. The computational performance of

each algorithm tested therein is somewhat dependent on the specific instance be-

ing solved, although the iterative numerical and black-box linear algebra methods

performed the best and the worst, respectively, in general. We believe a similar com-

parison that implements the REF algorithms herein presented appropriately would

be a worthwhile avenue for future research.

That said, the motivation for developing and continuing to enhance the REF

factorizations and the associated REF substitution algorithms is based on their po-

tential to adapt to current simplex-based LP solvers and mixed-integer programming

solvers. Indeed, a major goal of our ongoing research is to craft algorithms that can
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be ultimately integrated into existing LP solvers in order to equip them with efficient

tools for avoiding some of the inconsistent outputs discussed in Section 1. A prospec-

tive implementation of the algorithms herein presented would follow a blueprint sim-

ilar to the development of the exact LP solver QSopt ex [5]. This solver enhanced

the open-source QSopt LP solver [3] by adding an improved version of the exact-

arithmetic validation algorithm pioneered by Dhiflaoui et al. [20]. In particular, as

Section 3.3.3 explains, QSopt ex computes and applies an exact rational-arithmetic

LU factorization to verify the validity of the floating-point simplex solution to a given

rational LP; the solver iteratively increases the floating-point precision and restarts

the simplex algorithm whenever the solver-provided solution is invalid. Hence, future

research will look into enhancing REF-LU and modifying the validation subroutines

of QSopt ex accordingly.
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5. COMPARISONS OF TECHNIQUES FOR BASIC SOLUTION VALIDATION

5.1 Recent Enhancements and Computational Tests in the Literature

In order to provide an up-to-date perspective for the ensuing discussion and com-

putational experiments, this section begins by describing recent key enhancements

to the p-adic lifting and iterative refinement approaches for solving SLEs exactly

(described in Sections 2.3.2 and 2.3.3, respectively). In particular, in his implemen-

tation of these two approaches, Steffy [74] replaces the respective standard rational

reconstruction subroutines, which are required for recovering the exact solution from

the algorithms’ final outputs, with the output sensitive lifting strategy (see Section

2.3.4). This modification increases the speed and efficiency of both methods mainly

by integrating rational reconstruction in their intermediate steps and by allowing

smaller solution size bounds to be employed in the reconstruction process. The au-

thor also adds the use of the DLCM technique (i.e., solution-denominator lowest

common multiple), which accelerates component-wise reconstruction by taking ad-

vantage of the fact that the solution vector’s denominators share common factors;

this technique is also used by the numerical libraries LinBox1 [22] and NTL2 [73].

Through the above-mentioned enhancements, the computational efficiency of the

p-adic lifting and iterative refinement approaches can be significantly boosted. In-

deed, the computational tests performed by Steffy [74] demonstrate that the per-

formances of both approaches are improved by several orders of magnitude in some

cases. In said study the instances are random nonsingular matrices generated from

different dense matrix templates. As mentioned therein, however, these competitive

results are associated with problems whose final solution size is small, which is not

1Project LinBox — Exact Computational Linear Algebra. http://www.linalg.org.
2NTL — Number Theory Library. http://www.shoup.net/ntl.
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a property that can be determined a priori. Moreover, the two underlying assump-

tions for applying iterative refinement for solving SLEs exactly via this design are

that the final solution can be sufficiently approximated in floating-point and that the

inversion or factorization of the matrix is not too numerically ill-conditioned.

Cook and Steffy [17] evaluated, within the context of linear programming, four

of the prominent approaches outlined in Section 2 for solving SLEs exactly: rational

arithmetic LU factorization, Wiedemann’s black box algorithm, p-adic lifting, and

iterative refinement. Their implementation of the latter two approaches followed

largely the same blueprint as [74]—described in the preceding paragraphs—with

some further improvements. One additional enhancement is their use of Lehmer’s

gcd algorithm [54], which performs divisions on floating-point approximations of

large integers (rather than on the integers themselves) in the execution of the ex-

tended Euclidian algorithm; it is used in similar fashion in [16]. Another one of their

enhancements is the reduction of calls to rational reconstruction from every 10 al-

gorithm loops, as executed by Chen and Storjohann [15], to every power-of-2 loops;

this modification was found to speed computation in preliminary experiments.

The four exact SLE solution approaches were tested in [17] using 276 sparse

instances from various popular linear programming libraries. The assembled problem

testbed consisted of each instance’s optimal or best known basis yielded within 24

hours by the exact solver QSopt ex as well as a corresponding RHS vector. The

experiments record the individual solve run-times of the four approaches normalized

by the run-time of the p-adic lifting approach, and then they compute the geometric

means over all instances and over cohesive groups of instances. In all, iterative

refinement had the best average performance, although the exhibited results exclude

the five instances where it failed due to numerical issues—the three other approaches

were able to solve every instance to completion. The p-adic lifting approach followed
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closely behind it with run-times that were approximately 15% slower. Despite its use

of rational arithmetic, the exact LU factorization method was on average only three

times slower than both of these methods. This performance is encouraging for the

prospects of improved exact LU factorization methods since it is not far from striking

distance of the top two approaches, which benefitted from the various enhancements

listed in [15, 17, 74] and summarized in the preceding paragraphs. Hence, it is realistic

to expect that the proposed REF factorization framework could significantly shrink

and possibly overturn this performance gap in many cases. On the other hand,

appreciably more work would be required for Wiedemman’s black-box algorithm to

become competitive in this context since its run-times were approximately 40 times

slower than the top two algorithms.

Other key takeaways from the computational results in [17] reinforce the case

for implementing the exact LU approach for solving SLEs in the context of basic

solution validation for exact linear programming. For starters, as attested by its

inability to solve five instances in said study, iterative refinement is not suitable as a

general exact SLE solution subroutine. The authors highlight this point by stating

that it is more appropriate to apply iterative refinement when the SLE is known to be

numerically stable, which is of course not easily predictable when solving arbitrary

LPs. Accordingly, they advocate the use of p-adic lifting since its performance is

similar yet more robust than that of iterative refinement. They also promote the use

of the exact rational arithmetic LU factorization approach since its code turns out

to be faster than p-adic lifting for a critical subset of the tested instances, namely

those with moderate to large solution size. This matches the previous observations

in [15, 74] that the best performances of p-adic lifting (and iterative refinement) are

most directly linked with simpler problems that have small solution sizes. This seems

to indicate that the exact LU factorization approach is best equipped for efficiently
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solving SLEs that are numerically difficult and/or intricate—i.e., having relatively

larger solution sizes.

The most decisive argument for implementing the exact LU factorization ap-

proach for basic solution validation is voiced by the current practice of state-of-the-art

exact LP solvers QSopt ex 2.63 and SoPlex 2.2.04. Both of these solvers implement

the exact rational arithmetic LU factorization and not p-adic lifting for basic so-

lution validation. To be precise, the exact LP SoPlex extension—which uses LP

iterative refinement to obtain increasingly accurate approximate solutions as Section

3.3.4 explains—also provides output sensitive lifting as an option for obtaining exact

solutions. However, in Gleixner [37], which contains the study and analysis attached

to the referenced SoPlex release, the author found that the LU factorization method

was 46% faster than output sensitive lifting over all the tested instances; conversely,

output sensitive lifting was 5% faster than the LU factorization method only for

instances that took less than .5 seconds to solve.

The preceding analysis strongly supports the view that the exact LU factoriza-

tion approach should be the go-to tool for basic solution validation within exact

LP. As has been explained thus far, there are other shortcut techniques that may

be used in place of this approach, such as rational reconstruction and p-adic lifting,

which achieve quicker run-times when they are applied to simpler instances. How-

ever, these techniques become more costly/ineffective than the factorization-based

approach when the problem is numerically unstable and/or when the solution vec-

tor coefficients require relatively larger bit-lengths for their exact expression [17]. A

problematic aspect of the latter statement is that solution size is both independent

of the numerical condition of the basis matrix and difficult to determine a priori.

3Release notes available at http://www.math.uwaterloo.ca/∼bico/qsopt/ex.
4Release notes available at http://soplex.zib.de/notes-220.txt.
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Thus, it is possible that a seemingly ordinary RHS vector may cause these methods

to achieve their worst-case performance for ill-conditioned and well-conditioned ba-

sis matrices alike. Since the overarching objective of this dissertation is to eliminate

the potentially pernicious aftereffects of roundoff errors efficiently, the subsequent

computational tests in this work consider the rational arithmetic LU factorization

method as the primary point of reference for basic solution validation. Neverthe-

less, reiterating a statement from Section 3.4, the most competitive and effective

exact LP implementations will be those that apply a combination of the best known

techniques—a plausible implementation could attempt rational reconstruction as a

first measure of exactness validation and, when this initial check is unsuccessful,

exact basic solution validation. Having said that, the integration of the featured

framework with these shortcut alternatives is left for future work.

5.2 Featured Computational Tests

As mentioned in previous sections, the central function of the REF factoriza-

tion framework is the efficient validation of basic solutions for use in state-of-the-art

exact LP solvers. An indispensable task in proving the competitiveness of the fea-

tured algorithms within this context is to assess their performance compared to those

involved in the construction and triangular solves of the in-use exact rational arith-

metic LU factorization approach. Hence, the rest of this section describes the various

experiments performed to measure the computational performance of the REF fac-

torization framework in relation to this principal method. Additionally, an efficient

adaptation of the Q-matrix revised simplex method is devised and tested.

The metrics of interest for this study are threefold: (1) run-time of the con-

struction process of each exact tool; (2) run-time of the respective exact solution

processes, and (3) storage requirements. Original derivations and useful theoretical
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analyses accompany each set of computational tests.

5.2.1 Computing Environment

The experiments herein described were performed on a machine equipped with

32GB of RAM memory and a quad-core 3.6GHz Intel E5-1620 processor. The oper-

ating system of the machine is CentOS Linux 7 (1511), which is derived from Red Hat

Enterprise Linux 7.2. The code was written in C++ using the unlimited-precision

GNU-GMP numerical library [42].

5.2.2 General Instance Specifications

The following instance specifications are standard to all the featured computa-

tional tests, unless noted otherwise. The input LHS matrices of the linear systems

are randomly generated fully-dense square matrices. In the exact rational arithmetic

LU factorization comparisons, the dimension of the LHS matrices is n ∈ [50, 500];

the upper limit was set to 500 due to the high run-times required by the rational

arithmetic factorizations according to preliminary runs. In the Q-matrix method

comparisons, the dimension of the LHS matrices is n ∈ [100, 1000]. The input RHS

matrices are randomly generated and have dimension n × 50, meaning the triangu-

lar solve tests are applied to 50 distinct RHS vectors at a time per repetition; this

choice was made to obtain stable results since, for small n, the recorded run-times

for solving few RHS vectors can be insignificant or inconsistent. The input matrix

entries are integers drawn uniformly from the interval [−99, 99] (excluding zero). For

each setting of the dimension parameter n, the experiments perform 30 repetitions

and report the arithmetic mean and standard deviation of each metric of interest.

Before proceeding with the individual experiments and results, it is worthwhile to

elaborate on the choice of input instances. As previous sections state, the overarch-

ing objective of this plan of study is to eliminate the rational arithmetic operations
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required in the standard exact LU factorization approach by replacing them with

integer arithmetic operations via the REF factorization framework. To determine

the computational savings due directly to this fundamental change, it is necessary

to ignore the run-time spent searching for a nonzero pivot element and performing

the corresponding row and column permutations. The most effective way to exclude

them is to avoid pivot searches altogether and, hence, our experiments work entirely

with fully-dense matrices (in the rare events in which a zero was introduced by the

algorithms and then selected as a pivot, the corresponding run was discarded). How-

ever, since numerical stability is not an issue when working in unlimited precision,

the exact rational arithmetic LU factorizations can and would likely draw their pivots

from the same matrix coordinates as the REF LU factorization when working with

sparse instances. The ensuing subsection elucidates the latter point by examining

the rational arithmetic LU factorizations in greater detail and by establishing their

connection to the REF LU factorization. The task of optimizing the REF framework

algorithms for testing them on sparse instances is left for future work.

5.3 Comparison with the Exact Rational Arithmetic LU Factorization Approach

5.3.1 Analysis of the Doolittle and Crout Factorizations

As Section 2.2.3 explains, the Doolittle and Crout Factorizations are two types

of unique LU factorizations obtained by requiring L to be unit lower-triangular and

U to be unit upper-triangular, respectively. The distinct elementary algorithms used

to construct them can be found in [33] and [66]. It is important to realize that the

two factorizations—as well as any other exact rational arithmetic LU factorization—

would solve the linear system Ax = b without accruing roundoff errors using the

same procedure. Expressly, as Section 2.2.3 explains, each performs a triangular

solve of the (lower-triangular) SLE Ly = b for y ∈ Qn followed by a triangular
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solve of the (upper-triangular) SLE Ux = y for x ∈ Qn; both triangular solves must

be done in exact rational arithmetic to avoid roundoff errors. Moreover, based on

Cramer’s rule, the outcome of this process can be expressed exactly as:

x =
Adj(A)b

det(A)

where Adj(A) and det(A) are the adjunct matrix and determinant of nonsingular

matrix A, respectively. A key related point is that each resulting exact rational

xi = [Adj(A)(i,:)b]/ det(A), for 1 ≤ i ≤ n, can be simplified when its numerator and

denominator share common factors—i.e., in such a situation the requisite bit-length

of xi is smaller than the sum of the bit-lengths of Adj(A)(i,:)b and det(A). Then

again, it is plausible that at least one of the solution numerators is relatively prime

to det(A). This is noteworthy because, generally speaking, the bit-length of such a

rational would be among the largest required by an individual entry of the solution

vector. To inspect this issue further, an experiment described Section 5.3.2.2 counts

the number of instances in which at least one element of x had to store det(A) as its

denominator because the exact rational solution entry could not be simplified.

Having clarified the exact rational arithmetic solution process, this subsection

establishes the connection between the REF LU factorization and the exact forms of

the two unique rational arithmetic LU factorizations, hereafter alternatively referred

to as Doolittle-LU and Crout-LU. This connection allows the entries of Doolittle-LU

and Crout-LU to be expressed in terms of IPGE entries and in terms of subdetermi-

nants of A. To this end, it will be useful to introduce the following notation.

Definition 9. Let αRC be an abbreviation of det (A)RC, the subdeterminant involving

the rows and columns of A indexed by sets R,C ⊆ {1 . . . n} such that |R| = |C|.

For the ensuing discussion, let aki,j again denote the kth-iteration (i, j)-entry asso-
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ciated with applying IPGE to A ∈ Zn×n according to Assumption 2—which specifies

that the kth IPGE pivot, ρk, is always given by ak–1k,k 6= 0—for 1 ≤ i, j ≤ n and

0 ≤ k ≤ n. In addition, fix L, D−1, and U to be the three matrices comprising the

REF LU factorization of A.

Theorem 5.3.1. The Doolittle Factorization can be readily obtained from the REF

LU factorization given by Equation (4.11).

Proof. Expanding the REF-LU diagonal matrix gives that:

LD–1U = L



1
a01,1 0

1
a01,1a

1
2,2

1
a12,2a

2
3,3

. . .

0 1
an–2n–1,n–1a

n–1
n,n


U (5.1)

= L



1
a01,1 0

1
a12,2

1
a23,3

. . .

0 1
an–1n,n





1 0
1
a01,1

1
a12,2

. . .

0 1
an–2n–1,n–1


U (5.2)

=



1 0
a02,1
a01,1

1

a03,1
a01,1

a13,2
a12,2

1

...
...

. . . . . .

a0n,1
a01,1

a1n,2
a12,2

a2n,3
a23,3

. . . 1





a01,1 a01,2 a01,3 . . . a01,n
a12,2
a01,1

a12,3
a01,1

. . .
a12,n
a01,1

a23,3
a12,2

. . .
a23,n
a12,2

. . .
...

0 an–1n,n

an–2n–1,n–1


; (5.3)

where Equation (5.2) splitsD−1 into two diagonal matrices by factoring out the lower-
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indexed IPGE entries and placing them into a new left-hand matrix; and, where

Equation (5.3) right-multiplies L by the new left-hand diagonal matrix and left-

multiplies U by the modified right-hand diagonal matrix. The result follows from the

fact that there exists only one LU factorization with a unit lower-triangular matrix

and, consequently, Equation (5.3) is equivalent to the Doolittle LU factorization. �

Corollary 3. The individual entries of Doolittle-LU are expressed as subdetermi-

nants of A as follows:

LU =



1 0
α2
1

α1
1

1

α3
1

α1
1

α1,3
1,2

α1,2
1,2

1

α4
1

α1
1

α1,4
1,2

α1,2
1,2

α1,2,4
1,2,3

α1,2,3
1,2,3

1

...
...

...
. . . . . .

αn1
α1
1

α1,n
1,2

α1,2
1,2

α1,2,n
1,2,3

α1,2,3
1,2,3

α1,2,3,n
1,2,3,4

α1,2,3,4
1,2,3,4

. . . 1





α1
1 α1

2 α1
3 α1

4 . . . α1
n

α1,2
1,2

α1
1

α1,2
1,3

α1
1

α1,2
1,4

α1
1

. . .
α1,2
1,n

α1
1

α1,2,3
1,2,3

α1,2
1,2

α1,2,3
1,2,4

α1,2
1,2

. . .
α1,2,3
1,2,n

α1,2
1,2

α1,2,3,4
1,2,3,4

α1,2,3
1,2,3

. . .
α1,2,3,4
1,2,3,n

α1,2,3
1,2,3

. . .
...

0 α1,...,n
1,...,n

α1,...,n–1
1,...,n–1


. (5.4)

To highlight the similarity between the Doolittle factorization and the REF LU

factorization, we also express the contents of the L and U matrices of REF-LU as

subdeterminants of A as follows:

LU =



α1
1 0
α2
1 α1,2

1,2

α3
1 α1,3

1,2 α1,2,3
1,2,3

α4
1 α1,4

1,2 α1,2,4
1,2,3 α1,2,3,4

1,2,3,4

...
...

...
. . .

. . .

αn
1 α1,n

1,2 α1,2,n
1,2,3 α1,2,3,n

1,2,3,4 . . . α1,...,n
1,...,n





α1
1 α1

2 α1
3 α1

4 . . . α1
n

α1,2
1,2 α1,2

1,3 α1,2
1,4 . . . α1,2

1,n

α1,2,3
1,2,3 α1,2,3

1,2,4 . . . α1,2,3
1,2,n

α1,2,3,4
1,2,3,4 . . . α1,2,3,4

1,2,3,n

. . .
...

0 α1,...,n
1,...,n


. (5.5)

Notice that, except for the diagonal elements of each respective lower-triangular
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matrix, the entries of the REF L and U matrices of Equation (5.5) are exactly

the numerators of the corresponding entries of the factorization given by Equation

(5.4). This observation leads to the prediction that, in general, Doolittle-LU requires

roughly twice the storage of REF-LU. The ensuing theorem and corollary help lead to

the same conjecture with respect to the relationship between Crout-LU and REF-LU.

Theorem 5.3.2. The Crout Factorization can be readily obtained from the REF LU

factorization given by Equation (4.11).

Proof. Expanding the REF-LU diagonal matrix gives that:

LD–1U = L



1
a01,1 0

1
a01,1a

1
2,2

1
a12,2a

2
3,3

. . .

0 1
an–2n–1,n–1a

n–1
n,n


U (5.6)

= L



1 0
1
a01,1

1
a12,2

. . .

0 1
an–2n–1,n–1





1
a01,1 0

1
a12,2

1
a23,3

. . .

0 1
an–1n,n


U (5.7)

=



a01,1 0
a02,1

a12,2
a01,1

a03,1
a13,2
a01,1

a23,3
a12,2

...
...

...
. . .

a0n,1
a1n,2
a01,1

a2n,3
a12,2

. . .
an–1n,n

an–2n–1,n–1





1
a01,2
a01,1

a01,3
a01,1

. . .
a01,n
a01,1

1
a12,3
a12,2

. . .
a12,n
a12,2

1
. . .

a23,n
a23,3

. . .
...

0 1


(5.8)
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where Equation (5.7) splitsD−1 into two diagonal matrices by factoring out the lower-

indexed IPGE entries and placing them into a new right-hand matrix; and, where

Equation (5.8) left-multiplies U by the new right-hand diagonal matrix and right-

multiplies L by the modified left-hand diagonal matrix. The result follows from the

fact that there exists only one LU factorization with a unit upper-triangular matrix

and, consequently, Equation (5.8) is equivalent to the Crout LU factorization. �

Corollary 4. The individual entries of Crout-LU are expressed as subdeterminants

of A as follows:

LU =



α1
1 0
α2
1

α1,2
1,2

α1
1

α3
1

α1,3
1,2

α1
1

α1,2,3
1,2,3

α1,2
1,2

α4
1

α1,4
1,2

α1
1

α1,2,4
1,2,3

α1,2
1,2

α1,2,3,4
1,2,3,4

α1,2,3
1,2,3

...
...

...
...

. . .

αn1
α1,n
1,2

α1
1

α1,2,n
1,2,3

α1,2
1,2

α1,2,3,n
1,2,3,4

α1,2,3
1,2,3

. . .
α1,...,n
1,...,n

α1,...,n–1
1,...,n–1





1
α1
2

α1
1

α1
3

α1
1

α1
4

α1
1

. . . α1
n

α1
1

1
α1,2
1,3

α1,2
1,2

α1,2
1,4

α1,2
1,2

. . .
α1,2
1,n

α1,2
1,2

1
α1,2,3
1,2,4

α1,2,3
1,2,3

. . .
α1,2,3
1,2,n

α1,2,3
1,2,3

1 . . .
α1,2,3,4
1,2,3,n

α1,2,3,4
1,2,3,4

. . .
...

0 1


.

5.3.2 Experiments and Results

The present subsection reports and analyzes the results of computational tests

designed to compare the algorithms used to construct REF-LU, Doolittle-LU, and

Crout-LU and to perform the respective triangular solves. In each corresponding

algorithm, the appropriate standard integer or rational mathematical operations of

the GMP library are employed. However, in the case of the REF factorization frame-

work algorithms, we use the version of Jebelean’s exact division algorithm [44] offered

within the GMP library to take advantage of IPGE Property 1 and of the theoretical

results derived in Section 4. Specifically, this special division algorithm, which halves
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the work of a normal basecase division [42], can be employed by the REF factorization

algorithms because their constituent divisions are guaranteed to be exact.

5.3.2.1 Run-Times

The first experiment consists of measuring the run-times required to construct

the three LU factorizations and to perform the exact triangular solves. As a point

of clarification, in this experiment Doolittle-LU and Crout-LU are explicitly con-

structed using their eponymous algorithms (see [33] and [66]) and not the derivations

described by Theorems 5.3.1 and 5.3.2. Table 5.1 provides a summary of the run-

times in seconds (s) taken to construct Crout-LU (label Crout), Doolittle-LU (label

Doolittle), and REF-LU (label REF). Additionally, Table 5.2 provides a summary

of run-times of the corresponding exact triangular solve routines on 50 RHS vectors.

Both tables also report the ratios of the run-time taken by each of the rational arith-

metic LU factorizations to the run-time taken by the REF LU factorization (labels

Crout/REF and Dool/REF, respectively).

As Tables 5.1 and 5.2 demonstrate, the REF factorization framework achieved

a decidedly superior performance than the exact rational arithmetic factorization

approach. Its average construction run-times were up to 22 and 17 times faster as

those achieved by Crout-LU and Doolittle-LU, respectively. Its relative performance

reaches these peaks around n = 250 and then gradually decreases as n increases;

this is likely due to the growing influence of slower-memory operations as the associ-

ated matrix entry bit-lengths become larger. Nonetheless, it is still able to factor a

fully-dense 500× 500 matrix—i.e., with 250,000 nonzeros—in under a minute while

the exact rational arithmetic factorizations take over 15 minutes each. Even more

impressively, the REF-LU average solution run-times were over 35 times faster than

both Crout-LU and Doolittle-LU’s across the board. The reported solution run-times
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Table 5.1: Construction run-times (s): Crout-LU, Doolittle-LU, REF-LU

Crout Doolittle REF Crout/REF Dool/REF

n AVG SD AVG SD AVG SD AVG SD AVG SD

50 0.06 0.01 0.05 0.00 0.01 0.00 11.64 1.96 9.12 0.35

100 1.14 0.02 0.89 0.01 0.07 0.00 17.25 0.44 13.46 0.29

150 6.46 0.03 5.03 0.03 0.31 0.00 20.97 0.17 16.32 0.14

200 21.90 0.08 17.19 0.07 0.99 0.00 22.15 0.11 17.39 0.10

250 56.35 0.16 44.89 0.21 2.55 0.01 22.06 0.12 17.57 0.10

300 122.03 0.28 98.85 0.34 5.85 0.07 20.85 0.25 16.89 0.20

350 234.55 0.48 193.18 0.60 11.94 0.32 19.66 0.48 16.19 0.39

400 414.32 0.85 346.57 0.83 21.79 0.17 19.02 0.15 15.91 0.13

450 684.03 0.96 581.63 1.68 37.06 0.45 18.46 0.21 15.70 0.19

500 1073.25 1.49 924.51 3.15 59.67 0.37 17.99 0.11 15.49 0.09

Table 5.2: Solution run-times (s) of 50 RHS vectors: Crout-LU, Doolittle-LU, REF-
LU

Crout Doolittle REF Crout/REF Dool/REF

n AVG SD AVG SD AVG SD AVG SD AVG SD

50 0.50 0.01 0.49 0.00 0.01 0.00 35.55 0.63 35.12 0.23

100 4.84 0.01 4.82 0.03 0.09 0.00 52.35 0.29 52.14 0.49

150 18.04 0.07 17.97 0.06 0.32 0.01 55.67 1.14 55.46 1.11

200 45.86 0.15 45.72 0.14 0.86 0.00 53.49 0.28 53.32 0.25

250 94.80 0.24 94.68 0.18 1.92 0.01 49.39 0.27 49.33 0.27

300 172.11 0.34 172.07 0.31 3.84 0.02 44.86 0.24 44.85 0.23

350 285.75 0.51 285.51 0.55 6.72 0.04 42.50 0.26 42.47 0.28

400 444.13 0.67 444.33 1.62 10.84 0.06 40.97 0.24 40.99 0.31

450 656.31 0.98 656.26 1.10 16.62 0.14 39.48 0.32 39.48 0.34

500 933.21 1.59 932.84 1.52 24.41 0.25 38.23 0.38 38.22 0.38

for n = 500 translate to approximately .5s per RHS vector for REF-LU and 19s for

the exact rational arithmetic factorizations.

Among the two exact rational arithmetic LU factorizations, there was a virtual

tie in the triangle solve run-times, which is to be expected based on the similarity of

their contents (see Equations 5.3 and 5.8) and their use of the same standard forward
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and backward substitution algorithms. However, Doolittle-LU outperformed Crout-

LU in average construction run-times by more than 15% for every tested dimension

value. This result seems to justify the preference for the Doolittle algorithm seen in

theory and practice.

5.3.2.2 Storage

Having shown conclusive evidence of the computational advantages of implement-

ing REF-LU over Doolittle-LU and Crout-LU, the second experiment examines the

memory requirements for each of the factorizations. In particular, it performs a new

set of runs to count and compare the number of whole limbs—i.e., 64-bit longs in the

present computer environment—each factorization utilizes. The construction stor-

age requirements are summarized in Table 5.3a in terms of the average number of

limbs utilized by REF-LU, rounded to the nearest whole number, for each specified

matrix dimension n (the standard deviation magnitudes were at most 0.5% of each

average value and are thereby omitted for clarity). The average number of limbs

utilized by Crout-LU and Doolittle-LU is expressed as a ratio of each corresponding

REF-LU average value rounded to four decimal places. For these runs, only REF-LU

is explicitly constructed. Doolittle-LU and Crout-LU are obtained by appending a

denominator equal to a specific IPGE pivot to each REF-LU entry (see Equations

(5.3) and (5.8)) and then reducing the resulting rational factorization entries to their

lowest terms via gcd operations. As an added benefit, this shortcut makes it easy

to determine what factors are removed from an original REF-LU entry to yield the

smallest possible numerator in the corresponding entries of Crout-LU and Doolittle-

LU (recall that the GMP library stores each rational entry in canonical form, meaning

the numerator and denominator are relatively prime). These factors are of interest

because they can be regarded as the memory cost of not having to store individual
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denominators for REF-LU’s entries. Table 5.3b summarizes these costs by recording

the maximum such integer that is factored out of any REF-LU entry over the full

set of repetitions for each value of n.

The second experiment also records three metrics related to the solutions obtained

via the exact rational arithmetic approach (label ERA) and the REF framework:

(1) solution size—i.e., the maximum bit-length of an individual entry in the solution

vector—in limbs; (2) determinant bit-length in limbs; (3) number of instances in

which the determinant must be explicitly stored as a denominator of an entry of

the exact rational arithmetic solution vector. (In this part of the experiment, we do

not differentiate between Doolittle-LU and Crout-LU since the process and outputs

of solving an SLE via either exact rational arithmetic factorization are the same.)

All the second experiment runs (from which the factorization storage metrics are

concurrently collected) solve the SLE Ax = e1 for the purpose of uniformity, where

e1 is the first n-length elementary vector. Hence, the RHS vector is constant, and

the LHS A matrices are again different randomly-generated dense matrices. Each

of these SLEs is a representative choice since it corresponds to solving for the first

column of the inverse matrix; similar SLEs were solved in [75]. Table 5.4a and Table

5.4b summarize the results of the first metric and of the second and third metrics,

respectively.

The results of the second experiment confirm earlier hypotheses regarding the

storage relationship between REF-LU and the exact rational arithmetic factoriza-

tions. In particular, Table 5.3a shows that Crout-LU and Doolittle-LU utilize twice

the number of average limbs asymptotically as REF-LU—i.e., as n increases, the

respective average ratios relative to REF-LU approach two. Moreover, Table 5.3b

reveals that the maximum factor removed from a REF-LU entry to transform it into

the corresponding denominator of Crout-LU or Doolittle-LU was at most 10 digits
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Table 5.3: Storage metrics: Crout-LU, Doolittle-LU, REF-LU

(a) Utilized Limbs

REF-LU Crout/REF Dool/REF

n AVG AVG AVG

50 6235 1.9583 1.9574

100 46571 1.9757 1.9753

150 155777 1.9822 1.9823

200 370251 1.9862 1.9862

250 727506 1.9890 1.9891

300 1265193 1.9908 1.9909

350 2022175 1.9920 1.9921

400 3038136 1.9929 1.9929

450 4351434 1.9937 1.9937

500 6002661 1.9944 1.9944

(b) Max Removed Factors

Crout Doolittle

n MAX MAX

50 957783288 87071208

100 5853540 2862990

150 3357228 23500596

200 112150896 12628616

250 2810372084 6433882

300 26199300 55207425

350 16536240 25652700

400 270198825 56812032

450 7801242 20072132

500 34010361 121091232

Table 5.4: Solution metrics: ERA-LU, REF-LU

(a) Solution Size

ERA Limbs REF Limbs

n AVG SD AVG SD

50 13.97 0.18 7.00 0.00

100 27.87 0.35 13.97 0.18

150 42.00 0.00 21.00 0.00

200 56.03 0.18 28.00 0.00

250 72.00 0.00 36.00 0.00

300 88.00 0.00 44.00 0.00

350 103.33 0.55 51.50 0.51

400 118.63 0.49 59.00 0.00

450 134.33 0.48 67.00 0.00

500 150.60 0.50 75.00 0.00

(b) Determinant Statistics

Limbs Deteterminant =

n AVG SD ERA Denom

50 7.00 0.00 10 of 30 instances

100 14.00 0.00 8 of 30 instances

150 21.00 0.00 11 of 30 instances

200 28.13 0.35 13 of 30 instances

250 36.00 0.00 13 of 30 instances

300 44.00 0.00 17 of 30 instances

350 52.00 0.00 11 of 30 instances

400 59.73 0.45 15 of 30 instances

450 67.40 0.50 15 of 30 instances

500 75.73 0.45 11 of 30 instances

long accounting for the full set of runs involved in the experiment. Since a long can

store 19 digits, in all of the aforementioned runs the numerators of the exact rational
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arithmetic LU factorizations alone utilized exactly the same number of limbs as the

full REF LU factorization. Thus, it seems that the storage cost paid by REF-LU

to avoid keeping a denominator for each of its entries is insignificant relative to the

substantial storage savings resulting from said avoidance.

Table 5.4a confirms the hypothesis that the solution sizes of the rational arith-

metic LU factorizations are approximately twice as large as those required by the

REF factorization framework. The rationale for said hypothesis comes from the

fact that the result of REF forward and backward substitution is the integral vec-

tor x′ = Adj(A)b, which is implicitly accompanied by the determinant of A as a

denominator of every vector entry to yield the exact solution vector x (see Section

4.3). As it happens, the implicit common denominator comes essentially gratis to

the REF substitution algorithms since the last diagonal element of REF-LU’s lower-

triangular matrix is equal to the determinant. This is significant because the average

determinant had practically the same length as the REF-LU solution size as Table

5.4b reports and, more generally, because the exact rational arithmetic approach

must store a separate denominator that may be as large as the determinant for each

solution entry. In point of fact, as the third column of Table 5.4b shows, in at least

26% of the instances tested for each value of n, the exact rational arithmetic solution

required the determinant to be explicitly stored as a denominator—i.e., at least one

numerator in the exact solution was relatively prime to the determinant. Since the

largest REF-LU bit-length usually corresponds to the basis determinant, this essen-

tially indicates the REF factorization framework routinely stores the exact solution

to Ax = b as compactly as possible.
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5.4 Comparison with the Q-Matrix Revised Simplex Method

Azulay and Pique [7] designed the integer arithmetic-based Q-matrix revised sim-

plex method to be a full-fledged exact LP solver. As Section 3.2.2 recounted, in their

limited set of experiments, the method decreased the respective rational arithmetic

revised simplex run-times by at most one order of magnitude—achieving a maximum

speedup of 12 on one of 24 NETLIB instances, to be precise. Nevertheless, even if

their method could sustain this performance edge, the savings would not suffice to

overturn the conclusion reached from several implementations of exact rational arith-

metic LP solvers (e.g., [17]), namely that deploying an unlimited-precision LP solver

is impractical in most situations. For this reason, the next subsection first derives

an adaptation of the Q-matrix method that enables its efficient implementation as

a basic solution validation subroutine. Afterward, Section 5.4.2 compares the REF

factorization framework with respect to this streamlined version of the Q-matrix

method.

5.4.1 A Minimal Implementation of Q-Matrices

The Q-matrix revised simplex method works by constructing the adjunct matrix

of a basis and then by updating said matrix via Q-pivots and IPGE variants of

the traditional revised simplex operations. To validate a basic solution, however, it

is unnecessary to perform individual operations within the simplex algorithm. In

this featured context, therefore, the only essential parts of the Q-matrix revised

simplex method are the construction of the adjunct matrix from a predetermined

set of column indices and its implementation in calculating an exact SLE solution.

Assuming A is the basis matrix to be validated, the first part can be accomplished

in O(n3) operations by applying the full version of IPGE to the augmented matrix

[A|In], so that its LHS becomes a diagonal matrix with all its nonzero entries equal
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to det(A). As anticipated, Adj(A) emerges as the accompanying right-hand matrix.

After this initial construction, the second essential part of the Q-matrix framework

is easily performed in O(n2) operations by a matrix-vector multiplication involving

Adj(A) and a RHS vector b (in the case of the primal solution calculation).

Based on the preceding discussion, it is necessary to allocate an n × 2n matrix

for the construction of Adj(A), but only an n × n matrix during the exact solution

calculation. Next, we introduce an alternative construction process requiring an n×n

matrix as well, thereby reducing the previous storage requirement by one-half. The

algorithm is described by the following equation, which needs to be evaluated for

k = 1 . . . n, i = 1 . . . n, and j = 1 . . . k–1, k+1 . . . n, k (in this order):

aki,j =



ρk–1 if i = k, j = k

−ak–1i,j if i 6= k, j = k

ak–1i,j if i = k, j 6= k

(ρkak–1i,j − ak–1k,j a
k–1
i,k )/ρk–1 if i 6= k, j 6= k;

(5.9)

where a0i,j = ai,j. The algorithm is identical to the full version of IPGE specified

by Equation (2.7), except that the kth pivot column, Ak−1(:,k), is overwritten by itself

times negative one in rows i 6= k or by the previous pivot, ρk–1, in row k. Based on

the above expressions, it is straightforward to perceive that the algorithm performs

O(n3) operations and that it requires storing only an n× n matrix.

In what follows, Lemma 2 will provide the rationale for overwriting the pivot

column at each step with the values indicated in Equation (5.9); afterward, Theorem

5.4.1 proves the above algorithm is correct and REF. To this end, let Ak(:,n+j) denote

the kth-iteration jth RHS column obtained when applying IPGE—according to the

sequence of pivot coordinates designated by Assumption 2—on [A|In], where 1 ≤
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j, k ≤ n.

Lemma 2. Provided that the (k–1)th-iteration RHS column, Ak–1(:,n+j), equals ρk–1ej,

for k > 0, the next iterate of the same column, Ak(:,n+j), can be obtained via the

following shortcuts:

Ak(:,n+j) =

 −A
k–1
(:,k) + (ρk + ρk–1)ek if j = k

ρkej otherwise;

where ej is the n-length jth elementary vector, ρk is the kth IPGE pivot element

(equal to ak–1k,k by Assumption 2), and ρ0 = 1.

Proof. The proof is divided into two parts. When j = k, applying the definition of

IPGE to the calculation of the individual entries of Ak(:,n+j) gives:

aki,n+k =

 ak–1i,n+k = ak–1k,n+k = ρk–1 if i = k

(ρkak–1i,n+k − ak–1k,n+ka
k–1
i,k )/ρk–1 = (ρk(0)− ρk–1ak–1i,k )/ρk–1 = −ak–1i,k otherwise,

where ρk–1 is substituted in place of ak–1k,n+k according to the given assumption. Notice

that, since ak–1k,k = ρk, the i = k case above can be equivalently expressed as:

akk,n+k = −ak–1k,k + (ak–1k,k + ρk–1) = −ak–1k,k + (ρk + ρk–1),

thus completing the first part of the proof. Similarly, for j 6= k, starting with the

IPGE definition yields:

aki,n+j =


ak–1i,n+j = 0 if i = k

(ρkak–1i,n+j − ak–1k,n+ja
k–1
i,k )/ρk–1 = (ρkρk–1 − (0)ak–1i,k )/ρk–1 = ρk if i = j

(ρkak–1i,n+j − ak–1k,n+ja
k–1
i,k )/ρk–1 = (ρk(0)− (0)ak–1i,k )/ρk–1 = 0 otherwise. �
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Theorem 5.4.1. The algorithm specified by Equation (5.9) calculates the adjunct

matrix Adj(A) without accruing roundoff errors.

Proof. Since the iterative LHS matrix obtained by applying IPGE on [A|In] is only

needed to transform In into Adj(A), columns Ak–1(:,1), . . . , A
k–1
(:,k–1) are superfluous during

the algorithm’s kth to nth iterations (in fact, at iteration k, they could all be retrieved

via the shortcut given by Equation (2.8)). Hence, after completing the kth iteration,

column Ak(:,k) will also become superfluous, meaning a new column can be inserted

in place of it without losing any critical data. The following analysis explains that

the inserted column corresponds to Ak(:,n+k) and that only the first k RHS columns

need to be explicitly stored up to this point.

Continuing, since ρ0 = 1, the n-order identity matrix can be equally characterized

as:

In = ρ0In = [ρ0e1 ρ
0e2 . . . ρ0en].

This implies that Lemma 1 can be applied in the first IPGE iteration on all the RHS

columns of [A0|In] to obtain A1
(:,n+1), . . . , A

1
(:,2n) via its shortcuts. In the second IPGE

iteration, Lemma 1 will apply to all but the first of these columns since A1
(:,n+2) =

ρ1e2, . . . , A
1
(:,2n) = ρ1en, but A1

(:,n+1) = −A0
(:,n+1) + (ρ1 + ρ0)e1 6= ρ1e1. Propagating

this simple argument, in iteration k the shortcuts can be applied only to columns

Ak–1(:,n+k) = ρk–1ek, . . . , A
k–1
(:,2n) = ρk–1en. More importantly, since the content of these

columns is readily deducible according to Lemma 2, only the first k RHS columns

need to be explicitly stored following this iteration. As it happens, they can occupy

exactly the first k columns of the LHS matrix since the columns Ak(:,1), . . . , A
k
(:,k)

are superfluous at this point, as the above paragraph explained. Thus, by first

performing the usual IPGE operations on the kth-iteration non-pivot columns and

then generating column Ak(:,n+k) to replace the pivot column Ak–1(:,k) via Lemma 2, for
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k = 1 to n, the algorithm will yield Adj(A) as the output LHS matrix. In other

words, there is no need to store the RHS matrix at any point. Lastly, since this

algorithm is simply a storage-efficient version of the normal application of IPGE on

[A|In], all its calculations are free of roundoff errors. �

Having developed and proved the correctness of the above-mentioned algorithm,

the Q-matrix revised simplex method can now be efficiently implemented and com-

pared in the same context and leveled field as the REF LU factorization. In partic-

ular, like REF-LU, Adj(A) can be computed in O(n3) operations without roundoff

errors using only an n×n matrix, after which it can be deployed to calculate the exact

solution to Ax = b in O(n2) operations, for any RHS vector b. Instead of performing

two triangular solves, however, the Q-matrix revised simplex method calculates the

exact primal solution via the following matrix-vector multiplication:

x′ = Adj(A)b =
[
det(A)A−1

]
b = det(A)x;

where the second equality results from the definition of the adjunct matrix and the

third from Cramer’s rule. Notice that the multiplication produces the same scaled

vector x′ as the end result of REF forward and backward substitution. Therefore,

the exact solution to Ax = b is stored as:

xi =
x′i

det(A)
for i = 1 . . . n.

Recalling that the adjunct matrix of A is defined as its transpose cofactor matrix,

109



Adj(A) can be expressed in terms of subdeterminants of A as follows:

Adj(A) =



α
N\{1}
N\{1} −αN\{2}N\{1} α

N\{3}
N\{1} . . . −αN\{n}N\{1}

−αN\{1}N\{2} α
N\{2}
N\{2} −αN\{3}N\{2} . . . α

N\{n}
N\{2}

α
N\{1}
N\{3} −αN\{2}N\{3} α

N\{3}
N\{3} . . . −αN\{n}N\{3}

...
...

...
. . .

...

−αN\{1}N\{n} α
N\{2}
N\{n} −α

N\{3}
N\{n} . . . α

N\{n}
N\{n}


, (5.10)

where N = {1, . . . , n} is the column index set and n is even (solely for the purposes

of this illustration). Based on this simple fact, the bit-length of every entry of Adj(A)

has the bound (n− 1) log(
√

(n− 1)σ), based on Hadamard’s determinant inequality

(see Equations (2.13) and (2.14)). On the other hand, the entries along row i of U

and column i of L in REF-LU have bit-lengths with the bound i log(
√
iσ) also due

to Hadamard’s determinant inequality (i.e., see the expression of REF-LU’s L and

U matrices as subdeterminants of A given by Equation (5.5)). This indicates that

REF-LU requires significantly less storage than Adj(A).

5.4.2 Experiments and Results

The present subsection reports and analyzes the results of computational tests

designed to compare the REF factorization framework with the adapted Q-matrix

approach for basic solution validation. The two main experiments developed for this

purpose are in essence the analogs of the experiments described in Sections 5.3.2.1

and 5.3.2.2.

5.4.2.1 Run-Times

The first experiment consists of measuring the run-times required to construct the

core computational tools of the REF factorization framework and of the Q-matrix
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approach and the run-times of applying each tool to solve an SLE exactly. The

respective computational tools are REF-LU and the adjunct matrix of A derived

via the adapted Q-matrix approach (hereafter alternatively referred to as Q-Mat-

Adj). For this experiment, the dense input matrix dimension range is amplified to

n ∈ [100, 1000]; accordingly, the largest input matrices tested have exactly 1,000,000

non-zeros. Table 5.5 provides a summary of the run-times in seconds (s) taken to

construct REF-LU and Q-Mat-Adj for the input A matrices. It also reports the ratios

of the construction run-time taken by Q-Mat-Adj to the run-time taken by REF-LU

(label Q-Mat/REF). Additionally, Table 5.6 provides a summary of the run-times

taken to perform the REF-LU-based triangular solves or to perform matrix-vector

multiplications—i.e., the SLE solution subroutine for the Q-matrix approach—for 50

RHS vectors. For this metric, the table reports the ratios of the solution run-time

taken by the REF-LU to the run-time taken by Q-Mat-Adj (label REF/Q-Mat).

Notice that REF-LU achieved the best construction run-times once again, this

time outperforming Q-Matrix-Adj by close to a factor of nine. Moreover, it appears

this performance edge would continue its upward trend if higher values of n were

tested. Q-Matrix-Adj manages to perform twice as fast as the exact rational arith-

metic LU factorizations, as attested by a quick cross-reference of Tables 5.1 and 5.5

along their overlapping dimension values. More notably, Q-Mat-Adj beats REF-LU

in terms of solution run-times by upwards of a factor of 22, which also appears to rise

for higher values of n than those tested. This reversal in relative performance is to

be expected based on the respective exact SLE solution subroutines required by each

method. Expressly, the Q-Mat-Adj solution procedure simply computes an integer

matrix-vector multiplication, while REF-LU performs REF forward and backward

substitution, which includes carrying out exact integer divisions.
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Table 5.5: Construction run-times (s): Q-Mat-Adj, REF-LU

Q-Mat-Adj REF-LU Q-Mat/REF

n AVG SD AVG SD AVG SD

100 0.33 0.02 0.07 0.00 5.05 0.20

200 7.27 0.03 0.99 0.04 7.33 0.23

300 45.50 0.21 5.86 0.05 7.76 0.06

400 172.76 0.38 21.91 0.14 7.88 0.04

500 486.61 2.49 60.53 0.32 8.04 0.04

600 1143.49 3.95 139.75 1.12 8.18 0.06

700 2367.04 12.10 283.59 1.52 8.35 0.05

800 4468.37 16.56 525.30 2.50 8.51 0.04

900 7933.58 82.07 916.87 13.41 8.65 0.10

1000 13279.76 107.65 1508.10 22.52 8.81 0.12

Table 5.6: Solution run-times (s) of 50 RHS vectors: Q-Mat-Adj, REF-LU

Q-Mat-Adj REF-LU REF/Q-Mat

n AVG SD AVG SD AVG SD

100 0.03 0.00 0.09 0.00 2.71 0.04

200 0.18 0.00 0.86 0.03 4.72 0.19

300 0.49 0.01 3.86 0.04 7.84 0.24

400 1.13 0.01 10.83 0.04 9.56 0.11

500 2.08 0.01 24.43 0.20 11.76 0.10

600 3.34 0.04 47.61 0.37 14.24 0.17

700 5.06 0.02 83.23 0.41 16.46 0.09

800 7.34 0.11 135.67 0.65 18.49 0.27

900 10.46 0.27 211.73 2.44 20.25 0.46

1000 14.15 0.25 313.99 3.53 22.20 0.41

5.4.2.2 Storage

The second experiment examines the memory requirements of Q-Mat-Adj and

REF-LU. The construction storage requirements of REF-LU are summarized in Ta-

ble 5.7a using the average number of limbs, rounded to the nearest whole number, for

each specified matrix dimension n (the standard deviation magnitudes are omitted
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due to their relatively insignificant magnitude). The average construction require-

ments of Q-Mat-Adj are expressed as ratios of the corresponding REF-LU average

values (label Q-Mat/REF) rounded to four decimal places. As Section 5.4.1 ex-

plains, the respective exact SLE solution subroutines of both methods yield the scaled

solution vector x′ = Adj(A)b associated with IPGE. For this reason, the IPGE so-

lution size—i.e., the maximum bit-length of an individual entry in x′—displayed in

Table 5.7b encompasses both approaches; the table reports the average solution sizes

and their standard deviations in terms of bit-length and limbs. We remark that the

RHS vector b is fixed as b = e1 for the purpose of uniformity as in the analogous

computational tests described in Section 5.3.2.2.

The results of Table 5.7a confirm the hypothesis that the adjunct matrix of the

basis requires significantly more storage than the REF LU factorization. In particu-

lar, Q-Mat-Adj requires approximately three times the number of limbs as REF-LU,

and this value appears to rise gradually with n. We expect that REF-LU’s advantage

in this respect would be even higher for sparse matrices since LU factorizations can

be designed to minimize fill-in while the inverse matrix is generally dense [33]. No-

tice also that, based on the results reported in Section 5.3.2.2, Q-Mat-Adj actually

requires over 50% more storage than the exact rational arithmetic LU factorizations.

The results of additional computational tests in Section 5.4.2.3 look at how these

elevated memory requirements impact the relative computational performances of

both alternative approaches as the input matrix size increases.

Table 5.7b leads to several key observations. For starters, stating the solution

size in terms of bit-length establishes a connection with the computational tests

performed in [17]. In said study, which Section 5.1 describes in brief, solution size is

used as one of three attributes for grouping the tested instances. It is shown therein

that when the solution size is large—which is roughly characterized as exceeding
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Table 5.7: Storage metrics: Q-Mat-Adj, REF-LU, IPGE Solution

(a) Utilized Limbs

REF-LU Q-Mat/REF

n AVG AVG

100 46585 2.9610

200 370236 3.0251

300 1265339 3.1292

400 3037594 3.1077

500 6003518 3.1232

600 10482385 3.1593

700 16797440 3.1505

800 25280548 3.1645

900 36262807 3.1496

1000 50076523 3.1552

(b) IPGE Solution Size

Bit-length Limbs

n AVG SD AVG SD

100 837.27 2.89 13.93 0.25

200 1782.37 1.61 28.00 0.00

300 2764.03 2.62 44.00 0.00

400 3770.13 2.42 59.00 0.00

500 4795.43 2.71 75.03 0.18

600 5835.30 2.59 92.00 0.00

700 6887.43 2.24 108.00 0.00

800 7948.97 1.96 125.00 0.00

900 9020.70 2.45 141.07 0.25

1000 10100.07 2.82 158.00 0.00

1,000 bits—the average computational performance of the exact rational arithmetic

LU factorization approach is better than that of p-ading lifting and Wiedemann’s

method; it is reasonably close to the top average performance achieved by iterative

refinement (which is also the only approach that failed to solve five instances in the

alluded study). Since the exact rational arithmetic solution vector tends to require

nearly twice the IPGE solution size in limbs (see Table 5.4a), this implies the solution

of the SLE Ax = e1 for all our instances yields large rational solution sizes. To test

this relationship in terms of bit-length, we divided each IPGE solution vector x′

by det(A) to yield x, and then reduced each resulting rational to canonical form

and measured its bit-length. As expected, the average solution size of x was 2.00

for each value of n. Hence, based on the reported averages and relatively minor

standard deviation values, none of the solution vectors appears to be small in size.

It is important to mention that the basis determinant, which implicitly accompanies

114



the IPGE solution to obtain x from x′, is available as the last diagonal of REF-LU

but is not present in Q-Mat-Adj (it is obtained during its construction, but must be

stored separately).

5.4.2.3 Additional Computational Tests

This subsection describes the results an additional experiment designed to analyze

further the computational performance of Doolittle-LU, Q-Mat-Adj, and REF-LU.

Tables 5.8 and 5.9 summarize the results of the extended construction and solution

tests, respectively; the associated tests replicate the computational tests done in

Sections 5.3.2.1 and 5.4.2.1 with the distinction that the chosen dimension parame-

ters are powers of 2 rather than multiples of 50. Specifically, the tested dimensions

are n = 2, 4, . . . , 2048 for REF-LU and n = 2, 4, . . . , 1024 for Doolittle-LU and

Q-Mat-Adj; the n = 2048 setting—i.e., the input matrix with exactly 4,194,304

non-zeros—was not tested for Doolittle-LU and Q-Mat-Adj since the respective con-

struction processes (on which the solution subroutines also depend) of each instance

are projected to take approximately one week in each case. On a related note, due

to the longer run-times expected in this experiment, the corresponding repetitions

were performed on 15 separate machines with the specifications described in Section

5.2.1; each of the experiments described in previous subsections performed its full

set of repetitions on a single machine (although the individual machines were likely

distinct for each experiment). Owing to the distribution of experiment repetitions

over separate machines, the standard deviation values are larger than those previ-

ously observed, though they remain relatively small. As in previous experiments, the

solution algorithms were applied to 50 RHS vectors. However, in order to provide

estimates of the run-times required to solve one RHS vector at a time, Table 5.9

reports the 50-vector averages and standard deviations divided by 50; the values are
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rounded to four decimal places to account for the lower magnitudes associated with

smaller basis dimensions.

Table 5.8: Extended construction run-times (s): Doolittle-LU, Q-Mat-Adj, REF-LU

Doolittle-LU Q-Mat-Adj REF-LU Dool/REF Q-Mat/REF

n AVG SD AVG SD AVG SD AVG AVG

64 0.17 0.04 0.08 0.03 0.02 0.00 7.66 3.65

128 2.66 0.04 0.96 0.04 0.18 0.02 15.06 5.46

256 50.62 0.85 22.79 1.77 2.89 0.22 17.53 7.89

512 1036.81 3.56 554.05 23.42 67.78 3.87 15.30 8.17

1024 22812.61 184.43 14938.05 107.67 1697.77 158.55 13.44 8.80

2048 − − − − 44025.15 1493.82 − −

Figure 5.1: Log-log plot of Doolittle-LU, Q-Mat-Adj, and REF-LU extended con-
struction run-times
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Table 5.9: Extended solution run-times (s) per RHS vector (50-vector values divided
by 50): Doolittle-LU, Q-Mat-Adj, REF-LU

Doolittle-LU Q-Mat-Adj REF-LU Dool/REF Q-Mat/REF

n AVG/50 SD/50 AVG/50 SD/50 AVG/50 SD/50 AVG AVG

64 0.0227 0.0003 0.0003 0.0001 0.0007 0.0002 34.0590 0.4240

128 0.2200 0.0096 0.0012 0.0000 0.0041 0.0006 53.3990 0.3003

256 2.0656 0.0072 0.0070 0.0004 0.0424 0.0056 48.7419 0.1662

512 20.3742 0.0631 0.0437 0.0004 0.5366 0.0401 37.9715 0.0814

1024 217.9290 1.3254 0.3091 0.0080 6.8175 0.2021 31.9660 0.0453

2048 − − − − 86.1521 6.2144 − −

Figure 5.2: Log-log plot of Doolittle-LU, Q-Mat-Adj, and REF-LU extended solution
run-times per RHS vector
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The experiment results hint at the asymptotic relationships between the run-times

of Doolittle-LU, Q-Mat-Adj, and REF-LU. In order to bring these relationships to

light, Figures 5.1 and 5.2 provide log-log plots of the average construction run-times

reported in Tables 5.8 and 5.9, respectively, in seconds (s). To be precise, the plotted

values are the base-2 log average run-times (shifted by one second) corresponding
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to the base-2 log of each value of n. From this graph, it is possible to discern the

point at which slower-memory operations begin to have a substantial effect on each

corresponding construction algorithm. Indeed, after n = 28, the performance of each

of the three approaches is roughly characterized by a distinct power function (i.e.,

having a distinct but fixed exponent). However, the slowdown occurs sooner for

Doolittle-LU and then Q-Mat-Adj since they require between two and three times

the memory of REF-LU as Sections 5.3.2.2 and 5.4.2.2 explain. Figure 5.1 also illus-

trates the gradually increasing ratio of the REF-LU construction run-times relative

to those of Q-Mat-Adj. A similar but reversed relationship between the solution

run-times of both approaches can be observed in Figure 5.2; REF-LU performs sig-

nificantly better than Doolittle-LU, which achieves the worst performance in this

respect. Most interestingly, based on the gradually declining performance of Q-Mat-

Adj seen in Figure 5.1, it appears that Doolittle-LU would eventually prevail over

Q-Mat-Adj in terms of construction run-times for large n. This is likely due to the

costs associated with the growing memory requirements of Q-Mat-Adj outweighing

the costs associated with Doolittle-LU’s rational arithmetic operations in the long

run.

5.5 Conclusions

This section demonstrates that the REF factorization framework outperforms

the exact rational arithmetic LU factorization approach, which is the fail-safe tool

utilized by both state-of-the-art exact mathematical programming solvers QSopt ex

and SoPlex to solve SLEs exactly. In particular, the featured experiments demon-

strate that the REF factorization algorithms are significantly faster than their exact

rational arithmetic counterparts. Indeed, the factors of improvement are as high

as 22 and 55 for the factorization constructions and triangular solves, respectively.
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Moreover, the REF LU factorization uses virtually half the memory required by the

exact rational arithmetic Doolittle and Crout factorizations. This finding confirms

the insights arising from the theoretical derivations and analysis conducted earlier in

the work connecting the three exact factorizations. This section also develops and

tests an adaptation of the Q-matrix revised simple method that can be efficiently ap-

plied toward basic solution validation. Related experiments reveal that the REF LU

factorization can be constructed close to nine times faster than the Q-matrix-based

adjunct matrix for the larger tested instances. However, these experiments also show

that the Q-matrix SLE solution can be more than 22 times faster than REF forward

and backward substitution algorithms over the same larger instances. Nevertheless,

based on the various considerations to be discussed in the next paragraph, the REF

factorization framework remains the preferred choice among all the tested exact SLE

solution methods.

The REF factorization framework is preferable to the Q-matrix approach in the

context basic solution validation owing to four key considerations. First, construc-

tion run-times are significantly greater in magnitude than solution run-times for

each method; in the featured experiments this magnitude difference widens as n in-

creases, which is explained by the fact that the construction and solution subroutines

of both approaches require O(n3) and O(n2) operations, respectively. Second, the

average run-times displayed in Table 5.6 actually correspond to the solution of 50

RHS vectors at each repetition. Validating a basic solution or even determining the

entering column in the simplex algorithm usually involves solving for only one RHS

vector using the same basis and, thus, the aforementioned solution run-times are

a significant overrepresentation of the efforts that would be associated with solving

the featured instances. The results reported in Table 5.9 provide closer estimates

of the solution run-times involved in each approach. Third, the experiment results
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appear to indicate that, based on its growing memory requirements, the Q-matrix

adjunct matrix would eventually take longer to construct than the exact rational

arithmetic LU factorizations for larger matrix dimensions. Fourth, we project that a

similar comparison on sparse instances would improve the performance of the REF

factorization framework considerably more than that of the Q-matrix approach. The

reason is that, generally speaking, LU factorization algorithms can be designed to

preserve and exploit the sparsity of an SLE, in contrast to the construction and de-

ployment of the adjunct matrix, which is a scaled version of the usually dense inverse

matrix. Hence, the tested dense matrices are those in which the REF LU factoriza-

tion cannot profit from this significant advantage. In future work, the hypothesized

accelerated performance of the REF factorization framework for sparse instances will

be explicitly tested.

As a final remark, we predict that the computational performance of every method

herein tested would be proportionally enhanced by the use of the EGlib library [29]

for fast memory allocation and by other technical advancements to our codes. Hence,

it is highly likely that the reported performance of each tested unlimited-precision

method could be improved fairly evenly in more sophisticated implementations. For

this reason the computational performance realized by the REF factorization frame-

work can be regarded as a starting point for prospective finely tuned implementa-

tions.
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6. ROUNDOFF-ERROR-FREE BASIS UPDATES OF LU FACTORIZATIONS

FOR EFFICIENT VALIDATION OF OPTIMALITY CERTIFICATES

6.1 Introduction

Ever since Bartels and Golub published their landmark paper in [10], LU fac-

torization algorithms have been continually improved with regard to their imple-

mentation within linear programming (LP). In particular, Bartels and Golub [10]

demonstrated that the application of LU factorization for solving SLEs within the

simplex method was efficient and more numerically stable than the then-popular

product form of the inverse approach. Subsequent papers thenceforth enhanced the

two highlighted attributes of the Bartels-Golub method through the development and

recurrent improvement of LU and Cholesky factorization update algorithms—e.g.,

[69, 32, 68, 36, 79, 67].

Owing to these and several other noteworthy advances, LU and Cholesky fac-

torizations have become a common feature of most solvers; yet they, along with

their associated algorithms, are still susceptible to nontrivial roundoff errors [49]. As

Section 1 explains, these errors may lead mathematical programming solvers to pro-

vide invalid output. The possibility that these incorrect solver conclusions are being

used to make critical real-world decisions is disconcerting. Consequently, this under-

scores the importance of continuing to develop computationally viable factorization

algorithms that incur even less roundoff error or that eliminate it altogether.

In order to address this key issue, Section 4 (i.e., [27]) develops the REF LU

and Cholesky factorizations as well as REF forward and backward substitution algo-

rithms. The REF computational tools stem from IPGE, and they share the property

that their individual coefficients’ bit-lengths (i.e., required number of storage bits)
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are bounded polynomially. And, unlike the exact rational arithmetic LU factor-

izations used by state-of-the-art exact LP solvers—e.g., QSopt ex [5] and SoPlex

[88, 89]—as detailed in Section 3, the REF factorization algorithms do not require

any gcd calculations to achieve this polynomial bound. Hence, their prospective

implementation in exact LP would have the benefit of saving the high costs asso-

ciated with these operations. However, before the extent of this conjecture can be

adequately verified, it is necessary to develop appropriate efficient algorithms for

updating the REF factorizations. Thus, this section extends the applicability of

the REF factorization framework by developing algorithms that efficiently update

the REF LU and Cholesky factorizations when various types of modifications are

performed on the underlying SLE. This research direction is necessary because, as

Section 6.3.1 explains, applying the traditional insert-delete-reduce approach to up-

date the REF factorizations is inefficient in terms of operand bit-length growth and

increased computational effort. The algorithms herein developed differ significantly

from their traditional counterparts in that they follow a push-and-swap update ap-

proach, which preserves the special structure of the REF factorizations.

This section makes the following contributions. First, the current work concludes

that applying the traditional delete-insert-reduce approach to update the REF fac-

torizations can be costlier than constructing the corresponding REF factorizations

from scratch. Second, it develops the push-and-swap approach for updating the REF

factorizations efficiently and without accruing roundoff errors. The featured update

operations are column addition, deletion, and replacement; in addition, this work

also proves that the complementary row updates can be performed via the column

updates. Third, it proves that these operations achieve the computational savings

traditionally expected of factorization updates and that they do not lead to fur-

ther growth in the bit-length of their matrix entries. Fourth, it introduces a set of
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REF operations that augment the versatility of IPGE and the REF factorization

framework.

This section is organized as follows. Section 6.2 provides an overview of the REF

factorization framework for solving SLEs through a stylized matrix structure termed

a frame matrix. Section 6.3 summarizes the conventional and proposed factorization

update approaches in relation to the REF LU factorization: Section 6.3.1 explains

the inadequacy of applying the traditional delete-insert-reduce approach, and Section

6.3.2 outlines the proposed frame matrix-based push-and-swap update methodology.

Section 6.4 broadens the application of the REF framework: Section 6.4.1 defines and

proves the correctness of auxiliary IPGE-type operations, and 6.4.2 combines them

to form a set of elementary updates that serve as building blocks of the featured

update algorithms. Section 6.5 develops and proves the correctness and complexity

of the REF column addition, deletion, and replacement updates for the REF LU fac-

torization. Section 6.6 provides a step-by-step depiction of the REF update process

via a numerical example that helps reinforce many of the concepts herein introduced;

as such, this section will periodically refer to specific parts of it to supplement the

discussion. Section 6.7 proves that the corresponding row updates can be performed

via the featured column updates, and it discusses special considerations for updating

the Cholesky factorization. Lastly, Section 6.8 concludes the section and discusses

future related research efforts.

6.2 The REF Factorization Framework via Frame Matrices

The REF factorization framework is composed of the REF LU and Cholesky

factorizations and of the REF forward and backward substitution algorithms, all

of which are founded on the application of IPGE. A traditional definition of IPGE

is given in Section 2.3.5.1 and a generalized definition is introduced in Section 6.4.
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In order to expand the REF factorization framework, descriptions of the REF LU

factorization and the REF substitution algorithms via a stylized matrix structure

termed a frame matrix are presented next. To aid with the present discussion, recall

that when applying IPGE, ρk denotes the kth pivot element selected from the (k–1)th

iterative matrix, Ak–1, to perform the algorithm’s kth iteration; the row and column

coordinates of ρk are represented by the ordered pair (rk, ck). For the same purpose,

it is expedient to restate two previous assumptions from Section 2, the second of

which is to be removed later in this section.

Assumption 1. Let Ax = b be a nonsingular SLE with coefficient matrix A ∈ Zn×n,

right-hand side vector b ∈ Zn, and variable vector x ∈ Qn.

Assumption 2 (temporary). Fix ρk = ak–1k,k 6= 0 (i.e., rk = ck = k), for k ≥ 1.

(Starting in Section 6.4, this assumption will be removed.)

We remark that, based on Assumption 2, it is not necessary to perform any row

or column permutations between iterations of a Gaussian elimination algorithm;

equivalently, each corresponding permutation matrix is the identity matrix.

The SLE Ax = b can be solved without accruing roundoff errors utilizing the REF

factorizations and the REF substitution algorithms developed in Section 4. Without

loss of generality, the ongoing narrative centers on the REF LU factorization (REF-

LU) since its L and D matrices are equal to their counterparts in the REF Cholesky

factorization and since U = LT when A is symmetric positive definite.

Let i, j ∈ Z such that 1 ≤ i, j ≤ n. Recall that the nonzero entries of each matrix
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factor in REF-LU equate with individual IPGE entries as follows:

li,j = aj–1i,j , for i ≥ j;

di,i = ρi–1ρi = ai–2i–1,i–1a
i–1
i,i , for all i; and

ui,j = ai–1i,j , for i ≤ j.

Notice that D’s entries can be generated on the fly since ai–2i–1,i–1a
i–1
i,i = li–1,i–1li,i =

ui–1,i–1ui,i, where a–10,0 := ρ0 = 1. Moreover, the overlap between the diagonal elements

of L and U suggests that these two matrices can be merged into a single n × n

matrix. We denote this single matrix as the frame matrix of A, or F , for short. In

particular, with the diagonal included in both cases, the lower triangular section of

F corresponds to L and its upper triangular section to U . The following is a stylized

representation of this matrix:

F :=

a01,1 a01,2 . . . a01,k a01,k+1 . . . a01,n κ = 0

a02,1 a12,2 . . . a12,k a12,k+1 . . . a12,n κ = 1

...
...

. . .
...

...
...

...

a0k,1 a1k,2 . . . ak–1k,k ak–1k,k+1 . . . ak–1k,n κ = k–1

a0k+1,1 a1k+1,2 . . . ak–1k+1,k akk+1,k+1 . . . akk+1,n κ = k

...
...

...
...

. . .
...

...

a0n,1 a1n,2 . . . ak–1n,k akn,k+1 . . . an–1n,n κ = n–1

(6.1)

In this representation, F ’s elements are divided into adjoining frames or groups of

IPGE entries obtained in the same iteration; the index of each frame is indicated

by the right-hand κ-value that aligns with it. Notice that the corner (i.e., diagonal)

element of frame k equals the (k+1)th pivot element used by IPGE, for 1 ≤ k ≤ n–1.

Equation (6.1) also indicates that it is only necessary to apply a reduced version of
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IPGE to obtain REF-LU (or REF-Ch), namely one in which the pivoting operations

at iteration k are performed only on the submatrix induced by rows i > k and

columns j > k of Ak−1. Hence, frame k can be alternatively characterized as the

merging of the pivot row and the pivot column utilized in iteration k+1 of the reduced

version of IPGE.

The main reason for introducing this notation for REF-LU is to facilitate the

subsequent description of the REF factorization update algorithms. For the same

reason, the following paragraphs will describe the REF forward and backward sub-

stitution algorithms in terms of F even though Section 4 does so in terms of matrices

L and U .

Define a triangular array Ψ = ψi,r, for 0 ≤ r < i ≤ n, and recall that b is a

n× 1 integral vector. Then, the REF forward substitution algorithm is given by the

following recursion:

ψi,r =

 bi if r = 0

(fr,rψi,r–1−fi,rψr,r–1)
fr–1,r–1

if 0 < r < i
for i = 1 . . . n (6.2)

where f0,0 = l0,0 := 1. The output of this algorithm is the (REF) n × 1 integral

vector y, with elements yi = ψi,i–1, which solves the equation LD–1y = b; Lemma 1

in Section 4.3 shows yi equals IPGE entry ai–1i,n+1, where n+1 is the index of the col-

umn on which REF forward substitution is performed (i.e., corresponding to b). In

order to solve Ax = b without roundoff errors, however, REF forward and backward

substitution must be applied to the scaled SLE Ax′ = b′, where x′ = det(A)x and

b′ = det(A)b. This scaling guarantees x′ is integral during backward substitution—

which cannot be guaranteed for x—based on Cramer’s Rule. Nevertheless, the corre-

sponding vector y′ can be equivalently obtained without roundoff error by evaluating
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Equation (6.2) and then multiplying the output vector y by det(A) = fn,n. Hence,

having calculated y′ = fn,ny, the REF backward substitution algorithm is given by:

x′i =
1

fi,i

(
y′i −

n∑
j=i+1

fi,jx
′
j

)
for i = n . . . 1. (6.3)

At the conclusion of this process, the REF solution to the original SLE is thus given

by:

xi =
x′i

det(A)
=

x′i
fn,n

for i = 1 . . . n. (6.4)

Therefore, as Expressions (6.2)-(6.4) demonstrate, the REF factorization framework

can be equivalently characterized via frame matrix F .

6.3 Traditional and Proposed Methods for Updating REF-LU

Generally speaking, it is a bad idea to apply the traditional delete-insert-reduce

approach to update REF-LU. This approach is adapted to the REF factorizations by

substituting Gaussian pivots—i.e., the typical row reduction operations—with IPGE

pivots. However, the resulting algorithms prove inadequate toward updating REF-

LU mainly because they do not consider the existing recursive relationships, or links,

between the adjacent columns of its L matrix and the adjacent rows of its U matrix

or, equivalently, between the adjacent frames of F depicted in Equation (6.1). In

particular, frame k encodes pivotal information about frame k–1 that guarantees the

exactness of the divisions performed in obtaining the entries of frame k+1 (and the

entries of the reduced IPGE iterative matrix Ak+1). This dependence is evident from

the IPGE formula given by Equation (2.7) in Section 2 (i.e., its traditional definition)

or by Equation 6.7 in Section 6.4 (i.e., its generalized definition). Moreover, through

the iterative calculation of REF-LU, the information about frame k–1 propagates to
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all subsequent frames. Hence, deleting a column of REF-LU and inserting another

column in its place significantly disrupts the links between these frames. Section

6.3.1 details the consequences of the frame link disruptions engendered through the

traditional insert-delete-reduce approach. Then, Section 6.3.2 outlines the proposed

push-and-swap update methodology, which circumvents these disruptions. It ac-

complishes this by gradually pushing the exiting column out of the basis, updating

frame links accordingly, and swapping the exiting and entering columns when doing

so affects no frame links.

6.3.1 Inadequacy of the Traditional Delete-Insert-Reduce Update Approach

This subsection focuses on the delete-insert-reduce update approach with respect

to column replacement due to the fundamental role this update plays in the appli-

cation of the LU factorization framework and linear programming as a whole (the

column/row addition and deletion adaptations are simpler and are thereby omitted

for brevity). In particular, given the LU factorization of basis matrix A, the column

replacement update provides a shortcut procedure for obtaining the LU factoriza-

tion of the adjacent basis matrix Ā, which differs from A in only one of its columns

and possibly in the order of its rows/columns; this process requires O(n2) opera-

tions or factor-O(n)-less operations than the O(n3) LU factorization process. In this

subsection, we define the adjacent basis matrices formally as A := a1, . . . ,an and

Ā := P
(
A+ (an+1 − ak)e

T
k

)
Q; where ak and an+1 denote the exiting and entering

basic columns, respectively; where ek is the n-length kth elementary vector—i.e.,

(an+1 − ak)e
T
k yields an outer product; and, where P and Q are permutation ma-

trices determined at runtime by the update. We denote the corresponding REF

factorizations as LD–1U and L̄D̄–1Ū .

Traditional update algorithms follow a delete-insert-reduce update approach. In
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Figure 6.1: Initial steps of the Bartels-Golub update

(a) Step 0: Delete ak and insert y in its place

y1 a01,k+1 . . . a01,n

U 1...k–1
1...k–1

...
...

. . .
...

yk–1 ak–2k–1,k+1 . . . ak–2k–1,n

yk ak–1k,k+1 . . . ak–1k,n

yk+1 akk+1,k+1 . . . akk+1,n

...
. . .

...

ym an–1n,n



(b) Step 1: Shift y to column position n

a01,k+1 . . . a01,n y1

U 1...k–1
1...k–1

...
. . .

...
...

ak–2k–1,k+1 . . . ak–2k–1,n yk–1

ak–1k,k+1 . . . ak–1k,n yk

akk+1,k+1 . . . akk+1,n yk+1

. . .
...

...

an–1n,n yn



particular, they begin by performing forward substitution on an+1 to yield the vector

y, deleting column U(:,k) (i.e., corresponding to the exiting column ak), and inserting

y in place of the removed column (see Step 0 below). This replacement causes U

to lose its upper triangular structure, and existing update algorithms differ in the

operations they perform to reduce this matrix back to upper triangular form (i.e.,

to yield Ū). In general, the updates reestablish upper triangularity by performing

additional Gaussian pivots and by permuting certain rows and columns; the permu-

tations are chosen to minimize the number of computations and/or preserve matrix

sparsity. We refer the reader to [26] for a review of popular LU update algorithms.

The inadequacy of employing the delete-insert-reduce update approach on REF-

LU is illustrated by modifying the Bartels-Golub algorithm [10] accordingly and

examining the consequences. Figure 6.1 depicts Step 0 (described in the preceding

paragraph) and Step 1 of this algorithm applied to U (i.e., the upper triangular

matrix in REF-LU of basis A).

In Figures 6.1a and 6.1b, blank spaces represent zeros of the matrix and U1...k–1
1...k–1

is the square submatrix of U that retains its upper triangular structure after the
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column replacement procedure (Step 0). Step 1 involves moving y to column position

n and shifting columns U(:,k+1) to U(:,n) one position left; the outcome is the upper

Hessenberg matrix Ũ , which has the advantage of being nearly upper triangular.

Reducing Ũ to upper triangular form requires further pivoting operations on its

kth to nth columns. However, performing IPGE pivoting operations to eliminate the

sub-diagonal elements of these columns has the potential to be counterintuitively

inefficient. This is because, in accordance with the tailored version of IPGE for

sparse matrices developed by Lee and Saunders [53], the (n–k+1)× (n–k+1) upper

triangular matrix obtained by eliminating a single nonzero sub-diagonal element via

the IPGE pivot (and skipping its trailing zeros) for each column of Ũk...n
k...n is exactly

the iterative matrix obtained by performing the reduced version of IPGE on Ũk...n
k...n .

This means that the determinant of Ũk...n
k...n is inevitably computed in the process and,

since the magnitude of an individual entry of Ũ is bounded by eωmax , the maximum

bit-length required by this update is bounded as follows:

ddet
(
Ũk...n
k...n

)
e ≤ d(n− k + 1) log(eωmax

√
n− k + 1)e (6.5)

= d(n− k + 1)(ωmax + log
√
n− k + 1)e. (6.6)

The above inequality uses Hadamard’s bound [43] similar to the derivation of IPGE

Property 3. Based on the above expression, therefore, when index k of the exiting

column is small, the added complexity created by operand growth alone may be

larger than the factor-O(n) operations saved by the Bartels-Golub algorithm (i.e.,

the added complexity factor is calculated as the cost of multiplying two operands with

bit-lengths equal to the above upper bound). The operand growth could be smaller

when Ũ is sparse and a specialized update algorithm such as that of Suhl and Suhl

[79] is implemented, but not enough to offer a clear advantage computationally over

refactorization in many cases.
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The delete-insert-reduce update approach encounters two additional significant

complications: (1) the output upper triangular matrix, denoted as Ū ′, does not equal

Ū (i.e., the upper triangular matrix obtained by applying the REF LU factorization

process directly on basis Ā); (2) the process of updating L to L̄ is not as straightfor-

ward as that of traditional algorithms. The first complication can be inferred from

the above operand bit-length analysis, and it is explicitly exhibited via a numerical

example in Section 6.6.4. Indeed, Ū ′ can be thought of as an “inflated” version of

Ū and, consequently, it must itself be factored to remove the excess bit-length of

its entries. To explain the second complication, assume Ū can actually be obtained

from Ū ′ and that L̄′ is the lower triangular matrix induced by the requisite row op-

erations for accomplishing this (i.e., L̄′Ū = Ũ). Typically, updating L to L̄ involves

simply multiplying L by L̄′. However, based on the full mathematical expression for

REF-LU, the simple variants must work with the right-hand side of the following

equation:

L̄D̄–1 = LD–1L̄′.

Hence, the update of L entails first multiplying D–1 by L̄′; then the non-integral

(and non-commutative) product D–1L̄′ must be refactored so that D̄−1 emerges to

the right and the appropriate lower triangular matrix needed to transform L into

L̄ emerges to the left. The chief difficulty in this protracted process is that these

calculations must be done without roundoff error, thereby requiring the use of ex-

act rational arithmetic. This means the advantage of using the REF framework is

nullified through the process—i.e., numerators and denominators must be explicitly

stored and gcd operations recurrently performed to avoid further growth in their bit-

lengths during the matrix multiplication and refactoring process. In short, obtaining

L̄ in this fashion is not trivial, and it requires considerably more computational effort
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than typically expected.

The above analysis attests that the delete-insert-reduce update approach applied

to REF-LU does not take into account the special structure of the frame matrix

F or, equivalently, of REF-LU’s L and U matrices. As a result, its implementation

leads to inadequate algorithms. In short, this approach induces a REF but inefficient

procedure that recursively updates the rows in the upper triangular part of F (i.e.,

U), but it does not provide a REF or efficient procedure for updating the columns

in the lower triangular part of F (i.e., L).

6.3.2 Outline of the REF Push-and-Swap Update Approach

Piecing together the individual relationships between each adjacent pair of frames

of F discussed at the beginning of Section 6.3, it is evident that a modification to

frame k–1 (i.e., where column ak is located) must be complemented by iterative

changes to frames k to n–1 (i.e., updates of the affected frame links). In the remain-

der of this section we develop a REF update methodology that explicitly maintains

and updates the links between adjacent frames of F . In each major step of the

proposed iterative process, an adjacent pair of frames of the working frame matrix

is updated and the recursive dependencies of subsequent frames are maintained and

appropriately modified. Thus, the process provides the advantages that the lower

and upper triangular parts of F are updated simultaneously and that the final frame

matrix corresponds exactly to the REF LU factorization that would be obtained

by factoring the target basis matrix Ā directly. Moreover, unlike the aforemen-

tioned delete-insert-reduce approach, the individual matrix entries generated in the

proposed push-and-swap approach require the same maximum bit-length as REF

factorization—in other words, they do not cause bit-length growth.

As Section 6.3.1 explains, traditional column replacement algorithms begin by
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deleting column U(:,k) and instantly inserting the forward-substituted form of the

entering basic column an+1, that is, the vector y, in its place. However, the outright

removal and replacement of a column in the upper triangular part of F disrupts

the links between the column’s corresponding and preceding frames in the lower

triangular part of F (i.e., L) and, more importantly, its links with subsequent frames.

Hence, in order to preserve the special connections between all adjacent frames of F ,

the proposed methodology instead pushes the exiting column gradually to the right

until it is safe to swap it with the updated form of the entering basic column.

Figure 6.2 depicts the major steps of the push-and-swap update approach with

respect to column replacement. The corner element of frame k–1 of F , namely fk,k,

is by construction the kth pivot element selected by IPGE to solve Ax = b; in Figure

6.2a, this element is set as fk,k = ak–1k,k according to Assumption 2. Based on this

correspondence, Figure 6.2b suggests that an individual push step effectively replaces

a given pivot with an adjacent element along the same frame—e.g., in Step 1, ak–1k,k+1

replaces ak–1k,k as the corner element of frame k–1. Thus, each push step consists of

permuting a frame matrix column, replacing the respective pivot, and relaying the

effects of the exchange to the entries in its current and subsequent frames. Once

the exiting column is pushed to the rightmost (i.e., nth) basic column position, it is

safe to swap it with the modified entering (i.e., nonbasic) column: no frame links are

affected at this point and both columns share the same frame structure—i.e., their

row entries originate from the same pivots, as Section 6.5 later explains.

The outline of the proposed push-and-swap methodology leads to the following

successive implications: (1) performing a series of push steps leads to a specific

sequence of pivot choices in IPGE different from the standard pivot sequence fixed by

Assumption 2; (2) reflecting the application of these distinct pivot choices on A and

of each push step calls for a more general definition of IPGE and the frame matrix
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Figure 6.2: Visual outline of the push-and-swap update approach

(a) Step 0: Perform REF forward substitution on an+1 to obtain y and append this vector to the
right of F (placement demarcated by dotted line); select the index of the exiting column (shaded).

1 . . . k–1 k k+1 . . . n n+1

a01,1 . . . a01,k–1 a01,k a01,k+1 . . . a01,n y1 κ = 0
...

. . .
...

...
...

...
...

...

a0k–1,1 . . . ak–2k–1,k–1 ak–2k–1,k ak–2k–1,k+1 . . . ak–2k–1,n yk–1 κ = k–2

a0k,1 . . . ak–2k,k–1 ak–1k,k ak–1k,k+1 . . . ak–1k,n yk κ = k–1

a0k+1,1 . . . ak–2k+1,k–1 ak–1k+1,k akk+1,k+1 . . . akk+1,n yk+1 κ = k
...

...
...

...
. . .

...
...

...

a0n,1 . . . ak–2n,k–1 ak–1n,k akn,k+1 . . . an–1n,n yn κ = n–1

(b) Push Step i; for 1≤ i ≤ n–k (i =1 shown): Push the exiting column one position to the
right. The elements in frames k+i–2 to n–1 labeled with † are obtained via special REF operations
and shortcuts defined in this section. The remaining elements of the matrix are not altered.

1 . . . k–1 k+1 k . . . n n+1

a01,1 . . . a01,k–1 a01,k+1 a01,k . . . a01,n y1 κ = 0
...

. . .
...

...
...

...
...

...

a0k–1,1 . . . ak–2k–1,k–1 ak–2k–1,k+1 ak–2k–1,k . . . ak–2k–1,n yk–1 κ = k–2

a0k,1 . . . ak–2k,k–1 ak–1k,k+1 ak–1k,k . . . ak–1k,n yk κ = k–1

a0k+1,1 . . . ak–2k+1,k–1 † † . . . † † κ = k
...

...
...

...
. . .

...
...

...

a0n,1 . . . ak–2n,k–1 † † . . . † † κ = n–1

(c) Swap Step: Swap the exiting column—in the rightmost basic position after completing Step
(b)—with the modified entering column—in the nonbasic position. The resulting matrix (shown),
minus the shaded column, corresponds to the frame matrix of Ā times a column permutation matrix
determined at runtime. The symbols †, ††, and ‡ are used to emphasize that the final form of frames
k to n–1 (excluding simple column permutations of their entries) is obtained successively with each
push step; the column to the right of the frame matrix indexes the frames.

1 . . . k–1 k+1 k+2 . . . n+1 k

a01,1 . . . a01,k–1 a01,k+1 a01,k+2 . . . y1 a01,k κ = 0
...

. . .
...

...
...

...
...

...

a0k–1,1 . . . ak–2k–1,k–1 ak–2k–1,k+1 ak–2k–1,k+2 . . . yk–1 ak–2k–1,k κ = k–2

a0k,1 . . . ak–2k,k–1 ak–1k,k+1 ak–1k,k+2 . . . yk ak–1k,k κ = k–1

a0k+1,1 . . . ak–2k+1,k–1 † †† . . . †† †† κ = k
...

...
...

...
. . .

...
...

...

a0n,1 . . . ak–2n,k–1 † †† . . . ‡ ‡ κ = n–1
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F (i.e., since it was defined only for the standard pivot sequence); (3) efficiently

obtaining the exact form of the entries labeled with the symbol † in Figure 6.2b entails

developing new (auxiliary) REF operations; (4) replacing a column of REF-LU via

the proposed framework depends on first developing other (elementary) updates.

The preceding implications provide a road map for the organization of Section 6.4.

Then Section 6.5 utilizes this groundwork to develop the featured REF factorization

updates.

6.4 Auxiliary and Elementary REF Update Operations

This subsection introduces and proves the correctness of two sets of REF opera-

tions. The operations comprising the first set are auxiliary to those in the second set,

while those comprising the second set are elementary factorization update operations

that function as building blocks for the factorization algorithms developed in Section

6.5.

In essence, the elementary update operations featured in the second part of this

subsection provide shortcuts for transitioning between two similar runs of IPGE on

A, which are required to reflect the output of each push step. An individual run is

characterized by a specific n-length sequence of pivots chosen in succession to factor

A; the sequence is represented by the corresponding coordinates (r1, c1), . . . , (rn, cn)

of its elements. Thus, the sequence uniquely determines the specific entries of the

REF L and U matrices and, by extension, of the corresponding frame matrix. To

enable the representation of multiple runs of IPGE on A, Assumption 2 is henceforth

removed. Furthermore, for the same purpose, the ensuing paragraphs broaden the

definition of IPGE, its general connection to specific subdeterminants of A (i.e.,

IPGE Property 2), and the definition of a frame matrix.

Definition 10. A feasible pivot sequence is represented via an array %[·] of ordered
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pairs with individual elements %[1] := (r1, c1), %[2] := (r2, c2), . . . , %[n] := (rn, cn) such

that each row coordinate rk and each column coordinate ck is unique and such that

the kth pivot, ρk, referenced by array element %[k] = (rk, ck), is nonzero. By default,

the singleton %[0] := 0 is appended to every feasible sequence of pivot coordinates

(recall ρ0 = a–10,0 = 1).

Definition 11. Let a
%[k]
i,j , or equivalently a

(rk,ck)
i,j , denote the kth-iteration (i, j)-entry

that IPGE obtains by using pivot sequence %, where 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

In particular, this notation indicates the element with coordinates %[k] = (rk, ck) in

the corresponding (k–1)th IPGE iterative matrix, A%[k–1], is selected as the kth pivot

element, ρk. As a convention, a
%[0]
i,j := a0i,j = ai,j.

Connecting each IPGE entry with the coordinates of the pivot from which it

was obtained—in other words, with its originating pivot—leads to a generalized

description of the IPGE algorithm (the traditional version is given by Equation

(2.7)):

a
%[k]
i,j =

 a
%[k–1]
i,j if i = rk(
a
%[k–1]
%[k] a

%[k–1]
i,j − a%[k–1]rk,j

a
%[k–1]
i,ck

)
/a

%[k–2]
%[k–1] otherwise

for k = 1 . . . n (6.7)

where a
%[k–1]
%[k] denotes the succinct representation of the kth pivot, a

%[k–1]
rk,ck , via a natural

extension of this notation. A benefit of the generalized definition of IPGE given by

Equation (6.7) is that the candidate pivot rows and columns remaining at step k

of IPGE are easily deduced by eliminating from contention the row and column

coordinates stored in %[1], . . . , %[k–1] successively. Consequently, it is unnecessary to

keep track of iterative permutation matrices. The relationship between aki,j and the
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subdeterminants of A (see Equation (2.11)) is generalized to a
%[k]
i,j as follows:

a
%[k]
i,j =


(−1)κ(i)+k det

(
(A)r1...rk{c1...ck}\cκ(i),j

)
if i ∈ {r1, . . . , rk}

det
(
(A)r1...rk,ic1...ck,j

)
if i ∈ {rk+1, . . . , rn}

(6.8)

where (A)r1...rk,ic1...ck,j
is the submatrix induced by rows r1 to rk and i and columns c1 to

ck and j of A; and where κ(i) is the index such that rκ = i (i.e., the IPGE iteration

index in which row i was used as a pivot row).

Section 6.2 explained that the frames of F are exactly the pivot rows and the

pivot columns used by the (reduced version) IPGE run on A associated with the

standard pivot sequence given by Assumption 2. Extending this connection, the

next definition generalizes F to the frame matrix obtained via the IPGE run on A

associated with %, denoted as F %.

Definition 12. The individual entries of frame matrix F % : (A, %)→ Zn×n, obtained

by factoring A according to feasible pivot sequence %, are given by:

f%i,j := a%[k]ri,cj
(6.9)

where k = min(i, j) − 1 and 1 ≤ i, j ≤ n. Thus, combining Equations (6.8) and

(6.9) gives:

f%i,j = det
(
(A)

r1...rk,ri
c1...ck,cj

)
(6.10)

F % has equivalent properties as F , except that it corresponds to the REF LU

factorization of A obtained using feasible pivot sequence % instead of the standard

sequence induced by Assumption 2. Accordingly, it fully characterizes the REF fac-
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torization SLE-solution framework (see Expressions (6.2), (6.3), and (6.4)) associated

with the ordered basis induced by rows r1, . . . , rn and columns c1, . . . , cn of A.

6.4.1 Auxiliary REF Operations

This subsection develops two new REF operations: backtracking and row-wise

switch of originating pivot (RwSOP). In essence, these operations provide shortcuts

for backtracking the iteration counter of an IPGE entry—i.e., for obtaining the value

the entry had in the previous iteration—and for replacing its originating pivot with

an element from the same pivot row, respectively. We direct the reader to Figures

6.7b and 6.7c in Section 6.6 to see an application of each auxiliary operation on a

numerical example.

Theorem 6.4.1 (Backtracking). For k > 0, the (k–1)-iteration entry a
%[k–1]
i,j can be

obtained without roundoff error from its corresponding k-iterate, a
%[k]
i,j , as follows:

a
%[k–1]
i,j =

 a
%[k]
i,j if i = rk(
a
%[k–2]
%[k–1]a

%[k]
i,j + a

%[k–1]
rk,j

a
%[k–1]
i,ck

)
/a

%[k–1]
%[k] otherwise

(6.11)

Proof. When i = rk, the result holds trivially from Equation (6.7). When i 6= rk,

multiplying Equation (6.7) by a
%[k–2]
%[k–1] gives:

a
%[k–2]
%[k–1]a

%[k]
i,j = a

%[k–1]
%[k] a

%[k–1]
i,j − a%[k–1]rk,j

a
%[k–1]
i,ck

,

and substituting this expression into the right-hand side of Equation (6.11) gives:

(
a
%[k–1]
%[k] a

%[k–1]
i,j − a%[k–1]rk,j

a
%[k–1]
i,ck

)
+ a

%[k–1]
rk,j

a
%[k–1]
i,ck

a
%[k–1]
%[k]

=
a
%[k–1]
%[k] a

%[k–1]
i,j

a
%[k–1]
%[k]

= a
%[k–1]
i,j .

Notice that the numerator in the left-hand side of the second equation is an exact
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multiple of its denominator and, therefore, the formula is REF. �

Continuing with the featured terminology, let % and %′ represent two runs of

IPGE on A with identical pivot selections in iterations 1 to k–1 but with differing

selections in iteration k. Formally, %[h] = %′[h] for 1 ≤ h < k (i.e., r′h = rh and

c′h = ch), but %[k] 6= %′[k] (i.e., r′h 6= rh and/or c′h 6= ch). Hence, at the conclusion of

k iterations, entries a
%[k]
i,j and a

%′[k]
i,j were obtained using different originating pivots ρk

and (ρ′)k (selected from identical (k–1)-iteration IPGE iterative matrices A%[k–1] and

A%
′[k–1]). We note that, when performing only the IPGE run associated with %, if

A%[k–1] is overwritten with A%[k] during iteration k, it is still possible to obtain a
%′[k]
i,j .

This can be done by backtracking the entries a
%[k]

r′k,c
′
k
, a

%[k]
i,j , a

%[k]

r′k,j
, and a

%[k]

i,c′k
once and the

entry a
%[k]
%[k–1] = a

%[k]
%′[k–1] twice, and then solving the right-hand side of Equation (6.7)

with respect to a
%′[k]
i,j . As the following theorem demonstrates, however, when (ρ′)k

is chosen from the same row as ρk, a shortcut can be applied that circumvents this

process. Afterward, the subsequent paragraph explains the shortcut’s relevance to

F %.

Theorem 6.4.2 (Row-wise Switch of Origination Pivot—RwSOP). Let %′ be a fea-

sible pivot sequence with identical pivot selections as % in iterations 1 to k–1 but with

a kth pivot selection from the same row but from a different column than ρk. Then,

for i 6= r′k = rk, IPGE entry a
%′[k]
i,j can be equivalently obtained without roundoff

error via the formula:

a
%′[k]
i,j =

a
%[k–1]
%′[k] a

%[k]
i,j − a

%[k–1]

r′k,j
a
%[k]

i,c′k

a
%[k–1]
%[k]

(6.12)

Proof. Substituting elements a
%[k]
i,j and a

%[k]

i,c′k
with their corresponding definition given
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by Equation (6.7), the right-hand side of the above equation becomes:

a
%[k–1]
%′[k]

(
a
%[k–1]
%[k] a

%[k–1]
i,j − a%[k–1]rk,j

a
%[k–1]
i,ck

)
− a%[k–1]r′k,j

(
a
%[k–1]
%[k] a

%[k–1]

i,c′k
− a%[k–1]rk,c

′
k
a
%[k–1]
i,ck

)
a
%[k–1]
%[k] a

%[k–2]
%[k–1]

(6.13)

=

a
%[k–1]
%′[k]

(
a
%[k–1]
%[k] a

%[k–1]
i,j − a%[k–1]r′k,j

a
%[k–1]
i,ck

)
− a%[k–1]r′k,j

(
a
%[k–1]
%[k] a

%[k–1]

i,c′k
− a%[k–1]%′[k] a

%[k–1]
i,ck

)
a
%[k–1]
%[k] a

%[k–2]
%[k–1]

(6.14)

=

Z
Z
ZZ

a
%[k–1]
%[k]

(
a
%[k–1]
%′[k] a

%[k–1]
i,j − a%[k–1]r′k,j

a
%[k–1]

i,c′k

)
Z
Z
ZZ

a
%[k–1]
%[k] a

%[k–2]
%[k–1]

= a
%′[k]
i,j (6.15)

where Equation (6.14) substitutes rk with r′k (since r′k = rk) and then a
%[k–1]

r′k,c
′
k

(not

shown) with a
%[k–1]
%′[k] by the equivalence of both notations (the substituted entries

are underlined); where the first equation in Expression (6.15) cancels the second

and fourth numerator term of Equation (6.14) and regroups terms; and where the

second equation cancels the common factor a
%[k–1]
%[k] and applies the definition of a

%′[k]
i,j .

The above derivation involved two substitutions, an exact cancelation, and an exact

division; thus, the formula is REF. �

Before proceeding, it is important to point out that the ensuing elementary up-

date operations will apply an auxiliary REF operation to an entire frame or to a large

section of it. As Equation (6.11) indicates and the partial frame matrix in Figure

6.3 illustrates, frames k–1 and k–2 contain all the entries needed to backtrack all

of frame k. Moreover, based on Equation (6.12), frame k–1 contains all the entries

needed to perform a row-wise switch of originating pivot (RwSOP) on the horizontal

section of frame k—i.e., entries f%k+1,k+1 to f%k+1,n. (The visual depiction omits frames

0 to k–3 and uses large bullets to emphasize that the omitted entries are inactive

during these operations.)
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Figure 6.3: Matrix entries needed to backtrack a frame and to RwSOP the horizontal
section of a frame

a
%[k–2]
%[k–1] • • • . . . • κ = k–2

• a
%[k–1]
%[k] a

%[k–1]
rk,ck+1 a

%[k−1]
rk,ck+2

. . . a
%[k–1]
rk,cn

κ = k–1

• a
%[k–1]
rk+1,ck a

%[k]
%[k+1] a

%[k]
rk+1,ck+2 . . . a

%[k]
rk+1,cn κ = k

• a
%[k–1]
rk+2,ck a

%[k]
rk+2,ck+1 • . . . • κ = k+1

...
...

...
...

. . .
...

...

• a
%[k–1]
rn,ck

a
%[k]
rn,ck+1 • . . . • κ = n–1

a
%[·]
i,j := Entries needed to backtrack

frame k

a
%[·]
i,j := Entries needed to RwSOP the

horizontal section of frame k

6.4.2 Elementary Update Operations

The elementary update operations combine auxiliary and traditional IPGE op-

erations, as well as other shortcuts, to perform the individual push steps involved in

the featured REF factorization update process. For the remainder of this section, let

A represent the initial nonsingular matrix and Ā its updated counterpart. Similarly,

let F % and F̄ % denote the frame matrices of A and Ā, respectively, obtained via a

pivot sequence % that is feasible for A. The discussion of each update specifies the

conditions for % to be feasible for Ā as well as the structure of A and Ā. The objec-

tive of each ensuing update discussion, including those of Section 6.5, is to describe

efficient procedures for obtaining F̄ % given F %.

In the ensuing elementary updates, Ā is obtained from A via a row and/or column

permutation. Hence, it is possible to apply a pivot sequence %′ to A that results in the
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same pivot choices as % applied to Ā by permuting the row and/or column coordinates

of % according to the permutations needed to obtain Ā from A. Moreover, since Ā’s

rows and columns are arranged in F̄ % according to the order its pivots are selected,

F̄ % is equivalent to F %′ , which represents the IPGE run on A associated with %′.

6.4.2.1 Adjacent Pivot Column Permutation (i.e., Column Push).

Let A(:,ck) denote column vector ck of A, and let eck denote the n-length (ck)th

elementary vector. Then, the equation,

Ā := A+ (A(:,ck+1) − A(:,ck))e
T
ck

+ (A(:,ck) − A(:,ck+1))e
T
ck+1

(6.16)

defines the matrix obtained by interchanging columns ck and ck+1 of A. Define %′ as

the pivot sequence that swaps only column indices k and k+1 of % with respect to

A; that is, %′ differs from % only in that c′k = ck+1 and c′k+1 = ck. This subsection

describes how to obtain F %′ (i.e., F̄ %) given F % efficiently.

The derivation of the Adjacent Pivot Column Permutation Update algorithm

(APCPU) is organized as follows. First, Lemma 3 establishes that all that is required

for %′ to be feasible for A is f%k,k+1 6= 0. This result is not trivial because it guarantees

that the (k+2)th to nth pivots referenced by %′—which have the same row and

column coordinates as the (k+2)th to nth pivots referenced by %—are nonzero even

though their values recursively change when ck+1 is chosen instead of ck as the kth-

iteration pivot column. Second, Theorem 6.4.3 provides shortcuts for APCPU by

demonstrating that most of the updated entries in the transition from F % to F %′

can be obtained via simple sign changes. Third, Figure 6.4 offers a step-by-step

description and accompanying visual representation of APCPU; we direct the reader

to Figure 6.7 in Section 6.6 to see the application of this update on a numerical

example. Fourth, Theorem 6.4.4 proves that the algorithm is correct and REF.
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Fifth, Corollary 5 derives its number of operations.

Lemma 3. Let %′ be the pivot sequence obtained from swapping column indices k

and k+1 of a pivot sequence % that is feasible for A. Then, %′ is feasible for A if and

only if f%k,k+1 6= 0.

Proof. The uniqueness of each row and column coordinate of %′ is proved from com-

bining the fact % is a feasible pivot sequence with the observations
{

n
∪
k=1

r′k

}
=
{

n
∪
k=1

rk

}
and

{
n
∪
k=1

c′k

}
=
{

n
∪
k=1

ck

}
(i.e., the row and column coordinate sets each have the same

n elements). To determine if all the elements referenced by %′ are nonzero, first no-

tice that, for 0 ≤ h ≤ k–1, (ρ′)h = ρh 6= 0 because % is a feasible pivot sequence.

However, (ρ′)k is nonzero if and only if a
%[k–1]
rk,ck+1 = f%k,k+1 6= 0. Assuming (ρ′)k 6= 0, for

h = k+1 . . . n, the following series of equalities can be established regarding the new

hth pivot, a
%′[h–1]
%′[h] :

a
%′[h–1]
%′[h] = det

(
(A)

r′1...r
′
h

c′1...c
′
h

)
= det

(
(A)r1...rhc1...ck–1,ck+1,ck,ck+2...ch

)
(6.17)

= − det
(

(A)r1...rhc1...ck–1,ck,ck+1,ck+2...ch

)
= −a%[h–1]%[h] (6.18)

where the first equality of Expression (6.17) results from the subdeterminant iden-

tities given by Equation (6.8) and the second from the definition of %′; and where

the first equality of Expression (6.18) applies the fact that switching two columns

of a matrix changes only the sign of its determinant, and the second applies the

subdeterminant identities given by Equation (6.8). Since a
%[h–1]
%[h] 6= 0, the preceding

expressions imply (ρ′)h 6= 0 for k+1 ≤ h ≤ n and, therefore, %′ is a feasible pivot

sequence for A if and only if f%k,k+1 6= 0. �

Theorem 6.4.3 (APCPU Shortcuts). For i, j ≥ k+2 (i.e., frames k+1 to n–1 of
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F %′),

f%
′

i,j = −f%i,j; (6.19)

in addition, for the (k+1)th-column entries with row index i ≥ k+1 (i.e., the vertical

segment of frame k),

f%
′

i,k+1 = −f%i,k+1. (6.20)

Proof. Let k = min(i, j)− 1. Combining the definition of %′ and the subdeterminant

identity of f%
′

i,j given by Equation (6.10) gives that, for i, j ≥ k+2,

f%
′

i,j = det
(
(A)

r1...rk,ri
c1...ck–1,ck+1,ck,ck+2....ck,cj

)
= − det

(
(A)

r1...rk,ri
c1...ck,cj

)
= −f%i,j;

where the second equation applies the fact that swapping two columns of a matrix

changes only the sign of its determinant, and the third equation applies the subde-

terminant identity of f%i,j. Similarly, for the (k+1)-column entries with row index

i ≥ k+1,

f%
′

i,k+1 = det
(

(A)r1...rk,ric1...ck–1,ck+1,ck

)
= − det

(
(A)r1...rk,ric1...ck+1

)
= −f%i,k+1. �

Except for a column permutation, the entries in frames 0 to k–2 are inactive

during the APCPU algorithm. For the purpose of clarity, therefore, the algorithm

description given in Figure 6.4 omits these frames. Moreover, within each subfigure,

blue boxes surround either the individual entries that change in the corresponding

APCPU step or the frame index (now stated without using κ) when the full frame

changes.
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Figure 6.4: The Adjacent Pivot Column Permutation Update algorithm

(a) Input: F %, k. Note: the update F %′
is

feasible if and only if f%k,k+1 = a
%[k–1]
rk,ck+1 6= 0

a
%[k–1]
%[k] a

%[k–1]
rk,ck+1 a

%[k−1]
rk,ck+2 . . . a

%[k–1]
rk,cn k–1

a
%[k–1]
rk+1,ck a

%[k]
%[k+1] a

%[k]
rk+1,ck+2 . . . a

%[k]
rk+1,cn k

a
%[k–1]
rk+2,ck a

%[k]
rk+2,ck+1 a

%[k+1]
%[k+2] . . . a

%[k+1]
rk+2,cn k+1

...
...

...
. . .

...
...

a
%[k–1]
rn,ck a

%[k]
rn,ck+1 a

%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(b) Step 1: Backtrack the entries in the vertical
portion of frame k and place these entries in the
corresponding rows of frame k–1.

a
%[k–1]
%[k] a

%[k–1]
rk,ck+1 a

%[k−1]
rk,ck+2 . . . a

%[k–1]
rk,cn k–1

a
%[k–1]
rk+1,ck+1

a
%[k]
%[k+1] a

%[k]
rk+1,ck+2 . . . a

%[k]
rk+1,cn k

a
%[k–1]
rk+2,ck+1

a
%[k]
rk+2,ck+1 a

%[k+1]
%[k+2] . . . a

%[k+1]
rk+2,cn k+1

...
...

...
. . .

...
...

a
%[k–1]
rn,ck+1

a
%[k]
rn,ck+1 a

%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(c) Step 2: Perform row-wise switches of orig-
inating pivot on the entries in the strictly hori-

zontal segment of frame k using a
%[k–1]
rk,ck+1 as the

new pivot.

a
%[k–1]
%[k] a

%[k–1]
rk,ck+1 a

%[k−1]
rk,ck+2 . . . a

%[k–1]
rk,cn k–1

a
%[k–1]
rk+1,ck+1 a

%[k]
%[k+1] a

(rk,ck+1)
rk+1,ck+2

. . . a
(rk,ck+1)
rk+1,cn

k

a
%[k–1]
rk+2,ck+1 a

%[k]
rk+2,ck+1 a

%[k+1]
%[k+2] . . . a

%[k+1]
rk+2,cn k+1

...
...

...
. . .

...
...

a
%[k–1]
rn,ck+1 a

%[k]
rn,ck+1 a

%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(d) Step 3: Permute columns k and k+1 of
frames 0 to k–1 (effect on frames 0 to k–2 not
shown).

a
%[k–1]
rk,ck+1 a

%[k–1]
rk,ck

a
%[k−1]
rk,ck+2 . . . a

%[k–1]
rk,cn k–1

a
%[k–1]
rk+1,ck+1 a

%[k]
%[k+1] a

(rk,ck+1)
rk+1,ck+2 . . . a

(rk,ck+1)
rk+1,cn k

a
%[k–1]
rk+2,ck+1 a

%[k]
rk+2,ck+1 a

%[k+1]
%[k+2] . . . a

%[k+1]
rk+2,cn k+1

...
...

...
. . .

...
...

a
%[k–1]
rn,ck+1 a

%[k]
rn,ck+1 a

%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(e) Step 4: Flip the signs of the entries spec-
ified by Theorem 6.4.3.

a
%[k–1]
rk,ck+1 a

%[k–1]
rk,ck a

%[k−1]
rk,ck+2 . . . a

%[k–1]
rk,cn k–1

a
%[k–1]
rk+1,ck+1 –a

%[k]
%[k+1] a

(rk,ck+1)
rk+1,ck+2 . . . a

(rk,ck+1)
rk+1,cn k

a
%[k–1]
rk+2,ck+1 –a

%[k]
rk+2,ck+1

–a
%[k+1]
%[k+2] . . . –a

%[k+1]
rk+2,cn k+1

... ...
...

. . .
... ...

a
%[k–1]
rn,ck+1 –a

%[k]
rn,ck+1

–a
%[k+1]
rn,ck+2 . . . –a

%[n–1]
%[n] n–1

(f) Output: F %′
.

a
%′[k–1]
%′[k] a

%′[k–1]
r′k,c

′
k+1

a
%′[k−1]
r′k,c

′
k+2

. . . a
%′[k–1]
r′k,c

′
n

k–1

a
%′[k–1]
r′k+1,c

′
k
a
%′[k]
%′[k+1] a

%′[k]
r′k+1,c

′
k+2

. . . a
%′[k]
r′k+1,c

′
n

k

a
%′[k–1]
r′k+2,c

′
k
a
%′[k]
r′k+2,c

′
k+1

a
%′[k+1]
%′[k+2] . . . a

%′[k+1]

r′k+2,c
′
n
k+1

...
...

...
. . .

...
...

a
%′[k–1]
r′n,c

′
k

a
%′[k]
r′n,c

′
k+1

a
%′[k+1]

r′n,c
′
k+2

. . . a
%′[n–1]
%′[n] n–1
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Theorem 6.4.4. The APCPU algorithm is correct and REF.

Proof. Let i ≥ k+1. By Equation (6.11), f%i,k+1 = a
%[k]
ri,ck+1 is backtracked via the

formula:

a%[k–1]ri,ck+1
=
a
%[k–2]
%[k–1]a

%[k]
ri,ck+1 + a

%[k–1]
rk,ck+1a

%[k–1]
ri,ck

a
%[k–1]
%[k]

=
f%k–1,k–1f

%
i,k+1 + f%k,k+1f

%
k+1,k

f%k,k
, (6.21)

which is REF by Theorem 6.4.1. By definition of %′, a
%[k–1]
ri,ck+1 is equivalent to a

%′[k–1]
ri,c′k

=

f%
′

i,k. More generally, F %′ ’s entries in frames 0 to k–2 match those of F %, except that

column indices ck and ck+1 are reversed, since %′[h] = %[h] for h 6= k, k+1; the same

holds true for those along the horizontal segment of frame k–1 since they are all

connected to the originating pivot with coordinates %′[k–1] = %[k–1]. Hence, placing

the backtracked entries from the vertical part of frame k into column k (i.e., Step 1)

and permuting columns k and k+1 for frames 0 to k–1 (i.e., Step 3) make the 0 to

k–1 modified frames equal to frames 0 to k–1 of F %′ .

Now, let j ≥ k+2. Applying the RwSOP operation, which is REF by Theorem

6.4.2, the entry f%k+1,j = a
%[k]
rk+1,cj changes its originating pivot to (ρ′)k = f%k,k+1 =

a
%[k–1]

rk,c
′
k+1

via the formula:

a%
′[k]
rk+1,cj

=
a
%[k–1]
%′[k] a

%[k]
rk+1,cj − a

%[k–1]

r′k,cj
a
%[k]

rk+1,c
′
k

a
%[k–1]
%[k]

=
f%k,k+1f

%
k+1,j − f

%
k,jf

%
k+1,k+1

f%k,k
.

By definition of F %′ , the updated entry equals a
%′[k]
rk+1,cj = f%

′

k+1,j. Flipping the signs of

the entries in frames k+1 to n–1 and in the vertical segment of frame k according to

Theorem 6.4.3, therefore, makes the k to n–1 modified frames equal to frames k to

n–1 of F %′ . Thus, APCPU is correct and REF since its constituent operations are

REF.�
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Prior to deriving the number of operations APCPU requires, we specify an im-

portant assumption regarding the implementation of sign flips on full frames of a

frame matrix.

Assumption 3. When implementing any of the REF factorization update algo-

rithms, flipping the signs of all the entries in a given frame is not done explicitly.

Instead, using an n-length array, s, storing possible values ±1, the sign changes of

each corresponding frame are stored as follows: when the signs of all the entries of

frame k are flipped, s[k] is set to –1 if s[k] = 1, or vice versa, for 0 ≤ k ≤ n–1.

Then, to represent its sign at any particular juncture, frame entry f%i,j actually has

the extended form s[k]f%i,j, for 1 ≤ i, j ≤ n, where k = min(i, j) − 1. Based on this

implementation, therefore, we claim that flipping the signs of O(n) frames requires

O(n) operations. Moreover, we assume that when any of the REF factorization up-

dates featured in Section 6.5 concludes, the extended expression of every entry of the

updated frame matrix is evaluated in order to store each product as a single inte-

ger; this process requires O(n2) operations. For the purpose of clarity, however, the

descriptions of each algorithm omit these implementation details.

Corollary 5. APCPU requires O(n) operations.

Proof. A backtracking/RwSOP operation consists of two multiplications, one divi-

sion, and one addition. Hence, backtracking the vertical part of frame k and ap-

plying RwSOP to its horizontal part requires O(n) operations. Similarly, permuting

columns k and k+1 and flipping the signs of the entries in frames k to n–1 requires

O(n) operations. �
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6.4.2.2 Adjacent Pivot Diagonal Permutation (i.e., Column and Row Push).

Let A(rk:) denote row vector rk of A. Then, the equation,

Ā := A+ (A(:,ck+1) − A(:,ck))e
T
ck

+ (A(:,ck) − A(:,ck+1))e
T
ck+1

+erk(A(rk+1,:) − A(rk,:)) + erk+1
(A(rk,:) − A(rk+1,:))

defines the matrix obtained by interchanging columns ck and ck+1 and rows rk and

rk+1 of A. Define %′ as the pivot sequence that swaps row and column indices k and

k+1 of % with respect to A; that is %′ differs from % only in that %′[k] = %[k+1] and

%′[k+1] = %[k]. This subsection describes how to obtain F %′ (i.e., F̄ %) given F %. The

derivation of the Adjacent Pivot Diagonal Permutation Update algorithm (APDPU)

follows a similar blueprint as that of the APCPU algorithm and, thus, we strive for

brevity whenever possible.

Lemma 4. Let %′ be the pivot sequence obtained from swapping row and column

indices k and k+1 of a pivot sequence % that is feasible for A. Then, %′ is feasible

for A if and only if f%k–1,k–1f
%
k+1,k+1 6= –f%k,k+1f

%
k+1,k.

Proof. Since
{

n
∪
k=1

r′k

}
=
{

n
∪
k=1

rk

}
and

{
n
∪
k=1

c′k

}
=
{

n
∪
k=1

ck

}
, the row and column

coordinates in %′ are unique. From the feasibility of % and the definition of %′,

(ρ′)h = ρh 6= 0 for 0 ≤ h ≤ k–1. For showing the feasibility of pivots k to n–1 in %′,

recall f%k+1,k+1 = a
%[k]
rk+1,ck+1 by definition of F % and, by Theorem 6.4.1, the backtracked

version of this entry is given by,

a%[k–1]rk+1,ck+1
=
a
%[k–2]
%[k–1]a

%[k]
rk+1,ck+1 + a

%[k–1]
rk,ck+1a

%[k–1]
rk+1,ck

a
%[k–1]
%[k]

=
f%k–1,k–1f

%
k+1,k+1 + f%k,k+1f

%
k+1,k

f%k,k
.

This implies a
%[k–1]
rk+1,ck+1 is nonzero if and only if f%k–1,k–1f

%
k+1,k+1 6= –f%k,k+1f

%
k+1,k since
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the first numerator term is a product of two pivot elements, which are nonzero by

definition. Consequently, since a
%[k–1]
rk+1,ck+1 = a

%′[k–1]
r′k,c

′
k

by definition of %′, meeting this

condition guarantees (ρ′)k is nonzero. Moreover, assuming (ρ′)k 6= 0, for k < h < n,

from Equation (6.8) and the definition of %′,

a
%′[h–1]
%′[h] = det

(
(A)r1...rk–1,rk+1,rk,rk+2...rh

c1...ck–1,ck+1,ck,ck+2...ch

)
= det

(
(A)r1...rhc1...ch

)
= a

%[h–1]
%[h]

owing to the fact that swapping two rows and two columns of a matrix does not

change its determinant. Since a
%[h–1]
h,h 6= 0, the preceding expression implies (ρ′)h 6= 0

for k+1 ≤ h ≤ n and, therefore, %′ is a feasible pivot sequence. �

Theorem 6.4.5. For i, j ≥ k+2 (i.e., frames k+1 to n of F %′), f%
′

i,j = f%i,j.

Proof. Let k = min(i, j) − 1. For i, j ≥ k+2, the subdeterminant identity of f%i,j

gives,

f%
′

i,j = det
(
(A)

r1...rk–1,rk+1,rk,rk+2....rk,ri
c1...ck–1,ck+1,ck,ck+2....ck,cj

)
= det

(
(A)

r1...rk,ri
c1...ck,cj

)
= f%i,j;

where the second equation applies the fact that swapping two columns and two rows

of a matrix does not change its determinant, and the third equation applies the

subdeterminant identity of f%i,j. �

The Lemma 4 requirement that f%k–1,k–1f
%
k+1,k+1 6= –f%k,k+1f

%
k+1,k holds automati-

cally whenever f%k,k+1 or f%k+1,k are zero since f%k–1,k–1 and f%k+1,k+1 are nonzero (i.e.,

the latter two frame entries are pivots). Hence, this requirement is always fulfilled

whenever ACPCU cannot be applied. Figure 6.5 provides a graphic description of

APDPU; similar to Figure 6.4, it omits frames 0 to k–2 and surrounds the modified

entries with a blue box.
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Figure 6.5: The Adjacent Pivot Diagonal Permutation Update algorithm

(a) Input: F %, k. Note: the update F %′

is feasible if and only if f%k–1,k–1f
%
k+1,k+1 6=

–f%k,k+1f
%
k+1,k.

a
%[k–1]
%[k] a

%[k–1]
rk,ck+1 a

%[k−1]
rk,ck+2 . . . a

%[k–1]
rk,cn k–1

a
%[k–1]
rk+1,ck a

%[k]
%[k+1] a

%[k]
rk+1,ck+2 . . . a

%[k]
rk+1,cn k

a
%[k–1]
rk+2,cka

%[k]
rk+2,ck+1 a

%[k+1]
%[k+2] . . . a

%[k+1]
rk+2,cnk+1

...
...

...
. . .

...
...

a
%[k–1]
rn,ck a

%[k]
rn,ck+1 a

%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(b) Step 1: Backtrack frame k. Notice that
frame k–1 expands, frame k vanishes, and the
backtracked entries occupy the inner portion of
frame k–1.

a
%[k–1]
%[k] a

%[k–1]
rk,ck+1 a

%[k−1]
rk,ck+2 . . . a

%[k–1]
rk,cn

k–1

a
%[k–1]
rk+1,ck a

%[k–1]
%[k+1] a

%[k–1]
rk+1,ck+2

. . . a
%[k–1]
rk+1,cn

a
%[k–1]
rk+2,ck a

%[k–1]
rk+2,ck+1

a
%[k+1]
%[k+2] . . . a

%[k+1]
rk+2,cnk+1

... ...
...

. . .
...

...

a
%[k–1]
rn,ck a

%[k–1]
rn,ck+1

a
%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(c) Step 2: Permute columns k and k+1 (effect
on frames 0 to k–2 not shown).

a
%[k–1]
rk,ck+1 a

%[k–1]
rk,ck

a
%[k–1]
rk,ck+2 . . . a

%[k–1]
rk,cn

k–1

a
%[k–1]
rk+1,ck+1 a

%[k–1]
rk+1,ck a

%[k−1]
rk+1,ck+2 . . .a

%[k–1]
rk+1,cn

a
%[k–1]
rk+2,ck+1 a

%[k–1]
rk+2,ck a

%[k+1]
%[k+2] . . .a

%[k+1]
rk+2,cnk+1

...
...

...
. . .

...
...

a
%[k–1]
rn,ck+1 a

%[k–1]
rn,ck

a
%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(d) Step 2: Permute rows k and k+1 (effect on
frames 0 to k–2 not shown).

a
%[k–1]
%[k+1] a

%[k–1]
rk+1,ck a

%[k–1]
rk+1,ck+2

. . . a
%[k–1]
rk+1,cn

k–1

a
%[k–1]
rk,ck+1

a
%[k–1]
%[k] a

%[k−1]
rk,ck+2

. . . a
%[k–1]
rk,cn

a
%[k–1]
rk+2,ck+1a

%[k–1]
rk+2,ck a

%[k+1]
%[k+2] . . . a

%[k+1]
rk+2,cnk+1

...
...

...
. . .

...
...

a
%[k–1]
rn,ck+1 a

%[k–1]
rn,ck a

%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(e) Step 3: Perform an IPGE iteration on
the inner portion of expanded frame k–1 us-

ing a
%[k–1]
%[k+1] = a

%′[k–1]
%′[k] as the new pivot. This

reestablishes frame k.

a
%′[k–1]
%′[k] a

%[k–1]
rk+1,ck a

%[k–1]
rk+1,ck+2 . . . a

%[k–1]
rk+1,cn k–1

a
%[k–1]
rk,ck+1 a

%[k–1]
%[k] a

%′[k]
rk,ck+2

. . . a
%′[k]
r′k,c

′
n

k

a
%[k–1]
rk+2,ck+1 a

%′[k]
rk+2,ck

a
%[k+1]
%[k+2] . . . a

%[k+1]
rk+2,cnk+1

... ...
...

. . .
...

...

a
%[k–1]
rn,ck+1 a

%′[k]
rn,ck

a
%[k+1]
rn,ck+2 . . . a

%[n–1]
%[n] n–1

(f) Output: F %′
.

a
%′[k–1]
%′[k] a

%′[k–1]
r′k,c

′
k+1

a
%′[k−1]
r′k,c

′
k+2

. . . a
%′[k–1]
r′k,c

′
n

k–1

a
%′[k–1]
r′k+1,c

′
k

a
%′[k]
%′[k+1] a

%′[k]
r′k+1,c

′
k+2
. . .a

%′[k]
r′k+1,c

′
n

k

a
%′[k–1]
r′k+2,c

′
k
a
%′[k]
r′k+2,c

′
k+1

a
%′[k+1]
%′[k+2] . . .a

%′[k+1]

r′k+2,c
′
n
k+1

...
...

...
. . .

...
...

a
%′[k–1]
r′n,c

′
k

a
%′[k]
r′n,c

′
k+1

a
%′[k+1]

r′n,c
′
k+2

. . . a
%′[n–1]
%′[n] n–1
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Theorem 6.4.6. Algorithm APDPU is correct and REF.

Proof. Equation (6.21) provides the REF formula for backtracking the entries along

the vertical segment of frame k; the REF formula for the entries along its horizonal

segment is obtained by swapping the subscript row and column indices in the same

equation. After permuting columns k and k+1 and rows k and k+1, the entries

along frames 0 to k–2 and the outer portion of expanded frame k–1 of the modified

matrix match frames 0 to k–1 of F %′ , respectively. The IPGE formula (i.e., Equation

(6.7)) can be applied to obtain the kth frame entries of F %′ without roundoff error

using the modified entries since,

a
%′[k]
r′i,c

′
k+1

=
a
%′[k–1]
%′[k] a

%′[k–1]
r′i,c

′
k+1
− a%

′[k–1]
r′k,c

′
k+1
a
%′[k–1]
r′i,c

′
k

a
%′[k–2]
%′[k–1]

=
a
%[k–1]
rk+1,ck+1a

%[k–1]
ri,ck − a

%[k–1]
rk+1,cka

%[k–1]
ri,ck+1

a
%[k–2]
%[k–1]

, and

a
%′[k]
r′k+1,c

′
i

=
a
%′[k–1]
%′[k] a

%′[k–1]
r′k+1,c

′
i
− a%

′[k–1]
r′k,c

′
i
a
%′[k–1]
r′k+1,c

′
k

a
%′[k–2]
%′[k–1]

=
a
%[k–1]
rk+1,ck+1a

%[k–1]
rk,ci − a

%[k–1]
rk+1,cia

%[k–1]
rk,ck+1

a
%[k–2]
%[k–1]

;

where i ≥ k+2. Thus, the above formula updates the inner-frame entries of modified

frame k–1 to match frame k of F %′ using the outer-frame entries of modified frame

k–1 (and the corner element of frame k–2). Since frames k+1 to n–1 of F % and F %′

are identical by Theorem 6.4.5, no further changes are necessary to yield F %′ . Hence,

APDPU is correct and REF since its constituent operations are REF. �

Corollary 6. APDPU requires O(n) operations.

Proof. A backtracking/IPGE operation consists of two multiplications, one division,

and one addition. Hence, backtracking frame k and performing 2(n–k)–3 IPGE

operations requires O(n) operations. Similarly, permuting rows/columns k and k+1

requires O(n) operations. �
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6.5 REF Factorization Updates

The featured REF factorization updates are column addition, deletion, and re-

placement. They are presented in this order since column replacement is essen-

tially composed of a call to the column addition update followed by a call to the

column deletion update. To aid comprehension, the ensuing presentation may be

cross-referenced with the corresponding illustrations and discussion of the numerical

example showcased in Section 6.6.

Given an existing frame matrix, the REF factorization update algorithms ob-

tain the frame matrix of a respectively modified SLE in O(n2) operations without

accruing roundoff errors. This represents a savings of factor-O(n) operations com-

pared with the O(n3) operations needed to construct a frame matrix from scratch.

As Section 6.3 explained, these algorithms—except for column addition—differ sig-

nificantly from known factorization update algorithms. In particular they follow

the push-and-swap update approach rather than the traditional insert-delete-reduce

update approach. The push-and-swap approach explicitly maintains and modifies

the links (i.e., recursive relationships) between adjacent frames of F % and avoids

additional bit-length growth.

6.5.1 Column Addition

Let an+1 ∈ Zn denote the vector being added to the end of nonsingular A ∈ Zn×n

to form the extended integral matrix Ā := [A an+1]. Note that Ā has full row-

rank based on its simple construction and that the feasibility of % on A extends

to Ā because % induces the same basis (and pivot choices) when applied to either

matrix. The following theorem introduces and proves the Column Addition Update

Algorithm (CAU), which obtains F̄ % given F %.

Theorem 6.5.1. The frame matrix F̄ % can be obtained from F % by applying REF
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forward substitution (i.e., Equation (6.2)) on an+1 and adding the resulting vector

to the end of F %.

Proof. Since the upper-trapezoidal part of F̄ % corresponds to the U matrix of REF-

LU of Ā organized according to %, the individual elements of column n+1 of F̄ %

equate to IPGE entries as follows:

f̄%i,n+1 = a
%[i–1]
ri,n+1 (6.22)

Notice the right-hand side is exactly the IPGE entry obtained by applying REF

forward substitution with F % as the frame matrix and an+1 as the input right-hand

side vector (see Section 6.2). Therefore, letting y be the vector output by REF

forward substitution on an+1, this implies F̄ % can be expressed as F̄ % = [F % y]. �

Corollary 7. CAU requires O(n2) operations.

6.5.2 Column Deletion

Since the column replacement update begins by adding a column to a square

frame matrix and ends by deleting one of its columns, say column k, it will be

expedient to describe the column deletion update given A ∈ Zn×n+1. Thus, letting P

be a n×n row-permutation determined at runtime (see Section 6.3.1), the equation,

Ā := P (A\{A(:,k)}) (6.23)

defines the square integral matrix obtained by deleting A(:,k) from A and then per-

muting its rows according to P . Recalling that ci denotes the ith column coordinate

in %, when k /∈
n–1
∪
i=1
ci, the removal of A(:,k) does not affect the originating pivots of the

remaining columns of F % since no elements from column k are actually used as pivots
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in the reduced version of IPGE (i.e., the version used to construct F %, as explained in

Section 6.2). Hence, in this case, F̄ % is simply given by F %\{F %
(:,n)} or F %\{F %

(:,n+1)}

and P = In in Equation (6.23). On the other hand, when k ∈
n–1
∪
i=1
ci, the removal of

A(:,k) modifies the originating pivots and, by extension, the individual values of the

kth-iteration matrix of IPGE as well as those of the (k+1)th to nth-iteration ma-

trices. Nevertheless, it is not necessary to calculate each of these affected iterative

matrices—which, in fact, would first require backtracking the entries of frames k to

n–1 of F̄ % multiple times. Instead, the Column Deletion Update algorithm (CDU)

iteratively and efficiently updates the frame links between the affected adjacent pairs

of frames in F % to obtain F̄ %.

CDU is divided into three parts: (1) iteratively pushing column A(:,k) to column

position n in F % (i.e., the rightmost basic column); (2) swapping columns n and n+1

(i.e., the nonbasic column) of the modified frame matrix; and (3) verifying this frame

matrix, minus the exiting column, corresponds to a nonsingular coefficient matrix.

Steps (c) and (d) in Figure 6.6 offer a visual representation of the first two parts

of CDU performed within the column replacement algorithm. It is also possible for

CDU to determine if Ā is nonsingular a priori via an additional procedure involving

REF backward substitution. However, its description is relocated to the development

of the column replacement update, since said procedure is especially suited to that

context.

The first part of CDU consists of n–k push steps performed via calls to APCPU or

APDPU, which are the elementary factorization updates developed in Section 6.4.2.

Given a frame matrix, the requirements for performing at least one of the algorithms

is always met since, when the APCPU requirement fails (e.g., f%k,k+1 = 0 in the first

push step), the APDPU requirement is automatically satisfied, as Theorem 6.5.2

explains. APCPU is preferred over APDPU, however, because it requires roughly
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half the number of operations as APDPU; if the latter algorithm must be applied,

the corresponding row permutation is recorded in the cumulative row-permutation

matrix P . After n–k consecutive push steps, the second part of CDU swaps the nth

and (n+1)th columns of the updated frame matrix; this takes the exiting column

out of the basis and brings the updated entering column into the basis. The third

part of CDU entails simply checking that the updated (n, n)-entry of the working

frame matrix is nonzero in order to ensure Ā is nonsingular, which guarantees that

it forms a basis and that it admits a proper REF LU factorization.

Theorem 6.5.2. Algorithm CDU is correct and REF.

Proof. If the deletion index is nonbasic (i.e., k = n+1), the result is trivial. Hence,

let k ∈
n
∪
i=1
ci. More specifically, define κ as the IPGE iteration index in which A(:,k)

was used as a pivot column to construct F %, that is, cκ = k. Additionally, define

P i and Qi as the n × n row-permutation and (n+1 × n+1) column-permutation

matrices, respectively, performed in CDU’s ith push step, where 1 ≤ i ≤ n–κ. Each

push step involves a call to APCPU or APCPU, meaning its completion provides a

working frame matrix, say F i, corresponding to some row and column permutation

of A using pivot sequence %. In particular, at push step i, both APCPU and APDPU

swap columns κ+i–1 and κ+i of F i (i.e., A(:,ck+i–1) and A(:,ck+i)) and, consequently,

the cumulative product Q1 . . . Qn–κ := Q, is given by:

Q = [e1 . . . eκ–1 eκ+1 . . . en eκ en+1]

where ei is the (n+1)-length ith elementary vector. In words, Q shifts pivot columns

κ+1 to n one position to the left and moves the pivot column originally in frame

column position κ to frame column position n. Now, if APCPU is called at push
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step i, then P i = In because no rows are permuted; but, if APDPU is called, then

rows κ+i–1 and κ+i of F i are swapped, meaning P i is given by:

P i = [e1 . . . eκ+i–2 eκ+i eκ+i–1 eκ+i+1 . . . en]

where the elementary vectors have length n in this case. Unlike Q, the cumulative

product P n–κ. . . P 1 := P , is not predictable since the specific combination of APCPU

and APDPU calls is determined at runtime. In particular, when f i–1κ+i–1,κ+i is nonzero,

Lemma 3 indicates APCPU can be applied, where F 0 := F %; while when f i–1κ+i–1,κ+i

is zero, Lemma 4 indicates APDPU can be applied since then f i–1κ+i–2,κ+i–2f
i–1
κ+i,κ+i 6=

–f i–1κ+i–1,κ+if
i–1
κ+i,κ+i–1 = 0 (the left-hand side in the first equation is the product of two

nonzero pivots). Hence, at least one of these two push step subroutines can always be

applied. This implies that, at the conclusion of all the push steps, the frame matrix

of P n–κ. . . P 1AQ1. . . Qn–κ = PAQ associated with %, i.e., F n−κ, is obtained without

accruing roundoff errors. From Equation (6.22), notice that the originating pivots of

the nth and (n+1)th columns of F % are identical along each corresponding row—i.e.,

they lie in the same frame—since they are given by f
%[i−1]
i,n and f

%[i−1]
i,n+1 , respectively,

for 1 ≤ i ≤ n. Similarly, because APCPU and APDPU update the originating pivots

of full frames, the entries of columns n and n+1 of F n−κ along matching rows indices

are connected to the same originating pivots. This means F n−κ
(:,n) can be swapped with

F n−κ
(:,n+1) and then deleted to yield the n×n frame matrix F̄ %, which is properly defined

as long as its underlying coefficient matrix Ā is nonsingular. The latter condition is

verified by ensuring that the post-swap (n, n)-entry of the working frame matrix is

nonzero due to the fact that f̄%n,n = det(Ā) by Equation (6.10). Since Ā is obtained

by removing column k of A, shifting columns k+1 to n+1 one position left, and then

permuting rows according to P , CDU obtains F̄ % or determines Ā is singular (i.e., it
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does not allow a proper REF LU factorization) without accruing roundoff errors. �

Corollary 8. CDU requires O(n2) operations.

Proof. APCPU and APDPU require O(n) operations by Corollaries 5 and 6. Hence,

performing n–k push steps requiresO(n2) operations. Additionally, swapping columns

n and n+1 and verifying the underlying post-swap square coefficient matrix is non-

singular require O(n) and O(1) operations, respectively. �

6.5.3 Column Replacement

Let an+1 ∈ Zn be a replacement nonzero-vector for an exiting column A(:,ck)

in A ∈ Zn×n determined at runtime, where 1 ≤ k ≤ n, and let P be an n × n

row-permutation matrix. Then, the equation,

Ā := P [(A− A(:,ck)) an+1] (6.24)

defines the matrix obtained after shifting columns ck+1 to n of A one position left

(i.e., erasing the column originally in position ck), inserting an+1 in the vacated nth

column position, and permuting its rows according to P (also determined at runtime).

The Column Replacement Update algorithm (CRU) provides a way to obtain F̄ %

given F % that differs from the traditional delete-then-insert update methodology

discussed in Section 6.3.1. At each step, the algorithm shifts A(:,k) one place to the

right in the working frame matrix and modifies the affected frames appropriately;

the last shift is performed by swapping columns n and n+1 of this matrix. For this

reason, its mechanism is aptly characterized as pushing the exiting column until it

can be swapped out of the basis.

CRU consists of three subroutines executed in succession: (1) call CAU given

an+1, (2) determine a candidate set of exiting columns and select a column index,
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say ck, from this set, and (3) call CDU given column index ck.

Determining the candidate set of exiting columns and then selecting an individual

column from this set ensures that Ā is nonsingular, thereby avoiding the need for

CDU to verify said property. Let A(:,J) be the exiting-column candidate set, which

is induced by index set J ⊆ {1 . . . n}. To determine the elements of J , denote y as

the column vector added by CAU (i.e., y is the result of REF forward substitution

using F % on vector an+1). Additionally, denote x′ as the result of REF backward

substitution using F % on scaled vector y′ = det(A)y = f%n,ny (Section 6.2 explains

why y must be scaled by det(A)). The set J is composed of the indices of the

nonzero entries of x′; formally, J := {j | x′j 6= 0}. To keep the focus on the

factorization update process, we assume the index ck ∈ J of the exiting variable is

chosen arbitrarily. In practice, the simplex algorithm determines this index using

the ratio test.

Figure 6.6 offers a step-by-step description and accompanying visual representa-

tion of CRU. The subfigures within Figure 6.6 omit frames 0 to k–2 due to the general

inactivity of their entries in the algorithm. Moreover, this visual representation as-

sumes that APCPU is performed at each push step and that % is fixed according

to the sequence given by Assumption 2, that is, %[k] := (k, k) for 1 ≤ k ≤ n. We

make these assumptions for two reasons. First, they complement the graphic outline

of CRU given back in Section 6.3.2 and, as a result, Figure 6.6 fills in the values of

the then-unknown matrix entries of Figure 6.2. Second, by fixing %’s elements, the

evolution of each entry’s originating pivot is displayed in terms of its changing actual

coordinates rather than in terms of %, %′, and similarly abstracted pivot sequences.

Theorem 6.5.3. Algorithm CRU is correct and REF.

Proof. Since CRU is composed of a call to CAU followed by a call to CDU, the
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Figure 6.6: The Column Replacement Update algorithm

(a) Subroutine 1 (CAU): Perform REF forward substitution given an+1 and append the resulting
vector to the right of F %; denote the output (n+1)th column (i.e., the nonbasic column) as y.
Subroutine 2 (Exiting column selection): Perform REF backward substitution on y′ = f%n,ny
to obtain x′ and select the exiting column index, say k, from the nonzero elements of x′ (the exiting
column k is shaded).
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(n–1,n–1)
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(n–1,n–1)
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(b) Subroutine 3 (CDU column pushes): Perform n–k push steps via the APCPU or APDPU
algorithms (the first push step—performed via APCPU—is shown): APCPU is called if the pivot-

row-adjacent replacement entry (e.g., a
(k–1,k–1)
k,k+1 ) is nonzero; APDPU is called otherwise since its

requirements are automatically satisfied when APCPU cannot be applied.
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(c) Subroutine 3, continued (CDU column swap): Swap the exiting column—which is in the
rightmost basic column position after performing the column pushes of Step (c)—with the modified
nonbasic column. The resulting matrix (shown), minus the shaded column, corresponds to F̄ %, the
frame matrix of Ā
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algorithm is REF. For the same reason, at its conclusion the algorithm yields a

proper frame matrix that corresponds to the matrix Ā defined by Equation (6.24),

provided that the rule for selecting the exiting variable guarantees that the underlying

updated basis matrix is nonsingular. Hence, it suffices to prove the validity of the

said rule to complete the proof.

By definition of IPGE and the REF factorization framework, the result of succes-

sively performing REF forward and backward substitution on an+1 is the REF vector

x′ = det(A)x, where x is the solution of the SLE Ax = an+1. Since A’s columns

form a basis, this means an+1 can be stated as the following linear combination:

an+1 =
n∑
j=1

xjaj

where a1, . . . ,an are the individual columns of A. Having established this relation-

ship, the standard argument for replacing a vector in a basis by another vector (e.g.,

see [11]) states that xk 6= 0 is a necessary and sufficient condition for the set of vec-

tors a1, . . .ak–1,ak+1, . . .an+1 to be linearly independent. Moreover, x′k = 0 if and

only if x = 0 since A is nonsingular (i.e., det(A) 6= 0). �

Corollary 9. CRU requires O(n2) operations.

Proof. CRU’s first and third subroutines, CAU and CDU, respectively, require O(n2)

operations by Corollaries 7 and 8. Moreover, its second subroutine involves perform-

ing REF backward substitution on an n-length vector, which requires O(n2) opera-

tions (see Section 4.3), and then selecting an index from the nonzero elements of the

resulting vector, which requires O(n) operations. �

Theorem 6.5.4. The REF column addition, column deletion, and column replace-

ment updates achieve the computational savings expected of traditional LU factoriza-
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tion updates and they do not lead to further growth in the bit-length required by their

matrix entries.

Proof. The expected savings stem from Corollaries 7, 8, and 9. To prove the sec-

ond statement, notice that all the iterative frame matrices obtained in these three

algorithms correspond to a REF-LU factorization of a row or column permutation of

A or Ā. Moreover, the elementary updates and shortcuts performed within column

deletion and replacement involve backtracking IPGE entries, changing their origi-

nating pivots, or flipping their signs. Hence, the bit-length of every iterative matrix

entry involved in all the featured column update algorithm is bounded by the max-

imum bit-length required by the REF factorization process (see IPGE Property 3),

meaning no further bit-length growth is required. �

Corollary 10. The worst-case case computational complexity (WCC) of the featured

REF-LU factorization updates is given by:

WCC(REF-LU updates) = O(n2(ωmax logωmax log logωmax)) (6.25)

= O
(
n3 max(log2 n log log n, log2 σ log log σ)

)
. (6.26)

Proof. The expression in the innermost parentheses of Equation (6.25) represents

the cost of multiplying/dividing two integers of bit-length ωmax (the IPGE maximum

world-length), which bounds the bit-length of the individual matrix entries in all the

REF updates by Theorem 6.5.4; these costs are derived from the use of Fast Fourier

transform techniques. The quantity outside the innermost parentheses represents

the required number of operations of the update algorithms by Corollaries 7, 8, and

9. �
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6.6 Illustrative Example of REF Column Replacement

This subsection depicts the step-by-step application of the REF column replace-

ment update algorithm (CRU) via a numerical example in order to reinforce many of

the concepts heretofore discussed. For this purpose, fix A and Ā to be the following

nonsingular integral (4× 4)-matrices:

A =



3 11 8 7

5 2 3 5

6 −7 −2 1

7 10 −2 −6


Ã =



3 8 7 1

5 3 5 4

6 −2 1 7

7 −2 −6 11


.

Additionally, define the vector a5 := Ā(:,4) so that the relationship between A and Ā

can be conveniently characterized by the equation:

Ā := P [(A− A(:,2)) a5], (6.27)

which fits the form given by Equation (6.24) with P = I4. Since A and Ā are nonsin-

gular, their frame matrices—i.e., the merged lower-triangular and upper-triangular

matrices of their REF LU factorizations—are well defined for some pivot sequence

%; they are denoted accordingly as F % and F̄ % and their contents are as follows:

F % =

3 11 8 7 κ = 0

5 −49 −31 −20 κ = 1

6 −87 −17 57 κ = 2

7 −47 527 884 κ = 3

F̄ % =

3 8 7 1 κ = 0

5 −31 −20 7 κ = 1

6 −54 43 −29 κ = 2

7 −62 279 −89 κ = 3
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when % = {(1, 1), (2, 2), (3, 3), (4, 4)} is the pivot (coordinate) sequence applied by

the IPGE runs on both A and Ā. Constructing F̄ % (or F %) from scratch requires

O(n3) operations. However, assuming F % has been calculated, CRU obtains F̄ % in

O(n2) operations while keeping the same bit-length upper bound as the original REF

factorization, as the ensuing paragraphs illustrate.

6.6.1 Column Addition Subroutine

The first step is to add the entering column to F % and to select a valid exit-

ing column index k; to enhance clarity, we skip showing the latter process—which

simply involves performing REF forward and backward substitution on the entering

column—and assume that k = 2. The entering column is added by performing REF

forward substitution (i.e., Equation (6.2)) using F % as the frame matrix and a5 as

the right-hand side vector, and then appending the updated column. The output is

actually the frame matrix of [A a5] associated with %, denoted as F̂ %. Hence, we

obtain the following expanded frame matrix:

F̂ % =

3 11 8 7 1 κ = 0

5 −49 −31 −20 7 κ = 1

6 −87 −17 57 −42 κ = 2

7 −47 527 884 −561 κ = 3

,

where the exiting column is shaded and the updated entering column is right-adjacent

to the dotted line. CRU now moves on to the column deletion phase (i.e., the push

steps).
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6.6.2 Column Deletion Subroutine

The push-and-swap update approach gradually drives the exiting column out of

the basis via individual adjacent pivot-column (APCPU) or adjacent pivot-diagonal

(APDPU) permutation updates. To match the desired frame matrix of this example,

the pushes must be performed via two calls to APCPU; Figure 6.7 zooms in on the

first APCPU update to highlight the use of the auxiliary REF operations introduced

in Section 6.4.1. At the conclusion of this first call to ACPU, the working frame

matrix becomes:

F̂ %′ =

3 8 11 7 1 κ = 0

5 −31 −49 −20 7 κ = 1

6 −54 17 43 −29 κ = 2

7 −62 −527 −884 561 κ = 3

,

where %′ = {(1, 1), (2, 3), (3, 2), (4, 4)} is the pivot sequence that would be required

by an IPGE run on [A a5] to obtain the new frame matrix; the permuted pivot

indices are underlined in %′. Notice that only the entries on the strictly vertical

part of frame 1 and on the strictly horizontal part of frame 2 change in value; the

remaining frame-2 entries and all frame-3 entries change only in sign. Similarly, the
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Figure 6.7: The first ACPCPU push step applied to a numerical example

(a) Input: F̂ %, k = 2. Note: the update is

feasible since the entry ˆf%2,3 (boxed in blue) is
nonzero. (During the update process, the work-
ing matrix may not fit the strict definition of a
frame matrix. Hence, at times, an entry of the
working matrix may be denoted simply as fi,j
to draw this distinction).

3 11 8 7 1 κ = 0

5 −49 −31 −20 7 κ = 1

6 −87 −17 57 −42 κ = 2

7 −47 527 884 −561 κ = 3

(b) Step 1: Backtrack entries ˆf%3,3 = a2,23,3 and
ˆf%4,3 = a2,24,3 to obtain a1,13,3 and a1,14,3, as follows:

f3,2 ← a1,13,3 = 3(−17)+(−31)(−87)
−49 = 2646

−49 = −54;

f4,2 ← a1,14,3 = 3(527)+(−31)(−47)
−49 = 3038

−49 = −62.
(The backtracked entries are placed in column
2, as the boxing in blue indicates).

3 11 8 7 1 κ = 0

5 −49 −31 −20 7 κ = 1

6 −54 −17 57 −42 κ = 2

7 −62 527 884 −561 κ = 3

(c) Step 2: Perform RwSOP on ˆf%3,4 = a2,23,4 and
ˆf%3,5 = a2,23,5 to obtain a2,33,4 and a2,33,5, as follows:

f3,4← a2,33,4 = −31(57)−(−20)(−17)
−49 = −2107

−49 = 43;

f3,5← a2,33,5 = −31(−42)−(−7)(−17)
−49 = 1421

−49 = −29.
(The updated entries are boxed in blue).

3 11 8 7 1 κ = 0

5 −49 −31 −20 7 κ = 1

6 −54 −17 43 −29 κ = 2

7 −62 527 884 −561 κ = 3

(d) Step 3: Permute columns 2 and 3 of frames
0 to 1. (The affected entries are boxed in blue).

3 8 11 7 1 κ = 0

5 −31 −49 −20 7 κ = 1

6 −54 −17 43 −29 κ = 2

7 −62 527 884 −561 κ = 3

(e) Step 4:Change the sign of the entries on the
strictly vertical part of frame 2 and the entries
in frame 3. (The affected entries are boxed in
blue).

3 8 11 7 1 κ = 0

5 −31 −49 −20 7 κ = 1

6 −54 17 43 −29 κ = 2

7 −62 −527 −884 561 κ = 3
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outcome of the second call to APCPU gives:

F̂ %′ =

3 8 7 11 1 κ = 0

5 −31 −20 −49 7 κ = 1

6 −54 43 17 −29 κ = 2

7 −62 279 884 −89 κ = 3

,

where %′ = {(1, 1), (2, 3), (3, 4), (4, 2)} is the updated pivot sequence. As the above

frame matrices illustrate, each APCPU call interchanges two adjacent pivot columns

in the frame matrix and then efficiently propagates the effect to all subsequent

frames. An alternative interpretation is that, keeping the same pivot sequence %

throughout the update process, these operations swiftly transition from the frame

matrix of [A(:,1) A(:,2) A(:,3) A(:,4)] to that of [A(:,1) A(:,3) A(:,2) A(:,4)] and then to that of

[A(:,1) A(:,3) A(:,4) A(:,2)]. Hence, the first two columns of F̂ %′ and F̄ % and the first three

columns of F̂ %′ and F̄ % match after the first and second calls to APCPU, respectively.

6.6.3 Column Swap Subroutine

After the exiting column has been pushed to the fourth column position (i.e.,

the rightmost basic position), its rows lie along the same frames as those of the

entering column. Hence, the columns are swapped safely, after which the working
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frame matrix becomes:

3 8 7 1 11 κ = 0

5 −31 −20 7 −49 κ = 1

6 −54 43 −29 17 κ = 2

7 −62 279 −89 884 κ = 3

.

The resulting matrix, minus the shaded column, equals the target frame matrix F̄ %.

6.6.4 Commentary on Required Bit-Length Upper Bound

All the entries obtained throughout CRU correspond to individual entries of some

IPGE run on A. Hence, the algorithm retains the same bit-length upper bound as

the original REF factorization of A (see IPGE Property 3) or, in other words, it does

not lead to additional entry growth. Conversely, applying the simple REF variant

of the Bartels-Golub update on the upper-triangular part of F % yields, after O(n2)

operations, the following “inflated” upper-triangular matrix:



3 8 7 1

0 −31 −20 7

0 0 −2107 1421

0 0 0 −74137


.

Notice this matrix does not match the upper triangular part of F̄ % and that its entries

along row 3 and 4 are significantly larger. In fact, this and similar naive updates lead

to the bit-length upper bound given by Equation (6.6), which represents a significant

magnification from the REF LU bit-length upper bound given by Equation (2.14).
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As Section 6.3.1 explains, another downside to applying this naive algorithm is that it

is not straightforward to update the lower-triangular part of F % to retain the special

structure of the REF LU factorizations.

6.7 Extensions to Row Updates and to the REF Cholesky Factorization

Extending the featured framework to perform row factorization updates does

not require deriving complementary REF row addition, deletion, and replacement

updates. This is because applying the column updates on (F %)T , the transposed

frame matrix of A, and then transposing the updated frame matrix produces the

same result. To prove this, let AT :=
(
aTi,j
)

be the transpose of A and let %′ be the

pivot sequence that swaps the row and column coordinates of feasible pivot sequence

%, that is, %′[k] := (r′k, c
′
k) = (ck, rk), for 1 ≤ k ≤ n. The following correspondence

can be established between the IPGE run on A associated with % and the IPGE run

on AT associated with %′.

Lemma 5. For i, j, k ∈ Z, such that 0 ≤ k ≤ n and 1 ≤ i, j ≤ n, with i 6= r′k = ck,

the following equivalence holds:

a
T%′[k]
i,j = a

%[k]
j,i .

Proof. We prove the correspondence by induction on k. For this purpose, let h ∈ Z

be such that 0 < h ≤ n.

Base case: k = 0. The result is trivial since a
T%′[0]
i,j = aTi,j = aj,i = a

%[0]
j,i by

definition of a transpose matrix.

Inductive step: k = h. Assume the result holds for k = 0 . . . h–1. Applying
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the definition of IPGE, given by Equation (6.7), we have:

a
T%′[h]
i,j =

a
T%′[h–1]
%′[h] a

T%′[h–1]
i,j − aT%

′[h–1]
r′h,j

a
T%′[h–1]
i,c′h

a
T%′[h–2]
%′[h–1]

(6.28)

=
a
T%′[h–1]
ch,rh a

T%′[h–1]
i,j − aT%

′[h–1]
ch,j

a
T%′[h–1]
i,rh

a
T%′[h–2]
ch–1,rh–1

(6.29)

=
a
%[h–1]
rh,ch a

%[h–1]
j,i − a%[h–1]j,ch

a
%[h–1]
rh,i

a
%[h–2]
rh–1,ch–1

(6.30)

=
a
%[h–1]
%[h] a

%[h–1]
j,i − a%[h–1]rh,i

a
%[h–1]
j,ch

a
%[h–2]
%[h–1]

(6.31)

= a
%[h]
j,i , (6.32)

where Equation (6.29) substitutes the elements of %′[h] with their corresponding

elements in %[h]; where Equation (6.30) applies the inductive hypothesis to each

(h–1)th and (h–2)th iteration entry; where Equation (6.31) reorganizes factors and

implements the succinct form of the generalized IPGE notation; and, where Equation

(6.32) results from the definition of a
%[h]
j,i . Thus, the result holds for k = h. Since

i, j and h, such that 1 ≤ i, j ≤ n and 0 < h ≤ n, were chosen arbitrarily, the result

holds true for k = 0 . . . n and for all i and j. �

Theorem 6.7.1. Applying column updates on (F %)T is equivalent to applying row

updates on F %.

Proof. The correspondence established by Lemma 5 implies that the IPGE run on AT

associated with %′, denoted as AT%
′
, induces a frame matrix F T%′ that is exactly the

transpose of F %. However, through REF substitution, F T%′ solves the SLE ATx = b

or, equivalently, xTA = bT (i.e., a linear system of row combinations of A). It follows

that updating the columns of F T%′ = (F %)T , is equivalent to updating the rows of

F %. �
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In order to describe how the REF factorization update algorithms extend to the

REF Cholesky factorization (REF-Ch), we remark that it does not make sense to

update the kth column of a Cholesky factorization without updating its kth row con-

currently since the factorization must preserve symmetry. For this reason, Cholesky

factorization updates are implicitly performed as symmetric row-column pairs when

a single row or individual column is updated. For instance, the column addition of

an+1 is implicitly accompanied by the row addition of (an+1)
T . Column deletion and

replacement are analogously paired with their symmetric row counterparts.

Fix A and Ā to be symmetric positive definite so that each matrix admits a REF

Cholesky factorization. Since REF-Ch is symmetric, the same holds true for the

corresponding frame matrices F % and F̄ %, whose upper triangular sections do not

need to be explicitly stored since they equal the transpose of the lower triangular

sections (i.e., F % and F̄ % are composed of only L and L̄, respectively). Similarly, in

order to maintain the storage advantage of REF-Ch, the intermediary frame matrices

attained in the process of updating F % into F̄ % must preserve symmetry. This means

that the adjacent pivot column permutation update cannot be performed since it

changes the horizontal portion of a frame via a row-wise switch of originating pivot,

but it changes only the signs of the vertical portion of the same frame through

backtracking, thereby creating an asymmetric frame structure. This applies to the

adjacent pivot row permutation update as well since it does the transpose of this

process. Conversely, the adjacent pivot diagonal permutation update is valid since it

performs a change of originating pivot and backtracking operations to the full frame—

in implementation, however, the backtrack/change of originating pivot operations are

performed explicitly on the vertical part of the frame and implicitly on its horizontal

part.

Through the implementation of the adjacent pivot diagonal permutation update,
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the same updates performed on column k of REF-Ch are simultaneously performed

on row k, as expected by the Cholesky update process. Essentially, the REF-Ch

deletion and replacement updates push row k and column k out of F % simultaneously

in the process of obtaining F̄ %. With respect to the column-row replacement update,

once the kth row and column are pushed to their nth basic positions and swapped

with their updated nonbasic counterparts, the REF update process makes it easy to

determine if Ā is in fact positive definite. This entails checking that the post-swap

(n, n)-entry of the working frame matrix is nonzero since this entry equals det(Ā) at

this stage (see the proof to Theorem 6.5.2).

6.8 Conclusions

This section explains that applying the traditional delete-insert-reduce update ap-

proach to the REF factorizations induces inefficient algorithms in terms of bit-length

growth and increased computational effort. In short, this approach is inadequate

because it neglects the special structure of the REF factorizations. Conversely, the

presented push-and-swap update approach maintains and updates the recursive rela-

tionships between the consecutive rows/columns of the REF factorization. Through

this approach, the featured REF LU column addition, deletion, and replacement

updates achieve the operations savings expected of factorization update algorithms,

which they are able to accomplish by avoiding additional growth in the bit-length re-

quired by their matrix entries. The current work also proves that the complementary

REF row updates can be performed via the REF column updates, and it discusses

special considerations for updating the REF Cholesky factorization.

The motivation for developing and continuing to improve the REF factorization

framework is based on its potential to enhance current exact simplex-based linear

programming (LP) solvers and mixed-integer programming solvers. Indeed, a major
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goal of our ongoing research is to craft algorithms that can be ultimately integrated

into existing LP solvers in order to equip them with efficient tools for avoiding some

of the inconsistent solver outputs discussed in Section 1. A prospective implemen-

tation of the algorithms herein presented would follow a similar blueprint as the

development of the exact LP solvers within QSopt ex [5] and SoPlex [88, 89]. In

particular, as Sections 3.3.3 and 3.3.4 explain, these solvers implement improved

versions of the exact rational arithmetic validation algorithm pioneered by Dhiflaoui

et al. [20], which works by applying an exact rational arithmetic LU factorization

to verify the validity of the floating-point simplex solution to a given rational LP.

Whenever the basic solution validation process determines the solver-provided solu-

tion is invalid, the exact LP solvers restart the simplex algorithm from the last known

basis. They induce more simplex iterations by augmenting their working precision or

by adjusting algorithmic settings that lead to better solutions, which must in turn be

put through the validation process. Hence, the REF factorization update algorithms

would be implemented to avoid having to construct an exact LU factorization at

each subsequent validation step.
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7. CONCLUSIONS

This dissertation introduces an efficient factorization framework for solving sys-

tems of linear equations (SLEs) exactly. In particular, it develops the roundoff-

error-free (REF) LU and Cholesky factorizations and the REF forward and back-

ward substitution algorithms, which combine to calculate exact solutions to SLEs

efficiently. This tool set provides an efficient alternative to the exact rational arith-

metic LU factorization approach, as demonstrated by several computational tests.

This is significant based on the pivotal role that this less efficient approach continues

to occupy in exact mathematical programming. Indeed, as this dissertation explains,

the ultimate goal of this research is to replace the in-use exact rational arithmetic

LU factorization approach for validating basic solutions with the tools herein devel-

oped. We remark, however, that the featured approach is not intended to be used

in every situation. The REF factorization framework is comparatively most effective

when solving numerically difficult and more intricate problems, that is, those whose

solution coefficients have larger bit-lengths. Conversely, as the literature review dis-

cusses, there are other techniques that are better suited for solving simpler problems,

which are characterized as those whose solution coefficients have small bit-lengths.

Be that as it may, it is generally not possible to determine a problem’s solution

size a priori and, consequently, the REF factorization framework is a more suitable

general-purpose basic solution validation tool.

This work also introduces efficient algorithms for updating the REF LU and

Cholesky factorizations. This further direction is necessary because applying the

traditional delete-insert-reduce approach to update the REF factorizations turns out

to be inefficient in terms of matrix entry growth and increased computational effort.
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In fact, this inefficiency virtually wipes out all the computational savings expected

of the factorization update process. Hence, the current work develops REF update

algorithms that differ significantly from their traditional counterparts. The featured

updates are column addition, deletion, and replacement with respect to the REF

LU factorization. Additionally, the current work proves that the corresponding row

updates can be performed via the REF column updates and it discusses special

considerations for updating the REF Cholesky factorization.
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para cálculo matricial. Revista Técnico-Cient́ıfica de Divulgación de la Facultad
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