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ABSTRACT 

 

Machine learning algorithms allow us to reason about and analyze large amounts 

of data. The support vector machine (SVM) is one popular learning algorithm, which has 

been applied to a broad range of applications. To this end, hardware-based SVM 

processors are very appealing due to their improved runtime and energy efficiency. 

This research proposes an FPGA-based parallel support vector machine 

processor, which is capable of processing multi-dimensional data sets. The proposed 

FPGA SVM is based upon the cascade SVM algorithm, which is leveraged to allow 

efficient parallel processing of data on the FPGA platform, leading to significant 

processing efficiency. 
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NOMENCLATURE 

 

ANN Artificial Neural Network 

ASIC Application-Specific Integrated Circuit 

AXI Advanced eXtensible Interface 

BRAM Block RAM 

CF card Compact Flash Card 

FAT File Allocation Table 

FPGA Field-Programmable Gate Array 

GPU Graphics Processing Units 

KKT Karush-Kuhn-Tucker 

PCIe Peripheral Component Interconnect Express 

SMO Sequential Minimal Optimization 

SV Support Vector  

SVM Support Vector Machine 

System ACE System Advanced Configuration Environment 

UART Universal Asynchronous Receiver/Transmitter 
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1. INTRODUCTION 

1.1 Background and Motivation  

 

In the world nowadays, human comes across with a lot of information every day. 

A biological research may have more than millions of data at a time. For example, in 

order to understand how computed tomography scans influence health, it requires the 

health records tracking for 11 millions of people [1]. With such amount of data, it shows 

its consequence and influence on human bodies. As another example, in meteorology 

studies, a lot of climate data are collected to understand the weather in recent years [2]. 

By long term climate changes and the current environment observation, future climate 

changes and possible dangers are predicted. These data show important information 

about the unknown in the world, while machine learning algorithms show a way to 

explore and make use of those data. 

By machine learning algorithms, the relationship between those data and their 

outcomes are disclosed. Therefore, results of new samples can be predicted, while 

features and behaviors of original data can be understood. For example, by collecting 

common features of cancer patients can predict the tendency in cancer. With machine 

learning algorithms, those parts of gene, which play an important role on cancer 

development, can be distinguished from a huge amount of other irrelevant gene parts [3]. 

For another example, it is also applied in the radar image reading, while these radar 

images show where the oil spitted causing the environmental issues are [4]. Those radar 

images were observed and studied manually in the past, it took experience and heavy 
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work load to identify current situation in radar images. However, with machine learning 

technology, the oil spitted can be detected from radar images in an efficient way and at 

an early stage. Therefore people are able to take actions immediately to the situation and 

stop worsening the damage to the ocean.  

Machine learning technology has these benefits in the research purpose; however, 

it requires a huge amount of time, from hours to weeks, and a lot of power to make use 

of these data in software implementations. To solve these issues and make machine 

learning algorithms more accessible, researchers have been dedicated to shorting the 

runtime and reducing power consumptions. For instance, it takes around 5 hours to train 

a model over a data set with 481,000 samples in a traditional machine learning algorithm. 

By improving the algorithm, the runtime may be reduced from 5 hours to less than 1 

minute [5]. Apart from runtime speedup, some research has been done on power 

reduction by using different technology and designing power-aware algorithms [6].  

On the other hand, a specific designed hardware is faster and consumes less 

power compared with same software logic performed on a general purpose CPU. Here 

are the reasons. Firstly, for the same logic, a hardware implementation is able to 

implement it in a parallel manner, where a parallel architecture is explored. Secondly, a 

hardware implementation does not need instruction memories to store computation 

instructions, which is necessary for the software. In the hardware, only those logic gates 

required by the design exist, but for software, it requires all the general logics 

implementation in a general purpose CPU. 
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To enjoy those benefits from machine learning algorithms and hardware 

implementations, a specific ASIC design of support vector machine algorithm (SVM) is 

developed in the previous research [7]. It is able to achieve five hundred times speedup 

and approximately twenty thousand times energy reduction compared with a software 

SVM algorithm. But due to the limited storage and the restricted design flow of the 

ASIC platform, only limited amount of data and those training models with two 

dimensions can easily be trained. If the structure needs to be modified for higher 

dimensions or improved, it requires a lot of time for modification and testing. Therefore, 

the main motivations and challenges for this thesis research are to maintain the benefits 

from the hardware design and a flexible version of hardware implementation. 

1.2 Classification in Machine Learning 

With machine learning algorithms, different kinds of training models can be 

trained and used, in order to get the specific feature in a model. 

There are few kinds of machine learning algorithms in terms of the outputs 

relation with inputs in the training model, which are classification, regression, clustering, 

density estimation and dimension reduction [8]. With different kinds of training models, 

the corresponding learning algorithm is chosen. For example, a regression method 

predicts the output from a new sample in a continuous training model [9]. On the other 

hand, by clustering, it distinguishes different kinds unknown of data types for a given 

training model. The clustering method and regression can be applied in decease 

detection technology [10].  
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Apart from other methods, for the data set of a training model with known 

classifications, a new sample can be assigned to one of those classifications with 

classification algorithms. With the help of classification algorithms, classifications of 

unknown samples are predicted from the training model. There are different kinds of 

classification algorithms, and the linear classification is one of the commonly used 

classification algorithms. A linear classifier separates data according to the linear 

combination of samples from the training model.  

From Figure 1.1, two linear classifications have been performed to separate 

different classifications of a training model. Because of the complexity of computation 

in linear combinations, it requires less time in the training process to reach the similar 

accuracy compared with a non-linear classifier. Though it is able to approximate a 

non-linear training model as a linear classification problem, it is not applicable for those 

training models which have complicated non-linear characteristic [11]. 
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Figure 1.1 A demonstration of linear classification 

 

For example, with linear classifiers, text categorization can be performed in a 

training model, which is able to separate text contents [12]. This is widely used in 

separating spam emails and regular emails for users in a huge amount of incoming 

emails. 

On the other hand, artificial neural network (ANN) is also a widely used 

classification learning algorithm. It is inspired by the neural network of animals, in 

animals’ brain, a series of connected neurons exchange messages by transmitting 

electrics signals. With those signals, animals are able to react to messages from outside 

world, including thinking, acting with emotions, and learning. By the concept of neurons, 

ANN constructs a large numbers of nodes, named neurons, connecting with one another. 

In each connection, it has a numerical number working as a weighed number. With those 
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nodes and weighed connections, it is able to adjust to the incoming unknown data, 

aiming to working as a biological neuron network [13]. For example, lung cancers are 

able to be identified via ANN [14]. By obtaining the image of lungs, it is possible to tell 

whether it is a healthy cell or a cancer cell by ANN. 

With these classification algorithms in machine learning technology, it is 

possible to learn from those data, and explore the unknown of the world. Linear 

classifiers present a relative fast and easy way to distinguish a training model compared 

with non-linear classifiers. By the inspiration of biological neuron networks, ANN learns 

from training models. These algorithms contribute to all the aspects in the world, from 

separating spam emails in email boxes, to identifying cancer cells.  

Finally, another widely used algorithm in classification is the support vector 

machine, which is the algorithm used in the research. More details would be addressed 

in the next section. 

1.3 Overview of Support Vector Machine 

Support vector machine, known as SVM, is one of the commonly used learning 

algorithms in classification and it predicts future samples from the training model [15]. 

SVM analyzes data for classification analysis; it distinguishes different features in a 

training model and predicts the result. That is, for instance, for the data set of a training 

model, it is able to assign a new sample into one of those different categories after the 

SVM training process. In this research, it is a parallel SVM algorithm implemented by 

the FPGA. 
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1.3.1 Applications 

There are some typical uses for SVMs. For example, it separates a training model 

with a binary data set according to its classifications. If there is a new sample, it is able 

to predict the classification of that new sample. In Figure 1.2, it is a training model with 

two kinds of classifications, circle and plus sign. With SVM, whether circle or plus sign 

classification of a new sample can be predicted.  

 

 

Figure 1.2 A training model with binary classification data set 

 

On the other hand, for a training model which is not easily separable, SVM is 

still able to generate a suitable boundary for the training model according to the user’s 
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need. By modifying the setup in the algorithm, the boundary is tuned in order to have a 

separating boundary that meets the requirement.  

 

 

Figure 1.3 A difficult separating training model 

 

In the Figure 1.3, these two categories are not as clearly divided in the Figure 1.2. 

However, it is still able to generate a boundary that separates most of the samples by 

SVM.  

With the help of SVM, it is not only possible to separate linear training models as 

linear classifiers, but it is also possible to separate those training models in a more 

complex form, like Figure 1.3.  
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For example, by SVM, tissues are separated accurately according to the 

difference in normal and cancer tissues. Furthermore, with the help of SVM, it is also 

able to distinguish mistakenly labels tissues. Finally, it separates not only normal tissues 

and cancer ovarian tissues, but also those tissues from other part of the human body [15]. 

With more accurate ways proposed to distinguish cancers and diseases, it provides more 

precise and correct treatments compared with the past. Therefore more lives can be 

saved in the future as the technology developed. 

Apart from medical use as the example above, SVM is also used in image 

retrieval [16]. With a big database of images, it is time-consuming to label and make 

description for each image manually. And it is also difficult for image searchers to be 

specific on picture features, while colors or sizes of the picture may not play an 

important role in terms of searching. For example, if an image of a rabbit is needed, the 

image of a rabbit may have different colors in the background or the rabbit itself has 

more than one color according to its species; on the other hand, the image may be a hand 

drawing rabbit uploaded by a scanner with low quality, it may also be a high quality 

picture taken by a professional camera. With SVM, it is able to create a boundary 

between targeted images and other images in the database. Therefore, it saves time and 

the work of labeling images manually, and it has a better outcome if images are found 

with a different classification way from labels. This method helps in the picture 

preservation and search.  

From these applications of SVM, SVM plays an important role in current 

technology and human lives. Therefore to make SVM more efficient in data training, 
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researchers have dedicated their time and efforts to transfer it from the software platform 

to hardware implementations in order to enjoy benefits of the hardware characteristics. 

1.3.2 Hardware Implementation 

Because of time reduction from hardware implementations and benefits of SVM 

achieved in research works, some research has been proposed on hardware 

implementations of SVM. 

For example, an analog VLSI design of a SVM algorithm has been proposed [17]. 

By implementing the kernel of a SVM algorithm, it provides a faster solution for the 

SVM algorithm. On the other hand, with the trade-off with power, it is also a power 

efficient solution. With a SVM algorithm implemented on chip, it is portable and 

flexible for users. In order to have a great power efficiency improvement, another design 

in the analog VLSI of SVM has been proposed [18]. Instead of a traditional MOS 

transistor dependence method, by adopting the margin propagation in design gives the 

analog VLSI implementation a better performance in power efficiency. 

Apart from analog VLSI, some works in digital architecture are proposed, by 

implementing a SVM algorithm in other ways, different benefits are achieved. By 

implementing the sequential minimal optimization SVM in a digital VLSI, it provides 

the retraining flexibility to the implementation, noted that it is only applicable for a 

linear kernel [19]. In the future, it may be further developed as a system on a chip. With 

a system on a chip implemented SVM, it gives more opportunities and convenience for 

those using SVM algorithms. 
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Finally, the FPGA is another popular platform to implement SVM in hardware. 

By implementing SVM in the FPGA, it achieves a better precision and resolution 

compared with SVM in analog VLSI implementations [20]. Moreover, some SVM 

implementations on the FPGA focus on the acceleration of the classification process [21]. 

On the other hand, the graphics processing unit, GPU, is also another popular 

implementation choice, which has also been used in the SVM implementation [22]. By 

comparing the FPGA and the GPU in SVM implementation, different implementations 

have a better performance in different kinds of training models [23]. The FPGA 

implementation gave a better performance in chunking technology of SVM, while GPU 

is less limited by the dimension increment. 

There have been a lot of researchers dedicated to hardware implementations on 

SVM with different methods, the speedup have been achieved from previous works. A 

lot of works have been focus on the internal training process acceleration; on the other 

hand, by speeding up the algorithm itself is also an approach to improve the training 

efficiency. This research is based on a previous work that focused on algorithm speedup 

[7]. 

1.4 Research Objective  

From previous discussions, SVM is known as an effective way for data 

classifications. With the hardware implementation, it is also able to have a better 

performance in power and runtime. 
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In the previous studies of SVM hardware implementations, it has the benefits of 

time reduction and power efficiency by implementing the cascade SVM algorithm in 

hardware; however, there are certain limitations of it. It only trains certain dimensions of 

a training model, and it has limited data storage, which led to a difficulty of real world 

data training. 

The goal of this research is as followed, first, expanding the possible data 

dimensions for training in a faster manner, in order to train with real world data. Second, 

increase the internal data storage to work with large training models. By migration of the 

design from the ASIC platform to the FPGA, the above goals are able to be achieved. 
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2. ALGORITHMS OF SUPPORT VECTOR MACHINE 

2.1 Basic Support Vector Machine  

 

The hardware implementation is based on the SVM learning algorithm as 

discussed in the previous section. In order to separate samples and predict the 

classifications of unknown samples, the goal of SVM is to find a separating hyperplane 

between those close samples with the largest distance to the hyperplane [24].  

 

 

 

Figure 2.1 Hyperplane demonstration 

 

In Figure 2.1, it is a demonstration of a hyperplane between two different 

classifications of samples. To have a precise separation from samples of different 

categories, the close samples to each other in different categories are chosen as the 
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starting points and form a boundary of their categories. The hyperplane is between those 

boundaries, in the Figure 2.1, the hyperplane lies between the boundaries of these two 

different categories, namely circle and ring. Therefore, only some of samples contribute 

to the hyperplane formulation, which are called support vectors, SVs. 

Firstly, a sample and its classification are shown in below:  

(𝑥𝑖⃑⃑  ⃑, 𝑦𝑖), 𝑦𝑖 = {+1,−1}, 𝑖 = 1,2, …𝑁 

where 𝑥𝑖⃑⃑  ⃑ is the input vector, and 𝑦𝑖 is the corresponding classification.  

By assuming a mapping function 𝜙(𝑥) between samples and classifications, the 

relationship between an input sample and its classification can be written as these two 

equations:  

{ 
𝑦 = +1,𝑤 ∙ 𝜙(𝑥) + 𝑏 ≥ 1 

 𝑦 = −1,𝑤 ∙ 𝜙(𝑥) + 𝑏 ≤ −1
     

where w is the normal toward the separating plane. 

To find the hyperplane, the relation between 𝑥𝑖⃑⃑  ⃑  and  𝑦𝑖  is obtained as 

following:  

𝑓 = 𝑦𝑖(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏) 

where b is the bias. And the distance from close samples to the hyperplane, named 

margin, is 2/‖𝑤‖.  
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As a result, the optimization problem is:  

𝑚𝑖𝑛𝑤,𝑏

‖𝑤‖2

2
 

which is subject to 𝑦𝑖(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏) = 1.  

However, not all training models have a strictly separated hyperplane. Therefore 

a soft-margin SVM is proposed in terms of the trade-off between the margin and errors. 

For the tolerance of training errors in this research, a soft-margin SVM is used with the 

optimization problem as below: 

𝑚𝑖𝑛𝑤,𝜉,𝑏

‖𝑤‖2

2
+ 𝐶 ∑𝜉𝑖

𝑁

𝑖=1

 

The additional 𝜉𝑖 in the new optimization problem is the slack variable, which 

gives the flexibility for samples to violate the hyperplane. C is a constant controlling the 

trade-off between margin accuracy and error tolerance. Figure 2.2 demonstrates the error 

tolerance of two different categories and its hyperplane. The SVs are all the samples 

inside the dash lines, which makes the new optimization problem is now subject to 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0 

 

 



 

16 

 

 

 

Figure 2.2 Soft-margin SVM with SVs in darker shades 

 

After the optimization problem is obtained, its Lagrangian problem is shown as 

below: 

𝑀𝑖𝑛 𝐿𝑝(𝑤, 𝑏, 𝛼𝑖) = ‖𝑤‖2

2
− ∑ 𝛼𝑖(𝑦𝑖

𝑁
𝑖=1 (𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏)-1)) 

𝑠. 𝑡.  𝛼𝑖 ≥ 0 

and the dual problem: 

Max∑ 𝛼𝑖 −
1

2

𝑁

𝑖=1
∑ ∑ 𝛼𝑖

𝑁

𝑗=1
𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖, 𝑥𝑗)

𝑁

𝑖=1
 

𝑠. 𝑡.  𝐶 ≥ 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖
𝑁
𝑗=1 𝑦𝑖 = 0 

From the dual problem, a kernel function 𝑘(𝑥𝑖, 𝑥𝑗) is introduced from the 

mapping function. In order to find the separating plane and solve the problem, the kernel 

method is introduced here. 

ξ1 
ξ2 
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2.1.1 Kernel Method 

The kernel method provides a measurement between two similar vectors and 

ensures the optimization problem is convex and unique. It gives a better way to find the 

relationship in different samples of the training model, and it is mostly used in SVM 

training [25].  

To decide the decision boundary of a classification training model, there are 

many different kinds of kernel methods. For example, a linear kernel is widely used in 

SVM. It is able to determine a less complicated model and generate a boundary. For 

more complex models or higher accuracy requirements, the Gaussian kernel is a popular 

kernel, which is also used in this research. Apart from these two kernels, there are other 

kernels also used in SVM, including Fisher kernel and Graph kernel. 

A general kernel is defined as k(𝑥𝑖, 𝑥𝑗) = ϕ(𝑥𝑖⃑⃑  ⃑) ∙ ϕ(𝑥𝑗⃑⃑  ⃑), it gives the relation of 

samples between each other and their mapping function. The Gaussian kernel is used in 

this research as k(𝑥𝑖 , 𝑥𝑗) = exp (−γ‖𝑥𝑖⃑⃑  ⃑ − 𝑥𝑗⃑⃑  ⃑‖
2
). In the Gaussian kernel computation, an 

exponential computation is involved. Unlike linear kernels or polynomial kernels, the 

Gaussian kernel is not easy and straightforward to be implemented by adders and 

multipliers.  

For hardware implementations, a hardware friendly kernel has been proposed, 

which remains good performance in many cases [26]. It is an analog circuit 

implementation proposed in substitute of the Gaussian kernel. However, the Gaussian 
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kernel is still used in this research; the detailed implementation is provided in section 

3.1.1. 

With the help of the kernel method, it is possible to solve the Lagrangian 

problem and its dual problem of SVM in section 2.1. By substituting the kernel function 

k(𝑥𝑖 , 𝑥𝑗) with a Gaussian kernel in the Lagrangian dual problem, the problem is 

rewritten as below: 

Max∑ 𝛼𝑖 −
1

2

𝑁

𝑖=1
∑ ∑ 𝛼𝑖

𝑁

𝑗=1
𝛼𝑗𝑦𝑖𝑦𝑗exp (−γ‖𝑥𝑖⃑⃑  ⃑ − 𝑥𝑗⃑⃑  ⃑‖

2
)

𝑁

𝑖=1
 

𝑠. 𝑡.  𝐶 ≥ 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖
𝑁
𝑗=1 𝑦𝑖 = 0 

By finding 𝛼𝑖, it would lead to SVs, which would be discussed in the next 

section. 

2.1.2 Classification Checking 

In SVM learning algorithms, the sequential minimal optimization (SMO) is one 

of the popular algorithms to solve the optimization problems in SVMs [27]. SMO 

algorithm is able to solve the above function in an iterative manner. By computing 

multipliers in pair, it is able to solve the Lagrangian problem efficiently. However, in 

this research, the gradient ascent method is chosen to solve the above optimization 

problem, which is more hardware friendly [26]. Firstly, the above problem can be 

checked by Karush-Kuhn-Tucker (KKT) conditions. With the help of KKT conditions, 

the α values are able to be determined.  
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The KKT conditions indicate that for a solution in the nonlinear problem to be 

optimal, its inequality constraints are no longer existed [28]. Consider a nonlinear 

problem: 

Max f(x) 

s. t. 𝑔𝑖(x) ≤ 0, ℎ𝑗(𝑥) = 0 

If it has an optimal solution, which must satisfy the following conditions: 

∇f(𝑥∗) = ∑ 𝜇𝑖∇𝑔𝑖(𝑥
∗)

𝑚

𝑖=1
+ ∑ 𝜆𝑗∇ℎ𝑗(𝑥

∗)
𝑙

𝑗=1
 

m=0 

For minimum problems, the left side of the first condition is  −∇f(𝑥∗) , instead of 

∇f(𝑥∗). 

By KKT conditions, the optimal solutions can be found for nonlinear problems. 

For example, convex optimization methods are very common in communications or 

signal processing. To find the optimal, KKT conditions are used for these methods [29].  

For here, to satisfy KKT conditions, it requires the product of Lagrangian 

parameters and their constraints to be zero, which is  

𝛼𝑖(𝑦𝑖(𝑤
𝑇 ∙ 𝜙(𝑥𝑖⃑⃑  ⃑) + 𝑏) − 1 + 𝜉𝑖) = 0,  𝛽𝑖𝜉𝑖 = 0. 

  𝛽𝑖 is the Lagrangian variable for 𝜉𝑖. Therefore KKT conditions of the soft-margin 

SVM are shown in below: 
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{

𝛼𝑖 = 0     𝑦𝑖(𝑤
𝑇 ∙ 𝜙(𝑥𝑖⃑⃑  ⃑) + 𝑏) ≥ 1 

0 < 𝛼𝑖 < 𝐶     𝑦𝑖(𝑤
𝑇 ∙ 𝜙(𝑥𝑖⃑⃑  ⃑) + 𝑏) = 1

𝛼𝑖 = 𝐶     𝑦𝑖(𝑤
𝑇 ∙ 𝜙(𝑥𝑖⃑⃑  ⃑) + 𝑏) ≤ 1

 

With the relation between the hyperplane and samples, w value is written as  

𝑤 = ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 𝜙(𝑥𝑖⃑⃑  ⃑)   and b is the bias mentioned before. From KKT conditions 

discussed above, if 𝛼𝑖 = 0, it is not a SV, if 𝛼𝑖 = 𝐶 it is a SV with error tolerance, and 

finally if 0 < 𝛼𝑖 < 𝐶 , the sample is right on the hyperplane.  

From the above process, if 𝛼𝑖 is determined for every sample, the hyperplane 

can be found and classifications of future samples are able to be predicted. For a new 

sample 𝑥 , by computing its relation with SVs: 

f(𝑥 ) = ∑ 𝛼𝑆𝑉

𝑁𝑆𝑉

𝑖=1
𝑦𝑆𝑉𝐾(𝑥 , 𝑥𝑆𝑉⃑⃑ ⃑⃑ ⃑⃑ ) 

if f(𝑥 ) > 0, its classification is determined as +1, else it is −1. 

Therefore, in the hardware implementation, α value is the final result after the 

training process finishes. The whole process of training is based on iterations of finding 

SVs and eliminates non-SVs; therefore it may take a long time of training if the training 

model has a huge amount of data. 

2.2 Cascade Support Vector Machine  

From the basic SVM discussed in the previous section, it shows that only SVs 

contribute to the hyperplane, most of the samples in the data set of a training model are 

non-SVs. Therefore, in the cascade SVM, it eliminates non-SVs at the early stage, which 

speeds up the whole training process [30].  
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The cascade SVM is implemented in the following manner. First, the data set of 

a training model is spit into smaller subsets, and those subsets are trained simultaneously. 

After each subset is trained, SVs from those subsets are fed to SVM units in the next 

layer for a combined training. This progress is repeated until all subsets are combined 

and trained. After it reaches the last training process, training results will be fed back for 

KKT conditions checking. To achieve the design, multiple SVM units are needed, which 

are placed as a hierarchical structure as Figure 2.3.  

 

 

Figure 2.3 Cascade SVM versus single SVM 

 

For example, by separating a large data set into four smaller subsets, which is 

shown in Figure 2.3, those four data sets are trained at the same time. After each training 

process, the next layer has less samples to train compared with the previous layer, due to 
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SVM SVM SVM SVM 

SVM SVM 

SVM SVM 

Cascade SVM 



 

22 

 

 

the elimination at the previous layer. Also, since the training process is in quadratic, 

even though it trains three times for three layers, it is still faster than training all samples 

at one time.  

There are some implementations of the cascade SVM showed a great speedup 

compared with a basic SVM. For instance, with the implementation of the cascade SVM, 

the training time for a training model of a data set with 27,000 samples can be reduced 

from 70 hours to 3 minutes [31]. That is, it has a 1400 times speedup compared with the 

previous training method.  

Though from the aspect of structure, more SVM units are required in order to 

achieve the parallel computation and multiple layers training compared with a basic 

SVM, the significance in speedup shows the great benefit of using the cascade SVM 

instead of a basic SVM. 
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3. HARDWARE IMPLEMENTATIONS 

3.1 Support Vector Machine Structure  

 

The main hardware architecture is based on the previous ASIC design [7]. In this 

section, with the original structure as a starting point, other versions implemented in the 

FPGA are proposed. 

3.1.1 SVM Unit Structure 

For a single and basic SVM discussed as before, apart from the internal 

computation module, it has an address generator for memory access and a lookup table 

for exponential computations.  

 

 

Figure 3.1 A SVM unit structure 
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The Figure 3.1 shows the overall structure of a SVM unit design. Firstly, a 

sample is stored in sequence as followed: its classification Y, its first dimension data X1, 

its second dimension data X2, and the corresponded α value which is initialized as 0. 

According to the address generator, the SVM unit has these four values of a sample. To 

compute the corresponding α value, other samples are also entered in a same manner. 

After samples are entered, the computation proceeds to the further computation.  

A fixed multiplier is also used in the computation. The fixed multiplier is 

designed specifically according to the data storage in Figure 3.2. Data is stored as a 32 

bits number in two’s complement, which is defined as a fixed point number with 16 bits 

before the fixed point in Figure 3.2, and 16 bits after the fixed point. That is, the minimal 

number of a positive number is 2-16. The storage demonstration is shown as Figure 3.2, 

which shows the precision and implementation of the fixed point data storage design. 

 

                                

 

Figure 3.2 Data storage demonstration 

 

The kernel method is an important part in SVMs as discussed in the previous 

section. Although as mentioned in 2.1.1, some specific kernels designed for hardware 

have been proposed, to ensure the performance in a SVM unit, the Gaussian kernel is 

used here. To implement the exponential function in Gaussian kernel computation, a 

lookup table is added. After all the dimensions of the sample and its corresponding 

Fixed point 

20  2-1 
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compared sample are computed, the value is fed into the lookup table module; the result 

of Gaussian kernel is further obtained. 

A sample is compared with all other samples to get α value, α is stored in the 

data storage for future training process. In the end of each training process for one 

sample, α value is compared with the previous α value of the last training process of the 

same sample. Because α would eventually converge into a same value, by comparing the 

current value and the one from previous training process, the convergence of the training 

process is determined. 

After the training process converged and the data set is fully trained, α values are 

verified in a Matlab function for the verification. 

 

 

Figure 3.3 A two dimension training model and its result 
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With the data set of a two dimensions training model and its α values, the 

training result is shown in graphic as Figure 3.3. On the other hand, for the higher 

dimensions, a testing data set is required for the final training result. 

3.1.2 Cascade SVM Unit Setup 

Apart from the basic SVM, a cascade SVM is also implemented in the previous 

ASIC design, it has a significant speedup and energy reduction compared with a basic 

SVM. The cascade SVM module is developed based on the cascade SVM discussed in 

previous section; however, there are some changes in the structure thanks to the 

characteristic of hardware implementation. 

Due to the benefit of hardware implementations and the training process of the 

cascade SVM, the number of all the SVM units is the same as the maximum number of 

SVM subsets in the first layer of a cascade SVM structure.  
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Figure 3.4 A cascade SVM structure 

 

Figure 3.4 shows that every layer operates at a different time, and the next layer 

always has less SVM units compared with the previous layer. If a SVM unit is reusable, 

the numbers of SVM units required for a cascade SVM can be reduced, which saves the 

device usage in hardware.  

With a reusable SVM unit developed, the previous structure of Figure 3.4 is 

modified as Figure 3.5. At first, four SVM units train the data sets from the 

corresponding data storage of each SVM unit. After all of the units are trained, only two 

SVM units are activated again, they not only read SVs from its own data storage, but 

they also read from the data storage from their combined partner. In the end, only one 

SVM unit is activated, and it trains all SVs from four data storage. 
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Figure 3.5 A reusable cascade SVM unit structure 

 

As a result, a cascade SVM has the following structure: reusable SVM units, 

address mapping units, multilayer system bus and processing configuration. 

In the cascade SVM implementation, after the address is generated from the 

address generator in a SVM unit in Figure 3.1, it is fed into a memory manage unit, 

which translates the address according to the current layer. Figure 3.6 shows how 

memory management units are used in the last layer. 

 

 

Figure 3.6 Memory management units implementation 
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The indexes of SVs are stored in the memory manage unit, which are produced 

from reusable SVM units after convergence. On the other hand, every reusable SVM 

unit in each layer has its own memory manage unit, it stores indexes after each 

convergence and provides the correct address for the next training.  

To separate every layer, it also has a multilayer system bus. The multilayer 

system bus records the convergences from every reusable SVM unit. Aside from that, 

the processing configuration feeds the corresponding sample into activated SVM units. 

With the cascade SVM design discussed as above, it provides a faster training 

process compared with the basic SVM in 3.1.1. These two structures serve as the base of 

this research and by implementing these two structures in the FPGA platform, the issues 

on the ASIC platform can be solved.  

3.2 UART System Implementation  

Due to limitations of the ASIC platform, it is difficult to expand the dimensions 

of a training model in a faster manner and the data storage limitation constraints the 

possibility of large models training. 

In order to solve the limitations of the original implementation, the design of the 

SVM is migrated to the FPGA. As a result, a UART system implementation is proposed 

in the beginning. 
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3.2.1 Hardware Structure Overview 

First, to implement the design in the FPGA, a UART communication is added 

between the host computer and the FPGA for communication purpose, and the main 

structure is modified for synthesizability difference in the FPGA. A host computer is the 

user interface to communicate with the FPGA board, it is able to load the data for 

training and receive the training result. On the other hand, the memory structure is 

changed from SRAM structure to Block RAM. 

The universal asynchronous receiver/transmitter system, which is known as the 

UART system, is a common communication method between computer hardware 

devices for data transfer [32]. The UART system transfers data by bits in sequence 

according to the corresponding speed of bit transition for the receiver and the transmitter, 

which is called baud rate. With the same speed between the transmitter and the receiver, 

it is able to interpret the signal correctly.  

 

Start 

bit 
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 

Stop 

bit 1 

Stop 

bit 2 

 

Figure 3.7 UART data frame 

 

From Figure 3.7, the data frame of the UART transition process is shown, noted 

that it only transfers 8 bits data at a time. Because the data storage in this design is a 32 
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bits fixed point format, it requires four transmission processes to transmit one sample 

from the FPGA board to the host computer, the user interface, with UART 

communication. On top of that, for this design, its baud rate is set as 115200 Bd, which 

indicates the transfer speed of each bit. On the other hand, peripheral component 

interconnect express, PCIe, is also a common transmission method with a high 

transmission speed, which is 2.5 gigabits per second. However, it requires more 

hardware device and setup requirement. The UART communication only requires 43 

slices of registers, while the PCIe requires 673 slices of registers, which would increase 

64.4% of the device utilization. 

Aside from the UART implementation, the data storage of the FPGA 

implementation is the Block RAM (BRAM) storage [33]. The BRAM is a configurable 

memory module provided by Xilinx FPGA. It is memory storage with its data length and 

storage size modifiable by the user.  

 

 

Figure 3.8 Hardware structure in the FPGA with UART 
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The hardware structure is shown as Figure 3.8. Firstly, a data set of the training 

model is loaded in the BRAM, which is connected to the SVM training module. The 

amount of BRAMs is same as the number of SVM units, because every SVM unit has its 

own memory storage. The SVM training module is discussed in 3.1, both basic and 

cascade SVM structures can be served as the SVM training module here.  

After the SVM training module reports the convergence of the training process, 

the top module disconnects the BRAM from SVM training module, and connects it to 

the UART communication. That is, it reconnects the address input and data output from 

the SVM module to the UART communication. The receiver in the UART 

communication is connected with the address port of a BRAM, while the transmitter is 

connected to the data output port of a BRAM. Therefore the final training results can be 

read from the FPGA to the host computer. 

After opening the serial port, it is able to send the address in four eight bits 

unsigned integers according to the setup of UART, which is shown in Figure 3.7, and 

saves the corresponding data. The receiving data is also interpreted from four eight bits 

unsigned integers to its correct value, which is saved for the further verification. 

In this research, it is implemented in the Xilinx Virtex-6 FPGA ML605 

evaluation board. Upon this point with the basic structure of SVM, the device utilization 

of a cascade SVM is around 1% of the FPGA, which gives flexibilities of expanding the 

original design. On the other hand, because of that a basic SVM only has one SVM unit; 

the device utilization is smaller than a cascade SVM. For a two cores cascade SVM 

design, it requires 2187 slices registers while the total device has 301,440 slices registers. 



 

33 

 

 

More dimensions can be introduced for training. As a result, the two dimensions design 

is expended to an eight dimensions design. 

3.2.2 Multiple Dimensional Implementations 

In order to expend dimensions, more registers are added as data storage and 

multipliers are parallelized for different dimensions data computation, higher 

dimensional data are able to be read in the training process, which is shown in Figure 3.9; 

additional parts are highlighted compared with the original design in Figure 3.1.By 

parallelizing the whole design makes training the training models with different 

dimensions in one design possible as long as the dimensions are less than the maximum 

dimensions. By setting the unused dimensions inputs as 0, it trains data sets without any 

difference with a design of the exact dimensions setup. 
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Figure 3.9 An 8-dimension SVM unit.  

The shape marks for the additional dimensions registers and multipliers compared with a 

two dimensions SVM. 

 

By replacing the SVM module in Figure 3.8 with a multiple dimensional SVM 

unit in Figure 3.9, data sets over two dimensions is able to be trained in the FPGA. 

Figure 3.9 shows that it still shares a similar structure with a two dimensions SVM unit. 

To understand the overall device utilization, the distribution of a two dimensions SVM 

unit implementation for the device utilization is shown as Figure 3.10. Most parts of the 

device are contributed to the internal computation, while in the computation most of the 

device is used in the multipliers, it requires 650 slices registers, the lookup table for the 
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exponential control requires 110 slices registers, and the address generator requires 108 

registers. 

 

 

Figure 3.10 Slices registers of distribution for two dimensions SVM unit 

 

The Figure 3.11 shows the area break down of the top module control, UART 

communication and the SVM module. Most parts of the device are used for the SVM 

module. 
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Figure 3.11 Slices registers distribution a two dimensions basic SVM FPGA 

implementation 

 

From Figure 3.12, it shows the trend of device utilization growth as the 

dimensions increase. The higher dimensions it has, the more device it uses. 
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Figure 3.12 Device utilization in different dimensions 

 

Though it is able to train multiple dimensional training models with the FPGA 

implementation, due to the UART communication between the host computer and the 

FPGA, the limitation of huge data sets training still exists. The process of data training 

itself has been speeded up, while the transfer speed of UART is slow for large data sets 

training. 

3.3 Memory Card System Implementation  

To solve the transfer speed issue, a new system design is introduced as followed. 

A 2G memory card (the compact flash card, CF card) is introduced into the design; 

therefore it is able to obtain the data in a faster manner and increase the size of training 

models that it is able to train.  
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3.3.1 Hardware Structure Overview 

In order to manipulate a CF card in an easy manner, the Microblaze system is 

introduced. A Microblaze system is a soft-core microprocessor for Xilinx FPGA, it is 

able to control and interact with those features embedded in the FPGA according to the 

user’s setup, including a CF card control [34]. The system bus between the Microblaze 

system and other functions is the Advanced eXtensible Interface, AXI [35]. It is an 

on-chip connection between functional blocks in the embedded system. 

With the help of a Microblaze system, it is possible to interact with a CF card 

with straightforward instructions in C, compared with the implementation in Verilog of 

complex timing setup and signal exchange.  

 

 

Figure 3.13 Hardware structure in the FPGA with the memory card 
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as a buffer rather than the data storage. In this design, the BRAM is a dual-port BRAM 

that one port connects to the internal system bus, which is accessed by the Microblaze 

system; the other port is set as an external port and connects the SVM module. The SVM 

module is separated from the base system in order to have a different clock from the 

Micorblaze; therefore its clock will not interact with other system structures in the base 

system.  

 

 

Figure 3.14 A BRAM buffer 

 

The Figure 3.14 shows an insight of the BRAM buffer. Because the SVM unit is 

indirectly connected with the base system, the start command and the convergence signal 

are also stored in the BRAM buffer. Therefore the data storage is modified compared 

with the previous design.  
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Figure 3.15 Data storage change  

The * place stores the communication signal, including numbers of data, start and reset 

signal and converge signal.  

 

From Figure 3.15, the left side represents the previous data storage order. The 

data of a sample is stored as the following way, its classification and rest of the 

dimensions data. After the whole data set is stored, α values are stored as the same order 

with its corresponding sample. For the right side, to communicate with the base system, 

the data set for training and its training results are moved for one storage space. With the 

spare space, the number of whole data set is sent first, and the convergence signal is read 

after the SVM module finishes training. On the other hand, if it is needed to start the 
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training process again with a new data set, the spare place is also used to give a restart 

signal to start a new training process. 

On the other hand, if it is a cascade SVM structure, the BRAM buffer is 

multiplied according to the cores of the cascade SVM. That is, if it is a two cores 

cascade SVM, it would have two BRAMs in the system; each core has its own buffer. 

The data set is firstly stored in the CF card, and it is written into the BRAM buffer via 

the Microblaze.  

After a data set is trained by the external SVM module, it is read from the buffer 

and written into the CF card again. If the intended data set is bigger than the size of the 

buffer, the Microblaze system divides the original data set, trains certain data and saves 

those outcomes first.  

 

 

 

Figure 3.16 Data division in the Microblaze control 
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In Figure 3.16, the original data set is divided in the corresponding size of 

BRAMs, and the index of a dividing point is saved for the next division. After the data 

set is converged, the Microblaze control scans SVs from first round of training and write 

to the buffer again, working as the cascade SVM. As a result, it is capable of training 

data sets with the size constraint from a CF card instead of the size of BRAMs. However, 

the dividing point is chosen in order regardless of the classifications, the subset may 

become difficult to train compared with the original data set. 

Though the memory card implementation provides the benefit of training a large 

data set with bigger size than the BRAM storage, in order to save not only indexes of 

separating points shown in Figure 3.16 but it also has to save all the indexes of SVs from 

the previous training results, it requires additional storage to record indexes. Apart from 

that, because this process is inside the Microblaze system and implemented in software, 

it would reduce the execution efficiency. 

Therefore to save as more time as possible, one way is to speedup the reading 

process from a CF card to BRAMs. A subset is read firstly and the computation process 

is started. The control system loads the data to another BRAM buffer during the training 

process, which works as a dual buffers system. After those data are trained, SVM is able 

to start another training process immediately without data loading. For the cascade SVM, 

in order to have dual buffers, each core has two BRAM buffers. Therefore, for a two 

cores cascade SVM, it has four BRAMs in the design instead of two. 

In Figure 3.17, it depicts the overall training process; the data set is stored in a 

CF card from the host computer, and it is read from a CF card after training. The data set 
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is stored in a text file and all of the samples are in a 32 bit binary form. However, for the 

values in the training result, they are stored as integer numbers. 

 

 

Figure 3.17 Data path 

 

In this system the data transfer speed is no longer limited to UART system speed; 

it only needs to read a CF card from the computer to get training results. Furthermore, 

the data storage is no longer limited to the FPGA itself, it depends on the CF card 

memory size that user chooses. 

3.3.2 Experimental Setup of the FPGA 

In this section, a detailed FPGA setup is addressed for further results studies in 

section 4.3, which has experimental results for real world data sets. 

In the setup of Microblaze system, apart from the Microblaze core and its cache, 

the system advanced configuration environment, system ACE, is attached to the system 

bus for a CF card control. The local memory size is set according to the Microblaze 
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system control implementation. And BRAMs are added, the number of BRAMs is 

determined by the SVM module used.  

After the Microblaze system is set up and generated, the SVM module is 

included in the top module of the base system. The SVM module connects to the BRAM 

buffers, which is connected to the external ports from BRAMs. While everything is 

connected, the design is exported to the software develop kit.  

For the control system setup inside the Microblaze, a xilkernel is chosen. It 

provides an easy and straightforward manner to control a CF card. By choosing the 

xilfatfs configuration, the data control is implemented inside the Microblaze system.  

Xilkernel is a small and robust kernel in the Xilinx FPGA, it is highly 

customized and used for the higher level implementations [36]. Xilfatfs is one of the 

features provided by xilkernel. It provides read and write functions to files stored on a 

CF card. It supports the file systems of file allocation tables, FAT, from FAT12, FAT16, 

to FAT32. With the help of xilkernel and xilfatfs, the design is implemented in the 

Microblaze system. 

Before the training process, the maximum training size has to be assigned by the 

user according to the size of BRAMs set up in the previous process. And in the base 

system, a stopping point is included to provide a checking method to avoid the data set is 

impossible to converge caused by the data separation of Microblaze controller, it stops 

the current training process and move to the next data set. Because the Microblaze 

controller divides the data set according to the order stored in the memory card without 

checking classifications, not all subsets would be as easy to train as the original data set. 
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3.4 Memory Improvement and Comparison  

In the previous ASIC implementation, the total cache size of whole design is 8kB, 

and it is divided to smaller private caches for the cascade SVM units. On the other hand, 

with a large number of built-in BRAMs in the FPGA, the storage of data grows to 1872 

kB. As a result, for the FPGA version with UART communication, it is able to train a 

training model with a relative larger data set compared with the ASIC version. And with 

the CF card version, the data storage grows to 2 GB, which has a significant growth in 

the data amount of training. 

However, if more dimensions data sets need to be handled, the storage will be 

smaller. For an N dimensions sample, it requires N+2 32 bits storage. Because not only 

does it have to store its N dimensions data, it also needs to store its classifications and α 

values. The detail storage method is explained in Figure 3.14. As a result, the relation 

between data size and dimensions is provided in Figure 3.18. 

 

 

Figure 3.18 Possible data size in the built-in BRAMs 
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Though this is inevitable, with a 2 GB CF card involved, it is still able to train a 

large amount of data because the overall storage is about a thousand times larger than the 

size of internal BRAMs with the help of Microblaze. In the chosen 2GB CF card in this 

design, it requires 56.7 MB of storage for system files storage in order to become 

accessible for the Microblaze system; however, it is relatively small compared with 2 

GB, which only occupied about 2.84% of the storage.  

In this section, two hardware implementations on the FPGA are illustrated, and 

the implementation of both basic and cascade SVM units are explained. With the 

implementation of these structures, the following experiments in the next sections are 

conducted, which provides the insight of these implementations. 
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4. EXPERIMENTAL RESULTS 

 

The SVM structure is designed in Verilog, and then it is generated by Xilinx 

Platform Studio. Afterward, the design is implemented through translating, mapping, 

placing and routing, and generating bitstream. In the end, it is configured to the Xilinx 

Virtex-6 FPGA ML605 evaluation board.  

4.1 Runtime Comparison  

The runtime comparison is based on a software SVM solution implemented in 

Matlab on an Intel core i5-3210M CPU in 2.5GHz. The FPGA implementation with the 

UART system has the maximum frequency of 112.752 MHz for a single SVM and 

80.369 MHz for the cascade SVM, while the system with memory card has the 

maximum frequency in 104.976MHz for a single SVM and 72.844 MHz for the cascade 

SVM. The runtime starts from the beginning of the training process, after data are all 

loaded, and ends when the training process completes. 

Apart from the timing analysis setup, to test the runtime with both FPGA 

implementations, three two dimensions artificial data sets are chosen and trained in the 

eight dimensions hardware structures. In order to verify the training results, these three 

artificial data sets are designed with a specific hyperplane, and each of which has 50, 

100 and 200 samples. The training results are obtained by Matlab through UART 

communication in the UART version, and for the memory card version, results are saved 
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in the CF card. After training, results are verified in Matlab with the original data set and 

the separating plane is generated in graph; Figure 4.1 is one of the training results. 

 

 

Figure 4.1 A training result for a training model using a data set with 100 samples in 

UART version of cascade SVM training 
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4.1.1 Hardware Speedup 

From Figure 4.2, there is a big improvement in runtime between software and 

hardware implementations. The software solution has a significant higher runtime 

compared with the hardware version.  

On the other hand, for the single and cascade SVM, the runtime difference is 

more and more significant as the samples grow. The more detailed runtime is provided 

in Table 4.2. 

 

 

Figure 4.2 Runtime of 50, 100, 200 samples 
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On the other hand, due to the similarity between training and classification 

process, the hardware can be also used for the classification process. Both of basic and 

cascade SVM use SVs from the original data set, therefore they have the same 

classification process. With a testing data set with 50 samples and the basic SVM 

classification, the classification time is shown in Table 4.1. 

 

Training Data Set Number of SVs Time 

50 samples 10 4.76 ms 

100 samples 16 7.62 ms 

200 samples 25 11.91 ms 

Table 4.1 Comparison of classification time 

From Table 4.1, it has shown the classification time is less than fifty 

microseconds, on the other hand, the training process requires hundreds of microseconds 

to train a data set. The classification process is faster than the training process unless the 

testing data set is significantly large than the data set. 

4.1.2 Basic and Cascade SVM Comparison 

Table 4.2 gives a detailed runtime of all the testing data sets from Figure 4.2. As 

discussed before, a big difference between the basic and cascade SVM has shown. From 

section 2.2, a great speedup is introduced by using the cascade SVM compared with a 

basic SVM. And take the data set with 200 samples for example; around 4.3x speedup of 
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a cascade SVM compared with a basic SVM, and it also enjoys a 23.5x speedup 

compared with software SVM.  

 

numbers of samples 50 100 200 

Software 5.078 s 9.694 s 19.184 s 

Hardware 
 

Basic SVM 0.148 s 0.353 s 3.527 s 

Cascade SVM 0.094 s 0.289 s 0.815 s 

Table 4.2 Training runtime comparison 

Apart from that, if more cores are involved in the cascade SVM, the training data 

size of each layer will be reduced more. As a result, it is able to have a more significant 

speedup if more cores are implemented. 

4.2 Non-artificial Data Sets Training and Execution Time Comparison 

Because both of systems are using the same SVM module, there is no difference 

in accuracy of training results. From section 4.1, it shows the frequency difference 

between the UART implementation and memory card implementation, which causes the 

runtime difference during the training process. Apart from artificial data sets, the 

following data sets are also tested. In order to transfer the relatively large amount of data 

through UART in the Matlab interface, the transfer speed becomes longer than the 

training process. For example, it takes 13.8 minutes to transfer 200 samples in the 
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Matlab interface, while the training process takes less than five seconds. As data sets 

grow, the transmission time would become longer.  

On the other hand, to verify the dual buffers system and avoid the overheat issue 

caused by dual-ports BRAMs setup, the maximum samples for a BRAM to hold is set as 

100 samples. Every implementation has a different constraint on BRAM samples 

training due to different data paths and BRAM connections. If more BRAMs are 

required in the design, the maximum BRAM size is reduced because more long data 

paths are introduced. For a basic SVM without dual buffers, the maximum training data 

size with lowest overheat issue is 64kB, while for a cascade SVM with dual buffers, the 

size is reduced to 4kB. The results are obtained according to the following data sets. On 

the other hand, the different accuracy between the basic and cascade SVM are not only 

determined by the original data set division, but also effected by the Microblaze system 

division. These data sets will be discussed in each sub section, and this section is mainly 

focused on the execution time discussion between two kinds of hardware 

implementations. 

4.2.1 Pima Indians Diabetes Data Set 

The Pima Indians Diabetes data set is tested, which has 796 samples in 8 

dimensions [37]. These data are collected from the Pima Indians heritage, with all the 

patients are female over 21 years old. Each sample has 8 dimensions and 1 classification; 

those dimensions are medical facts of the patient, including numbers of pregnancy, 

plasma glucose concentration, diastolic blood pressure, triceps skin fold thickness, 
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insulin, body mass index, diabetes pedigree function and age. With this data set, more 

facts of the diabetes are shown. 

On the other hand, it is also a widely used data set in machine learning 

algorithms training. For example, a generalized discriminant analysis and a least square 

SVM are used in order to find a more accurate way to identify the diabetes by using this 

data set [38]. In this study, it also gives an overview of other training results of the Pima 

Indians Diabetes data set. With other 60 training results of other algorithms, most of the 

accuracies lie in a similar range, from 70% to 80%. And in that research, it is able to 

achieve 82.05% of accuracy. For the basic SVM, it has 74.74% of accuracy, and for 

cascade SVM, it has 73.70% of accuracy. From the training results, both of the training 

methods reach similar training results as shown. 

4.2.2 Vertebral Column Data Set 

The Vertebral Column data set is also tested, which has 248 samples in 6 

dimensions [39]. This data set is a medical data set to classify patients into two 

categories of their health conditions: normal and abnormal, and its 6 dimensions have 

the following information: pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius 

and grade of spondylolisthesis. These data are based on the patients’ body movements to 

know the health status of joints and bones. With the information, the patient’s body 

structure is classified as normal or abnormal. 

With this data set, a research of computer aided diagnosis systems is developed 

[40]. In that research, it used the following learning algorithms to train the data sets, 
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including linear SVM, SVM of a kernel with moderate decreasing and a general 

regression neural network. The conventional training process reaches around 85% of 

accuracy; however, with the method proposed, it is able to reach around 96% of 

accuracy, noted that the high accuracy is only achieved for the vertebral column testing. 

The higher accuracy in the research is achieved by including the rejection techniques 

into the diagnoses process, which gave a higher accuracy for the diagnosis of the 

diseases with vertebral column.  

By testing the data set in the FPGA, the following results are obtained. For the 

single SVM, it has 87.10% of accuracy, and for cascade SVM, it has 88.71% of 

accuracy. 

4.2.3 Mammographic Data Set 

Finally, the mammographic mass data set is tested, which has 961 samples in 5 

dimensions [41]. This data set is about a mammography method that is used in the breast 

cancer detection. The mammography is one of the most effective ways to diagnose with 

breast cancer. Although by using mammography and creating an accurate result, it may 

result in 70% of unnecessary biopsies. To solve this issue, computer aided diagnoses 

methods are needed for physicians to test for the patients. This data set has the medical 

data from patients and their mammography results. There are 5 dimensions, including 

testing results, patients’ age, mass’ shape, mass’ margin, mass’ density. The 

classification indicates whether the patient has cancer or not. 
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With this data set, it helped researchers to develop the computer aided methods 

[41]. Two approaches are proposed from the previous research. One is based on the 

decision-tree learning method, the other one is based on the case-based reasoning with 

entropic distance measure, both of which reached around 80% in accuracy. Though 

further research and clinical tests are needed, one of the advantages for these two 

methods is their potential of the unnecessary breast biopsies reduction.  

On the other hand, by testing the data set in the FPGA, we have the following 

result. For the single SVM, it has 79.29% of accuracy, and for cascade SVM, it has 

81.84% of accuracy. 

4.2.4 Execution Time Discussion 

From section 4.1, the frequency difference between the UART implementation 

and the memory card implementation has shown. To understand the execution time 

difference, the first benchmark, the Pima Indians diabetes data set is used for the 

analyses, the following discussion is based on its training process. 

Firstly, in the UART implementation, to transfer a sample from the FPGA board 

to the host computer, it takes 4.142 second to read one sample through Matlab function. 

The reading process is implemented through Matlab software for further storage and 

computation. However, most of the execution time is spent in the serial port connection 

with the software, which takes 4.131 seconds. The data transfer itself only takes 11.85 

milliseconds for writing the address and receiving the sample. With the Matlab 
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communications, it takes 3297.43 seconds to transfer 796 samples, which is the amount 

of the first benchmark. 

By considering only the UART communication process of the data set 

transmission, it requires writing 7960 samples into the FPGA board and reading 796 

samples to the host computer. The execution time distribution is shown in Figure 4.3., 

where the transmission time for data transfer takes 21.52% of the whole process. 

 

 

Figure 4.3 Execution time distributions in UART implementation for benchmark 1 

 

On the other hand, by using the memory card implementation, the transmission 
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105.03 seconds of overall execution for the memory card implementation to train 
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benchmark 1. Most of the time is spent on the computation itself, which is inevitable for 

the overall training process. And it only takes 0.14 seconds to read the data set from the 

CF card to BRAMs, and 2.28 seconds to write it back.  

From Figure 4.4, the time distributions of the memory card implementation is 

shown. Compared with Figure 4.3, there is a great difference in the execution time 

distribution. Also from section 4.1, it indicates the training time for the UART 

implementation is slightly faster than the memory card implementation. However, the 

UART transmission speed puts a limit on it. 

 

 

Figure 4.4 Execution time distributions in memory card implementation for benchmark 1 
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From the previous discussion, the memory card implementation enjoys a better 

execution time compared with the UART implementation. On the other hand, in order to 

see the difference, Figure 4.5 shows a side-by-side comparison between each other. In 

the data out column, it determines the greatest difference of the execution time. For the 

overall execution time, the memory card implementation has a 1.5 times speedup 

compared with the UART implementation, in which the data transfer time contributes 

10.68 times speedup. 

 

 

Figure 4.5 Execution time comparisons for benchmark 1 

 

On the other hand, to take advantage of most of the execution time is in 
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By loading in the next data set during the computation process, it is able to save more 

time because the computation and the data loading process are overlapped. 

From Table 4.3, the speedup of different benchmarks has presented, the average 

speedup is different due to that every benchmark has different number of the samples, 

where benchmark 1 has 796, benchmark 2 has 248, and benchmark 3 has 961. From 

Table 4.3, it indicates that the more samples a data set has, the faster the speedup can 

achieve.  

 

 

Without Dual Buffers With Dual Buffers 

Basic Cascade Basic Cascade 

  2-cores 4-cores  2-cores 4-cores 

Benchmark1 110.34 s 52.32 s 25.91 s 105.03 s 49.06 s 21.73 s 

Benchmark2 43.25 s 37.85 s 12.46 s 41.27 s 33.72 s 12.46 s 

Benchmark3 144.68 s 66.80 s 38.61 s 131.25 s 57.90 s 30.72 s 

Table 4.3 The memory card implementation execution time 

With the dual buffer system implementation, the execution time is reduced. By 

observing the speedup from Figure 4.3, it has shown that if a data set has fewer samples 

during one training process, it would benefit more from the dual buffer speedup in the 

whole training process. From benchmark 3, the dual buffers speedup for a basic SVM 

training is 9.28%, while the 4-core cascade SVM training is 20.44%.  
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From the previous discussion, a speedup has shown from migration of the design 

from UART implementation to memory card implementation. On the other hand, by the 

dual buffer method, it is able to reach a faster training process.  

4.3 Device Utilization and Power/Energy Consumption 

For device utilization, the memory card system implementation occupied more 

device compared with the UART system implementation. Table 4.4 shows the device 

utilization for hardware implementations of two designs. From Table 4.4, it shows that 

the memory card implementation requires more device usage, because the memory card 

implementation has the Microblaze system for the memory card control, which occupies 

most of the device. 

 

UART Slices Registers LUTs Occupied Slices LUT Flip Flop 

Basic SVM 1655 2647 918 3120 

2-core SVM 3497 6025 2125 7119 

Memory card Slices Registers LUTs Occupied Slices LUT Flip Flop 

Basic SVM 7257 9189 3647 10884 

2-core SVM 9540 13136 5301 15602 

Table 4.4 Device utilization 

In Table 4.5, it has shown the device utilization without a Microblaze system. 

Regardless the device occupied by the Microblaze system which has 5622 slices of 

registers, the top module only occupied 12 slices registers, the SVM unit dominants the 
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size of device utilization, which has 1623 slices registers, while it shares the same 

structure as the SVM implementation with the UART communication, which is shown 

in Figure 3.8. Although it has a significant growth in device utilization from UART 

implementation to the memory card implementation, it is still a relative small design 

compared with the whole FPGA.  

 

Memory card Slices Registers LUTs Occupied Slices LUT Flip Flop 

Basic SVM 1635 2469 832 3129 

2-core SVM 3595 6531 2247 7529 

Table 4.5 Device utilization without the Microblaze system 

On the other hand, the cascade SVM requires more power compared with a 

single SVM implementation. Therefore, with more device used, more power are required 

to perform the implementation. The power of these two implementations is reported in 

Table 4.6.  

The power report is generated from Xilinx XPower Analyzer, not only does it 

provide the power consumption of the design, but it also provides the maximum working 

temperature. With the experiment results from benchmark 1, the following comparison 

between basic and cascade SVM is shown in Table 4.6.  
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 Power Execution Time Energy 

Basic SVM 4095.45 mW 110.34 s 451.892 J 

Cascade SVM 4152.44 mW 52.32 s 217.2557 J 

Table 4.6 Power and energy comparisons 

From Table 4.6, it has shown that by reducing the execution time through 

different algorithms, the energy is able to be reduced significantly. 

From the above device utilization and power comparison, though the cascade 

SVM requires more resource compared with a basic SVM, the cascade SVM has a better 

energy reduction compared with a basic SVM.  
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5. SUMMARY AND CONCLUSIONS 

5.1 Summary and Conclusions 

 

This thesis proposed a hardware implementation of the cascade SVM algorithm. 

From the previous discussion, the hardware implementation has shown contributions in 

technology and science research of a basic SVM algorithm in classifications of machine 

learning algorithms. By eliminating non-SVs at an early stage, the cascade SVM is a 

faster method compared with a single SVM.  

On the other hand, by comparing hardware and software implementations, it 

shows the benefits of implementing the design in hardware. However, even an ASIC 

implementation of the cascade SVM has been proposed, there are still some limitations 

of it.  

To break the limit, the design is implemented in the FPGA. In the FPGA version, 

it is a more flexible structure that can easily increase the dimensions of training models. 

The dimensions of training models for training are increased from two dimensions to 

eight dimensions. Moreover, by introducing the Microblaze system and a large storage 

memory card, the maximum data storage size is increased from 8 kB to 2 GB, which 

gives the potential for larger data sets training. Apart from that, it has the benefit of 

hardware implementations in terms of runtime comparison with software 

implementations. That is, it has approximately 23x speedup compared with software 

implementations for a two dimensions data set in a training model with 200 samples.  
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In sum, the hardware implementation has a better performance in runtime 

compared with the software implementations. With the FPGA version, it is also able to 

train multiple dimensional models and work with more samples in a faster manner. By 

the fast configuration characteristic of the FPGA, it is possible to modify the design to fit 

in higher dimensional training models compared with the ASIC design.  

5.2 Future Work 

Though in this thesis, it has the contributions discussed in previous section, there 

are still some limitations need to be improved. 

In the memory card implementation, to train a large data set over the size of 

BRAMs, the base system divides the data set according to the order without checking the 

classification distribution in the subsets may reduce the accuracy of the training process. 

On the other hand, due to the long data path from SVM units to the Microblaze system 

control, which may cause an overheat issue if the BRAM size is relatively big.  

The FPGA implementation of the SVM provides a faster way for training and 

more flexibility to modify the structure in the future. With characteristics of the FPGA, 

the FPGA is able to reconfigure the hardware in a faster way. Therefore, it is easier to 

reach a high dimensional models training in the future. More dimensions are able to be 

added in the current structure by adding the input storage registers and the corresponding 

multipliers. Aside from the dimensions growth, the number of classifications may also 

be increased in the future. With higher numbers of classifications, it is possible to deal 

with more training models in hardware implementations. 
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If the above improvements have been done, the hardware implementation of the 

cascade SVM is able to be more practical and useful for the research works or other 

needs of SVMs. 
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