

FPGA-BASED CASCADE SUPPORT VECTOR MACHINE WITH INTEGRATED

TRAINING

A Thesis

by

YEN-JU LIN

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Peng Li

Committee Members, Gwan Choi

 Ricardo Gutierrez-Osuna

Head of Department, Miroslav M. Begovic

August 2016

Major Subject: Computer Engineering

Copyright 2016 Yen-Ju Lin

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79653576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

Machine learning algorithms allow us to reason about and analyze large amounts

of data. The support vector machine (SVM) is one popular learning algorithm, which has

been applied to a broad range of applications. To this end, hardware-based SVM

processors are very appealing due to their improved runtime and energy efficiency.

This research proposes an FPGA-based parallel support vector machine

processor, which is capable of processing multi-dimensional data sets. The proposed

FPGA SVM is based upon the cascade SVM algorithm, which is leveraged to allow

efficient parallel processing of data on the FPGA platform, leading to significant

processing efficiency.

iii

DEDICATION

I would like to dedicate my thesis work to my family, for my parents and

grandmother’s selfless support and my brother’s academic help since we were kids to

now, which has made my graduate studies and accomplishment possible.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Li, my committee members, Dr.

Choi, Dr. Gutierrez-Osuna, and my committee substitute Dr. Khatri, for their help and

guidance through this research work.

I would also like to thank Qian Wang, Youjie Li and other peers from Dr. Li’s

research group, thanks to all for their help and time spent in discussions with me. Finally,

I would like to thank all of my peers and friends, both present and past, for helping and

supporting me throughout my graduate studies.

v

NOMENCLATURE

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

BRAM Block RAM

CF card Compact Flash Card

FAT File Allocation Table

FPGA Field-Programmable Gate Array

GPU Graphics Processing Units

KKT Karush-Kuhn-Tucker

PCIe Peripheral Component Interconnect Express

SMO Sequential Minimal Optimization

SV Support Vector

SVM Support Vector Machine

System ACE System Advanced Configuration Environment

UART Universal Asynchronous Receiver/Transmitter

vi

TABLE OF CONTENTS

 Page

ABSTRACT ... ii

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

NOMENCLATURE ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF TABLES ... x

1. INTRODUCTION .. 1

1.1 Background and Motivation ... 1
1.2 Classification in Machine Learning ... 3
1.3 Overview of Support Vector Machine ... 6

1.3.1 Applications .. 7

1.3.2 Hardware Implementation ... 10

1.4 Research Objective ... 11

2. ALGORITHMS OF SUPPORT VECTOR MACHINE .. 13

2.1 Basic Support Vector Machine .. 13
2.1.1 Kernel Method ... 17

2.1.2 Classification Checking ... 18

2.2 Cascade Support Vector Machine .. 20

3. HARDWARE IMPLEMENTATIONS .. 23

3.1 Support Vector Machine Structure ... 23
3.1.1 SVM Unit Structure .. 23

3.1.2 Cascade SVM Unit Setup .. 26

3.2 UART System Implementation .. 29
3.2.1 Hardware Structure Overview ... 30

3.2.2 Multiple Dimensional Implementations .. 33

vii

3.3 Memory Card System Implementation .. 37
3.3.1 Hardware Structure Overview ... 38

3.3.2 Experimental Setup of the FPGA .. 43

3.4 Memory Improvement and Comparison .. 45

4. EXPERIMENTAL RESULTS ... 47

4.1 Runtime Comparison .. 47
4.1.1 Hardware Speedup .. 49

4.1.2 Basic and Cascade SVM Comparison ... 50

4.2 Non-artificial Data Sets Training and Execution Time Comparison 51
4.2.1 Pima Indians Diabetes Data Set .. 52

4.2.2 Vertebral Column Data Set ... 53

4.2.3 Mammographic Data Set ... 54

4.2.4 Execution Time Discussion ... 55

4.3 Device Utilization and Power/Energy Consumption 60

5. SUMMARY AND CONCLUSIONS ... 63

5.1 Summary and Conclusions ... 63
5.2 Future Work ... 64

REFERENCES ... 66

viii

LIST OF FIGURES

Page

Figure 1.1 A demonstration of linear classification ... 5

Figure 1.2 A training model with binary classification data set ... 7

Figure 1.3 A difficult separating training model .. 8

Figure 2.1 Hyperplane demonstration .. 13

Figure 2.2 Soft-margin SVM with SVs in darker shades ... 16

Figure 2.3 Cascade SVM versus single SVM .. 21

Figure 3.1 A SVM unit structure .. 23

Figure 3.2 Data storage demonstration .. 24

Figure 3.3 A two dimension training model and its result ... 25

Figure 3.4 A cascade SVM structure ... 27

Figure 3.5 A reusable cascade SVM unit structure .. 28

Figure 3.6 Memory management units implementation .. 28

Figure 3.7 UART data frame.. 30

Figure 3.8 Hardware structure in the FPGA with UART .. 31

Figure 3.9 An 8-dimension SVM unit. ... 34

Figure 3.10 Slices registers of distribution for two dimensions SVM unit 35

Figure 3.11 Slices registers distribution a two dimensions basic SVM FPGA

implementation ... 36

Figure 3.12 Device utilization in different dimensions .. 37

Figure 3.13 Hardware structure in the FPGA with the memory card 38

ix

Figure 3.14 A BRAM buffer .. 39

Figure 3.15 Data storage change .. 40

Figure 3.16 Data division in the Microblaze control ... 41

Figure 3.17 Data path ... 43

Figure 3.18 Possible data size in the built-in BRAMs ... 45

Figure 4.1 A training result for a training model using a data set with 100 samples in

-UART version of cascade SVM training .. 48

Figure 4.2 Runtime of 50, 100, 200 samples ... 49

Figure 4.3 Execution time distributions in UART implementation for benchmark 1 56

Figure 4.4 Execution time distributions in memory card implementation for

-benchmark 1 .. 57

Figure 4.5 Execution time comparisons for benchmark 1 ... 58

x

LIST OF TABLES

Page

Table 4.1 Comparison of classification time .. 50

Table 4.2 Training runtime comparison ... 51

Table 4.3 The memory card implementation execution time ... 59

Table 4.4 Device utilization ... 60

Table 4.5 Device utilization without the Microblaze system ... 61

Table 4.6 Power and energy comparisons .. 62

1

1. INTRODUCTION

1.1 Background and Motivation

In the world nowadays, human comes across with a lot of information every day.

A biological research may have more than millions of data at a time. For example, in

order to understand how computed tomography scans influence health, it requires the

health records tracking for 11 millions of people [1]. With such amount of data, it shows

its consequence and influence on human bodies. As another example, in meteorology

studies, a lot of climate data are collected to understand the weather in recent years [2].

By long term climate changes and the current environment observation, future climate

changes and possible dangers are predicted. These data show important information

about the unknown in the world, while machine learning algorithms show a way to

explore and make use of those data.

By machine learning algorithms, the relationship between those data and their

outcomes are disclosed. Therefore, results of new samples can be predicted, while

features and behaviors of original data can be understood. For example, by collecting

common features of cancer patients can predict the tendency in cancer. With machine

learning algorithms, those parts of gene, which play an important role on cancer

development, can be distinguished from a huge amount of other irrelevant gene parts [3].

For another example, it is also applied in the radar image reading, while these radar

images show where the oil spitted causing the environmental issues are [4]. Those radar

images were observed and studied manually in the past, it took experience and heavy

2

work load to identify current situation in radar images. However, with machine learning

technology, the oil spitted can be detected from radar images in an efficient way and at

an early stage. Therefore people are able to take actions immediately to the situation and

stop worsening the damage to the ocean.

Machine learning technology has these benefits in the research purpose; however,

it requires a huge amount of time, from hours to weeks, and a lot of power to make use

of these data in software implementations. To solve these issues and make machine

learning algorithms more accessible, researchers have been dedicated to shorting the

runtime and reducing power consumptions. For instance, it takes around 5 hours to train

a model over a data set with 481,000 samples in a traditional machine learning algorithm.

By improving the algorithm, the runtime may be reduced from 5 hours to less than 1

minute [5]. Apart from runtime speedup, some research has been done on power

reduction by using different technology and designing power-aware algorithms [6].

On the other hand, a specific designed hardware is faster and consumes less

power compared with same software logic performed on a general purpose CPU. Here

are the reasons. Firstly, for the same logic, a hardware implementation is able to

implement it in a parallel manner, where a parallel architecture is explored. Secondly, a

hardware implementation does not need instruction memories to store computation

instructions, which is necessary for the software. In the hardware, only those logic gates

required by the design exist, but for software, it requires all the general logics

implementation in a general purpose CPU.

3

To enjoy those benefits from machine learning algorithms and hardware

implementations, a specific ASIC design of support vector machine algorithm (SVM) is

developed in the previous research [7]. It is able to achieve five hundred times speedup

and approximately twenty thousand times energy reduction compared with a software

SVM algorithm. But due to the limited storage and the restricted design flow of the

ASIC platform, only limited amount of data and those training models with two

dimensions can easily be trained. If the structure needs to be modified for higher

dimensions or improved, it requires a lot of time for modification and testing. Therefore,

the main motivations and challenges for this thesis research are to maintain the benefits

from the hardware design and a flexible version of hardware implementation.

1.2 Classification in Machine Learning

With machine learning algorithms, different kinds of training models can be

trained and used, in order to get the specific feature in a model.

There are few kinds of machine learning algorithms in terms of the outputs

relation with inputs in the training model, which are classification, regression, clustering,

density estimation and dimension reduction [8]. With different kinds of training models,

the corresponding learning algorithm is chosen. For example, a regression method

predicts the output from a new sample in a continuous training model [9]. On the other

hand, by clustering, it distinguishes different kinds unknown of data types for a given

training model. The clustering method and regression can be applied in decease

detection technology [10].

4

Apart from other methods, for the data set of a training model with known

classifications, a new sample can be assigned to one of those classifications with

classification algorithms. With the help of classification algorithms, classifications of

unknown samples are predicted from the training model. There are different kinds of

classification algorithms, and the linear classification is one of the commonly used

classification algorithms. A linear classifier separates data according to the linear

combination of samples from the training model.

From Figure 1.1, two linear classifications have been performed to separate

different classifications of a training model. Because of the complexity of computation

in linear combinations, it requires less time in the training process to reach the similar

accuracy compared with a non-linear classifier. Though it is able to approximate a

non-linear training model as a linear classification problem, it is not applicable for those

training models which have complicated non-linear characteristic [11].

5

Figure 1.1 A demonstration of linear classification

For example, with linear classifiers, text categorization can be performed in a

training model, which is able to separate text contents [12]. This is widely used in

separating spam emails and regular emails for users in a huge amount of incoming

emails.

On the other hand, artificial neural network (ANN) is also a widely used

classification learning algorithm. It is inspired by the neural network of animals, in

animals’ brain, a series of connected neurons exchange messages by transmitting

electrics signals. With those signals, animals are able to react to messages from outside

world, including thinking, acting with emotions, and learning. By the concept of neurons,

ANN constructs a large numbers of nodes, named neurons, connecting with one another.

In each connection, it has a numerical number working as a weighed number. With those

6

nodes and weighed connections, it is able to adjust to the incoming unknown data,

aiming to working as a biological neuron network [13]. For example, lung cancers are

able to be identified via ANN [14]. By obtaining the image of lungs, it is possible to tell

whether it is a healthy cell or a cancer cell by ANN.

With these classification algorithms in machine learning technology, it is

possible to learn from those data, and explore the unknown of the world. Linear

classifiers present a relative fast and easy way to distinguish a training model compared

with non-linear classifiers. By the inspiration of biological neuron networks, ANN learns

from training models. These algorithms contribute to all the aspects in the world, from

separating spam emails in email boxes, to identifying cancer cells.

Finally, another widely used algorithm in classification is the support vector

machine, which is the algorithm used in the research. More details would be addressed

in the next section.

1.3 Overview of Support Vector Machine

Support vector machine, known as SVM, is one of the commonly used learning

algorithms in classification and it predicts future samples from the training model [15].

SVM analyzes data for classification analysis; it distinguishes different features in a

training model and predicts the result. That is, for instance, for the data set of a training

model, it is able to assign a new sample into one of those different categories after the

SVM training process. In this research, it is a parallel SVM algorithm implemented by

the FPGA.

7

1.3.1 Applications

There are some typical uses for SVMs. For example, it separates a training model

with a binary data set according to its classifications. If there is a new sample, it is able

to predict the classification of that new sample. In Figure 1.2, it is a training model with

two kinds of classifications, circle and plus sign. With SVM, whether circle or plus sign

classification of a new sample can be predicted.

Figure 1.2 A training model with binary classification data set

On the other hand, for a training model which is not easily separable, SVM is

still able to generate a suitable boundary for the training model according to the user’s

8

need. By modifying the setup in the algorithm, the boundary is tuned in order to have a

separating boundary that meets the requirement.

Figure 1.3 A difficult separating training model

In the Figure 1.3, these two categories are not as clearly divided in the Figure 1.2.

However, it is still able to generate a boundary that separates most of the samples by

SVM.

With the help of SVM, it is not only possible to separate linear training models as

linear classifiers, but it is also possible to separate those training models in a more

complex form, like Figure 1.3.

9

For example, by SVM, tissues are separated accurately according to the

difference in normal and cancer tissues. Furthermore, with the help of SVM, it is also

able to distinguish mistakenly labels tissues. Finally, it separates not only normal tissues

and cancer ovarian tissues, but also those tissues from other part of the human body [15].

With more accurate ways proposed to distinguish cancers and diseases, it provides more

precise and correct treatments compared with the past. Therefore more lives can be

saved in the future as the technology developed.

Apart from medical use as the example above, SVM is also used in image

retrieval [16]. With a big database of images, it is time-consuming to label and make

description for each image manually. And it is also difficult for image searchers to be

specific on picture features, while colors or sizes of the picture may not play an

important role in terms of searching. For example, if an image of a rabbit is needed, the

image of a rabbit may have different colors in the background or the rabbit itself has

more than one color according to its species; on the other hand, the image may be a hand

drawing rabbit uploaded by a scanner with low quality, it may also be a high quality

picture taken by a professional camera. With SVM, it is able to create a boundary

between targeted images and other images in the database. Therefore, it saves time and

the work of labeling images manually, and it has a better outcome if images are found

with a different classification way from labels. This method helps in the picture

preservation and search.

From these applications of SVM, SVM plays an important role in current

technology and human lives. Therefore to make SVM more efficient in data training,

10

researchers have dedicated their time and efforts to transfer it from the software platform

to hardware implementations in order to enjoy benefits of the hardware characteristics.

1.3.2 Hardware Implementation

Because of time reduction from hardware implementations and benefits of SVM

achieved in research works, some research has been proposed on hardware

implementations of SVM.

For example, an analog VLSI design of a SVM algorithm has been proposed [17].

By implementing the kernel of a SVM algorithm, it provides a faster solution for the

SVM algorithm. On the other hand, with the trade-off with power, it is also a power

efficient solution. With a SVM algorithm implemented on chip, it is portable and

flexible for users. In order to have a great power efficiency improvement, another design

in the analog VLSI of SVM has been proposed [18]. Instead of a traditional MOS

transistor dependence method, by adopting the margin propagation in design gives the

analog VLSI implementation a better performance in power efficiency.

Apart from analog VLSI, some works in digital architecture are proposed, by

implementing a SVM algorithm in other ways, different benefits are achieved. By

implementing the sequential minimal optimization SVM in a digital VLSI, it provides

the retraining flexibility to the implementation, noted that it is only applicable for a

linear kernel [19]. In the future, it may be further developed as a system on a chip. With

a system on a chip implemented SVM, it gives more opportunities and convenience for

those using SVM algorithms.

11

Finally, the FPGA is another popular platform to implement SVM in hardware.

By implementing SVM in the FPGA, it achieves a better precision and resolution

compared with SVM in analog VLSI implementations [20]. Moreover, some SVM

implementations on the FPGA focus on the acceleration of the classification process [21].

On the other hand, the graphics processing unit, GPU, is also another popular

implementation choice, which has also been used in the SVM implementation [22]. By

comparing the FPGA and the GPU in SVM implementation, different implementations

have a better performance in different kinds of training models [23]. The FPGA

implementation gave a better performance in chunking technology of SVM, while GPU

is less limited by the dimension increment.

There have been a lot of researchers dedicated to hardware implementations on

SVM with different methods, the speedup have been achieved from previous works. A

lot of works have been focus on the internal training process acceleration; on the other

hand, by speeding up the algorithm itself is also an approach to improve the training

efficiency. This research is based on a previous work that focused on algorithm speedup

[7].

1.4 Research Objective

From previous discussions, SVM is known as an effective way for data

classifications. With the hardware implementation, it is also able to have a better

performance in power and runtime.

12

In the previous studies of SVM hardware implementations, it has the benefits of

time reduction and power efficiency by implementing the cascade SVM algorithm in

hardware; however, there are certain limitations of it. It only trains certain dimensions of

a training model, and it has limited data storage, which led to a difficulty of real world

data training.

The goal of this research is as followed, first, expanding the possible data

dimensions for training in a faster manner, in order to train with real world data. Second,

increase the internal data storage to work with large training models. By migration of the

design from the ASIC platform to the FPGA, the above goals are able to be achieved.

13

2. ALGORITHMS OF SUPPORT VECTOR MACHINE

2.1 Basic Support Vector Machine

The hardware implementation is based on the SVM learning algorithm as

discussed in the previous section. In order to separate samples and predict the

classifications of unknown samples, the goal of SVM is to find a separating hyperplane

between those close samples with the largest distance to the hyperplane [24].

Figure 2.1 Hyperplane demonstration

In Figure 2.1, it is a demonstration of a hyperplane between two different

classifications of samples. To have a precise separation from samples of different

categories, the close samples to each other in different categories are chosen as the

14

starting points and form a boundary of their categories. The hyperplane is between those

boundaries, in the Figure 2.1, the hyperplane lies between the boundaries of these two

different categories, namely circle and ring. Therefore, only some of samples contribute

to the hyperplane formulation, which are called support vectors, SVs.

Firstly, a sample and its classification are shown in below:

(𝑥𝑖⃑⃑ ⃑, 𝑦𝑖), 𝑦𝑖 = {+1,−1}, 𝑖 = 1,2, …𝑁

where 𝑥𝑖⃑⃑ ⃑ is the input vector, and 𝑦𝑖 is the corresponding classification.

By assuming a mapping function 𝜙(𝑥) between samples and classifications, the

relationship between an input sample and its classification can be written as these two

equations:

{
𝑦 = +1,𝑤 ∙ 𝜙(𝑥) + 𝑏 ≥ 1

 𝑦 = −1,𝑤 ∙ 𝜙(𝑥) + 𝑏 ≤ −1

where w is the normal toward the separating plane.

To find the hyperplane, the relation between 𝑥𝑖⃑⃑ ⃑ and 𝑦𝑖 is obtained as

following:

𝑓 = 𝑦𝑖(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏)

where b is the bias. And the distance from close samples to the hyperplane, named

margin, is 2/‖𝑤‖.

15

As a result, the optimization problem is:

𝑚𝑖𝑛𝑤,𝑏

‖𝑤‖2

2

which is subject to 𝑦𝑖(𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏) = 1.

However, not all training models have a strictly separated hyperplane. Therefore

a soft-margin SVM is proposed in terms of the trade-off between the margin and errors.

For the tolerance of training errors in this research, a soft-margin SVM is used with the

optimization problem as below:

𝑚𝑖𝑛𝑤,𝜉,𝑏

‖𝑤‖2

2
+ 𝐶 ∑𝜉𝑖

𝑁

𝑖=1

The additional 𝜉𝑖 in the new optimization problem is the slack variable, which

gives the flexibility for samples to violate the hyperplane. C is a constant controlling the

trade-off between margin accuracy and error tolerance. Figure 2.2 demonstrates the error

tolerance of two different categories and its hyperplane. The SVs are all the samples

inside the dash lines, which makes the new optimization problem is now subject to

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0

16

Figure 2.2 Soft-margin SVM with SVs in darker shades

After the optimization problem is obtained, its Lagrangian problem is shown as

below:

𝑀𝑖𝑛 𝐿𝑝(𝑤, 𝑏, 𝛼𝑖) = ‖𝑤‖2

2
− ∑ 𝛼𝑖(𝑦𝑖

𝑁
𝑖=1 (𝑤 ∙ 𝜙(𝑥𝑖) + 𝑏)-1))

𝑠. 𝑡. 𝛼𝑖 ≥ 0

and the dual problem:

Max∑ 𝛼𝑖 −
1

2

𝑁

𝑖=1
∑ ∑ 𝛼𝑖

𝑁

𝑗=1
𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖, 𝑥𝑗)

𝑁

𝑖=1

𝑠. 𝑡. 𝐶 ≥ 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖
𝑁
𝑗=1 𝑦𝑖 = 0

From the dual problem, a kernel function 𝑘(𝑥𝑖, 𝑥𝑗) is introduced from the

mapping function. In order to find the separating plane and solve the problem, the kernel

method is introduced here.

ξ1
ξ2

17

2.1.1 Kernel Method

The kernel method provides a measurement between two similar vectors and

ensures the optimization problem is convex and unique. It gives a better way to find the

relationship in different samples of the training model, and it is mostly used in SVM

training [25].

To decide the decision boundary of a classification training model, there are

many different kinds of kernel methods. For example, a linear kernel is widely used in

SVM. It is able to determine a less complicated model and generate a boundary. For

more complex models or higher accuracy requirements, the Gaussian kernel is a popular

kernel, which is also used in this research. Apart from these two kernels, there are other

kernels also used in SVM, including Fisher kernel and Graph kernel.

A general kernel is defined as k(𝑥𝑖, 𝑥𝑗) = ϕ(𝑥𝑖⃑⃑ ⃑) ∙ ϕ(𝑥𝑗⃑⃑ ⃑), it gives the relation of

samples between each other and their mapping function. The Gaussian kernel is used in

this research as k(𝑥𝑖 , 𝑥𝑗) = exp (−γ‖𝑥𝑖⃑⃑ ⃑ − 𝑥𝑗⃑⃑ ⃑‖
2
). In the Gaussian kernel computation, an

exponential computation is involved. Unlike linear kernels or polynomial kernels, the

Gaussian kernel is not easy and straightforward to be implemented by adders and

multipliers.

For hardware implementations, a hardware friendly kernel has been proposed,

which remains good performance in many cases [26]. It is an analog circuit

implementation proposed in substitute of the Gaussian kernel. However, the Gaussian

18

kernel is still used in this research; the detailed implementation is provided in section

3.1.1.

With the help of the kernel method, it is possible to solve the Lagrangian

problem and its dual problem of SVM in section 2.1. By substituting the kernel function

k(𝑥𝑖 , 𝑥𝑗) with a Gaussian kernel in the Lagrangian dual problem, the problem is

rewritten as below:

Max∑ 𝛼𝑖 −
1

2

𝑁

𝑖=1
∑ ∑ 𝛼𝑖

𝑁

𝑗=1
𝛼𝑗𝑦𝑖𝑦𝑗exp (−γ‖𝑥𝑖⃑⃑ ⃑ − 𝑥𝑗⃑⃑ ⃑‖

2
)

𝑁

𝑖=1

𝑠. 𝑡. 𝐶 ≥ 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖
𝑁
𝑗=1 𝑦𝑖 = 0

By finding 𝛼𝑖, it would lead to SVs, which would be discussed in the next

section.

2.1.2 Classification Checking

In SVM learning algorithms, the sequential minimal optimization (SMO) is one

of the popular algorithms to solve the optimization problems in SVMs [27]. SMO

algorithm is able to solve the above function in an iterative manner. By computing

multipliers in pair, it is able to solve the Lagrangian problem efficiently. However, in

this research, the gradient ascent method is chosen to solve the above optimization

problem, which is more hardware friendly [26]. Firstly, the above problem can be

checked by Karush-Kuhn-Tucker (KKT) conditions. With the help of KKT conditions,

the α values are able to be determined.

19

The KKT conditions indicate that for a solution in the nonlinear problem to be

optimal, its inequality constraints are no longer existed [28]. Consider a nonlinear

problem:

Max f(x)

s. t. 𝑔𝑖(x) ≤ 0, ℎ𝑗(𝑥) = 0

If it has an optimal solution, which must satisfy the following conditions:

∇f(𝑥∗) = ∑ 𝜇𝑖∇𝑔𝑖(𝑥
∗)

𝑚

𝑖=1
+ ∑ 𝜆𝑗∇ℎ𝑗(𝑥

∗)
𝑙

𝑗=1

m=0

For minimum problems, the left side of the first condition is −∇f(𝑥∗) , instead of

∇f(𝑥∗).

By KKT conditions, the optimal solutions can be found for nonlinear problems.

For example, convex optimization methods are very common in communications or

signal processing. To find the optimal, KKT conditions are used for these methods [29].

For here, to satisfy KKT conditions, it requires the product of Lagrangian

parameters and their constraints to be zero, which is

𝛼𝑖(𝑦𝑖(𝑤
𝑇 ∙ 𝜙(𝑥𝑖⃑⃑ ⃑) + 𝑏) − 1 + 𝜉𝑖) = 0, 𝛽𝑖𝜉𝑖 = 0.

 𝛽𝑖 is the Lagrangian variable for 𝜉𝑖. Therefore KKT conditions of the soft-margin

SVM are shown in below:

20

{

𝛼𝑖 = 0 𝑦𝑖(𝑤
𝑇 ∙ 𝜙(𝑥𝑖⃑⃑ ⃑) + 𝑏) ≥ 1

0 < 𝛼𝑖 < 𝐶 𝑦𝑖(𝑤
𝑇 ∙ 𝜙(𝑥𝑖⃑⃑ ⃑) + 𝑏) = 1

𝛼𝑖 = 𝐶 𝑦𝑖(𝑤
𝑇 ∙ 𝜙(𝑥𝑖⃑⃑ ⃑) + 𝑏) ≤ 1

With the relation between the hyperplane and samples, w value is written as

𝑤 = ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 𝜙(𝑥𝑖⃑⃑ ⃑) and b is the bias mentioned before. From KKT conditions

discussed above, if 𝛼𝑖 = 0, it is not a SV, if 𝛼𝑖 = 𝐶 it is a SV with error tolerance, and

finally if 0 < 𝛼𝑖 < 𝐶 , the sample is right on the hyperplane.

From the above process, if 𝛼𝑖 is determined for every sample, the hyperplane

can be found and classifications of future samples are able to be predicted. For a new

sample 𝑥 , by computing its relation with SVs:

f(𝑥) = ∑ 𝛼𝑆𝑉

𝑁𝑆𝑉

𝑖=1
𝑦𝑆𝑉𝐾(𝑥 , 𝑥𝑆𝑉⃑⃑ ⃑⃑ ⃑⃑)

if f(𝑥) > 0, its classification is determined as +1, else it is −1.

Therefore, in the hardware implementation, α value is the final result after the

training process finishes. The whole process of training is based on iterations of finding

SVs and eliminates non-SVs; therefore it may take a long time of training if the training

model has a huge amount of data.

2.2 Cascade Support Vector Machine

From the basic SVM discussed in the previous section, it shows that only SVs

contribute to the hyperplane, most of the samples in the data set of a training model are

non-SVs. Therefore, in the cascade SVM, it eliminates non-SVs at the early stage, which

speeds up the whole training process [30].

21

The cascade SVM is implemented in the following manner. First, the data set of

a training model is spit into smaller subsets, and those subsets are trained simultaneously.

After each subset is trained, SVs from those subsets are fed to SVM units in the next

layer for a combined training. This progress is repeated until all subsets are combined

and trained. After it reaches the last training process, training results will be fed back for

KKT conditions checking. To achieve the design, multiple SVM units are needed, which

are placed as a hierarchical structure as Figure 2.3.

Figure 2.3 Cascade SVM versus single SVM

For example, by separating a large data set into four smaller subsets, which is

shown in Figure 2.3, those four data sets are trained at the same time. After each training

process, the next layer has less samples to train compared with the previous layer, due to

Single SVM

SVM SVM SVM SVM

SVM SVM

SVM SVM

Cascade SVM

22

the elimination at the previous layer. Also, since the training process is in quadratic,

even though it trains three times for three layers, it is still faster than training all samples

at one time.

There are some implementations of the cascade SVM showed a great speedup

compared with a basic SVM. For instance, with the implementation of the cascade SVM,

the training time for a training model of a data set with 27,000 samples can be reduced

from 70 hours to 3 minutes [31]. That is, it has a 1400 times speedup compared with the

previous training method.

Though from the aspect of structure, more SVM units are required in order to

achieve the parallel computation and multiple layers training compared with a basic

SVM, the significance in speedup shows the great benefit of using the cascade SVM

instead of a basic SVM.

23

3. HARDWARE IMPLEMENTATIONS

3.1 Support Vector Machine Structure

The main hardware architecture is based on the previous ASIC design [7]. In this

section, with the original structure as a starting point, other versions implemented in the

FPGA are proposed.

3.1.1 SVM Unit Structure

For a single and basic SVM discussed as before, apart from the internal

computation module, it has an address generator for memory access and a lookup table

for exponential computations.

Figure 3.1 A SVM unit structure

Yi,j

Xi1,j1

Xi2,j2

α

SVM

Multiplier

Multiplier

Computation

Lookup

Table

Address Generator

α

24

The Figure 3.1 shows the overall structure of a SVM unit design. Firstly, a

sample is stored in sequence as followed: its classification Y, its first dimension data X1,

its second dimension data X2, and the corresponded α value which is initialized as 0.

According to the address generator, the SVM unit has these four values of a sample. To

compute the corresponding α value, other samples are also entered in a same manner.

After samples are entered, the computation proceeds to the further computation.

A fixed multiplier is also used in the computation. The fixed multiplier is

designed specifically according to the data storage in Figure 3.2. Data is stored as a 32

bits number in two’s complement, which is defined as a fixed point number with 16 bits

before the fixed point in Figure 3.2, and 16 bits after the fixed point. That is, the minimal

number of a positive number is 2-16. The storage demonstration is shown as Figure 3.2,

which shows the precision and implementation of the fixed point data storage design.

Figure 3.2 Data storage demonstration

The kernel method is an important part in SVMs as discussed in the previous

section. Although as mentioned in 2.1.1, some specific kernels designed for hardware

have been proposed, to ensure the performance in a SVM unit, the Gaussian kernel is

used here. To implement the exponential function in Gaussian kernel computation, a

lookup table is added. After all the dimensions of the sample and its corresponding

Fixed point

20 2-1

25

compared sample are computed, the value is fed into the lookup table module; the result

of Gaussian kernel is further obtained.

A sample is compared with all other samples to get α value, α is stored in the

data storage for future training process. In the end of each training process for one

sample, α value is compared with the previous α value of the last training process of the

same sample. Because α would eventually converge into a same value, by comparing the

current value and the one from previous training process, the convergence of the training

process is determined.

After the training process converged and the data set is fully trained, α values are

verified in a Matlab function for the verification.

Figure 3.3 A two dimension training model and its result

26

With the data set of a two dimensions training model and its α values, the

training result is shown in graphic as Figure 3.3. On the other hand, for the higher

dimensions, a testing data set is required for the final training result.

3.1.2 Cascade SVM Unit Setup

Apart from the basic SVM, a cascade SVM is also implemented in the previous

ASIC design, it has a significant speedup and energy reduction compared with a basic

SVM. The cascade SVM module is developed based on the cascade SVM discussed in

previous section; however, there are some changes in the structure thanks to the

characteristic of hardware implementation.

Due to the benefit of hardware implementations and the training process of the

cascade SVM, the number of all the SVM units is the same as the maximum number of

SVM subsets in the first layer of a cascade SVM structure.

27

Figure 3.4 A cascade SVM structure

Figure 3.4 shows that every layer operates at a different time, and the next layer

always has less SVM units compared with the previous layer. If a SVM unit is reusable,

the numbers of SVM units required for a cascade SVM can be reduced, which saves the

device usage in hardware.

With a reusable SVM unit developed, the previous structure of Figure 3.4 is

modified as Figure 3.5. At first, four SVM units train the data sets from the

corresponding data storage of each SVM unit. After all of the units are trained, only two

SVM units are activated again, they not only read SVs from its own data storage, but

they also read from the data storage from their combined partner. In the end, only one

SVM unit is activated, and it trains all SVs from four data storage.

SVM SVM SVM SVM

SVM

SVM

Cascade SVM

SVM

28

Figure 3.5 A reusable cascade SVM unit structure

As a result, a cascade SVM has the following structure: reusable SVM units,

address mapping units, multilayer system bus and processing configuration.

In the cascade SVM implementation, after the address is generated from the

address generator in a SVM unit in Figure 3.1, it is fed into a memory manage unit,

which translates the address according to the current layer. Figure 3.6 shows how

memory management units are used in the last layer.

Figure 3.6 Memory management units implementation

SVM SVM SVM SVM

First time combined

Second time combined

SVM

MEM MEM MEM MEM

MMU MMU MMU MMU

Addresses and Results

Data

new α

29

The indexes of SVs are stored in the memory manage unit, which are produced

from reusable SVM units after convergence. On the other hand, every reusable SVM

unit in each layer has its own memory manage unit, it stores indexes after each

convergence and provides the correct address for the next training.

To separate every layer, it also has a multilayer system bus. The multilayer

system bus records the convergences from every reusable SVM unit. Aside from that,

the processing configuration feeds the corresponding sample into activated SVM units.

With the cascade SVM design discussed as above, it provides a faster training

process compared with the basic SVM in 3.1.1. These two structures serve as the base of

this research and by implementing these two structures in the FPGA platform, the issues

on the ASIC platform can be solved.

3.2 UART System Implementation

Due to limitations of the ASIC platform, it is difficult to expand the dimensions

of a training model in a faster manner and the data storage limitation constraints the

possibility of large models training.

In order to solve the limitations of the original implementation, the design of the

SVM is migrated to the FPGA. As a result, a UART system implementation is proposed

in the beginning.

30

3.2.1 Hardware Structure Overview

First, to implement the design in the FPGA, a UART communication is added

between the host computer and the FPGA for communication purpose, and the main

structure is modified for synthesizability difference in the FPGA. A host computer is the

user interface to communicate with the FPGA board, it is able to load the data for

training and receive the training result. On the other hand, the memory structure is

changed from SRAM structure to Block RAM.

The universal asynchronous receiver/transmitter system, which is known as the

UART system, is a common communication method between computer hardware

devices for data transfer [32]. The UART system transfers data by bits in sequence

according to the corresponding speed of bit transition for the receiver and the transmitter,

which is called baud rate. With the same speed between the transmitter and the receiver,

it is able to interpret the signal correctly.

Start

bit
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9

Stop

bit 1

Stop

bit 2

Figure 3.7 UART data frame

From Figure 3.7, the data frame of the UART transition process is shown, noted

that it only transfers 8 bits data at a time. Because the data storage in this design is a 32

31

bits fixed point format, it requires four transmission processes to transmit one sample

from the FPGA board to the host computer, the user interface, with UART

communication. On top of that, for this design, its baud rate is set as 115200 Bd, which

indicates the transfer speed of each bit. On the other hand, peripheral component

interconnect express, PCIe, is also a common transmission method with a high

transmission speed, which is 2.5 gigabits per second. However, it requires more

hardware device and setup requirement. The UART communication only requires 43

slices of registers, while the PCIe requires 673 slices of registers, which would increase

64.4% of the device utilization.

Aside from the UART implementation, the data storage of the FPGA

implementation is the Block RAM (BRAM) storage [33]. The BRAM is a configurable

memory module provided by Xilinx FPGA. It is memory storage with its data length and

storage size modifiable by the user.

Figure 3.8 Hardware structure in the FPGA with UART

Board (Top module) Host

Compute

UART

Communication

SVM training

module

Block RAM address

data

address

data

32

The hardware structure is shown as Figure 3.8. Firstly, a data set of the training

model is loaded in the BRAM, which is connected to the SVM training module. The

amount of BRAMs is same as the number of SVM units, because every SVM unit has its

own memory storage. The SVM training module is discussed in 3.1, both basic and

cascade SVM structures can be served as the SVM training module here.

After the SVM training module reports the convergence of the training process,

the top module disconnects the BRAM from SVM training module, and connects it to

the UART communication. That is, it reconnects the address input and data output from

the SVM module to the UART communication. The receiver in the UART

communication is connected with the address port of a BRAM, while the transmitter is

connected to the data output port of a BRAM. Therefore the final training results can be

read from the FPGA to the host computer.

After opening the serial port, it is able to send the address in four eight bits

unsigned integers according to the setup of UART, which is shown in Figure 3.7, and

saves the corresponding data. The receiving data is also interpreted from four eight bits

unsigned integers to its correct value, which is saved for the further verification.

In this research, it is implemented in the Xilinx Virtex-6 FPGA ML605

evaluation board. Upon this point with the basic structure of SVM, the device utilization

of a cascade SVM is around 1% of the FPGA, which gives flexibilities of expanding the

original design. On the other hand, because of that a basic SVM only has one SVM unit;

the device utilization is smaller than a cascade SVM. For a two cores cascade SVM

design, it requires 2187 slices registers while the total device has 301,440 slices registers.

33

More dimensions can be introduced for training. As a result, the two dimensions design

is expended to an eight dimensions design.

3.2.2 Multiple Dimensional Implementations

In order to expend dimensions, more registers are added as data storage and

multipliers are parallelized for different dimensions data computation, higher

dimensional data are able to be read in the training process, which is shown in Figure 3.9;

additional parts are highlighted compared with the original design in Figure 3.1.By

parallelizing the whole design makes training the training models with different

dimensions in one design possible as long as the dimensions are less than the maximum

dimensions. By setting the unused dimensions inputs as 0, it trains data sets without any

difference with a design of the exact dimensions setup.

34

Figure 3.9 An 8-dimension SVM unit.

The shape marks for the additional dimensions registers and multipliers compared with a

two dimensions SVM.

By replacing the SVM module in Figure 3.8 with a multiple dimensional SVM

unit in Figure 3.9, data sets over two dimensions is able to be trained in the FPGA.

Figure 3.9 shows that it still shares a similar structure with a two dimensions SVM unit.

To understand the overall device utilization, the distribution of a two dimensions SVM

unit implementation for the device utilization is shown as Figure 3.10. Most parts of the

device are contributed to the internal computation, while in the computation most of the

device is used in the multipliers, it requires 650 slices registers, the lookup table for the

Y

X1

X2

SVM

Multiplier

Multiplier

Computation

Lookup

Table

Address Generator

α

Multiplier

Multiplier

Multiplier

Multiplier

Multiplier

Multiplier

X3

X4

X5

X6

X7

X8

α

35

exponential control requires 110 slices registers, and the address generator requires 108

registers.

Figure 3.10 Slices registers of distribution for two dimensions SVM unit

The Figure 3.11 shows the area break down of the top module control, UART

communication and the SVM module. Most parts of the device are used for the SVM

module.

67.22%

11.38%

11.07%

10.34%

Slices Registers Distribution in a SVM Unit

Multipliers

Lookup Table

Address Generator

Other Computations

36

Figure 3.11 Slices registers distribution a two dimensions basic SVM FPGA

implementation

From Figure 3.12, it shows the trend of device utilization growth as the

dimensions increase. The higher dimensions it has, the more device it uses.

49 43

986
1044

Top module control UART control SVM module Total

Slices Registers Ditribution of FPGA Implementation

2 dimensions

37

Figure 3.12 Device utilization in different dimensions

Though it is able to train multiple dimensional training models with the FPGA

implementation, due to the UART communication between the host computer and the

FPGA, the limitation of huge data sets training still exists. The process of data training

itself has been speeded up, while the transfer speed of UART is slow for large data sets

training.

3.3 Memory Card System Implementation

To solve the transfer speed issue, a new system design is introduced as followed.

A 2G memory card (the compact flash card, CF card) is introduced into the design;

therefore it is able to obtain the data in a faster manner and increase the size of training

models that it is able to train.

1051
1350

1665

2187

2673

3497

0

500

1000

1500

2000

2500

3000

3500

4000

2 dimensions 4 dimensions 8 dimensions

Slices

Registers
Single SVM

Cascade SVM

38

3.3.1 Hardware Structure Overview

In order to manipulate a CF card in an easy manner, the Microblaze system is

introduced. A Microblaze system is a soft-core microprocessor for Xilinx FPGA, it is

able to control and interact with those features embedded in the FPGA according to the

user’s setup, including a CF card control [34]. The system bus between the Microblaze

system and other functions is the Advanced eXtensible Interface, AXI [35]. It is an

on-chip connection between functional blocks in the embedded system.

With the help of a Microblaze system, it is possible to interact with a CF card

with straightforward instructions in C, compared with the implementation in Verilog of

complex timing setup and signal exchange.

Figure 3.13 Hardware structure in the FPGA with the memory card

In Figure 3.13, a Microblaze system is used, which is connected with a CF card

control and a BRAM. The BRAM here, compared with the previous design, is working

Microblaze

(System

control)

System Bus

CF Card

(Memory

Card)

BRAM SVM

Base System
Top module

39

as a buffer rather than the data storage. In this design, the BRAM is a dual-port BRAM

that one port connects to the internal system bus, which is accessed by the Microblaze

system; the other port is set as an external port and connects the SVM module. The SVM

module is separated from the base system in order to have a different clock from the

Micorblaze; therefore its clock will not interact with other system structures in the base

system.

Figure 3.14 A BRAM buffer

The Figure 3.14 shows an insight of the BRAM buffer. Because the SVM unit is

indirectly connected with the base system, the start command and the convergence signal

are also stored in the BRAM buffer. Therefore the data storage is modified compared

with the previous design.

System

Bus

BRAM
SVM

Base System

Address

Data

Enable

Clock

Reset

Address

Data

Enable

Clock

Reset

40

Address Data Address Data

0 Y1 0 *

1 X1,1 1 Y1

: : : X1,1

8 X1,8 8 :

9 Y2 9 X1,8

10 X2,1 10 Y2

: : : X2,1

9×N α1 9×N :

9×N +1 α2 9×N +1 α1

Figure 3.15 Data storage change

The * place stores the communication signal, including numbers of data, start and reset

signal and converge signal.

From Figure 3.15, the left side represents the previous data storage order. The

data of a sample is stored as the following way, its classification and rest of the

dimensions data. After the whole data set is stored, α values are stored as the same order

with its corresponding sample. For the right side, to communicate with the base system,

the data set for training and its training results are moved for one storage space. With the

spare space, the number of whole data set is sent first, and the convergence signal is read

after the SVM module finishes training. On the other hand, if it is needed to start the

Before After

41

training process again with a new data set, the spare place is also used to give a restart

signal to start a new training process.

On the other hand, if it is a cascade SVM structure, the BRAM buffer is

multiplied according to the cores of the cascade SVM. That is, if it is a two cores

cascade SVM, it would have two BRAMs in the system; each core has its own buffer.

The data set is firstly stored in the CF card, and it is written into the BRAM buffer via

the Microblaze.

After a data set is trained by the external SVM module, it is read from the buffer

and written into the CF card again. If the intended data set is bigger than the size of the

buffer, the Microblaze system divides the original data set, trains certain data and saves

those outcomes first.

Figure 3.16 Data division in the Microblaze control

Microblaze Control

data BRAM buffers

Index storage

42

In Figure 3.16, the original data set is divided in the corresponding size of

BRAMs, and the index of a dividing point is saved for the next division. After the data

set is converged, the Microblaze control scans SVs from first round of training and write

to the buffer again, working as the cascade SVM. As a result, it is capable of training

data sets with the size constraint from a CF card instead of the size of BRAMs. However,

the dividing point is chosen in order regardless of the classifications, the subset may

become difficult to train compared with the original data set.

Though the memory card implementation provides the benefit of training a large

data set with bigger size than the BRAM storage, in order to save not only indexes of

separating points shown in Figure 3.16 but it also has to save all the indexes of SVs from

the previous training results, it requires additional storage to record indexes. Apart from

that, because this process is inside the Microblaze system and implemented in software,

it would reduce the execution efficiency.

Therefore to save as more time as possible, one way is to speedup the reading

process from a CF card to BRAMs. A subset is read firstly and the computation process

is started. The control system loads the data to another BRAM buffer during the training

process, which works as a dual buffers system. After those data are trained, SVM is able

to start another training process immediately without data loading. For the cascade SVM,

in order to have dual buffers, each core has two BRAM buffers. Therefore, for a two

cores cascade SVM, it has four BRAMs in the design instead of two.

In Figure 3.17, it depicts the overall training process; the data set is stored in a

CF card from the host computer, and it is read from a CF card after training. The data set

43

is stored in a text file and all of the samples are in a 32 bit binary form. However, for the

values in the training result, they are stored as integer numbers.

Figure 3.17 Data path

In this system the data transfer speed is no longer limited to UART system speed;

it only needs to read a CF card from the computer to get training results. Furthermore,

the data storage is no longer limited to the FPGA itself, it depends on the CF card

memory size that user chooses.

3.3.2 Experimental Setup of the FPGA

In this section, a detailed FPGA setup is addressed for further results studies in

section 4.3, which has experimental results for real world data sets.

In the setup of Microblaze system, apart from the Microblaze core and its cache,

the system advanced configuration environment, system ACE, is attached to the system

bus for a CF card control. The local memory size is set according to the Microblaze

Data.txt CF card

Alpha.txt

Microblaze

BRAM1

SVM

BRAM2

44

system control implementation. And BRAMs are added, the number of BRAMs is

determined by the SVM module used.

After the Microblaze system is set up and generated, the SVM module is

included in the top module of the base system. The SVM module connects to the BRAM

buffers, which is connected to the external ports from BRAMs. While everything is

connected, the design is exported to the software develop kit.

For the control system setup inside the Microblaze, a xilkernel is chosen. It

provides an easy and straightforward manner to control a CF card. By choosing the

xilfatfs configuration, the data control is implemented inside the Microblaze system.

Xilkernel is a small and robust kernel in the Xilinx FPGA, it is highly

customized and used for the higher level implementations [36]. Xilfatfs is one of the

features provided by xilkernel. It provides read and write functions to files stored on a

CF card. It supports the file systems of file allocation tables, FAT, from FAT12, FAT16,

to FAT32. With the help of xilkernel and xilfatfs, the design is implemented in the

Microblaze system.

Before the training process, the maximum training size has to be assigned by the

user according to the size of BRAMs set up in the previous process. And in the base

system, a stopping point is included to provide a checking method to avoid the data set is

impossible to converge caused by the data separation of Microblaze controller, it stops

the current training process and move to the next data set. Because the Microblaze

controller divides the data set according to the order stored in the memory card without

checking classifications, not all subsets would be as easy to train as the original data set.

45

3.4 Memory Improvement and Comparison

In the previous ASIC implementation, the total cache size of whole design is 8kB,

and it is divided to smaller private caches for the cascade SVM units. On the other hand,

with a large number of built-in BRAMs in the FPGA, the storage of data grows to 1872

kB. As a result, for the FPGA version with UART communication, it is able to train a

training model with a relative larger data set compared with the ASIC version. And with

the CF card version, the data storage grows to 2 GB, which has a significant growth in

the data amount of training.

However, if more dimensions data sets need to be handled, the storage will be

smaller. For an N dimensions sample, it requires N+2 32 bits storage. Because not only

does it have to store its N dimensions data, it also needs to store its classifications and α

values. The detail storage method is explained in Figure 3.14. As a result, the relation

between data size and dimensions is provided in Figure 3.18.

Figure 3.18 Possible data size in the built-in BRAMs

117000

78000
58500

46800

0

50000

100000

150000

0 2 4 6 8 10

Data size

Dimensions

46

Though this is inevitable, with a 2 GB CF card involved, it is still able to train a

large amount of data because the overall storage is about a thousand times larger than the

size of internal BRAMs with the help of Microblaze. In the chosen 2GB CF card in this

design, it requires 56.7 MB of storage for system files storage in order to become

accessible for the Microblaze system; however, it is relatively small compared with 2

GB, which only occupied about 2.84% of the storage.

In this section, two hardware implementations on the FPGA are illustrated, and

the implementation of both basic and cascade SVM units are explained. With the

implementation of these structures, the following experiments in the next sections are

conducted, which provides the insight of these implementations.

47

4. EXPERIMENTAL RESULTS

The SVM structure is designed in Verilog, and then it is generated by Xilinx

Platform Studio. Afterward, the design is implemented through translating, mapping,

placing and routing, and generating bitstream. In the end, it is configured to the Xilinx

Virtex-6 FPGA ML605 evaluation board.

4.1 Runtime Comparison

The runtime comparison is based on a software SVM solution implemented in

Matlab on an Intel core i5-3210M CPU in 2.5GHz. The FPGA implementation with the

UART system has the maximum frequency of 112.752 MHz for a single SVM and

80.369 MHz for the cascade SVM, while the system with memory card has the

maximum frequency in 104.976MHz for a single SVM and 72.844 MHz for the cascade

SVM. The runtime starts from the beginning of the training process, after data are all

loaded, and ends when the training process completes.

Apart from the timing analysis setup, to test the runtime with both FPGA

implementations, three two dimensions artificial data sets are chosen and trained in the

eight dimensions hardware structures. In order to verify the training results, these three

artificial data sets are designed with a specific hyperplane, and each of which has 50,

100 and 200 samples. The training results are obtained by Matlab through UART

communication in the UART version, and for the memory card version, results are saved

48

in the CF card. After training, results are verified in Matlab with the original data set and

the separating plane is generated in graph; Figure 4.1 is one of the training results.

Figure 4.1 A training result for a training model using a data set with 100 samples in

UART version of cascade SVM training

49

4.1.1 Hardware Speedup

From Figure 4.2, there is a big improvement in runtime between software and

hardware implementations. The software solution has a significant higher runtime

compared with the hardware version.

On the other hand, for the single and cascade SVM, the runtime difference is

more and more significant as the samples grow. The more detailed runtime is provided

in Table 4.2.

Figure 4.2 Runtime of 50, 100, 200 samples

0

5

10

15

20

25

50 100 200

Time (s)

Numbers of samples

Software SVM

Basic SVM

Cascade SVM

50

On the other hand, due to the similarity between training and classification

process, the hardware can be also used for the classification process. Both of basic and

cascade SVM use SVs from the original data set, therefore they have the same

classification process. With a testing data set with 50 samples and the basic SVM

classification, the classification time is shown in Table 4.1.

Training Data Set Number of SVs Time

50 samples 10 4.76 ms

100 samples 16 7.62 ms

200 samples 25 11.91 ms

Table 4.1 Comparison of classification time

From Table 4.1, it has shown the classification time is less than fifty

microseconds, on the other hand, the training process requires hundreds of microseconds

to train a data set. The classification process is faster than the training process unless the

testing data set is significantly large than the data set.

4.1.2 Basic and Cascade SVM Comparison

Table 4.2 gives a detailed runtime of all the testing data sets from Figure 4.2. As

discussed before, a big difference between the basic and cascade SVM has shown. From

section 2.2, a great speedup is introduced by using the cascade SVM compared with a

basic SVM. And take the data set with 200 samples for example; around 4.3x speedup of

51

a cascade SVM compared with a basic SVM, and it also enjoys a 23.5x speedup

compared with software SVM.

numbers of samples 50 100 200

Software 5.078 s 9.694 s 19.184 s

Hardware

Basic SVM 0.148 s 0.353 s 3.527 s

Cascade SVM 0.094 s 0.289 s 0.815 s

Table 4.2 Training runtime comparison

Apart from that, if more cores are involved in the cascade SVM, the training data

size of each layer will be reduced more. As a result, it is able to have a more significant

speedup if more cores are implemented.

4.2 Non-artificial Data Sets Training and Execution Time Comparison

Because both of systems are using the same SVM module, there is no difference

in accuracy of training results. From section 4.1, it shows the frequency difference

between the UART implementation and memory card implementation, which causes the

runtime difference during the training process. Apart from artificial data sets, the

following data sets are also tested. In order to transfer the relatively large amount of data

through UART in the Matlab interface, the transfer speed becomes longer than the

training process. For example, it takes 13.8 minutes to transfer 200 samples in the

52

Matlab interface, while the training process takes less than five seconds. As data sets

grow, the transmission time would become longer.

On the other hand, to verify the dual buffers system and avoid the overheat issue

caused by dual-ports BRAMs setup, the maximum samples for a BRAM to hold is set as

100 samples. Every implementation has a different constraint on BRAM samples

training due to different data paths and BRAM connections. If more BRAMs are

required in the design, the maximum BRAM size is reduced because more long data

paths are introduced. For a basic SVM without dual buffers, the maximum training data

size with lowest overheat issue is 64kB, while for a cascade SVM with dual buffers, the

size is reduced to 4kB. The results are obtained according to the following data sets. On

the other hand, the different accuracy between the basic and cascade SVM are not only

determined by the original data set division, but also effected by the Microblaze system

division. These data sets will be discussed in each sub section, and this section is mainly

focused on the execution time discussion between two kinds of hardware

implementations.

4.2.1 Pima Indians Diabetes Data Set

The Pima Indians Diabetes data set is tested, which has 796 samples in 8

dimensions [37]. These data are collected from the Pima Indians heritage, with all the

patients are female over 21 years old. Each sample has 8 dimensions and 1 classification;

those dimensions are medical facts of the patient, including numbers of pregnancy,

plasma glucose concentration, diastolic blood pressure, triceps skin fold thickness,

53

insulin, body mass index, diabetes pedigree function and age. With this data set, more

facts of the diabetes are shown.

On the other hand, it is also a widely used data set in machine learning

algorithms training. For example, a generalized discriminant analysis and a least square

SVM are used in order to find a more accurate way to identify the diabetes by using this

data set [38]. In this study, it also gives an overview of other training results of the Pima

Indians Diabetes data set. With other 60 training results of other algorithms, most of the

accuracies lie in a similar range, from 70% to 80%. And in that research, it is able to

achieve 82.05% of accuracy. For the basic SVM, it has 74.74% of accuracy, and for

cascade SVM, it has 73.70% of accuracy. From the training results, both of the training

methods reach similar training results as shown.

4.2.2 Vertebral Column Data Set

The Vertebral Column data set is also tested, which has 248 samples in 6

dimensions [39]. This data set is a medical data set to classify patients into two

categories of their health conditions: normal and abnormal, and its 6 dimensions have

the following information: pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius

and grade of spondylolisthesis. These data are based on the patients’ body movements to

know the health status of joints and bones. With the information, the patient’s body

structure is classified as normal or abnormal.

With this data set, a research of computer aided diagnosis systems is developed

[40]. In that research, it used the following learning algorithms to train the data sets,

54

including linear SVM, SVM of a kernel with moderate decreasing and a general

regression neural network. The conventional training process reaches around 85% of

accuracy; however, with the method proposed, it is able to reach around 96% of

accuracy, noted that the high accuracy is only achieved for the vertebral column testing.

The higher accuracy in the research is achieved by including the rejection techniques

into the diagnoses process, which gave a higher accuracy for the diagnosis of the

diseases with vertebral column.

By testing the data set in the FPGA, the following results are obtained. For the

single SVM, it has 87.10% of accuracy, and for cascade SVM, it has 88.71% of

accuracy.

4.2.3 Mammographic Data Set

Finally, the mammographic mass data set is tested, which has 961 samples in 5

dimensions [41]. This data set is about a mammography method that is used in the breast

cancer detection. The mammography is one of the most effective ways to diagnose with

breast cancer. Although by using mammography and creating an accurate result, it may

result in 70% of unnecessary biopsies. To solve this issue, computer aided diagnoses

methods are needed for physicians to test for the patients. This data set has the medical

data from patients and their mammography results. There are 5 dimensions, including

testing results, patients’ age, mass’ shape, mass’ margin, mass’ density. The

classification indicates whether the patient has cancer or not.

55

With this data set, it helped researchers to develop the computer aided methods

[41]. Two approaches are proposed from the previous research. One is based on the

decision-tree learning method, the other one is based on the case-based reasoning with

entropic distance measure, both of which reached around 80% in accuracy. Though

further research and clinical tests are needed, one of the advantages for these two

methods is their potential of the unnecessary breast biopsies reduction.

On the other hand, by testing the data set in the FPGA, we have the following

result. For the single SVM, it has 79.29% of accuracy, and for cascade SVM, it has

81.84% of accuracy.

4.2.4 Execution Time Discussion

From section 4.1, the frequency difference between the UART implementation

and the memory card implementation has shown. To understand the execution time

difference, the first benchmark, the Pima Indians diabetes data set is used for the

analyses, the following discussion is based on its training process.

Firstly, in the UART implementation, to transfer a sample from the FPGA board

to the host computer, it takes 4.142 second to read one sample through Matlab function.

The reading process is implemented through Matlab software for further storage and

computation. However, most of the execution time is spent in the serial port connection

with the software, which takes 4.131 seconds. The data transfer itself only takes 11.85

milliseconds for writing the address and receiving the sample. With the Matlab

56

communications, it takes 3297.43 seconds to transfer 796 samples, which is the amount

of the first benchmark.

By considering only the UART communication process of the data set

transmission, it requires writing 7960 samples into the FPGA board and reading 796

samples to the host computer. The execution time distribution is shown in Figure 4.3.,

where the transmission time for data transfer takes 21.52% of the whole process.

Figure 4.3 Execution time distributions in UART implementation for benchmark 1

On the other hand, by using the memory card implementation, the transmission

time can be reduced, which is no longer constrained to the UART transmission. It takes

105.03 seconds of overall execution for the memory card implementation to train

13.52%

78.71%

8%

UART Execution Time

Data In Computation Data Out

57

benchmark 1. Most of the time is spent on the computation itself, which is inevitable for

the overall training process. And it only takes 0.14 seconds to read the data set from the

CF card to BRAMs, and 2.28 seconds to write it back.

From Figure 4.4, the time distributions of the memory card implementation is

shown. Compared with Figure 4.3, there is a great difference in the execution time

distribution. Also from section 4.1, it indicates the training time for the UART

implementation is slightly faster than the memory card implementation. However, the

UART transmission speed puts a limit on it.

Figure 4.4 Execution time distributions in memory card implementation for benchmark 1

0.14%

97.70%

2.17%

Memory Card Execution Time

Data In

Computation

Data Out

58

From the previous discussion, the memory card implementation enjoys a better

execution time compared with the UART implementation. On the other hand, in order to

see the difference, Figure 4.5 shows a side-by-side comparison between each other. In

the data out column, it determines the greatest difference of the execution time. For the

overall execution time, the memory card implementation has a 1.5 times speedup

compared with the UART implementation, in which the data transfer time contributes

10.68 times speedup.

Figure 4.5 Execution time comparisons for benchmark 1

On the other hand, to take advantage of most of the execution time is in

computation of the memory card implementation, the dual buffers system is introduced.

16.42

95.56

9.43

2.28

102.61

0.14

16.42

28.89

9.43

2.28

31.88

0.6

0 20 40 60 80 100 120

Data Out

Computation

Data In

Time (s)

CF Card(Cascade) UART(Cascade) CF Card(Basic) UART(Basic)

59

By loading in the next data set during the computation process, it is able to save more

time because the computation and the data loading process are overlapped.

From Table 4.3, the speedup of different benchmarks has presented, the average

speedup is different due to that every benchmark has different number of the samples,

where benchmark 1 has 796, benchmark 2 has 248, and benchmark 3 has 961. From

Table 4.3, it indicates that the more samples a data set has, the faster the speedup can

achieve.

Without Dual Buffers With Dual Buffers

Basic Cascade Basic Cascade

 2-cores 4-cores 2-cores 4-cores

Benchmark1 110.34 s 52.32 s 25.91 s 105.03 s 49.06 s 21.73 s

Benchmark2 43.25 s 37.85 s 12.46 s 41.27 s 33.72 s 12.46 s

Benchmark3 144.68 s 66.80 s 38.61 s 131.25 s 57.90 s 30.72 s

Table 4.3 The memory card implementation execution time

With the dual buffer system implementation, the execution time is reduced. By

observing the speedup from Figure 4.3, it has shown that if a data set has fewer samples

during one training process, it would benefit more from the dual buffer speedup in the

whole training process. From benchmark 3, the dual buffers speedup for a basic SVM

training is 9.28%, while the 4-core cascade SVM training is 20.44%.

60

From the previous discussion, a speedup has shown from migration of the design

from UART implementation to memory card implementation. On the other hand, by the

dual buffer method, it is able to reach a faster training process.

4.3 Device Utilization and Power/Energy Consumption

For device utilization, the memory card system implementation occupied more

device compared with the UART system implementation. Table 4.4 shows the device

utilization for hardware implementations of two designs. From Table 4.4, it shows that

the memory card implementation requires more device usage, because the memory card

implementation has the Microblaze system for the memory card control, which occupies

most of the device.

UART Slices Registers LUTs Occupied Slices LUT Flip Flop

Basic SVM 1655 2647 918 3120

2-core SVM 3497 6025 2125 7119

Memory card Slices Registers LUTs Occupied Slices LUT Flip Flop

Basic SVM 7257 9189 3647 10884

2-core SVM 9540 13136 5301 15602

Table 4.4 Device utilization

In Table 4.5, it has shown the device utilization without a Microblaze system.

Regardless the device occupied by the Microblaze system which has 5622 slices of

registers, the top module only occupied 12 slices registers, the SVM unit dominants the

61

size of device utilization, which has 1623 slices registers, while it shares the same

structure as the SVM implementation with the UART communication, which is shown

in Figure 3.8. Although it has a significant growth in device utilization from UART

implementation to the memory card implementation, it is still a relative small design

compared with the whole FPGA.

Memory card Slices Registers LUTs Occupied Slices LUT Flip Flop

Basic SVM 1635 2469 832 3129

2-core SVM 3595 6531 2247 7529

Table 4.5 Device utilization without the Microblaze system

On the other hand, the cascade SVM requires more power compared with a

single SVM implementation. Therefore, with more device used, more power are required

to perform the implementation. The power of these two implementations is reported in

Table 4.6.

The power report is generated from Xilinx XPower Analyzer, not only does it

provide the power consumption of the design, but it also provides the maximum working

temperature. With the experiment results from benchmark 1, the following comparison

between basic and cascade SVM is shown in Table 4.6.

62

 Power Execution Time Energy

Basic SVM 4095.45 mW 110.34 s 451.892 J

Cascade SVM 4152.44 mW 52.32 s 217.2557 J

Table 4.6 Power and energy comparisons

From Table 4.6, it has shown that by reducing the execution time through

different algorithms, the energy is able to be reduced significantly.

From the above device utilization and power comparison, though the cascade

SVM requires more resource compared with a basic SVM, the cascade SVM has a better

energy reduction compared with a basic SVM.

63

5. SUMMARY AND CONCLUSIONS

5.1 Summary and Conclusions

This thesis proposed a hardware implementation of the cascade SVM algorithm.

From the previous discussion, the hardware implementation has shown contributions in

technology and science research of a basic SVM algorithm in classifications of machine

learning algorithms. By eliminating non-SVs at an early stage, the cascade SVM is a

faster method compared with a single SVM.

On the other hand, by comparing hardware and software implementations, it

shows the benefits of implementing the design in hardware. However, even an ASIC

implementation of the cascade SVM has been proposed, there are still some limitations

of it.

To break the limit, the design is implemented in the FPGA. In the FPGA version,

it is a more flexible structure that can easily increase the dimensions of training models.

The dimensions of training models for training are increased from two dimensions to

eight dimensions. Moreover, by introducing the Microblaze system and a large storage

memory card, the maximum data storage size is increased from 8 kB to 2 GB, which

gives the potential for larger data sets training. Apart from that, it has the benefit of

hardware implementations in terms of runtime comparison with software

implementations. That is, it has approximately 23x speedup compared with software

implementations for a two dimensions data set in a training model with 200 samples.

64

In sum, the hardware implementation has a better performance in runtime

compared with the software implementations. With the FPGA version, it is also able to

train multiple dimensional models and work with more samples in a faster manner. By

the fast configuration characteristic of the FPGA, it is possible to modify the design to fit

in higher dimensional training models compared with the ASIC design.

5.2 Future Work

Though in this thesis, it has the contributions discussed in previous section, there

are still some limitations need to be improved.

In the memory card implementation, to train a large data set over the size of

BRAMs, the base system divides the data set according to the order without checking the

classification distribution in the subsets may reduce the accuracy of the training process.

On the other hand, due to the long data path from SVM units to the Microblaze system

control, which may cause an overheat issue if the BRAM size is relatively big.

The FPGA implementation of the SVM provides a faster way for training and

more flexibility to modify the structure in the future. With characteristics of the FPGA,

the FPGA is able to reconfigure the hardware in a faster way. Therefore, it is easier to

reach a high dimensional models training in the future. More dimensions are able to be

added in the current structure by adding the input storage registers and the corresponding

multipliers. Aside from the dimensions growth, the number of classifications may also

be increased in the future. With higher numbers of classifications, it is possible to deal

with more training models in hardware implementations.

65

If the above improvements have been done, the hardware implementation of the

cascade SVM is able to be more practical and useful for the research works or other

needs of SVMs.

66

REFERENCES

[1] Mathews, J.D., et al., Cancer risk in 680,000 people exposed to computed

tomography scans in childhood or adolescence: data linkage study of 11 million

Australians. BMJ, 2013. 346: p. f2360.

[2] Hales, S., et al., Potential effect of population and climate changes on global

distribution of dengue fever: an empirical model. The Lancet, 2002. 360(9336): p.

830-834.

[3] Wang, Y., et al., Gene selection from microarray data for cancer classification--a

machine learning approach. Comput Biol Chem, 2005. 29(1): p. 37-46.

[4] Kubat, M., R.C. Holte, and S. Matwin, Machine learning for the detection of oil

spills in satellite radar images. Machine Learning, 1998. 30(2-3): p. 195-215.

[5] Huang, G.-B., Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: a new

learning scheme of feedforward neural networks. in Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference on. 2004. IEEE.

[6] Berral, J.L., et al. Towards energy-aware scheduling in data centers using machine

learning. in Proceedings of the 1st International Conference on energy-Efficient

Computing and Networking. 2010. ACM.

[7] Wang, Q., P. Li, and Y. Kim, A Parallel Digital VLSI Architecture for Integrated

Support Vector Machine Training and Classification. IEEE Transactions on Very Large

67

Scale Integration (VLSI) Systems, 2015. 23(8): p. 1471-1484.

[8] Guyon, I. and A. Elisseeff, An introduction to variable and feature selection. Journal

of Machine Learning Research, 2003. 3(Mar): p. 1157-1182.

[9] Segal, M.R., Machine learning benchmarks and random forest regression. Center for

Bioinformatics & Molecular Biostatistics, 2004.

[10] Mantel, N., The detection of disease clustering and a generalized regression

approach. Cancer Research, 1967. 27(2 Part 1): p. 209-220.

[11] Yuan, G.-X., C.-H. Ho, and C.-J. Lin, Recent advances of large-scale linear

classification. Proceedings of the IEEE, 2012. 100(9): p. 2584-2603.

[12] Zhang, T. and F.J. Oles, Text categorization based on regularized linear

classification methods. Information Retrieval, 2001. 4(1): p. 5-31.

[13] Wang, S.-C., Artificial neural network, in Interdisciplinary Computing in Java

Programming. 2003, Springer, New York. p. 81-100.

[14] Zhou, Z.-H., et al., Lung cancer cell identification based on artificial neural

network ensembles. Artificial Intelligence in Medicine, 2002. 24(1): p. 25-36.

[15] Furey, T.S., et al., Support vector machine classification and validation of cancer

tissue samples using microarray expression data. Bioinformatics, 2000. 16(10): p.

906-914.

68

[16] Tong, S. and E. Chang. Support vector machine active learning for image retrieval.

in Proceedings of the ninth ACM international conference on Multimedia. 2001. ACM.

[17] Genov, R. and G. Cauwenberghs, Kerneltron: support vector" machine" in silicon.

IEEE Transactions on Neural Networks, 2003. 14(5): p. 1426-1434.

[18] Kucher, P. and S. Chakrabartty. An energy-scalable margin propagation-based

analog VLSI support vector machine. in 2007 IEEE International Symposium on Circuits

and Systems. 2007. IEEE.

[19] Kuan, T.-W., et al., VLSI design of an SVM learning core on sequential minimal

optimization algorithm. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 2012. 20(4): p. 673-683.

[20] Anguita, D., A. Boni, and S. Ridella, A digital architecture for support vector

machines: theory, algorithm, and FPGA implementation. IEEE Transactions on Neural

Networks, 2003. 14(5): p. 993-1009.

[21] Papadonikolakis, M. and C.-S. Bouganis, Novel cascade FPGA accelerator for

support vector machines classification. IEEE Transactions on Neural Networks and

Learning Systems, 2012. 23(7): p. 1040-1052.

[22] Catanzaro, B., N. Sundaram, and K. Keutzer. Fast support vector machine training

and classification on graphics processors. in Proceedings of the 25th international

conference on Machine learning. 2008. ACM.

69

[23] Bauer, S., et al. FPGA-GPU architecture for kernel SVM pedestrian detection. in

2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition-Workshops. 2010. IEEE.

[24] Cortes, C. and V. Vapnik, Support-vector networks. Machine Learning, 1995. 20(3):

p. 273-297.

[25] Shawe-Taylor, J. and N. Cristianini, Kernel methods for pattern analysis. 2004:

Cambridge University Press, Cambridge, United Kingdom.

[26] Kang, K. and T. Shibata, An on-chip-trainable Gaussian-kernel analog support

vector machine. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010.

57(7): p. 1513-1524.

[27] Platt, J.C., 12 fast training of support vector machines using sequential minimal

optimization. Advances in kernel methods, 1999: p. 185-208.

[28] Kuhn, H.W., Nonlinear programming: a historical view, in Traces and Emergence

of Nonlinear Programming. 2014, Springer, Basel. p. 393-414.

[29] Luo, Z.-Q. and W. Yu, An introduction to convex optimization for communications

and signal processing. IEEE Journal on selected areas in communications, 2006. 24(8):

p. 1426-1438.

[30] Graf, H.P., et al. Parallel support vector machines: The cascade svm. in Advances

in neural information processing systems. 2004.

70

[31] Ramírez, J., et al., Parallelization of automatic classification systems based on

support vector machines: Comparison and application to JET database. Fusion

Engineering and Design, 2010. 85(3): p. 425-427.

[32] Bell, C.G., J.C. Mudge, and J.E. McNamara, Computer Engineering: A DEC View

of Hardware Systems Design. 2014: Digital Press: p. 73.

[33] Xilinx, IP Processor Block RAM (BRAM) Block (v1.00a), accessed on 06/2016

http://www.xilinx.com/support/documentation/ip_documentation/bram_block.pdf

[34] Xilinx, Using the MicroBlaze Processor to Accelerate Cost-Sensitive Embedded

System Development, accessed on 06/2016

http://www.xilinx.com/support/documentation/white_papers/wp469-microblaze-for-cost

-sensitive-apps.pdf

[35] Xilinx, AXI Reference Guide, accessed on 06/2016

http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_

guide.pdf

[36] Xilinx, Xilkernel, accessed on 06/2016

http://www.xilinx.com/ise/embedded/edk91i_docs/xilkernel_v3_00_a.pdf

[37] Smith, J.W., et al. Using the ADAP learning algorithm to forecast the onset of

diabetes mellitus. in Proceedings of the Annual Symposium on Computer Application in

Medical Care. 1988. American Medical Informatics Association: p. 261.

71

[38] Polat, K., S. Güneş, and A. Arslan, A cascade learning system for classification of

diabetes disease: Generalized discriminant analysis and least square support vector

machine. Expert Systems with Applications, 2008. 34(1): p. 482-487.

[39] Sousa, R., B. Mora, and J.S. Cardoso. An ordinal data method for the classification

with reject option. in Machine Learning and Applications, 2009. ICMLA'09.

International Conference on. 2009. IEEE.

[40] Neto, A.R. and G. Barreto, On the application of ensembles of classifiers to the

diagnosis of pathologies of the vertebral column: A comparative analysis. IEEE

Transactions on Latin America, 2009. 7(4): p. 487-496.

[41] Elter, M., R. Schulz-Wendtland, and T. Wittenberg, The prediction of breast cancer

biopsy outcomes using two CAD approaches that both emphasize an intelligible decision

process. Medical Physics, 2007. 34(11): p. 4164-4172.

