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ABSTRACT 

 

 Antimicrobial peptides (AMP) are involved in many biological processes owing 

to their ability to interact with the cell membranes. The aim of many biophysical 

methods is to understand the mechanism of AMP function such that their bioactivities 

can be tailored for therapeutic purposes. There is no single experimental technique that 

can provide a complete understanding of the mechanism of AMP-bilayer interactions; 

however, this emphasizes the necessity for a combination of techniques in order to 

provide a more complete view of cellular processes. In this study, ion mobility mass 

spectrometry (IM-MS) is coupled with isothermal titration calorimetry (ITC) to study the 

interaction between antimicrobial peptide gramicidin A (GA) with lipid bilayer as well 

as between antimicrobial peptide gramicidin S (GS) with lipid bilayer. IM-MS can probe 

the membrane bound structure of GA and the conformer preferences of GA can be 

influenced by the physical properties of lipid comprising the bilayer. The information 

obtained from IM-MS is limited to investigation into structural changes of the peptide 

and the effects of the peptide on surrounding lipids remain to be resolved. Here, ITC is 

used as a complementary technique to elucidate the lipid-peptide interactions. ITC is 

capable of providing a thermodynamic description of the entire binding process of GS to 

various lipid bilayer model membranes. The thermodynamics of the binding of GS can 

be affected by the properties of the bilayer, thus it is possible to incorporate small 

molecules that affect the bilayer physiochemical properties, such as cholesterol, or 

peptide like GA into the bilayer and study how the presence of these molecules affects 
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the thermodynamics of GS binding. Also, since the conformer preferences of GA in 

membrane is sensitive to the lipid structure and composition, and the conformational 

changes of GA can be probed by IM-MS, it is also possible to use GA as a “reporter” to 

investigate how binding of GS changes the lipid environment. The mechanism of GA 

and GS interaction with lipid bilayer can thus be elucidated through combining the 

information obtained from ITC with that from IM-MS. 
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NOMENCLATURE 

 

AMP antimicrobial peptide 

GA Gramicidin A 

GS                               Gramicidin S 

IM-MS Ion Mobility Mass Spectrometry 

VCFD                         vesicle capture-freeze-drying  

CCS                            Collision Cross Section 

ITC Isothermal Titration Calorimetry 

ESI                              Electrospray Ionization 

POPC                          1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

POPG                          1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'-         

                                    rac-glycerol) 

DLPC                          1,2-dilauroyl-sn-glycero-3-phosphocholine 

DMPC                         1,2-dimyristoyl-sn-glycero-3-phosphocholine 

DEPC                          dielaidoylphosphatidylcholine 

SSHH                          single stranded head-to-head dimer 

PDH                            parallel double helix 

ADH                           antiparallel double helix 

N                                 binding stoichiometry 

Ka                                binding constant 

Kd                                    dissociation constant 
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ΔH                               binding enthalpy 

ΔS                                binding entropy 

Bmax                             maximal binding capacity 
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CHAPTER I 

INTRODUCTION 

 

 Membrane-active peptides are attracting a growing interest since they are 

involved in many crucial biological processes. Antimicrobial peptides (AMPs) are a 

large family of membrane active peptides that exhibit a broad range of bioactivities, i.e., 

disturb bilayer integrity either by disruption of pore formation.
1
 They are an important 

class of peptides owing to their ability to lyse bacterial cell walls. For many natural 

AMPs, they act by disrupting the integrity of cell membranes through strong interactions 

with phospholipid bilayers. Currently, AMPs (e.g., Cecropins,
2
 Melittin,

3
 and 

Gramicidins
4
) have been used as drug candidates against many diseases since they 

exhibit a variety of antibiotic activities. As the widespread increase in antibiotic 

resistance of bacteria and fungi becomes a growing human-health related problem, it is 

of paramount important to understand the structure-function relationship of these 

peptides, which allow us to design peptide analogues with tailored functionalities.
1,5

 

             To understand the functional mechanism of the interaction between AMPs and 

membranes, several issues need to be addressed such as secondary structure, orientation, 

oligomerization and localization of AMPs associated with the lipid bilayer. At the same 

time, the effects of the insertion/binding of AMPs to membranes on the physico-

chemical properties of lipid bilayers also need to be elucidated.
1
 Several biophysical 

techniques have been developed to study the membrane-peptide systems, i.e., 

fluorescence,
6
 electron paramagnetic resonance spectroscopy (EPR),

7
 infrared 
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spectroscopy (IR),
8
 circular dichroism (CD),

9
 surface plasmon resonance (SPR),

10
 X-

ray,
11

 and NMR
12,13

 have been used to characterize the dynamics and structure of 

peptides and lipids upon binding. Computational methods have also been widely used 

for studying peptide-membrane interactions.
14,15

 The combination of different 

biophysical studies of membrane interacting peptides can provide complementary 

information, however, each technique has its own limitation: EPR requires the sample to 

be chemically modified which is laborious and may influence its behavior in the 

hydrophobic environment;
16

 For X-ray diffraction, it is hard to get detailed insights into 

peptide-membrane systems because of the lack of long-range crystalline order;
11

 NMR 

usually takes a long data acquisition time and high quantities of sample, and the spectral 

complexity makes the data analysis difficult and time consuming.
12,13

 As a result, the 

structural characterization of membrane active peptides in the lipid bilayer is always a 

harsh experimental challenge.  

            Gramicidin A (GA) is a linear antimicrobial peptide that can form ion-conducting 

channels across membranes.
17

 The amino acid sequence of GA is: HCO-L-Val-Gly-L-

Ala-D-Leu-L-Ala-D-Val-L-Val-D-Val-L-Trp-D-Leu-L-Trp-D-Leu-L-Trp-D-Leu-L-Trp-

NHCH2CH2OH.
18

 The lack of basic residues in the sequence makes GA extremely 

hydrophobic and almost insoluble in water. Additionally, alternating L- and D- amino 

acids results in the side chains protruding from the same side of the molecules, 

contributing to its low solubility in water.
19

 It has been proposed from early NMR 

studies that a channel is formed by head-to-head dimerization of two GA monomers, 

each in a single stranded helical conformation.
20

 More recent NMR studies revealed that 
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head-to-head dimers may not be the only conformations of GA in membranes, small 

amounts of double helices or other conformations may coexist with the head-to-head 

dimer.
21

 Owing to the similar physical characteristics of the different conformations of 

GA dimer, distinguishing between these structures is difficult.
22

 As a result, the extent of 

structural heterogeneity of GA dimers in lipid bilayers remains unresolved. 

            Patrick et al. have demonstrated that ion-mobility mass spectrometry (IM-MS) is 

a novel method that can probe the membrane-bound structure of GA.
23

 Here, a novel 

sample preparation method, vesicle capture-freeze-drying (VCFD) is coupled with IM-

MS to preserve the membrane-bound structure of GA. The lipid vesicles are prepared in 

the presence of GA such that hydrophobic GA molecules are entrapped in the lipid 

bilayers. The vesicle samples with GA bounded are then resuspended in isobutanol prior 

to be analyzed by IM-MS. Using this method, different conformations of GA dimers can 

be resolved from the collision cross section (CCS) profiles. It has been shown that there 

is a significant abundance of antiparallel double helices (ADH) and parallel double 

helices (PDH) that coexist with the single-stranded head-to-head dimer (SSHH) and the 

conformer preferences of GA dimers are sensitive to the physical properties of the lipid 

composing the bilayer, i.e., acyl chain length and degree of unsaturation.
23

 This suggests 

that to some extent, the membrane-bound conformations of GA dimers can be preserved 

when transferred from solution-phase into the gas-phase.  

            IM-MS alone does not provide information for the complete structural picture of 

the interaction between GA and the lipid vesicles. Only the conformational distribution 

of GA dimers can be probed by IM-MS, other information such as the location of GA 
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associated with the membrane, whether it is inserted into the membrane or floating on 

the surface of the membrane remains unclear. It is necessary to combine IM-MS with 

other techniques to fully elucidate GA-lipid interactions. Here, isothermal titration 

calorimetry (ITC) is selected as a complementary technique to IM-MS in characterizing 

the interaction between antimicrobial peptides and lipid vesicles. There are several 

advantages when using ITC: (i) the high sensitivity of ITC allows measurements of the 

binding of peptide solutions to lipid bilayers in micromolar concentration range; (ii) 

nearly all the chemical processes are accompanied by the absorption or release of heat, 

removing any necessity for chemical labeling; (iii) ITC can provide binding isotherms, 

which can be fit with a specific binding model to generate thermodynamic parameters.
24

  

            Gramicidin S (GS) is a cationic cyclic antimicrobial peptide that exhibits high 

lytic activity against a broad spectrum of both Gram-positive and Gram-negative 

bacteria. The GS molecule is amphiphilic, having two polar and charged Orn side chain 

and two D-Phe in the ring as well as four hydrophobic Val and Leu side chains. Previous 

studies revealed that GS lyses bacteria by permeabilizing and destabilizing their inner 

membranes.
25

 A number of biophysical studies have been carried out to determine the 

molecular mechanism of the action of GS. Abraham et al. have shown that ITC is 

capable of providing a thermodynamic description of the whole binding process of GS to 

various lipid bilayer model membrane systems.
26

 The binding isotherm could be 

described by a one-site binding model. They used ITC to study the binding between GS 

and lipid vesicles composed of the zwitterionic lipid POPC or the anionic lipid POPG, 

with and without cholesterol. The results revealed that the binding is primarily entropy-
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driven with a positive TΔS value. POPG can bind to GS with both a higher binding 

affinity and a higher binding capacity than POPC. This is not surprising, as the 

electrostatic interactions between positively charged residue (Orn) and negatively 

charged glycerol headgroups on POPG should facilitate peptide binding. The presence of 

cholesterol reduced the binding, which can be explained by a hindered penetration into 

the cholesterol-containing membrane due to restricted flexibility of the tightly packed 

hydrocarbon chains.
27

 

           Since the binding process of GS can be affected by the composition of the 

membranes, it is possible to incorporate GA into the bilayer to study how the presence of 

GA affects the binding of GS, thus providing information on how GA affects the 

physicochemical properties of the lipid. On the other hand, since the conformation of 

GA is dependent on the lipid environment, we propose that we could also use GA as a 

“reporter” to investigate how the binding of GS affects the lipid environment. The 

changes in the conformer preferences of GA in the lipid vesicles induced by the binding 

of GS should provide information on how GS binding affects the structure and properties 

of the lipid bilayers. In this study, IM-MS coupled with ITC is utilized to characterize 

the interactions between GA and lipid bilayer model system as well as between GS and 

lipid bilayer model system. 
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CHAPTER II 

METHODS

 

 

Lipid vesicle preparation  

            POPC lipids were acquired from Avanti Polar Lipids, Alabaster, Alabama, USA. 

For lipid vesicles containing cholesterol, POPC and cholesterol were co-dissolved in 

chloroform, whereas for lipid vesicles with no cholesterol, lipids were solely dissolved 

in chloroform. In both cases, lipid concentrations were 20 mg/ml. Aliquots containing 

10-20 mg lipid were portioned out into small vials, dried under N2 gas to remove 

chloroform and form thin lipid films. The lipid films were rehydrated with 1.0 ml of 18.0 

MΩ water to yield lipid concentrations of 10-20 mg/ml (13.2-26.3 mM). Samples were 

sonicated 30 minutes at room temperature (above -4 °C, lipid transition temperature for 

POPC) to yield large multilamellar vesicles (MLV), wherein lipid bilayer were layered 

around each other and separated by layers of water.
28

 The lipid suspensions were then 

freeze-thawed 8 times and forced through a polycarbonate filter with a pore size of 100 

nm to yield large unilamellar vesicles (LUV) with a diameter near the pore size. The 

extrusion was also performed at room temperature. Abraham et al. used POPC LUVs 

with a diameter of 200 nm in the ITC studies.
25,26

 Here, LUVs with a diameter of 100 nm 

were prepared in order to increase the liposome stability, which decreases with 

                                                 

 Part of this chapter is reprinted with permission from “Elucidation of conformer preferences for a 

hydrophobic antimicrobial peptide by vesicle capture-freeze-drying: a preparatory method coupled to ion 

mobility-mass spectrometry” by Patrick, J. W.; Gamez, R. C.; Russell, D. H, 2015. Anal Chem, 87, 578-

583, Copyright 2014 by American Chemical Society. 
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increasing lipid vesicle size.
29

 Also, cholesterol was included in the lipid vesicles in 

order to modify the physicochemical properties of the lipid bilayer and investigate its 

effect on the binding process. 

Vesicle Capture-Freeze-Drying (VCFD) 

 

            GA peptide was purchased from Sigma-Aldrich St. Louis, Mo, USA and 

dissolved in ethanol with a concentration of 4.8 mg/ml. Samples of POPC lipid with a 

concentration of 10-20 mg/ml in chloroform and gramicidin A in ethanol were combined 

at a molar ratio of 100:1, dried under N2 gas until solvent was removed. Lipid vesicles 

were then prepared as previously described in lipid vesicle preparation. Since the lipid 

vesicles were prepared in the presence of GA, the GA molecules was entrapped into the 

lipid bilayers owing to the extremely hydrophobic character of the GA peptide. After the 

lipid vesicles loaded with GA were formed, the solutions were allowed to incubate at 4 

°C overnight. The vesicle/GA samples were then freezed-dried using liquid nitrogen and 

a vacuum desiccator to remove water. After that, the samples were rehydrated with 

isobutanol for ESI-IM-MS analysis (Figure 1).
23

  

 

 

Figure 1.  Vesicle Capture-Freeze-Drying (VCFD) 
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Isothermal Titration Calorimetry (ITC) 

            ITC is a biophysical technique that can provide a thermodynamic description for 

a binding process. ITC can provide binding isotherms, which can be fit with a specific 

binding model to generate thermodynamic parameters. The raw data obtained through 

multiple injections, as shown in the upper panel of Figure 2 (each spike in heat given off 

denotes an injection), can be integrated to generate the binding isotherm shown in the 

lower panel of Figure 2, from which the binding affinity Ka (determined by the slope of 

the binding isotherm), binding stoichiometry N (reflection point) and the observed 

binding enthalpy ΔH (maximum amplitude) can be extracted.
24

  

            ITC consists of a micro-syringe for sample injections, as well as a sample cell 

and a reference cell (Figure 3). The binding between a protein and a ligand is measured 

by loading the sample cell with protein solution and the micro-syringe with ligand 

solution. During the titration, a small amount of the ligand solution is injected into the 

sample cell through the micro-syringe. The heat absorbed or released upon binding of 

the protein with ligand is measured using an electronic feedback system which keeps the 

reference and sample cells at the same temperature. No heat change occurs in the 

reference cell as it contains only water. If there is an exothermic binding reaction in the 

sample cell, a reduction in heating power occurs to minimize the temperature difference 

between the sample and reference cells. Conversely, an endothermic reaction requires an 

increase in heating power. The instrument is highly sensitive and can measure heats of 

reaction of ~1 µcal.
30
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Figure 2. Results of a characteristic titration experiment (upper panel) with the 

associated data analysis (lower panel). 
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           The shape of the binding isotherm is determined by several critical parameters 

which includes initial protein concentration in the sample cell, Mp, the binding constant, 

Ka, and the binding stoichiometry parameter, N. Wiseman et al.has derived the following 

equation to help in the design of ITC experiment: c = N∙ Mp∙ Ka. Higher c values result 

in titration curves that are too steep to resolve Ka accurately, whereas lower c values 

results in shallow titration curves from which all three parameters N, Ka and ΔH are 

poorly resolved (Figure 4). To determine the three parameters accurately, it is 

recommended to perform the ITC experiment where 20 < c < 100.
31

 For high affinity 

interactions (high Ka), ITC should be performed at low concentrations; whereas for low 

Figure  3.  Schematic representation of an isothermal titration calorimeter 
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affinity interactions (low Ka), ITC should be performed at high concentrations. If the 

binding affinity is unknown, several different concentrations of peptide solution should 

be prepared in order to determine the best experimental condition where the three 

parameters can be well resolved. At the same time, the ligand concentration in the 

syringe should be increased with increasing protein concentration in the sample cell in 

order to keep the same protein/ligand molar ratio where saturation occurs within the first 

third to half of the titration. 
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Figure 4. The shape of the binding isotherm as a function of the c-value 
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Ion Mobility Mass Spectrometry (IM-MS) 

              Ion mobility is a technique that can separate gas phase ion based on their size 

and shape. When IM-MS analysis is being performed, the protein or peptide of interested 

is first ionized by nano-electrospray ionization. After ionization, protein or peptide ions 

are injected into a drift cell which contains neutral gas at a controlled pressure. The 

neutral gas is typically nitrogen or helium. Ions will then undergo IM separation under 

the influence of a relatively weak electric field. For ions with larger shape and size, they 

will experience more collisions with the neutral gas and thus need more time to travel 

through the drift cell than smaller ions. Therefore, ions with different size and shape will 

be separated according to their ion-neutral collision cross-section (Ω). Also, ions with 

higher charge state will experience stronger electric field strengths and will migrate 

through the drift cell more quickly than ions with lower charge state. The following 

equation can be used to convert drift times (tD) into collision cross-section (Ω output in 

m
2
): 

Ω =                                                             (1) 

 

where kb is the Boltzmann constant, z is the ion charge, e (C) is the elementary charge, 

mI is the mass of the ion, mN is the mass of the neutral gas (both in kg), E is the electric 

field strength (V/m), L is the length of the drift region (m), P is pressure (torr), T is 

temperature (Kelvin), tD is drift time (seconds, corrected for time spent outside the drift 

cell) and N is the neutral gas number density (m
-3

).
32

  

             The coupling of ion mobility with mass spectrometry is referred to as ion 

mobility-mass spectrometry. Thousands of mass spectra can be obtained for each ion 
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mobility spectrum producing a two-dimensional array in which both mobility and mass 

of ions are recorded. One unique feature of IM-MS spectra is that they often exhibit a 

mass-mobility correlation for classes of ions. These mass-mobility correlations are 

commonly called ‘trend lines’. This feature allows it to separate different species such as 

lipids, peptides, carbohydrates and nucleotides in biological samples based on 

differences in their gas-phase packing efficiencies.
33

 

 

 
 

 

Figure 5. A schematic diagram of the ion-mobility drift tube 

               

               In this study, the IM-MS were acquired on a Water Synapt
TM

 HDMS G2 mass 

spectrometer (Waters Corp., Milford, MA). A schematic diagram of the instrument is 

shown on Figure 5. Ions were formed by nano-ESI with a source temperature of ~100 ℃. 

The capillary voltage applied to the ESI tips was 1.5-2 kV. The instrument was equipped 

with a traveling-wave ion mobility cell with 30 V wave height and 300 m/s wave 
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velocity. Sampling one voltage and extraction cone voltage were set at 15 V and 4 V 

respectively. The data analysis for IM experiment was performed using MassLynx v4.1 

software. The CCS values for GA dimers were obtained using calibration method 

described previously by Ruotolo et al.
32

 The doubly charged tryptic digest ions of 

cytochrome C and myoglobin were used as calibrants, and their CCS were obtained from 

collision cross section database generated by Clemmer and coworkers.
34
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CHAPTER III 

EFFECTS OF CHOLESTEROL ON THE BINDING OF GRAMICIDIN S TO LIPID 

BILAYERS STUDIED BY ISOTHERMAL TITRATION CALORIMETRY 

 

Introduction 

             Over the last decade, ITC has become increasingly popular to study lipid-peptide 

interactions.
35

 The binding between peptide and bilayer can be divided into two 

individual steps (Figure 6): First, the positively charged antimicrobial peptide is 

adsorbed to the negatively charged membrane surface owing to electrostatic attractions; 

Second, the peptide may remain electrostatically adsorbed at the polar headgroup region 

of the membrane, or it may insert into the hydrophobic core of the membrane.
35

 The 

insertion process could be either enthalpy-driven by van-der-Waals interactions, or could 

be entropy-driven by hydrophobic effect. Insertion into the lipid membrane is typically 

accompanied by a conformational change of the peptide. 

           Gramicidin S (GS) is a cyclic decametric cationic antimicrobial peptide first 

isolated from the Gram-positive bacteria Bracillus brevis. The primary structure for GS 

is cyclo[VOLdFPVOLdFP], which is composed of a double-stranded antiparallel β-sheet 

connected by a pair of II’ β-turns. The GS peptide is amphiphilic, with two polar side 

chains of Orn and two hydrophobic D-Phe rings as well as four hydrophobic Val and 

Leu side chains. A number of evidences exist that the major target of GS is the lipid 

bilayer of bacterial membranes. Several studies have been performed in order to 

understand the basis of its capacity to differentiate between bacterial and mammalian  
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cell membranes. One of the major differences between the lipid bilayers of mammalian 

and bacterial membranes is the presence of cholesterol in mammalian membranes. 

Previous studies performed by Abraham et al. used POPC with and without cholesterol 

to mimic the lipid composition of the mammalian membranes and bacterial membranes 

respectively. They performed the ITC experiments by injecting the lipid vesicles 

dispersion, with and without cholesterol respectively, into the GS solutions. Then the 

two binding isotherms obtained from the two ITC measurements were compared and 

analyzed. When cholesterol was present, a lower binding affinity and binding capacity 

were observed, indicating that cholesterol reduces the binding of peptide and membranes. 

Here, a similar ITC experiment was performed between the lipid vesicles and GS 

peptide solutions in order to develop in house capability for the study of lipid-peptide 

interactions, and also further illustrate how changes in lipid compositions, such as the 

incorporation of small molecules like cholesterol, affect the thermodynamics of the 

binding process.  

Figure 6. Different stages of peptide binding 
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Experimental methods 

             Large unilamellar vesicles (LUV) with 100 nm diameters were prepared as 

previously described in lipid vesicle preparation. POPC lipids were acquired from 

Avanti Polar Lipids, Alabaster, Alabama, USA. Lipid vesicles containing different 

percentage of cholesterol (0%, 20% and 40%) were prepared by co-dissolving POPC and 

cholesterol (Molar ratio 10:0, 10:2 and 10:4) in chloroform. All ITC measurements were 

performed using a high-sensitivity MicroCal ITC200 (GE Healthcare) instrument. 

Titration experiments were performed by injecting 2 μL of lipid vesicle solutions with a 

POPC concentration of 13.2mM – 26.3mM into the sample cell which contained 280 μL 

of 50 µM – 150 µM GS solutions. Each injection produced a positive heat flow, 

indicating the binding of GS to lipid was endothermic and entropy-driven. Control 

experiments were performed by injecting the lipid vesicle solutions into water to 

determine the heat of dilution, which will then be subtracted from the heat of binding. 

The data obtained from the ITC measurement were fit to a one-site binding model in the 

Origin program. Three binding parameter including enthalpy change (ΔH), binding 

affinity (Ka), and binding stoichiometry (N) could be well resolved under these 

experimental conditions. The free energy of the binding, ΔG, can be calculated using the 

equation ΔG = -RTln(Ka). The entropy change for the binding can be obtained from the 

equation ΔS = (ΔH – ΔG)/T.  

Results and discussion 

            Figure 7 illustrates an ITC experiment in which 2 μL × 20 aliquots of POPC lipid 

vesicles containing 40% of cholesterol (19.7 mM) were repeatedly injected into the 
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sample cell containing 50 μM of GS. The upper panel displays the raw data obtained 

from the titration. Each injection produced an endothermic heat flow which decreases as 

a function of the number of POPC injections owing to the peptide concentration in the 

sample cell progressively decreasing. After ~10 injections, saturation occurred since 

there was almost no heat change observed, indicating that all of the peptide present in 

the sample cell had been bounded to the lipid vesicles. A control experiment was 

performed by injecting the same lipid vesicles solutions (40% cholesterol, 19.7 mM) into 

Figure 7. ITC experimental data at 25 ℃. 20 × 2 µL of 19.7 mM POPC/Cholesterol 

(10:4) was injected into 280 µL sample cell containing 50 µM GS. Data analysis was 

performed using Origin with built-in curve fitting models 
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water to determine the heat of the dilution, which was subtracted from the heat of 

binding. After that, a binding isotherm (Figure 7, lower panel) was generated from the  

corrected heat of binding and was fit into a one-site binding model. The ITC data 

analysis was performed using Origin with built-in curve fitting models. The c-value for 

the binding isotherm was 49, which is in the range of 20 to 100. Here, the three binding 

parameters could be well resolved. The ΔS was found to be 22 cal/mol∙K and ΔH was 

0.171 kJ/mol, which indicates the binding of GS to POPC is an entropy driven process 

with a positive ΔS counteracted with a positive ΔH. This result is consistent with the 

result obtained by Abraham et. al using the lipid vesicle with a diameter of 200 nm, 

although the values of the thermodynamic parameters are not the same owing to the 

difference in the vesicle size.  

            In addition, the ITC data analysis can also be performed manually using a series 

of equations.
36

 The enthalpy of binding ΔH
0
 can be calculated according to: 

ΔH
0
 =                                                                                                                   (2) 

where δhi is the heat of injection (heat of dilution subtracted), c0
pep

 is the total peptide 

concentration within the calorimeter cell, and Vcell is the cell volume. In this case, δhi 

was obtained by integrating each peak in the ITC raw data using Origin 8.5.1 (without 

built-in curve fitting models). c0
pep

 was equal to 50 μM and Vcell was equal to 250 μL (30 

μL of dead volume subtracted).  Using equation (2), the value of ΔH
0 

can be calculated 

which was equal to 3.9 kcal/mol. Here, ΔH
0
 represents the heat absorbed per mole of 

peptide. However, when analyzing the data using Origin with built-in curve fitting 

models, ΔH represents heat absorbed per mole of injectant. Other thermodynamic 
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parameters can be found using Langmuir adsorption isotherm, which is mathematically 

equivalent to the “chemical” equilibrium. The Langmuir binding isotherm can be written 

as: 

  = Kcf                                                                                                                         (3) 

where θ = N  is the mole fraction of occupied binding sites. This binding model 

assumes that there are limited numbers of binding sites in the membrane and each 

binding site is made up of N energetically equivalent and noninteracting lipid molecules. 

In other words, one peptide (P) “reacts” with a cluster of N lipid (L) to form a PLN 

complex. cf is the concentration of free peptide. Based on equation (3), the binding 

isotherm can be derived from lipid-to-peptide titration according to the following 

equations. After i injections, the fraction of peptide Xp
(i)

 bound to lipid vesicles is given 

by: 

Xp
(i)

 =  =                                                                                                         (4) 

where nP,b
(i)

 is the moles of bound peptide after i injections, npep
0
 is the total moles of 

peptide in the sample cell, and  is the sum of the first k reaction heats. The 

concentration of peptide remaining free in solution, cf
(i)

, is given by: 

cf
(i)

 = fdil
(i)

cpep
(0)

(1-Xp
(i)

)                                                                                                    (5) 

where fdil
(i)

 is the dilution factor which takes into account the increase in volume due to 

vesicle injection and is defined as: 

fdil
(i)

 =                                                                                     (6) 
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where Vinj is the injected volume per injection step (Vinj / Vcell << 1). The degree of 

peptide binding Xb
(i)

 is defined as the mole ratio of bound peptide per lipid and is given 

by: 

Xb
(i)

 =  =                                                                                                (7) 

where cL
0
 is the concentration of the lipid stock solution in the injection syringe. A plot 

of Xb
(i)

 versus cf
(i)

 finally yields the desired binding isotherm, that is: 

Xb
(i)

 =                                                                                                                (8) 

Using equation (8), the binding constant Kc and maximal binding capacity Bmax can be 

obtained by plotting Xb
(i)

 vs. cf and fitting the data using Origin 8.5.1 (Figure 8). The 

maximal binding capacity of the lipid vesicle, Bmax, is reciprocal to the binding 

stoichiometry, N (Bmax =1/N), which is the moles of bound peptide per moles of the total 

lipid. If we assume that each lipid vesicle is composed of the same number of lipid 

molecules, then Bmax would be proportional to the number of peptide molecules bound 

per lipid vesicle. From these thermodynamic parameters, the free energy of binding, ΔG 

can be calculated using the standard relation: 

ΔG = -RTln(Kc)                                                                                                                 (9) 

and the binding reaction entropy ΔS can be calculated using the equation: 

ΔS =                                                                                                                       (10) 
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Figure 8. Binding isotherm for the binding of GS to lipid vesicles containing 40% of 

cholesterol derived from the ITC measurement at 25 ℃. Data analysis was performed 

using Origin with built-in curve fitting models. 

 

 

 

Table 1. Thermodynamic parameters for the binding of GS to lipid vesicles containing 

40% of cholesterol  

Thermodynamic 

parameters 

Using Origin with built-

in curve fitting models  

Using Origin without built-

in curve fitting models 

Kd (10
-5 

M) 2.5±0.8 1.2 

N (mol/mol) 24.3±0.6 23.3 

ΔH (kcal/mol) 0.171±0.006 0.157 

ΔS (cal/mol·K) 21.6 23.1 

ΔG (kcal/mol) -6.28 -6.73 

Ka (10
4 

M
-1

) 4.0 8.6±0.7 

Bmax (mol/mol) 0.0412 0.0430±0.0005 
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            Table 1 summarizes the thermodynamic parameters derived from the one-site 

binding model, using the software and equations, respectively. It can be seen that the 

binding stoichiometry (or maximal binding capacity) and binding enthalpy did not 

change too much when comparing the data obtained from the software and that from the 

equations. When fitting the data using Origin with built-in curve fitting models, the 

binding stoichiometry N was found to be 24.3±0.6 and the binding enthalpy ΔH was 

found to be 0.171±0.006 kcal/mol, whereas when fitting the data using Origin 8.5.1 

without built-in curve fitting models, the binding stoichiometry N was found to be 23.3 

and the binding enthalpy was found to be 0.157 kcal/mol. This suggests that the values 

of N and ΔH measured from the ITC were pretty reliable as can be seen that the values 

obtained using different fitting methods were relatively close. Also can be seen from 

Table 1 is that the errors of the measurement for N and ΔH were relatively low. 

However, for binding affinity Ka (or dissociation constant Kd), the error of the 

measurement were fairly high and there was a big difference between the value obtained 

from Origin with and without built-in curve fitting models. The possible source of error 

is that the c value in this case is not high enough to obtain an accurate measurement for 

Ka. Owing to the large uncertainty in Ka, all of the ITC data analysis in the following 

chapater were performed using both of the two curve fitting methods.  

           The effects of cholesterol on the binding of GS to lipid vesicles has been 

investigated by performing the three parallel ITC experiments using lipid vesicles 

containing 0%, 20% and 40% cholesterol. The results are displayed in Figure 9, Figure 

12 and Table 2. All of the three binding isotherms were fit to a one-site binding model.  
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Figure 9. ITC experimental data of POPC LUV containing various amounts of 

cholesterol injected into GS. (Red: 40%, Green: 20% and Blue: 0%). Data analysis was 

performed using Origin with built-in curve fitting models. 
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Figure 10. Binding isotherms for the binding of GS to lipid vesicles containing various 

amounts of cholesterol derived from the ITC measurement at 25 ℃ (Red: 40%, Green: 

20% and Blue: 0%).  Data analysis was performed using Origin without built-in curve 

fitting models. 
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Table 2. Thermodynamic parameters for the binding between GS and POPC LUV 

containing various amounts of cholesterol obtained using Origin with (upper panel) and 

without (lower panel) built-in curve fitting models respectively. 

 

 

 

 

 

 Thermodynamic 

parameters 

POPC 

+0%Chol 

POPC 

+20%Chol 

POPC 

+40%Chol 

 

 

Using Origin 

with built-in 

curve fitting 

models 

Kd (10
-4

M) 1.1±0.7 0.44±0.09 0.25±0.08 

N 13.1±1.0 14.7±0.4 24.3±0.6 

ΔH (kcal/mol) 0.079±0.009 0.143±0.005 0.171±0.006 

ΔS (cal/mol·K) 18.3 20.4 21.6 

ΔG (kcal/mol) -5.38 -5.95 -6.28 

Ka (10
4 

M
-1

) 0.87 2.3 4.0 

Bmax (mol/mol) 0.0763 0.0680 0.0412 

 

Using Origin 

without 

built-in 

curve fitting 

models 

Kd (10
-4

M) 1.2 0.23 0.12 

N 13.0 14.4 23.3 

ΔH (kcal/mol) 0.082 0.125 0.157 

ΔS (cal/mol·K) 18.2 21.7 23.1 

ΔG (kcal/mol) -5.33 -6.34 -6.73 

Ka (10
4 

M
-1

) 0.81±0.05 4.4±0.4 8.6±0.7 

Bmax (mol/mol) 0.0773±0.0010 0.0695±0.0010 0.0430±0.0005 
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            The results revealed that as the percentage of cholesterol increases, the binding 

stoichiometry (N) increases as well, indicating the binding capacity Bmax decreases. This 

is consistent with the previous results shown by Abraham et al., which indicates that 

cholesterol can reduce the binding of GS to POPC lipid vesicles owing to restricted 

flexibility of the tightly packed hydrocarbon chains. Also, with increasing cholesterol 

content, both of the change in enthalpy and entropy of the binding process become 

greater. The binding of GS to lipid bilayer is a complex process that includes (i) the 

conformational changes in the peptide (ii) displacement of water molecules from both 

peptide and membrane surfaces (iii) perturbation of the lipid membrane structure as a 

result of the peptide insertion. 
37

 Each of these processes would contribute to the ΔH and 

ΔS measured. Studies have shown that there is an increase in β-sheet content when GS is 

transferred from solution into lipid bilayers, but the heat change of this process is 

relatively small.
26

 In fact, (ii) and (iii) are two major factors that contribute to the  

 

Figure 11. Lipid bilayer without and with cholesterol (Blue: hydration layer)  
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positive ΔH and ΔS values.
37

 It is known that cholesterol can change the conformation of 

the lipid headgroup and create more space between lipid molecules since the –OH group 

of cholesterol can form hydrogen bond with the phosphate group of a phospholipid.
38

 As 

a result, it is possible that cholesterol can promote retention of a greater number of water 

molecules near lipid headgroups thus increasing the degree of hydration (Figure 11). 

Therefore, the ΔH of GS binding increases with an increase in cholesterol content since 

more energy is required to break the hydrogen bonds between water molecules and lipid 

headgroups. Additionally, the release of the ordered water molecules would result in an 

increase in entropy change since lipid bilayer with higher cholesterol content would 

release greater number of water molecules from its hydration layer, causing greater 

entropy change. Another factor that contributes to the positive ΔH and ΔS values is the 

perturbation of lipid bilayer structure. The positive ΔH component may originate from 

the peptide-induced increase of the bilayer area against surface tension to allow for 

peptide insertion.
37

 It is proposed that incorporation of cholesterol in lipid bilayer results 

in increased cohesion and higher ordered hydrocarbon chains, which requires more work 

or energy to separate the acyl chains to allow for peptide insertion.
26

 The increase in the 

area of the membrane upon binding also causes an increase in entropy owing to the 

disordering of lipid acyl chains. 

Conclusions 

            The thermodynamics of the binding of GS to lipid vesicles vary with different 

lipid compositions. With increasing cholesterol content, the binding capacity of lipid 

vesicle for GS decreases, which is caused by the more restricted flexibility of the tightly 
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packed hydrocarbon chains after the incorporation of cholesterol. Also, as cholesterol 

content becomes greater, there is an increase in both enthalpy change and entropy 

change. Several factors that might be responsible for the change in enthalpy and entropy 

upon binding, including the change of the peptide conformation after its binding to the 

membrane; the dehydration of the peptides and the membrane surfaces; and the 

perturbation of the lipid membrane structure as a result of peptide insertion. Among 

these factors that might contribute to the changes in entropy and enthalpy, the 

dehydration process plays an important role and might be the major factor that causes 

the changes in the thermodynamic parameters after cholesterol has been incorporated. 

The increase in ΔH and ΔS values as a result of increasing cholesterol content might 

originate from the higher degree of hydration in lipid vesicles which have cholesterol 

included. These ITC results might help us understand the mechanisms of GS being able 

to differentiate between bacterial cell membranes and mammalian cell membranes. 
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CHAPTER IV 

EFFECTS OF GRAMICIDIN A ON THE BINDING OF GRAMICIDIN S TO LIPID 

BILAYERS STUDIED BY ISOTHERMAL TITRATION CALORIMETRY

 

 

Introduction 

           Gramicidin A (GA) is a naturally occurring pentadecapeptide from Bacillus 

brevis. NMR studies revealed that when GA is bound to lipid membranes, an ion 

channel could be formed by head-to-head dimerization of two GA monomers, each in a 

single stranded helical conformation. Other conformation like the double helices may 

coexist with the head-to-head dimer.  

 

Figure 12. Different conformations of Gramicidin A (A: N-terminal to N-terminal head-

to-head dimer; B: C-terminal to C-terminal head-to-head dimer; C: antiparallel double 

helice; and D: parallel double helice)  

                                                 

 Part of the data reported in this chapter is reprinted with permission from “Elucidation of conformer 

preferences for a hydrophobic antimicrobial peptide by vesicle capture-freeze-drying: a preparatory 

method coupled to ion mobility-mass spectrometry” by Patrick, J. W.; Gamez, R. C.; Russell, D. H, 2015. 

Anal Chem, 87, 578-583, Copyright 2014 by American Chemical Society. 
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          When GA is dissolved in organic solvent, such as methanol and ethanol, the GA 

dimers predominantly adopt double-stranded helices. Previous IM-MS by Chen et al. has 

shown that there is equilibrium between different conformations of GA dimer as well as 

GA monomer.
39

 The monomerization kinetics and equilibrium abundances of the dimer 

ions depend upon solvent polarity. The kinetics of monomerization is slower for the 

longer chain alcohols. When comparing the three organic solvents such as ethanol, 

propanol, and isobutanol, the rate of monomerization of GA was slowest when GA was 

dissolved in isobutanol since it has the longest chain.  

          The conformation of GA can be influenced by the lipid composition and 

properties. Previous studies have demonstrated that IM-MS is capable of probing the 

membrane-bound structure of GA and the conformer preferences of GA dimer is highly 

dependent on the lipid environment.
23

 Factors such as the acyl chain length and extent of 

acyl chain unsaturation will affect the conformer preference of GA in the membrane. 

The IM-MS studies of GA conformers in membrane require a sample preparation  

method VCFD (vesicle-capture-freeze-drying), which has been discussed before. Here, 

isobutanol was selected as the solvent to release the GA molecule from the lipid vesicle 

in order for it to be ionized by electrospray ionization. The purpose of using isobutanol 

as the solvent is to slow down the process of monomerization of GA in order to help 

preserve its original conformer preferences in the membrane. Using this method, 

different conformations of GA dimers can be resolved from the collision cross section 

(CCS) profiles (Figure 13). There are three major conformations of GA dimer observed: 
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single-stranded head-to-head dimers (SSHH, CCS = 673 Å
2
), antiparallel double helices 

(ADH, CCS = 679 Å
2
) and parallel double helices (PDH, CCS = 725 Å

2
). The results  

reveal that the conformational distribution of GA dimer is sensitive to the physical 

properties of the lipid composing the bilayer i.e. acyl chain length and degree of 

unsaturation. This suggests that to some extent, the membrane-bound conformations of 

GA dimers can be preserved when transferred from solution phase into the gas-phase. 

             Although IM-MS is capable of probing the structural changes of GA when it is 

incorporated into different lipid environment, it cannot provide information regarding 

how GA interacts with the lipid. For example, how does the insertion or binding of GA 

Figure 13. CCS profiles of GA [2 M + 2 Na]
2+

 incorporated in 100 nm lipid vesicles 

formed using (A) DLPC (12:0 PC) (B) DMPC (14:0 PC) (C) POPC (16:0, 18:1 PC) (D) 

DEPC (22:1 PC)  

 



 

33 

 

 

affects the structure and properties of the surrounding lipids? And what is the location of 

GA molecules within the lipid bilayer? In order to answer these questions, we coupled 

IM-MS with ITC to better elucidate the interaction between GA and lipid bilayers. 

Chapter III discusses the effects of cholesterol on the binding process of GS to lipid 

vesicles. Since the thermodynamics of the binding depends upon lipid compositions, it is 

possible to incorporate GA into the bilayer to study how the presence of GA affects the 

binding of GS, which would provide information on how insertion of GA affects the 

physicochemical properties of the lipid. The effects of amino acid modifications of GA 

will also be investigated using this method. Molecular dynamic simulation has shown 

that deformylation of GA would cause a higher abundance of double helices and a lower 

abundance of head-to-head dimer.
40

 This can be explained by the fact that the head-to-

head dimer will be destabilized by deformylation since the introduction of two positive 

charges on N-termini cause electrostatic repulsion between the two positive charges that 

are in close proximity. For double helices, however, the two positively charged N-

terminus could be stabilized by the solvation of water and lipid headgroup when GA is 

located on the water-lipid interface. Similar results were obtained from IM-MS studies 

using VCFD method, which has shown that deformylation of the N-terminus of GA 

caused a shift to higher abundance of double helices.
23

 In this chapter, we would discuss 

the effects of deformylation on GA-lipid interactions using ITC in combination with IM-

MS.  
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Experimental methods 

           GA peptide powder was obtained from Sigma-Aldrich St. Louis, Mo, USA and 

was used without further purification. POPC lipid was obtained from Avanti Polar 

Lipids, Alabaster, Alabama, USA. Deformylated GA was prepared by mixing 3.2 mg/ml 

GA in methanol with 2.0 M hydrochloric acid for 2 h followed by lyophilization to yield 

a dry powder.
23

 The GA peptide and deformylated GA peptide were dissolved in ethanol 

respectively and combined with POPC lipid in chloroform at a molar ratio of 100:1, 

dried under N2 gas until solvent was removed. Lipid vesicles loaded with GA and 

deformylated GA was then made as previously described in lipid vesicle preparation. 

After that, ITC experiment was performed between GS and lipid vesicle loaded with 

GA, as well as between GS and lipid vesicle loaded with deformylated GA. All ITC 

measurements were performed using a high-sensitivity MicroCal ITC200 (GE Healthcare) 

instrument. Titration experiments were performed by injecting 20 × 2 μL of lipid vesicle 

solutions with a POPC concentration of 19.7 mM into the sample cell which contained 

280 μL of 50 µM GS solutions. For both GA and deformylated GA, the ITC experiment 

was performed at the same lipid concentration and GS concentration. Control 

experiments were performed by injecting the lipid vesicle solutions into water to 

determine the heat of dilution, which will then be subtracted from the heat of binding. 

The data obtained from the ITC measurement were fit to a one-site binding model in the 

Origin program to obtain the thermodynamic parameters. The data obtained from lipid 

vesicles loaded with GA and deformylated GA can be compared to analyze the effects of 

deformylation. 
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Results and discussion 

            The ITC data (Figure 15) shows that incorporation of GA into the membrane has 

a significant effect on the binding of GS. After incorporation of GA, a decrease in ΔH, 

ΔS and binding capacity were observed in the ITC measurement, indicating that the 

insertion or binding of GA may impact the hydration layer of the membrane surface as 

well as the lipid acyl chains. As has been discussed above, the changes in enthalpy and 

entropy primarily originate from two processes: the displacement of water from the 

peptide and membrane surface, and the perturbation of the lipid acyl hydrocarbon 

chains. NMR studies suggest that GA dimer are located in the hydrophobic core region 

of the lipid bilayers,
17

 thus the perturbation of the lipid chains is probably a major factor. 

Molecular dynamic studies showed that owing to the hydrophobic mismatch between the 

GA and surrounding lipid bilayer, the lipid chain conformation becomes disordered and 

the hydrophobic thickness of the bilayer can increase or decrease to fit the length of the 

hydrophobic core region of the GA dimer.
41

 As a result, there would be less energy 

required to separate the lipid acyl chains in order to allow the insertion of GS, thus a 

lower ΔH value was observed from the ITC experiment. 

            When deformylated GA was incorporated into the lipid bilayers, the effects on 

the binding isotherms are different as opposed to GA (Figure 15). De groot et al. has 

reported that deformylation of GA caused a higher abundance of double helices and a 

lower abundance of head-to-head dimer, which can be explained by the fact that in 

parallel double helices, the two positively charged N-termini are located on the interface 

of membrane surface and hydration layer and thus can be fully solvated by the polar 
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headgroup and water. However, the head-to-head dimer will be destabilized by 

deformylation since the introduction of two positive charges on N-termini cause 

electrostatic repulsion between the two positive charges that are in close proximity.
40

 

Similar results were obtained from CCS profiles of GA and deformylated GA in POPC 

lipid vesicles (Figure 14).
23

 These results suggest that the location of GA and  

 

 

Figure 14. Collision cross section (CCS) profiles of GA (upper panel) and deformylated 

GA (lower panel) in POPC lipid vesicle 
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(A)                                                                (B) 

 

 

 

Figure 15. (A) ITC experimental data of POPC LUV with (red) and without (black) GA 

bound injected into GS solution. (B) ITC experimental data of POPC LUV with GA 

(red) / deformylated GA (blue) bound injected into GS. Molar ratio between POPC and 

GA (deformylated GA) was 100:1. The concentration of POPC lipid was 19.7 mM. The 

thermodynamic parameters for all binding isotherms are shown in Table 3. 
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Figure 16. Binding isotherms for the binding of GS to lipid vesicles with GA (red) and 

dGA (blue) bound as well as no GA/deformylated GA bound (control: black). Data 

analysis was performed using Origin 8.5.1. 
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Table 3. Thermodynamic parameters for the binding between GS and POPC LUV with 

and without GA (deformylated GA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Thermodynamic 

parameters 

POPC POPC+GA POPC+dGA 

 

 

Using Origin 

with built-in 

curve fitting 

models 

Kd (10
-4

M) 0.25±0.08 0.97±0.10 4.2±0.8 

N 24.3±0.6 27.4±0.4 39.4±2.0 

ΔH (kcal/mol) 0.171±0.006 0.062±0.001 0.066±0.004 

ΔS (cal/mol·K) 21.6 18.6 15.7 

ΔG (kcal/mol) -6.28 -5.47 -4.61 

Ka (10
4 

M
-1

) 4.0 1.0 0.24 

Bmax (mol/mol) 0.0412 0.0364 0.0254 

 

Using Origin 

without 

built-in 

curve fitting 

models 

Kd (10
-4

M) 0.12 0.43 1.1 

N 23.3 25.9 33.6 

ΔH (kcal/mol) 0.157 0.052 0.046 

ΔS (cal/mol·K) 23.1 20.1 13.6 

ΔG (kcal/mol) -6.73 -5.95 -4.02 

Ka (10
4 

M
-1

) 8.6±0.7 2.3±0.2 0.88±0.07 

Bmax (mol/mol) 0.0430±0.0005 0.0386±0.0005 0.0298±0.0004 
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deformylated GA are different in lipid bilayer. We hypothesized that GA is primarily 

located inside the lipid bilayer i.e. hydrophobic core or polar-nonpolar interface region 

to maximize the hydrophobic interaction between GA and lipid acyl chains, whereas the 

deformylated GA is primarily located on the lipid-water interface where two positive 

charged on the N-terminus could be solvated. This could explain why GA and 

deformylated GA affect the binding of GS differently. Owing to its proximity to the 

membrane surface, deformylated GA could affect the binding through two processes: 

changing the hydration layer of lipid membrane and changing the lipid acyl chain 

conformation. For GA, it would affect the binding primarily through changing the lipid 

acyl chain conformation because it has little effect on the membrane surface owing to its 

hydrophobic character. As can be seen from the ITC results (Figure 15), incorporation of 

GA weakens the binding of GS slightly while incorporation of deformylated GA 

strongly weakens the binding, with both a much lower Ka and Bmax. This is probably 

caused by the two positive charges of the N-terminus of deformylated GA being exposed 

to the surface of the membrane, which would reduce the electrostatic attractions between 

the positively charged GS peptide and the negative charge on the headgroup of the lipid. 

On the other hand, the positive charges on GA introduced by deformylation could also 

cause electrostatic repulsion with the positively charged GS, which further reduce the 

binding of GS. Also, a much smaller ΔS value was observed for lipid vesicle loaded with 

deformylated GA as opposed to GA, which could be explained by the fact that less water 

molecules are retained on the surface of lipid membrane loaded with deformylated GA. 

The extra charges on the membrane surface introduced by the deformylated GA would 
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perturb the hydration layer and cause it to become thinner. Therefore, when GS was 

inserted into the membrane, a lower number of water molecules would be released from 

the membrane surface, causing a lower entropy gain for the system.  

 

 

 
 

 

Figure 17. Effects of N-terminus deformylation on GA-lipid interactions ((A) Before 

deformylation; (B) After deformylation; Blue: hydration layer) 
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Conclusions 

          The thermodynamics of the GS binding to lipid vesicles depends upon lipid 

compositions and thus can be utilized to study the effects of the incorporation of GA as 

well as deformylated GA. Therefore, when ITC results are combined with IM-MS 

results, information regarding how insertion of GA affects the structure and properties of 

the surrounding lipids and how deformylation of N-terminus affects the structure and 

conformation of GA and thus affects the interaction of GA and lipid bilayer could be 

investigated. It was shown that GA could affect the binding of GS mainly through 

interacting with the lipid acyl chains and therefore make the conformation of the acyl 

chains more disordered. This would cause a lower ΔH in the binding process of GS to 

lipid vesicles owing to less energy needed to separate the lipid acyl chains with more 

disordered structures. When the ITC data of GS binding to lipid vesicles with GA and 

deformylated GA are compared, there is a significant difference in the shape of the 

binding isotherms, indicating that deformylation of GA N-terminus would affect GA-

lipid interactions. The introduction of two positive charges on the N-terminus of GA 

would destabilize the SSHH conformation owing to the coulombic repulsion between the 

two charges that are in close proximity. The PDH conformation could be stabilized by 

interacting with the hydration layer as well as the lipid headgroup since it is located 

close to the surface of the membrane. As a result, deformylated GA could affects the 

structure and properties of lipid acyl chains as well as the hydration layer on the 

membrane surface. When GS interacts with lipid vesicles incorporated with 

deformylated GA, the positives charges of the N-terminus of GA will reduce the 
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coulombic attraction between GS and membrane, thus reducing the binding capacity and 

binding affinity of the lipid vesicles to GS. It was shown from the ITC data that a much 

weaker binding was observed for GS to lipid vesicles with deformylated GA when 

compared with GA.  GA, on the other hand, would not be able to affect the binding of 

GS through the hydration layer owing to its extremely hydrophobic character. Therefore, 

GA did not change the binding affinity and binding stoichiometry that much as opposed 

to deformylated GA. 
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CHAPTER V 

ION MOBILITY MASS SPECTROMETRY STUDIES OF CONFORMATIONAL 

CHANGES OF GRAMICIDIN A INDUCED BY THE BINDING OF GRAMICIDIN S 

 

Introduction 

            It is known that the cyclic decapeptide Gramicidin S (GS) exhibits a broad 

spectrum of antibiotic activity against Gram-positive and Gram-negative bacteria and 

fungi. However, little is known about the mechanism of the interaction of GS with lipid 

model membrane systems.
42

 Considerable efforts have been directed at studying the 

relationship between the molecular structure and antibiotic activity of GS in order to 

elucidate the mechanism of its action. The purpose in understanding the mechanism is to 

develop GS derivatives of comparable or enhanced antibiotic activity.
42

 

            Previous studies have shown that GS probably interacts primarily with the 

headgroup and polar/apolar interfacial regions of lipid bilayer model membranes. It has 

been proposed to induce the formation of pores in its membrane targets, a mechanistic 

feature common to many antibiotic peptides.
42

 There are several factors that may 

influence its interaction with the lipid bilayer, i.e., the lipid-GS interactions are stronger 

in the liquid-crystalline than in the gel state. GS interacts more strongly with anionic as 

compared to zwitterionic phospholipid bilayers.
43

 In addition, it was demonstrated that 

the lipid: peptide ratio may also play a role in mediating their interactions. 
34

P NMR and 

X-ray diffraction studies indicated that GS at low concentration causes the thinning of 

phospholipid bilayers and can induce the formation of inverted nonlamellar cubic phases 
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in phospholipic dispersions at higher concentrations.
43

 Other studies have shown that at 

physiologically relevant concentrations of GS (lipid/peptide ratios of 25:1), GS does not 

affect the lamellar phase preference of the zwitterionic lipids PC.
42

 However, when the 

lipid/peptide ratios are extremely low (<3:1), it can cause the total disruption of liquid-

crystalline bialyers.
44

 

           In this chapter, we would discuss a new method which utilizes IM-MS as an 

analytical tool and GA as a “reporter” peptide to study how changes in lipid/GS molar 

ratio affect their interactions. As has been discussed before, the conformer preferences of 

GA dimer depends upon lipid environment, which can be probed by IM-MS. So here, we 

incorporated GA into the lipid bilayers model system at the beginning, and then added 

various amounts of GS peptide to the membrane system to change the molar ratio 

between lipid and GS. If the binding of GS with lipid bilayer changes the lipid 

environment, i.e., thinning of phospholipid bilayers or formation of inverted nonlamellar 

cubic phases, we will be able to observe a series of changes in the CCS profiles of GA 

dimer, since the conformational distribution of GA is sensitive to the lipid environment. 

In this way, we could get a better understanding about the mechanism of the interaction 

between GS and membrane using IM-MS. 

Experimental methods 

           GA peptide powder was obtained from Sigma-Aldrich St. Louis, Mo, USA and 

was used without further purification. POPC lipid was obtained from Avanti Polar 

Lipids, Alabaster, Alabama, USA. The GA peptide was dissolved in ethanol and 

combined with POPC lipid in chloroform at a molar ratio of 100:1, dried under N2 gas 
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until solvent was removed. Lipid vesicles loaded with GA were then made as previously 

described in lipid vesicle preparation. After the lipid vesicles loaded with GA were 

formed, it was split into 7 vials, with each vials having equal amount of lipid with GA. 

Then various amounts of GS solutions were added into each vial to make different 

lipid/GS ratios (From 132:1 to 132:12). The control had no GS solution added. All 

solutions were allowed to incubate at 4 °C overnight followed by freezed-dried using 

liquid nitrogen and a vacuum desiccator to remove water. After that, the samples were 

rehydrated with isobutanol for ESI-IM-MS analysis.
23

 

            In this study, the IM-MS were acquired on a Water Synapt
TM

 HDMS G2 mass 

spectrometer (Waters Corp., Milford, MA). Ions were formed by nano-ESI with a source 

temperature of ~100 ℃. The capillary voltage applied to the ESI tips was 1.5-2 kV. The 

instrument was equipped with a traveling-wave ion mobility cell with 30 V wave height 

and 300 m/s wave velocity. Sampling one voltage and extraction cone voltage were set 

at 15 V and 4 V respectively. The data analysis for IM experiment was performed using 

MassLynx v4.1 software. The CCS values for GA dimers were obtained using 

calibration method described previously by Ruotolo et al.
32

 The doubly charged tryptic 

digest ions of cytochrome C and myoglobin were used as calibrants, and their CCS were 

obtained from collision cross section database generated by Clemmer and coworkers.
34

 

Results and discussions 

            Figure 18. shows the IM-MS results obtained from the samples described above 

that have different lipid/GS molar ratios. As can be seen from these results that the molar 

ratio of lipid/GS has significant effects on the conformer preferences of GA 
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Figure 18. CCS profiles of GA dimer [2 M + 2Na
+
] in POPC lipid vesicles with 

various amounts of GS bound 
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dimer, which suggests that the binding of GS does depend upon the concentration of GS. 

Low concentration of GS and high concentration of GS would affect the lipid structure 

and properties differently, which can be seen from the IM-MS data that the CCS profiles 

differ a lot when the molar ratio increases from 1:132 to 12:132.  

           When the molar ratio is low (GS/lipid = 1:132 ~ 3:132), the CCS profiles of GA 

dimer only changes slightly when compared with the control (GS/lipid = 0:132). The 

most abundant conformers under low GS concentration is the ADH, with a slightly 

increase in the relative abundance of PDH and a slightly decrease in the relative 

abundance of SSHH as the concentration of GS goes up. When the molar ratio reaches 

3:132, there is almost no SSHH observed from the IM-MS and only two conformers of 

GA dimers exist: PDH and ADH. Since previous studies have shown that GS does not 

affect the lamellar phase preference of the zwitterionic lipid POPC when the GS/lipid 

molar ratio is below 1:25 and that GS at low concentration only causes the thinning of 

phospholipid bilayers, 
43,44

  it can be explained that these slight changes in the CCS 

profiles of GA dimer are probably just caused by the thinning of the POPC lipid vesicle 

bilayers. The decrease in the thickness of the lipid bilayer can no longer accommodate 

for the SSHH since its length is the longest among the three conformers. As a result, we 

could observe a shift from SSHH to PDH as we slightly increase the concentration of 

GS. 
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           However, when the peptide/lipid ratios are high, it can cause the total disruption 

of liquid-crystalline bilayers.
44

  Studies have shown that high GS concentration could 

cause formation of inverted nonlamellar cubic phases.
43,44

 As can be seen from Figure 

19, when the molar ratios of GS/lipid changes from 6:132 to 12:132, the conformational 

distributon of GA changes dramatically as compared with the control. The peak 

corresponding to the ADH conformers become much broader when the GS concentration 

is high, suggesting that there might be more than one conformer of ADH. Also, the 

relative abundances of PDH and SSHH increases as the GS concentration goes up, 

whearas the relative abundance of ADH decreases. As a result, when the GS 

concentration reaches the highest (GS/lipid = 12:132), the relative abundance of ADH is 

Figure 19. Plots of relative abundances of the three GA dimers as a function of GS/lipid 

molar ratios 
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not that dominant when compared with the control. These change might have been 

causesd by the total disruption of the lipid bialyers at high GS concentration. The 

formation of inverted nonlamellar cubic phases in the lipid bialyers may induce a 

completely change in the conformational distribution of GA dimer, thus changing the 

relative abundances of each conformer as well as inducing the formation of new 

conformer. 

Conclusions 

            The effects of GS binding to lipid bilayer are dependent on GS concentration or 

the molar ratio between GS and lipid. Previous studies using DSC, 
34

P NMR and X-ray 

diffraction has demonstrated that low concentration of GS only causes thinning of the 

phospholipid bilayers, whereas high concentration of GS could cause total disruption of 

the bilayer and induce the formation of inverted nonlamellar cubic phase in the lipid 

bilayers. Here, a novel method using IM-MS to probe the effects of changes in GS 

concentrations on the lipid environment has been described. This method uses GA as a 

“reporter” in the IM-MS experiment, and the changes in the CCS profiles of GA could 

provide information regarding how the lipid properties and structures change as a 

function of GS concentrations. It was shown that at low GS concentration, only slight 

change in CCS profiles of GA was observed, indicating the thinning of lipid bilayers 

caused by GS under low concentration condition. When the GS concentration is high, a 

significant change in CCS profiles of GA was observed, including the broadening of the 

peaks as well as a completely change in the relative abundances of the three conformers. 

This suggests that a total disruption of the bilayers occurs at high GS concentrations and 
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it might have induced the formation of inverted nonlamellar cubic phase in the lipid 

bilayers. This novel technique has many advantages over the traditional methods such as 

DSC, NMR and X-ray diffraction. First of all, we could use GA as a “reporter” to 

visualize what is happening inside the lipid bilayers, which is easy and straightforward 

compared with other techniques. Secondly, the amount of sample needed for the IM-MS 

experiment is very low. Lastly, this method does not require long data acquisition time 

and complicated data analysis, which is time consuming. 
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CHAPTER VI 

SUMMARY 

 

           In this study, IM-MS coupled with ITC are utilized to understand the molecular 

mechanism of the interaction between GA and lipid bilayer model system as well as the 

interaction between GS and lipid bilayer model system. The experimental results from 

both the IM-MS and ITC provide valuable information regarding how insertion or 

binding of antimicrobial peptide GA and GS affects the lipid structures and properties, 

other information such as how modification of the N-terminus of GA affects its 

interaction with the lipid bilayers is also provided.  

          In the first part of the study, we were using ITC to study the thermodynamics of 

the binding between GS and lipid bilayers. Our results suggest that the thermodynamics 

of the binding process is highly dependent upon the lipid composition. Lipid bilayers 

with various amounts of cholesterol incorporated will results in binding isotherms with 

different thermodynamic parameters. The way that cholesterol affects the binding is 

probably through different processes, including the conformational changes in the 

peptide, the displacement of water molecules from peptide and membrane surfaces, as 

well as perturbation of the lipid membrane structure as a result of peptide insertion. 

Among these processes, cholesterol might influence the binding primarily through 

disturbing the lipid acyl chains and changing the membrane hydration layer.  

          Based on these results, we continued our research by incorporating GA into the 

lipid bilayer and study how the presence of GA affects the binding of GS to lipid bilayer 
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using ITC. At the same time, we modified the N-terminus of GA by deformylation, 

which introduced two positive charges on the N-terminus, and the deformylated GA was 

also incorporated into the membrane system in order to investigate the effects of 

deformylation on the interaction between GA and lipid bilayers. Our results showed that 

the introduction of two positive charges on the N-terminus of GA causes a much weaker 

binding between GS and lipid vesicles. This can be explained by the fact that the 

positive charges of deformylated GA reduce the coulombic attraction between GS and 

membrane owing to the charges located close to the surface of the membrane. This 

hypothesis can be further supported by the previous IM-MS results, which indicates that 

deformylation causes a shift from SSHH to PDH, since the N-terminus of PDH can be 

solvated by the lipid headgroup and hydration layer whereas the SSHH will be 

destabilized by the two positively charged N-termini that are in close proximity.  Here, 

by combing ITC results and IM-MS results, we could not only obtain the structural 

information of GA or deformylated GA in the membrane, but also investigate how the 

presence of GA or deformylated GA affects the surrounding lipid.  

          In the last part, we used GA as a “reporter” to investigate how interaction with GS 

changes the structure and properties of lipid bilayer. The IM-MS data of GA in lipid 

vesicles treated with various amounts of GS has shown how conformer preferences of 

GA changes as a function of GS concentration, which further reveal how lipid structure 

and properties changes as a function of GS concentration. The data analysis is much 

easier and the results are much more straightforward when it is compared with 

traditional technique such as NMR and X-ray diffraction. 
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