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ABSTRACT

Every motion made by a moving object is either planned implicitly, e.g., human nat-

ural movement from one point to another, or explicitly, e.g., pre-planned information

about where a robot should move in a room to effectively avoid colliding with obsta-

cles. Motion planning is a well studied concept in robotics and it involves moving an

object from a start to goal configuration. Motion planning arises in many applica-

tion domains such as robotics, computer animation (digital actors), intelligent CAD

(virtual prototyping and training) and even computational biology (protein folding

and drug design). Interestingly, a single class of planners, sampling-based planners

have proven effective in all these domains.

Probabilistic Roadmap Methods (PRMs) are one type of sampling-based planners

that sample robot configurations (nodes) and connect them via viable local paths

(edges) to form a roadmap containing representative feasible trajectories. The roadmap

is then queried to find solution paths between start and goal configurations. Different

PRM strategies perform differently given different input parameters, e.g., workspace

environments and robot definitions.

Motion planing, however, is computationally hard – it requires geometric path plan-

ning which has been shown to be PSPACE hard, complex representational issues

for robots with known physical, geometric and temporal constraints, and challeng-

ing mapping/representing requirements for the workspace environment. Many im-

portant environments, e.g., houses, factories and airports, are heterogeneous, i.e.,

contain free, cluttered and narrow spaces. Heterogeneous environments, however,

introduce a new set of problems for motion planing and PRM strategies because
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there is no ideal method suitable for all regions in the environment.

In this work we introduce a technique that can adapt and apply PRM methods

suitable for local regions in an environment. The basic strategy is to first identify

a local region of the environment suitable for the current action based on identified

neighbors. Next, based on past performance of methods in this region, adapt and

pick a method to use at this time. This selection and adaptation is done by applying

machine learning.

By performing the local region creation in this dynamic fashion, we remove the

need to explicitly partition the environment as was done in previous methods and

which is difficult to do, slows down performance and includes the difficult process

of determining what strategy to use even after making an explicit partitioning. Our

method handles and removes these overheads.

We show benefits of this approach in both planning robot motions and in protein

folding simulations. We perform experiments on robots in simulation with different

degrees of freedom and varying levels of heterogeneity in the environment and show

an improvement in performance when our local learning method is applied. Protein

folding simulations were performed on 23 proteins and we note an improvement in

the quality of pathways produced with comparable performance in terms of time

needed to build the roadmap.
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1. INTRODUCTION

Planning motions is needed in many disciplines such as planning for deformable

robots [42,86,94], manipulation planning [55], computational biology search problems

[81, 102], character animation for games and movies, and virtual prototyping. A

motion planner finds a valid sequence of motions, or path, for a robot to transit from

an initial state to a goal state or reports that no such path exists. The robot can

be any movable system: an articulated arm in a factory, a car, or a protein. Robots

or objects most often have to plan and navigate in heterogeneous environments, i.e.,

containing a combination of free spaces, narrow tunnels and obstacles. Environments

as shown in Figure 1.1 are heterogeneous because robots at different positions would

have varying visibility of the entire space. These robots also have different complexity

ranging from rigid bodies to highly articulated linkages with many degrees of freedom.

(a) 3D Maze Heterogeneous (b) Heterogeneous Room Setting

Figure 1.1: Heterogeneous environments.
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Various motion planning methods have been developed to solve this problem but no

single planner is scalable to all environments and this could be due to a number of

reasons. One reason is that the heterogeneity of the environment is not investigated

and so the environment is seen as homogeneous [16, 29] which our research shows is

not always the case and affects performance. Another reason is the concentration

of research to a specific robot type and type of environment which limits the use of

these methods across other environments [2, 8, 52].

Previous work looked into explicitly partitioning the environment and then applying

different methods in the different partitions. However, this is difficult to do due to

the challenge of identifying when the environment has been broken into homogeneous

pieces or determining if the right method has been applied [83, 100]. Our method

addresses this issue by dynamically creating regions and uses machine learning tech-

niques to select the appropriate methods to apply based on information regarding

their past performance in that local region. Thus we remove the need to explic-

itly partition or know beforehand what method is suitable in different parts of the

environment.

1.1 Research Contributions

The goal of this research is to develop a means to dynamically create regions in

heterogeneous environments, access stored information about the performance of

methods in these identified regions, and then intelligently decide what method is

most suitable during the current iteration. This research focuses on Probabilistic

Roadmap Methods (PRMs) [58]. PRMs are state of the art motion planning algo-

rithms that solve motion planning problems in two phases. During the sampling

stage, valid configurations of the robot in the environment are generated, and dur-
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ing the connection stage those sampled nodes are connected together with edges to

construct a roadmap that is used to find the valid path. We study characteristics

peculiar to different probabilistic planners in a bid to utilize their usefulness when

needed in these different motion planning scenarios.

We utilize reinforcement learning approaches to intelligently decide which PRM

method to apply in the local region and the current iteration during roadmap con-

struction. Our technique extends different algorithms such as the multi-arm bandit

problem [11,20,99]. We include a localizing feature that keeps the learning sensitive

to regions in the environment with similar characteristics, and which enables learning

from past experience of the methods in these regions so that methods most suitable

for the current iteration can be selected. By applying learning in these dynamically

determined regions, we remove the need to explicitly partition environments and the

overhead of deciding which method to use for a given input problem.

Our results show that we either achieve improved performance or at the least com-

parable performance with the best single planning method. We test on a variety of

heterogeneous environments and study the performance of our learning based ap-

proach. We compare the performance of local learning to global learning (no local

region identification).

Our results show our framework is able to make improvements on the roadmap

quality and to solve the query problems in less time than other non-learned scenarios

in most cases.

The main contributions of this research include the following:

• A local region feature created on the fly that localizes learning to areas of

interest and based on past performance applies suitable methods in the current

3



locale and iteration.

• A machine learning reward based technique that locally rewards the perfor-

mance of these methods.

• A technique that utilizes the strengths of these PRM methods while minimizing

their weaknesses (use when and where needed).

Portions of this research have been previously published and presented. The basic ap-

plication of learning to PRM was presented at IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) in 2013 [35]. Improvements on the learn-

ing strategy and introduction of the local region feature was presented at IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) in 2015 [37].

A discussion and investigation on the application of local learning to the different

phases of PRM roadmap construction was presented at The Machine Learning in

Planning and Control of Robot Motion Workshop (IROS-MLPC) in 2015 [39]. Ap-

plication of local learning to protein folding was presented at The IEEE International

Conference on Bioinformatics and Biomedicine (BIBM) in 2015 [36].

1.2 Outline

Chapter 2 discusses some important primitives and background on motion planning

methods and the multi-arm bandit problem algorithm, and then discusses some re-

lated work on sampling methods, connection methods, and adaptive learning strate-

gies employed to solve the motion planning problem. Chapter 3 describes our learning

framework and the algorithms developed. Chapter 4 discusses our local learning ap-

proach showing experiments we performed when applied to sampling and connection

separately and then investigates what happens when applied to both sampling and

connection. Chapter 5 shows an application of local learning to proteins, studying

4



different protein folding simulations and the application of our method to the sam-

pling and connection stages. We finally conclude and discuss future work in Chapter

6.
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2. PRELIMINARIES AND RELATED WORK

In this section we discuss some motion planning primitives, and sampling based mo-

tion planning algorithms including graph based and tree based methods. We further

describe reinforcement learning techniques applicable to our framework, PRMs, exist-

ing sampling methods, existing connection methods and machine learning strategies

applied to motion planning.

2.1 Motion Planning

The motion planning problem involves finding a valid path (e.g., collision-free and

satisfying all joint limit and/or loop closure constraints) for a movable object starting

from its start configuration to a goal configuration in an environment [24]. A single

configuration is defined based on the movable object’s d independent parameters or

degrees of freedom (dof). The set of all possible configurations (both feasible and

infeasible) defines a configuration space (C-Space) [24, 91]. C-Space is partitioned

into two components: C-free (the set of all feasible configurations) and C-obst (the

set of all infeasible configurations). Motion planning then becomes the problem of

finding a continuous sequence of points in C-free that connects the start and the goal

configuration.

A complete solution to the motion planning problem is known to be computationally

expensive and it has been shown that this problem is PSPACE-hard with an upper

bound that is exponential in the number of the movable object’s dofs [24,91]. Basi-

cally, any planner that is guaranteed to find a solution or determine that none exists

requires exponential space that is in the the number of DOFs. Heuristic and approx-

imate algorithms were therefore implemented that trade completeness for efficiency
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and sampling-based motion planning is one such approach.

2.1.1 Sampling Based Motion Planning

Sampling-based methods [24] are a state-of-the-art approach to solving motion plan-

ning problems. These methods are known to be probabilistically complete because

even though there is no guarantee to find a solution if one exists, the probabil-

ity of finding a solution if it exists increases as the number of samples generated

also increases. Sampling-based methods are broadly classified into two main classes:

graph-based methods such as the Probabilistic Roadmap Method (PRM) [58] and

tree-based methods such as Expansive-Space tree planner (ESTs) [47] and Rapidly-

exploring Random Tree (RRT) [65].

2.1.1.1 Graph-Based Methods

Probabilistic RoadMaps (PRMs) [58] are sampling-based motion planning approaches

that use a two stage process to solve planning problems: roadmap construction

and query processing. During roadmap construction, PRMs sample the configura-

tion space (C-Space), i.e., the set of all possible robot placements, retaining valid

ones as roadmap nodes, and attempting to connect them using some local planner

(e.g., straightline). PRM solves motion planning problems by constructing a graph

G = (V,E), called a roadmap, to show how connected C-free is (Figure 2.1 [3]).

PRMs have been shown to be probabilistically complete [57].

The basic PRM [58] (shown in Algorithm 1), begins with generating nodes using

uniform random sampling and then attempts connections between a node and its k-

nearest neighbors as computed using some distance metric (e.g., Grid based, Root-

Mean-Square or Euclidean distance [5]). Once the roadmap is constructed, query

processing is done by connecting the start and goal configurations to the roadmap

7



Figure 2.1: An illustration of PRM∗

and extracting a path from the roadmap that connects them. Many variants of PRMs

have been proposed that bias node generation or connection or query processing in

various ways to handle instances such as narrow corridors or obstacles too close to

the boundary; we discuss some of these variants in Section 2.3.

2.1.1.2 Tree-Based Methods

The Expansive Space Tree Planner (ESTs) and Rapidly-exploring Random Tree

(RRT) are two common tree based methods in sampling based motion planning.

These methods are most commonly used in solving single query problems. Specif-

ically, RRT is particularly well suited for non-holonomic and kinodynamic motion

planning problems [66, 67]. RRT (shown in Algorithm 2 and illustrated in Fig-

ure 2.2 [3]) grows a tree rooted at the start configuration and expands towards

unexplored areas of the C-Space. RRT begins by generating a uniform random sam-

ple qrand, and identifies the closest node qnear in the tree to qrand, and then qnear is

“extended” toward qrand for a stepsize of at most ∆q. If the extension is successful,

qnew is added to the tree as a node and the pair qnear and qnew is added as an edge.

∗Reprinted with permission from ”Improving the Connectivitiy of PRM Roadmaps” by Marco
Morales, Samuel Rodriguez, Nancy M. Amato, 2003 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4427-4432 [82] c©2003 IEEE.
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Algorithm 1 Basic PRM

Input. An environment env, number of nodes N
Output. A roadmap graph G containing N valid nodes connected
1: i← 0
2: while i < N do
3: q ← GetRandomValidNode(env)
4: G.AddNode(q)
5: i← i+ 1
6: end while
7: for all q ∈ G do
8: Q← FindNeighbor(G, q, k)
9: for all qnear ∈ Q do
10: if local planner can connect q and qnear then
11: G.AddEdge(q, qnear)
12: end if
13: end for
14: end for
15: return G

To solve a particular query, RRT repeats this process until the goal configuration

is connected to the tree. RRT-connect is a variant that grows two trees towards

each other; one rooted at the start configuration and the other at the goal configura-

tion [59]. These two trees explore C-Space until they are connected. Many variants

of RRT have been proposed and discussed [15, 24, 32, 51, 56, 80, 93].

2.1.2 Heterogeneity of the C-Space

Dale and Amato in [28] made some interesting analysis in defining the heterogeneity

of a space. They defined four characterizing measures to help determine when a

region of the C-Space is heterogeneous. They classify a region of the C-Space based

on the ratio of non-colliding nodes to all nodes sampled. If this ratio is one, then the

†Reprinted with permission from ”Adapting RRT Growth for Heterogeneous Environments” by
Jory Denny, Marco A. Morales A., Samuel Rodriguez, Nancy M. Amato, 2013 IEEE International
Conference on Intelligent Robots and Systems (IROS), pp. 1772 - 1778 [33] c©2013 IEEE.
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Figure 2.2: An illustration of RRT†

Algorithm 2 Basic RRT

Input. An environment env, a root qroot, the number of nodes N
Output. A tree T containing N nodes rooted at qroot
1: T .AddNode(qroot)
2: i← 0
3: while i < N do
4: qrand ← GetRandomNode(env)
5: qnear ← FindNeighbor(T, qrand, 1)
6: qnew ← Extend(qnear, qrand)
7: if !TooSimilar(qnear, qnew) ∧ IsValid(qnew) then
8: T .AddNode(qnew)
9: T .AddEdge(qnear, qnew)
10: i← i+ 1
11: end if
12: end while
13: return T

region is free, C-free . If the ratio equals zero, then the region is blocked, C-obst.

Another metric they used to define the workspace is based on the number of con-

nected components and the number of nodes present (size) in a connected component

(CC). Figure 2.3 shows an example environment with a mixture of free and cluttered
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Figure 2.3: Heterogeneity

regions. Using the ratio method it becomes hard to make an informed decision about

the C-Space and how heterogeneous it is. In a free space, the CC will be 1 and the

size of the CC will include all valid nodes. As the number of CC increases and the

size of the CC reduce then we identify more cluttered regions. This difference helps

characterize the right top half of the figure as free and the remaining as cluttered.

The final metric they discuss relates to defining obstacles in the workspace. They de-

termine an obstacle based on the ratio of surface connection and surface connections

attempted as seen in Figure 2.3. This inclusion of the surface was based on research

in [8, 17] that observed that given that nodes can be obtained arbitrarily close to

configuration obstacle surfaces, the results of connection attempts between nodes

near the surface of an obstacle can be used to provide a surface characterization for

the obstacle.

Given this characterization, we define a heterogeneous C-Space as containing more

than one type of region – free space, cluttered or obstacle regions.
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2.2 Reinforcement Learning

Reinforcement learning is a machine learning concept that involves learning what

actions to take in a given scenario to maximize a cumulative reward. This learning

concept focuses on utilizing exploitation and exploration techniques.

Exploitation involves continually using the best available methods while exploration

continually looks for better methods from the list that could potentially be exploited.

Balancing when to explore or exploit is an open research question that has been

studied for decades. In our work we utilize one of the standard approaches called

the multi-arm bandit problem.

2.2.1 Multi-arm Bandit Problem

In this section we describe the reinforcement learning approach called the multi-arm

bandit problem which is an important primitive we employ in our work.

The Multi-armed bandit problem (MAB) was first presented by Robbins [63] and

provided a platform for modeling how automated agents gain new knowledge when

exploring their environment. This is done by exploiting currently reliable knowledge

about the environment at a particular point in time. MAB is a reinforcement learning

strategy that investigates the trade-off between exploration and exploitation.

A common analogy of the MAB problem is that of a gambler with multiple slot

machines, the gambler keeps playing the hand that is winning (exploitation) while

looking out for other slots when they become a winning hand.

As a stochastic approach, the bandit problem consists of a set of K probability

distributions (P1, ..., PK) with associated expected values (ϕ1, ..., ϕK) and variances

(σ2
1, ..., σ

2
k). Initially, the Pi are unknown to the player.
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These probability distributions generally correspond to the arms for a slot machine

and the player is viewed as a gambler with a goal of winning as much money as

possible by pulling all these arms as much as possible.

At each iteration, t = 1, 2, ..., the player selects an arm, with index j(t), and receives

a reward r(t) ∽ Pj(t) . The player has a two-fold goal: on one hand, identify quickly

the winning hand; on the other hand, improve on the rewards collected as much as

possible while playing. Bandit algorithms specify a strategy by which the player

should choose an arm j(t) at each turn [61].

A popular performance measure for bandit algorithms is the total expected regret,

the regret is how much worse the algorithm performs as opposed to the best experts

decisions.

The regret T is calculated as: RT = Tϕ∗ −

T
∑

t=1

ϕj(t) where ϕ
∗ = maxi=1,...kϕ

1 is the

expected reward from the best arm [20].

The payoff of the algorithm at step t is defined as the number of correct guesses

minus the number of wrong guesses.

2.3 Related Work

In this section we discuss relevant work that has been done in the field of sampling

based planning both during sampling and connection. We include discussions about

adaptive methods that have been employed in all these cases as well.

2.3.1 Existing Sampling Methods

Considerable effort has been dedicated to finding ways of increasing sampling in

narrow and difficult regions of environments. In this section we look at some of the

most successful strategies and their individual strengths and limitations.
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• Uniform

1. Uniform Sampling [58]: This method generates nodes uniformly at ran-

dom in C-Space retaining valid ones. A drawback with this approach

is its inability to sample narrow passages efficiently thus increasing the

chances of oversampling in open areas.

• Near Obstacles

1. Obstacle-Based PRM (OBPRM) [7, 8]: samples configurations near C-

obst surfaces by pushing configurations to the C-obst boundary. Even if

OBPRM excels in narrow passages, it can be expensive because it requires

many validity tests. In addition, the nature of its sampling tends to

produce paths with low clearances.

2. Gaussian PRM [17]: This technique attempts to generate configurations

that are a Gaussian distance d away from the obstacle surfaces. A first

configuration is randomly generated and the second one is generated a

Gaussian distance d away from the first configuration, where d is a user-

specified parameter. If the validity of the two configurations differ, the

valid one will be retained as a node in the roadmap. Otherwise, both

are discarded. This method’s performance is dependent on tuning the

parameter d for each environment.

3. Uniform OBPRM (UOBPRM) [25]: uses the uniform sampling framework

to generate uniformly distributed configurations near C-obst surfaces by

detecting when C-obst surfaces have been crossed. This is done by look-

ing for validity changes between consecutive points along a defined line

segment d. When a validity change occurs, the valid sample is retained
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as a roadmap node. This method also needs some parameter tuning on d

to get effective results.

• In Narrow Passages

1. Bridge Test PRM [46]: This method was implemented to boost sampling

density in narrow passage to improve the connectivity of roadmaps. In a

bridge test they check for collision at three sampled configurations: the

two endpoints and the midpoint of a short line segment. This method also

suffers from parameter tuning which can greatly affect the performance

and quality of the mappings produced.

2. Toggle PRM [29,31]: performs a coordinated mapping of both C-free and C-

obst. It retains witnesses from failed connection attempts in one space to

augment the roadmap in the opposite space. [31] provides a novel classi-

fication of narrow passages that can be solved efficiently by this method-

ology. Toggle PRM is able to solve certain narrow passages, but it does

not provide a guarantee on the solution quality.

3. Medial Axis PRM(MAPRM) [71, 108]: Medial Axis PRM was proposed

to generate configurations along the medial axis of C-free to increase the

path clearance. The medial axis is a set of points that are equidistant to

two or more obstacles and are guaranteed to have maximal clearance. The

medial axis is a strong deformation retraction which makes a one-to-one

mapping between every point in C-Space and the corresponding point on

the medial axis and is thus a useful construction for motion planning. It

makes use of fundamental primitives which are computation of penetration

depth and clearance in C-Space to achieve this. However, MAPRM does

not provide any guarantee regarding the distribution of samples along the
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medial axis and it is expensive to produce samples.

4. Uniform MAPRM(UMAPRM) [109]: UMAPRM generates uniformly dis-

tributed samples along the medial axis by checking the closest obstacle

changes between two neighboring configurations on the segment. The

medial axis is crossed when there is a closest obstacle change. A binary

search finds and retains the configuration on the medial axis.

2.3.2 Existing Connection Methods

Connection methods are primitives used in PRM to connect nodes via edges together

while building a roadmap. The connection method defined within our context in-

clude a combination of a distance metric (used to calculate the distance between

configurations), a neighbor finding approach (to identify pairs of ”close/similar” con-

figurations), and a local planner (to determine if a feasible path exists between two

configurations). In this section we discuss these three primitives used during the

connection phase for PRMs, i.e., neighbor finding methods, distance metrics and

local planners.

• Distance Metrics

A distance metric is a function δ that computes some “distance” between two

configurations a = 〈a1, a2, . . . , ad〉 and b = 〈b1, b2, . . . , bd〉, i.e., δ(a, b) → R,

where d is the dimension of a configuration. A good distance metric for a

PRM predicts how likely it is that a pair of nodes can be connected. In this

research, we study the set of distance metrics commonly used in PRMs:

1. Euclidean: The Euclidean distance metric gives equal weighting for all

16



dimensions:

δ(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (ad − bd)2

2. The scaled Euclidean distance metric is a variant

δ(a, b) =
√

s(pos mag)2 + (1− s)(ori mag)2

where pos mag is the Euclidean distance of the positional dimensions,

ori mag is the Euclidean distance of orientational dimensions, and s is a

weighting parameter. In the results presented here, we use s = 0.5 and

refer to this as “Euclidean”.

3. Minkowski: The Minkowski distance is the generalized form of the Eu-

clidean distance which uses parameters r1, r2, and r3 to specify the expo-

nents and roots used:

δ(a, b) = r3

√

(a1 − b1)
r1 + · · ·+ (ad−1 − bd−1)

r2

The positional DOFs (usually the first 3 dimensions) use r1 as a power

factor and the orientation/joint DOFs use r2 as a power factor – typically,

r1 = r2 and r3 = 1/r1.

4. Manhattan: The Manhattan distance metric is the distance between two

points if a grid path is followed:

δ(a, b) = (|a1 − b1|+ |a2 − b2|+ · · ·+ |ad − bd|)

5. RMSD: Root Mean Square Distance (RMSD) is measured as the average
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distance between two objects X and Y . It records the level of similarity

between the position and orientation of two objects:

δ(X, Y ) =

√

(X1 − Y1)2 + (X2 − Y2)2 + . . .+ (Xd − Yd)2

d

6. Swept Volume: Swept volume is the volume generated by the continu-

ous motion (translation and/or rotation) of a geometric object through

space. The swept volume distance is the volume swept by the robot while

following the motion prescribed by the local planner. For an articulated

linkage, this becomes the sum of the swept volumes of each of the links.

This distance metric is expensive but more accurate for any local planner.

• Neighbor Finding Methods

1. K-Closest /R-Closest methods: These methods return the k closest neigh-

bors to a node based on some distance metric, where k is normally some

small constant, and can be done in logarithmic time. The advantage is

that nodes are more likely to be connectable by the local planner because

the volume of C-Space the connection occupies is smaller. Another ap-

proach is the r-closest method which returns all neighbors within a radius

r of the node as determined by some distance metric. Here, the size of

the neighbor set is not fixed but is dependent on the sampling density.

2. Randomized K-Closest variants: Two randomized variants of these meth-

ods are proposed in [78]: K-Closest,K-Rand and R-Closest,K-Rand. K-

Closest,K-Rand randomly selects k neighbors from the k2 closest nodes,

where typically k2 = 3k. R-Closest,K-Rand selects k random neighbors

from those within a distance r. In some cases, these methods outperform
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K-Closest as they introduce some useful randomness.

3. Reachablility Based Analysis [43]: This work describes the properties of

these neighbor finding approaches and motivates research on connections

based upon reachability analysis. However, these are expensive and should

be limited to acquiring roadmap connectivity and/or seeking asymptoti-

cally shortest paths [56].

4. Metric Trees [104]: These data structures organize the nodes in a spatial

hierarchical manner by iteratively dividing the set into two equal subsets

resulting in a tree with O(logn) depth. However, as the dataset dimen-

sionality increases, their performance decreases [72].

5. KD-trees [10]: These trees extend the binary tree into a D-dimensional

data structure which provides a good model for problems with high di-

mensionality. However, a separate data structure needs to be stored and

updated each time a node is added to the roadmap.

6. Approximate Neighbor Finding Methods

These methods address the running time issue of exact neighbor finding

approaches by instead returning a set of approximate K-Closest neighbors.

These include spill trees [72], MPNN [110], and Distance-based Projection

onto Euclidean Space [90]. These methods usually provide a bound on the

approximation error.

• Local Planners

A local planner (LP) connects two nodes with an edge based on defined close-

ness characteristics [5]. There are many local planners that can be used to

connect two nodes a and b, and in this work we focus on two: StraightLine and
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RotateAtS. We used the StraightLine local planner because apart from being

commonly used, it is the fastest to compute and thus has less computation

overhead. RotateAtS is useful as a comparison tool because it is an offshoot of

the straightline local planner but does some rotation along the way. We also

briefly describe other local planning methods called TransformAtS and Toggle

LP.

1. StraightLine [5]: interpolates between two points in C-Space checking

intermediate points on a straight line in C-Space. Although this local

planner is simple and fast, it often fails in cluttered environments where

nearest neighbors cannot be connected by a straight line due to the large

swept volume.

2. RotateAtS [5]: reduces the swept volume by translating from a for some

distance s toward b, changes all orientation DoFs, and translates again

to get to b. The rotation allows the local planner some chance to get

around obstacles making it more successful with samples that are close to

obstacles.

3. TransformAtS is a modification of RotateAtS that changes all DOFs one

by one when it gets to s.

4. Toggle LP [30]: a straight-line connection between the configurations a

and b is attempted. If this fails then a third configuration n is generated

that defines a triangle between a, n and b and a path will be searched

within this triangle. This method extends local planning to a two dimen-

sional plane of C space. Toggle LP can show a proof of disconnection

(i.e., no valid path exists) but there is an added overhead of generating

the third node which proves expensive as the complexity of the problem
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increases.

2.3.3 Adaptive Learning Techniques for PRMs

In this section we discuss work related to this research including adaptive sampling,

connection and overall planning for PRM methods.

2.3.3.1 Adaptive Learning during Sampling

Many techniques use machine learning to improve the performance of methods during

the sampling phase of PRM roadmap construction. In this section we briefly highlight

some of these methods.

1. Feature Sensitive Motion Planning [83] uses machine learning to help partition

and characterize planning problems. Here, the planning space is subdivided in

a recursive manner, then each region is classified and assigned an appropriate

planning method. One main strength of this approach is its ability to map

workspace/C-Space topologies for a particular planner. However, it is not able

to adapt sampling methods over time.

2. HybridPRM [48] employs a reinforcement learning approach to select a node

generation method that is expected to be the most effective at the current time

in the planning process. However, these samplers are applied globally over the

entire problem, and the features of the planning space, such as topology, are

not used when deciding where to apply the selected method.

3. The Unsupervised Adaptive Strategy (UAS) [100] is similar to feature sensitive

motion planning in the sense that it identifies regions and specifies the planner

to the region. UAS also considers the topology of the space. In UAS, the

K-means clustering method is used to partition the space using a training
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roadmap and then hybrid PRM [48] is applied in each region. This method

showed an improvement in speed and quality in the roadmaps generated, but

does not consider all aspects of the planning process in particular, the node

connection process.

4. Utility Guided Sampling [21,22] uses information from previous experiences to

guide sampling to more relevant areas of C-Space. Every exploration of C-Space

provides information to the motion planner. They construct an approximate

model of C-Space. Their model captures and maintains information from each

configuration and predicts the state of unobserved configurations to reduce

collision detection calls.

2.3.3.2 Adaptive Learning during Connection

This section focuses on the learning methods applied during the connection phase of

PRM roadmap construction.

1. Adaptive Neighbor Connection (ANC): The work in [35] adaptively selects the

appropriate connection method to use over time. It does so by maintaining

a selection probability for each method based on previous performance. The

main weakness of this approach is that it bases its decisions on the performance

of connection methods over the entire environment in a global approach.

2.3.3.3 Adaptive Learning for Complete Planning

This section discusses the adaptive methods that focus on the overall approach, i.e.,

sampling and connection during PRM roadmap construction.

1. RESAMPL [95] uses local region information (e.g., entropy of neighboring sam-

ples) to make decisions about both how and where to sample, and which sam-
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ples to connect together. This use of spatial information about the planning

space enables RESAMPL to increase sampling in regions identified as narrow

and decreases sampling in regions identified as free. These approaches do not

consider the topology that is discovered within the explored space.

2. Learning from Experience [13] proposes a framework called Lightning that is

able to learn from experience. Lightning consists of two modules that run

in parallel: a planning from scratch module and a module that retrieves and

repairs paths stored in the path library. Any path that is generated for a new

query is checked by a library manager to decide how expensive the path is and

how similar it is to previously generated paths. However, as the size of the

library gets bigger, it becomes impractical to add new paths.

3. Apprenticeship Learning [1] uses inverse reinforcement learning and presents a

refined algorithm that compares the trajectories with a more accurate metric

and uses the algorithm in the context of apprenticeship learning. It solves

problems within the context of motion planning by observing how expert agents

behave, i.e., learn from demonstration.

4. Curiosity Driven PRM [40] utilizes reinforcement learning to enhance PRM

planners for humanoids. To enhance time overhead of PRM as it plans (thinks)

before executing actions, the authors created a modular behavioral environment

(MoBeE) that implements a model-based reinforcement learner on planners.

They assign probabilities to all possible actions from a given state and use

them to identify interesting versus non interesting actions. This helps explore

least visited areas, thus speeding up the planning stage of PRM. However this

work is designed to work for humanoids and it is not a general PRM method.
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Our work makes improvements on these different adaptive learning methods be-

cause we apply learning during both sampling and connection, identify neighbor-

hoods(regions) in the heterogeneous environments dynamically, without the need for

an explicit partition and our results show improvements due to this contribution.
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3. LOCAL LEARNING∗

In this Chapter, we discuss our framework based on the dynamic/implicit identifi-

cation of local neighborhood (regions) within an environment and the utilization of

the multi-arm bandit problem algorithms as briefly described in Chapter 2.

3.1 Local Learning

Our learning framework is a reward based learning method that utilizes the multi-

armed bandit problem algorithms [11, 20]. This method combines the schematics of

the reinforcement learning exploration and exploitation terminologies as described

in Chapter 2.

We make modifications to these algorithms to include a local region for learning

and the reward and cost in this region is recorded and reused to determine the next

method suitable in that region when the next iteration begins. Our local learning

approach focuses on the performance of the learning methods within a dynamically

determined region. This dynamic region is determined based on a region specified by

the node and its neighbors in which we are interested. Using reinforcement learning,

each method is evaluated in terms of the cost and reward of previous attempts in

that region. A method is rewarded as a function of every successful addition to total

expected addition. The cost is expressed in terms of the number of collision attempts

made by the local planner which directly affects the time taken to build the roadmap.

We focus on the performance during the different phases of PRM roadmap construc-

∗The description of the method and some experimental results, tables and figures are reprinted
with permission from “Improved roadmap connection via local learning for sampling based plan-
ners” by Ekenna C., Uwacu D., Thomas S., Amato N.M., 2015 IEEE International Conference on
Intelligent Robots and Systems (IROS), pp. 3227 - 3234 [38] c©2015 IEEE.
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tion which are sampling and connection. The methods include all sampling methods

earlier discussed in Section 2.3.1 and the connection methods described in Section

2.3.2. In our framework, there is a reward when a method successfully adds a node

or an edge to the roadmap.

Algorithm 3 describes the learning algorithm. This is a general algorithm that can

be used for sampling and connection. We initialize all the method’s M to uniform

probability and we update the probability using the UpdateProbability function in

Algorithm 4. We determine the next method to perform an action based on the up-

dated probabilities and call the PerformAction functions (Algorithm 6 and 7) which

updates the cost and reward and also adds a configuration to the roadmap (sam-

pling) or an edge (connection) based on required specifications. This algorithm takes

inspiration from previous work on Hybrid PRM which looks into globally learning as

described in [48]. In this work we apply this algorithms locally during both sampling

and connection for PRM.

Algorithm 3 Learning(M)

1: Let P be a set of probabilities initialized to the uniform distribution, and M be
a set of learning methods such that | P | = | M |.

2: P = UpdateProbability(n.method, n.reward, n.cost)
3: Select m based on P .
4: (reward,cost) = PerformAction(m)

The UpdateProbabilty function (Algorithm 4) is used to continually calculate and

update the probabilities of the methods. This is important because this is where

learning and keeping tabs on their performance is done. It shows the reinforce-

ment learning calculations performed to obtain the probabilities determined for the
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method’s M .

Algorithm 4 UpdateProbability(m,reward,cost)

1: w ← Update Weight using reward and m in Equation 3.1
2: Pnc ← Calculate Probability without cost using w in Equation 3.2
3: Pq ← Calculate Probability using Pnc , m and cost in Equation 3.3
4: return Pq

For each determined neighbor, we use Algorithm 5 to learn within each specified

region with added input which includes the nearest neighbor finding method used to

determine the local learning region. We store information about the method m in

use, and reward and cost calculations for each m within the local learning region.

Algorithm 5 Local Learning(D, M , NFlocal)

1: Let D be data containing tuples (m, reward, cost), NFlocal be a neighbor finding
method and M be a set of learning methods such that | Pq | = |M |.

2: Let L be the learning region defined as the set of nearest neighbors to q given by
NFlocal in D.

3: for each n ∈ L do
4: Learning (m)
5: end for
6: D ← (m, reward, cost)

3.2 Local Learning during Sampling

Algorithm 6 describes the learning action performed during the sampling stage. We

sample using the learned sampling method m from the set M , create a configuration

q, and if is invalid, return the reward and cost as 0 and 1, respectively. Otherwise,
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we connect the configuration q to the roadmap G. We return a reward of 1, if the

current connected component curr.count is greater than or equal to the previous

connected component count prev.count where curr = current and prev = previous.

Otherwise, we make a calculation on how visible the configuration generated is.

Algorithm 6 Sampling
PerformAction(m)

1: Sample configuration q using m
2: if q is not valid then
3: return (0,1) where 1 is the sampling collision calls
4: else
5: Connect configuration to G.
6: end if
7: if curr.count ≥ prev.count then
8: reward = 1
9: else
10: visibility = curr.succ/curr.att
11: reward = ǫ−γ∗visibility2

12: end if
13: cost = # of collision calls after connection + # of collision call after sampling
14: return (reward, cost)

As defined in [84], a configuration q is visible to q′ if there exists a path (e.g. a

straight line) from q to q′ that is entirely valid. In our analysis, a method that

creates a configuration that increases the visibility of its connected component is more

rewarded than one that adds a random configuration that over samples the connected

component. We determine visibility as a function of current success recorded by the

method divided by all the current attempts so far. The reward is thus an exponential

function determined by the method’s visibility. We determine the cost as the number

of collision calls made after the connection has been made with the local planner

including the collision call recorded after the configuration q has been sampled.
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3.3 Local Learning during Connection

Algorithm 7 describes the learning application to the connection stage for PRM. We

connect the configurations based onm from the setM and reward the methods based

on the number of successful connections in ratio to the total connection attempts.

We calculate the cost as the number of collision calls made after the connection has

been made.

Algorithm 7 Connection
PerformAction(m)

1: Connect configuration q to G using m
2: reward = # of successful connections /Total connection attempts
3: cost = # of collision calls after connection
4: return (reward,cost)

First, methods are rewarded according to the number of their returned configurations

that are successful. The reward is updated using the probability without the inclusion

of cost because it should be independent of the accrued cost.

Let xi be the reward for the method mi that was selected. All other rewards for

that time step are 0. To update the weights, we first take into account an adjusted

reward that is not dependent on the cost accrued.

x∗i = xi/p
∗
i , i = 1, 2, ...m. (3.1)

After finding the updated reward, the weight is calculated as a function of the up-

dated reward:

wi(t+ 1) = wi(t) exp
γx∗i
m

, i = 1, 2, ..., m, (3.2)
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where x∗i is the updated reward found by dividing the reward by the probability

without the inclusion of cost. For the weights to adapt quickly, we use an exponential

factor.

We then find the probability p∗nc for each method mi ignoring the cost:

p∗nc = (1− γ)
wi(t)

m
∑

j=1

wj(t)

+ γ
1

m
, i = 1, 2, ..., m, (3.3)

where wi(t) is the weight of mi in step t, t is the number of connection attempts

made by the planner, γ a fixed constant that represents the randomness of the method

choice and m is the number of methods in the set. The probability calculation in

Equation 3.3 is analogous to the total expected payoff measure for bandit algorithms.

The aim is to maximize the expected payoff while minimizing the loss. We set

gamma at 0.5 to ensure all methods have equal chances of being utilized. This

formula computes the probability p∗nc as a weighted sum of the relative weight of the

mi and the uniform distribution, which ensures that each method gets a chance to

be selected.

We calculate a cost sensitive probability as a function of the cost insensitive one and

the cost of connection attempts:

pq =

p∗nc

ci
m
∑

j=1

p∗j
cj

, i = 1, 2, ..., m. (3.4)
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4. EXPERIMENTS IN ROBOT MOTION PLANNING∗

In this Chapter, we discuss experiments performed using our local learning framework

as discussed in Chapter 3. We perform experiments and show results when we

apply our algorithm during the sampling and connection stage individually then

we investigate the performance when we apply to both stages. These experiments

were performed in a single and multi-query scenario. For the single query case, we

examine the time to solve a query. For the multi-query case, we look at the roadmap

coverage and connectivity (as measured by the number of queries solved). We begin

this section by giving a brief overview about our previously published work where

learning is applied globally because in our experiments, we compare the performance

of local vs. global learning which further shows the benefit of our local approach.

4.1 Global Learning

Global learning [35] makes use of Algorithm 3 but continually rewards m from the

set M based on its successful additions to the environment and the cost is expressed

in terms of the number of collision detection attempts made. The reward and cost

is updated based on the performance of the methods m on the entire environment,

i.e., no dynamic determination of local neighborhood/regions.

If the environment is heterogeneous, the global learning performance would be ham-

pered if the environment is not partitioned into regions because global learning would

be forced to chose some neutral strategy or to vacillate between several strategies. In

∗The description of the method and some experimental results, tables and figures are reprinted
with permission from “Improved roadmap connection via local learning for sampling based plan-
ners” by Ekenna C., Uwacu D., Thomas S., Amato N.M., 2015 IEEE International Conference on
Intelligent Robots and Systems (IROS), pp. 3227 - 3234 [38] c©2015 IEEE.
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such a situation, it is desirable to subdivide the problem into homogeneous regions

and apply global learning in each one.

To achieve comparable results we employed an explicit partition method taking the

cue from the previously implemented spatial subdivision method discussed in [18,85,

95, 112].

4.2 Experimental Setup

We look at a variety of input problems including 2D and 3D environments (see Figure

4.1) in industrial settings, narrow regions and highly heterogeneous environments.

• 2D-Heterogeneous, rod-like rigid robot. (Figure 4.1(a)) A long rectan-

gular rigid robot in a heterogeneous environment containing 8 different rooms

of different types including cluttered, free, and blocked regions. The start is

at the bottom left, and the goal is located at the top left. The robot must

traverse each room to solve the query.

• 3D-Heterogeneous, spherical rigid robot. (Figure 4.1(b)) A spherical

robot must traverse 4 rooms separated by walls . These rooms include very

narrow, cluttered, and maze regions. We allow roadmap construction to take

1200 seconds and provide 8 samples spread uniformly for querying. We then

measure performance as the percentage of possible queries solvable from these

samples by the roadmap.

• 6 DOF Manipulator arm. (Figure 4.1(c)) A 6 degree-of-freedom manipu-

lator arm with initial and final configurations inside a narrow passage where

the robot has to pull out an object successfully from the bottom right window

and place it in the bottom right window. This space between the robot and
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the wall is made so narrow so that the robot would have to rotate 360 degree

in the opposite direction to get to the other window.

• 8 DOF KukayouBot [60]. Figure 4.1(d) An 8 DOF robot in an environment

with four different rooms. Its base has 5 DOFs that allow it to move forward,

backward and rotate, and its arm has 3 DOFs. The robot moves through

different rooms with narrow passages and arrives at a destination where it

performs an action (grasps or puts an object down).

The sampling methods that we compare to are Uniform sampling [58], OBPRM [8],

Gauss [17], Bridge Test [46],UOBPRM [25], global learning for sampling (GLS),

and our local learning applied to sampling (LLS). For connection methods, we use

K-Closest, K-Closest,K-Rand, R-Closest,K-Rand, with k = 10 and k2 = 3k as de-

termined in [79], and r as the average pairwise distance among a sample set of con-

figurations. global learning for connection (GLC) and local learning for connection

(LLC).

We use the StraightLine local planner and the RotateATS local planner [5] with

s = 0.5. RotateATS attempts to find a path by translating from configuration qA

to qB the portion of the distance denoted by s, rotating about its axis, and then

translating the remaining way to qB.

4.2.1 Single Query Results

Here we show the performance in single query scenarios. Roadmaps are incrementally

constructed until the query is solved. We measure performance as the time to solve

the query and compare results using the various connection methods, global learning

methods and local learning methods.
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(a) 2D Mix (b) 3D Maze Heterogeneous

(c) 6 DOF Manipulator Arm
with a Fixed Base

(d) 8 DOF KUKA youBot
model with a mobile base

Figure 4.1: Environments studied.

4.2.1.1 Learning during Sampling

In this section we apply learning during the sampling phase only (LLS) and compare

with individual methods and GLS.

• 2D Mix Environment (Figure 4.1(a))

Figure 4.2 shows the time to solve the query for each sampling method studied

in the context of StraightLine local planning (red bars and y axis on the left)

and RotateATS local planning (green bars and y axis on the right). OBPRM

performs best using the StraightLine local planner and Gaussian using the

RotateATS local planner. Using GLS and LLS, we see that they perform
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similarly and second best to the best performing methods for StraightLine and

comparable for RotateATS with the best performing method.
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Figure 4.2: Query time for 2D Heterogeneous for Different Sampling Methods

• 6 DOF Manipulator Arm with a Fixed Base

We provide results for the time, collision call, number of nodes and number of

edges produced and the edge to node ratio (in node degree).

The results in Table 4.1 show that for individual methods, OBPRM uses the

least amount of time while Bridge test uses the smallest number of nodes but

the time taken to solve the query indicates that these nodes are expensive due

to the time Bridge Test needed to solve the query. Results with GLS show some

improvement in the time second to OBPRM. However, results using LLS show

an improvement in performance both in regards to the time taken to solve the
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query and a reduced number of connected components. LLS performs better

than the best individual method.

Table 4.1: Each method constructs a roadmap until the query is solved. GLS and
LLS is comprised of the other 4 sampling methods. All results are averaged over 10
runs. CC is number of connected components present. Boldface entries indicate the
most desirable (e.g., shortest running time, Nodes, Edges etc.).

Environment Method Nodes Edges Edge/Node Total Time (s) CC

Stationary 6
degree-of-
freedom
manipulator
arm, k = 10

BridgeTest 3833 54004 14.1 1373 338
Gauss 18739 358575 19.1 644 364
Uniform-PRM 58117 1150213 19.9 6048 1711
OBPRM 9708 122109 12.5 344 42
GLS 10762 146442 13.6 1078 47
LLS 7022 100576 14.3 339 36

• 8 DOF KUKA youBot model with a mobile base

We perform single query experiments and record the time needed to solve the

query.

Figure 4.3(a) shows the time needed to solve the query in the KukayouBot

environment using the different sampling methods listed. Here we determine

how each of the sampling methods performs including evaluating both global

and local learning during the sampling phase.

In Figure 4.3(a) we see that the LLS and GLS are better than all the in-

dividual methods. LLS performs better than GLS in this experiment which

indicates that learning is important during the sampling phase. The Bridge

Test performs better in terms of time to solve the query than the other sampling

methods where learning is not applied.
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Figure 4.3: Query time and Frequency of Usage for Different Sampling Methods

Figure 4.3(b) shows the frequency of usage of the different sampling methods in

GLS and LLS. We see that GLS in most cases learns to use Uniform/Basic PRM

sampling which is the simplest algorithm and thus would record a smaller cost
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which GLS leverages on. However it does not learn the Bridge Test sampling

method which from our results (see Figure 4.3(a)) is the better performing

individual sampling method. LLS utilizes all the available sampling methods

efficiently and it records the smallest time needed to solve the query.

4.2.1.2 Learning during Connection

In this section, we investigate the performance of the local learning method during

the connection stage (LLC) and compare performance with individual methods.

• 2D Mix Environment

Figure 4.4 shows the time to solve the query for each method studied in the

context of StraightLine local planning (red bars and y axis on the left) and Ro-

tateATS local planning (green bars and y axis on the right). For StraightLine,

R-Closest,K-Rand solves the query in the least time followed by LLC. LpSwept

performs the worst because of its high computational cost. LpSwept is a more

accurate method but due to the area covered during a sweep of the robot, such

accuracy is not needed for StraightLine local planning. We also see that there

is more time overhead needed to solve the query using RRT in comparison to

both GLC and LLC. Note that LLC does better than GLC because the envi-

ronment is heterogeneous, and there are no explicit subdivisions. Thus, local

learning is needed.

With RotateAtS, we see a change in performance of the individual connection

methods. Specifically, we see that LpSwept performs better here than before.

ScaledEuclidean performs worse than LpSwept because it does not predict well

the feasibility of RotateATS as it over-penalizes candidates with large rotation

differences. LLC was able to take advantage of this change in performance
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Figure 4.4: Running time in the 2D Mix Heterogeneous environment using different
local planners averaged over 10 runs.

and clearly outperforms all the other methods. Again, LLC outperforms GLC

because of the issue of heterogeneity.

• 8 DOF KUKA youBot model with a mobile base

The results in Figure 4.3(a) help us select the sampling method (Bridge Test)

to utilize for this experiment. Figure 4.5(a) shows time needed to solve the

query using the Bridge Test as a sampling method and the different connection

methods including GLC and LLC. We perform this experiment to determine if

applying learning during the connection stage is beneficial.

From the plots, we see that LLC outperforms all the other methods. It outper-

forms the other methods by a magnitude of 10 as is the case with the LpSwept

method. This result indicates that learning is indeed important during the

connection phase.
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Figure 4.5(b) shows the performance frequency of usage of the connector meth-

ods for learning employed during the connection stage. Here we see that GLS

learns LpSwept which is not one of the better connection methods. GLC’s

performance as earlier discussed in [35] is a result of the need to partition the

environment to get good results which we did not do in these experiments. LLC

however, utilizes the methods more which is an important feature of the local

learning approach, i.e., their ability to utilize resources in a more intelligent

way, which in this case is being able to use the methods available as the need

arises.

4.2.1.3 Learning in Both Phases

• 8 DOF KUKA youBot model with a mobile base

Figure 4.6(a) shows the time needed to solve the query when learning (global

and local) is applied to both the sampling and connection phase. Our results

show that applying local learning during sampling and global learning to con-

nection solves the query in the shortest time.

We see that applying local learning to sampling and global learning to connection is

the best performing combination, followed closely by a global sampling and then local

connection approach. Figure 4.6(b) shows the frequency of usage during learning

both for sampling and connection and we see that the methods utilize all available

methods in it’s list better than other methods.

GLS in most cases learns to use Uniform/Basic PRM sampling which is the simplest

algorithm and thus would record a smaller cost which the global method would

leverage on. However, global connection learning in most cases picks the LpSwept

method which is a method that spans the volume of the space when identifying
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Figure 4.5: Query time and Frequency of Usage for Different Connection Methods
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neighbors which is more effective but tends to be more expensive.
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4.2.2 Multi-Query Experiments

In this section, we show the performance of the various methods in multi-query sce-

narios. Roadmaps are constructed within a fixed amount of time. We then count how

many queries from a set of random samples are solvable by the resulting roadmap.

We also look at the percentage of roadmap nodes contained in the largest connected

component. This gives us indicators for coverage and connectivity. We perform

multi-query experiment in the 3D Maze Environment and show behaviors of learn-

ing in the sampling and connection stages and when appied to both.

4.2.2.1 Learning in Sampling

Figure 4.7(a) shows that the sampling method using OBPRM solves more queries

than the other methods. We see a higher percentage of nodes in its largest connected

component as shown Figure 4.7(b) using the RotateAtS local planner and Straight-

Line local planner when compared with the individual methods. Using the GLS, we

see an improvement in performance for the StraightLine planner and a comparable

method to OBPRM using the LLS the RotateAtS planner.

4.2.2.2 Learning in Connection

Figure 4.8(a) (bars in red), shows the percentage of queries solved and Figure 4.8(b)

(bars in red) the percentage of nodes in the largest connected component for each

method using the StraightLine local planner. LLC solves more queries than the other

methods by almost a factor of 2. We see a comparably higher percentage of nodes in

its largest connected component. LLC outperforms global connection learning due

to the absence of explicit partitioning.

Figure 4.8(a) (bars in green) shows the results using the RotateATS local planner.
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Figure 4.7: Learning in Sampling for the 3D Maze Heterogeneous environment using
different local planners averaged over 10 runs.

LLC is the second best in terms percentage of queries solved. Individual connection

method performance has changed with the different local planners, but LLC still

outperforms global connection learning.
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Figure 4.8: Learning in Connection for the 3D Maze Heterogeneous environment
using different local planners averaged over 10 runs.

4.2.2.3 Learning in Both Phases

In this experiment, we look to see what happens when learning is applied to both

phases of PRM construction during a multi-query scenario. Figure 4.9(a) shows the
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percentage of queries solved and Figure 4.9(b) the percentage of nodes in the largest

connected component. The results show that LLS-LLC performs best using both the

RotateATS local planner and the StraightLine local planner.
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5. LOCAL LEARNING AND PROTEIN FOLDING∗

Modeling the protein folding process is crucial in understanding not only how proteins

fold and function, but also how they misfold triggering many devastating diseases

(e.g., Mad Cow and Alzheimer’s [23]). Knowledge of the stability, folding, kinetics,

and detailed mechanics of the folding process may help provide insight into how and

why the protein misfolds. Since the process is difficult to experimentally observe,

computational methods are critical.

Traditional computational approaches for generating folding trajectories such as

molecular dynamics [69], Monte Carlo methods [27], and simulated annealing [68]

provide a single, detailed, high-quality folding pathway at a large computational

expense. As such, they cannot be practically used to study global properties of

the folding landscape or to produce multiple folding pathways. The use of massive

computational resources, such as tens of thousands of PCs in the Folding@Home

project [12, 64] have helped improve the time overhead involved but still are unable

to handle very large proteins. Statistical mechanical models have been applied to

compute statistics related to the folding landscape [19, 88]. While computationally

more efficient, they do not produce individual pathway trajectories and are limited

to studying global averages of the folding landscape.

Robotics-based motion planning techniques, including the Probabilistic Roadmap

Method (PRM), have been successfully applied to protein folding [6, 9, 26]. They

construct a roadmap, or model, of the folding landscape by sampling conformations

∗The description of the method and some experimental results, tables and figures are reprinted
with permission from “Adaptive local learning in sampling based motion planning for protein fold-
ing” by Ekenna C., Thomas S., Amato N.M., 2015 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 61-68 [36] c©2015 IEEE.
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and connecting neighboring ones together with feasible transitions using a simple

local planner. They can generate multiple folding pathways efficiently (e.g., a few

hours on a desktop PC) enabling the study of both individual folding trajectories

and global landscape properties.

We apply our local learning framework to study the protein folding process and we

apply this framework to the sampling and connection stages of PRM construction

used for simulating protein folding. We examine the performance of our method

on 23 proteins of varying secondary structure makeup with 52–114 residues. We

examine both the time to build roadmaps and the resulting trajectory quality. We

also compare secondary structure formation order as exhibited in the pathways our

roadmaps and experimentally determined where available. Our results confirm that

learning is necessary, as no individual method is the best choice for all proteins. We

also show that local learning generates better quality trajectories and is comparable

in time to the best individual method for each individual input.

5.1 Related Work and Preliminaries

In this section we describe some preliminaries and related work including experi-

mental protein dynamics, the protein model used, PRMs for protein folding and

the distance metrics used specifically for protein folding. We then discuss existing

machine learning techniques for PRMs and for protein motion and analysis.

5.1.1 Experimental Protein Dynamics

There have been several advances in experimental techniques to study protein dy-

namics and motion including circular dichroism, fluorescence experiments, hydrogen

exchange and pulse labeling, NMR spectroscopy, and time-resolved X-ray crystallog-

raphy. We briefly discuss each in turn.
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• Circular dichroism (CD) is a spectroscopic technique used to investigate the

structure and conformational changes of proteins [73]. By informing on binding

and folding properties, CD provides information about the protein’s biologi-

cal functions. The CD signal occurs when chromophores in an asymmetrical

environment interact with polarized light. In the case of proteins, the main

chromophores are the peptide bonds as they absorb polarized light in the far-

UV wavelength region (i.e., below 240 nm).

• Fluorescence spectroscopy analyzes the emission of fluorophores in the protein

as the protein undergoes conformational change [87], such as during folding or

upon binding. These fluorophores act as indicators of the state of the local

environment, e.g., how structured the portion of the protein is near the fluo-

rophore. As almost all proteins have natural fluorophores (i.e., tyrosine and

tryptophan residues), fluorescence spectroscopy has broad applicability.

• Hydrogen exchange mass spectrometry and pulse labeling can investigate pro-

tein folding by identifying which parts of the structure are most exposed or

most protected [77]. From this data, one can infer which portions of the pro-

tein fold first and which are last to form, up to the millisecond timescale.

• NMR spectroscopy, another experimental tool often used to study protein dy-

namics, is a technique used to determine a compound’s unique structure. It

identifies the carbon-hydrogen framework of an organic compound and has

been used to study side-chain motion and backbone motion [45]. See [96] for a

review of current techniques.

• X-ray crystallography obtains a three dimensional molecular structure from a

crystal [97]. A purified sample at high concentration is crystallized and the
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resulting crystals are exposed to an x-ray beam. This produces a pattern of

diffraction spots. The intensities of these spots can be used to determine the

structure factors from which an electron density map can be calculated.

While experimental methods can probe some fine-grained details of protein

motion, they are time intensive and limit the time scales they can access. In

addition, experimental methods may not be able to be applied to all proteins,

e.g., some proteins naturally precipitate out and cannot be analyzed. Simula-

tions, instead, affords the opportunity to study such proteins and others much

faster (hours vs. days) with computational resources which will potentially

save both time and money.

5.1.2 Protein Model

Proteins are sequences of amino acids, or residues. We model the protein as a

linkage where only the φ and ψ torsional angles are flexible, a standard modeling

assumption [76]. A potential energy function models the many interactions that

affect the protein’s behavior [69]. This function helps quantify how energetically

feasible a given conformation is.

In this work, we employ a coarse-grained potential function [6] which helps define

some characteristics of our modeling framework; If the atoms are too close to each

other (less than 2.4Å in sampling and 1.0Å in connecting), the conformation is

unfeasible; otherwise, the energy is calculated by:

Utot =
∑

constraints

Kd{[(di − d0)
2 + d2c ]

1/2 − dc}+ Ehp (5.1)

where Kd is 100 kJ/mol, di is the length on the ith constraint, Ehp is the hydrophobic

interaction, and d0 = dc = 2Å as in [69]. The coarse grain model has been shown
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to produce qualitatively similar results as all-atoms models but faster in terms of

time [98].

5.1.3 PRM for Protein Folding

The Probabilistic Roadmap Method (PRM) [58] is a robotics motion planning al-

gorithm that first randomly samples robot (or protein) conformations, retains valid

ones, and then connects neighboring samples together with feasible motions (or tran-

sitions). To apply PRMs to proteins, the robot is replaced with a protein model and

collision detection validity computations are replaced with potential energy calcula-

tions [4, 6, 9, 26].

5.1.3.1 Sampling

Protein conformations, or samples, are randomly generated with bias around the na-

tive state, the functional and most energetically stable state. Samples are iteratively

perturbed, starting from the native state, and retained if energetically feasible by

the following probability:

P (q) =



























1 if E(q) < Emin

Emax − E(q)

Emax − Emin

if Emin < E(q) ≤ Emax

0 if E(q) > Emax

(5.2)

where Emin is the energy of the open chain and Emax is 2Emin. We use rigidity

analysis to focus perturbations on flexible portions as detailed in [103]. We perturb

flexible torsional angles with a high probability, Pflex, and rigid torsional angles with

a low probability, Prigid. Perturbing rigid torsional angles ensures coverage of the

landscape. This method provides a denser distribution of samples near the native
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conformation and focuses sampling on currently flexible regions.

5.1.3.2 Connection

Once a set of samples is created, they must be connected together with feasible

transitions to form a roadmap, or model, of the folding landscape. Connecting

all possible pairs of samples is computationally unfeasible, and it has been shown

that only connecting the K-Closest neighbors results in a roadmap of comparable

quality [79].

Given a pair of samples, we compute a transition between them by a straight-line

interpolation of the φ and ψ torsional angles. Straight-line local planning involves

the fewest number of intermediates to check for validity and has been shown to be a

sufficient measure of transition probability; i.e., it can accurately predict secondary

structure formation order [6, 98]. We assign an edge weight to reflect the energetic

feasibility of the transition as
∑n−1

i=0 −log(Pi) where Pi is the probability to transit

from intermediate conformation ci to ci+1 based on their energy difference ∆Ei =

E(ci+1)− E(ci):

Pi =











e
−∆Ei

kT if ∆Ei > 0

1 if ∆Ei ≤ 0

(5.3)

where k is the Boltzmann constant and T is the temperature. This allows the most

energetically feasible paths to be extracted by standard shortest path algorithms.

5.1.3.3 Validation by Secondary Structure Formation Order

Proteins are composed of secondary structure elements (i.e., α-helices and β-strands).

Experimental methods, such as hydrogen exchange mass spectrometry and pulse

labeling, can investigate protein folding by identifying which parts of the structure

52



are most exposed or most protected [107]. From this data, one can infer the secondary

structure formation order.

In [6, 76, 98], we compared the secondary structure formation order of folding path-

ways extracted from our maps to experimental results [70] by clustering paths to-

gether if they have the same formation ordering. We return a stable roadmap when

the distribution of secondary structure formation orderings along the folding path-

ways in the graph stabilizes, i.e., the percentage of pathways following a given order-

ing does not vary between successive graphs by more than 30%. As our roadmaps

contain multiple pathways, we estimate the probability of a particular secondary

structure formation order occurring by the percentage of roadmap pathways that

contain that particular formation order. The roadmap corroborates experimental

data when the dominant formation order (i.e., the one with the greatest percentage)

is in agreement.

5.1.3.4 Distance Metrics

The distance metric plays an important role in determining the best connections to

attempt. It is a function δ that computes some “distance” between two conformations

a = 〈a1, a2, . . . , ad〉 and b = 〈b1, b2, . . . , bd〉, i.e., δ(a, b)→ R, where d is the dimension

of a conformation. Here, a1 . . . and b1 . . . are the φ and ψ torsional angles for each

protein conformation. A good distance metric generally predicts how likely it is

that a pair of nodes can be successfully connected. Their success is dependent on

the nature of the problem studied. We use the following set of distance metrics

commonly used when applying motion planning to protein motion:

• Euclidean Distance Metric

The Euclidean distance metric captures the amount of physical movement
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(around the torsional angles) that conformation a would undertake to move

to conformation b. This distance is computed by measuring the difference in

the φ and ψ angle pairs of the two conformations:

δEucl(a, b) =

√

(φa
1 − φ

b
1)

2 + (ψa
1 − ψ

b
1)

2 + ...+ (φa
n − φ

b
n)

2 + (ψa
n − ψ

b
n)

2

2n
. (5.4)

• Cluster Rigidity Distance Metric

Rigidity analysis [50] computes which parts of a structure are rigid and flexible

based on the constraints present. It may be used to define a rigidity map r,

which marks residue pairs i, j if they are in the same rigid cluster. Rigidity

maps provide a convenient way to define a rigidity distance metric, between

two conformations a and b where n is the number of residues:

δRig(a, b) =
∑

0≤i<j≤2n

(ra(i, j) 6= rb(i, j)). (5.5)

More details may be found in [103].

• Root Mean Square Distance Metric

The protein model has 6 atoms for each amino acid. Thus, a protein with n

amino acids will have 6n atoms. Denoting the coordinates of these atoms as x1

to x6n, the root mean square distance (RMSD) between conformations a and

b is:

δRMSD(a, b) =

√

(xa1 − x
b
1)

2 + (xa2 − x
b
2)

2 + ... + (xa6n − x
b
6n)

2

6n
. (5.6)

Least RMSD (lRMSD) is the minimum RMSD over all rigid body superposi-

tions of a and b.
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5.1.4 Machine Learning for Protein Analysis and Motion

Machine learning algorithms have been employed to predict protein folds, estimate

folding rates, and study folding motions. We highlight a few relevant techniques

here.

• Protein Fold Recognition

Protein fold recognition involves identifying the correct structural fold from

among a set of known template protein structures for a given protein sequence.

Fold recognition is essential for template-based protein structure modeling.

The fold recognition problem is defined as a binary classification problem of

predicting whether or not the unknown fold of the input protein is similar to

an already known template from a protein structure library.

RF-Fold uses random forests, a highly scalable classification method, to rec-

ognize protein folds [53]. A random forest is composed of many decision trees

that are each trained on datasets of target-template protein pairs. RF-Fold

recognition rate is comparable to the best performance in fold recognition at

the family, superfamily, and fold levels.

DN-Fold is another fold recognition technique, but it uses a deep learning

neural network as a basis for learning [54]. A deep learning network has many

more layers than a typical neural network. In addition, they may be trained

through unsupervised learning. Deep learning was applied to fold prediction by

restating the problem as predicting if a given target-template pair belonged to

the same fold. They showed that DN-Fold achieved comparable performance

over a wide variety of methods at all three fold levels.

• Folding Rate Prediction
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In addition to predicting the fold of a protein, it is useful to estimate its fold-

ing rate. This is important when studying properties such as stability and

classifying kinetics. Characteristics of the protein structure, such as contact

order and total contact distance, affect the folding rate. However, the precise

relationship between these characteristics and the rate are unknown. A back-

propagation neural network was used to quantify this relationship [113]. Their

results showed that correlations exist between these properties and the folding

rate with relative errors for predicted results lower than competing methods.

• Simulating Protein Motion Trajectory

Machine learning has also been applied to studying protein folding trajecto-

ries. In [41] they use unsupervised learning to cluster similar states and basins

present in the folding landscape. They then use this clustering to construct an

exploration bias to speed up molecular dynamics simulations. Specifically, the

exploration bias guides the next basin to jump to in the simulation while en-

suring that the entire conformation space is explored. They provide simulation

results for an alanine trajectory.

5.2 Learning Framework for Protein Folding

We use the same learning framework algorithms described in Chapter 3 and make

modifications to the reward and cost based on the potential energy calculations.

Potential energy computations take up a large portion of the total computation time

and thus are a good measure of the reward and cost. Here, we calculate the cost as

the number of potential energy calls incurred by the connection method. This would

be used both during learning for sampling and connection. We make this change from

what we previously used in our robotics experiment which involved a calculation of
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the number of successful connections made to what was expected to now a function

based on the potential energy. The energy function gives a clear indication of valid

configurations and as seen in Equation 5.7 we make use of the normalized function

to bring all our variables in proportion to one another. We make modifications to

the reward as described below.

Let xi be the reward for the cmi that was selected:

xi = α + (1− α)(1−
yi(t)−minyi(t)

maxyi(t)−minyi(t)
) (5.7)

where yi(t) = current edge weight, minyi(t) = minimum edge weight recorded during

the current step, maxyi(t) = maximum edge weight recorded during the current step,

and α = a constant value used to normalize the reward. All other rewards for that

time step are 0. The reward is thus a function of the edge quality (weight) and the

local planner’s success.

5.3 Experiments

We study 23 proteins (see Table 5.1) with 52–114 residues. This set contains α, β,

and mixed proteins that were also studied by [34] and many have experimentally

determined secondary structure formation orders [74]. The protein structures were

obtained from the Protein Data Bank [14]. We perform experiments by applying

our learning framework during sampling and connection phases of PRM roadmap

construction.

Metrics are computed as follows:

• Secondary Structure Formation Order: We compare, when available, the sec-

ondary structure formation order predicted by each method to experimental
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Table 5.1: Proteins studied.

Protein Name PDB ID Length Secondary Structure
Rubredoxin 1RDV 52 2α+ 2β
Ferredoxin 1FCA 55 2α+ 2β
Protein G 1PGA 56 1α+ 4β
Protein G Variant NUG1 57 1α+ 3β
Protein G Variant NUG2 57 1α+ 3β
Alpha-Spectrin SH3 Domain 1SHG 57 1α+ 5β
Human FYN 1NYF 58 5α+ 1β
Immunoglobulin G Binding Protein A 2SPZ 58 3α
Cardiotoxin III 2CRS 60 5β
Tick Antocoagulant peptide 1TCP 60 2α+ 2β
ADR1 2ADR 60 2α+ 2β
Repressor Protein C1 1R69 63 5α
Chymotrypsin Inhibitor 2 variant 1COA 64 1α+ 4β
Chymotrypsin Inhibitor 2 variant 2CI2 65 1α+ 4β
Probable enterotoxin 2KRS 70 7β
Regulatory Protein CRO 2CRO 71 5α
Protein L 2PTL 78 1α+ 4β
Procarboxy peptidase B 1PBA 81 4α+ 3β
Procarboxy peptidase A2 106X 81 2α+ 3β
ACYL-CO Enzyme 2ABD 86 4α
Barnase 1YVS 106 3α+ 4β
Binase 1BUJ 109 5α+ 3β
DNA B Helicase 1JWE 114 8α

data. We examine shortest paths from all unfolded states to the native state.

(Recall that roadmap edge weights reflect the transition’s energetic feasibility,

so extracting the smallest weighted path corresponds to extracting the most

energetically feasible path). We then compare the dominant ordering (i.e., the

ordering that occurs most frequently among all folding pathways present) to

the ordering given by experimental data.

• Pathway Quality: We define folding pathway quality as the weight of each edge

(i.e., its energetic feasibility) multiplied by the dominance of that edge (i.e.,
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the number of folding pathways that traverse it). This metric is important

because it identifies how many edges with low energies are present and how

frequently they are used. Having low quality values in our results indicates a

better performing connection method.

Experiment Setup for Sampling

For all learning during sampling experiments, we generate conformations using the

different variants of the sampling method based on rigidity analysis [103] as described

in Section 5.1.3.1. We make changes to the Pflex (perturb flexible torsional angles),

and Prigid (perturb rigid torsional angles) parameters. The range for Pflex and Prigid

increases in flexibility and rigidity as we go from 0 to 1.

Table 5.2 gives a list of the variants to the sampling methods we utilize.

Table 5.2: Rigidity Sampling Variants used

Sampling Variant Pflex Prigid

Rigidity-1 0.2 0.2
Rigidity-2 0.8 0.2
Rigidity-3 0.2 0.8
Rigidity-4 0.1 1.0
Rigidity-5 1.0 1.0

We use a combination of our KClosest neighbor finder using the cluster distance

metric and the straight line local planner as our connection method for all cases and

attempt to connect to 20 nearest neighbors. For LLC, we set NFlocal to be the 40

nearest neighbors based on Euclidean distance. We stop construction once we have

a stable roadmap.
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Experiment Setup for Connection

For all learning during connection experiments, we generate conformations using

iterative sampling based on rigidity analysis [103]. For all connection methods, we

use a straight line local planner and attempt to connect to the 20 nearest neighbors.

For local learning, we set NFlocal to be the 40 nearest neighbors based on Euclidean

distance. This resulted in the best performance in preliminary experiments. We stop

construction once we have a stable roadmap.

5.3.1 Learning in Sampling

In this section, we investigate the performance of LLS (local learning), GLS (global

learning), and individual sampling methods to model the folding landscape of 23

proteins. GLS and LLS use these methods as their learning set.

We first establish each method’s ability (individual sampling methods, global learn-

ing, and local learning) to validate against experimental data when available. We

examine the quality of the resulting folding pathways and the time required by each

individual method and look at the cumulative performance of these metrics. We

show how LLS’s learning decisions are consistent with the individual connection

method performance outside of the learning framework. In addition, we compare

LLS’s learning performance against GLS’s learning approach.

5.3.1.1 Validation by Secondary Structure Formation Order

Table 5.3 summarizes the comparison of each method’s dominant secondary structure

formation order. (Entries are ordered as appears in Table 5.1 by protein length.)

Only the learning methods (LLS and GLS) produced the same dominant formation

order as experiment for all proteins with available data. Individual methods were
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unable to reproduce the ordering from experimental data for 2CI2. Thus, in some

cases learning was required for correctness.

Table 5.3: Learning in Sampling:Validation of secondary structure formation order
to experimental data when available. Proteins are ordered by protein length as in
Table 5.1.

L
L
S

G
L
S

R
ig
id
it
y
-1

R
ig
id
it
y
-2

R
ig
id
it
y
-3

R
ig
id
it
y
-4

R
ig
id
it
y
-5

PDB Experimental
Identifier Data
1RDV unavailable same ordering
1FCA unavailable same ordering
1PGA [62] Y Y Y Y Y Y Y
NUG1 [89] Y Y Y Y Y Y Y
NUG2 [89] Y Y Y Y Y Y Y
1SHG [74, 105] Y Y Y Y Y Y Y
1NYF [44, 92] Y Y Y Y Y Y Y
2SPZ unavailable same ordering
2CRS [70] Y Y Y Y Y Y Y
1TCP unavailable same ordering
2ADR unavailable different orderings
1R69 unavailable same ordering
1COA unavailable same ordering
2CI2 [49] Y Y N N N N N
2KRS [74] Y Y Y Y Y Y Y
2CRO unavailable same ordering
2PTL [111] Y Y Y Y Y Y Y
1PBA unavailable same ordering
106X [106] Y Y Y Y Y Y Y
2ABD [101] Y Y Y Y Y Y Y
1YVS [75] Y Y Y Y Y Y Y
1BUJ unavailable different orderings
1JWE unavailable same ordering

# Agree with Exp. / # Available 12/12 12/12 11/12 11/12 11/12 11/12 11/12

When experimental data was not available, all methods produced the same ordering

for 9 proteins and different orderings for 2 proteins (2ADR and 1BUJ). For 2ADR,

GLS and LLS produce similar orderings with Rigidity-1, Rigidity-2 and Rigidity-5

61



and is different from the ordering produced with Rigidity-3 and Rigidity-4. The

difference in the ordering is noticed in the last α helix and β sheet ordering where

there is a switch in the ordering when compared. For 1BUJ, all the methods produced

similar orderings apart from Rigidity-4 which disagree in the ordering of the first α

helix.

5.3.2 Quality, Time, and the Tradeoff Between Them

Quality

Figure 5.1 shows the folding pathway quality using the different variants of the

rigidity sampling method, GLS and LLS and we see that LLS outperforms all the

other methods including GLS for 21 out of the 23 proteins studied. Rigidity-1 and

Rigidity-5 is best for one protein only i.e., 1NYF and 1JWE respectively. Apart

from the best choice being LLS, other methods don’t consistently produce good

quality for all the proteins studied. When we look at the individual sampling method

performance, we see that no single method performs best across all proteins which

shows a clear need for learning. Also when we consider the correlation we observe

that as we increase in the size of the protein, the pathway quality does not diminish

using LLS as compared to Rigidity-3 which indicates an improvement when learning

is employed.

Time

Figure 5.2 provides the time needed to build a stable roadmap using the different

sampling methods. LLS is the best for four of the proteins and second best for five,

with two of them incurring less than 5% overhead. LLS improves over GLS for 21

out ofthe 23 proteins and in some cases with a 50% improvement. We see here the

same trend where no particular method is the best for all the proteins. Rigidity-1
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Figure 5.1: Sampling Results over Quality.

performs best for 11 of the proteins but not so well when we consider the quality

of pathways produced as seen in Figure 5.1. LLS gives a good balance between the

time and the quality.

Exploring in more detail on the performance of LLS in relation to the other meth-

ods, we plot the difference in time between LLS and Rigidity-1 (better non-learned

sampling method) as a function of protein length. The larger difference presented

in Figure 5.3 shows a better quality recorded for LLS because the lower the energy

recorded in our pathways the better. Our results show clearly that irrespective of

the length we obtain better quality for 22 out of the 23 proteins studied. Figure 5.4

shows the difference in time between Rigidity-1 and LLS, the higher the difference

the better for LLS in terms of performance. Results indicate that we have a varying

performance using LLS, but when we compare Figure 5.3 and Figure 5.4 we see that
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Figure 5.2: Sampling Results over Time.

LLS balances between the time and quality.
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Figure 5.3: Sampling Results over Linear Correlation with Quality
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Figure 5.4: Sampling Results showing Linear Correlation over Time

5.3.2.1 Quality vs. Time

Another important analysis we perform is to study the cumulative performance across

all 23 proteins studied. Figure 5.5 shows the ordered ranking of each connection

method, GLS, and LLS across all 23 proteins. For each protein, we assign a rank

from one to seven (with seven being the best) to each method for quality and time.

The cumulative performance for each method is the average of these rankings. Here

we see that LLS has the best cumulative quality performance of 6.8 across the entire

environments even with Rigidity-2 performing best with regards to time.

Figure 5.5 gives more insight into the behavior of the different methods. We plot

the quality of LLS and Rigidity-1 which is the best performing method in terms of

time. Here we see that there is little change in performance of LLS as the protein

length increases which cannot be said for Rigidity-1 which shows a loss in quality

as the protein length increases. This shows that LLS is more scalable in providing

quality pathways which in turn affects the ability to simulate the folding process as

observed by biochemists.
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Figure 5.5: Cumulative Results for Sampling

5.3.2.2 Inspection of LLS Learning Choices

Figure 5.6 shows the percentage at which LLS used each individual connection

method in constructing stable roadmaps for each protein. LLS’s use of the different

methods for protein 1FCA and ITCP is dominated by Rigidity-1, NUG1 and IJWE

by Rigidity-2, 1O6X and 1YVS by Rigidity-4 and 2CI2, 2KRS, 2PTL, IPGA, and

1NYF by Rigidity-5 while for the other proteins we have a mixture of the different

sampling methods being used. When it favors a set of methods, it favors the best

individual method in terms of time and quality twice and favors the best method in

terms of time nine times of the total proteins studied.

5.3.3 Learning in Connection

In this section, we investigate the performance of LLC (local learning), GLC (global

learning), and individual connection methods to model the folding landscape of 23

proteins. Individual connection methods are K-Closest neighbor selection using ei-

ther Cluster, Euclidean, or lRMSD distance metric. GLC and LLC use these methods

as their learning set.

We first establish each method’s ability (individual connection methods, global learn-
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Figure 5.6: Sampling Results Local Use

ing, and local learning) to validate against experimental data when available. We

then look into the local planner success rate in the context of each strategy. We

examine the quality of the resulting folding pathways and the time required by each

individual method and look at the cumulative performance of these metrics. We

show how LLC’s learning decisions are consistent with the individual connection

method performance outside of the learning framework. In addition, we compare

LLC’s learning performance against GLC’s learning approach.

5.3.3.1 Validation by Secondary Structure Formation Order

Table 5.4 summarizes the comparison of each method’s dominant secondary structure

formation order. (Entries are ordered as appears in Table 5.1 by protein length.)

Only the learning methods (GLC and LLC) produced the same dominant formation
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order as experiment for all proteins with available data. Individual methods were

unable to reproduce the ordering from experimental data for 2ABD. Thus, in some

cases learning was required for correctness.

Table 5.4: Learning in Connection:Validation of secondary structure formation order
to experimental data when available. Proteins are ordered by protein length as in
Table 5.1.

L
L
C

G
L
C

C
lu
st
er

E
u
cl
id
ea
n

lR
M
S
D

PDB Experimental
Identifier Data
1RDV unavailable same ordering
1FCA unavailable same ordering
1PGA [62] Y Y Y Y Y
NUG1 [89] Y Y Y Y Y
NUG2 [89] Y Y Y Y Y
1SHG [74, 105] Y Y Y Y Y
1NYF [44, 92] Y Y Y Y Y
2SPZ unavailable different orderings
2CRS [70] Y Y Y Y Y
1TCP unavailable same ordering
2ADR unavailable same ordering
1R69 unavailable same ordering
1COA unavailable same ordering
2CI2 [49] Y Y Y Y Y
2KRS [74] Y Y Y Y Y
2CRO unavailable same ordering
2PTL [111] Y Y Y Y Y
1PBA unavailable same ordering
106X [106] Y Y Y Y Y
2ABD [101] Y Y N N N
1YVS [75] Y Y Y Y Y
1BUJ unavailable different orderings
1JWE unavailable same ordering

# Agree with Exp. / # Available 12/12 12/12 11/12 11/12 11/12
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When experimental data was not available, all methods produced the same ordering

for 9 proteins and different orderings for two proteins (2SPZ and 1BUJ). Upon exam-

ination of the two proteins that methods disagree on, we find that LLC, GLC, and

Cluster are always in agreement and Euclidean and lRMSD are always in agreement.

Additionally, disagreements only occur at the end of the pathway; all methods agree

on the order of the first elements to form. Specifically, all methods find that the

central α-helix forms first in 2SPZ and disagree on the relative ordering of the two

terminal α-helices. Similarly, all methods find that β-strands 6, 5, 4, 3, 2 form first

(and in that order) and disagree on the relative ordering of the three α-helices and

the remaining β-strand for 1BUJ.

5.3.3.2 Local Planner Success Rate

Recall that a connection method comprises both the distance metric used to identify

neighbors to connect and a local planner (e.g., a straight-line in φ − ψ space) that

computes a set of intermediate conformations, evaluates their energetic viability, and

adds an edge between the two neighbors if such a trajectory is feasible. The local

planner success rate is a good indicator of the performance of the entire connection

process. We measure the local planner success rate as the number of connections

made out of the number of connections attempted.

Figure 5.7 displays the local planner success rate for all connection methods across

all proteins studied. Observe that the local planner success rate is highest for LLC

for 18 of the 23 proteins and comparable for one of the proteins (1RDV). For proteins

in which it is not the highest (1NYF, 1PGA, 2ADR, 2CRS), it is within 0.05 of the

highest. Note that GLC does not perform as well as LLC and in many cases (for 15

proteins it is greater than 0.1 lower) is significantly lower. This indicates that not only
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is learning important, but local learning is crucial to properly adapting to different

protein folding landscapes. LLC consistently makes wise choices for connection that

yield successful local planner attempts, which are quite costly.
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Figure 5.7: Local planner success rate for each method over all proteins studied.
The local planner success rate of LLC is greater than all the other methods for 18 of
the 23 proteins studied and comparable for 1 of the proteins. Note that entries are
ordered by the local planner success rate in the context of LLC.

5.3.3.3 Quality, Time, and the Tradeoff Between Them

Quality

Figure 5.8 shows the folding pathway quality of each connection method, GLC,

and LLC. Entries are ordered by LLC performance (and not by protein length).

Recall that the aim is to generate pathways with low weight/energy. Only looking

70



at individual connection method performance, we first see that no single connection

method performs the best across all proteins: Cluster is the best choice for seven

proteins, Euclidean for 11 proteins, and lRMSD for five proteins. In addition, there

is no correlation between individual connection method performance and secondary

structure makeup or size. Thus, there is a clear need for learning.
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Figure 5.8: Roadmap quality for each method over all proteins studied. No single
individual connection method performs best across all proteins. LLC produces the
best quality roadmaps for 18 of the 12 proteins studied. Note that entries are ordered
by LLC performance.

It is not surprising then that learning methods outperform the best individual connec-

tion methods much of the time: GLC (pink bars) produces lower weighted pathways

than Cluster, Euclidean, and lRMSD for 11 of the 23 proteins, and LLC (blue bars)

for 19 of the 23 proteins. Notice, however, that the type of learning is important.
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LLC with its local learning is much more successful than GLC with its global ap-

proach. GLC outperforms LLC for only one protein in the set (2ADR) and even then

the performance is only marginally better while LLC outperforms GLC by a large

margin for many of the proteins. In fact, LLC is the best approach for 18 out of the

23 proteins studied. Note that the best performing method in the other five proteins

is not the same (many of them are at the far right of Figure 5.8): lRMSD produces

lower weight pathways for three proteins (2KRS, 2ABD, and 1JWE), Euclidean for

one (2CRO), and GLC for one (2ADR).

Additionally, in 17 of the 18 proteins where LLC produces the best quality, it pro-

duces significantly better quality than the other methods for 12 of the 18. We see an

improvement of LLC over GLC in terms of quality for 20 of the 23 proteins studied.

Of the three remaining proteins (2ADR, 2CRO, 2KRS) where GLC perform.

Time

Figure 5.9 provides the time needed to build stable roadmaps for each method,

ordered by protein length. LLC is the fastest for six of the proteins and the second

fastest for six, with three of those incurring less than 10% overhead. Thus, LLC

performs as well as or better than the best performing method for 12 out of 23

proteins (52% of the time), while GLC performs best for only three. Just as with

quality, the best performing individual connection method varies between proteins:

Euclidean is fastest for 11 proteins, Cluster for two, and lRMSD for one. Euclidean

is most often the fastest method but is the best method in terms of quality for only

one protein.

To further understand the scalability of these approaches, we plot the time to build

a stable roadmap as a function of protein length for both LLC and its fastest com-

petitor, Euclidean. Each point in Figure 5.10 corresponds to the time taken for a
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Figure 5.9: Time for each method over all proteins studied. LLC performs as well as
or better than the best performing method for 12 out of 23 proteins studied. Note
that entries are ordered by protein length.

protein of that length. Figure 5.10 also plots a linear regression for each data set.

There is a roughly linear relationship between length and running time (correlation

coefficients of 0.55 for LLC and 0.53 for Euclidean; higher polynomial regressions fit

poorly). Note that while we see some overhead for learning (i.e., a steeper regres-

sion line), other methods may not produce pathways of high quality. For example,

ACYL-CO Enzyme (2ABD) is a protein where only LLC produced the correct sec-

ondary structure formation order as seen in experiment (see Table 5.4). It is also the

furthest outlier above the regression line (length 86). While more time is consumed

constructing a stable roadmap for this protein, it is time well-spent as it produces

the correct secondary structure formation order while others do not.

We also consider the difference in time between LLC and Euclidean as shown in
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Figure 5.10: Time as a function of protein length. LLC and its fastest competitor,
Euclidean, display a roughly linear relationship between time and protein length.

Figure 5.11. Here, just as we saw for learning during sampling, we have varying

performance across the proteins irrespective of length but with more importance on

quality, we still produce roadmaps within an acceptable time period.

5.3.3.4 Quality vs. Time

Finally, we look at each method’s cumulative performance to examine how these two

metrics interplay. Figure 5.12 shows the ordered ranking of each connection method,

GLC, and LLC across all 23 proteins. For each protein, we assign a rank from one to

five (with five being the best) to each method for quality and time. The cumulative

performance for each method is the average of these rankings.

LLC performs better than the other connection methods across the entire protein

set in terms of quality and second best in terms of time. lRMSD, as expected, is
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Figure 5.11: Difference in time between LLC and its fastest competitor Euclidean.

Figure 5.12: Cumulative performance of each method over all proteins studied. Meth-
ods are ranked from one (worst) to five (best). Entries are ordered by cumulative
quality ranking. LLC performs better than the other methods across the entire
protein set in terms of quality and second best in terms of time.

the slowest. While LLC is not the fastest overall (Euclidean is), it does produce the

best quality. LLC is the only method that is able to adapt locally to varying energy

landscapes and thus yields higher quality roadmaps. GLC is the second best in terms

75



of quality but third in terms of time. LLC outperforms GLC.

Figure 5.13 compares the difference in quality of LLC to the quality of the fastest

competitor, Euclidean. We see that regardless of protein length, LLC consistently

outperforms Euclidean in terms of quality for most of the proteins studied. Recall

that the aim is to generate pathways with low weight/energy. While computation

time is important (and we have shown that LLC is competitive with other methods

in this regard), it is more important to produce pathways of higher quality.
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Figure 5.13: Quality as a function of protein length. LLC outperforms and its fastest
competitor, Euclidean, in terms of quality irrespective of protein length.

5.3.3.5 Inspection of LLC Learning Choices

Figure 5.14 shows the percentage at which LLC used each individual connection

method in constructing stable roadmaps for each protein. Entries are ordered by

Euclidean usage as it is most often selected across the entire set.

For many proteins, LLC favors a single connection method, but for some (1O6X,
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Figure 5.14: Connection method usage percentage in LLC across all proteins studied.
Entries ordered by Euclidean usage.

1TCP and NUG1), it favors two connection methods, and for two proteins (2PTL

and 1R69), it selects equally among all connection methods. When it favors a subset

of the connection methods, it selects the best individual method in both time and

quality for nine proteins, the best individual method in time only for four proteins,

and the best individual method in quality only for three proteins.

5.4 Heterogeneity of the C-Space for Proteins

Considering the environment for motion planning for a robot, one can make a rela-

tively straight forward analogy of the C-Space based on the workspace representation

of the environment. We can determine how heterogeneous an environment is by con-

sidering the visibility representations in the C-Space to determine narrow passages

and obstacles in the environment. For proteins however, this becomes difficult be-
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cause it is difficult to map the energy landscape of proteins and view visually.

When we consider Figure 5.1 and 5.2 and the different performance of the different

sampling methods for a given protein we see intuitively the heterogeneity character-

istics of the C-Space for protein folding. In this section we explore this heterogeneity

by examining distances between parent and child configurations and potential ener-

gies of the protein configurations forming nodes in the roadmap.

5.4.1 Distance between Parent and Child Configurations

In heterogeneous environments, the ability to generate valid nodes will vary in dif-

ferent regions of the landscape. Thus, one metric that could be used to measure

heterogeneity might be the variances in the distances between parents (original con-

figurations) and their children (the new configurations generated by perturbing the

parent configuration). In particular, in a purely homogeneous environment the dis-

tance between a parent and child would be uniform throughout the landscape. In a

heterogeneous environment, however, the distance between parents and children may

vary, and this could be observed in multiple ways. For example, given configurations

a and b, if the average distance from a to its children is different from the average

distance from b to its children, then this is an indication that the environment is het-

erogeneous and moreover, that a and b are in different regions of the environment.

As another example, if a configuration a has several child configurations, and if there

is a large variance in the distances to those children, then this is also an indication

of heterogeneity in the folding landscape.

Figure 5.15 gives such a scenario, we use Protein G (1GB1) as an example case

study. The plot shows the average distance between a parent configuration and it’s

children in different regions. We see varying distances, indicating that our protein
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environment is indeed heterogeneous.

Figure 5.15: Heterogeneity: Difference between the parent and children configura-
tions

5.4.2 Potential vs RMSD and Heterogeneity

To further show the heterogeneous of the C-Space for proteins, we make plots for

three of our studied proteins, an α protein 2ABD, a β protein 2CRS and an α, β mix

protein 1GB1. We show the relationship for configurations based on the potential

energy and the RMSD of the intermediate configurations for these proteins while

building the roadmap.

Proteins containing only α proteins form their secondary structure helices one at

a time and then assemble them to form the tertiary structure. This is reflected in

Figure 5.16(a) where the narrow tail produced indicates small changes in energy as

RMSD approaches zero [6]. Proteins containing only β secondary structures form
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both their secondary and tertiary structure at the same time which is indicated in

the smoother plots in Figure 5.17(a) while proteins with a mix of α and β proteins

give a variation of both characteristics as shown in Figure 5.18(a).

(a) Potential-RMSD (b) RMSD-Energy Bin

Figure 5.16: Heterogeneity: An α only protein (2ABD)

Using this information to investigate the heterogeneity of the C-Space for proteins,

we create bin representations shown in green in all our Potential-RMSD plots. The

bins represent intermediate configurations grouped based on RMSD distance and

potential energy and give an idea of our configuration space or energy landscape

in the case for proteins. We see by looking at Figure 5.16(b), 5.17(b) and 5.18(b)

that there is a variance in the size of these intermediate configurations present which

shows a clear indication about the heterogeneity of our C-Space for proteins.
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(a) Potential-RMSD (b) RMSD-Energy Bin

Figure 5.17: Heterogeneity: A β only protein (2CRS)

(a) Potential-RMSD (b) RMSD-Energy Bin

Figure 5.18: Heterogeneity: A Mix(α, β) protein (1PGA)
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6. CONCLUSION

In this work, we present an approach that uses local learning to select appropri-

ate sampling and connection methods methods in the context of PRM roadmap

construction for robot motion planning and protein folding. Our method monitors

the performance and cost of various methods within the local neighborhood of the

sampling or connecting conformation and adjusts their selection probabilities ac-

cordingly based on a cumulative reward approach. We performed experiments in

different heterogeneous environments ranging from 2D to 3D environments and real

world scenarios. We showed a need for learning based on the improvement in per-

formance when it was applied. In particular we show the advantage of being able to

dynamically partition the environment intelligently on the fly.

Table 6.1: Lessons Learned

Local Sampling Global Sampling

Local
Connection

Highly Heterogeneous Moderately Homogeneous
High DOF problems Medium to Low DOF problems

High geometric complexity
Longer time to solve query

Global
Connection

Moderately Homogeneous Highly Homogeneous
Medium to High DOF problems Low DOF problems

Simple 2D environments
Shorter time to solve query

Table 6.1 gives a summary of lessons learned during our robot motion planning ex-

periments. We give some insight into when different learning combinations are most

beneficial, considering local and global learning for sampling and connection. Based
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on our experiments, local learning during both sampling and connection benefits

high DOF problems, high geometric complexity problems and environments that are

difficult to plan within a time limitation.

In protein folding simulations, we have demonstrated a clear need for learning (i.e.,

our method was the only method to validate against all available experimental data)

and showed that local learning is superior to global learning (i.e., local learning

outperformed all other methods in terms of quality for 18 out of 23 proteins and was

either the fastest or second fastest for 12 of the proteins). We also showed that our

method produced a higher local planner success rate. In many cases, local learning

produced significantly higher quality results than the other methods.

In summary, we proposed a novel method of learning localized to regions and show

its superiority to traditional and current state of the art sampling-based motion

planning techniques. Local learning removes the need to explicitly partition the

environment and the burden of deciding which method to use. It leverages the

strengths of the individual input methods, and is extendable to include other future

planning methods. Finally, based on our experiments and evaluation both in robotics

application and protein folding simulations, we provide guidance on how to apply

our framework to any motion planning problem.
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