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ABSTRACT 

 

Clinical Implementation of Hypofractionated Radiation Therapy  

for Lung Malignancies. (May 2012) 

Julien Avi Dan Partouche Sebban, M.E. Fondation EPF, M.S. Texas A&M University 

Chair of Advisory Committee: Dr. John R. Ford 

 

For patients with oligometastases, metastases limited in number and site, the use of 

radiation therapy treatment with a hypofractionated dose scheme has been proposed as a 

potential ablative approach. There are a limited number of prospective studies looking at 

hypofractionated radiation therapy (HRT) for lung oligometastasis. Normal lung tissue 

complication and radiation planning technique are significant limiting factors for the 

implementation of hypofractionated lung metastasis. The problem statement of this study is how 

to improve the clinical implementation of HRT for lung metastasis exploring lung toxicity 

predictors, and developing an efficient radiation planning method. 

In the first study, we analyzed the dose distribution for 28 patients with lung 

oligometastasis and treated with HRT to multiple metastases in the lungs. We identified several 

significant predictors for lung radiation pneumonitis (RP) including the mean lung dose (MLD), 

V13 and V20. In addition a dose-effect relation between the lung normalized total dose (NTD) 

and RP may exist up to 48 Gy in three fractions. The dose-response parameters derived in our 

study appear to agree with other hypofractionated results published in the literature. 

In the second study, we used an inverse planning algorithm to develop a new radiation 

planning method by limiting the number of segments per beam angle down to 1 segment.  Single 

segment plans were able to significantly improve tumor coverage and conformality, reduce the 
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risk of lung RP, while simplifying the planning process and delivery. Target conformality and 

normal lung tissue sparing did not gain much improvement from an increase of plan complexity 

to five segments over the simplified one segment technique. The automation of our method is a 

good alternative to more traditional methods and offers significant dosimetric benefits.  

In the third study, we verified the single segment planning technique via patient specific 

quality assurance (QA) in a motion phantom. We found good agreement between calculated and 

measured doses via thermoluminescent detectors (TLD) inside the target. A dose to distance 

agreement of 3%/3 mm and 2%/2 mm between calculation and film measurements for 

representative plans in a motion phantom was verified at 98.99% and 97.15%, respectively. 
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1. INTRODUCTION 

1.1 Stereotactic radiation therapy 

Since the early 1990s, stereotactic body radiation therapy (SBRT) delivering high 

radiation doses to extracranial targets has emerged based on the long-term experience of 

stereotactic radiosurgery (SRS). SRS is the delivery of a large radiation dose to intracranial 

targets using a dedicated stereotactic localization system. It was first described in 1951 by Lars 

Leksell1, a neurosurgeon at the Karolinska Insitute in Sweden, to treat lesions in the brain with a 

single, very-high dose of radiation. Leksell first developed an instrument with a stereotactic 

coordinate system to guide the surgical instrument to a specific point and reduce entry damage 

during biopsies. He applied the same stereotactic coordinate system to better localize and treat 

intracranial lesions during radiation therapy. The goal of SRS was to replace surgical procedures. 

The earliest category of patients treated with SBRT was patients with medical conditions for 

which no other treatment options were available; targeting lesions in the spinal cord2, the lungs 

and liver3-5. Early results were encouraging with good tumor response and low toxicities. At the 

beginning it was unclear which dose regimen was the most efficient but investigators at the 

Karolinska Insitute established a three-fractions regimen based on accumulated experience. 

Other experiences in the late 1990s and early 2000s in Japan3 and the US4-7, investigated of the 

feasibility of safe and efficient stereotactic radiation therapy for extracranial targets with 

promising outcomes. 
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1.2 Radiation dose fractionation and cellular response model 

 Soon after Wilhelm Roentgen discovered x-rays in 1895, radiation therapy (RT) was 

used to treat tumors. RT was delivered in single fractions with often good tumor response but 

also many incidences of intolerable toxicities. The techniques for radiation delivery used at that 

time were not advanced, often resulting in exposure of large volume of normal tissue and 

excessive skin toxicities due to low-energy x-rays. An alternative way of delivering RT was to 

deliver small fractions of radiation protracted over a period of time. In the 1900s to 1930s a 

series of experiments performed in France demonstrated the biological basis for fractionated 

radiation therapy. In a classic radiobiology experiment, Bergonie and Tribondeau showed that 

rams could be sterilized by exposing testes to a single dose of radiation also inducing extensive 

skin damage, while if the radiation was fractionated over a period of weeks with daily 

irradiation, sterilization was possible without producing skin damage. From these experiments it 

was postulated that fractionated radiation therapy can produce better tumour control, without 

inducing toxicities, than a single large dose of radiation. 

The response of mammalian cells to fractionated photon irradiation can be described by 

the four “R’s” of radiotherapy: repair, repopulation, reoxygenation, and redistribution8, also 

referred to as the five “R’s” with the addition of radiosensitivity9, which accounts for intrinsic 

cell sensitivity to radiation. Repair involves complex pathways of sublethal damage repair with 

variety of enzymes and proteins10, repopulation involves cells dividing while receiving radiation 

doses, redistribution involves a rearrangement of proliferating cells’ cycle phases, and 

reoxygenation involves an oxygen “reload” of hypoxic cells during the course of irradiation 

making them more radiosensitive.  

Via reoxygenation and redistribution, tumor cells that were hypoxic cells or in a less 

radiosensitive phase can be targeted better by fractionated radiation therapy thereby increasing 
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tumor damage. In addition, fractionated radiation therapy enhances sublethal damage repair in 

late reacting tissue and repopulation in early reacting tissue, both improving normal tissue 

sparing. However tumor cells can also repair and repopulate, and normal tissue cells can become 

more radiosensitive during redistribution and reoxygenation. Overall the main benefit of 

fractionated radiation therapy is to spare normal tissue from any complication. Regarding tumor 

cell kill, fractionation is therefore more of a compromise than a real advantage, and the 

acceptance of small fraction size dose regimen was predominantly established based on 

empirical and practical observation rather than randomized trials.  

The response to fractionated irradiation of mammalian cells is noticeable in cell survival 

curves, representing the cell surviving fraction on a logarithmic scale against the dose on linear 

scale. The response of normal and tumor tissues depends on the temporal pattern of radiation 

delivery (e.g., dose rate and dose fractionation).  The linear quadratic (LQ) model for cell 

survival is the most commonly used model to describe cell survival. The LQ formalism is 

attractive because it has minimum number of adjustable parameters needed while explaining 

trends in cell survival as a function of dose and dose rate with acceptable accuracy. The LQ 

formalism11,12 expresses the surviving fraction in terms of a damage coefficient α for lethal 

lesions produced in the cell deoxyribonucleic acid (DNA) by one-track action, and a damage 

formation coefficient β for lethal lesions produced in the cell DNA by two-track action, 

representing respectively a linear and quadratic component. The dose at which these two 

components are equal is represented by the α/β ratio. The LQ model is widely used in clinical 

applications and has been discussed extensively in the literature 13,14. It is implemented as 

follows, where SF is the surviving fraction, and d is the radiation dose: 

2ddeSF   . (1) 
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Survival curves typically show an initial slope, followed by a shoulder region, and a 

nearly straight line at higher doses15. In general late reacting tissues exhibit a greater shoulder 

with lower α/β ratio of about 3 Gy, while tumor cells or early reacting tissues show a smaller 

shoulder with greater α/β ratio of about 10 Gy. Therefore the LQ model suggests that when the 

α/β ratio of tumors cells is greater than the one of the normal tissue cells, then a lower dose per 

fraction will be more effective16. On the contrary when α/β ratios for normal tissue and tumor 

cells are about the same a larger dose per fraction will be more effective, as it has been suggested 

for prostate cancer17. An idealized fractionation experiment survival curve is shown in Fig. 1 

illustrating the influence of the shoulder for single and multiple fractions regimen.  

 

 

 

Fig. 1. Single Dose vs. Multiple Dose fractionation (a); Normal Tissues vs. Tumor Tissues 

during multiple-fraction exposure (b), for typical normal tissue with low α⁄β (~ 3 Gy) and tumor 

cell with high α⁄β (~ 10 Gy). 

 

 

The LQ model has also been used to predict the therapeutic advantages of 

hypofractionated radiotherapy. The biological effective dose (BED) is derived from the LQ 
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equation; it is defined as the total dose delivered in an infinitesimal small dose per fraction and 

giving the same biological effect as a fractionation delivering a total dose D with d being the 

dose per fraction:  
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The BED equation can be used to compare different dose fractionation schemes. The 

NTD18 is the total dose, delivered in reference fractional doses of d0, and having the same 

biological effect as a total dose D delivered in n fractions. The NTD formula is obtained by 

equating the BED of the fractionation schemes and is defined as follows:  
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The NTD evaluation can be particularly useful in order to evaluate the dose necessary to 

achieve a desired tumor control. For example, for a non-small-cell lung cancer (NSCLC) Martel 

et al.19 suggested that a minimum dose of 84 Gy (in 2 Gy fractions) may be necessary to achieve 

significant probability of tumor control. Consequently from equation 3, assuming an α/β ratio of 

10 Gy, 60 Gy delivered in 3 fractions is equivalent to an NTD of 150 Gy in 2 fractions and 

would be much more biologically potent than 60 Gy delivered in 2 Gy fractions. Larger 

fractional doses with reduced cell repopulation due to fewer fractions and shortened therapy 

course can result in greater lethal cell damage. 

 

1.3 Radiation therapy in the management of lung malignancies 

According to Langley and Fidler20 most deaths from solid cancers are caused by 

metastases that are resistant to conventional therapies. In a seminal study published in 1889, 
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Stephen Paget21 observed that the distribution of metastases among 735 cases of breasts cancer 

was not random, he postulated that some type of tumor cells grow preferably in some particular 

organs, a theory commonly referred to as the “seed and soil” hypothesis. For example, lung is 

the second most common site for metastasis, because of its dense vascular area, the lung 

parenchyma presents a fertile microenvironment for the growth of secondary tumors. Primary 

cancers of the breast, colon, kidney, bladder, head and neck, and skin melanoma show higher 

probability of spreading to the lungs22. Unlike patients with locally confined disease who are 

usually treated with curative intent, patients with distant metastases are usually treated with 

palliative intent using systemic chemotherapy along with targeted local radiation therapy for the 

relief of symptoms. 

In the spectrum of cancer growth, Hellman and Weichelsbaum23 suggested the existence 

of an oligometastatic stage, between locally confined and widely metastatic, when spread of 

tumor cells is limited in quantity and location. They implied that a localized treatment of the 

metastases with curative intent is feasible. Complete resection of clinically detectable metastatic 

tumors together with systematic chemotherapy is believed to be a curative approach24 in the 

management of lung metastases. In addition, the International Registry of Lung Metastases25 

reported a 5-year survival of 36% for patients with complete resection of lung metastases, 

compared with 13% for patients without resection. Therefore, it has been demonstrated that 

surgical resection of lung metastases may increase survival with possible curative intent. 

For primary lung tumors, radiation therapy with a high dose per fraction has been shown 

to achieve local control comparable with surgical resection. A Phase II study looked at 70 

unresectable Stage I and II Non-small cell lung cancer (NSCLC) patients treated in 3 fractions to 

a total dose of 60-66 Gy26. With a median follow-up of 50.2 months, the rate of local control, 

defined as the cessation of cancer growth at the site of origin, at 3 years was 88.1%. Other recent 
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clinical trials have shown encouraging outcomes and high control rates for patients with early-

stage, non-resectable NSCLC4, 27-30  treated with a hypofractionated dose regimen. 

Similarly the ablative nature of HRT as a substitute for surgical resection, can be of great 

interest when targeting oligometastasis in lungs. Used as a noninvasive procedure to ablate 

metastatic tumors in lung, investigators have achieved satisfactory local controls using HRT 31-33. 

Clinical trials have reported encouraging outcomes with high local control rates: Blomgren et 

al.34 delivered 21-66 Gy in 1-3 fractions to 13 patients with a total of 17 lesions, and achieved an 

estimated local control of 83%; Nagata et al.35 delivered 48 Gy in 4 fractions to 9 patients with a 

total of 9 lesions, and achieved an estimated local control of 67%; Onimura et al.36 delivered 48-

60 Gy in 8 fractions to 20 patients with a total of 32 lesions, and achieved an estimated local 

control of 69%; Wulf et al.37 delivered 30-42 Gy in 3 fractions to 20 patients with a total of 32 

lesions, and achieved an estimated local control of 71%; Rusthoven et al.38 delivered 60 Gy in 3 

fractions to 38 patients with a total of 63 lesions, and achieved a 96% local control. 

Successful outcomes of early clinical trials have proved the efficacy of HRT for the 

management of metastatic lung tumors; however, the enhanced cell killing and reduced cell 

repair inevitably pose greater risks of severe normal tissue damages and irrecoverable loss of 

function of healthy organs. HRT presents radiobiological challenges as well as physics 

challenges addressed in the next section. 

 

1.4 The challenges of hypofractionated radiation therapy 

1.4.1 Toxicities at high dose per fraction 

Organs-at-risk (OAR) dose tolerances for HRT are established to be much lower than 

those for the conventional dose schemes (1.8 Gy-2.0 Gy per fraction). Table 1 presents examples 
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of dose constraints for selected organs given in the context of standard dose fractionation, based 

on the QUANTEC review39, as well as “suggested” dose constraints  in the context of HRT 

found in the literature40. 

Phase I and II clinical trials showed that treatments were generally safe if normal tissue 

doses were less than the suggested tolerance levels. However, cases with severe toxicity have 

been reported; most common toxicities include chest pain, esophagitis, and rib fractures, spinal 

cord disease (myelopathy) and RP41. Particularly, RP occurred at much lower dose levels, and is 

considered the major limiting factor of applying HRT in the management of lung malignancies.  

 

 

Table. I. Summary of reviewed dose constraints in the context of standard fractionation39, and in 

the context of HRT40. (Based on a whole lung volume of 3000 cm3, and maximum dose 

constraints are given for point dose of at least 0.035 cm3) 

 

 

 

One of the most difficult tasks is to design and evaluate a treatment plan that obtains an 

optimal therapeutic ratio for a patient. Figure 2 shows the shift in therapeutic ratio, defined as the 
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separation between the probability of tumor control and the probability of normal tissue 

complication. An optimum radiation plan increases the therapeutic ratio by increasing the 

likelihood of tumor control and decreasing the likelihood of normal tissue complication. 

 

 

 

Fig. 2. Diagram illustrating the therapeutic ratio in radiation therapy 

 

 

The full potential of dose hypofractionation in improving the therapeutic ratio will be 

reached only when the clinicians will be able to use quantitative tools to guide the optimization 

of a treatment plan. 

 

1.4.2 Radiation therapy planning techniques in the context of HRT 

A planning technique must suit the goal of dosimetric endpoints. In principle most 

commercially available treatment units producing high-energy photons (4-10 MV) are acceptable 
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for hypofractionated radiation therapy. Among the various machines used we can distinguish 

between the conventional linear accelerators (linac) using dedicated image guidance tools such 

as Novalis, Trilogy or TrueBeam (Varian Medical Systems, Palo Alto, USA), Synergy (Elekta, 

Stockholm, Sweden) or Artiste (Siemens, Munich, Germany), and the specialized dose painting 

accelerators such as Tomotherapy (Accuray, Sunnyvale, USA) or Cyberknife (Accuray, 

Sunnyvale, USA). In the context of lung HRT studies investigating the use of Cyberknife42-43, 

and Tomotherapy44-46, Ding et al.47 presented a comparison between linac-based and Cyberknife 

therapy. They concluded that both techniques provide adequate target dose coverage and that 

target location may be a good indicator for the most appropriate technique. Mavroidis et al.48 

presented a comparison between linac-based therapy and Tomotherapy for lung HRT with small 

dosimetric differences between the two techniques. Among the linac-based techniques, we can 

also distinguish the static conformal beams, the Intensity Modulated Radiation therapy 

(IMRT)49, and arc techniques50-52. There is no consensus which technique is best suited for lung 

hypofractionated radiation therapy, and in this study we are going to focus on linac-based 

techniques. 

When treating a lung tumor, the most simple and straightforward beam arrangements are 

two beam angles anterior-posterior (AP/PA) to 40 Gy followed by opposed obliques to 60 Gy. In 

this way, a certain volume of normal lung would be exposed to high doses in order to minimize 

the volume of normal lung exposed to low doses, so that the MLD and the amount of normal 

lung exposed to radiation will be minimal, and the maximum dose to the spinal cord will be 

below tolerance (45-50 Gy). In conventional 3DCRT, the planner manually adjusts the gantry 

angles, collimator angles, the couch angles, the beam apertures, and the beam weightings many 

times during the evolutional process of dose distribution optimization. Early experience in HRT 

demonstrated that dose to the normal lung tissues immediately surrounding the tumors can be 
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very likely correlated to the incidence of RP, and this end-point requires multiple non-coplanar, 

non-opposing beams to make the dose distribution highly conformal to the target. The low-dose 

region is spread over a larger volume of normal lung to improve high dose conformality to the 

planning target. A sharp dose gradient is achieved by using small fields, with often no or 

negative block to target margin; thus resulting in a rapid dose fall-off and inhomogeneous dose 

distribution inside the target with high doses at the center. Similar to SRS planning the dose is 

prescribed to the 80-90% isodose line. Having very high doses at the center of the target is 

particularly of interest since some tumors often present radioresistant hypoxic cells at their 

center53. Figure 3 shows the difference in dose profiles across the target between conventional 

and hypofractionated dose fractionation plans. 

 

 

 

Fig. 3. Dose profiles across the target between conventional (―) and hypofractionated dose fractionation 

plans (- -). 
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HRT presents different dose distribution requirements, and different planning techniques 

must be implemented. Unfortunately, the increasing quantity and complexity of beam 

arrangements make it an avalanche of time and effort; the optimization process becomes highly 

complicated, inefficient and the results could be suboptimal. Only when treatment planning 

techniques and processes are equipped to suit the special needs of hypofractionated treatment 

planning will clinicians be able to design optimized treatment plans within the practical 

resources constraints. The aim of the first part of this study is to determine a relation between the 

incidence of normal lung toxicity and the dose distribution for hypofractionated lung patients.  

1.4.3 Investigation on a newly developed planning technique 

Characteristics of a HRT planning treatment include: high degree of conformality of 

prescription isodose lines, enclosure of inhomogeneities and highest isodose lines inside the 

target and rapid dose fall off outside the target. IMRT offers the ability to spare normal tissues 

surrounding tumors while delivering a tailored and conformal prescribed dose to a target. Linac 

based IMRT can be delivered with either segmental IMRT (sIMRT) or dynamic IMRT (dIMRT). 

The IMRT delivery technique in this study used a multi-leaf collimator (MLC) and fixed gantry 

positions. In this context, there are two main methods for dose delivery: sIMRT, also referred to 

as step-and-shoot technique, using a superposition of MLC segments, and the so called sliding 

window technique, also referred as dynamic IMRT using an open field strip defined by the MLC 

and moving across the field width. Both methods have different shortcomings; in the case of 

dIMRT, the beam is on during the entire dose delivery leading to an increased number of 

monitor units (MUs)54, which increases leakage radiation through MLC therefore increasing 

adverse exposure to the patient55. Depending on the treatment energy, IMRT treatments require 

up to 4.9 more MUs than conventional treatments, thus increasing the risk of secondary 

malignancies from 1.7% for conventional treatments to 2.1% and 5.1% for IMRT treatments 
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using respectively 10 MV and 18 MV x-rays56. In the case of sIMRT delivery, a high number of 

segments will increase the treatment delivery time thus increasing the risk for the patient of 

moving during a prolonged treatment. Can IMRT be used in the case of lung hypofractionated 

radiation therapy? 

In comparison with other treatment sites, a tumor in the lungs, because of its movement, 

presents a dual challenge in target delineation and localization. In addition, when treating a 

moving target with IMRT, there is an intrafractional organ motion effect due to the interplay 

between the motion of the leaves and the target thus causing a dosimetric blurring effect. Several 

authors have investigated this subject57-60, and they all concluded that the interplay between 

organ motion and leaf motion is not dosimetrically significant for fractionated radiation therapy 

delivered over thirty fractions. However, we are considering hypofractioned lung treatment 

delivered over three to five fractions; hence the dosimetric effect cannot be considered 

insignificant anymore. In this case, reducing IMRT plan complexity would be beneficial. How 

then can we reduce IMRT plan complexity? 

Traditionally the IMRT optimization process is a two-step process; optimized fluence 

patterns are converted into deliverable MLC segments via a leaf sequencer. The quality of a plan 

depends intrinsically on its leaf sequencing algorithm. Researchers have been working on 

improving efficiency of leaf sequencers61. However, controlling the complexity of a leaf 

sequencer often leads to deterioration in plan quality compared to original optimum fluence 

pattern62. A one-step process, direct aperture optimization (DAO) has been proposed and 

developed. DAO directly optimizes the beam weights, jaw and leaf positions. Parameters such as 

the minimum segments area as well as the maximum number of segments can be controlled. The 

feasibility and potential advantages of DAO over the traditional two-step IMRT optimization has 

been shown 63.  
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Dvorak et al.64 reported on the impact of leaf width and the efficiency of IMRT for lung 

and liver HRT, and concluded in their study that standard hypofractioned radiation therapy 

treatment techniques, like stereotactic body radiation therapy (SBRT), could not be improved by 

IMRT approaches. First, the maximum number of segments per beam in their study, 15, was set 

too high for a stereotactic treatment approach, and secondly the treatment planning system used 

in the study applied a pencil beam algorithm during IMRT optimization, and a collapsed cone 

convolution algorithm for the final dose computation. In regions of large density 

inhomogeneities, it has been shown that, unlike the collapse cone convolution algorithm, the 

pencil beam algorithm, although fast, was not accurate enough 65-66. Can we then use a DAO 

algorithm for planning of lung HRT? And if so, can we considerably reduce the plan complexity 

and the number of segments while improving dosimetric parameters?  

A complex IMRT plan, with a high degree of dose modulation, requires more segments 

and more MUs55. Craft et al.67 showed that the number of MUs can be reduced in an IMRT plan 

without depreciating the plan quality. Jiang et al.68 showed that a minimum of 5 MLC segments 

per beam are necessary to achieve acceptable IMRT plans. Can we expand that conclusion and 

treat lung lesions with hypofractioned dose regimen using IMRT-DAO optimization and less 

than 5-segments per beam?  

In this study we are using a DAO algorithm, the direct machine parameter optimization 

(DMPO) algorithm (Raysearch Laboratories AB, Stockholm, Sweden) implemented on the 

ADAC Pinnacle (Pinnacle3, Philips Medical Systems, Andover, MA) treatment planning system. 

Our approach was to use the DMPO algorithm to reduce plan complexity allowing successively 

one and five segments per beam angle. The goal of the second part of this study is to investigate 

the potential benefits of beams optimized with DMPO with one large segment per beam for 
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oligometastatic lung HRT and compare them with standard plan optimized with 5-segments per 

beam and with traditional 3DCRT plans.  

 

1.4.4 Hypofractionated image guided radiation therapy (HIGRT) 

An ideal HRT plan delivers more dose to the tumor and less dose to the normal tissue. 

This feature presents new challenges in almost all aspects of a treatment, including the 

immobilization of the patient during simulation and delivery, the localization of the target in 

treatment planning, and the management of respiratory motion and other organ motions. 

Respiratory motion is a significant source of geometric uncertainties. In radiation therapy, organ 

motion due to breathing are accounted for in the design of the internal target volume (ITV) 69, 

which consists of gross target volume (GTV) and clinical disease volume plus margin to account 

for breathing motion uncertainties. Margins for setup uncertainties are added to the ITV to 

design the planning target volume (PTV). Reducing the influence of organ motion can reduce the 

size of the PTV, hence decreasing the beam size, and consequently reducing the amount of lung 

exposed to radiation.  

Advancement in imaging technologies have been used to better and more frequently 

acquire images of a patient throughout his radiation treatment. Over the last decade, image guide 

radiation therapy (IGRT) has emerged as a strategy to manage organ motion and patient set-up 

verification. IGRT strategies can be described as: computed tomography (CT) scanning data 

acquisition management, patient breathing control management, as well as set-up and 

geometrical verification. 

 

 

 



 

   16 

 

CT scanning data acquisition management 

An optimum target definition depends on the CT data acquisition. Tumor contours and 

breathing patterns vary from patient to patient, and individualized patient-based margins are 

needed for precise target definition 70-71. CT scanners create thin section planar images of the 

patient, a motorized table moves through the circular opening of the CT imaging system, where 

an x-ray source and detectors rotate around the patient. The challenge is due to the interplay of 

tumor and couch motion. Several techniques have been used to account for this issue, including 

using multiple scans, one at each extreme phase of the breathing cycle, end-expiration and end-

inspiration72, slow CT scans have also been used73, and more recently 4D-CT74-79 scans have 

been used for target delineation. 4D-CT scan consists of respiration-correlated CT scanning 

where the patient breathing cycle is divided up in phases (e.g., 10 phases) and each scan is 

registered to its corresponding breathing cycle phase.  

 

Patient breathing control management 

Several methods exist to manage patient breathing such as breath-hold or breathing 

control methods80-82 delivering radiation during a breath hold, abdominal compression83-84 

forcing shallow breathing with a pressure plate against the abdomen, and respiratory gating 85-87. 

Respiratory gating is the least intrusive of all these methods. There have been numerous studies 

of respiratory gating both internal and external. Keall et al.88 showed that respiratory gating can 

significantly reduce breathing-motion margins, Shirato et al.89 described the physical aspects of 

internal markers using fluoroscopic tumor tracking. In 2006 Fang et al.90 published a 

retrospective analysis of early stage NSCLC patients to assess the outcomes of 3DCRT and two-

dimensional (2D) planning, they showed that patients treated with external respiratory gating are 

four times more likely to survive than those not treated with respiratory gating; suggesting that 
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managing respiratory motion via respiratory gating might improve survival in lung cancer 

patients. During respiratory gating, it has been demonstrated that tumor position is most 

reproducible in the vicinity of the end-exhale breathing phase91, therefore the gated window is 

often centered at the normal respiratory pause at end exhalation. 

 

Set-up and geometrical verification 

Finally set-up and geometrical verification has also evolved and offer accurate and 

effective tools to target and track tumors. The Varian On-Board Imager (OBI) used in our study 

integrates a kilovoltage (kV) x-ray source and a large flat panel detector. Two robotic arms are 

mounted on the treatment machine gantry, which can be quickly and automatically retracted out 

of the way when not in use. The kV imaging system operates in a plane orthogonal to the 

megavoltage treatment beam. Two orthogonal kV images, typically lateral and AP radiographs, 

are acquired by rotating the gantry 90°. The AP and lateral kV radiographs are matched with 

referenced images to reproduce the isocenter position. Referenced images are usually digitally 

reconstructed radiographs (DRR) obtained from the CT data set used in treatment planning. 

Using bony structures such as vertebral bodies, vertebral processes, vertebral spaces, and ribs 

delineated on the planning DRR, the matched image sets are overlaid and shifted until a match is 

accepted by the physician. The result from this 2D/2D anatomical matching is a computed offset 

with usually three degrees of freedom, x, y, and z translations. The treatment couch is then 

repositioned according to the obtained shifts. For all patients treated, patient position is verified 

before online correction.  In addition to 2D/2D matches, the OBI system also allows volumetric 

verification, 3D/3D matching. With a single gantry rotation, and 3D volumetric CT data set is 

reconstructed while the patient and treatment couch remain stationary. The acquired cone beam 

CT (CBCT) is then matched with the reference planning CT. Similarly to the 2D/2D match 
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process, the reconstructed CBCT is registered with the planning CT in the 3D/3D match 

application by the physician. Bony structures as well as soft tissue details are used to verify 

patient and tumor positions. Figure 4 shows an example of 3D/3D data set registration. 

Early SBRT studies used a body frame, a rigid patient immobilization device with a 

stereotactic coordinate system for pre-treatment imaging and treatment planning. The 

immobilization system also included abdominal compression to limit diaphragm motion thus 

limiting the tumor motion due to breathing. Figure 5 shows an example of an Elekta stereotactic 

body frame. 

Studies using the Elekta body frame achieved setup errors of approximately 3 to 4 mm in 

all directions 92-93. Other studies showed that an approach with OBI coupled with a standard 

immobilization device, such as Alpha Cradle (Smithers Medical Products, North Canton, USA) 

shown in Fig. 6 could detect residual setup variations of approximately 3 to 5 mm94-95. 

In the beginning and in the absence of image guidance, the stereotactic body frame was 

an integral part of SBRT.  With the improvement of image-guided radiation therapy there was 

less need for the stereotactic frame. The radiation oncology team still needs to be very 

conscientious of immobilization but does not need to rely on a stereotactic coordinate system 

anymore. In the present study we are using a standard Alpha Cradle for patient immobilization 

coupled with an IGRT approach with 4D-CT simulation, kV radiographs and CBCT. In the 

following sections of this study, we will refer to HIGRT when specifically referring to the 

technique described above. Similarly the term lungs will always refer to the normal lung tissue 

composed of the whole lungs minus the GTV. 
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Fig. 4. Axial, coronal and sagital views of a patient treated with HRT to a lesion in the lung 

delineated in green. 3D/3D registration of the planning CT data set (left) and the CBCT (right) 

acquired before treatment shows adequate and optimum patient and tumor localization and 

positioning 
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Fig. 5. (a) Diagram of coordinate systems used in conventional radiotherapy (left) and 

stereotactic body radiotherapy (right). (b) Example of an Elekta body frame. 

 

 

 

Fig. 6. Smithers Alpha Cradle (Smithers Medical Products, North Canton, USA)  immobilization 

device 
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1.4.5 Quality assurance (QA) 

With the elevated expectation of tumor local control and adjacent normal tissue sparing, 

the accuracy and precision of dose delivery becomes extremely critical for the hypofractionated 

radiation therapy. Although numerous methods have been applied to minimize the geometric 

error in aligning target with radiation, and extensive QA programs have been developed to 

maintain the accuracy, the natural respiratory motion of patients presents a special challenge for 

radiation therapy on targets in the lungs. For conventional therapy, the dosimetric errors resulted 

from irradiating a moving target with a static beam are considered to be insignificant because the 

large number of fractions and the random nature of breathing may smear out the errors. 

However, these errors may noticeably modify the dose distribution in HRT where only few 

fractions are used and rigorous patient breathing control and monitoring techniques are 

employed. The deviation of dose delivered could result in severe tumor under-dose and normal 

tissue over-dose. With the increasing number of conformal beams, the possibility and the 

magnitude of dose deviation may increase significantly. In addition, when a new planning 

technique/process is implemented, the deliverability of resulting treatment plans must be verified 

and the deviation of delivered dose from planned dose must be fully assessed. Then, clinicians 

will have the confidence that the optimized treatment plan is accurately delivered and the benefit 

of hypofractionation can be realized.  

 

1.5 A proposal to improve the implementation of HRT 

Compared to conventional radiation therapy, dose-hypofractionated therapy is a new 

treatment paradigm. As discussed in the previous section, some major challenges have been 

identified in the clinical implementation of this type of therapy. This dissertation proposes to 

improve the clinical implementation of HRT for lung malignancies in three aspects: first of all, 
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dosimetric end-points to guide plan optimization and evaluation will be investigated; secondly, a 

new planning process will be improvised to facilitate the design of a complex radiation treatment 

plan; finally, a dose verification method will be developed in the context of measuring radiation 

doses on moving targets for complicated plans including multiple small fields. The roadmap of 

the study is outlined below: 

Aim 1: Determine the relation between the incidence of normal lung toxicity and the dose 

distribution for HRT for patients with multiple metastases in the lungs. 

-select patients with lesions in the lung and treated with hypofractionated dose regimen 

-evaluate lung toxicities for each patient using the National Cancer Institute Common 

Terminology Criteria (NCI-CTC) for Adverse Events96. 

-analyze the dose distribution calculated for the normal lung tissue  

Aim 2: Develop a novel radiation planning method for lung patients treated with HRT to 

multiple metastases in the lungs and compare it with other planning techniques 

-select patients whose treatments were previously planned using a conventional 3D 

conventional radiation therapy (3DCRT) method to multiple lesions in the lungs, and 

retrospectively re-plan them with the newly developed radiation planning technique 

-define the dosimetric endpoints for the intercomparison study 

-compare and analyze isodose dosimetric endpoints among the different planning 

techniques 

Aim 3: Verify and validate the planning technique presented in Aim 2 via dosimetric 

quality assurance (QA) delivered on a motion phantom.  

-deliver the optimized beams on a motion phantom 

-evaluate the dose in the lung, the target and at the edge of the target 

-compare dose measurements with calculated doses 



 

   23 

 

2. AIM 1: DETERMINE THE RELATION BETWEEN THE INCIDENCE OF NORMAL 

LUNG TOXICITY AND THE DOSE DISTRIBUTION FOR HYPOFRACTIONATED 

LUNG PATIENTS 

2.1 Materials and methods 

2.1.1 Study object 

The study object consisted of patients with multiple metastases in the lungs. Patients with 

1 to 4 sites of metastatic cancer received doses of radiation to all known sites of cancer with 

HIGRT. Twenty-eight patients with 51 lesions in the lung were evaluated for this study. The 

median combined PTV was 81.37 cm3, with a minimum of 13.63 cm3 and a maximum of   

265.60 cm3. All patients underwent CT-based treatment planning in custom-made 

immobilization with image guided techniques as described in the previous section, and received 

24 Gy to 48 Gy in 3 fractions. The dose cohorts are described in Table II. In addition, one patient 

in the study received a dose of 50 Gy in ten fractions and another one 60 Gy in thirty fractions to 

one of their lung sites, respectively. Dose was prescribed to the PTV edges and to the 80%-90% 

isodose line, with 95% of the PTV required to receive 95% of the prescription dose. The three 

radiation therapy fractions were separated by 2 to 8 days. Tumor characteristics of the study 

object are described in Table III. 
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Table. II. Description of dose cohorts in the study 

 

 

 

Table. III. Metastases locations sorted by their number of treated lesions; RLL: right lower lobe, 

RUL: right upper lobe, RML: right medial lobe, LUL: left upper lobe, LLL: left lower lobe, 

LML: left medial lobe. 
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2.1.2 Toxicity and dosimetric analysis 

Patients were evaluated after treatment and toxicities were scored using the NCI-CTC96 

scoring for acute and late toxicities. Grade 1 toxicities were associated with radiographic 

changes in less than 25% and no symptoms, Grade 2 toxicities were associated with 

symptomatic cough with narcotics indicated, and radiographic changes (fibrosis) in 25 to 50% of 

the lungs. Grade 3 toxicities were associated with symptomatic cough requiring oxygen, and 

radiographic changes of 50 to 75% of fibrotic lungs. 

For each patient we looked at lung metrics using the dose volume histogram (DVH). In 

the case of non-uniform dose, we needed to use DVH reduction method to convert a 

heterogeneous dose distribution into a uniform dose distribution. The volume of the organ was 

divided into sub-volumes where νi was the fraction of volume receiving a total dose Di. The dose 

bin sizes were chosen small enough to consider the dose uniform in each sub-volume. The (νi, Di)  

were obtained from the DVH for each patient and for the total lungs excluding the GTV. We 

computed from the DVH the MLD, the V20 and V13, representing the percentage of lungs 

receiving 20 Gy or more and 13 Gy or more, respectively.  

In addition, since we were dealing with various dose schemes, we could not simply 

compare lung metrics to come up with dose guidelines. We used another DVH reduction 

method18 to convert the dose Di in each sub-volume νi from a hypofractionation regimen into a 

standard fractionation with a reference dose dref of 2 Gy.  For each patient we computed the 

mean MLD and NTD as described below: 
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We also estimated the risk of radiation pneumonitis, also called the normal tissue 

complication probability (NTCP) using the method developed by Mohan et al.97, and based on 

the Lyman98-Kutcher-Burman99 (LKB) model.  
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where t is an intermediate variable used to compute the NTCP,  TD50 is the uniform dose to the 

entire organ resulting in a 50% complication risk, RP, and m is a measure of the slope of the 

sigmoid curve.  

 

Regarding the statistical analysis, we performed a maximum likelihood fit of the NTCP 

model to our data to obtain the best fit parameters, TD50 and m, for our study, given the 

outcome of each individual.  

For each patient we scored the incidence of RP of Grade ≥ 2 with 1 and 0 otherwise. We 

then divided patients into 4 subgroups according to their NTD, and reported the incidence of RP 
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of Grade ≥ 2 for each subgroup. The two parameters of the NTCP model, were fitted by means 

of maximizing the logarithm of the likelihood function described below: 

  (9)    . ))ln(1)(1()ln()ln(  
n

i
iiii NTCPepNTCPepL  

where n is the number of patients, and epi is the binary outcome for occurrence of RP of Grade≥ 

2. The 95% confidence interval (CI) around the maximum likelihood estimation was calculated 

for TD50 and m. All calculations were performed using the Stata Data Analysis Software 

(StataCorp, College Station, TX). A two-tailed p value less then 0.05 was considered statistically 

significant.  

 

2.2 Results 

Summary of patients showing Grade ≥ 2 and Grade ≤ 1 toxicity is shown in Table IV. 

Eight patients experienced Grade ≥ 2 toxicity, five with Grade 3 and three with Grade 2 toxicity.  

The summary of the p values for the lung and PTV metrics is shown in Table V. The 

volume of the whole lungs was shown to be a significant indicator for RP of Grade ≥ 2, as well 

as the lung metrics V13, V20, MLD and NTD with p values below 0.05. Grade ≥ 2 and Grade ≤ 

1 group had a median V13 of 18.78 % and 11.63 %, respectively; Grade ≥ 2 and Grade ≤ 1 

group had a median V20 of 12.40 % and 6.23 %, respectively, Grade ≥ 2 and Grade ≤ 1 group 

had a median MLD of 787.75 cGy and 498.45 cGy, respectively, finally Grade ≥ 2 and Grade ≤ 

1 group had a median lungs volume of 2540.26 cm3 and 3168.36 cm3, respectively. The PTV 

volume was not a significant predictor for RP Grade ≥ 2 (p=0.5516). 

 Table VI shows the percentage of primary tumor origin for both subgroups of patients 

experiencing toxicities of Grade ≥ 2 and Grade ≤ 1. 
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Table. IV. Summary of patients showing Grade ≥ 2 and Grade ≤ 1 toxicity. 
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Table. V. Summary of the p values for the lungs and PTV metrics 

 

 

 

Table. VI. Origin of oligometastasis for the two subgroups of patients experiencing RP Grade ≥ 

2 and RP Grade ≤ 1 
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We plotted the MLD vs NTD for each patient (Fig. 7) and we could observe a nearly 

linear relationship with the NTD being equal to 1.8 times the MLD. 

 

 

 

Fig. 7.  NTD plotted as a function of MLD with linear regression modeling their relationship 

 

 

In addition, we computed the crude incidence of RP Grade ≥ 2, and binned them by doses 

of 450 cGy (Fig. 8). In the first patient bin of NTD doses from 0 to 550 cGy, zero out of eight 

patients experienced toxicity; in the second patient bin of NTD doses from 551 to 1013 cGy, two 

out of six patients experienced  toxicity RP Grade ≥ 2;  in the third patient bin of NTD doses 

from 1014 to 1355 cGy, two out of seven patients experienced  toxicity RP Grade ≥ 2; and 
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finally in the fourth patient bin of NTD doses from 1354 cGy and above, four out of seven 

patients experienced  toxicity RP Grade ≥ 2. Error bars represent the 68% CI of the observed 

incidence. 

 

 

 

Fig. 8. Observed incidences of RP Grade ≥ 2. Error bars shows the 68% confidence interval (CI) 

 

 

The two parameter fit that was equal to the observed model resulted in a TD50 of 1550 

cGy, with 1170-2740 cGy, 95% CI, and an m value of 0.44, with 0.26-1.07, 95% CI (Fig. 9). 
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Fig. 9. Maximum likelihood estimation of NTCP plotted as a function of NTD (-), and 68% 

confidence interval of NTCP plotted as a function of NTD (--) 
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2.3 Discussion 

In contrast to conventional therapy where there is abundant and practical data for making 

proper clinical decisions, the experience on HIGRT is more limited. There is no well-established 

or clinically-proven standard for treatment planning. Although treatment plans were usually 

conservative for the sake of patient safety, more clinical data must be collected and analyzed. In 

particular, the MLD and the V20 are the two most important dosimetric endpoints in predicting 

incidence of RP in conventional therapy100.  Other metrics such as the V13 have also been shown 

to correlate with the risk of RP101-104. The applicability of these RP predictors in hypofractionated 

dose schemes needs to be investigated and the dosimetric endpoints that provide the most 

predictive power remain to be determined. The first specific aim of this study is to determine a 

relation between the incidence of normal lung toxicity and the dose distribution for 

hypofractionated lung patients.  

We use the NCI-CTC for Adverse Events scoring system to report the incidence of RP 

Grade ≥ 2. We observed a 28% crude incidence of RP Grade ≥ 2.  

Investigators52 have shown that a relationship between PTV size and the incidence of RP 

might exist; however in our study PTV, volume was not a significant predictor for the incidence 

of RP (p=0.5516). We can explain this difference by the fact that more than half of the patients 

in our study had multiple metastases in the lungs and when treating two or more lesions in the 

lungs the PTV volume may not be a good enough predictor for RP.  

The V20 and V13 were significant predictors of RP Grade ≥ 2. The V20 was a more 

significant predictor (p=0.0235)  compared to V13 (p=0.0447) which might suggest that higher 

doses might contribute more to the incidence of RP compared to lower doses; hence suggesting 

that high doses to a small volume of normal lung tissue is most important for lung toxicity over 

low doses to a large volume. This conclusion is inconsistent with experiments on rats by 
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Semenenko et al.105 where larger volumes of lungs exposed to lower doses induced more 

toxicities than smaller volumes of lungs exposed to higher dose. It is important to note that the 

endpoint in their study was the breathing rate as opposed to RP, and that lung functionalities 

between the rat model and the human might differ as well, and could explain the observed 

discrepancies.  

Patients with RP Grade ≤ 1 had significantly larger lung volume with a median of 

3168.36 cm3 versus 2540.26 cm3 for patients with RP Grade ≥ 2, since we are delivering 

radiation therapy to one to four targets in the lungs, a larger overall lung volume will 

demonstrate a lower mean dose. 

Similar to other studies 106 107, we found the MLD to be a significant predictor for RP 

Grade ≥ 2 in our study. Borst et al.106 looked at RP incidence in 128 patients treated with lung 

HRT and also found significant relationship between MLD and RP incidence. They observed a 

median MLD of 640 cGy and we observed a median of 752.2 cGy in patients with RP Grade ≥ 2 

versus 433 cGy for patients with RP Grade ≤ 1. However, since we were dealing with multiple 

dose regimens, we needed to account for these differences using the NTD. 

An important finding in this study was that NTD predicted most significantly RP Grade ≥ 

2 (p=0.0069).  It is important to point out that the NTD formula is directly derived from the LQ 

formalism and it is debated in the literature whether this model is still valid in HRT 108-109. Borst 

et al.106 evaluated the relationship between MLD and RP incidence after lung SBRT and 

conventional fractionated RT. Using the LQ formalism, with NTD corrected to 2 Gy fractions 

for SBRT and MLD for conventional fractionated RT, they showed no significant differences 

between each dose response. Other authors110-112 reported on a dose-response relationship in 

SBRT between tumor control probability and BED, which is also derived from the LQ 

formalism. Opponents of the LQ model at high dose per fraction report that if the model 
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correctly describes the log cell survival at low dose, the log cell survival becomes linear at high 

dose113 114, and therefore the LQ model might overestimate the cell survival. Investigators 

proposed a modified LQ model to account for the linearity of cell survival at high dose per 

fraction. Park et al.114 proposed the LQ(L) model, a linear-quadratic model at low dose and linear 

model at high doses with a transition dose dt, designed to better describe cell survival for HRT. 

Borst et al.115 evaluated the NTCP fit predicting RP, using the LQ model and the LQ(L) for 128 

patients treated with HRT to the lung. They concluded that the LQ model was the best method 

for converting physical dose to NTD to predict RP. Consequently, results from other studies and 

data from the literature support the use of LQ formalism and NTD in HRT as a possible RP 

predictor. Although some studies may confirm the use of the LQ model in HRT, further 

investigation is still needed to fully validate it in hypofractionation.  

We evaluated the parameters of the LKB model for our study, TD50 and m. We 

estimated a TD50 of 1550 cGy and an m value of 0.44. The recent study by Borst et al.106 

evaluated 128 patients for SBRT and estimated a TD50 of 1960 cGy, with 1600-3000 cGy 95% 

CI and m value of 0.43 with 0.33-0.59 95% CI. Their m value was very close to the one 

estimated in our study of 0.44. We observed more significant toxicity at lower dose level as 

indicated by our crude toxicity of 28% versus 11% for their study.  

We used the DVH reduction model described above to compute the MLD and NTD. This 

model presents some limitations because it assumes for example that all regions of the lungs are 

of equal functional importance, while it has been shown that HRT to centrally located tumors 

can be significantly more toxic than other lung locations26, 116. In addition the lung is considered 

to be a parallel organ, with functional subunits called alveoli, which are thought to work 

independently and respond independently to radiation damage. However, with high dose per 

fraction this might no longer be true. Studies117-118 have shown the existence of bystander effects 
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for lung cells exposed to radiation, and damaged alveolar cells might diffuse and cause damage 

to adjacent alveolar cells. Another example of the possible bystander effect of RP was illustrated 

in studies119,120,121 showing that ipsilateral radiation therapy to lungs or breast tumors could 

induce RP to the contralatreal unexposed lung. Therefore, some particular areas of the lungs 

could act as serial structures in which a damage of a subunit may lead to the damage and loss of 

the entire group of subunits. A more robust and biologically weighted DVH reduction model 

might be needed to better evaluate radiation damages to lung tissues. 

 

2.4 Conclusion 

HIGRT for multiple metastases in the lungs requires careful evaluation of several lung 

DVH metrics including the MLD, V13 and V20. A dose-effect relation between NTD and RP for 

HIGRT treatments of multiple lung lesions may exist up to 48 Gy in three fractions as a 

predictor of lung toxicity. Also, the dose-response parameters derived in our study appear to 

agree with other hypofractionated results published in the literature. The dose-effect relationship 

needs to be further investigated in conjunction with analysis and development of the DVH 

reduction method to better model the temporal, as well as the spatial, distribution of radiation in 

the lungs during radiation therapy. 
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3. AIM 2: DEVELOP A NOVEL RADIATION PLANNING METHOD FOR LUNG 

PATIENTS TREATED WITH HRT 

3.1 Materials and methods 

3.1.1 Study object 

Fifteen of the 28 oligometastasis patients studied previously were included in this 

retrospective study (ID#1 to 15). We selected all the patients who received HIGRT to multiple 

targets in the lungs. The reason for selecting this group was that the planning method for HIGRT 

can be tedious and cumbersome, especially in the case of multiple lesions since more normal 

lung is exposed to radiation. In addition among the 8 patients who had evidence of Grade 2 and 

above RP, 6 had 2 or more lesions in the lungs. The study object is presented in Table VII. 

Since we were dealing with patients with several PTVs and dose prescriptions, we 

grouped for each patient the PTVs with the same dose prescription under one PTV.  For each 

patient we took the union of the PTVs receiving the same dose and extracted data out of this 

union PTV. Volumes for each PTVs is shown in the study object table (Table VII) 

In the study object, two patients (#7 and #8) received doses to PTVs with conventional 

dose fractionation in addition to the HIGRT treatment to a second PTV. We accounted for the 

dose from all the PTVs for these two patients. 
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Table. VII. Study object: multiple oligometastasis’ locations  
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3.1.2 Study design 

A retrospective planning study was developed to determine if the HIGRT planning 

process could be automated in the case of multiple lesions in the lungs. The primary objective 

was to determine if an inverse planning algorithm such as the DMPO optimization algorithm 

could be used while decreasing the number of segments per gantry angle. Jiang et al.68 showed 

that a minimum of 5-segments per gantry angle were necessary to achieve acceptable step-and-

shoot IMRT plans. New plans were generated for each of the cases in the study using the DMPO 

inverse planning algorithm allowing successively 1 and then 5-segments per gantry angle.  

Each patient’s actual treatment plan was restored from the archives.  Typically, all were 

originally planned using non-coplanar 3DCRT treatment techniques. Each plan began with the 

selection and optimization of multiple (9 to 16) non-coplanar gantry positions. Beam aperture 

and weighting of 6 MV photons were manually and iteratively optimized to control the high dose 

gradient near serial critical structures and minimize low-dose spread to parallel organs. Dose 

calculations were performed using a commercial treatment-planning system (Pinnacle3, Philips 

Medical Systems, Andover, MA) via the convolution/superposition algorithm, including a full 

density heterogeneity correction. All plans were computed with a grid size of 3 mm. 

To determine the benefit of inverse planning DMPO optimization, two new research 

plans were created for each patient in the study.  These research plans used identical beam 

arrangements to the 3DCRT plan.  However, beam aperture and weighting were optimized using 

the DMPO algorithm with static modulated 6 MV beams. DMPO parameters were set to allow 1 

and 5-segments per beam for the 1-segment and 5-segments plans respectively. The optimization 

routine used the collapsed cone convolution dose calculation after ten successive iterations. 

Multiple iterative processes were necessary until the treatment planning goals were met. 



 

   40 

 

In order to do an inter-plan comparison, all plans had the same PTV coverage, we 

normalized all plans so that the prescription isodose line covered 95% of the PTV.  

 

3.1.3 Treatment plan evaluation 

The conformality of the plans was evaluated using the conformality index R100 defined 

by the radiation therapy oncology group (RTOG)122 and the more comprehensive conformality 

index CI proposed by Knoos et al.123 which takes into account the degree of spatial intersection 

between the PTV volume and the isodose volume as defined below:  

(11)  . 
V

V
CI     (10),    

V

V
R100

TREATED

PTV

PTV

isodoseon prescripti   

where isodoseon prescriptiV  is the volume of the prescription isodose line, VTREATED is the volume of 

the minimum isodose surrounding the PTV, and VPTV is the volume of the PTV.  The R100 value 

for an ideal plan is 1 and can go up to 2, the CI maximum and ideal value is 1 and can go as low 

as 0.3. High R100 scores means worse conformality, and a low CI score means worse 

conformality. 

Additionally, we evaluated the sharpness of the dose gradient using the R50 index 

described in RTOG clinical trials and defined as the ratio of the 50% isodose line volume over 

the volume of the PTV. We also looked at the heterogeneity index (HI) defined as: 

.
D

D
HI

5

95  (12) 

where D95 and D5 represent the dose received by 95% and 5%, respectively, of the PTV. The 

closer HI is to its maximum value of 1 the more homogenous the plan is. 
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Normal lung tissue metrics included the MLD, NTD, V20, V13, and V5 as defined in the 

first section, as well as the heart, spinal cord and esophagus maximum point dose as defined by 

RTOG clinical trials124 (Table VIII). 

 

 

Table. VIII. RTOG dose limits for hypofractionated lung radiation therapy 

 

 

3.1.4 Statistics 

The dosimetric parameters comparison was the primary endpoint for this study and the 

statistical significance of comparing these parameters is calculated using the non-parametric 

Wilcoxon signed rank test to account for the small sample size and the pair-matching of 

parameters between each of the three plans. Differences were reported to be statistically 

significant at p≤0.05. Statistical analysis was performed using the Stata Data Analysis Software 

(StataCorp, College Station, TX).  

 

3.2 Results 

PTV metrics 

The results showed a general trend where 1-segment and 5-segments plans were more 

conformal than 3DCRT plans. Both conformality indexes improved significantly (p=0.0001 and 
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p=0.0001): R100 mean for 3DCRT plans was 1.41 compared to 1.17 and 1.15 for 1-segment and 

5-segments plans respectively; and CI mean for 3DCRT plans was 0.5333 compared to 0.6866 

and 0.7252 for 1-segment and 5-segments plans, respectively.  Summary of PTV metrics with p 

values is shown in Table IX.  

 

 

Table. IX. Summary of PTV metrics and differences between 1-segment, 5-segments and 

3DCRT plans. 
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Fig. 10. Bar graph distribution of CI (top) and R100 (bottom) 
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There was no statistical difference in R100 between 1-segment and 5-segments plans 

(p=0.1863); however CI was significantly improved for 5-segments plans with a mean CI of 

0.7252 compared to an mean CI of 0.6866 for 1-segment plans (p=0.0013). Figure 10 shows bar 

graph distributions of R100 and CI. The overall distribution shows consistently superior 

conformality for 1 and 5-segments plans over 3DCRT plans. 

Regarding the dose fall-off at the 50% isodose level, although the mean R50 was lower 

for 1-segment and 5-segments plans, the p value was >0.05 for both subgroups compared to 

3DCRT plans. The dose fall-off at the 50% isodose level showed no statistical differences in R50 

between 1-segment and 5-segments plans (p=0.5561). 

The PTV inhomogeneity also demonstrated a general trend with 1-segment and 5-

segments plans being more inhomogeneous than 3DCRT plans. HI was significantly higher for 

3DCRT plans compared to both 1-segment and 5-segments plans (p=0.0001 and p=0.0458). The 

results showed a general trend where single segment plans were significantly more 

inhomogeneous than 5-segments plans, with a mean HI of 0.7609 for 1-segment plans and 

0.7862 for 5-segments plans (p=0.0021). Figure 11 shows the HI values for all the different PTV 

volumes, and except for the larger PTV, the 1-segment plans were consistently more 

inhomogeneous than 3DCRT and 5-segments plans. 
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Fig. 11. HI distribution depending on PTV volumes. 

 

 

On average, the 1-segment plans required 2104 MUs to deliver one fraction of the 

treatment, compared with 2066 MUs needed on average to deliver one fraction of 3DCRT plan. 

There was no statistical difference between subgroups (p=0.0783), while it required on average 

more MUs, 2216, to deliver 5-segments plans compared to 3DCRT plans. The difference in the 

total number of MUs needed per fraction per PTV between 5-segments and 3DCRT plans was 

statistically significant (p=0.0309). The other general trend revealed that 5-segments plans 

needed significantly more MUs per PTV compared to 1-segment plans (p=0.0022). 
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Since both 1-segment and 5-segments plans had significantly improved conformality 

compared to 3DCRT plan, we wanted to quantify which technique had the most important 

improvement. Figure 12 shows the percentage difference for R100 and CI, for both subgroups 1-

segment and 5-segments plans relative to 3DCRT plans. The improvement of the 5-segments 

plans compared to 1-segment plans relative to the 3DCRT plans was significantly better for both 

conformality indexes R100 and CI (p=0.0001, and p=0.0014, Table X). The improvement of 

R100 and CI for both subgroups 1 and 5-segments over 3DCRT plans are shown in Fig. 12. 

 

 

Table. X. Percentage difference of the 1 and 5-segments plans relative to the 3DCRT plans for 

R100 and CI 
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Fig. 12. Percentage difference for R100 and CI, for 1-segment and 5-segments plans and relative 

to 3DCRT plans. 
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Organs at risk metrics 

The spinal cord, the esophagus and the heart showed no statistically significant 

differences between 1-segment, 5-segments and 3DCRT plans, with all p values above 0.05 

(Table XI).  Figure 13 shows the spinal cord, esophagus and heart maximum point dose for each 

patient. 

 

 

Table. XI. Summary of maximum point dose for the spinal cord, esophagus and heart for all of 

the three planning techniques, 3DCRT, 1-segment and 5-segments plans. 
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Fig. 13. Spinal cord, esophagus and heart maximum point dose for each patient 
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Regarding the normal lung metrics, the results showed a general trend where the lung 

metrics for 1-segment and 5-segments plans were consistently lower than the 3DCRT plans, with 

p values < 0.05. The V5 mean for 3DCRT plans was 41.0% compared to 37.12% and 37.25% for 

1-segment (p=0.0054) and 5-segments (p=0.0106) plans, respectively; the V13 mean for 3DCRT 

plans was 22.19% compared to 16.01% and 15.77% for 1-segment (p=0.002) and 5-segments 

(p=0.0031) plans, respectively; the V20 mean for 3DCRT plans was 10.08% compared to 7.97% 

and 7.89% for 1-segment (p=0.0007) and 5-segments (p=0.0018) plans, respectively; MLD mean 

for 3DCRT plans was 744.3cGy compared to 658.2 cGy and 653.6 cGy for 1-segment 

(p=0.0007) and 5-segments (p=0.0007) plans, respectively; and NTD mean for 3DCRT plans 

was 1275.6 cGy compared to 1128.61 cGy and 1113.39 cGy for 1-segment (p=0.0007) and 5-

segments (p=0.0007) plans, respectively. There were no statistical differences for any lung 

metrics between 1-segment and 5-segments plans, with all of the p values > 0.05. Summary of 

lung metrics with p values is shown in Table XII. We also computed the NTCP for each patient, 

and we could observe a consistent reduction in the risk of normal lung tissue complication as 

shown in the Fig. 14. 

 

 

 

 

 

 

 

 

 



 

   51 

 

Table. XII. Summary of lung metrics (top), p values comparison for all the lung metrics between 

each of the three planning techniques, 3DCRT, 1-segment and 5-segments plans 
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Fig. 14. Normal lung tissue complication probability for each patient and each of the three 

planning techniques, 3DCRT, 1-segment and 5-segments plans. 
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Case study: analysis of Case #1 

Isodose curves for Case #1 with 4 lesions are presented in Fig. 15, showing 3DCRT, 1-

segment and 5-segments plans. This patient received 36 Gy in 3 fractions to RLL, RUL and LUL 

lesions as well as 30 Gy in 3 fractions to a RML lesion. The total volume of the PTVs receiving 

36 Gy was 58.16 cm3 and the volume of the PTV receiving 30 Gy was 8.22 cm3. For the PTV 

receiving 36 Gy, the prescription isodose line in the 1-segment and 5-segments plans was highly 

conformal to the PTV with a R100 of 1.17 and 1.02, respectively compared to 1.58 for the 

3DCRT plan. Similarly, the CI was 0.65 and 0.78 for the 1-segment and 5-segments plans, 

respectively, compared to 0.56 for the 3DCRT plan. The 50% isodose line volume of the 1-

segment  and 5-segments plans was reduced with an R50 of 6.97 and  6.05 for the 1-segment and 

5-segments plans, respectively, compared to 8.2 for the 3DCRT plan. Similarly, for the PTV 

receiving 30 Gy, the prescription isodose line in the 1-segment and 5-segments plans was highly 

conformal to the PTV with a R100 of 1.69 and 1.43, respectively, compared to 1.89 for the 

3DCRT plan; the CI was 0.670 and 0.770 for the 1-segment and 5-segments plans, respectively, 

compared to 0.470 for the 3DCRT plan. For that PTV the R50 of the 3DCRT plan, 4.236, was 

actually lower than the R50 of the 1-segment and 5-segments plans, 4.85 and 4.789, respectively. 

As shown in Fig. 12, the higher isodose lines such as the 105% isodose line was totally 

enclosed inside the PTV volume for the 1-segment and 5-segments plans. Moreover, the 105% 

isodose line volume enclosed in the PTVs was more important for the 1-segment plan compared 

to 3DCRT and 5-segments plans. This could also be observed with the inhomogeneity index, 

with an HI of 0.90 and 0.91 for the 3DCRT and 5-segments plans respectively, compared to 0.83 

for the 1-segment plan for the PTV 36 Gy. Similarly the HI was 0.84 and 0.88 for the 3DCRT 

and 5-segments plans, respectively, compared to 0.81 for the 1-segment plan for the PTV 30 Gy. 
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The DVHs for the whole lung minus GTV is shown in Fig. 16 and we observed a net 

reduction in the dose received by the normal lung tissue, with NTD of 1713.90 cGy for the 

3DCRT plan, and reduced to 1534.60 cGy and 1348.80 cGy for the 1-segment and 5-segments 

plans, respectively, with complication risk of 7.21% for the 3DCRT plan, and reduced to 4.88 % 

and 3.14 % for the 1-segment and 5-segments plans, respectively. 

 

 

 

Fig. 15. DVHs for PTVs receiving 30 and 36 Gy and for the whole lung minus GTV for Case #1 
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Fig. 16 Isodose curves for Case #1, showing 3DCRT (top), 1-segment (middle) and 5-segments 

(bottom) plans for all four lesions 
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3.3 Discussion 

To date there has been no retrospective planning study looking at the DMPO algorithm 

used for lung oligometastasis hypofractioned treatments. This study evaluated the potential effect 

of a DMPO algorithm, compared with 3DCRT via a retrospective dosimetric analysis. The 

DMPO algorithm was used with the intent of reducing the complexity of optimized plans to 

create two plans allowing successively one and five segments per beam.  

Fifteen lung HIGRT cases were selected, all of them having at least 2 oligometastasis 

lesions. The reasons for choosing this type of cases in this study were twofold. First, in the 

context of HIGRT the planning process is often complex and cumbersome; it was attractive to 

see if an inverse planning algorithm could be used to automate the process while trying the keep 

the plan complexity as low as possible with a minimum amount of segments. Second, radiation 

therapy for multiple targets in the lungs constituted a challenge for the planner to cover the target 

with the prescription isodose line while sparing the normal surrounding tissue. We purposely 

selected the most challenging cases with multiple PTVs; cases for which 3DCRT might reach its 

limitations in terms of PTV conformality and normal tissue sparing, and for which inverse 

optimization with DMPO might be a solution.  

Therefore, the main focus of this study was to establish the potential benefits of 1-

segment and 5-segments DMPO techniques, in keeping normal organ at risks below dose 

tolerance, in reducing normal lung dose, and in improving target coverage and conformality. 

There was a significant improvement of the CI and R100 with the 1-segment and 5-

segments plans compared to 3DCRT plans (Table V and Fig. 9). Even though there was no 

significant difference in R100 between 1- and 5-segments plans, the CI showed significant 

improvement for 5-segments plans over 1-segment plans. The improved conformality can be 

explained by the increased complexity of the 5-segments plans since more segments allow for 



 

   57 

 

better dose painting around the PTV. A Japanese study125 reported that less conformal plan could 

be associated with higher risk of radiation pneumonitis, therefore using 5-segments plans could 

be preferable in our context of multiple lung metastases. However the deliverability to a moving 

target of multiple segment plans needs to be addressed and will be discussed in the next section. 

In addition we observed that 5-segments plans requires significantly more MUs than 3DCRT and 

1-segment plans, which could result in an increase in secondary malignancies126 . Therefore, the 

benefit of the improved conformality with 5-segments plans is counterbalanced by an increase in 

plan complexity and number of MUs. 

Also we showed that 1-segment plans deliver highly inhomogeneous dose inside the 

PTV. The inhomogeneity metric, HI, was significantly lower with 1-segment plans compared to 

3DCRT and 5-segments plans. The HI value indicated that the amount of dose higher than the 

prescription dose such 105% and 110%, was significantly more important for 1-segment plans. 

We considered this increase in dose inside the tumor clinically acceptable and even beneficial for 

two reasons; first it resulted in a higher BED inside the tumor hence increasing the tumor control 

probability, second it could help by targeting more efficiently the radio-resistant hypoxic cells 

inside the tumor. High levels of hypoxia in tumors have been associated with treatment failures 

in radiation therapy127. While fractionated radiation therapy over three to four weeks allows for 

reoxygenation between fractions128, hence reducing the influence of hypoxic cells, this is not true 

with HRT with a course of only 3 fractions. Therefore we could advocate that highly 

inhomogeneous plans like 1-segment plans could circumvent the hypoxia-induced radio-

resistance and be more beneficial than 5-segments or 3DCRT techniques. 

We believe that the most significant finding in the present study was that, in addition to 

improving the PTV conformality, DMPO optimization allowed us to significantly reduce the 

MLD as well as the NTD, V20 and V13 for the normal lung tissue. In the previous section of this 
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project, we showed that all these parameters, MLD, NTD, V20 and V13 were statistically 

significant predictors for RP Grade ≥ 2. Therefore the results obtained with 1-segment and 5-

segments plans could be very helpful in reducing the risk of RP. There were no statistical 

differences in any of the lung metrics between 1- and 5-segments plans; hence we would once 

again support the use of 1-segment over 5-segments plans. The plans with 1-segment per beam 

were simplified and could also reduce the overall treatment time delivery, which could also be of 

great benefit in our patient cohort with multiple lung metastases. 

In addition to the possibility of sparing the lung with the use of DMPO plans we were 

able to keep the spinal cord, esophagus and heart maximal dose within tolerance. In some cases, 

we were even able to substantially reduce to esophagus and heart maximal dose by incorporating 

it as constraints in the optimization. Since acute esophagitis and long-term cardiac toxicity can 

be significant limiting factors in the treatment of lung lesions, dose reduction to these structures 

should benefit from DMPO plans. 

However, the improved conformality should be viewed cautiously since it increases the 

risk of a geometric miss if the setup error is bigger than the setup uncertainty added to the ITV or 

if the internal target motions are not accounted for correctly. High-dose-gradient increases the 

risk of underdosing the tumor and overdosing the surrounding normal tissue. One of the main 

impediments in HIGRT delivery is the precision of dose actually delivered at treatment relative 

to the dose planned. Set-up errors are reduced by the use of imaging-guidance tools described 

above, and internal target motions are accounted for via a 4D-CT and the method described 

above. To increase the level of accuracy of tumor definition and localization, functional imaging, 

such as fluorodeoxyglucose positron emission tomography can help address the challenge of 

tumor delineation 129-130. A rigid respiratory phantom has been used to verify and validate the 

DMPO techniques for lung HIGRT. 
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3.4 Conclusion 

The “forward planning step”, the first step consisting of choosing collimator angle and 

non-coplanar beam angle, minimizes the normal lung exposure to radiation. The “inverse 

planning step”, the second step consisting of using the DMPO algorithm to optimize beam 

apertures and weights, maximizes PTV coverage and minimizes normal tissue doses. Using this 

method we do not have any additional degrees of freedom compared to traditional 3DCRT, but 

rather use the optimization routine for our benefit.  

Standard forward 3DCRT planning techniques could be improved by incorporating an 

inverse planning approach.  Single segment plans were able to significantly improve tumor 

coverage and conformality, reduce the risk of lung RP, while simplifying the planning process 

and delivery. Target conformality and normal lung tissue sparing did not gain much 

improvement from an increase of plan complexity to five segments over the simplified one 

segment technique. 

The automation of our method is a good alternative to more traditional methods and 

offers significant dosimetric benefits.  

Despite the benefits of the DMPO 1-segment techniques, a rigorous and careful 

validation via phantom measurement is necessary and will be presented in the following section. 
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4. AIM 3: VERIFY AND VALIDATE THE PLANNING TECHNIQUE PRESENTED IN 

AIM 2 VIA DOSIMETRIC QA DELIVERED ON A MOTION PHANTOM 

4.1 Materials and methods 

One of the main impediments in HRT delivery is the precision of dose actually delivered 

at treatment relative to the planned dose. As mentioned above tight margins and precise dose 

shaping are among the hallmarks of HRT. Dose delivery accuracy in HRT needs to be addressed 

even more so when targets are in the lung and delivery imprecision due to respiratory motion 

might occur. The AAPM Task Group Report 10140 on SBRT suggests the use of a respiratory 

phantom to perform end-to-end testing and verification of the SBRT process. Besides, IMRT 

requires patient-specific QA involving a dosimetric verification comparing the planned dose 

with the delivered dose 131 132. As our approach developing plans with one segment per beam 

angle involved both inverse planning as well as hypofractionated dose regimen, we report in this 

section on patient-specific quality assurance for the 1-segment planning technique developed in 

the previous section. 

A rigid phantom (QUASAR respiratory Motion Phantom, Modus medical Devices Inc., 

London, Canada) was used to simulate one-dimensional, respiratory-induced movement. A 

motor moves a platform on which is placed an infra-red reflecting block from the RPM system, 

as well as a cylindrical lung insert, so that they both move with the same period (Fig. 17). 

Amplitude and period of the sinusoidal motion for the platform and the lung insert can be 

adjusted.  

A special lung-equivalent insert (Fig. 18), was manufactured from cork material. The 

total cork cylinder was 18 cm long with a 7.70 cm diameter. A tissue-equivalent polyethylene 

cylinder 3 cm long and 1.90 cm in diameter was located in the geometrical center of the cork 
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cylinder, simulating a tumor in lung (Fig. 19). A 4DCT scan of the phantom was acquired for the 

respiratory phantom and the tissue-equivalent target was contoured and defined as the ITV. We 

added 5 mm in all directions to the ITV to generate the PTV. 

 

 

 

Fig. 17. QUASAR respiratory motion used for patient-specific QA 

 

 

 

Fig. 18. Lung insert with tissue equivalent target used to simulate a target in lungs in the 

respiratory phantom. 
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Fig. 19. Tissue equivalent target used to simulate a tumor is lung with TLD positions 

 

 

Film measurements 

The lung insert was designed in such a way that radiochromic films, Gafchromic EBT2 

(ISP Corp., Wayne, NJ, USA) could be fitted between the sections of this phantom. 

Radiochromic films have been reported to offer high resolution, planar dose measurement with 

reduced energy dependence, ideal for measurements of high gradient radiation fields133. 

Radiochromic films consist of a double layer of radiation-sensitive organic microcrystals on a 

thin polyester base with a transparent coating. The film is darkened by radiation, and the 

darkness increases with increased absorbed dose. Radiochromic films do not require processing 

to develop the image. Once the film is read using a flat bed scanner, isodose curves are created 

and converted into dose with a calibration curve acquired before the phantom irradiation.  

To evaluate the difference between calculation and film measurement, we looked at the 

dose to distance agreement criteria of 3%/3 mm developed by Low et al.134, as well as the tighter 

dose to distance agreement criteria of 2%/2 mm. Figure 20 shows a representation of the method 

for 2D dose distribution verification and looking simultaneously at distance to agreement and 

dose difference. The gamma is defined as: 
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Radiochromic films were inserted along the coronal plane and irradiated with optimized 

segment beams to evaluate the dose in the lung and in the target. The gamma analyses were 

performed using the FilmQA software (3cognition, Wayne, NJ) 

 

 

 

Fig. 20. Geometric representation of dose distribution evaluation criteria using the combined 

dose difference and dose to agreement criteria defined by Low et al.134. 
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TLD measurements 

The use  of TLDs in radiation therapy for in vivo dosimetry has been described 135 136. To 

also perform absolute dose verification, we inserted in the tissue equivalent target TLD at seven 

locations throughout the target (Fig. 19) and compared the measured doses with the planned 

doses. We used lithium fluoride TLDs in this study. 

Before each phantom irradiation, the TLDs were annealed for 1 h at 400 °C , and 18 h at 

80 °C. We evaluated the individual TLD sensitivities by exposing them to a 6 MV beam with 

known dose at a depth of 10 cm, with a 10 cm × 10 cm field size, and at a source to axis distance 

(SAD) of 100 cm. We performed three sensitivity exposures for all the TLDs used in this study. 

We compared the reading of each TLD to the average reading and calculated the sensitivity and 

its standard deviations for each TLD. Finally, we averaged the three sensitivities to estimate the 

sensitivity used for dose measurements. After each phantom irradiation we also performed TLD 

dose calibration, by exposing the TLDs to a known dose, and derived the calibration factors used 

to convert charge readings to dose. 

However, we measured absorbed dose in a tissue-equivalent target of polyethylene, while 

the dose calculated by the treatment planning system was absorbed dose in water. We therefore 

corrected each reading via the Burlin cavity theory137 using the mean ratio of mass collision 

stopping power of polyethylene and water as well as the mean ratio of the mass energy 

absorption coefficient of polyethylene and water. 

 

4.2 Results 

The volume of the target used in this study was 8.5 cm3 and we selected PTVs among the 

multiple metastases cohort with comparable target sizes, Case #1, #10 and #11, with PTV 

volumes of 8.22 cm3, 5.7 cm3 and 8.6 cm3 respectively. We performed patient-specific QA on 
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each of the case according the method described previously. We copied the treatment beams and 

projected them onto the respiratory phantom geometry as shown in Fig. 21. Figure 22 shows the 

optimized MLC apertures for the LUL target of Case #11 receiving a total dose of 48 Gy in three 

fractions. Nine beam angles were used for that plan.  

 

 

Fig. 21. Axial view of the phantom with treatment beams applied from Case #11 (top), 3D view 

of the phantom with treatment beams (bottom) 
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Fig. 22. Optimized MLC apertures for patient #11 

 

 

 Figure 23 shows the isodose regions for LUL targets for Case #11 computed on the 

respiratory phantom scan. Table XIII shows the measured dose at various locations throughout 

the target and relative to the measured dose. There were no noticeable differences between the 

planned and measured doses inside the targets for all three patients. All locations inside the 

target showed good agreement of the measured dose relative to the planned dose, varying from 

102.35±2.3% to 97.98±2.3%. 
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Fig. 23. (Left) Isodose curves for LUL target treated for patient #11 with nine beams (25%, in 

blue, 50% in pink, 80% in orange, 100% in red, and 105% in blue isodose regions are displayed. 

(Right) The nine beams were applied and computed to the respiratory phantom geometry, and 

the same isodose regions are displayed. 

 

 

Table. XIII. Dose at seven locations inside the target measured with TLD for patient #1, 10 and 

11. All doses are expressed in percentage relative to the planned dose. 

 

 

 

Figure 24 shows on the left, the dose fluence calculated by the treatment planning system 

for the 1-segment plan aiming at the LUL lesion of Case #11, and on the right it is the scanned 

images of the films exposed with the same 1-segment plan. Figure 25 shows a good agreement 

between calculated and measured dose profiles in the target. 
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Fig. 24. (left) Dose fluence inside the target computed with the planning system. Images of the 

scanned Radiochromic films after being exposed with the treatment beams copied from patient 

#11. 

 

 

 

Fig. 25. Dose profiles along the y direction (cranial-caudal), showing the planned dose profile in 

blue, the measured dose profile in red, and the difference between both profiles in green.  
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We performed gamma analysis comparing the measured and calculated dose fluence, 

according to the method described previously. Figure 26 depicts a histogram of the counts sorted 

by gamma values. There was a good agreement between the exposed film and the calculated 

fluence, 99.84% of all the measured points had a gamma value less than 1 with the 3%/3mm 

criteria. Table XIV shows a summary of all the passing rates for Cases #1, 10 and 11. The 

minimum passing rates were 98.99% for the 3%/3mm criteria, and 97.24% for the tighter 

2A%/2mm criteria, which shows good agreement between the measured and calculated dose 

fluences. 

 

 

 

Fig. 26. Histogram of the measured counts sorted by their gamma value. 99.84% of all the counts 

passed the criteria of 3%/3mm with a gamma values smaller than 1. 
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Table. XIV. Summary of the passing rates for patients #1, 10 and 11, with both criteria, 3%/3mm 

as well as 2%/2mm. 

 

 

 

4.3 Discussion 

Several authors have studied that the use of IMRT when treating a moving target57-60 and 

concluded that the interplay between organ motion and leaves motion is not dosimetrically 

significant in the case of fractionated radiation therapy delivered over thirty fractions138. Clinical 

outcomes for NSCLC patients treated with IMRT also showed promising results in terms of 

survival as well as lung and esophagus toxicity 139 140. Similarly, investigators published on the 

use of IMRT in lung HRT; Kang et al.141 evaluated the tumor motion effects on dose distribution 

for hypofractionated IMRT of NSCLC and concluded that for typical tumor geometries and 

respiratory amplitudes, changes in target coverage were minimal.  Seco et al.142 concluded that 

for most clinical cases, any non-negligible effects of IMRT dose delivery may be irrelevant with 

the use of many beams. Videtic et al.49 also showed encouraging clinical outcomes for lung 

patients treated with hypofractionated IMRT with good local control and survival. 

The new planning technique developed in the second part of this study is a simplified 

IMRT plan with one segment per beam angle. Figure 22 shows an example of optimized MLC 
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apertures for the LUL target of Case #11. The MLC apertures were derived from the inverse 

optimization DMPO algorithm as described in the previous section. The PTV contoured is 

highlighted in green on the DRR. We observe that the shapes of the MLC are mostly 

surrounding the PTV, with few MLC leafs blocking part of the target, as IMRT segments usually 

do. Although more simple than multi-segment IMRT plans, these non-intuitive optimized MLC 

apertures needed to be verified on a phantom. 

We showed that a 1-segment technique significantly improved conformality and lung 

toxicity probability compared to 3DCRT plans and that 1-segment plan significantly use less 

MUs per PTV compared to 5-segments plans.  Even though the 1-segment technique is a very 

much simplified technique delivery compared to 5-segments technique, we still need to perform 

a careful validation via phantom measurement. In addition, we showed in the previous section 

that the 1-segment plans were significantly more inhomogeneous than 3DCRT and 5-segments 

plans with more important volumes of higher doses confined in the PTV. Therefore, the dose 

gradient from the center to the edges of the PTV is sharper for 1-segment plans and needs to be 

verified. 

We measured point doses with TLD and compared them with planned doses and found 

good agreement between planned and measured doses for all three PTV doses we verified. 

Verifying the dose inside the target was of great importance, especially in the context of the 1-

segment plan having higher doses present inside the targets. As mentioned in the previous 

section, having high dose, such 105% and 110% of the prescription doses inside the PTVs could 

be critical with hypofractionated dose regimen with only three fractions and where high doses 

inside the target can help fight hypoxia-induced radio-resistance cells.  

The TLD dose measurements inside the target were also important as they served to 

verify the dose calculation and the dose computation algorithm. In the context of lung radiation 
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therapy the effect of loss of lateral electron equilibrium has been studied for low and high energy 

photon beams 143 144 145. Mah et al.146 reported on the impact of tissue inhomogeneity corrections 

in clinical thoracic radiation therapy and concluded that if lung corrections were not correctly 

applied the dose within the target could significantly be miscalculated and the radiation-induced 

normal lung complication probability could be underestimated by at least 5%. The verification of 

the calculated dose within the target was therefore an important benefit in this study. 

Results showed a minimum 98.99 % and 97.24% dose to distance agreement at 3%/3 mm 

and 2%/2 mm respectively between calculation and films. Although the distance to agreement 

results at 2%/2 mm were not as good as the distance to agreement results at 3%/3 mm, they were 

still satisfactory for both criteria. No discernable discrepancies were noted. For each patient we 

verified the good agreement between calculated dose and the film measurements inside the target 

and the normal tissue. The confirmation on a respiratory phantom that the calculated dose was 

correctly delivered was critical for the validation of the 1-segment technique to verify that the 

improvement in normal lung tissue and tumor metrics could be delivered with high levels of 

precision and accuracy 

 

 4.4 Conclusion 

We implemented a QA method via phantom measurement to validate the 1-segment 

planning technique proposed in this study. We found good agreement between calculated and 

measured doses. This patient specific QA method provides an integral QA tool for lung 

hypofractionated radiation therapy and for the 1-segment planning technique. 
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5. CONCLUSION AND FUTURE WORK 

The problem statement of this study was how to improve the implementation of lung 

HRT. Lung toxicity is one of the main limiting factors in lung HRT, the first aim was to establish 

possible dose-effect parameters predicting lung RP. We showed that a dose-effect between NTD 

and RP may exist up to 48 Gy in three fractions as a predictor of lung toxicity.  

In the second aim we investigated a new planning method to reduce lung toxicity 

probability using the predictors identified in the first aim. We developed a planning method 

which automates the planning process for lung HRT and simplifies its delivery. In this study we 

used IMRT techniques delivered with a static gantry. To our knowledge no studies have 

explored before the use of IMRT in lung HRT with a highly simplified delivery down to one 

segment per beam angle. The results concerning the new planning method were promising; it 

significantly improved tumor coverage and conformality as well as reduced the risk of lung RP. 

Further planning analysis could be performed, exploring rotational delivery technique as well as 

proton radiation therapy. Both of these methods present challenges in the context of lung HRT: 

rotational therapy introduces gantry rotation as a degree of freedom but also introduces possible 

interplay motions between gantry rotation and tumor in lungs; and proton therapy takes 

advantage of the finite range of protons in tissue but tumor motion may be detrimental. 

Comparison of these techniques with static gantry IMRT techniques used in our study could help 

determine if one technique is more advantageous than others. 

The third aim served as a validation via phantom measurement of the new planning 

technique developed in the second aim. The patient specific analysis provided a QA tool for the  

single segment planning technique and we were able to validate the new technique. Furthermore, 

possible future work could be the use of cancer cell lines implemented in the respiratory 

phantom and irradiated with hypofractionated lung regimen to investigate the influence of 
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temporal delivery. Cell survival data from HRT could be used to either derive dedicated 

parameters for hypofractionated LQ model or determine if other cell survival models could be 

superior at describing the cell kill with high a dose per fraction. 
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