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ABSTRACT

Real-Time Classification of Road Conditions

Scott Weaver
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Dylan Shell
Department of Computer Science and Engineering

Common navigation algorithms like A* or D* Lite rely on costs to determine an optimal path.

Costs may incorporate distance, time, or energy consumption; however, they can include anything

that affects travel along a path. Much research is done to improve planning algorithms based on

a given cost, often without stating how to acquire that cost. Therefore, the focus of this research

involves determining a method of accurately obtaining that cost in real-time by classifying envi-

ronmental conditions. Specifically, this research employs K-Nearest Neighbor and Principal Com-

ponent Analysis techniques to classify road conditions in order to determine the most informative

parameters when measuring the cost of driving on those roads. This sensor-based classification ap-

proach may not only allow for improved automatic traction handling and path navigation, but also

may be applied to any robotic system requiring real-time knowledge of environmental conditions.
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NOMENCLATURE

2D Two Dimensional

3D Three Dimensional

KNN K-Nearest Neighbors

PCA Principal Component Analysis

PFA Principal Feature Analysis
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CHAPTER I

INTRODUCTION

Motivating scenario

Imagine driving along a smooth path, which your GPS navigation system expects to be the fastest

route. Recent construction has demolished the asphalt, or a winter storm has left a layer of black

ice. In both cases, you must slow down your car in order to compensate for unexpected road

conditions. If the car can correctly classify the condition of the road (asphalt, gravel, dirt, ice,

etc.), then such conditions may be relayed back to the GPS system to serve as a warning for future

drivers as to the cause of dangerous traffic conditions. Additionally, in the age of driverless cars,

such road classification can improve traction handling. For instance, the robotic car may shift gears

or slow down upon sensing unfavorable conditions like ice or loose gravel.

Objectives

This research explores a method of analyzing and classifying road conditions using only motion

and audio sensor input. The purpose of this research is much broader than just roads; the same

systematic approach of environment classification may be applied to any robotic system requiring

real-time knowledge of environmental conditions.

The specific objectives are enumerated as follows:

1. Determine if audio and motion (vibration, rotation, etc.) sensor input can be used to distin-

guish between road conditions.

2. Determine which features (sensor data) are most useful when classifying road conditions.

3. Determine the accuracy of classification using different features.

Note: Objectives 2 and 3 are entirely dependent on the success of Objective 1.
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Previous work

Much research attention has been paid to on-board video analysis. Video feeds can be used for

real-time applications like obstacle detection, road sign classification, and classification of traffic

conditions [5]. However, neither of these systems reveal anything about the physical condition of

the roads.

It is also common to use inertial sensors on a vehicle to measure its vibration frequency response.

These sensors monitor motion along the x-y-z axes to determine frequency and amplitude of sus-

pension systems. This enables active monitoring of moving objects such as unmanned vehicles [7];

however, it does not draw conclusions as to the road conditions causing specific frequencies.

When compared with existing work, this research is novel for two reasons. First, it employs the use

of non-visual sensors on moving vehicles for real-time classification. Second, the internal sensors

are used to classify external conditions (roads), rather than simply measuring internal responses

(suspension). This can be expanded to other moving object scenarios; for example, the same tech-

nique could be used to distniguish running from walking, assuming there is higher variation in

acceleration while running.

Background

Classification algorithms are commonplace in the field of machine learning. From recognizing

faces [11] and manufactured parts to determining road conditions, items may be classified based

on unique attributes of those items. One common method of classification involves using the

supervised learning technique K-Nearest Neighbors (KNN) to distinguish items based on their

classification. Principal Component Analysis (PCA) and Principal Feature Analysis (PFA) can be

used to reduce the dimensionality of the data by filtering out insignificant information.

This research utilizes the KNN-PCA/PFA approach because of the simplicity and accuracy of

KNN, PCA’s ability to filter out insignificant data, and PFA’s ability to determine significant fea-

tures.
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Feature vectors

When classifying items, a classifier uses a set of identifying features. In the case of road clas-

sification, a feature may be the average acceleration along the z-direction, or the variance of the

rotation about the x-axis. For n features, an n-dimensional feature vector is a point in n-dimensional

space [6]. For example, in three dimensions the feature vector x is formed by features x1, x2, and

x3. This is represented mathematically by equation I.1, which is plotted in figure I.1.

~x =


x1

x2

x3

 (I.1)

The accurately labeled feature vectors comprise the training data set. In the context of road clas-

sification, the training data contains feature vectors labeled with classes like “asphalt” or “gravel”.

Classifications may also be further broken down into speeds (30 mph vs. 60 mph) or any other dis-

tinguishing factor. The test data is the set of unlabeled feature vectors which are classified using

KNN and the corresponding training data.

~x

x1 x2

x3

Fig. I.1.: 3-Dimensional Feature Vector

K-Nearest Neighbors

The K-Nearest Neighbors (KNN) approach is based on the concept that vectors (data points) of the

same class should be closer in n-dimensional feature space, where n is the number of features [9].
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As a result, for a test data point x of unknown class, the k nearest data points in the training data

determine the class of x. In other words, if test data point x is plotted among the training data set,

the most commonly occurring classification of the k nearest training data points determines the

classification of x [13].

For example, figure I.2 shows that when using k = 3, the green dot is classified as a red trian-

gle. However, when k = 5 the green dot is classified as a blue square. Thus, the value of k must be

chosen carefully.

Fig. I.2.: KNN Classification for k=3 and k=5

Covariance matrix

Covariance is a measure of the strength of correlation between two features [12]. A positive cor-

relation (X tends to increase as Y increases) corresponds to a positive covariance. The greater

the correlation between two features means a larger (more non-zero) covariance. If X and Y are

two features, then equation I.2 shows the covariance between X and Y , where N is the number of

features (dimensions) and x̄, ȳ are the respective means.

cov(X ,Y ) =
N

∑
i=1

(xi − x̄)(yi − ȳ)
N

(I.2)

If Y = X , then the covariance is simply the variance of X . In other words, cov(X ,X) = var(X).
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A covariance matrix is a symmetrical matrix which describes the covariance between all features.

The element in the i, j position is the covariance between the ith and jth feature; element i, i de-

scribes the variance of feature i. The main diagonal of the covariance matrix is the set of elements

such that j = i. For example, the main diagonal of the matrix in equation I.3 is shown in red.

Element x11 is the variance of feature 11, element x22 is the variance of feature 22, etc.
x11 x12 x13

x21 x22 x23

x31 x32 x33

 (I.3)

Eigenalues and principal components

A set of eigenvectors and eigenvalues can be extracted from a covariance matrix. Let C be a co-

variance matrix such that C = V DV−1, where D is a diagonal matrix and V forms the basis of a

new orthagonal coordinate system [14]. Then the column vectors of matrix V comprise the set of

eigenvectors, and the main diagonal of matrix D contains the set of corresponding eigenvalues.

Eigenvectors of a covariance matrix are important because they point in the directions that maxi-

mize feature variance. The eigenvalues describe the magnitude of each corresponding eigenvector.

These eigenvector/eigenvalue pairs are the principal components of the covariance matrix.

Figure I.3 depicts the principal components of a two-dimensional data set. The first principal

component (the eigenvector with the largest eigenvalue, shown in blue) points in the direction with

the highest feature variance; the second principal component (in magenta) points in the direction

orthogonal to the first principal component with the second greatest variance.

8



Fig. I.3.: 1st and 2nd Principle Components in 2D Space

Principal Component Analysis

It is common for dependent features to be very highly correlated. This means that only a subset

of the original principal components are necessary to show a distinction between classifications.

Principal Component Analysis (PCA) is a method which disgards the principal components with

the smallest eigenvalues because they explain the least amount of variance.

The reduced coordinate system formed by the most significant principal components can then

be used to classify the simpler data without losing much accuracy. Therefore, PCA is a tech-

nique commonly used to reduce the dimensionality of the classification space prior to performing

KNN [10].

Figure I.4 depicts how a feature vector classified in three dimensional space can be projected

onto a two dimensional plane of best fit. The best fit plane, directed along the first and sec-

ond principal components, is chosen because it explains the maximum amount of variance in two

dimensions. When converting from three dimensions to two, the data along the third principal

component (which is orthogonal to the first two) is disgarded since it is least significant.
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Fig. I.4.: PCA Dimension Reduction from 3D to 2D Space

Principal Feature Analysis

Although PCA can reduce the data by eliminating the least significant principal components, this

doesn’t help identify the importance of individual features. Therefore, Principal Feature Analysis

(PFA) selects the features (rather than principal components) that explain the most amount of

variance. This way, the features can be ranked by their individual contribution to the total variance,

thus giving an indicator of feature significance.
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CHAPTER II

METHODS

Approach overview

The following steps outline the approach used to develop a system that classifies road conditions:

1. Initial data collection

(a) Raw sensor data from motion and audio sensors were collected via an Android device

while driving on paved and unpaved roads. 1

(b) Upon collection, each data point was labeled with its known class. For example, a data

point was labeled with “paved 30” if collected on a paved road while driving 30 mph.

2. Data analysis

(a) Principal Component Analysis (PCA) was applied to the collected data to analyze prin-

cipal component variance.

(b) Principal Feature Analysis (PFA), a modified version of PCA, was applied to the data

to analyze principal feature variance.

(c) KNN was applied to the data before and after PCA and PFA to discover the most

relevant features and principal components for accurate classification.

(d) KNN was applied to each feature to determine classification accuracy of individual

features and sensors.

3. Training data testing

(a) Only the data features determined to be relevant by PFA and single-feature classifica-

tion were collected from the sensors in a modified version of the Android application.

(b) This application was employed to dynamically classify the test data using KNN.

1Data sets were collected in a 2001 Toyota Rav4, using a Samsung Galaxy S6.
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Data collection

When collecting data, the Android application continuously monitors motion and audio sensors.

Ideally, all sensors would be syncronized for simultaneous data measurements. However, due to

practical limitations of the Android device, each sensor polls the environment with a specific fre-

quency (44100 Hz for audio) [2].

Position sensors, like Android’s magnetic field sensor, are avoided since this research aims at

classifying environment data independent of location. Similarly, light and camera sensors are

avoided to reduce dependency on sensor placement. The motion and audio sensors used are listed

in table II.1.

Table II.1

Sensor Units Details
Microphone volts (V ) mapped to a 16

bit range [-32768, 32767]
Collects audio samples for processing using An-
droid’s AudioRecord API [1]

Gyroscope radians per second (rad/s) Measures rate of rotation around each axis (x, y, z)
Accelerometer meters per second (m/s) Measures acceleration along each axis (x, y, z), in-

cluding acceleration due to gravity

The features are measured about a coordinate system relative to the Android device, shown in

figure II.1 [3]. During data collection, the device was placed horizontally, face-up, with the top

facing forward.

Fig. II.1.: Android sensor coordinate system
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Feature representation

Each feature vector is not formed by raw sensor measurements, but instead by the mean or standard

deviation of that data over a time interval. For instance, one feature could be the average accel-

eration along the x-axis over an interval of 1 second. For n features, each vector refers to a point

in n-dimensional feature space. For multiple trials of the same road classification, these vectors

should form a cluster that is distinct from clusters made by other classifications.

Central tendency and statistical dispersion

The mean is the most common measure of central tendency, and is calculated by finding the average

of a set of data readings. The mean, x̄, of N raw data points, xi, is calculated using equation II.1.

x̄ =
1
N

N

∑
i=1

xi (II.1)

Statistical dispersion describes the spread of data. Standard deviation is a common measure of dis-

persion, which explains the average degree to which the data deviates from the mean [4]. Standard

deviation is calculated using equation II.2.

σ =

√
1
N

N

∑
i=1

(xi − x̄)2 (II.2)

Standard deviation, σ , is utilized rather than variance, σ2, because it preserves the same units as

the original data measurements.

Data normalization

Since each Android sensor collects data in different units, some features hold significantly more

weight over others. For example, there is more spread over audio data, with values on the order of

104, than there is over the spread of any other sensor’s values, on the order of 100 or 101.

By normalizing all features from 0 to 1, each feature has equal contribution to the overal covari-

ance [8]. Then, significant sensors with inherently smaller units will not appear to be insignificant.
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Equation II.3 shows how every measurement, xi, in each feature is scaled between 0 and 1 by

using the minimum and maximum values of that feature.

normalize(xi) =
xi − xmin

xmax − xmin
(II.3)

Data analysis

After the collection, calculation, and normalization of all features, the data set was split at random;

one half of the data set became the training data, and the other half became the test data. Each data

set (training and test) comprised a few dozen feature vectors, where each feature is either the mean

or standard deviation of thousands of raw measurements.

Base classification

KNN was applied to classify each test data vector with respect to the training data set. The per-

centage of correctly predicted test data classifications established the base classification accuracy

for the classifer. For example, if there were 100 test data points, and 95 of their classifications were

predicted correctly, then the test data set had a 95% classification accuracy.

The k-value used in all KNN classifications depended on the data being classified. The k-value

(number of neighbors) was chosen to be the lowest possible value that maximized accuracy. For

instance, if the classification accuracy was highest at 95% using k = 3, 4, or 5 neighbors, then

KNN was always performed using k = 3 for that data set.

Finding feature significance based upon both the variance and classification accuracy can paint

a more complete picture as to which features are important when classifying road conditions.

Classification accuracy by variance

The base classification was performed using the complete data, with all n features and principal

components (n = 14 in this research, for the mean and standard deviation of 7 different sensor
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measurements). PCA was then conducted to determine how much variance is explained by each

individual principal component. For instance, component 1 explains the most variance, and com-

ponent 14 explains the least. Similarly, PFA was conducted to determine each feature’s contribu-

tion to the total variance.

Classification was then repeated using KNN, each time removing the principal component that

explained the least variance, until only the most significant principal component remained. In

other words, classification accuracy first was calculated using all 14 principal components, then

using only the 13, 12, 11, ... , 2, 1 principal component(s) with the most variance.

The process of iterative KNN was also conducted using PFA, thus determining the correlation

between classification accuracy and feature (rather than principal component) variance.

Classification accuracy breakdown by feature

Although ideally the classification accuracy contributed by each feature should correspond to the

amount of variance it explains, this is not always the case. A feature could explain a lot of variance

among the overall test data, but could appear to be insignifcant when it is the sole feature used for

classification. Therefore, it is important to consider the classification accuracy using one feature at

a time.

Similarly, it is important to consider the classification accuracy contributed by entire sensors. For

example, let’s assume the classifier only has access to the accelerometer; then how accurate can

the training data predict the test data using only features collected by the accelerometer? What

about only using the gyroscope, or microphone?

For the above reasons, KNN was repeated for each individual feature. Then, KNN was performed

for all features of each sensor.
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CHAPTER III

RESULTS

The first observation is that motion and audio sensor input can distinctly differentiate between

paved (asphalt, concrete) and unpaved (dirt, gravel) roads. In fact, the complete set of data can

classify road conditions with 100% accuracy. The same sensors can also accurately classify veloc-

ities (30 mph vs. 60 mph), but with different significant features.

Classification accuracy by variance

The graph in figure III.1a illustrates the distribution of variance among each of the 14 features and

principal components. The first principal component is shown to explain 60% of the variance in

the entire data set; only the first 4 principal components are required to explain almost 100% of the

cumulative variance.

Since the principal components maximize variance, it makes sense that the principal components

always explain more variance than do the corresponding number of features. Therefore, it is sur-

prising how even though principal components from PCA always explain more variance, features

from PFA always predict higher classification accuracy.

The graph in figure III.1b also depicts how only 3 to 4 features or principal components with the

most variance are necessary to obtain near 100% classification. Classifying velocities produced

similar results, not shown here.
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(a) Cumulative Variance (b) Classification Accuracy

Fig. III.1.: Classifying Road Conditions: Paved vs Unpaved (at 30 mph)

Classification accuracy breakdown by feature

When classifying road conditions one feature at a time, shown in figure III.2a, multiple observa-

tions become apparent. First of all, higher feature variance usually (but not always) corresponds

to higher single-feature accuracy. In other words, the more variance a feature explains, the more

likely that feature is to accurately classify road conditions.

The individual classification of each feature also demonstrates how the average of each feature

is more useful than the standard deviation, without exception. Additionally, measurements about

the x- and y-axes are more useful than those about the z-axis.
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(a) Classification Accuracy by Feature (b) Classification Accuracy by Sensor

Fig. III.2.: Classifying Road Conditions: Paved vs Unpaved (at 30 mph)
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CHAPTER IV

CONCLUSION

The results demonstrate conclusive findings for each of the three research objectives:

1. Road conditions (and velocities) can be classified using only motion and audio sensor input.

2. The average acceleration and rotation about the x- and y-axes are most significant when

accurately classifiying road conditions.

3. Road conditions can be classified at near 100% accuracy. Only 3 to 4 features with high

variance are necessary for near 100% classification accuracy.

Real-time classification and future work

Though the classification analysis determined that road conditions can be classified, it is important

to consider whether or not this method can be applied to a real-time program. Therefore, the

classification of road conditions were predicted in real-time by an Android application. Initial tests

proved to be successful; however, additional work is necessary to analyze the accuracy in which

real-time testing predicts classification.
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