

DATA SERVICES FOR INTERNET OF THINGS

An Undergraduate Research Scholars Thesis

by

DAVID LACROIX

Submitted to the Undergraduate Research Scholars program

Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by

Research Advisor: Dr. Dilma Da Silva

May 2016

Major: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79653455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGEMENT .. 2

NOMENCLATURE ... 3

SECTION

 I INTRODUCTION .. 4

 Overview ... 4

 Cloud Computing .. 4

 Internet of Things (IoT) .. 8

 Bolt: A Data-Centric IoT Approach ... 12

 GigaSight .. 14

 Comparing IoT Examples ... 16

 Our Research ... 17

 II METHODS ... 20

 Benchmarking ... 20

 Infrastructure ... 21

 Experiment Specifications .. 23

 III RESULTS ... 26

 Overview ... 26

 Latency for Insertion Size ... 27

 Latency for Query Size ... 28

 Latency for Rate of Insertion .. 29

 Latency for Rate of Query .. 30

 Analysis... 31

 IV CONCLUSION ... 34

 Background ... 34

 Experiments .. 34

 Results ... 34

 Closing Remarks ... 35

REFERENCES ... 36

1

ABSTRACT

Data Services for Internet of Things

David LaCroix

Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Dilma Da Silva

Department of Computer Science and Engineering

The factors involved in choosing between storing data repositories at locally-hosted

infrastructures or at (remote) public clouds are well understood for many enterprise application

domains. The proliferation of Internet-of-things (IoT) devices (including wearables) is now

introducing a new class of applications, for which neither the research community nor the

industry players offer guidelines on how to best handle the data. The goal of this research project

is to characterize the most effective data architecture in terms of locally or remote hosted for a

given IoT workload. Through this research, developers will become aware of various issues

dealing with the designation of a host for a given data repository including security, efficiency,

and accessibility concerns.

2

 ACKNOWLEDGMENT

I want to thank Dr. Da Silva for all of the time and effort she has committed to me throughout

this endeavor. I have truly enjoyed working with her from the beginning.

3

NOMENCLATURE

API Application Programming Interface

AWS Amazon Web Services

B Byte

CAAPI Common Access API

DB Database

DNW Digital Neighborhood Watch

EDA Energy Data Analytics

GDP Global Data Plane

HUD Heads up Display

IoT Internet of Things

MTU Maximum Transmission Unit

OS Operating System

SaaS Software as a Service

VM Virtual Machine

4

SECTION I

INTRODUCTION

Overview

Before our problem can be discussed in great detail, there are two primary concepts that must be

well understood. These concepts are cloud computing and the internet of things (IoT). Both will

be explored regarding the technology itself, the current state of the technology, and relevant

concerns about their continued development. Following those subsections are two practical

examples which combine the cloud and IoT; our research will be to further understand and

optimize relations involved in situations such as those. Finally, we will discuss the specifics of

our research topic.

Cloud Computing

The cloud (or cloud computing) refers to both the hardware and software components that

comprise a given cloud service offering. This service can be a range of anything from storing

data to program execution or some other computational utility provided by the organization. The

“cloud” aspect reveals that the service is provided as part of a computing platform designed to

offer the service with certain characteristics, most often the computing infrastructure’s ability to

grow and shrink the resources being allocated to the service to meet current demand. This service

can be offered in a public or private model. A public cloud is a server that is available to anyone

in a pay-as-you-go manner, and the service it provides is termed utility computing. A private

cloud is one that is used only internally or at the discretion of a company or organization, and is

5

carried out on a computing platform owned by the organization. These two types of cloud

services will be further investigated as it applies to storing sensor data generated by the IoT.

History of the Cloud

In the last eight years, the computing industry has seen cloud services rise from an interesting

idea to a widely adopted approach to build systems where some (if not all) of the computing and

data services are hosted on a public datacenter infrastructure, on a pay-as-you-go basis. This new

model frees application owners from having to manage their own hardware infrastructure and

achieves cost benefits as the cloud provider leverages economy of scale to achieve

unprecedented efficiency in usage of computing resources. The computer science research

community has dedicated a lot of attention to attacking many of the new problems introduced by

the cloud paradigm [1], with a large body of results being published at top conferences (such as

SOSP1, OSDI2, USENIX ATC3) and at new cloud conferences such as ACM SOCC4 and IEEE

IC2E5.

Cloud Evolution

There are three new aspects of cloud computing that have recently revolutionized the field. First,

there are essentially infinite computing resources available on demand which can handle

unexpected load surges [1]. Second, users of the cloud no longer have to make an upfront

commitment to the resources they will need which allows the user to expand or retract their

1 ACM Symposium on Operating Systems Principles, http://sosp.org
2 USENIX Symposium on Operating Systems Design and Implementation,

www.usenix.org/conferences
3 USENIX Annual Technical Conferences, www.usenix.org/conference/atc15
4 ACM Symposium on Cloud Computing, sites.google.com/site/acm2015socc/
5 IEEE International Conference on Cloud Engineering, conferences.computer.org/IC2E

6

services as needed [1]. Finally, resources can be utilized through an hourly or daily rate;

therefore, users can release resources based on their current needs and conserve costs [1]. These

benefits have been made possible through building datacenters in cost effective areas with

respect to power, bandwidth, operations, software, and hardware availability.

Current Range of Cloud Services

Different levels of utility computing abstraction are offered to users which have their own

advantages and disadvantages. For example at the lower end of abstraction, Amazon’s EC2

instance allows users flexibility of choice in nearly every aspect of the environment, but this

makes it nearly impossible to implement automatic scaling and failover due to the difficulty with

replicating the given environment in the time scale needed[1]. At the other end of the spectrum is

Google’s AppEngine which enforces a specific structure used on traditional web applications; it

requires the user to follow a specific format but offers efficient scaling and high-availability [1].

For our project we have chosen to use Amazon’s cloud services due to the high flexibility of the

service.

Cloud vs Local Storage

For most enterprise and scientific computing applications, the difficulty in whether to store the

data locally or at the cloud is in determining several factors relating to the application-specific

information, for example if the data is personally identifying, health related, confidential, or

otherwise privileged. In conjunction with these facets, system developers will also look at how

pervasively the data will be accessed.

7

Costs and Benefits of the Cloud

Cloud computing is becoming a much more prevalent technology, but it comes with its own set

of concerns especially regarding security. While the cloud offers many benefits such as access

from anywhere, seemingly infinite storage, no upfront commitment to specific capacities in

terms of CPU, storage, or networking, and the ability to pay-as-you-go [1], it can also put data at

a higher risk being that it is stored within the same hardware as all other applications. While this

makes it a larger target for attackers, there are security measures that can be put into place. One

such aspect is that the cloud provider is often better positioned to achieve higher levels of

security in their datacenters than most customers are able to do on their own. They are able to

achieve this through the ability to hire experts and invest in overall procedures and tools that may

be too expensive for individual companies.

Obstacles to Continuing Cloud Growth

As discussed by Armbrust et al in [1], the top 10 most relevant obstacles and possible solutions

to the future evolution of the cloud are as follows. First, the need for continuous availability can

be solved by a user utilizing multiple cloud providers. Second, it can be difficult to transfer data

between separate cloud providers (aka data lock-in) and can be solved by standardizing cloud

APIs between providers. Third, clouds need to keep data secure (such as through encryption,

VLANs, and firewalls) and have the ability to be audited. Fourth, there is a significant risk of

data bottlenecks during transfers, this can actually be circumvented by shipping the data on a

disk; using this method is more efficient in both time and cost usage. One such example of this

service is offered by Amazon through a service called Snowball. Fifth, performance needs to be

steady and predictable; to fix this the provider should increase support for Virtual Machines

8

(VMs) which are operating systems that run on a host, utilize flash memory which can be erased

electronically and is both read only and reprogrammable, and gang schedule VMs to allow them

to run concurrently. Sixth, storage needs to be scalable and is presently available. Seventh,

providers will need to be able to easily debug issues in a large distributed system and need a

debugger that interacts with the distributed VMs. Eighth, the service should be able to scale

quickly which will require an auto-scaler. Ninth, a reputation fate sharing service should be

offered to ensure that if a given component fails the entire system will stop. Lastly, providers

should offer a pay-for-use software licenses. There has been a lot of progress in pursuing these

ten challenges, and there is also disagreement on the extent of their importance; however, they

continue to be a good representation of the challenges still facing cloud computing.

Internet of Things (IoT)

The Internet of Things is a concept of having people, animals, or objects monitored through

various sensors (devices that record or measure a given property of their environment) and

storing this data stream in repositories that can be analyzed to make decisions. These decisions

can be realized through an actuator which is a device that can perform a given operation relative

to a given input. IoT devices are now part of a new application domain, and the data in such

applications exhibit different characteristics from traditional enterprise and scientific applications

toward manufacturing plants and critical physical infrastructures like power grids, in terms of

how the data is generated, consumed, and analyzed.

9

Connected Devices Forecast

Currently the number of connected devices which could be utilized in an IoT solution is growing

very rapidly. According to Gartner [2], in 2016 the number of connected devices will grow to 6.4

billion, an increase of around 30 percent from 2015. On average this increase equates to about

5.5 million devices getting connected every day of 2016 [2]. With the addition of all of these

devices comes a major opportunity for IoT products and solutions. According to McKinsey

Global Institute [3], the IoT has the potential to make an economic impact of 3.9 trillion to 11.1

trillion dollars per year by 2025.

IoT Background

There are many challenges that need to be addressed to realize the full potential of the IoT

vision. In this work, we focus on the data services required by an IoT service. The data

repository can be realized through databases in locally-hosted storage mediums or accessed

remotely in the cloud. IoT can be anything from the multitude of Fitbit watches to a network of

cameras to a factory with thousands of sensors monitoring operations. This topic is becoming

prevalent with all of the smart devices being developed such as wearables, smart phones, and the

like. All of the devices are capable of collecting specific information and yielding useful

feedback from the data. A couple of examples could be tracking the average number of steps

taken in a given time period or using recognition software to monitor a babysitter and

automatically notify the parent of any suspicious activity.

10

IoT Evolution

IoT is currently experiencing great growth with the explosion of smart devices that all connect to

the internet and to each other while constantly sharing information. This change has brought up

some significant issues in the field including privacy, security, scalability, latency, bandwidth,

availability and durability control [4]. One suggested solution deals with the manipulation of this

data in a much more efficient and secure manner; it focuses on the transport, replication,

preservation, and integrity of streams of data while enabling transparent optimization for locality

and quality of service [4].

Current State of IoT

The development of IoT applications is an emerging field and there are no guidelines on best

practices on how to build such systems to achieve efficient usage of resources. Existing

applications tend to adopt the cloud for data storage due to the simplicity of the approach,

without knowing if such an approach will be able to meet application requirements as the field

evolves and more sophisticated data manipulation is needed. The need to access remote

databases, depending on how the data is generated and accessed, can introduce delays in

processing that are unacceptable to users [4].

Handling IoT Concerns

Regarding privacy and security, the use of many sensors to constantly collect and store

information creates an environment of high risk, and development should exercise extreme

caution before proceeding [4]. Scalability is another issue that will need to be dealt with since

predicted estimates range from 26 – 50 billion devices being connected to the cloud by 2020 and

11

this amount of data could overwhelm bandwidth requirements if it were not compressed in some

way [4]. Since the cloud is actually on the edge of the network and not at the center as some

believe, there may be extreme issues even with simple operations using the current network to

handle the future load. With the advent of so many smart devices using IoT solutions, the

upstream load will become saturated; this is due to the fact that the current system is designed to

handle higher downstream loads than upstream. Being that these sensors will control physical

actions within the real world, quality of service will become a major issue that cannot be ignored.

Lastly, there is the issue of both reliably destroying temporary information and reliably storing

long-term data in light of the fact that the cloud’s hardware is out of the control of the user [4].

IoT Solutions

Currently the market has seen massive adoption of both cloud usage and the appearance of

numerous smart devices, and many current IoT solutions involve connecting these devices to the

cloud. These IoT solutions also tend to develop their own APIs and separate gateways to handle

the data. Many IoT solutions fall into two categories, ambient data collection or real time

applications with low latency requirements [4]. Ambient data collection may come from sensors

placed in buildings, in cities, on humans, and so forth collecting continuous data that may also

contain highly sensitive or confidential information. Regarding real time applications, they tend

to be reactive to environment stimulus for human consumption, robotic processing, or some

other monitor and requiring low latency updates.

12

The Quest for a Universal IoT Solution

A data-centric proposal has been made referred to as the Global Data Plane (GDP) which is

focused on “the distribution, preservation, and protection of information” [4]. There are several

significant ideas behind using this approach. Regarding security, it uses a combination of single

writer logs and public/private keys to ensure that only the given sensor can record information to

the log and that only authentic observers can access the data. To successfully utilize publish and

subscription updates to an observer, the solution uses a multicast tree which has been shown to

work with this kind of structure [4]. Lastly, it is advised to use a Common Access API (CAAPI)

to normalize access to the structure. An alternative to a data-centric approach is to organize a

system around devices. Such device-centric model would focus on individual device capabilities

and how they communicate to each other, aiming at a common architecture to incorporate

devices into an IoT solution. A discussion of existing efforts in data-centric versus device-centric

solutions can be found at [5].

Bolt: A Data-Centric IoT Approach

Bolt [6] is a data management system designed to handle the emerging class of data sensing

applications that target a home environment, but in addition it can be applied to various other

domains such as factories, offices, and streets. Bolt has four primary goals; first, that time series

data will be supported and that data can be assigned arbitrary tags. Second, the system should

support sharing across multiple homes due to the demand of multiple applications needing such

functionality. Third, Bolt should allow the flexibility for application specific storage locations

being that each has its own specifications. Finally, the system should supply adequate security

against potential breaches of security [6].

13

Bolt’s Methodology

Bolt first classifies data by application then by time-tag-value records. It was designed to better

utilize even untrusted cloud providers and unsecure networks in a more secure fashion; this is

facilitated through encryption at the client before it is sent to the cloud. The transmission process

works by first grouping records into chunks that are then compressed and encrypted. The

retrieval process works in much the same way by retrieving multiple records grouped as a chunk

at once; this is generally more efficient being that queries often involve several, consecutive

records.

Application of Bolt

The system was tested using three applications. One application was PreHeat which uses

occupational patterns to more efficiently heat the home. Another application is Digital

Neighborhood Watch (DNW), a video sharing service; it can detect objects within the video and

supports queries across the network of homes to track suspicious activity. The third application is

Energy Data Analytics (EDA) which gathers specific energy consumption information within the

home; this is accomplished through sensors directly measuring each appliance’s usage directly

from the outlet. Using all of the information that this system produces, a user can identify which

appliances have the highest consumption and allow them to tailor their usage to compensate for

unnecessary expenditure.

Bolt Security

Security is maintained through several factors. To ensure confidentiality through the network and

cloud, the data is encrypted before being sent out and is decrypted only once it is retrieved. Write

14

permission is append-only, and the information is encrypted using a private key; a hash of the

data is also used to ensure that the chunk has not been modified enroute. Read permissions are

granted and when revoked will disallow access to any new data generated.

GigaSight

GigaSight [7] is a system designed to collect continuously streaming video from the use of

products such as Google Glass which is a product composed of a glasses band, camera, and HUD

that is connected to the internet. It will represent a massive crowd sourced collection of digital

video from the world. GigaSight aims to be scalable due to the mass volume that is anticipated in

the upcoming future by decentralizing the collection servers. This decentralization is achieved

through cloudlets which are areas of the cloud dedicated solely to processing a given user’s data

that will run virtual machines (VMs) on one or more cores based on demand and availability [7].

The project also anticipates the need for automated editing (or denaturing) to ensure privacy to

the user. Once stored this video can be queried regarding its content and data tags.

Profitability of GigaSight

As an incentive model, users will be offered compensation for sharing their video streams. This

information is highly valuable especially to marketers. Each individual stream can help

marketers determine preferences and help them to tailor their ads to better influence their

customer base.

15

Privacy of GigaSight

Denaturing is an important topic due to high confidentiality prevalent with this technology.

Hiding all information generated by the stream would insure complete privacy but would have

no informational value. Whereas showing all information insures massive value but offers no

privacy. There is an important middle ground that the system will target in order to balance these

two demands. It is also important that the denaturing process be automated due to the unrealistic

task of having the user edit a constant video stream. This automation process will need to be

effective enough to get the user base to trust the system to eliminate their sensitive data. As a

default, the user can specify if they want their stream to be obscure by default or not altered, but

the system can also edit out faces, objects, and scenes. It would also be possible to use a marker

such as a QR code to alert the system that recording is unwelcome. While this project recognizes

that it cannot fully cover all of the implications and demands of a viable denaturing algorithm it

chooses to primarily explore the architectural and performance demands of the process.

Logistics of Uploading Data

Being that Heads up Displays (HUDs) are the proposed target for recording the video, the project

has utilized a connection between smart phones and the HUD. This is done to limit the size of

the device and its power consumption. The smart phone is used as a proxy to buffer the video

until the phone can establish a Wi-Fi link and begin sending the data to a cloudlet. Although it

would be preferable to denature the video on the user’s device before sending it onto the

network, the battery consumption would prove to be extremely cumbersome and is not a realistic

solution in relation to current battery technology; therefore, the data will be denatured on the VM

assigned to the user once the data reaches the cloudlet.

16

Comparing IoT Examples

To better understand the three IoT examples (GDP, Bolt, and GigaSight), we will summarize

their differences. Regarding the generic IoT solution, Global Data Plane, it is designed to be a

framework for establishing a generic, data-centric model for any given IoT solution. GDP

describes a method to ensure greater security through single writer logs and public key

cryptography, and it suggests using a CAAPI to universalize access methods for the system.

Also, another option for a generic solution is the use of a device-centric model as opposed to a

data-centric model.

Bolt

The Bolt project is designed to be a manager of IoT solutions within a home through an

integrated interface; however, it can also be adapted for various environments other than a home.

Bolt is designed to be flexible relative to the individual solutions it manages, so it allows each

solution to specify the specific location of its database and, where applicable, allows sharing

across multiple homes. Lastly, to better secure the data, Bolt encrypts the records locally before

sending them to the given database.

GigaSight

As opposed to the generic solution of GDP or the IoT solution manager of Bolt, GigaSight is a

specific example of an IoT solution. It proposes a method for managing and analyzing data

generated for wearable camera devices such as Google Glass. Being that data generated from

such a device is highly personal, GigaSight proposes that these streams of data be automatically

denatured; this process can take in several factors to determine what should be obscured (faces,

17

license plates, QR codes requesting anonymity) along with the user’s preferences toward more or

less privacy. GigaSight also utilizes a user’s smartphone as a buffer for storing and uploading

data; the denaturing process would take place on a cloudlet specific to that user due to undue

battery and computational demands that would be placed on the user’s smartphone.

Storage and Access Concerns

The three examples mentioned are affected by a lack of comparison data between possible

storage locations; specifically, the solutions do not analyze the various factors involved with

selecting the location of their server (local or public cloud). Even though Bolt allows each

application to select its database, it must still facilitate things such as sharing between homes

which will require integration through some type of sever whether local or public cloud, and

neither GDP nor GigaSight address this central issue. This lack of knowledge could result in

various unknown inefficiencies such as increased latency, cost, security risks, etc. Through this

research, solutions such as these can make a more informed decision on the storage and access of

their data.

Our Research

Our research focuses on the location that should be used to collect, store, and analyze IoT data.

We intend to test various artificial data generators that will approximate real world scenarios in

order to better explore the problem space. To simulate the three scenarios (wearable device,

video camera, and factory sensor network), we will vary the amount of data generated by a given

“sensor” and vary the number of concurrent operations to reflect both sensor type and number of

sensors respectively. We will separately test using a public cloud in the form of Amazon’s EC2

18

service and a local machine to better define their characteristics. We will consider variables such

as cost, latency, security, and pervasive access in our analysis.

Local vs Cloud

For cost, we consider the expenses of buying a device versus the pay-as-you-go service while

also considering the ability to conserve expenditures with the public cloud, since it can be dialed

up or down to meet demand. Considering only cost, the benefits of the cloud to more precisely

meet demand nearly always out-weight the costs of maintaining a local machine. Regarding

latency, we time both insertion and query events while also analyzing concurrent operations

taking into consideration that larger machines may be able to compute operations at a faster rate

and handle more requests at once. Both security and pervasive access depend more strictly on

non-testable factors. Security concerns will always be lower on a local machine being that the

user has total control of the hardware with respect to other users and physical access. When

utilizing a public cloud the user’s data will be placed in proximity to other applications, and there

is also the issue of persistent storage where the provider may not adequately delete or dispose of

faulty drives.

Data Scenarios

To best cover various types of data generation we look at three primary scenarios. First, we

consider the wearable category such as a Fitbit monitor; this monitor has a low number of

sensors and small, intermittent data output. Second, we consider a video stream from a camera;

this represents a single sensor but has large, continuous data output. Finally, we consider a

factory with hundreds or thousands of sensors and actuators; here we have a large number of

19

sensors with continuous or intermittent data output and actuators responding relatively to the

sensor data. Each of these three scenarios helps us to test the impacts of a variable number of

sensors along with a variable magnitude of data generation. While not placed into a distinct

testing category, the range of tests simulate the various combinations of the specified

characteristics from each sensor group.

Summary

Using artificial data generators we will simulate data similar to that generated in three IoT

scenarios (wearables, video cameras, and a factory sensor network). Each case will be tested

using two separate storage mechanisms (local and cloud) running InfluxDB for the database

software. The test cases will primarily observe latency while varying the magnitude of data per

operation and number of concurrent operations to help propose the best storage solution for a

given IoT workload.

20

SECTION II

METHODS

Benchmarking Objectives

Our primary goals regarding the benchmark of our systems are to ensure that our results cover a

broad range of data scenarios, provide statistically valid results, and provide fully transparent

results to our audience. To help us achieve this last goal and so that we can avoid such pitfalls

from the early phases in our work, we have investigated some common benchmarking fallacies

and mistakes that Gernot Heiser [8] has stated.

Selective Benchmarking

This fallacy refers to selecting only a small subset of data scenarios to represent the full set,

especially when it is done to further support the author’s position. An example of this could have

occurred in our research if we had chosen to test our various storage solutions using only a

subset of our three data scenarios (wearables, cameras, factory sensors); a data subset, such as

wearables only, would not have covered the full range of data throughput scenarios and could

have mislead the reader into using an inappropriate storage solution. We feel that our three

scenarios will help us clearly represent the full range of scenarios needed to test each of our

solutions. Time constraints in our work may limit the extent to which data scenario is explored,

and we will address such limitations by carefully linking the applicability of our conclusions to

the workloads that we explored in sufficient detail.

21

Comparing Percentage Values

This fallacy can be exemplified through a comparison of changes in the percentage of overhead

found in a system. For example, if the original overhead is 10% and with the new system the

overhead is 15%, the change in overhead was not 5%. This is really an increase of 50% to the

original. This type of fallacy can occur anytime one is comparing percentage values. It is a

simple mistake that happens more often than one would expect. Our method for verifying our

conclusions will inspect for such mistakes.

Dataset Choice (Calibration vs Validation)

Many times a given system model must be calibrated to specific operating conditions through the

use of a calibration workload. The model is then tested using an evaluation workload to

determine accuracy. In order to show the true accuracy of the model, the workloads must be

different and completely disjoint. This must be done to discover the predictive power of the

model rather than simply showing that the model fits the workload it was designed for. Our

system model does not require workload calibration, as we will set a priori the workload

scenarios that we experiment with. Our work investigates the behavior of IoT data services

through synthetic workloads. It is out of our scope to calibrate or validate the workload

generator.

Infrastructure

We utilize InfluxDB [9] as our database to store the entries generated by our “sensors” which are

simulated by our data generator.

22

InfluxDB

InfluxDB [9] is a time series database that can perform various analytics over the stored data. It

has no external dependencies, is written in the Go language, and supports HTTP(S) API insertion

and queries. It was specifically designed to handle sensor data and real-time analytics. Each data

point contains a measurement designation, a set of tags, and a set of fields. Each database can

contain multiple measurements which in our case could be things such as “wearable”, “camera”,

and “factory”. The tags are key-value pairs that are indexed for efficient queries. The fields are

also key-value pairs and are designed to store the specific, relevant information for a given point.

The database can also maintain redundant copies of the data on multiple servers known as

clustering which as a future work could be tested as a hybrid system.

General Setup

The database will be stored relative to our two main environments on the cloud and locally. The

test software is executed within the local system and communicates to either the local database

or the cloud database, as specified. All of our testing software is coded in Java and is built and

executed using Maven [10].

AWS Instance (The Cloud)

For the cloud, we are using an Ubuntu AWS instance. We have installed InfluxDB which will be

the database holding all of our time series data points and where we can insert and query

information. We communicate with the instance via TCP connection using a java plugin supplied

by InfluxDB.

23

Local Ubuntu Server

We utilize an Ubuntu machine for our local tests. It uses Linux 3.19.0, has 8 cores (Intel i7-4790

3.6GHz), and has 16GB of RAM. The file system is ext4. We will use the same database

software (InfluxDB) as on AWS. We run all of the “client” code from this machine which mean

that this is where all of the insertions and queries originate from. In addition, all of the timing

information was collected on this system.

Experiment Specifications

We will examine four experiments of behavior with the InfluxDB database (DB) on both the

local and cloud locations (Insertion Size Latency, Query Size Latency, Insertion Rate Latency,

and Query Rate Latency). For each experiment, we run a series of repetitive tests and average the

results. We also record the maximum and minimum values of these tests to better display the

variance. Latency is measured in milliseconds (ms) and data sizes are measured in bytes (B).

Insertion Size Latency

For this experiment, we will simulate a range of sensor data that needs to be inserted into the DB.

We will compare the times of insertion with respect to the cloud and local environments. We run

a series of four tests which each calculate the average latency of 1000 insertions for a given data

size, and the results of the four tests is averaged to give a final value. We will also report the

maximum and minimum of these four tests. The data size ranges from 1B to 4,194,304B and

increases by powers of two.

24

Query Size Latency

Here, we closely mirror the Insertion Size experiment except for querying instead of inserting.

This simulates various possibilities for the magnitude of data being requested at a given time.

Using the same range of data sizes, we compare the times for querying the local and cloud DB’s.

We also run a series of four tests which calculate the average latency of 1000 queries, and the

final value is the resulting average of the four tests. The maximum and minimum tests are

reported as well.

Insertion Rate Latency

Now that the operations of varied data sizes have been tested to simulate a range of sensor types,

we will test the concurrent operations needed by a network of sensors. We will simulate various

numbers of sensors reporting to the database through concurrent operations occurring on a

number of threads. In this case, we can view a thread as a simulated sensor. Here we chose a

median value for the data size (1,024B), and each thread will perform 20 insertions during a test.

The number of threads we test range from 1 to 128 and increase by powers of two. As with

before, the cloud and local times will be compared and both the maximum and minimum values

of each test are recorded.

Query Rate Latency

This experiment is very similar to the Insertion Rate experiment. It simply uses the query

operation instead of insertion. This simulates multiple users or applications querying the

database simultaneously. It uses the same range of threads, the same number of queries per

25

thread, and the same data size. The cloud and local performance times will be compared and the

maximum and minimum test values will also be reported.

26

SECTION III

RESULTS

Overview

We will now report on the calculated values of the four experiments previously defined. Each set

of data is represented using a graph of latency with regard to either the data size or the number of

threads. On each graph the cloud is represented through a blue line with circles for markers and

the local machine is represented through a green line with squares for markers. While not always

evident on every graph, there are bars indicating the maximum and minimum values of the given

tests for a specific data point; the closer these bars are to the data point, the smaller the variance

of the tests. We will first present the collected data alongside a very high level depiction of the

information. Then, we will express our analysis of the results.

27

Latency for Insertion Size

For this set of experiments, we tested the response time of inserting various amounts of data to

the cloud and local DB. Below is the graph of our results.

Observations

We noticed that for values under 1,024B, the latency remains relatively constant, ~38ms for the

local DB and ~66ms for the cloud DB. After this, it raises to another fairly constant level for

both local (~73ms) and the cloud (~130ms). There was a drop of the local latency at 32,768B

when the value decreased to 40ms; this was tested and retested multiple times along with the

values on both sides of the irregularity. While we ran short on time, further investigation could

28

be pursued by collecting additional information about the state of the database host and the

network. After 262,144B, the latency begins to increase regularly.

Latency for Query Size

For this set of experiments, we tested the response time of querying various sizes of data from

the cloud and local DB. Below is the graph of our results.

Observations

Both the local (2ms) and cloud (65ms) latencies appeared to remain constant up to 8,192B, and

they begin to rise after this point. We recognize the oddity for the lower byte ranges to remain

constant even while increasing the amount of data being sent. This is due to the data sizes being

29

small enough to fit in a single TCP MTU (maximum transmission unit). For the IPv4 network

protocol, it is common to have MTUs of 64 or 128 KBs, therefore indicating that all the payload

in the experiment can be sent in a single packet. Given these results, future work should use

different data size values for evaluating query latency.

Latency for Rate of Insertion

For this set of experiments, we tested the response time of inserting a constant amount of data

into the cloud and local DB while varying the number of concurrent insertions through the use of

threading (each performing 20 insertions). Below is the graph of our results.

30

Observations

The latency of inserting into the cloud remains relatively constant while increasing the number of

concurrent operations, and the latency for the local DB increases regularly with the addition of

threads.

Latency for Rate of Queries

For this set of experiments, we tested the response time of querying a constant amount of data

from the cloud and local DB while varying the number of concurrent queries through the use of

threading. Below is the graph of our results.

31

Observations

Here both the cloud and local DB increase at a regular rate, and the cloud remains at a higher

latency for all values (approximately double the value than local). The local also exhibits a

“knee” where the values first descend as the number of threads increase from 1 to 4, and then it

begins to rise. We believe that the improvement between 1 and 4 threads for the local scenario is

a result of employing a 4-socket machine; additional investigation would be necessary to

demonstrate this is the case.

Analysis

For the majority of the experiments, latency heavily favors a local machine as one would predict;

however, regarding the case of concurrent insertion operations the cloud may favor larger

networks of sensors. We must also remember that this is only one characteristic which must be

taken into consideration when selecting a storage medium; cost, security, and pervasive access

must also be analyzed.

Latency for Insertion Size

We see that the performance of both the cloud and local DB closely mirror the same behavior.

For sizes less than 65,536B the cloud took roughly double the amount of time to insert locally.

For the cloud, sizes larger than this seem to increase in latency much faster than the local

machine. For applications that require low latency operations, such as real time system, a local

machine may be preferable. All of the tests for this experiment were very similar to the reported

average and is the reason that the max/min bars are extremely close to their data points. One

possible reason we observe a constant latency for data sizes 1B to 512B is that the database

32

stores records in generic sizes which may be equal to or larger than 512B. The same may be true

for the next level of relatively constant data size between 1024B and 262,144B.

Latency for Query Size

Here we also see a constant latency for a wide range of data sizes (1B – 8,192B). While it seems

odd that it is such a wide range of values which remain constant, as mentioned before, the

TCP/IP MTU size imposes similar transmission time for data sizes smaller than the MTU. Also

for this graph, the max and min bars are nearly non-existent due to the low variability of the

results.

Latency for Rate of Insertion

Unlike the other experiments, these results favor the cloud for larger numbers of concurrent

operations. This is likely due to the fact that our local machine was unable to handle the

magnitude of requests being made at once. Something that should also be noted is the fact that

our test software was running locally and may have inhibited the performance of the local

results. The experimental method should be improved to add one more machine to the setup,

dedicated exclusively to run the client code (i.e., the threads issuing insertion and query

requests). New experiments varying the timing of the concurrent requests could also reveal

additional factors impacting the results. Even while considering this, the cloud in general may be

a more apt environment to handle increased requests and faster internal processing where a less

powerful local machine is offered.

33

Latency for Rate of Queries

Here the local machine appears to operate more efficiently than the cloud. Both results increase

at a fairly steady rate which mirror each other. Other than the “knee” mentioned earlier, the

graph seems fairly ordinary.

34

SECTION IV

CONCLUSION

Background

Our research centers on a new class of applications for the Internet of Things which do not yet

have the information they need; to fully analyze the differences for data storage on the cloud

versus a local machine, we attempt to explore the relevant facts. Through analysis of both

general factors around this topic and the direct experimentation of latencies, we hope to better

inform our audience of these factors so that they can make a more informed decision.

Experiments

We chose to evaluate two characteristics relevant to these applications which affect their

latencies. Specifically, this involves the analysis of various data sizes which correlate to the

range of a given sensor’s configuration and the analysis of various concurrent operations which

correlate to the number of sensors sending data or the number of requests for data being made.

These two characteristic were recorded with respect to both the insertion and query commands.

Results

In general our tests favor the use of a local machine with respect to reducing latency as one

would expect; however, the cloud may actually offer lower latencies for a large number of

concurrent operations. We must also remember that this is only one facet that should be analyzed

when selecting the appropriate environment. Other factors include cost, security, and pervasive

access. Cost nearly always favors the pay-as-you-go service of the cloud due to much greater

35

efficiencies. Security generally favors a local machine as the physical security of a machine can

be monitored, but as far as digital security is concerned, the cloud is likely more secure due to

the ability for the organization to provision an entire staff to manage network security and the

expertise that comes with this. For pervasive access, the cloud may be preferred due to its innate

proficiency in this area, and local machines requiring more effort to create this ability also

contributes to this preference. Depending on all of these factors, one can make a more informed

decision depending on the requirements of a given application.

Closing Remarks

IoT is a very interesting field that will continue to develop and evolve. The experimental part of

this work represents an initial step in analyzing how the choice of location for storing sensor data

can impact the behavior of the system. Through this document we hope to have better informed

those that will aid in this evolution and aid the effort to make beneficial design decisions.

36

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing,” Commun. ACM,

2010.

[2] Rob van der Meulen, “Gartner Says 6.4 Billion Connected ‘Things’ Will Be in Use in

2016, Up 30 Percent From 2015.” Stamford, Conn., 2015.

[3] D. Manyika, James; Chui, Michael; Bisson, Peter; Woetzel, Jonathan; Dobbs, Richard;

Bughin, Jacques; Aharon, “The Internet of Things: Mapping the Value Beyond the Hype,”

2015.

[4] B. Zhang, N. Mor, J. Kolb, D. S. Chan, N. Goyal, K. Lutz, E. Allman, J. Wawrzynek, E.

Lee, and J. Kubiatowicz, “The Cloud is Not Enough: Saving IoT from the Cloud,” 7th

USENIX Work. Hot Top. Cloud Comput. (HotCloud 15), 2015.

[5] M. Fazio and A. Puliafito, “Cloud4sens: a cloud-based architecture for sensor controlling

and monitoring,” IEEE Commun. Mag., vol. 53, no. 3, pp. 41–47.

[6] T. Gupta, R. P. Signh, A. Phanishayee, J. Jung, and R. Mahajan, “Bolt: Data Management

for Connected Homes,” 11th USENIX Symp. Networked Syst. Des. Implement. (NSDI 14),

pp. 243–256, 2014.

[7] Z. Chen, K. Ha, P. Pillai, M. Satyanarayanan, P. Simoens, and Y. Xiao, “Scalable Crowd-

Sourcing of Video from Mobile Devices,” 2013.

[8] G. Heiser, “Systems Benchmarking Crimes,” 2015. [Online]. Available:

https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html. [Accessed: 01-Jan-

2016].

[9] “InfluxDB.” [Online]. Available: influxdata.com. [Accessed: 01-Jan-2016].

[10] “Maven.” [Online]. Available: maven.apache.org. [Accessed: 10-Apr-2016].

