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ABSTRACT 

Data Services for Internet of Things 

 

David LaCroix 

Department of Computer Science and Engineering 

Texas A&M University 

 

Research Advisor: Dr. Dilma Da Silva 

Department of Computer Science and Engineering 

 

The factors involved in choosing between storing data repositories at locally-hosted 

infrastructures or at (remote) public clouds are well understood for many enterprise application 

domains.  The proliferation of Internet-of-things (IoT) devices (including wearables) is now 

introducing a new class of applications, for which neither the research community nor the 

industry players offer guidelines on how to best handle the data. The goal of this research project 

is to characterize the most effective data architecture in terms of locally or remote hosted for a 

given IoT workload. Through this research, developers will become aware of various issues 

dealing with the designation of a host for a given data repository including security, efficiency, 

and accessibility concerns. 
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NOMENCLATURE 

 

API Application Programming Interface 

AWS Amazon Web Services 

B Byte 

CAAPI Common Access API 

DB Database 

DNW Digital Neighborhood Watch 

EDA Energy Data Analytics 

GDP Global Data Plane 

HUD Heads up Display 

IoT Internet of Things 

MTU Maximum Transmission Unit 

OS Operating System 

SaaS Software as a Service 

VM Virtual Machine 
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SECTION I 

INTRODUCTION 

 

Overview 

Before our problem can be discussed in great detail, there are two primary concepts that must be 

well understood. These concepts are cloud computing and the internet of things (IoT). Both will 

be explored regarding the technology itself, the current state of the technology, and relevant 

concerns about their continued development. Following those subsections are two practical 

examples which combine the cloud and IoT; our research will be to further understand and 

optimize relations involved in situations such as those. Finally, we will discuss the specifics of 

our research topic. 

 

Cloud Computing 

The cloud (or cloud computing) refers to both the hardware and software components that 

comprise a given cloud service offering. This service can be a range of anything from storing 

data to program execution or some other computational utility provided by the organization. The 

“cloud” aspect reveals that the service is provided as part of a computing platform designed to 

offer the service with certain characteristics, most often the computing infrastructure’s ability to 

grow and shrink the resources being allocated to the service to meet current demand. This service 

can be offered in a public or private model. A public cloud is a server that is available to anyone 

in a pay-as-you-go manner, and the service it provides is termed utility computing. A private 

cloud is one that is used only internally or at the discretion of a company or organization, and is 
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carried out on a computing platform owned by the organization. These two types of cloud 

services will be further investigated as it applies to storing sensor data generated by the IoT.  

 

History of the Cloud 

In the last eight years, the computing industry has seen cloud services rise from an interesting 

idea to a widely adopted approach to build systems where some (if not all) of the computing and 

data services are hosted on a public datacenter infrastructure, on a pay-as-you-go basis. This new 

model frees application owners from having to manage their own hardware infrastructure and 

achieves cost benefits as the cloud provider leverages economy of scale to achieve 

unprecedented efficiency in usage of computing resources. The computer science research 

community has dedicated a lot of attention to attacking many of the new problems introduced by 

the cloud paradigm [1], with a large body of results being published at top conferences (such as 

SOSP1, OSDI2, USENIX ATC3) and at new cloud conferences such as ACM SOCC4 and IEEE 

IC2E5.  

 

Cloud Evolution 

There are three new aspects of cloud computing that have recently revolutionized the field. First, 

there are essentially infinite computing resources available on demand which can handle 

unexpected load surges [1]. Second, users of the cloud no longer have to make an upfront 

commitment to the resources they will need which allows the user to expand or retract their 

                                                           
1 ACM Symposium on Operating Systems Principles, http://sosp.org 
2 USENIX Symposium on Operating Systems Design and Implementation, 

www.usenix.org/conferences 
3 USENIX Annual Technical Conferences, www.usenix.org/conference/atc15 
4 ACM Symposium on Cloud Computing, sites.google.com/site/acm2015socc/ 
5 IEEE International Conference on Cloud Engineering, conferences.computer.org/IC2E 



6 

 

services as needed [1]. Finally, resources can be utilized through an hourly or daily rate; 

therefore, users can release resources based on their current needs and conserve costs [1]. These 

benefits have been made possible through building datacenters in cost effective areas with 

respect to power, bandwidth, operations, software, and hardware availability.  

 

Current Range of Cloud Services 

Different levels of utility computing abstraction are offered to users which have their own 

advantages and disadvantages. For example at the lower end of abstraction, Amazon’s EC2 

instance allows users flexibility of choice in nearly every aspect of the environment, but this 

makes it nearly impossible to implement automatic scaling and failover due to the difficulty with 

replicating the given environment in the time scale needed[1]. At the other end of the spectrum is 

Google’s AppEngine which enforces a specific structure used on traditional web applications; it 

requires the user to follow a specific format but offers efficient scaling and high-availability [1]. 

For our project we have chosen to use Amazon’s cloud services due to the high flexibility of the 

service. 

 

Cloud vs Local Storage 

For most enterprise and scientific computing applications, the difficulty in whether to store the 

data locally or at the cloud is in determining several factors relating to the application-specific 

information, for example if the data is personally identifying, health related, confidential, or 

otherwise privileged. In conjunction with these facets, system developers will also look at how 

pervasively the data will be accessed.  
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Costs and Benefits of the Cloud 

Cloud computing is becoming a much more prevalent technology, but it comes with its own set 

of concerns especially regarding security. While the cloud offers many benefits such as access 

from anywhere, seemingly infinite storage, no upfront commitment to specific capacities in 

terms of CPU, storage, or networking, and the ability to pay-as-you-go [1], it can also put data at 

a higher risk being that it is stored within the same hardware as all other applications. While this 

makes it a larger target for attackers, there are security measures that can be put into place. One 

such aspect is that the cloud provider is often better positioned to achieve higher levels of 

security in their datacenters than most customers are able to do on their own. They are able to 

achieve this through the ability to hire experts and invest in overall procedures and tools that may 

be too expensive for individual companies.  

 

Obstacles to Continuing Cloud Growth 

As discussed by Armbrust et al in [1], the top 10 most relevant obstacles and possible solutions 

to the future evolution of the cloud are as follows. First, the need for continuous availability can 

be solved by a user utilizing multiple cloud providers. Second, it can be difficult to transfer data 

between separate cloud providers (aka data lock-in) and can be solved by standardizing cloud 

APIs between providers. Third, clouds need to keep data secure (such as through encryption, 

VLANs, and firewalls) and have the ability to be audited. Fourth, there is a significant risk of 

data bottlenecks during transfers, this can actually be circumvented by shipping the data on a 

disk; using this method is more efficient in both time and cost usage. One such example of this 

service is offered by Amazon through a service called Snowball. Fifth, performance needs to be 

steady and predictable; to fix this the provider should increase support for Virtual Machines 
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(VMs) which are operating systems that run on a host, utilize flash memory which can be erased 

electronically and is both read only and reprogrammable, and gang schedule VMs to allow them 

to run concurrently. Sixth, storage needs to be scalable and is presently available. Seventh, 

providers will need to be able to easily debug issues in a large distributed system and need a 

debugger that interacts with the distributed VMs. Eighth, the service should be able to scale 

quickly which will require an auto-scaler. Ninth, a reputation fate sharing service should be 

offered to ensure that if a given component fails the entire system will stop. Lastly, providers 

should offer a pay-for-use software licenses. There has been a lot of progress in pursuing these 

ten challenges, and there is also disagreement on the extent of their importance; however, they 

continue to be a good representation of the challenges still facing cloud computing. 

 

Internet of Things (IoT) 

The Internet of Things is a concept of having people, animals, or objects monitored through 

various sensors (devices that record or measure a given property of their environment) and 

storing this data stream in repositories that can be analyzed to make decisions. These decisions 

can be realized through an actuator which is a device that can perform a given operation relative 

to a given input. IoT devices are now part of a new application domain, and the data in such 

applications exhibit different characteristics from traditional enterprise and scientific applications 

toward manufacturing plants and critical physical infrastructures like power grids, in terms of 

how the data is generated, consumed, and analyzed.  
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Connected Devices Forecast 

Currently the number of connected devices which could be utilized in an IoT solution is growing 

very rapidly. According to Gartner [2], in 2016 the number of connected devices will grow to 6.4 

billion, an increase of around 30 percent from 2015. On average this increase equates to about 

5.5 million devices getting connected every day of 2016 [2]. With the addition of all of these 

devices comes a major opportunity for IoT products and solutions. According to McKinsey 

Global Institute [3], the IoT has the potential to make an economic impact of 3.9 trillion to 11.1 

trillion dollars per year by 2025.  

 

IoT Background 

There are many challenges that need to be addressed to realize the full potential of the IoT 

vision. In this work, we focus on the data services required by an IoT service. The data 

repository can be realized through databases in locally-hosted storage mediums or accessed 

remotely in the cloud. IoT can be anything from the multitude of Fitbit watches to a network of 

cameras to a factory with thousands of sensors monitoring operations. This topic is becoming 

prevalent with all of the smart devices being developed such as wearables, smart phones, and the 

like. All of the devices are capable of collecting specific information and yielding useful 

feedback from the data. A couple of examples could be tracking the average number of steps 

taken in a given time period or using recognition software to monitor a babysitter and 

automatically notify the parent of any suspicious activity. 
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IoT Evolution 

IoT is currently experiencing great growth with the explosion of smart devices that all connect to 

the internet and to each other while constantly sharing information. This change has brought up 

some significant issues in the field including privacy, security, scalability, latency, bandwidth, 

availability and durability control [4]. One suggested solution deals with the manipulation of this 

data in a much more efficient and secure manner; it focuses on the transport, replication, 

preservation, and integrity of streams of data while enabling transparent optimization for locality 

and quality of service [4].  

 

Current State of IoT 

The development of IoT applications is an emerging field and there are no guidelines on best 

practices on how to build such systems to achieve efficient usage of resources. Existing 

applications tend to adopt the cloud for data storage due to the simplicity of the approach, 

without knowing if such an approach will be able to meet application requirements as the field 

evolves and more sophisticated data manipulation is needed. The need to access remote 

databases, depending on how the data is generated and accessed, can introduce delays in 

processing that are unacceptable to users [4]. 

 

Handling IoT Concerns 

Regarding privacy and security, the use of many sensors to constantly collect and store 

information creates an environment of high risk, and development should exercise extreme 

caution before proceeding [4]. Scalability is another issue that will need to be dealt with since 

predicted estimates range from 26 – 50 billion devices being connected to the cloud by 2020 and 



11 

 

this amount of data could overwhelm bandwidth requirements if it were not compressed in some 

way [4]. Since the cloud is actually on the edge of the network and not at the center as some 

believe, there may be extreme issues even with simple operations using the current network to 

handle the future load. With the advent of so many smart devices using IoT solutions, the 

upstream load will become saturated; this is due to the fact that the current system is designed to 

handle higher downstream loads than upstream. Being that these sensors will control physical 

actions within the real world, quality of service will become a major issue that cannot be ignored. 

Lastly, there is the issue of both reliably destroying temporary information and reliably storing 

long-term data in light of the fact that the cloud’s hardware is out of the control of the user [4]. 

 

IoT Solutions 

Currently the market has seen massive adoption of both cloud usage and the appearance of 

numerous smart devices, and many current IoT solutions involve connecting these devices to the 

cloud. These IoT solutions also tend to develop their own APIs and separate gateways to handle 

the data. Many IoT solutions fall into two categories, ambient data collection or real time 

applications with low latency requirements [4]. Ambient data collection may come from sensors 

placed in buildings, in cities, on humans, and so forth collecting continuous data that may also 

contain highly sensitive or confidential information. Regarding real time applications, they tend 

to be reactive to environment stimulus for human consumption, robotic processing, or some 

other monitor and requiring low latency updates. 

 

 

 



12 

 

The Quest for a Universal IoT Solution 

A data-centric proposal has been made referred to as the Global Data Plane (GDP) which is 

focused on “the distribution, preservation, and protection of information” [4].  There are several 

significant ideas behind using this approach. Regarding security, it uses a combination of single 

writer logs and public/private keys to ensure that only the given sensor can record information to 

the log and that only authentic observers can access the data. To successfully utilize publish and 

subscription updates to an observer, the solution uses a multicast tree which has been shown to 

work with this kind of structure [4]. Lastly, it is advised to use a Common Access API (CAAPI) 

to normalize access to the structure. An alternative to a data-centric approach is to organize a 

system around devices. Such device-centric model would focus on individual device capabilities 

and how they communicate to each other, aiming at a common architecture to incorporate 

devices into an IoT solution. A discussion of existing efforts in data-centric versus device-centric 

solutions can be found at [5]. 

 

Bolt: A Data-Centric IoT Approach 

Bolt [6] is a data management system designed to handle the emerging class of data sensing 

applications that target a home environment, but in addition it can be applied to various other 

domains such as factories, offices, and streets. Bolt has four primary goals; first, that time series 

data will be supported and that data can be assigned arbitrary tags. Second, the system should 

support sharing across multiple homes due to the demand of multiple applications needing such 

functionality. Third, Bolt should allow the flexibility for application specific storage locations 

being that each has its own specifications. Finally, the system should supply adequate security 

against potential breaches of security [6].  
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Bolt’s Methodology 

Bolt first classifies data by application then by time-tag-value records. It was designed to better 

utilize even untrusted cloud providers and unsecure networks in a more secure fashion; this is 

facilitated through encryption at the client before it is sent to the cloud. The transmission process 

works by first grouping records into chunks that are then compressed and encrypted. The 

retrieval process works in much the same way by retrieving multiple records grouped as a chunk 

at once; this is generally more efficient being that queries often involve several, consecutive 

records.  

 

Application of Bolt 

The system was tested using three applications. One application was PreHeat which uses 

occupational patterns to more efficiently heat the home. Another application is Digital 

Neighborhood Watch (DNW), a video sharing service; it can detect objects within the video and 

supports queries across the network of homes to track suspicious activity. The third application is 

Energy Data Analytics (EDA) which gathers specific energy consumption information within the 

home; this is accomplished through sensors directly measuring each appliance’s usage directly 

from the outlet. Using all of the information that this system produces, a user can identify which 

appliances have the highest consumption and allow them to tailor their usage to compensate for 

unnecessary expenditure.  

 

Bolt Security 

Security is maintained through several factors. To ensure confidentiality through the network and 

cloud, the data is encrypted before being sent out and is decrypted only once it is retrieved. Write 
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permission is append-only, and the information is encrypted using a private key; a hash of the 

data is also used to ensure that the chunk has not been modified enroute. Read permissions are 

granted and when revoked will disallow access to any new data generated.  

 

GigaSight 

GigaSight [7] is a system designed to collect continuously streaming video from the use of 

products such as Google Glass which is a product composed of a glasses band, camera, and HUD 

that is connected to the internet. It will represent a massive crowd sourced collection of digital 

video from the world. GigaSight aims to be scalable due to the mass volume that is anticipated in 

the upcoming future by decentralizing the collection servers. This decentralization is achieved 

through cloudlets which are areas of the cloud dedicated solely to processing a given user’s data 

that will run virtual machines (VMs) on one or more cores based on demand and availability [7]. 

The project also anticipates the need for automated editing (or denaturing) to ensure privacy to 

the user. Once stored this video can be queried regarding its content and data tags. 

 

Profitability of GigaSight 

As an incentive model, users will be offered compensation for sharing their video streams. This 

information is highly valuable especially to marketers. Each individual stream can help 

marketers determine preferences and help them to tailor their ads to better influence their 

customer base.  
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Privacy of GigaSight 

Denaturing is an important topic due to high confidentiality prevalent with this technology. 

Hiding all information generated by the stream would insure complete privacy but would have 

no informational value. Whereas showing all information insures massive value but offers no 

privacy. There is an important middle ground that the system will target in order to balance these 

two demands. It is also important that the denaturing process be automated due to the unrealistic 

task of having the user edit a constant video stream. This automation process will need to be 

effective enough to get the user base to trust the system to eliminate their sensitive data. As a 

default, the user can specify if they want their stream to be obscure by default or not altered, but 

the system can also edit out faces, objects, and scenes. It would also be possible to use a marker 

such as a QR code to alert the system that recording is unwelcome. While this project recognizes 

that it cannot fully cover all of the implications and demands of a viable denaturing algorithm it 

chooses to primarily explore the architectural and performance demands of the process. 

 

Logistics of Uploading Data 

Being that Heads up Displays (HUDs) are the proposed target for recording the video, the project 

has utilized a connection between smart phones and the HUD. This is done to limit the size of 

the device and its power consumption. The smart phone is used as a proxy to buffer the video 

until the phone can establish a Wi-Fi link and begin sending the data to a cloudlet. Although it 

would be preferable to denature the video on the user’s device before sending it onto the 

network, the battery consumption would prove to be extremely cumbersome and is not a realistic 

solution in relation to current battery technology; therefore, the data will be denatured on the VM 

assigned to the user once the data reaches the cloudlet. 
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Comparing IoT Examples 

To better understand the three IoT examples (GDP, Bolt, and GigaSight), we will summarize 

their differences. Regarding the generic IoT solution, Global Data Plane, it is designed to be a 

framework for establishing a generic, data-centric model for any given IoT solution. GDP 

describes a method to ensure greater security through single writer logs and public key 

cryptography, and it suggests using a CAAPI to universalize access methods for the system. 

Also, another option for a generic solution is the use of a device-centric model as opposed to a 

data-centric model. 

 

Bolt 

The Bolt project is designed to be a manager of IoT solutions within a home through an 

integrated interface; however, it can also be adapted for various environments other than a home. 

Bolt is designed to be flexible relative to the individual solutions it manages, so it allows each 

solution to specify the specific location of its database and, where applicable, allows sharing 

across multiple homes. Lastly, to better secure the data, Bolt encrypts the records locally before 

sending them to the given database. 

 

GigaSight 

As opposed to the generic solution of GDP or the IoT solution manager of Bolt, GigaSight is a 

specific example of an IoT solution. It proposes a method for managing and analyzing data 

generated for wearable camera devices such as Google Glass. Being that data generated from 

such a device is highly personal, GigaSight proposes that these streams of data be automatically 

denatured; this process can take in several factors to determine what should be obscured (faces, 
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license plates, QR codes requesting anonymity) along with the user’s preferences toward more or 

less privacy. GigaSight also utilizes a user’s smartphone as a buffer for storing and uploading 

data; the denaturing process would take place on a cloudlet specific to that user due to undue 

battery and computational demands that would be placed on the user’s smartphone. 

 

Storage and Access Concerns 

The three examples mentioned are affected by a lack of comparison data between possible 

storage locations; specifically, the solutions do not analyze the various factors involved with 

selecting the location of their server (local or public cloud). Even though Bolt allows each 

application to select its database, it must still facilitate things such as sharing between homes 

which will require integration through some type of sever whether local or public cloud, and 

neither GDP nor GigaSight address this central issue. This lack of knowledge could result in 

various unknown inefficiencies such as increased latency, cost, security risks, etc. Through this 

research, solutions such as these can make a more informed decision on the storage and access of 

their data. 

 

Our Research 

Our research focuses on the location that should be used to collect, store, and analyze IoT data. 

We intend to test various artificial data generators that will approximate real world scenarios in 

order to better explore the problem space. To simulate the three scenarios (wearable device, 

video camera, and factory sensor network), we will vary the amount of data generated by a given 

“sensor” and vary the number of concurrent operations to reflect both sensor type and number of 

sensors respectively. We will separately test using a public cloud in the form of Amazon’s EC2 
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service and a local machine to better define their characteristics. We will consider variables such 

as cost, latency, security, and pervasive access in our analysis. 

 

Local vs Cloud 

For cost, we consider the expenses of buying a device versus the pay-as-you-go service while 

also considering the ability to conserve expenditures with the public cloud, since it can be dialed 

up or down to meet demand. Considering only cost, the benefits of the cloud to more precisely 

meet demand nearly always out-weight the costs of maintaining a local machine. Regarding 

latency, we time both insertion and query events while also analyzing concurrent operations 

taking into consideration that larger machines may be able to compute operations at a faster rate 

and handle more requests at once. Both security and pervasive access depend more strictly on 

non-testable factors. Security concerns will always be lower on a local machine being that the 

user has total control of the hardware with respect to other users and physical access. When 

utilizing a public cloud the user’s data will be placed in proximity to other applications, and there 

is also the issue of persistent storage where the provider may not adequately delete or dispose of 

faulty drives. 

 

Data Scenarios 

To best cover various types of data generation we look at three primary scenarios. First, we 

consider the wearable category such as a Fitbit monitor; this monitor has a low number of 

sensors and small, intermittent data output. Second, we consider a video stream from a camera; 

this represents a single sensor but has large, continuous data output. Finally, we consider a 

factory with hundreds or thousands of sensors and actuators; here we have a large number of 
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sensors with continuous or intermittent data output and actuators responding relatively to the 

sensor data. Each of these three scenarios helps us to test the impacts of a variable number of 

sensors along with a variable magnitude of data generation. While not placed into a distinct 

testing category, the range of tests simulate the various combinations of the specified 

characteristics from each sensor group. 

 

Summary 

Using artificial data generators we will simulate data similar to that generated in three IoT 

scenarios (wearables, video cameras, and a factory sensor network). Each case will be tested 

using two separate storage mechanisms (local and cloud) running InfluxDB for the database 

software. The test cases will primarily observe latency while varying the magnitude of data per 

operation and number of concurrent operations to help propose the best storage solution for a 

given IoT workload.  
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SECTION II 

METHODS 

 

Benchmarking Objectives 

Our primary goals regarding the benchmark of our systems are to ensure that our results cover a 

broad range of data scenarios, provide statistically valid results, and provide fully transparent 

results to our audience. To help us achieve this last goal and so that we can avoid such pitfalls 

from the early phases in our work, we have investigated some common benchmarking fallacies 

and mistakes that Gernot Heiser [8] has stated. 

 

Selective Benchmarking 

This fallacy refers to selecting only a small subset of data scenarios to represent the full set, 

especially when it is done to further support the author’s position. An example of this could have 

occurred in our research if we had chosen to test our various storage solutions using only a 

subset of our three data scenarios (wearables, cameras, factory sensors); a data subset, such as 

wearables only, would not have covered the full range of data throughput scenarios and could 

have mislead the reader into using an inappropriate storage solution. We feel that our three 

scenarios will help us clearly represent the full range of scenarios needed to test each of our 

solutions. Time constraints in our work may limit the extent to which data scenario is explored, 

and we will address such limitations by carefully linking the applicability of our conclusions to 

the workloads that we explored in sufficient detail. 
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Comparing Percentage Values 

This fallacy can be exemplified through a comparison of changes in the percentage of overhead 

found in a system. For example, if the original overhead is 10% and with the new system the 

overhead is 15%, the change in overhead was not 5%. This is really an increase of 50% to the 

original. This type of fallacy can occur anytime one is comparing percentage values. It is a 

simple mistake that happens more often than one would expect. Our method for verifying our 

conclusions will inspect for such mistakes. 

 

Dataset Choice (Calibration vs Validation) 

Many times a given system model must be calibrated to specific operating conditions through the 

use of a calibration workload. The model is then tested using an evaluation workload to 

determine accuracy. In order to show the true accuracy of the model, the workloads must be 

different and completely disjoint. This must be done to discover the predictive power of the 

model rather than simply showing that the model fits the workload it was designed for. Our 

system model does not require workload calibration, as we will set a priori the workload 

scenarios that we experiment with. Our work investigates the behavior of IoT data services 

through synthetic workloads. It is out of our scope to calibrate or validate the workload 

generator. 

 

Infrastructure 

We utilize InfluxDB [9] as our database to store the entries generated by our “sensors” which are 

simulated by our data generator.  
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InfluxDB 

InfluxDB [9] is a time series database that can perform various analytics over the stored data. It 

has no external dependencies, is written in the Go language, and supports HTTP(S) API insertion 

and queries. It was specifically designed to handle sensor data and real-time analytics. Each data 

point contains a measurement designation, a set of tags, and a set of fields. Each database can 

contain multiple measurements which in our case could be things such as “wearable”, “camera”, 

and “factory”. The tags are key-value pairs that are indexed for efficient queries. The fields are 

also key-value pairs and are designed to store the specific, relevant information for a given point. 

The database can also maintain redundant copies of the data on multiple servers known as 

clustering which as a future work could be tested as a hybrid system.  

 

General Setup 

The database will be stored relative to our two main environments on the cloud and locally. The 

test software is executed within the local system and communicates to either the local database 

or the cloud database, as specified. All of our testing software is coded in Java and is built and 

executed using Maven [10].  

 

AWS Instance (The Cloud) 

For the cloud, we are using an Ubuntu AWS instance. We have installed InfluxDB which will be 

the database holding all of our time series data points and where we can insert and query 

information. We communicate with the instance via TCP connection using a java plugin supplied 

by InfluxDB.  
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Local Ubuntu Server 

We utilize an Ubuntu machine for our local tests. It uses Linux 3.19.0, has 8 cores (Intel i7-4790 

3.6GHz), and has 16GB of RAM. The file system is ext4. We will use the same database 

software (InfluxDB) as on AWS. We run all of the “client” code from this machine which mean 

that this is where all of the insertions and queries originate from. In addition, all of the timing 

information was collected on this system.  

 

Experiment Specifications 

We will examine four experiments of behavior with the InfluxDB database (DB) on both the 

local and cloud locations (Insertion Size Latency, Query Size Latency, Insertion Rate Latency, 

and Query Rate Latency). For each experiment, we run a series of repetitive tests and average the 

results. We also record the maximum and minimum values of these tests to better display the 

variance. Latency is measured in milliseconds (ms) and data sizes are measured in bytes (B).  

 

Insertion Size Latency 

For this experiment, we will simulate a range of sensor data that needs to be inserted into the DB. 

We will compare the times of insertion with respect to the cloud and local environments. We run 

a series of four tests which each calculate the average latency of 1000 insertions for a given data 

size, and the results of the four tests is averaged to give a final value. We will also report the 

maximum and minimum of these four tests. The data size ranges from 1B to 4,194,304B and 

increases by powers of two. 
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Query Size Latency 

Here, we closely mirror the Insertion Size experiment except for querying instead of inserting. 

This simulates various possibilities for the magnitude of data being requested at a given time. 

Using the same range of data sizes, we compare the times for querying the local and cloud DB’s. 

We also run a series of four tests which calculate the average latency of 1000 queries, and the 

final value is the resulting average of the four tests. The maximum and minimum tests are 

reported as well.  

 

Insertion Rate Latency 

Now that the operations of varied data sizes have been tested to simulate a range of sensor types, 

we will test the concurrent operations needed by a network of sensors. We will simulate various 

numbers of sensors reporting to the database through concurrent operations occurring on a 

number of threads. In this case, we can view a thread as a simulated sensor. Here we chose a 

median value for the data size (1,024B), and each thread will perform 20 insertions during a test. 

The number of threads we test range from 1 to 128 and increase by powers of two. As with 

before, the cloud and local times will be compared and both the maximum and minimum values 

of each test are recorded.  

 

Query Rate Latency 

This experiment is very similar to the Insertion Rate experiment. It simply uses the query 

operation instead of insertion. This simulates multiple users or applications querying the 

database simultaneously. It uses the same range of threads, the same number of queries per 
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thread, and the same data size. The cloud and local performance times will be compared and the 

maximum and minimum test values will also be reported.  
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SECTION III 

RESULTS 

 

Overview 

We will now report on the calculated values of the four experiments previously defined. Each set 

of data is represented using a graph of latency with regard to either the data size or the number of 

threads. On each graph the cloud is represented through a blue line with circles for markers and 

the local machine is represented through a green line with squares for markers. While not always 

evident on every graph, there are bars indicating the maximum and minimum values of the given 

tests for a specific data point; the closer these bars are to the data point, the smaller the variance 

of the tests. We will first present the collected data alongside a very high level depiction of the 

information. Then, we will express our analysis of the results. 
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Latency for Insertion Size 

For this set of experiments, we tested the response time of inserting various amounts of data to 

the cloud and local DB. Below is the graph of our results. 

 

 

Observations 

We noticed that for values under 1,024B, the latency remains relatively constant, ~38ms for the 

local DB and ~66ms for the cloud DB. After this, it raises to another fairly constant level for 

both local (~73ms) and the cloud (~130ms).  There was a drop of the local latency at 32,768B 

when the value decreased to 40ms; this was tested and retested multiple times along with the 

values on both sides of the irregularity. While we ran short on time, further investigation could 
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be pursued by collecting additional information about the state of the database host and the 

network. After 262,144B, the latency begins to increase regularly. 

 

Latency for Query Size 

For this set of experiments, we tested the response time of querying various sizes of data from 

the cloud and local DB. Below is the graph of our results. 

 

 

Observations 

Both the local (2ms) and cloud (65ms) latencies appeared to remain constant up to 8,192B, and 

they begin to rise after this point. We recognize the oddity for the lower byte ranges to remain 

constant even while increasing the amount of data being sent. This is due to the data sizes being 
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small enough to fit in a single TCP MTU (maximum transmission unit). For the IPv4 network 

protocol, it is common to have MTUs of 64 or 128 KBs, therefore indicating that all the payload 

in the experiment can be sent in a single packet. Given these results, future work should use 

different data size values for evaluating query latency.  

 

Latency for Rate of Insertion 

For this set of experiments, we tested the response time of inserting a constant amount of data 

into the cloud and local DB while varying the number of concurrent insertions through the use of 

threading (each performing 20 insertions). Below is the graph of our results. 
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Observations 

The latency of inserting into the cloud remains relatively constant while increasing the number of 

concurrent operations, and the latency for the local DB increases regularly with the addition of 

threads. 

 

Latency for Rate of Queries 

For this set of experiments, we tested the response time of querying a constant amount of data 

from the cloud and local DB while varying the number of concurrent queries through the use of 

threading. Below is the graph of our results. 
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Observations 

Here both the cloud and local DB increase at a regular rate, and the cloud remains at a higher 

latency for all values (approximately double the value than local). The local also exhibits a 

“knee” where the values first descend as the number of threads increase from 1 to 4, and then it 

begins to rise. We believe that the improvement between 1 and 4 threads for the local scenario is 

a result of employing a 4-socket machine; additional investigation would be necessary to 

demonstrate this is the case.  

 

Analysis 

For the majority of the experiments, latency heavily favors a local machine as one would predict; 

however, regarding the case of concurrent insertion operations the cloud may favor larger 

networks of sensors. We must also remember that this is only one characteristic which must be 

taken into consideration when selecting a storage medium; cost, security, and pervasive access 

must also be analyzed. 

 

Latency for Insertion Size 

We see that the performance of both the cloud and local DB closely mirror the same behavior. 

For sizes less than 65,536B the cloud took roughly double the amount of time to insert locally. 

For the cloud, sizes larger than this seem to increase in latency much faster than the local 

machine. For applications that require low latency operations, such as real time system, a local 

machine may be preferable. All of the tests for this experiment were very similar to the reported 

average and is the reason that the max/min bars are extremely close to their data points. One 

possible reason we observe a constant latency for data sizes 1B to 512B is that the database 
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stores records in generic sizes which may be equal to or larger than 512B. The same may be true 

for the next level of relatively constant data size between 1024B and 262,144B. 

 

Latency for Query Size 

Here we also see a constant latency for a wide range of data sizes (1B – 8,192B). While it seems 

odd that it is such a wide range of values which remain constant, as mentioned before, the 

TCP/IP MTU size imposes similar transmission time for data sizes smaller than the MTU. Also 

for this graph, the max and min bars are nearly non-existent due to the low variability of the 

results.  

 

Latency for Rate of Insertion 

Unlike the other experiments, these results favor the cloud for larger numbers of concurrent 

operations. This is likely due to the fact that our local machine was unable to handle the 

magnitude of requests being made at once. Something that should also be noted is the fact that 

our test software was running locally and may have inhibited the performance of the local 

results. The experimental method should be improved to add one more machine to the setup, 

dedicated exclusively to run the client code (i.e., the threads issuing insertion and query 

requests). New experiments varying the timing of the concurrent requests could also reveal 

additional factors impacting the results. Even while considering this, the cloud in general may be 

a more apt environment to handle increased requests and faster internal processing where a less 

powerful local machine is offered.  
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Latency for Rate of Queries 

Here the local machine appears to operate more efficiently than the cloud. Both results increase 

at a fairly steady rate which mirror each other. Other than the “knee” mentioned earlier, the 

graph seems fairly ordinary. 
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SECTION IV 

CONCLUSION 

 

Background 

Our research centers on a new class of applications for the Internet of Things which do not yet 

have the information they need; to fully analyze the differences for data storage on the cloud 

versus a local machine, we attempt to explore the relevant facts. Through analysis of both 

general factors around this topic and the direct experimentation of latencies, we hope to better 

inform our audience of these factors so that they can make a more informed decision.  

 

Experiments 

We chose to evaluate two characteristics relevant to these applications which affect their 

latencies. Specifically, this involves the analysis of various data sizes which correlate to the 

range of a given sensor’s configuration and the analysis of various concurrent operations which 

correlate to the number of sensors sending data or the number of requests for data being made. 

These two characteristic were recorded with respect to both the insertion and query commands.  

 

Results 

In general our tests favor the use of a local machine with respect to reducing latency as one 

would expect; however, the cloud may actually offer lower latencies for a large number of 

concurrent operations. We must also remember that this is only one facet that should be analyzed 

when selecting the appropriate environment. Other factors include cost, security, and pervasive 

access. Cost nearly always favors the pay-as-you-go service of the cloud due to much greater 
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efficiencies. Security generally favors a local machine as the physical security of a machine can 

be monitored, but as far as digital security is concerned, the cloud is likely more secure due to 

the ability for the organization to provision an entire staff to manage network security and the 

expertise that comes with this. For pervasive access, the cloud may be preferred due to its innate 

proficiency in this area, and local machines requiring more effort to create this ability also 

contributes to this preference. Depending on all of these factors, one can make a more informed 

decision depending on the requirements of a given application.  

 

Closing Remarks 

IoT is a very interesting field that will continue to develop and evolve. The experimental part of 

this work represents an initial step in analyzing how the choice of location for storing sensor data 

can impact the behavior of the system. Through this document we hope to have better informed 

those that will aid in this evolution and aid the effort to make beneficial design decisions.  
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