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ABSTRACT

APPLICATIONS OF MARKOV CHAIN MONTE CARLO AND POLYNOMIAL CHAOS
EXPANSION BASED TECHNIQUES FOR STATE AND PARAMETER ESTIMATION .

(May 2014)

SHUILIAN XIE
Department of Electrical and Computer Engineering

Texas A&M University

Research Advisor: Dr. Krishna R. Narayanan
Department of Electrical and Computer Engineering

In this research thesis, we implement Markov Chain Monte Carlo techniques and polynomial-

chaos expansion based techniques for states and parameters estimation in hidden Markov

models (HMM). Our goal is to estimate the probability density function (PDF) of the states

and parameters given noisy observations of the output of the hidden Markov model. We

consider three problems, namely, (i) determining the PDF of the states in a non-linear

HMM using sequential MCMC techniques, (ii) determining the parameters of discretized

linear, ordinary differential equations (ODE) given noisy observations of the solutions and

(iii) Determining the PDF of the solution of a linear ordinary differential equation when the

parameters of the ODE are random variables. While these problems naturally arise in several

areas in engineering, this thesis is motivated by potential applications in bio-mechanics. One

of the interesting research questions that is being considered by some researchers is whether

the formation of clots can be predicted by observing the mechanical properties of arteries,

such as their stiffness. In order for this approach to be successful, it is critical to estimate

the stiffness of arteries based on noisy measurements of their mechanical response. The

parameters of these models can then be used to differentiate diseased arteries from healthy

ones or, the parameters can be used to predict the probability of formation of plaques. From

experimental data, we would like to infer the posterior density of the states and parameters
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(such as stiffness), and classify it as being healthy or diseased. If it is accomplished, this will

improve the state-of-the art in modeling mechanical properties of arteries, which could lead

to better prediction, and diagnosis of coronary artery disease.
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NOMENCLATURE

MCMC Markov Chain Monte Carlo

Ns Particle Number

PCE Polynomial Chaos Expansion

PDF Probability Density Function

SIS Sequential Importance Sampling

SIR Sequential Importance Resampling

SMC Sequential Markov Chain
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CHAPTER I

INTRODUCTION

We consider three closely-related problems in statistical signal processing in this thesis.

These problems pertain to inferring the posterior distribution of the states or parameters of

a discrete-time hidden Markov model given noisy observations of the output of such a model.

More specifically, we consider the following discrete-time hidden Markov model

xk = fk (xk−1, θk) + vk−1 (I.1)

zk = gk(xk) + nk (I.2)

where xk and zk denote the state and observation at time instant k, respectively. θk is a

vector of parameters and vk and nk denote i.i.d noise sequences.

The following three problems are considered. (i) Estimating the probability density function

(PDF) of xk given observations zks, (ii) Estimating the PDF of the parameters θk given

observations zks and (iii) Estimating the PDF of zks given the PDF of θks. Two main

techniques are used to accomplish these tasks. We use Markov chain monte carlo techniques

to accomplish tasks (i) and (ii) and we use polynomial-chaos based expansion techniques to

accomplish task (iii).

While hidden Markov models and the aforementioned estimation problems naturally occur in

several engineering applications, the study in this thesis is mainly motivated by applications

in bio-mechanics. The broader context within which this study was undertaken is described

below. Currently, there is interest within the bio-mechanics research community to answer

the question of whether the mechanical properties of arteries can be used to predict the

formation of arterial plaques. An important first step in addressing this question is to find

a mathematical model that explains the mechanical behavior of the artery. In particular, if
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we can conduct an experiment (on dead tissue) where we apply a combination of forces and

torques and measure the expansion of the artery, can we then fit a mathematical model that

will explain the response of the artery? Current modeling methods in biomechanics largely

assume that the expansion of the artery is a deterministic function of the input force and

try to find models, typically the shape of the artery is given by the solution to a differential

equation. It is true that such deterministic models have been very successful in modeling

man-made materials. However, using such deterministic models to obtain biomechanics

models has failed because there is no simple one to one relationship between the parameters

of the model and measured values. In addition, there is huge variation in the response from

one tissue sample to the other. Our approach is to model the unknown parameters (e.g.

elasticity) as random variables and obtain stochastic models for the arterial response.

More specifically, we will assume that the shape of the artery is the solution to a (possibly

non-linear) differential equation whose parameters are unknown. Further, from experiments,

we can observe the shape of the artery either entirely or partially in the presence of some

measurement noise. When this model is appropriately discretized, it can be seen that the

resulting model falls in the framework of a hidden Markov model as given in equations (I.1)

and (I.2).

Performing the estimation task described above is not an easy because the underlying mod-

els are often non-linear. The objective of this project is to explore two powerful ideas in

statistical signal processing to carry out these estimation tasks. The first one is the idea

of Markov Chain Monte Carlo (MCMC) methods [1],[2]. The second one is the idea of

using polynomial-chaos based model fitting [3]. We believe that these will be powerful, effec-

tive and feasible ways to perform estimation tasks in the presence of non-linearities and/or

unknown parameters.

An important consequence of being able to perform these estimation tasks well is that the

results of estimation can be used for diagnostic purposes. For example, if one can obtain

the distribution of the unknown parameters from experimental data, this can be used to
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classify the artery as being healthy or diseased or the likelihood of the artery developing

into a diseased artery can be estimated. Even though these classification problems are not

addressed in this thesis, the estimation step can be seen to be crucial for the classification

problem.

The rest of the thesis is organized as follows. In Chapter II, we discuss sequential monte carlo

techniques, in particular, the particle filtering technique for estimating the states of a HMM.

We discuss the degeneracy problem associated with naive particle filtering techniques and we

consider improved sampling techniques based on resampling. The algorithms considered in

this chapter are based on those in [5]. In Chapter III, we consider the problem of estimating

unknown parameters of a linear ordinary differential equation by observing a noisy version

of the output of the differential equation. We discuss why traditional sequential monte carlo

techniques are not well-suited for this problem. We implement a kernel-smoothing based

sequential monte carlo technique based on [6] for the estimating the parameters. We discuss

the limitations of such a scheme for the problem that we studied. Finally in Chapter IV, we

consider the use of polynomial-chaos based expansion techniques for estimating the PDF of

the output of a linear ODE, when the parameters in the ODE are random variables. We

implement this scheme to estimate the PDF of the output of a first-order ODE. Chapter V

discusses some future work that can be performed to continue research along the direction

of research considered in this thesis.
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CHAPTER II

STATE ESTIMATION USING MARKOV CHAIN MONTE

CARLO METHODS

Problem Statement

Consider a hidden Markov state-space model given by

xk = fk (xk−1, θ) + vk (II.1)

zk = gk (xk) + nk (II.2)

where (II.1) and (II.2) give the state xk and the observation zk at time instant k, respectively.

Note that vk and nk denote i.i.d noise sequences. We wish to determine the posterior pdf

of xk given the observations zT0 , where zT0 denotes the vector {zk, i = 0, .., T} and T is the

maximum time for which observations are available. This is a special case of (I.1) and (I.2)

with θ being fixed.

Is is well known that the Kalman filter is optimal for determining the posterior pdf under

the following conditions:

• vk and nk are drawn from Gaussian distribution of known parameters.

• fk (xk−1, θ) is known and is a linear function of xk−1.

• gk (xk) is a known linear function of xk.

However, when the noise sequences are not Gaussian, nor f and g are linear, the Kalman filter

is not an optimal solution for this tracking. In this case, sequential monte carlo approaches

have been very successful for the estimation of states xks. [5]
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Sequential Monte Carlo Approach for Estimation of States-SIS

The Sequential Importance Sampling (SIS) Particle Filter is a Monte Carlo method that is

used for states and parameters estimation. In this approach, we use {xik} and a corresponding

set of weights wik to characterize the posterior density pdf p (x|z). The key idea of this

approach is to represent the pdf by these random samples xik with associate weights wik,

under the noisy measurements zks. In the SIS algorithm, the random sample xi0:k are drawn

from (II.1), which shows the relationship between the previous state and current state. The

next step is to assign the particle a weight. The weights are updated according to

wik ∝
p (zk|xik) p

(
xik|xik−1

)
q
(
xik|xi0:k−1, z1:k

) . (II.3)

where q
(
xik|xi0:k−1, z1:k

)
is called the proposal density function, and we can choose q

(
xik|xi0:k−1, z1:k

)
to be anything that is easy to sample from. To simplify our problem, we define

q
(
xik|xi0:k−1, z1:k

)
, p

(
xik|xik−1

)
. (II.4)

so that it follows that

wik ∝ wik−1p
(
zk|xik

)
. (II.5)

The weights wik are normalized such that
∑

iw
i
k = 1.

Once we get the random measure
[
{xik, wik}

Ns

i=1

]
, we can calculate the posterior filtered density

p (xk|z1:k) as

p (xk|z1:k) ≈
Ns∑
i=1

wikδ
(
xk − xik

)
(II.6)

It can be shown that as Ns →∞, the approximation approaches the true posterior density.[5]

A pseudocode for the algorithm is presented below:

Algorithm 1: Sequential Important Sampling (SIS) Particle Filter [5][
{xik, wik}

Ns

i=1

]
= SIS

[{
xik−1, w

i
k−1
}Ns

i=1

]
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• FOR i = 1 : Ns

– Draw xik ∼ q
(
xk|xik−1, zk

)
– Assign the particle a weight, wik ∝ wik−1

p(zk|xik)p(zk|xik−1)
q(xik|xik−1,zk)

where q
(
xik|xik−1, zk

)
is called the proposal density function

• END FOR

Sequential Monte Carlo Approach for Estimation of States-SIR

After the implementation of SIS, we find that there are some negligible weights whose con-

tribution to p (xk|z1:k) is almost zeros. When this happens, small weights take a large

computational effort to update; however they do not contribute substantially to the overall

pdf. This is called degeneracy problem. In order to solve this problem, it is common to

use resampling algorithm. The basic idea of resampling is to eliminate particles that have

small weights and to concentrate on particles with large weights. In the algorithm, we firstly

construct a CDF of the weights. To determine whether the weight is small or large, we

utilized a vector called uj, shown in the resampling algorithm below. If uj is less than the

value of CDF, we regard the corresponding weight large and then assign a new weight as 1
Ns

.

Otherwise, we can say that the weight is small enough to eliminate. Therefore, we could see

that resampling involves generating a new set weights wik as 1
Ns

A pseudo code for the algorithm is presented:

Algorithm 2: Resampling Algorithm[5][{
xj∗k , w

j∗
k , i

j
}Ns

i=1

]
= RESAMPLE

[{
xik−1, w

i
k−1
}Ns

i=1

]
• Initialize the CDF: c1 = 0

• FOR i = 2 : Ns

– Construct CDF: ci = ci−1 + wik

• END FOR

• Start at the bottom of the CDF: i = 1
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• Draw a starting point: u1 ∼ U
[
0, 1

Ns

]
• FOR j = 1 : Ns

– Move along the CDF: uj = u1 + 1
Ns

(j − 1)

– WHILE uj ≥ ci

∗ i = i+ 1

– END WHILE

– Assign sample: xj∗k = xik

– Assign weight: wjk = 1
Ns

– Assign parent: ij = i

• END FOR

Sequential Importance Resampling (SIR) Algorithm is a combination of SIS and Resampling

algorithm, which means that we firstly obtain the random measure
[
{xik, wik}

Ns

i=1

]
, and then

implement resampling algorithm to generate a new set of the random measure
[{
xj∗k , w

i
k

}Ns

i=1

]
.

After that, we get the posterior filtered density p (xk|z1:k), which is showed in the previous

section.

Results of MCMC method in estimation of states

Example 1 We consider the estimation of xk by the SIS algorithm for the following example:

xk =
xk−1

2
+

25xk−1
1 + x2k−1

+ 8 cos (1.2k) + vk−1 (II.7)

zk =
x2k
20

+ nk

where vk and nk are zero mean Gaussian random variables with variance 10 and 1, respec-

tively. We consider 1,000 particles and time up to 50 units. The value of x0 is drawn

uniformly between -25 and 25. Fig II.1 presents the tracking of the states xk as time, which

we call the estimation of posterior density function of xk. Red dots mean there are higher
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possibility for xk to fall into corresponding small interval. Fig II.2 shows the true value of

xk versus time k. We could mainly see that as time becomes larger, the estimation is more

accurate. The posterior density function shows the effectiveness of Sequential Importance

Sampling algorithm. Besides, calculating the Root Mean Squared Error (RMSE) can also

represent the performance of sequential monte carlo filter. Where

RMSE =

√√√√ T∑
k=1

(xk − xik)
2
wik (II.8)

From above equation, we could compute the RMSE of SIS is about 6.83.

Due to degeneracy problem of SIS, we implement another algorithm, Sequential Importance

Resampling. Fig II.3 presents the tracking of the states xk as time, which we call the

estimation of posterior density function of xk. Fig II.4 shows the true value of xk versus

time k. we would see the SIR method also works well. Also, we compute the RMSE of SIR,

which is about 5.69.
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Fig. II.1.: The posterior density function of xk by SIS

Fig. II.2.: The plot of the true value of xk vs k
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Fig. II.3.: The posterior density function of xk by SIR

Fig. II.4.: The plot of the true value of xk vs k
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Conclusion

In this chapter we showed that Markov chain monte carlo methods can be very effective

for state estimation in hidden Markov models. Our simulation results shows that after an

initial period, the particle filtering algorithm is able to track the states well. Resampling is

an effective technique to deal with the degeneracy problem. By concentrating the updating

effort on large weights, the resampling technique is able to decrease the estimation error.
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CHAPTER III

PARAMETER ESTIMATION USING MARKOV CHAIN

MONTE CARLO METHOD

Problem Statement

The previous chapter deals with the state estimation when the parameter θ is being fixed. In

this chapter, we mainly focus on the estimation of parameter θ. Again, we assume a Hidden

Markov model given by

yk = fk (yk−1, θ) + vk (III.1)

zk = gk (yk) + nk (III.2)

where (III.1) and (III.2) give the state yk and the observation zk at time instant k, respec-

tively. Note that vk and nk denote i.i.d noise sequences. In this problem, we are going to

deal with the estimation of posterior density function of θ.

Kernel Smoothing Algorithm

The combination of Kernel Smoothing Algorithm and particle has been shown to work well in

some cases. Suppose we have {yik, θik}, and associated weights {wik} that together represent

a monte carlo importance sample. We can see that the weights wik are able to represent the

probability density function of θ.

The basic idea is to regard θ as time-varying with small random perturbations[6]. One way

is to add an independent, zero-mean normal increment to the parameter at each time. That

is,

θk+1 = θk + ζk+1 (III.3)

ζk+1 ∼ N (0,Wk+1)

17



where Wk+1 is independent with given states and observations.

When updating θik, we computer the new sample as N
(
m

(k)
k , h2Vk

)
, where m

(k)
k is called the

locations of θ, shown as the algorithm below, and h is chozen to make the new sample more

concentrated about to their locations. In terms of corresponding weights wik, we have the

same method shown as SIS algorithm, that is

wik ∝ wik−1p
(
zk|yik

)
. (III.4)

The weights wik are normalized such that
∑

iw
i
k = 1.

Algorithm 3: Kernel Smoothing Algorithm[6]

• Sample an auxiliary integer variable from the set {1...Ns} with probabilities of wik, call

the sampled index k

• Sample a new parameter vector θik+1 from the kth normal component of the kernel

density, namely θ
(k)
k+1 ∼ N

(
m

(k)
k , h2Vk

)
where m

(k)
k = aθ

(k)
k + (1− a) θk, a = 3δ−1

2δ
,

h =
√

1− a2, δ is called discount factor, typically around 0.95 − 0.99. Vk is the vari-

ance of θik

• Sample a value of current state vector from the system equation p
(
xik+1|x

(k)
k , θ

(k)
k+1

)

• Evaluate the corresponding weight wik ∝ wik−1
p(zk|xik)p(zk|xik−1)
q(xik|xik−1,zk)

18



Results of MCMC Method in Estimation of Parameter

Example 2 In this example, We have the following model:

yk+1 = yk + ykθ∆ (III.5)

zk = yk + nk

In our experiment, to generate the observations, we set the value of θ as -0.2. During

the estimation step, we set the number of particles Ns as 10,000 and time T as 200. Fig

III.1 has four subfigures, the first one shows the distribution of θ when k = 1, and from

the figure, we can see that the values of θ are around a fixed value as -0.2. The rest of

subfigures also have shown the estimated θ is a true distribution. Fig III.2 is a histogram

showing the distribution of θ when k = T . From these two figures, we can see that during

the implementation of Kernel Smoothing Algorithm, θs are approaching to a certain value,

which shows the effectiveness of this method to estimate parameters.

Discussion of this example: When we implemented this algorithm, we found that when

∆ is very small, say 0.01, the estimated θ will concentrate to a random number between -1

and 0, instead of a fixed number. We believe the reason for this is as follows: when ∆ is

very small, the truly estimated value of θ will not affect the first few steps of evolution of

θ, especially when we utilize resampling to make estimated θ more concentrated to “wrong”

θ, which is a random value between -1 and 0. In addition, the joint estimation does not

produce results consistently. This is because the correct deduction of next state from the

current state should be

yk+1

(
θik+1

)
= yk

(
θik
)

+ yk
(
θik
)

∆θik+1 (III.6)

while in our example, the computation for a new sample of yk is:

yk+1

(
θik+1

)
= yk

(
θik+1

)
+ yk

(
θik+1

)
∆θik+1 (III.7)
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Eq III.6 and Eq III.7 are not the same. Therefore, choosing the value of ∆ has a significant

effect on the results.

Fig. III.1.: The estimated θ by Kernel Smoothing Algorithm
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Fig. III.2.: The histogram of θ when k = T

Conclusion

Markov chain monte carlo techniques along with kernel smoothing can be used for parameter

estimation in first-order linear ordinary differential equations. However, the performance of

this algorithm is highly sensitive to the time step resulting from the discretization of the

differential equation. When the time step is very small, the performance of the algorithm is

very poor. A qualitative explanation for this was given in this chapter.
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CHAPTER IV

PROBABILITY DENSITY FUNCTION ESTIMATION USING

POLYNOMIAL-CHAOS EXPANSION

Pre-knowledge of Polynomial-Chaos Expansion

In this chapter, we will use the polynomial chaos expansion to find the pdf of random

processes that satisfy stochastic ODEs. A PC expansion (PCE) is a way of representing a

random variable as a function of another random variable with a given distribution, and of

representing that function as a polynomial expansion[7], with the following format:

X (t) ≈
p∑
j=0

xj (t)ψj (Ξ) (IV.1)

where ψj is a polynomial of order j and they satisfy the orthogonality condition that for all

j 6= k, 〈ψj, ψj〉 = 0. Ξ is called the germ and it is a random variable. Usually we assume that

Ξ is a scalar. In PC theory, xj is called the mode strength and ψj is mode function. Note

that the total number of expansion terms is P + 1. Given f and there is a unique expansion

in which the mode strengths are given by

xj =
〈f, ψj〉
〈ψj, ψj〉

(IV.2)

Problem Statement

In our problem, we consider the ordinary differential equation

dy (t)

dt
= −ky, y (0) = y0 (IV.3)

where the decay rate coefficient k is considered to be a random variable k (θ) with certain

distribution, whose probability function is f (k). we compute yj in a differential equation by
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polynomial chaos expansion so that we would know the pdf of y (t).

By applying the polynomial chaos expansion to the solution y and random input k

y (t) =
P∑
i=0

yi (t) Φi, k =
P∑
i=0

kiΦi (IV.4)

and substituting the expansion into the differential equation, we obtain

P∑
i=0

dyi (t)

dt
Φi = −

P∑
i=0

P∑
j=0

ΦiΦjkiyj (t) (IV.5)

By taking 〈.,Φl〉 and utilizing the orthogonality condition, we obtain the following set of

equations:

yl (t)

dt
= − 1

〈Φ2
l 〉

P∑
i=0

P∑
j=0

〈ΦiΦj,Φl〉 kiyj (t) (IV.6)

Now, we have converted the problem of estimating the pdf of y (t) in to one of the estimating

the coefficients yl (t) which all satisfy a set of differential equations given in (IV.6). Note

that any standard ODE solver can be employed here to solve these coefficients.

Results of Polynomial Chaos in Estimation PDF

We consider the ordinary differential equation

dy (t)

dt
= −ky (t) , y (0) = 1 (IV.7)

where k is assumed to be a uniform random variable with Φ1 = 1 and Φis = 0 for i 6= 1.

We choose P=4. By applying the polynomial chaos expansion to the solution y and random

input k

y (t) =
4∑
i=0

yi (t) Φi, k = Φ1 (IV.8)
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and substituting the expansion into the differential equation, we obtain

4∑
i=0

dyi (t)

dt
Φi = −

4∑
j=0

Φ1Φjyj (t) (IV.9)

By taking 〈.,Φl〉 and utilizing the orthogonality condition, we obtain the following set of

equations:

yl (t)

dt
= − 1

〈Φ2
l 〉

4∑
j=0

〈Φ1Φj,Φl〉 yj (t) , l = 0, 1, 2, 3, 4 (IV.10)

We choose the polynomials Φi uniform distribution. It is easy to get yi (t) by ODE solver

and the solutions yl (t) for l = 0, 1, 2, 3, 4 are showed Fig IV.1.

Fig. IV.1.: yi (t) in the range of t ∈ (0, 1)
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Noting that the value of P in this example, we set as 4. To prove its correctness, we implement

a program, which computes the error measures for the mean when P is 1,2,3 and 4.

ε (t) =

∣∣∣∣y (t)− yexact (t)

yexact (t)

∣∣∣∣ (IV.11)

where

y (t) = y0 (t) , yexact (t) =
et − e−t

2t
(IV.12)

From Fig IV.2 , we would see that at t=1, when P=4, the error of mean of yi (t) is small

enough. There is no need to increase P to a larger number, which will lead to the complexity

of computation and longer running time consumption.

Fig. IV.2.: The error mean of of y (1) when P=1,2,3,4
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Conclusion

In this chapter, we considered the use of polynomial-chaos based expansion techniques for

estimating the PDF of the output of a linear ODE, when the parameters in the ODE are

random variables. Polynomial-Chaos expansion is a powerful tool to estimate the PDF of

the solution of stochastic differential equations. In addition, by calculating the error of mean

square root of y (t)(at a certain time), we can find that only a small number of terms need

to be retained in the expansion to obtain good estimates of the PDF.
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CHAPTER V

FUTURE WORKS

State and parameter estimation in bio-mechanics is a vast research topic and the research

presented in this thesis represents only a first step in the estimation of states and parameters

for certain problems. The following are important problems that need to be addressed in

the future.

• In Chapter III, only a linear ODE is considered. The response of the artery to forces is

typically given by the solution to a non-linear differential equation and hence non-linear

HMM have to be considered.

• Even for the ODE considered in Chapter III, the performance of the kernel-smoothing

algorithm is not very robust. Certain inconsistencies in the sequential monte carlo

approach were pointed out. One easy way to fix this problem is to use a non-sequential

version where an initial population is chosen for θs and fixed. However, such an ap-

proach would not be viable with θ changed with k. This model is really what is of

interest since for the purpose of diagnosis, one is interested in determining changes in

the elasticity in the artery as a function of length of the artery. Hence, there is a need

to design robust estimation techniques that work for a variety of models of change of

θk with k.

• Even though Chapter IV shows that the PDF of the output of the ODE can be found,

our interest is in using polynomial chaos expansion based methods for parameter es-

timation. We still need to develop a Bayesian inference technique based on PC for

determining the posterior density of the parameters of the ODE/HMM. Then, the ad-

vantages and disadvantages of MCMC and polynomial chaos methods for parameter

estimation problems should be compared.
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