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ABSTRACT

Tools for User Modificaiton of Optimal Roadmaps . (May 2014)

Nicole Violet Julian
Department of Computer Science

Department of no
Texas A&M University

Research Advisor: Dr. Nancy M. Amato
Department of Computer Science

Robotic motion planning is a ubiquitous field of study, with innumerable applications in sci-

ence, engineering, and beyond. At its core, however, motion planning is infeasible for many

complex problems. Sampling-based algorithms address this issue by building an approximate

model of the planning space, while optimal planners extend this to provide desirable guaran-

tees on solution features (e.g., shortest paths). Unfortunately, these guarantees can require

the creation of dense, cumbersome planning graphs. Automatic refinement algorithms can

help to sparsify these dense graphs, though they may be costly themselves if they affect the

quality of the original solution. In another direction, harnessing human intuition with user-

guided planning strategies has also shown promise. In this research, we seek to combine the

unique strengths of human and machine reasoning with a foundational, interactive toolset

for graph modification and, thus, to overcome some weaknesses inherent in either alone. We

provide a visual interface that allows the user to modify a pre-computed planning graph

by adding, removing, and adjusting vertices and edges as desired, with reciprocal feedback

from the planner on the feasibility of each operation. This provides a more adaptable way

to improve graph quality–e.g., by sparsifying particular areas based on the unique dynamics

of the environment, which are easily and naturally conceptualized by human instinct. In

experiments, we found our tools to be quite helpful in improving some measures of graph

quality, while their benefits on others dependended on the intuitiveness of the user interface.

1



DEDICATION

This work is dedicated to Carmen and Louis, who are, in many ways, my older siblings.

2



ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Dr. Nancy Amato, for her encouragement and

guidance throughout the development of this thesis–and all thoughout my computer science

career.

I would also like to acknowledge Jory Denny, my graduate student mentor, for keeping me

on track and showing me that I am capable of more than I realize.

A final acknowledgement goes to Tammis Sherman, Dr. Duncan MacKenzie, and Plamen

Ivanov for their support, patience, and feedback throughout the Undergraduate Research

Scholars Program.

3



CHAPTER I

INTRODUCTION

Motion planning is the problem of finding a valid path that takes a movable object from a

start position to a goal position within an environment. It is a central element of robotics and

has important applications in other areas such as bioinformatics [24], automated assembly [2],

and gaming/virtual reality [18]. Unfortunately, exact motion planning is computationally

intractable [22] for all but the simplest systems. In other words, as the complexity of a robot

increases, the cost of deterministically finding a solution increases exponentially. Motion

planning research has addressed this issue in two important ways: by developing and refining

automatic algorithms, and by exploring user-guided systems. Considered separately, both of

these approaches have compelling strengths and weaknesses.

On the fully automatic side, sampling-based methods such as the Probabilistic Roadmap

Method (PRM) [15] and Rapidly-exploring Random Tree (RRT) [16] have arisen. These

avoid explicit representations of high-dimensional spaces and instead rely on approximate

roadmaps (graphs) of the environment for practicality and efficiency. Though more intelligent

variants [1, 4, 29] have developed over time, traditional sampling-based planners are not

always optimal in terms of cost metrics such as path length and execution time. These

issues have accordingly been addressed by optimal sampling-based motion planning methods

such as those presented in [14]. Though these algorithms can provide desirable guarantees

on solution features, they do so at the expense of creating prohibitively large roadmaps.

Methods such as [20] have helped to sparsify these dense graphs, with further refinements

in computational speed [28], memory requirements [6], and the sparsification process itself

[7, 23] arising soon after.

Despite the appeal of clever automatic planners, some situations, such as tricky narrow

passages, are simply too difficult for a machine to handle alone. Thus, on the more manual

side are user-guided planning strategies such as [10, 2, 13, 8, 21]. These methods capitalize
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on the operator’s intuition–e.g., for finding a trajectory through a narrow passage, which is

notoriously difficult for automatic planners yet often trivial to the human eye.

Fully automatic and manually-influenced planners each suffer from unique weaknesses. In

the automatic case, there are often tradeoffs between important factors such as memory

requirements and graph sparsity. Furthermore, the customizability of automatic planners

is very limited. Many qualitative aspects (e.g., selecting good input parameters) require

broad, environmental considerations that a computer alone cannot capture. One-way user-

guidance systems are likewise problematic. Though a user may, for example, provide a series

of waypoints to help a planner navigate a narrow passage, these waypoints may not always

be as useful and accurate as desired, especially in the case of a non-expert operator [12].

The human mind, though appealing for its high-level, instinctive nature, cannot offer the

exactness and consistency of a machine, which can be crucial for certain requirements such

as strict obstacle clearance or low-level tasks such as collision checking.

The described disadvantages of both automatic and manual planners can, in many ways, be

attributed to the unidirectional natures of such systems. A computer alone may miss critical

parts of the “big picture” in a planning problem. Likewise, providing feedback only from an

operator to the system is not always ideal for the finer points and leaves room for human

error. It is not enough for the user to guide the planner–to overcome the weaknesses inherent

in both, the planner and user should help one another. In this work, we take a preliminary

look at this cooperative ideal by providing tools for user manipulation of the planning graph

itself.

More specifically, the planning graph as is conceptualized as G = (V,E). V represents the set

of vertices–namely, the feasible robot configurations that have been sampled. E represents

the set of edges, or the feasible transitions that have been validated between these samples.

We allow users to refine and customize G with tools for motion editing, which we define as

the lowest level of interaction between a human and a planner. These tools allow for the

following graph modifications:
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• Vertex/Edge Insertion

• Vertex/Edge Removal

• Vertex Adjustment

• Edge Adjustment

• Vertex Merging

This allows a person to directly–and far more flexibly–perform many of the map quality

improvements brought about by automatic methods such as [14] and [20]. Of critical im-

portance, as well, are the responses that these tools give back as they are used, such as

inverting the color of a vertex that is placed in an infeasible area. In this way, the benefits

of two-way interaction are truly realized. As the human provides valuable instinct to the

post-processing steps, the planner reciprocates with its own strengths (e.g., enforcing fine

constraints) so that the instinct is applied as effectively as possible. More concisely, the

contributions of this work include:

• Introducing a simple toolset for motion editing, whereby a user can modify a pre-

computed motion planning graph, with reciprocal validity feedback from the planner.

• Evaluating the effects that this toolset has on graph quality in various 2D scenarios,

as compared to an automatic refinement algorithm.

In experiments, we found the motion editing tools to be quite helpful in improving some

measures of graph quality, e.g., by enabling large vertex and edge density reductions. For

other measures, the benefits were largely dependent on the intuitiveness of the user interface.
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CHAPTER II

PRELIMINARIES AND RELATED WORK

Preliminaries

We define a robot (Figure II.1a) as a movable object whose position can be described by

n degrees of freedom (DOFs). A degree of freedom is a dimension of movement; e.g., each

of the x, y, and z coordinates in 3-D space or the angle of a joint. Thus, a robot’s overall

configuration can be uniquely described as a point 〈x1, x2, ..., xn〉 in n-dimensional space,

where xi is the ith DOF. The configuration space [22], or Cspace, consists of all possible

robot configurations, while the free space, Cfree, is the subset of Cspace that represents all

feasible configurations (e.g., those not in collision with obstacles or the robot itself). The

union of infeasible configurations is known as the obstacle space, or Cobst. We thus define the

motion planning problem (Figure II.1b) as the problem of finding a continuous trajectory in

Cfree that takes a robot from a starting configuration to a goal configuration. Finding an

exact solution in Cfree is generally infeasible, as it requires the explicit computation of Cobst

boundaries. On the other hand, determining the validity of a configuration is much easier

and can be done quite efficiently, e.g., with a collision detection test in the workspace, the

robot’s natural space.

Related Work

Sampling-Based Motion Planners

Sampling-based methods exploit the ease of validating configurations in the workspace to

create an approximate mapping of Cfree. Two paradigms of sampling-based planning are

the Probabilistic Roadmap Method (PRM) [15] and the Rapidly-Exploring Random Tree

(RRT) [16]. In particular, PRM builds a roadmap (graph) of feasible configurations, which

provides important information about their connectivity.
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(a) A 4-DOF robot (b) A planning problem

Fig. II.1.: Motion planning basics

In the first phase, random samples are generated in the Cspace, and those that are valid (e.g.,

collision-free) are kept as nodes for the roadmap (Figure II.2a-b). Next, neighboring nodes

are selected as candidates for connection via a suitable distance metric, such as straight-line

distance. The connections are then attempted by local planners and represented as roadmap

edges if successful (Figure II.2c-d). Finally, a start and goal configuration can be connected

to the roadmap (Figure II.2e), which is then queried for a path (Figure II.2f) with a graph

search method, e.g., A*. Initial PRMs were successful in solving many problems far from

the reach of traditional, deterministic methods, and they were followed by a number of

variants, such as [1, 4, 29, 9, 5, 31], that addressed important challenges such as mapping

configurations in narrow passages.

Optimality in Sampling-Based Motion Planning

In [14], Karaman and Frazzoli prove the asymptotic non-optimality of PRM and RRT and

introduce PRM*, RRG, and RRT* to address this limitation. These methods only attempt

connections to a node’s optimal neighbors, the number of which is proportional to log(n),

where n is the total number of vertices in the roadmap. This allows for asymptotically

optimal paths; e.g., paths guaranteed to be the shortest possible as the number of samples

approaches infinity. Though this quality is desirable, the large size and high density of
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(a) Initial environment
with start and goal

(b) Random sampling (c) Connections formed
between neighbors

(d) Connections further
along

(e) Start and goal con-
nection

(f) Query for path

Fig. II.2.: Basic PRM algorithm

roadmaps constructed with these methods makes them impractical for efficient, anytime

planning.

In [20], graph spanners are used to derive sparser, asymptotically near-optimal (i.e., no more

than a constant factor worse than optimal) roadmaps with similar path quality to those

produced in [14]. In one approach, a sequential algorithm removes redundant edges from

pre-constructed, dense maps. This leads to significant space savings and improved query

resolution time, though the length of resulting paths increases as more edges are removed. A

more expensive method, the incremental roadmap spanner (IRS), interleaves with roadmap

construction and rejects unnecessary edges before collision checks are performed. This like-

wise produces sparse roadmaps with faster querying times, and a simple smoothing method

can be applied to bring path quality closer to that of denser graphs. The computational
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speed of IRS is improved to be essentially constant per vertex in [28], which uses a stream-

ing spanner algorithm to prune PRM* roadmaps.

Despite their benefits, graph spanners only remove edges and can still result in large roadmaps.

In [7], the SPARS algorithm is introduced, which provides asymptotic optimality and ensures

that the probability of adding new nodes to a roadmap converges to zero. SPARS is modified

to reduce memory costs in [6], which provides near-optimal guarantees without the need for

storing a dense graph. Redundant vertex removal is similarly exploited in [23], which uses

edge contractions to construct a more compact representation of a pre-computed, PRM-type

input graph. It is important to note that this strategy–or, more broadly, anything fully

automatic–is essentially realized by a generalized, global rule set. This, by nature, limits the

customizability and adaptability of such solutions.

User-Guided Motion Planning

Previous work incorporating human influence with motion planning has generally fallen

into two categories. In the first approach, the human performs global scene analysis of the

workspace, while the machine is responsible for jobs that require more accuracy, such as

collision detection and path extraction. In [10, 2], the user can select critical configurations

in interesting regions, while the planner handles the rest of the sampling, collision checking,

and pathfinding between subgoals. In [11], the user is responsible for controlling an arm’s

linkage, while the machine takes care of the wrist. In [17], when the operator uses a haptic

probe to designate the desired speed and the rate of turn for the robot, the machine performs

close-range obstacle avoidance and provides force feedback to the operator.

In the second approach to human-assisted planning, Ivanisevic and Lumelsky [13, 12] inves-

tigate the idea of converting workspace into Cspace. This allows the robot to be represented

as a point, which is much easier for a human to visualize and control. Other relevant studies

have exploited situations where planners typically perform poorly, such as dynamic environ-

ments. In [8], the human can intervene to handle events such as unexpected obstacles; when

the human operation finishes, the machine can resume control without any replanning. In
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[21], the deliberative planner uses a potential field to obtain a set of configurations for the

robot, while reactive behaviors handle the dynamic obstacles that may appear as the robot

moves toward the target. User inputs are combined with these two techniques to allow the

user maximum control while preventing collisions. It is important to note that in this and

the previously described works, a strong paradigm of two-way feedback is missing.

A few truly cooperative planning approaches have indeed been explored. An early example

is [3], in which the automatic planner utilizes haptically-generated user input and, in return,

provides reactive force feedback and communicates its progress through a visual overlay of

the scene. In [25], Täıx et. al. present Interactive RRT (I-RRT), in which the user controls

an avatar of the robot in a virtual representation of the workspace. The algorithm biases

sampling near the avatar’s position while providing feedback to the user through a haptic

device and/or node coloring. In this way, simultaneous cooperation is achieved without the

two-stage decoupling of user and planner contributions common to other approaches. In [30],

Yan et. al. similarly explore collaborative planning through user manipulation of a force

feedback device. They incorporate relaxation of collision constraints, as well as the random

retraction of rough paths and their connection via a bidirectional RRT. Though the schemes

of [25] and [30] are promising, they are limited to RRT approaches and require continuous

user input throughout the planning process; in fact, I-RRT alone has no completeness or

optimality guarantees. More important, however, is that no attempts have been made to lay

a comprehensive groundwork for cooperative planning as a whole.
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CHAPTER III

TOOLS FOR MOTION EDITING

We define collaborative motion planning as a paradigm of two-way interaction that integrates

the advantages of human cognition and computer reasoning. This is achieved through a

reciprocal feedback exchange that is, on the whole, more beneficial than the sum of its

unidirectional parts. In one direction, the user aids the planner by manipulating objects

in the system or providing directions; e.g., by specifying tasks or even manipulating the

roadmap itself. In the other direction, the planner aids the user; e.g., through visual cues

or, in the case of an online exchange, attraction/repulsion to certain trajectories or regions

in the environment.

This work focuses on motion editing, the most basic level of collaborative planning. When

higher levels of cooperation are not enough, motion editing allows a user to interact directly

with the planning graph itself. In a narrow passage, for example, the user could directly

input a key configuration, which could help the planner overcome a connection bottleneck

much more efficiently.

Map Editing Utilities

The motion editing tools presented in this work provide for offline, collaborative roadmap

manipulation and aim to lay a strong groundwork for natural, practical, and efficient real-

time techniques. Recall that the map is formalized as a graph G = (V,E), where V is the

set of vertices and E is the set of edges. We can further consider G as a set of one or more

connected components ; i.e., subgraphs in which any two vertices are connected by a path.

This work extends the visualization tools in [27] to provide simple interfaces for the following

operations:
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(a) Initial vertex
insertion at origin;
magenta = invalid

(b) Adjustment to
desired (and valid)
configuration

(c) New vertex
confirmed

Fig. III.1.: Use of the vertex insertion tool. In this and subsequent examples, the shortest
available path is outlined in blue.

(a) Selection of
endpoints for new
edge

(b) New edge con-
firmed

(c) Selection of
endpoints for
another edge

(d) New edge
confirmed; shortest
path updated

Fig. III.2.: Use of the edge insertion tool to improve the shortest available path.

Vertex/Edge Insertion

The user can add a new node v to the roadmap, thus achieving V = {V ∪ v}. The node is

initially placed at the origin of the environment with no incident edges (Figure III.1a), and

the user can adjust its configuration as desired using movable sliders and/or typed input for

the values of each degree of freedom (Figure III.1b). As the node is adjusted, the user is

provided with visual feedback on its feasibility. If the user moves the node to an infeasible

configuration, e.g., by colliding it with an obstacle, the color of the node is inverted in

warning.

Similarly, the user can add new edge e between a pair of chosen nodes in the map (Fig-

ure III.2), resulting in E = {E ∪ e}. Connected components of the graph are updated

13



(a) Initial roadmap (b) Group of nodes
and edges selected

(c) After deletion
of group

Fig. III.3.: Use of the vertex/edge deletion tools to remove an unnecessary connected
component.

accordingly; for example, a new edge may result in two separate connected components

becoming one. One helpful application of the edge insertion utility is the ability to create

shortcuts between nodes not initially connected by the planner, which can drastically reduce

the final path length (Figure III.2g).

Vertex/Edge Removal

The user can simultaneously delete any number of vertices and/or edges from the roadmap

(Figure III.3). The aggregate removal of a group (V ′, E ′) of selected vertices and/or edges

results in V = V \ V ′ and E = E \ E ′ for the vertex and edge sets of G, respectively. In

practice, the user may remove a single node that looks unhelpful, a group of multiple edges

at a time to reduce roadmap density, or even an entire connected component. As with vertex

and edge insertion, the connectivity of the graph is updated accordingly.

Vertex Adjustment

As outlined in the insertion case, the user can adjust a node’s configuration (Figure III.1b),

with feasibility checks and resultant visual feedback all the while. The user might, for

example, decide to push a node closer to a more interesting area of the environment or

attempt to center it in a more desirable position with regard to its incident edges. If the user

moves the node in an infeasible way, e.g., out of bounds, the planner responds by inverting

14



(a) Selection of
candidate edge

(b) Adjustment of
new intermediate
configuration

(c) New intermedi-
ate confirmed

Fig. III.4.: Use of the edge adjustment tool to provide more clearance from an obstacle.

the node’s color. Finalizing an invalid position for a vertex is prohibited; however, invalid

incident edges are allowed and will be automatically removed.

Edge Adjustment

We define an edge as a polygonal chain through Cspace; thus, it is not necessarily a straight line

and can accommodate a number of intermediate configurations along its length. The user can

modify a roadmap edge by adding, removing, or adjusting such intermediates (Figure III.4).

As in the previous cases, the user’s actions are reciprocated by visual feedback, such as

validity colors for each intermediate and the disallowment of infeasible changes.

Vertex Merging

Finally, the user can merge a group of vertices into a supervertex (Figure III.5), which can

help, e.g., to condense an area of redundant samples. Let S be a subset of nodes in V

selected for merging, and consider a function f which maps every vertex in V \ S to itself,

and every vertex in S to a new supervertex w. Merging the nodes in S results in a new graph

G′ = (V ′, E ′), where V ′ = V \S∪{w} and E ′ = E\{e|e = (u, v), u, v ∈ S}. Furthermore, for

every node x ∈ V , x′ = f(x) ∈ V ′ is incident to an edge in E ′ if and only if the corresponding

edge in E is incident to x in G. The new supervertex is centered among the nodes selected

15



(a) Candidate node
selection

(b) Adjustment of
supervertex

(c) Completed
merge, with invalid
edges automati-
cally removed

Fig. III.5.: Use of the vertex merging tool to condense an area of samples within a narrow
passage. In (b), the map is faded out to make the preview elements more clear.

for its creation (i.e., configured with the average of their DOFs) and can be adjusted, with

visual feedback provided as in previous cases.

The Interface

In practice, our map editing interface is presented as a simple, dialog-based extension of [27].

The user might work in a 2D environment similar to that of Figure III.6.

Map operations that involve the direct selection of elements are straightforward. In our

interface, they are carried out by mouse clicks and appear much as they do in previous

figures (the screenshots in Figure III.7a and b show the expected yellow outlines around a

selected node and a selected edge, respectively).

For utilities that involve modifying configurations–namely, the vertex addition and adjust-

ment tools, as well as the vertex merging and edge adjustment tools (for modifying the

supervertex and placing intermediate configurations, respectively), the user works with a

dialog like that of Figure III.7c. The dialog displays a slider for each degree of freedom,

allowing the user to adjust each dimension individually. To the right of the slider, the

display box also allows typed entry of the desired value, enabling more granularity in the

modification.
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Fig. III.6.: Main window of Vizmo++, the visualization software that incorporates our
motion editing tools. A basic environment with two large obstacles and an accompanying

roadmap have been loaded.

(a) Vertex adjust-
ment, showing original
(selected) and valid pre-
view (green wireframe)
configurations

(b) Adjusting an interme-
diate configuration along
an edge

(c) The configuration
adjustment dialog

Fig. III.7.: A few screenshots of the real map editing interface.
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CHAPTER IV

EXPERIMENTAL ANALYSIS

In this section, we evaluate our map editing tools against an automatic graph spanning

algorithm [19] for the refinement of dense roadmaps. We show that the tools are promising

for some forms of map quality improvement, but more questionable for others, depending

on the intuitiveness of the user interface in each situation.

Experimental Setup

All experiments were run on a Dell Optiplex 780 computer running Fedora 17 with an Intel

Core 2 Quad CPU 2.83 GHz processor and the GNU gcc compiler version 4.7. We generated

dense roadmaps with PRM*, which was implemented in a C++ motion planning library

developed in the Parasol Lab at Texas A&M University. This library uses a distributed

graph data structure from the Standard Template Adaptive Parallel Library (STAPL) [26],

a C++ library designed for parallel computing. Within PRM*, we used a Euclidean distance

metric and straight-line local planning. The planner was run until an example query could

be solved.

For the automatic refinement tests, the PRM* maps were sparsified with a C++ implemen-

tation of the randomized (2k − 1) spanner described in [19], with k values of 2, 4, and 6.

In the case of our collaborative system, the utilities were implemented as an extension of

Vizmo++ [27], a visualization tool for robotic motion planning developed in the Parasol

Lab at Texas A&M University. The user, a senior undergraduate student studying motion

planning, was presented with a dense PRM* map for each setup and allowed to modify it

as much as desired with any of the editing tools, e.g., by adding shortcut edges or merging

groups of nodes into supervertices.
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(a) Squares (b) Curved Tunnel

Fig. IV.1.: Environments for experimental analysis. Note that the blue and red dots
represent only the locations of the start and goal, not the actual robot and its physical

characteristics.

Figure IV.1 shows the 2-dimensional scenarios used in testing. In Squares (Figure IV.1a), a

robot must traverse through a series of narrow passages in order to get from the center cell

to the one on the bottom right. Three robot types were used in this environment:

• A simple, 2-DOF planar robot with the ability to translate in the x and y directions

(Figure IV.2a)

• A planar rectangular robot, with the x and y translation as above plus rotation along

the z axis (Figure IV.2b)

• A simple 2D linkage, consisting of three rectangular links connected by revolute joints

along the z axis (thus, 4 DOFs total) (Figure IV.2c)

In Curved Tunnel (Figure IV.1b), a robot must traverse through a curved narrow passage

between the start and goal configurations. The first two robots (2-DOF and 3-DOF) used

in Squares were tested in this environment.

In each case, we analyze the tradeoffs of user vs. spanner post-processing with respect to the

time required to carry out the refinements, the numbers of vertices and edges in the graph,

and the shortest available path length, as measured by Dijkstra’s algorithm. Measurements

are shown as the average of 10 randomly-seeded trials, with the graph size and shortest path

length metrics normalized against the original PRM* roadmaps.
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(a) Planar translational (2-
DOF)

(b) Planar rectangular
with rotation (3-DOF)

(c) Linkage (4-DOF)

Fig. IV.2.: Robot types used in experiments

Analysis

Figure IV.3a shows a log scale of the time required for the different map modification pro-

cesses. This is the clearest weak point for the user editing tools. Times for manual modifica-

tion with validity feedback were generally on the order of 3 to 4 minutes, while the spanners,

especially in simpler cases, were computed on the order of seconds or fractions of seconds.

This is hardly surprising, since we have emphasized speed as a central contribution from

the automatic side of a cooperative planning system. In a more sophisticated setup–with

planner-to-user communication realized as live feedback during map construction rather than

post-processing–the temporal benefits of human help may become more clear, especially in

high-dimensional scenarios.

Figure IV.3b compares the numbers of remaining vertices in the roadmaps after post-

processing. By definition, the randomized (2k − 1) spanner only removes roadmap edges;

thus, user editing tools have the clear advantage in this sense. In all scenarios, the user was

able to decrease the size of the dense PRM* vertex set by at least 30%, with best perfor-

mance in the Squares environment, which was simpler for the planner in general and, thus,

characterized by smaller input graphs. Interestingly, the user could not remove as many

vertices from the Squares Translational environment as from the more complex Squares en-

vironments. This is likely because the Squares Translational PRM* maps were the smallest

overall–so much that the vertices they did have were more likely to be part of the shortest

path and, thus, could not always be safely removed.
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(a) Comparison of time required for map modifications

(b) Number of vertices after modifications

(c) Number of edges after modifications

(d) Shortest path cost after modifications. Absent bars indicate sce-
narios in which the (2k − 1) spanner could not compute a connected
graph; thus, a path was not found.

Fig. IV.3.: Comparison of map quality metrics after post-processing.
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As shown in Figure IV.3c, the user’s ability to outperform the spanner on edge removals

varied with the environment. In the Squares scenarios, the user could sparsify the input

graphs with ease and often finished with well under 30% of the original edge density. Though

the spanners could remove progressively more edges as the k parameter increased, they

tended to retain nearly or well over 40% of the edges. In the Curved Tunnel environments,

the trend was effectively reversed. The user could remove around 40% of the original edges,

but the spanners usually removed far more. This is consistent with the limited rendering

capability of our visualization system. As the Curved Tunnel maps had tens of thousands

of edges, user modifications were extremely slow and cumbersome and were not carried out

to the same extent.

Perhaps the most interesting results were those of the shortest path lengths after map modi-

fications. In Figure IV.3d, it is clear that the user was not always very helpful in reducing–or

even preserving–the shortest path length from PRM*. In the Squares Rotational and both

Curved Tunnel scenarios, for example, user modifications resulted in slightly longer average

path lengths. The spanners were also detrimental, though not to as high of a degree as one

might expect.

The edge and path length results confirm the importance of a high-quality user interface for

an effective collaboration system. In particular, we see that the user performs best when

our map editing tools provide an intuitive, “what you see is what you get” picture of the

operations at hand. In the Squares Translational case, for example, it is not surprising that

the user could reduce the path length by over 25%, as the cost of, say, a new shortcut edge

between close nodes is quite well correlated with the way a user might visually perceive it.

On the other hand, more complex robots are harder to visualize with our interface. In some

cases, this can even be costly. Consider a planar robot that is also able to rotate along its z

axis. While editing a roadmap, the user might encounter a pair of seemingly redundant nodes

(Figure IVa) and decide to merge them into one. Since the true angle of the configurations

is not indicated in the interface, it could be that these apparently identical configurations
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(a) A misleading
scenario

(b) Initial path costs (c) After a merge

Fig. IV.4.: A merge operation that is more costly than expected. Dotted gray lines show
required types of movement along each edge.

are actually 180◦different from one another. As shown in Figures IVb and IVc, merging

them together (which averages their configurations) could result in the requirement of a

more expensive trajectory (yellow) than the one preferred in the initial case (green), which

required no rotational work.
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CHAPTER V

CONCLUSION

This work introduced a set of foundational tools for motion editing, which we defined as

the lowest level of interaction in the collaborative planning paradigm. Our interface allows

a user to post-process a planning graph by modifying and removing vertices and edges as

desired, with reciprocal validity feedback from the planner. In experiments against a graph

spanning algorithm, we found that user interaction could significantly reduce the vertex and

edge density of a roadmap as compared to the spanner. Path length improvements, though

promising in low-dimensional problems, were limited by the user interface in more complex

environments. Future work should focus on the improvement of this interface, particularly

in making intricate scenarios more digestible to the human eye. This will require innovative

ways to re-structure high-dimensional problems, e.g., through clever mappings into smaller

variable spaces or carefully-constructed visual and haptic cues. We believe that human

intuition–with its unrivaled flexibility and “big-picture” understanding–can offer substantial

benefits to cooperative motion planning, among other applications, though its unusual power

demands simplicity to be most effectively exploited.
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[15] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat.,
12(4):566–580, August 1996.

[16] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int. J. Robot. Res.,
20(5):378–400, May 2001.

[17] S. Lee, G. Sukhatme, G. J. Kim, and C.-M. Park. Haptic teleoperation of a mobile robot: A
user study. Presence: Teleoperators and Virtual Environments, 14(3):345–365, 2005.

[18] J.-M. Lien and E. Pratt. Interactive planning for shepherd motion, March 2009. the AAAI
Spring Symposium.

[19] J. D. Marble and K. Bekris. Computing spanners of asymptotically optimal probabilistic
roadmaps. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Confer-
ence on, pages 4292–4298, Sept 2011.

[20] J. D. Marble and K. E. Bekris. Asymptotically near-optimal is good enough for motion
planning. In The International Symposium on Robotics Research (ISRR), 2011.

[21] S. Parikh, V. G. Jr., V. Kumar, and J. O. Jr. Incorporating user inputs in motion planning
for a smart wheelchair. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2043–2048,
2004.

[22] J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc. IEEE Symp.
Foundations of Computer Science (FOCS), pages 421–427, San Juan, Puerto Rico, October
1979.

[23] D. Shaharabani, O. Salzman, P. K. Agarwal, and D. Halperin. Sparsification of motion-
planning roadmaps by edge contraction. CoRR, abs/1209.4463, 2012.

[24] A. P. Singh, J.-C. Latombe, and D. L. Brutlag. A motion planning approach to flexible ligand
binding. In Int. Conf. on Intelligent Systems for Molecular Biology (ISMB), pages 252–261,
1999.
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