
UNORDERED ASSOCIATIVE CONTAINERS IN STAPL

An Undergraduate Research Scholars Thesis

by

TYLER J. BIEHLE

Submitted to Honors and Undergraduate Research
Texas A&M University

in partial ful�llment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Research Advisor: Nancy Amato

May 2014

Major: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79653369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT : 1

ACKNOWLEDGMENTS : 2

I INTRODUCTION : 3

II RELATED WORK : 6

III STAPL PCONTAINERS : 8

STAPL Overview : 8

pContainer Framework : 9

IV UNORDERED ASSOCIATIVE PCONTAINERS : : : : : : : : : : : : : : : : : 12

The Unordered pSet : 12

Hash Directory : 14

The Unordered Multi pContainers : 14

The Multikey Class : 15

The Unordered pMultiset : 15

The Unordered pMultimap : 16

V PERFORMANCE EVALUATION : 17

Unordered Associative pContainer Method Evaluation : : : : : : : : : : : : : : 17

Unordered Associative pContaner Map-Reduce Evaluation : : : : : : : : : : : : 19

VI CONCLUSION : 21

REFERENCES : 22

ABSTRACT

Unordered Associative Containers in STAPL. (May 2014)

Tyler J. Biehle
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Nancy Amato
Department of Computer Science and Engineering

The Standard Template Adaptive Parallel Library (STAPL) is a parallel programming frame-

work for C++ that provides parallel algorithms and containers similar to those found in the

Standard Template Library (STL) [1]. Currently STAPL is lacking implementations for

three unordered associative containers: unordered set, unordered multiset, and unordered

multimap. These are commonly used containers in the �eld of computer science [2]; there-

fore, their implementations are a necessity for STAPL. The similarity of operations and

structure between each container will allow a large portion of code to be reused. The goal of

this work is to design and create a parallel implementation of these containers that provides

the same user-level facilities as their STL equivalents and displays a high level of scalability

when executed on a large number of processors.

1

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Nancy Amato for her continued support and guidance.

Thank you so much for allowing me to be a part of such an amazing research group. I

would also like to thank Adam Fidel, Timmie Smith, and Nathan Thomas for their ideas

and insight with this work.

2

CHAPTER I

INTRODUCTION

Parallel programming has become a necessity in application development due to the avail-

ability of multiprocessor and multicore architectures and the need to solve large, complex

problems. The purpose of the Standard Template Adaptive Parallel Library (STAPL) [1]

is to allow users to write parallel programs at a high level and avoid many low-level details

speci�c to parallel programming. STAPL is a parallel C++ library with similar functionality

as the C++ Standard Template Library (STL) [3]. The STL provides the user with common

containers, iterators, and algorithms to use as the building blocks of sequential applications.

Similarly, STAPL provides the user with various distributed containers (pContainers) and

parallel algorithms (pAlgorithms) with which to write parallel applications [4]. The primary

goal of STAPL is to provide a high productivity environment for application development

on a variety of parallel architectures including both shared and distributed memory.

This work presents implementations for three unordered associative pContainers inside of

STAPL that are parallel versions of their STL equivalents. Unordered associative contain-

ers provide methods to store and locate elements in amortized constant time. The term

associative refers to the manner by which the containers reference their elements. An asso-

ciative container uses a key to identify and locate each element rather than referencing the

element by its absolute position in the container. The unordered property indicates that

the containers do not enforce a global ordering on their elements; instead, the elements are

grouped together through the use of a hash function. The hash function uses an element's

key to compute a value that identi�es which group the element belongs to.

There are four additional properties that de�ne the structure and capabilities of the un-

ordered associative containers: simple, pair, unique, and multiple. Simple elements require

that an element's key be equivalent to its value; therefore, rather than store two separate

3

values, only the key is stored in the container. Pair elements do not enforce the aforemen-

tioned requirement and must store the standard (key, value) pair. Uniqueness requires that

all of the keys stored in the container be unique while the multiple property allows di�erent

elements to have equivalent keys. Using the de�nitions of each of the four properties we

can properly de�ne each of the unordered associative containers: the unordered set is simple

and unique, the unordered map is pair and unique, the unordered multiset is simple and

multiple, and the unordered multimap is pair and multiple.

The primary advantage of unordered associative containers is that the user is able to quickly

store and access any arbitrary element by computing the hash value of its key rather than

searching through the entire container for it. This makes insert, �nd, and erase methods

amortized constant-time operations, or asymptotically O(1). The STAPL unordered asso-

ciative containers are thread-safe, concurrent objects that provide interfaces to access and

manipulate their elements concurrently. The methods of the STAPL unordered associaitve

pContainers include parallel counterparts to the methods provided by the STL unordered

associative containers: insert, erase, �nd, and equal range; the equal range method is not

currently implemented.

We will present the design and implementation of three STAPL unordered associaitve p-

Containers: unordered set, unordered multiset, and unordered multimap. We will also dis-

cuss the STAPL pContainer framework (PCF), which provides the facilities necessary to

construct thread-safe, distributed pContainers from a few basic building blocks, as well as

a new structure created to optimize the performance of the STAPL unordered associative

pContainers. By developing scalable, parallel implementations for the three unordered asso-

ciative containers, we were able to extend the facilities of STAPL and show that the STAPL

framework limits the overhead cost of performing operations in parallel. In summation, our

work has made the following contributions:

� An extension to the STAPL pContainer facilities

4

� A hash-based directory to e�ciently map elements to locations.

This paper will �rst discuss projects with goals similar to this work (Chapter 2). Afterwards

we will discuss the STAPL pContainers and the library components used to implement our

containers (Chapter 3) and the discuss in detail our implementations for the unordered set,

unordered multiset, and unordered multimap (Chapter 4). We will conclude with an analysis

of the results and discuss our conclusions and future work (Chapters 5 & 6).

5

CHAPTER II

RELATED WORK

There has been a large amount of research in the area of distributed and concurrent data

structure development. Most of the work has focused on utilizing either di�erent locking

primitives or lock-free data structures to implement concurrent data structures [5]. Work

has been done with concurrent unordered associative containers to develop e�cient storage

methods and various locking implementations and strategies for shared memory architec-

tures. However STAPL unordered associative pContainers are designed for both shared and

distributed memory.

The Intel Thread Building Blocks library (TBB) [6, 7] segments shared memory systems

and provides parallel implementations for all four unordered associative containers. TBB

provides the user with an interface that resembles the STL interface. This library achieves

high levels of concurrency through �ne-grained locking and lock-free techniques. In �ne-grain

locking, threads are able to lock a speci�c part of the container to allow multiple threads to

operate on the same container at once. The drawback to this strategy is the high overhead

cost. In order for the concurrent containers to outperform their sequential counter-parts,

there must be a large amount of available parallelism. Also, the containers do not sup-

port a safe concurrent erasure operation. STAPL di�ers from TBB in that it functions on

both shared and distributed memory hierarchies while TBB operates only on shared-memory.

The Parallel Patterns Library (PPL) [8] provides task parallelism, parallel algorithms, and

parallel containers that follow similar conventions as the STL. Included in this library are

concurrent implementations for the four unordered associative containers. As with the TBB

library's implementations, the PPL does not provide a concurrent version of the erasure

operation.

6

There are several parallel libraries and languages that share similar goals with STAPL

[9, 10, 11, 12, 13, 14]. The Parallel Standard Template Library (PSTL) [15, 16] followed

the same principle of STAPL by extending the STL for parallel programming. The PSTL

provides concurrent containers with both global and local iterators through which elements

may be accessed; the local iterators traverse a container's elements located on a single lo-

cation while the global iterators traverse all of the container's elements across the entire

machine. The library has implementations for several concurrent containers but it does not

provide implementations for concurrent unordered associative containers and the project is

no longer active.

There is also work [17] that shares many concepts with STAPL. The most notable simi-

larity is the use of sub-containers, or base containers, to distribute the container's elements

across the machine. The primary di�erence between the two is that STAPL can be ported

to both shared memory and distributed systems rather than being limited to only one type

of system. Also, the STAPL pContainers are extensible; this gives users the abililty to de�ne

and implement their either a new custom container from our pContainer framework [4] or

as an extension of one of our containers.

In addition to the aforementioned libraries there are several languages [18] that aim to

reduce the complexity of parallel programming; one such example is Chapel [19] by Cray.

The language describes a formal approach for containers and data distributions. Chapel pro-

vides default data distributions and speci�cations for creating new ones. Currently Chapel

does not support unordered associative containers. STAPL di�ers from languages such as

Chapel in that it is a C++ library and thus can work directly with standard C++ compilers

rather than requiring custom compilers to build applications.

7

CHAPTER III

STAPL PCONTAINERS

STAPL Overview

STAPL, whose components are shown in Figure III.1, consists of the following: pContainers,

pAlgorithms, pViews, PARAGRAPHS, and a runtime system. A pContainer is the thread-

safe, concurrent equivalent of the STL container; its methods are parallel, meaning they

can be invoked concurrently. Every pContainer provides a parallel implementation for the

methods found in the sequential interface of the STL; in addition, some pContainers also

provide methods speci�cally to take advantage of available parallelism. The user is able

to ignore the physical location of elements by interacting with a shared object view which

provides unifom access through a distribution manager. STAPL provides mechanisms to

ensure that all operations leave the pContainers in a consistent state after execution; this

guarantees thread safety. STAPL also supports nested parallelism by allowing pContainers

to be constructed from other pContainers.

User Application Code

pAlgorithms pViews

PARAGRAPH

Run-time System

Pthreads, OpenMP, MPI, Native, …

A
da

pt
iv

e
F

ra
m

ew
or

k

Scheduler Performance MonitorARMI Communication Library

pContainers
Dependence

Patterns

PARAGRAPH Executor

Fig. III.1. STAPL Components

8

The user is able to access data inside of a pContainer through a pView. In STAPL, a pView

is logically equivalent to the iterators of the STL. The physical location of each element

is abstracted away and instead the elements are viewed as a collective group. The user

can directly access individual elements using iterators from within a pView. STAPL uses

pViews to access data in generic parallel algorithms (pAlgorithms), which follows the STL

convention of writing algorithm data access in terms of iterators instead of directly on the

container. The PARAGRAPH is used to represent the task graph of an algorithm in parallel.

Essentially each node in the graph is a task composed of a higher order function (denoted

work function) and a view. The PARAGRAPH allows the user to specify and enforce data

dependencies between individual tasks.

The runtime system (RTS) and its communication library Adaptive Remote Method In-

vocation (ARMI) [20, 21] provide the interface to the underlying operating system, naive

communication library, and hardware architecture. In order to hide the low-level implemen-

tations of communication, ARMI uses the remote method invocation (RMI) communication

abstraction. In STAPL, the remote invocation of a method can be either blocking or non-

blocking. A blocking invocation will cause a location to block until the method �nishes its

execution on a remote location and returns the results. A non-blocking invocation will only

cause the a location to initialize the speci�ed method; no return type is speci�ed. The RTS

will handle the non-blocking invocation once it has completed its execution. ARMI also pro-

vides a mechanism to guarantee the completion of any previous RMI calls; this mechanism is

refered to as a fence. In order to minimize remote communication, the RTS can aggregated

asynchronous calls with an internal bu�er.

pContainer Framework

The pContainer Framework (PCF)[4] was created to simplify the task of implementing a new

pContainer. The PCF allows the programmer to derive specialized containers from existing

9

containers and classes and avoid low-level concurrency issues. The PCF is designed as a

hierarchy of classes from which pContainers may derive.

Fig. III.2. The PCF Hierarchy of Classes.

The �rst level is the base pContainer which stores the pContainer's elements and distribu-

tion strategy; all pContainers derive from this base. The next level contains two classes,

static and dynamic, which dictate whether elements may be added and removed once the

container is constructed. The third level discriminates between relational and associative

containers, both of which have implicit and explicit variations. Relational pContainers s-

tore elements that hold some sort of relation to one another. An implicit relation would be

found in a list or vector where a sequential relation is enforced on the elements. An explicit

10

relation would be found in a graph or tree where the relations can be created or removed

and assigned values. Associative relations store elements and associate each one with a key.

An implicit association would be found in an array where elements are associated with the

index of their position in the container. An explicit association would be found in a type of

map where each element must be assigned a key value. Once the programmer has selected

one class from each level, they may customize the pContainer's interface to match their needs.

Previously there was no class from which multi-associative pContainers could derive. The

�rst stage of this work involved implementing a multi-associative base class. The new multi-

associative class was then used to implement the unordered multiset and unordered multimap

pContainers.

The PCF also supports the shared object view of a pContainer. In order to determine where

an element is or should be, the PCF provides an address translation mechanism. The address

translation is comprised of three di�erent components: a domain, a partition directory, and

a partition mapper. The domain is the set of each element's unique global identi�er (GID).

The domain is split into non-intersecting sub-domains. The partition directory then maps

each GID to its sub-domain and the parititon mapper maps each sub-domain to a location.

Access is a speci�c element is achieved by determining its GID, �nding the sub-domain the

GID belongs to, and determining the location which houses the speci�ed sub-domain.

11

CHAPTER IV

UNORDERED ASSOCIATIVE PCONTAINERS

In this chapter we will discuss the Unordered Associative pContainers and explain their im-

plementations within STAPL. First we will give a detailed explanation of the implementation

for the Unordered pSet which shares many similarities with the Unordered pMap. We will

conclude this chapter by explaining how the Unordered pSet was extended to implement the

Unordered pMultiset which again shares many similarities with the Unordered pMultimap.

The Unordered pSet

The Unordered pSet was designed to emulate the STL's interface as closely as possible by

providing standard functions such as insert, erase, �nd, and functions which return an it-

erator to an element in the pContainer. The primary di�erence between the two is the

returned values for the functions in the interface. The functions in the STL implementation

return either an iterator or a reference to elements which have been inserted or that follow

erased elements. In STAPL, function calls can be invoked remotely so returning a value

would require a synchronization which would negatively impact performance; therefore, our

functions do not return a value unless required by their de�nition, such as �nd. This allows

us to invoke methods such as insert and erase asynchronously.

The STAPL pContainer Framework provides base classes to assist in implementing pCon-

tainers that are both extendable and composable. The components derived from the PCF

are the globally unique identi�er, the domain, the distribution, and the base container.

STAPL requires that elements within a container be given a globally unique identi�er called

the GID. Requiring every element to be uniquely identi�able prevents ambiguity when ac-

cessing elements across the global space. Similarly, the unordered set requires that each

element be paired with a unique key. The commonality between STAPL's uniqueness re-

12

quirement and the de�nition of the unordered set allows an element's GID and key to be

equivalent. This allows the user to access any arbitrary element just by knowing its key

which aligns perfectly with the STL interface.

The domain represents all possible GIDs for a container and stores the GIDs of elements

currently in the pContainer. For example, if our Unordered pSet contained the values 2, 3,

and 5, the domain would represent all integer values and the current instance of the domain

would be f2, 3, 5g. This is implemented by the iterator domain from the PCF. The iterator

domain extracts GID information from values stored in the container using the container's

iterators to the �rst and last value as the domain bounds. Global iteration uses a GID-based

iterator class.

The distribution determines the location of the pContainer's elements on the machine and

breaks the domain down into sub-domains. This task is broken into two subtasks; the distri-

bution �rst determines which sub-domain a particulair GID belongs to and then determines

which location a sub-domain belongs to. This two-tiered approach allows work to distribute

evenly across the available locations. This is implemented in the Unordered pSet through

the use of a hash function. The user may de�ne their own customized hash function but the

default function is de�ned as a modulus operation of an element's key over the number of

processors available. The result of the hash function determines the element's location and

then control is passed over to that location.

The �nal structure is the base container. The base containers actually store and maintain

the elements of the pContainer. For the Unordered pSet, the base containers are sequen-

tial unordered sets. By de�nition, the unordered set maintains several buckets in which it

stores elements. This de�nition aligns quite nicely with the concept of base containers in

the sense that our buckets are actually sequential unordered sets. Each location is given a

single base container; therefore, when the distribution maps an element to a location, it is

13

actually mapping it to a speci�c, sequential unordered set. This allows us to distibute the

elements evenly and access them by performing two hash operations; the �rst to determine

the correct base container and the second to determine the correct bucket within the base

container. This allows us perform operations on elements in constant time.

Hash Directory

Prior to this work, STAPL did not provide a mechanism within the distribution to deter-

mine where elements in a dynamic container should be stored through a hash function. The

alternative was to explicitly store a pair of values (key, location) for each element where key

represents an arbitrary element and location represents where key is stored. The drawback

of this procedure was the high cost of memory. We decided to design the missing mechanism

in order to address this issue of high memory consumption.

The hash directory allows for e�cient look-up of elements based on their key through the

use of the same hash function used by the pContainer. The speci�c di�erence between the

two hash functions is the pContainer uses it to map elements to base containers while the

directory uses it to map elements to locations; however, since each location is given only

one base container in the general case, the two hash functions are identical and their perfor-

mance correlates directly. Also, because we can easily compute where an element is located,

we do not need to explicitly store the location of each element which signi�cantly reduces

our memory consumption.

The Unordered Multi pContainers

Theoretically, the Unordered pMultiset is identical to the Unordered pSet except that it

allows for di�erent elements to have equivalent keys. The same can be said regarding the

Unordered pMultimap and Unordered pMap. This small di�erence presented a large problem

within the STAPL framework. Both the Unordered pSet and Unordered pMap had used their

elements' keys as the GIDs because the keys were required to be unique. Since the Unordered

14

pMultiset and Unordered pMultimap do not require unique keys, there was no longer a way

to uniquely identify elements inside the pContainers. In order to correct this issue we had

to implement a class, called multikey, to act as a wrapper around the user-de�ned key.

The Multikey Class

The multikey class takes an element's key and pairs it with a nonnegative integer; this non-

negative integer represents the multiplicity of a given key. Assigning the multiplicity value

to each key allows the pContainer to store duplicate keys while simultaneously adhering to

the unique GID requirement enforced by the underlying classes.

Changing the structure of the elements changes the user interface of the pContainer. To

correct this issue the multikey class is implemented to receive the lone key value from the

user to construct or access an element, as with insert and �nd, and strip away the multiplicity

when returning an element to the user. The erase function erases all elements with a speci�c

key so the multiplicity does not impact the function's implementation. By implementing the

multikey class to modify what the user sees when interacting with elements we are able to

provide the expected interface and hide our pContainer's implementation details from the

user.

The Unordered pMultiset

The usage of the multikey class as the key of Unordered pMultiset's element changes their

structure from (key) to (key, multiplicity) which allows the pContainer to satisfy the re-

quirement of unique GIDs. Similar to the Unordered pSet, the Unordered pMultiset uses

the iterator domain to initialize its domain; however, the iterators handle elements with

multikey keys. The underlying base container of the pContainer is a sequential unordered

multiset. The distribution follows the same strategy as the Unordered pSet.

15

The Unordered pMultimap

The usage of the multikey class as the key of Unordered pMultimap's element changes their

structure from (key, value) to ((key, multiplicity), value) which allows the pContainer to

satisfy the requirement of unique GIDs. Similar to the previous pContainers, the Unordered

pMultimap uses the iterator domain to initialize its domain; however, the iterators handle

elements with multikey keys. The underlying base container of the pContainer is a sequen-

tial unordered multimap. The distribution follows the same strategy as the previous two

pContainers.

16

CHAPTER V

PERFORMANCE EVALUATION

In this chapter, we evaluate the scalability of the parallel methods described in the previ-

ous chapter. We will also show the performance of the container with the map reduce

algorithm; the map operation is an identity function and the reduction is a sum function.

The experiments were conducted at Texas A&M University on a Cray XE6m-200 with 24

compute nodes; 12 nodes have a single processor and an NVIDIA Kepler GPU and the other

12 nodes have two processors. All processors are AMD Opteron 6272 `Interlagos' 16-core

processors running at 2.1 GHz. Each node has RAM that amounts to 2GB per core. Inter-

connect between nodes is a Cray Gemini interconnect with nodes arranged in a 2D torus. In

all experiments a location contains a single processor and the terms are equivalent.

Unordered Associative pContainer Method Evaluation

In this section we discuss the scalability performance of the interface methods for the Un-

ordered pSet, the Unordered pMultiset, and the Unordered pMultimap. Scalability, S,

between two processor counts is de�ned as the ratio between execution time on the base

processor count, Tb, and execution time on a higher processor count, Tp.

S =
Tb

Tp

To evaluate each method's scalability we invoked each method on N
P
local elements, where N

is the total number of elements in the pContainer and P is the number of processors the test

ran on; we began our timer immediately before the �rst method invocation and stopped the

timer once all of the method invocations �nished. The time taken to invoke a given method

globally N times was then used to compute the scalability values.

17

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 8

S
ca

la
bi

lit
y

Number of processors

Scalability of Unordered pSet Interface Methods

Insert
Find

Erase
Linear

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 256 320 384 448 512

S
ca

la
bi

lit
y

Number of processors

Scalability of Unordered pSet Interface Methods

Insert
Find

Erase
Linear

Fig. V.1. Method comparison for Unordered pSet. All operations are exe-
cuted locally. For 1 to 8 processors N=100,000 and for 256 to 512 processors
the N=180,000,000.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 8

S
ca

la
bi

lit
y

Number of processors

Scalability of Unordered pMultiset Interface Methods

Insert
Find

Erase
Linear

 1

 1.2

 1.4

 1.6

 1.8

 2

 256 320 384 448 512

S
ca

la
bi

lit
y

Number of processors

Scalability of Unordered pMultiset Interface Methods

Insert
Find

Erase
Linear

Fig. V.2. Method comparison for Unordered pMultiset. All operations are
executed locally. For 1 to 8 processors N=100,000 and for 256 to 512 proces-
sors N=180,000,000.

Figure V.1 shows the scalability results for the Unordered pSet. For the Unordered pSet we

see that all three methods scale well on the higher core counts. On the lower core counts

insert and erase scale well but �nd does not; this is because �nd must return a value which

makes it a synchronous operation. The �nd method did scale well on the higher core counts;

18

this is likely because the work was distributed enough to negate the cost of the synchronous

behaviour.

Figure V.2 shows the scalability results for the Unordered pMultiset, whose methods scale

as expected on the low core counts. On the high core counts we lose some scalability in the

erase function; however, the lost scalability is less than 10%.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
ca

la
bi

lit
y

Number of processors

Scalability of Unordered pMultimap Interface Methods

Insert
Find

Erase
Linear

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 256 320 384 448 512

S
ca

la
bi

lit
y

Number of processors

Scalability of Unordered pMultimap Interface Methods

Insert
Find

Erase
Linear

Fig. V.3. Method comparison for Unordered pMultimap. All operations
are executed locally. For 1 to 8 processors N =75,000 and for 256 to 512
processors N=90,000,000.

Figure V.3 shows the scalability results for the Unordered pMultimap whose methods on the

lower core counts again scale well. The only issue on the higher core counts was the erratic

behavior of the insert function. One potential explanation for this erratic behaviour is poor

hashing performance in the base container. This issue will be investigated further.

Unordered Associative pContaner Map-Reduce Evaluation

In this section we discuss the scalability performance of the map reduce algorithm for all

three pContainers. The scalability performance was measured in the same manner as in the

previous section. The map operation of the algorithm was a simple identity operation and

19

the reduction segment was a summation of the element keys. In Figure V.4 we see sub-linear

scalability on the lower core counts; this is due to the fact that the smaller division of work

was not enough to overcome increase in communication introduced by adding additional

processors. To resolve this issue we will need to reduce the communication costs. On the

higher core counts the algorithm scaled well with the Unordered Associative pContainers.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
ca

la
bi

lit
y

Number of processors

Scalability of Map-Reduce<=,+>

Unordered pSet
Unordered pMultiset

Unordered pMultimap
Linear

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 256 320 384 448 512

S
ca

la
bi

lit
y

Number of processors

Scalability of Map-Reduce<=,+>

Unordered pSet
Unordered pMultiset

Unordered pMultimap
Linear

Fig. V.4. Map-Reduce comparison for Unordered Associative pContainer-
s. For 1 to 8 processors, the Unordered pSet and Unordered pMultiset have
N=100,000 and the Unordered pMultimap has N=75,000. For 256 to 512 pro-
cessors, the Unordered pSet and Unordered pMultiset have N=180,000,000
and the Unordered pMultimap has N=90,000,000.

20

CHAPTER VI

CONCLUSION

In this paper we presented the STAPL Unordered pSet, Unordered pMultiset, and Unordered

pMultimap; three distributed data structures optimized for fast, dynamic operations such as

insert, �nd, and erase. We described the design and implementation of the three containers

whose interfaces include counterparts of the STL unordered associative container methods.

For the most part, the experimental results show that the containers provide good scalabil-

ity; however, there are some performance issues that must be addressed.

There are several issues that will be addressed in future work. We will need to imple-

ment the equal range method for the two multi containers. This method is included in the

STL interface and our implementation is incomplete without it. In terms of performance,

we will need to resolve the scalability issue for the Unordered pMultimap's insert method

and reduce the communication overhead in the PARAGRAPH.

In summary, we have designed and implemented three parallel containers that each have

properties identical to their sequential counterparts but allow for scalable concurrent access

when used in a parallel program.

21

REFERENCES

[1] A. Buss et. al. STAPL: Standard Template Adaptive Parallel Library. In Haifa Exper-
imental Systems Conference, Haifa, Israel, 2010.

[2] D. Mount M. Goodrich and R. Tamassia. Data Structures ans Algorithms in C++.
Wiley, second edition, 2011.

[3] D. Musser P. Plauger, M. Lee and A. Stepanov. C++ Standard Template Library.
Prentice-Hall, 1st edition, 2000.

[4] G. Tanase et. al. STAPL: The STAPL parallel container framework. In Proc. ACM
SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP), 2011.

[5] M. Herlihy. A methodology for implementing highly concurrent data objects. In ACM
Trans. Prog. Lang. Sys., volume 15(5), pages 745{770.

[6] J. Reinders. Intel Thread Building Blocks: Out�tting C++ for Multicore Processor
Parallelism. O'Reilly, �rst edition, 2011.

[7] Intel. Reference for Intel Thread Building Blocks, version 1.0. 2006.

[8] K. Kerr. Visual C++ 2010 and the Parallel Patterns Library. 2009.

[9] G. Blelloch. Vector models for data-parallel computing. In MIT Press.

[10] G. Blelloch. Nesl: A nested data-parallel language. In Technical Report CMU-CS-93-
129, Carnegie Mellon University.

[11] A. Chan and F. K. H. A. Dehne. Cgmgraph/cgmlib: Implementing and testing cgm
graph algorithms on pc clusters. In In Euro PVM/MPI, pages 117{125.

[12] D. Gregor and A. Lumsdaine. Lifting sequential graph algorithms for distributed-
memory parallel computation. In SIGPLAN, volume 40(10), pages 423{437.

[13] L. V. Kale and S. Krishnan. Charm++: A portable concurrent object oriented system
based on c++. In SIGPLAN, volume 28(10), pages 91{108.

[14] J. C. Cummings S. R. Atlas S. Banerjee W. F. Humphrey S. R. Karmesin K. Keahey
M. Srikant J. V. W. Reynders, P. J. Hinker and M. D. Tholburn. Pooma: A framework
for scienti�c simulations for parallel architectures. In In G. V. Wilson and P. Lu,
editors, Parallel Programming in C++, volume Chapter 14, pages 547{588, MIT Press.

[15] D. Gannon E. Johnson and P. Beckman. Hpc++: Experiments with the parallel stan-
dard template library. In Proc. of the 11th Int. Conference on Supercomputing (ICS),
pages 124{131, Vienna, Austria.

[16] E. Johnson and D. Gannon. Programming with the HPC++ parallel standard template
library. In Proceedings of the 8th SIAM Conference on Parallel Processing for Scienti�c
Computing, 1997.

[17] D. Andrade A. De Vega and B. Fraguela. An e�cient parallel set container for multicore
architectures. In Advances in Parallel Computing, 2011.

[18] V. Saraswat C. Donawa A. Kielstra K. Ebcioglu C. von Praun P. Charles, C. Grotho�
and V. Sarkar. X10: an object-oriented approach to non-uniform cluster computing. In

22

OOPSLA `05: Proc. of the 20h ACM SIGPLAN conf. on Object oriented programming,
systems, languages, and applications, pages 519{538, New York, NY, USA.

[19] B.L. Chamberlain D. Callahan and H. Zima. The cascade high productivity language.
In The 9th Int. Workshop on High-Level Parallel Programming Models and Supportive
Environments, volume 26, pages 52{60, Los Alamitos, CA, USA.

[20] S. Saunders and L. Rauchwerger. ARMI: an adaptive, platform independent communi-
cation library. In Proc. of the 9th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming (PPoPP), pages 230{241, San Diego, CA, USA, 2003.

[21] T. Smith G. Tanase N. Thomas, S. Saunders and L. Rauchwerger. ARMI: a high level
communication library for stapl. In Parallel Processing Letters, volume 16(2), pages
261{280, 2006.

23

