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ABSTRACT

Applications of matrices are found in most scientific fields, such as physics, com-

puter graphics, numerical analysis, etc. The high applicability of matrix algorithms

and representations make them an important component in any parallel program-

ming language, therefore matrix frameworks are a continuous research effort in high

performance computing. This work focuses on a generic matrix framework in the

stapl library. First, we extend the stapl library by adding a sparse matrix con-

tainer. Second we implement summa, the parallel matrix-multiplication algorithm,

for fine grained computations. Then, implement parallel matrix-matrix algorithms

for the sparse matrix container. Finally, we conduct experimental studies for each

of the components we have implemented and discuss the findings. Experiments are

conducted on a Cray XE6m cluster. Experimental studies consist of multiple ma-

trix and data inputs that showcase and stress the matrix models implemented. We

find that the sparse matrix container outperforms its dense counterpart in sparse in-

puts, and vice versa. Both containers, and the matrix summa implementation show

scalability up to 512 cores.
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1. INTRODUCTION

Present day machines contain multiple processing elements that application devel-

opers utilize with parallel processing to divide problems and solve them faster. Par-

allel systems allow us to solve problems that ordinary sequential computers cannot

solve or produce results in a more timely manner. However, parallelism introduces

new challenges to the programmer, which do not arise in sequential programming.

Designing parallel programming languages and libraries that are easy to use and

deliver performance is a challenging and continuous research effort.

Parallel matrices are used in many modern industrial applications to provide

high performance solutions, therefore they present an important component in any

parallel programming system. Parallel matrices are a well researched topic, and work

has focused on the type of the matrix (eg. sparse, dense), and the target environment

(eg. shared or distributed memory). Matrix-matrix multiplication is one of the most

researched operations.

The research conducted in this thesis is written in the stapl library, which is

a collection of parallel algorithms and datastructures. The stapl components are

shown in Figure 1.1 and described in Section 2 and 3.

1.1 Contributions

A parallel sparse matrix implementation was developed using the stapl pCon-

tainer framework by providing specialized components to implement sparse matrix

functionality. stapl currently has a dense matrix container. Along with the imple-

mentation of the sparse matrix container, parallel operations for sparse matrices were

also implemented.

Implementing the parallel summa algorithm using algorithmic skeletons required
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extending the stapl skeleton framework to support the computations. The algo-

rithm is implemented by providing new components that implement the operations

and express the data dependencies of the matrix multiplication algorithm. The ex-

tensions and modifications of stapl were implemented in a manner consistent with

the stapl programming model.

In short the contributions of this thesis can be summarized as follows:

1. Extend the stapl skeleton framework by adding a matrix multiplication algo-

rithm skeleton and specific skeleton components for the summa algorithm.

2. Implement a parallel sparse matrix container and a set of arithmetic operations

defined for matrices (e.g., subtraction, addition, etc.) using the stapl’s pCon-

tainer framework.

3. Conduct performance and scalability studies for the sparse matrix container

and for summa algorithm implementation.
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Figure 1.1: The stapl components.

2



1.2 Outline

In Section 2 we first give a brief overview of stapl, a parallel programming

library for C++. Then we describe the related work focusing specifically on parallel

matrix-matrix multiplication and parallel sparse containers. In Section 3 we give a

brief outline of the stapl pContainer framework and discuss our implementation

of the stapl sparse matrix. In Section 4 we discuss the stapl algorithmic skeleton

framework. Then, we explain in detail our implementation of the summa algorithm

using algorithmic skeletons. In Section 5, we discuss the performance results achieved

by the stapl sparse matrix, its operations, and the summa implementation.. Finally,

Section 6 gives conclusions and suggests future work.
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2. PRELIMINARIES AND RELATED WORK

2.1 stapl Overview

A major challenge of parallel programming is productivity, because programming

in parallel is harder than sequential since it requires coordination of the work being

performed by each processing element. The Standard Template Adaptive Parallel Li-

brary (stapl) [2] attempts to simplify parallel programmability by providing global

object programming model, ability for automatic tuning, and a uniform communi-

cation runtime system.

stapl is a parallel programming library for C++ that provides a collection of

distributed data structures (containers) and parallel algorithms, and a methodology

for easy customization specific to different applications. stapl is designed to provide

an interface similar to that of the Standard Template Library (stl). stapl allows

users to express algorithms with a unified view of data independent of memory model

while hiding the details of concurrent execution. stapl is a programming language

based on the data-flow paradigm and it uses a data-flow executor known as the

PARAGRAPH to execute task-graphs of parallel programs. Taskgraph generation is

accomplished through Algorithmic Skeletons.

The implementation of the sparse matrix container in stapl is based on the

pContainer framework [12]. The implementation of the summa matrix multiplia-

tion algorithm is accomplished using algorithmic skeletons [15]. The implementation

of the components is discussed in detail in Section 3 and 4. The rest of this section

discusses related work in two areas. First in sparse matrix containers, and second,

in parallel matrix-matrix multiplication algorithms.
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2.2 Parallel Sparse Matrix Containers

Many applications in engineering, scientific computing, economics, etc, use very

large matrices that have high dimensionality and prove to be too dificcult and im-

practicable to use because of their large sizes. Reducing dimensionality in matrices

in order to get a better understanding of the data is a common practice. In many

cases, reducing dimensionality of large amounts of data results in matrices which are

mostly empty (i.e. contain very small amount of nonzero elements). These matrices

are known as sparse matrices. The goal is to find representations of sparse matrices

in today’s computers such that zero elements are disregarded, not stored, and com-

putation can be orchestrated using nonzero elements only. This has multiple benefits

such as considerable savings in storage space requirements as well as performance

improvements. Many formats have been suggested to represent sparse matrices and

they all focus on different objectives such as straightforwardness, simplicity, general-

ization, storage reduction, etc. The key objective in providing parallel sparse matrix

containers is to provide matrix applications that are faster than any implementation

that can be expressed using a single processor computer.

There are many formats that are used for sparse storage representation, they can

be organized based on the architecture they are targeting, for example vector ar-

chitectures, shared memory or distributed memory architectures. The BLAS [1]

framework recommends many matrix formats such as Coordinate (COO), Block

Compressed Row (BCRS), Compressed Row (CRS) etc [5]. The most straight-

forward sparse matrix scheme is the Coordinate (COO) scheme. This scheme stores

the row and column indices of every nonzero element. The Coordinate scheme is not

the most efficient because it involves a great deal of indexing, therefore slowing down

the computations. Another format is the Compressed Row Format (CRS) which
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puts nonzero elements of rows one after the other in consecutive positions. This is

the most widely used format because its very straightforward and efficient. Further,

this is also the most general sparse matrix representation, in other words, it does

not focus on specific types of sparse matrices, such as diagonal, jagged, etc. The

Compressed Column Storage (CCS) format is another form of representing matrices

which is the transpose format of the CRS. Another format specific to the diagonal

sparse matrices is the Jagged Diagonal Storage (JDS) format which is commonly

used in GPU systems [7]. In this format, the strategy is to use the diagonals to

represent the minimum number of nonzero elements in a row. The Transpose Jagged

Diagonal Storage Format (TJDS) is based on the traditional JDS format, and has

been shown to provide superior performance [14]. The performance edge is achieved

by removing the permutation step required in the JDS format, a step which also

decreases the storage space needed.

In the stapl library we use the Compressed Row Storage (CRS) format to im-

plement the storage component of our parallel sparse matrix container, because it

brings out most of the benefits of having a sparse matrix container. The CRS Format

is a good choice for our purpose because it is the most general format, and it can be

applied to used for any of the sparse matrix algorithms available. More details on

the implementation of the stapl parallel matrix container are given in Section 3.

2.3 Parallel Matrix Multiplication Algorithms

Parallel matrix multiplication algorithms have been an active area of research for

decades, and since they are very important in scientific studies, there is constant re-

search for improvement. Parallel matrix multiplication algorithms are characterized

with data distribution, underlying memory architecture, and the parallel environ-

ment where they will be executed. There are matrix multiplication algorithms that
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are specific to shared memory, distributed memory, or GPU machines. In this the-

sis, we will focus on parallel matrix algorithms that are suitable for shared and

distributed memory implementations. The rest of this section will give a brief intro-

duction to the details of parallel matrix multiplication, highlighting design decisions

made by different algorithms, and it will conclude with a detailed explanation of the

core algorithm for parallel matrix multiplication which is used in state of the art

algorithm [13].

Assume we have three matrices A, B, and C all of size n by n. The product C =

AB is defined as cij =
∑n

k=1 aikbkj where n is the number of columns of A and rows in

B. The naive algorithm for implementing matrix multiplication requires n3 multiply

operations and n2(n − 1) add operations, in the case of square matrices [13]. The

algorithmic challenges of implementing efficient parallel matrix multiplication are

task placement, and communication of partial results. These issues are complicated

by the lower level details of data-distribution and communication aggregation.

In Figure 2.1 a diagram of naive matrix multiplication is shown, where each value

of matrix C is computed in one step. In other words, the final value of each C index

is calculated at one time. On the other hand, if we look at the summa example

in Figure 2.2, we see that the calculation is structured differently. First, an initial

matrix C ′ is created and after each iteration it contains the preliminary values of

each rank-one update. A rank-one update produces a non-final matrix C ′ whose

values will converge to the final values after a set number of iterations. So, on each

iteration, as the next set of values is created, they are added to the preliminary

values, iteratively accumulating the final solution C.

There are two well known strategies for partitioning matrices in distributed mem-

ory machines. The most straightforward approach is to arrange P processors in a

two-dimensional grid sized
√
P − by −

√
P . The basic idea here is to assign proces-
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Figure 2.1: Naive matrix multiplication example.

sor (i, j) to its corresponding chunk of computations Cij =
∑√

P
k=1AikBkj. Another

method of distributing the data can be done in a 3 dimensional setting ( 3
√
p-by- 3

√
p-

by- 3
√
p). In this case a processor (i, j, k) is assigned the values of matrix Aik and

Bkj and is responsible for calculating the values of Cij. The 3 dimensional algo-

rithm proves to be more balanced and produce fewer communications than the 2

dimensional algorithm [10].

Naive implementations and focus on distributions does not always yield the best

performance. The number of times values are copied from one location to another,

remote reads, and synchronization, all add to the complexity and cost of perfecting a

parallel matrix multiplication algorithm. Two of the most well known dense-matrix

multiplication algorithms are Cannon’s [3] and Fox’s [4]. These algorithms suffer

from some disadvantages. The first problem with these algorithms is that they
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Figure 2.2: summa rank-one illustration.
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assume matrices with perfect square dimensions (row = col =
√
p). Removing such

a constraint from these algorithms is nontrivial. Another issue with these algorithms

is when one of the dimensions of the matrix becomes too small. In this case, a large

amount of remote-reading occurs, degrading overall algorithm performance.

An algorithm that overcomes the shortcomings of Fox and Cannon algorithms is

summa - A Scalable Universal Matrix Multiplication Algorithm [13]. The summa

algorithm performs better than its counterparts because it is more general, simpler,

and more efficient. This algorithm assumes that the parallel computer processors

are arranged in a r × c mesh where r is the number of rows, and c is the number of

columns, therefore, the number of processors p = rc. The chunk of data and tasks

that correspond to a processor Pij are indexed by row and column data (i, j). The

summa algorithm proceeds as a sequence of rank one updates and through multiple

iterations accumulates partial results to find the final values.

Consider the matrices A, B, and their product C, of size r by c. Calculating the

initial value of C ′ij requires multiplying Cij =
∑k−1

l=0 alib
j
l , where ali = Ai,0...Ai,k−1 and

bjl = B0,j...B0,k−1, and k is the number of rows inA and columns of B. Therefore, we

can see that the matrix-matrix multiplication can be achieved as an iterative solution

by computing C ′ values, until the final C values have been accumulated.

The summa technique is to parallelize the rank-one updates, allowing us to cal-

culate C ′ values in parallel, and eventually converging to the final solution. This

approach of summa allows us to have a minimal amount of remote-reading and

copying, because the data decomposition is performed in a way such that the needed

data is always local assuming blocks of A and B are rotated between processors. In

the rank-one updates all the values of Ai are assigned to the row i and all the values

of Bj will reside in node column j. The summa discusion is continued in Section 4.2.
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3. PARALLEL SPARSE CONTAINERS IN STAPL

3.1 stapl pContainer Framework Overview

The goal of stapl is to simplify the process of developing parallel programs.

Libraries such as STL, BGL, and MTL provide sequential containers that make pro-

gramming easier for developers [12]. Similarly, stapl provides parallel containers,

in the literature also known as pContainers, which are objects shared between

multiple processors and provide parallel methods that can be called in concurrent

fashion [12].

stapl containers are data structures that are globally addressable, independent

of the distribution, which means that the programmer does not have to manage and

control the distribution of data in a parallel system if they do not wish to do so.

Furthermore, they are easily extendable and composable to create intricate data-

structures which support nested parallelism and that allow better exploitation of

data locality [12].

stapl containers hold a finite number of elements and use the runtime of stapl to

invoke asynchronous calls to remote locations to implement their operations. There

are various types of parallel containers in stapl categorized into static containers,

including arrays and matrices, dynamic containers, including vectors and lists, and

associative containers, including sets and maps, and relational containers, including

graphs.

In Figure 3.1 we give a visual overview of the parallel container framework in

stapl by showing the framework components used in a container instance. On the

top level, we have the container directory, which is a globally addressable distributed

register that provides information on the mapping of which processor stores an ele-

11



Directory

P0

CMBC BC BC BC BC BC

CMCM CM

P1 P2

Figure 3.1: Organization of the pContainer framework.

ment with a given id. Every processor has its own container manager (noted CM in

Figure 3.1), which is responsible for storing the base containers (noted BC in Figure

3.1), and a registry for mapping element id to base container id. The base containers

can be sequential or parallel containers and they provide interfaces and methods for

interacting with the data. The stapl container framework provides a collection of

base class implementations that can be utilized and extended to develop new con-

tainers by using inheritance, specialization and composition. Therefore, the stapl

parallel container framework can be used to generate wrappers for any sequential base

container that provides enough information to use it in a parallel environment [12].

Our work implements a parallel sparse matrix container using the stapl con-

tainer framework.. This container provides an interface that includes element access

and update operations, along with methods that provide metadata of the container

(e.g., size, number of nonzeros etc.). It also provides templated parameters that can

be used to specify the data distribution and traversal of the matrix. Additionally, we

provide matrix-matrix algorithms and operations that include parallel matrix mul-

tiplication, addition, assignment, and subtraction that can be used to process these

matrices. These algorithms are implemented using the stapl skeleton framework.

12



3.2 stapl Sparse Matrix

When designing a parallel sparse container one must consider the machine envi-

ronment, load balancing, minimizing communication, and maximizing performance

of each processor. The rest of this section will describe the approach used to design

a parallel sparse matrix container, the details of implementation, and sparse matrix

operations..

Sparse matrices differ greatly in terms of space efficiency and algorithms from

dense matrices. Therefore, there are benefits to having a sparse matrix container in

the stapl library. The main difference between the two types of the matrices is the

size of the storage required to store nonzero elements. With sparse matrices we can

save a great amount of memory in cases with few nonzeros, and thus, be able to run

much larger problems. Further, having sparse matrices in stapl means that users

can actually develop algorithms which are specific to sparse computations.

Using the views in stapl, specifically the use of packed dense domains to describe

sparse containers, we were able to run dense-specified algorithms on sparse matrices

and vice versa. More detail for this is given in the experimental results section.

When designing the stapl sparse matrix, we had the following goals in mind.

Scalable Performance. We want the container to show scalable performance for

shared and distributed memory systems in parallel execution. Further, the container

methods that are implemented using runtime facilities whose performance has been

demonstrated.

Thread Safety. At no point in time, the programmers that will use the stapl

sparse matrix will have to worry about data locality or consistency issues. The stapl

sparse matrix is integrated in the library so that the stapl runtime system takes

care of the parallel environment challenges of concurrent element access.

13



Unified View. The pContainers are globally addressable. In other words,

the programmer does not have to worry whether the element in question is local

(i.e. in shared memory) or remote (i.e. in distributed memory) on another node

of the system. All the internal computations required to handle these cases are

already taken care of by the library so the programmer can focus on algorithm

implementation. However, if the programmer is interested in such details, they have

the ability to customize those components of the container.

Composition. The sparse matrix may have elements that are containers, and

itself may be used as the element of another container. For example, a user might

use an array, for which the data type is a sparse matrix, and vice versa. This is fairly

straightforward, and all the programmer has to do is define the types.

As mentioned in the previous section, the stapl pContainer framework allows

integrating any type of external containers to serve as the base containers. This is

the approach we took to implement the sparse matrix. We used the Matrix Template

Library [11] sparse container in the Compressed Row Format (CRS) to implement the

stapl sparse matrix. Integrating this in stapl requires adding a new class wrapping

the MTL instance to meet the API required of the base container. Then, through

this wrapper, we are able to write stapl methods that will reflect the methods of

the underlying container.

In Table 3.1 we have expressed the associated types common to all of the stapl

pContainers. Each pContainer has an associated distribution, mapper, and

partitioner. The distribution is responsible for distributing the elements of a con-

tainer, and it interacts with the directory which is globally addressable. The mapper

and the partitioner, are the components which are used to specify the distribution

in question.

14



Table 3.1: pContainer associated types.

Value type C::value type Object type stored in the con-
tainer.

Iterator type C::iterator Iterator type used to iterate
through a container’s elements.

Reference type C::reference Reference to the value type of the
container.

Partition type C::partition type The type of the container parti-
tioner that maps elements to par-
titions.

Domain type C::domain type The type of the domain of GIDs
GID type C::gid type The type of the GID
CID type C::cid type The type of the CID (base con-

tainer ID)
Mapper type C::mapper type The type of the mapper that

maps partitions to locations.
Base container type C::component type The type of the underlying base

container

Table 3.2: pContainer valid expressions.

c.size() Returns the global size of the container
c.get element(i) Returns the element at GID i
c.set element(i, x) Sets the element at GID i to the value x
c[i] Returns a reference to the value at GID i
c.begin() Iterator to the first element
c.end() Iterator to one past the last element

To implement the stapl sparse matrix we combine the dense domain with a

sparse base container storage and were able to re-use many of the elements of

the stapl dense matrix. The distribution of the stapl matrix interacts with the

compressed-row-format container and gets access to only the non-zero values. In

other words, the loosely-coupled and generic design approach in the pContainer

framework allows us to easily integrate the compressed row format matrix, and at the
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same time get its benefits. Most of the interfaces that are used for the dense matrix

can be reused in the sparse version without any need to change. The distributions

and partitioning algorithms behave the same, only that in the sparse case, they have

to deal with a smaller number of elements.

In Table 3.2 we present the methods common to all stapl pContainers. The

methods provide a unified view for the programmer to access and modify elements

in the container, as well as other information such as size and iterators. Internally,

these methods interact with the stapl runtime system [8], to fulfill the requests.

--------------------------------------------------------------------------------
Command:            ./dense_mtl_test_100000_10000
Massif arguments:   --time-unit=B
ms_print arguments: massif.out.15921
--------------------------------------------------------------------------------

    GB
3.730^                                    ################################### 
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
     |                                    #                                   
   0 +----------------------------------------------------------------------->GB
     0                                                                   7.459

Figure 3.2: Memory utilization for stapl dense matrix of size 100,000×10,000.
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We used Massif, a memory profiler, to show the significance of memory usage

improvement achieved by the stapl sparse container. Massif is a tool that graphs

the memory usage of a program during its execution. In our experiment, we created

a program that initializes a stapl dense matrix container of ints and a stapl sparse

matrix container of ints, of size 100,000x10,000 with only 5 nonzero elements.

--------------------------------------------------------------------------------
Command:            ./sparse_mtl_test_100000_10000
Massif arguments:   --time-unit=B
ms_print arguments: massif.out.16365
--------------------------------------------------------------------------------

    MB
20.56^                           ::::::::::::::::::::::                       
     |                      #::::: ::: ::: ::: :: ::: ::                      
     |                    ::#: ::: ::: ::: ::: :: ::: ::::                    
     |                   :::#: ::: ::: ::: ::: :: ::: ::: :                   
     |                  ::::#: ::: ::: ::: ::: :: ::: ::: ::                  
     |                 :::::#: ::: ::: ::: ::: :: ::: ::: ::::                
     |                ::::::#: ::: ::: ::: ::: :: ::: ::: :::                 
     |               :::::::#: ::: ::: ::: ::: :: ::: ::: ::: :               
     |              ::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::              
     |             :::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::::            
     |            ::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: :           
     |           :::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::          
     |         :::::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::@::::     
     |         :::::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::@         
     |         :::::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::@         
     |         :::::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::@         
     |    ::::::::::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::@    :    
     |    :    :::::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::@    :::: 
     |    :    :::::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::@    :    
     |    :    :::::::::::::#: ::: ::: ::: ::: :: ::: ::: ::: ::: ::@    :    
   0 +----------------------------------------------------------------------->MB
     0                                                                   65.54

Figure 3.3: Memory utilization for stapl sparse matrix of size 100,000×10,000.

In Figure 3.2 we can see the output of Massif for the stapl dense matrix where

the peak memory usage is over 3.730 GB. The same experiment when ran with a

stapl sparse matrix in Figure 3.3 utilizes only 20.56 MB. This enables us to run
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programs of sparse matrices with data sizes that are not possible run with dense

matrices. More details for this result are provided in Section 5.

In addition to the methods described in Table 3.2 we implemented parallel matrix

operations for addition, subtraction, assignment and scale. These operations are

performed by modifying the resulting matrix C with the input matrices. For example,

if we are adding matrix A and B, then we first perform the operation C = A, and

finally C+ = B. The same methodology is used in implementing subtract, and

assign. Another operation we have implemented is the scaling of a matrix. The

approach taken on the scale implementation is C = A ∗ k where k is a scalar.

In Section 5 we present experimental results of the matrix operations implemented

for the stapl sparse matrix, as well as a comparison with the dense matrix.
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4. SUMMA IN STAPL

4.1 Algorithmic Skeletons in stapl

Writing parallel programs proves to be much more difficult than sequential pro-

grams due to the intricacies of concurrency and data access, therefore for many years

now, easy programmability of parallel applications has been a continuous research

topic [15]. Data-flow programming provides an intuitive way of visualizing parallel

and collective operations. A data-flow graph of a specific program, also known as

a task-graph, represents the flows of data and the operators invoked on that data

when that particular program is run. In a data-flow graph, the edges are flows of

data, and the vertices are tasks or functions to be performed on that data. In Figure

4.1 we can see an example of a data-flow graph which is a program that executes a

numerical operation.

The stapl programming model is based on the data-flow concept and it uses al-

gorithmic skeletons to define task-graphs of parallel programs. Algorithmic skeletons

are presented to the programmer as higher-order functions and operators which can

*a

b c

+

x

z

Figure 4.1: Data-flow example of numerical operation.
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  x2x2   x2x2 x2x2

1 4 9

  x2x2   x2x2 x2x2

1 16 81

Iteration 0:

Iteration 1:

Figure 4.2: Example of map(x2) skeleton with two iterations.

be used to specify data dependencies and steps to solve a particular problem [15].

After the task-graph representation is generated using algorithmic skeletons, it is ex-

ecuted using the stapl data-flow engine knowns as the PARAGRAPH and the stapl

Runtime System [8]. The rest of this section gives an introduction to stapl Algo-

rithmic Skeleton framework and the specific tools that are used to define algorithmic

skeletons. In Section 4.2 we provide a detailed description of the parallel implemen-

tation of summa using algorithmic skeletons.

In Figure 4.2 we present the map skeleton, which takes a collection of data (e.g.

array) and performs a unary operation on each of the elements. In this particular

example, the operator invoked is the square operator. The figure also illustrates the

iteration in the skeleton, which is discussed in the following paragraphs.

Parametric Dependency. Represents the finest grain of a task where a simple

operation is executed in a function vertex of the task graph. In the map(x2) example

in Figure 4.2 we have three instances of the parametric dependences on each iteration

starting from each index of the collection. In symbolic notation, the parametric

dependence of the map skeleton can be defined as map-pd(x2) ≡ {< i >→< i >

, x2} [15].
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Elem. The parametric dependency is defined over an index. In order to execute

the parametric depencence operators on all indices of a collection, we have to use

the elem operator. The elem operator uses a span defined over the domain of the

collection to expand the computation. The symbolic notation of the example in

Figure 4.2 for elem is map(x2) = elem(map-pd(x2)) [15].

Repeat. Some algorithmic skeletons will have multiple iterations of the same

computations, very similar to loops. These situations can be expressed using the re-

peat operator. The symbolic notation for the Figure 4.2 is map(x2) = repeat(elem(map-

pd(x2)), 2). Figure 4.2 shows the use of repeat to apply the square operation to each

element of the input twice.

Compose. The compose operator is used to combine multiple algorithmic skele-

tons together. For example, if we had a map(x2) and a map(x−−) we could com-

pose them in one skeleton to first find the square of each element, and then decre-

ment one from each element. The compose skeleton notation can be expressed as

compose(map(x2),map(x−−))(x) = map(x2) ◦map(x−−)(x).

Flows. When the composition of skeletons occurs, often times we want to relate

different outputs together, or give the output of one skeleton as the input of one

or more skeletons. In these cases, we use flows to define the producers and the

consumers of data. The flows have to be specified explicitly for the iterations in

which we have complex cases.

4.2 summa Matrix Multiplication

This section provides a detailed description of how the summa algorithm is ex-

pressed using algorithmic skeletons. Generating the taskgraph for this algorithm

requires combinations of multiple skeletons, as well as definitions of each specific

summa skeleton component.
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⇥⇥

++

A[i, k] B[k, j]

C 0[i, j]

Figure 4.3: summa parametric dependence.

summa Parametric Dependence. The parametric dependence creates a simple

summa task by extracting the input indices from matrices A, B, and adds the result

of the product in the resulting indices of C ′. The indices used depend on the iteration

number. Specifically, the parametric dependence specifies the finest-grain task in

summa which is C[i, j] = A[i, k]×B[k, j] + C ′[i, j].

In Figure 4.3 we can see an illustration of the fine-grain task performed in summa.

This is invoked for each index, at each rank-one update, executing one more step

toward the final solution. Now that we have defined the elementary task used to

calculate each value of the resulting matrix, we need to expand the calculation over

the two-dimensional domain. The calculation is expanded to the extent of the com-

putation domain by using the Elem operator.

summa Two-dimensional Span. When we distribute the tasks among proces-

sors we want it to be divided as evenly as possible. This makes our programs scale

better and perform uniformly. The Span is used to allocate a balanced load to each

processor. It uses the number of iterations, and sizes of matrices being multiplied to

calculate each processor load. This serves us when the task-graph is generated, to

partition each in its corresponding location. The formula derived in this step is also

used to expand the calculation throughout the two-dimensional matrix domain.
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repeat iterations
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Figure 4.4: Skeleton composition for summa.

summa Flows. Are used to connect the different skeleton components that are

combined to perform the summa calculation. They need to be defined for three

corner cases of the algorithm. The first iteration, the intermediate iterations, and

the final iteration, as well as the special case where matrix multiplication requires

only one iteration. In Figure 4.4 we show a high-level representation of the skeleton

compositions involved to compute summa. First we provide the inputs to the skele-

ton. Then, we invoke the repeat skeleton for a specific number of iterations, passing

the C ′ matrix in between the iterations. When the iterations are completed, the

output is copied to the final matrix C. Then, we use the stapl skeleton framework

to handle the I/O.

When multiplying two matrices of size n × k and k ×m the inner dimension k

defines the number of iterations needed to calculate the final result. We use k to

provide the number of iterations of our skeletons. The repeat and elem operators

are integrated in the summa implementation. Repeat provides specification for the

number of iterations, also known as rank-one updates, to calculate the final values

of each index in the matrix C. Elem is used to invoke the parametric dependence
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Figure 4.5: summa taskgraph for multiplication of 2x2 matrices.

throughout the whole domain.

In Figure 4.5 we can see an illustration of the data-flow graph of summa for

multiplying two 2x2 matrices. The parts on the gray, are the inputs, the green lines,

represent the flows between the tasks, and the boxes with red, are the actual tasks

and their task ids. The Figure 4.5 shows the data-flow after it has been generated

by the skeleton framework and the stapl PARAGRAPH.

We specified multiple skeleton components from scratch to express the summa

algorithm. We also used some of the available components used for I/O such as sink.

In Section 5, we provide experimental results and discuss the performance of summa.
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5. EXPERIMENTAL RESULTS

5.1 Machine Specifications

The experiments were run on Rain, a Cray XE6m cluster. In Table 5.1 we have

illustrated hardware configurations of the cluster, it has 576 processors connected in

a 2-D torus.

Table 5.1: Cray XE6m hardware specifications.

Board count 6
Nodes per board 4
Node count 24
Cores per node 32 on 12 nodes

64 on 12 nodes
Total number of cores 576
Processor Type 64-bit AMD Opteron (Interlagos) 6272, 2.1GHz
Cache 8x61 KB L1 I-cache, 16x16 KB L1 D-cache, 8x2

MB L2 cache per core, 2x8 MB shared L3 cache
Memory 32 or 64 GB registered ECC DDR3 SDRAM per

compute node
Memory per core 2 GB
Interconnect 1 Gemini routing and communication ASIC per

two compute nodes.
48 switch ports per Gemini chip (160GB/s switch-
ing capacity per chip).
2-D torus organization

Table 5.2 displays the software specifications on rain, we used g++4.9.2 as a C++

compiler. stapl uses many components of the C++ Boost library, for our results

Boost 1.56 was used.
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Table 5.2: Cray XE6m software specifications.

OS Cray Linux Environment
Compilers Cray g++ version 4.9.2
MPI version 2.0
Libraries Boost version 1.56

We provide experimental results for sparse matrices and their operations, the

summa computations, and the sparse summa computation. Further, we compare

the sparse and dense matrices in different types of inputs to test our claims for the

different implementations.

5.2 Sparse Matrix

11

0

0

11

11 11

11 1111

11 1111

11 1111

11 1111

11 1111

11 1111

Figure 5.1: Tri-diagonal sparse matrix illustration.
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Sparse matrix results were conducted on three different types of matrices. Choos-

ing the type of inputs to run for the sparse matrix container we wanted to represent

cases that are applicable in real world computations.

The first type of matrix we used was a Tri-Diagonal matrix showed in Figure 5.1.

Tri-diagonal matrices [6] are used to solve linear equations and have high applicability

in statistical physics. The Tridiagonal matrix represents a very unbalanced input

therefore it was chosen to see the behavior of the container.

Algorithm 1 Pseudocode for scale-free edge generation

1: procedure generateEdge(i)
2: r ← 2i + 1
3: repeat r := h(r) until r is even
4: return (bi, dc, br, 2dc)

Algorithm 2 Pseudocde for random matrix nonzero generation

1: procedure GenerateRandomMatrices(n, A, B)
2: nonzerosA← random int(0, n2 + 1)
3: nonzerosB ← random int(0, n2 + 1)
4: for i = 0..nonzerosA do
5: xA vector.push back(random int(0, n))
6: yA vector.push back(random int(0, n))

7: for i = 0..nonzerosA do
8: A(x vector[i], y vector[i]) = 1

9: for i = 0..nonzerosB do
10: xB vector.push back(random int(0, n))
11: yB vector.push back(random int(0, n))

12: for i = 0..nonzerosB do
13: B(x vector[i], y vector[i]) = 1
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The other type of matrices we decided to use for analyzing the performance of

sparse matrices is scale-free graphs [9] because, graphs can be represented using a

matrix, and they are ubiqutuous in every network analysis. Scale free matrices are

generated using Algorithm 1. The d in the pseudocode represents the average degree

in the graph, and the function h() represents a hash function that returns a random

number from 0...r−1. In terms of matrices, d is the average number 1’s in a column.

An index that has a nonzero value in the scale-free graph matrix represents an edge.

For simplicity, here we used all edges of value 1. The number of nonzero values in

the scalefree graph is approximately d× n. We used a d parameter of 100.

The final type of matrix that we used is a random matrix, to compare the per-

formance of sparse and dense matrices. We accepted a user input for the number

of rows of the matrix, and then chose a column size randomly. Then, we gener-

ated a random number for the number of elements. Then, we created two vectors

with random values, the length of the number of elements. Finally, we iterated over

the random vectors and used them as indices to set the values in the matrix. The

pseudocode for the generation of the random matrix is presented Algorithm 2.

In Figure 5.2 we show the execution times of the Add operation on a Tri-diagonal

graph and on a Scale-free graph from 1 to 512 operations. The maximum speedup

that we get on the add operation is for a Tri-diagonal graph is 217x on 512 processors.

On the Scale-free graph input we get a max speedup of 236x on 512 cores. The scale

free graph shows similar scalability as the Tridiagonal matrix, and is faster. The

reason for that is that the data is more broadly distributed and processors get more

balanced chunks of data to compute.
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Figure 5.2: Execution times of add operation on tridiagonal, random, and scale-free
graph sparse matrices of size 2× 107 by 2× 107.

Whereas in the tri-diagonal experiment, some processors get less data and on

the same pattern, so the corner processors will be extremly load imbalanced. The

random input matrix performs faster than the others because it is balanced, since

every processor generates the same amount of nonzeros.

Similarly in Figure 5.3 the sparse subtract operation is shown. We achieve around

300x speedup at 512 cores.

In Figure 5.4 we show the execution times of the scale operation on sparse ma-

trices. The scale matrix operation on the tridiagonal matrix shows around 200x

speedup on 512 cores. The confidence intervals are not visible in the graph. There is

a small drop from one core to two cores due to communication and synchronization.

This is expected in many experiments due to the overhead of parallelism. The reason

why the random matrix is the fastest is because of the perfectly balanced pattern.
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Figure 5.3: Execution times of subtract operation on tridiagonal, random, and scale-
free graph sparse matrices of size 2× 107 by 2× 107.
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Figure 5.4: Execution times of scale operation on tridiagonal, random, and scale-free
graph sparse matrices of size 2× 107 by 2× 107.
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Each processor has the same amount of nonzeros placed in different places, which

when seen from a sparse viewpoint look identical.

Generally, we see a similar trend with all the sparse matrices that we have gener-

ated since our distributions are only focused on the nonzero values. This shows that

there is a consistent scalability with the CSR base container that we have chosen.

5.3 stapl Sparse Matrix vs stapl Dense Matrix

The stapl dense matrix is implemented assuming no space efficiency optimiza-

tions. In the following study we show the performance difference of the two types of

matrices in three different types of matrices.
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Add Random Matrix 40000x40000 with 1000 nonzeros on Rain

Figure 5.5: Execution times for sparse and dense matrix on a random matrix.
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The random matrix generated in Figure 5.5 is created using random values for

the number of elements and the indices where the nonzero values are placed. The

matrix is 40000 by 40000 with only 1000 nonzero elements. We can see that the

sparse matrix outperforms the dense matrix since the number of nonzero elements is

very small compared to the matrix size.

Note that the indexing operator for the sparse matrix is much slower than the

indexing of the dense operator, since it has to do a transformation on each value to

determine where the nonzero value exists.
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Figure 5.6: Execution times for sparse and dense matrix on a scale-free graph.
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However, since the sparse matrix is only focusing on the nonzero values, it has

the performance edge. Further, the sparse matrix also uses much less storage than

the dense matrix.

In Figure 5.6 we show the performance difference of the stapl sparse matrix and

the stapl dense matrix. The matrix size here is 40000 by 40000 with 1000*40000

nonzero values. The nonzero values are distributed on a scale-free graph manner.

Since the number of nonzeros is a lot less than the size of the matrix, we clearly see

that the sparse matrix outperforms the dense matrix. On 32 cores the sparse matrix

is about 14x faster, whereas on 512 cores the sparse matrix is 32 times faster.
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Figure 5.7: Execution times for sparse and dense matrix on a full matrix.
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In the above experiments we see this behavior because the sparse matrix is fo-

cusing only on the nonzero values, whereas the dense matrix is also iterating (and

storing) the zero values.While the number of nonzero elements is very small, the

dense matrix is doing many computations on zeros, which are uneccessary.

In Figure 5.7 we see that the dense matrix drastically outperforms the sparse

matrix. The full matrix used in this experiment is a completely filled matrix with

random values. In other words, there are no-nonzero values. Since the dense indexing

operator is much faster than the sparse indexing operator the dense matrix gets the

performance edge. On 512 processors the dense matrix is 52x faster than the sparse

matrix. Note that in this case the sparse matrix also uses more memory because of

the extra data structures needed to maintain the index mapping functions. In 32

processors it is 52x faster.

In conclusion, we saw the scalability performance of the stapl sparse matrix and

we see that it shows scalability up to 512 cores on Rain, even for completely dense

graphs. We also saw that the space efficiency of the sparse matrix allows us to run

very large inputs. Further, we showed that the sparse matrix outperforms the dense

matrix on different types of sparse matrices, even when the sparsity is around 50%

nonzeros.

5.4 summa

In Figure 5.8 we show the execution times for the Fine Grained summa algorithm.

The algorithm shows scalability of 6x at 512 processors. For each of the different

types of inputs we see the similar behavior of summa algorithm. It shows scalability

among all inputs provided. It is clear that the overhead of task creation and man-

agement creates a huge drawback because it doesn’t allow us to use large input sizes

in the computation. Another factor that drastically deteriorates performance of this
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implementation is the extensive amount of communication needed in a fine grained

computation for each minimal task.
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Figure 5.8: Fine-grained summa execution time with dense matrices of size 250×250.
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6. CONCLUSIONS AND FUTURE WORK

In this thesis we have developed a parallel sparse matrix container in the stapl

library and we have implemented the summa matrix multiplication algorithm. These

components have been added to the stapl library. We have shown that the usage of

parallel sparse containers is beneficial for any parallel library because they allow us to

write sparse specific algorithms and save large amounts of storage. Further, we have

provided the summa skeleton which is the first step to complicated algorithms and

applications developed with algortihmic skeletons. This work has opened the door

to many different possibilities for research which could range in Adaptive Matrix

Containers, Algorithmic Skeletons, and Data Distribution strategies. The next few

sections detail the possibilities of how this work can be extended.

6.1 Parallel Hybrid Matrix Container

One possibility, which would allow the stapl users to get most benefits of sparse

and dense matrices is a parallel hybrid matrix container. The idea is to have a

threshold value for which the construction of the matrix would decide whether to

use a dense or sparse matrix base container. However, ideally, not at a global level,

but instead on a location level. The base container instantiation occurrs at runtime,

therefore to be able to initialize such container, the programmer needs to specify an

option that would identify which base container to use at the instantiation of the

pContainer.

Global-Adaptive Matrix Container. The first step of achieving this goal

would be designing an adaptive matrix container, which based on a threshold, would

decide whether to use a sparse or dense base container. This could easily be achieved

by passing in the values of the domain and number of non-zeros to the tem-
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plate arguments of the matrix. Then, the programmer would need to propagate that

knowledge when deciding which base container to instantiate (on base container traits).

This way, we would have a runtime specification of the base container at a global

level. In other words, all locations would have either a sparse base container or a

dense base container, but it would be the same on all locations.

Processor-Level Adaptive Matrix Container. We know that in the pCon-

tainer framework every location may have multiple base containers. This occurs

because of the data distribution. Each base container may have a different number

of elements. When a base container is initialized, one will have to determine what

internal data-structure is instantiated, in this case, a sparse matrix or a dense matrix.

This will require a modification to the pContainer organization to support

functionalities correspondent to the underlying base container types. The pCon-

tainer methods will have to be aware of the underlying sequential base container,

and will have to mimic the correct methods.

Supporting such operations will require a completely new base container inte-

grated in the stapl framework. The pContainer for matrices that inherits from

the multiarray may or may not be used, depending on the base container that is im-

plemented. However, the specification of every method has to be defined for sparse

and dense containers because they will have a different m data data structure. The

m data data structure inside a pContainer refers to the underlying base container

storage and is used to access/modify the underlying data. It’s interface and API can

be different for different base containers, therefore, the programmer must support

both. Or, they must develop a way which would, at compile time, decide the paths

that the execution will take, depending on the underlying base container.

Having such a container will increase the size of the executable drastically because

it will have to generate code for two different types of sequential containers, and their
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parallel counterparts in stapl.

6.2 Data Distribution Strategies

The stapl sparse matrix has opened the doors to multiple available projects

for research in the domains of pContainers and parallel algorithms. Support for

efficient parallel algorithms tailored for sparse matrices has now a foundation, and

there are many ways in which it could be improved.

A large variety of data distribution algorithms can be implemented in stapl to

improve the performance of sparse algorithms drastically. Further, they can and

should be combined with data-structures that best fit the needs of the algorithm.

Again, this opens the door for multiple adaptive algorithms tailored for specific sparse

algorithms.
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