
UNIFORM SAMPLING FRAMEWORK FOR SAMPLING BASED MOTION

PLANNING AND ITS APPLICATIONS TO ROBOTICS AND PROTEIN

LIGAND BINDING

A Dissertation

by

HSIN YI YEH

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Nancy M. Amato
Committee Members, J. Martin Scholtz

Dezhen Song
Tiffani L. Williams

Head of Department, Dilma Da Silva

May 2016

Major Subject: Computer Science

Copyright 2016 Hsin Yi Yeh

ABSTRACT

Sampling-based motion planning aims to find a valid path from a start to a goal

by sampling in the planning space. Planning on surfaces is an important problem in

many research problems, including traditional robotics and computational biology.

It is also a difficult research question to plan on surfaces as the surface is only a small

subspace of the entire planning space. For example, robots are currently widely used

for product assembly. Contact between the robot manipulator and the product are

required to assemble each piece precisely. The configurations in which the robot

fingers are in contact with the object form a surface in the planning space. However,

these configurations are only a small proportion of all possible robot configurations.

Several sampling-based motion planners aim to bias sampling to specific surfaces,

such as Cobst surfaces, as needed for tasks requiring contact, or along the medial axis,

which maximizes clearance. While some of these methods work well in practice,

none of them are able to provide any information regarding the distribution of the

samples they generate. It would be interesting and useful to know, for example, that

a particular surface has been sampled uniformly so that one could argue regarding

the probability of finding a path on that surface. Unfortunately, despite great interest

for nearly two decades, it has remained an open problem to develop a method for

sampling on such surfaces that can provide any information regarding the distribution

of the resulting samples.

Our research focuses on solving this open problem and introduces a framework

that is guaranteed to uniformly sample any surface in Cspace. Instead of explicitly

constructing the target surfaces, which is generally intractable, our uniform sam-

ii

pling framework only requires detecting intersections between a line segment and

the target surface, which can often be done efficiently. Intuitively, since we uni-

formly distribute the line segments, the intersections between the segments and the

surfaces will also be uniformly distributed. We present two particular instances of the

framework: Uniform Obstacle-based PRM (UOBPRM) that uniformly samples Cobst

surfaces, and Uniform Medial-Axis PRM (UMAPRM) that uniformly samples the

Cspace medial axis. We provide a theoretical analysis for this framework that estab-

lishes uniformity and probabilistic completeness and also the probability of sampling

in narrow passages. We show applications of this uniform sampling framework in

robotics (both UOBPRM and UMAPRM) and in biology (UOBPRM). We are able

to solve some difficult motion planning problems more efficiently than other sam-

pling methods, including PRM, OBPRM, Gaussian PRM, Bridge Test PRM, and

MAPRM. Moreover, we show that UOBPRM and UMAPRM have similar computa-

tional overhead as other approaches. UOBPRM is used to study the ligand binding

affinity ranking problem in computational biology. Our experimental results show

that UOBPRM is a potential technique to rank ligand binding affinity which can

be further applied as a cost-saving tool for pharmaceutical companies to narrow the

search for drug candidates.

iii

DEDICATION

To my parents: you are always my strong foundation

To my brother, Shu-Hao: you are my constant support

iv

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Nancy Amato, for her support and

encouragement. I deeply appreciate all her guidance and care through the years.

I would also like to thank my committee members, Dr. J. Martin Scholtz, Dr.

Dezhen Song, and Dr. Tiffani L. Williams, for their support and feedback. I appre-

ciate they committed their time to help me grow as a researcher.

I also thank all the collaborators that I have worked with over the years, both

on this work and on other research projects: Jory Denny, Chinwe Ekenna, Mukulika

Ghosh, Aaron Lindsey, Dr. Lydia Tapia, Dr. Shawna Thomas, and Chih-Peng Wu.

I am especially thankful to Shawna for her guidance over the years. Thank you

for your extreme patience as I explored research problems in motion planning and

computational biology. I am also grateful for working with Chinwe and Mukulika

through most of my graduate career. Since we’ve shared an office together, we col-

laborated not only on research but also the service in AWICS. We have accomplished

a lot by working together.

Thank you to all the Parasol members, both former and current.

Thanks to Texas A&M University Diversity Fellowship who have supported my

graduate career. I would also like to thank all the conferences and workshops that

provided travel grants during my graduate career. These include funding to attend

the Grace Hopper Celebration of Women in Computing Conference, the IEEE/RSJ

International Conference on Intelligent Robots and Systems, the IEEE International

Conference on Robotics and Automation, and the ACM Conference on Bioinfor-

matics, Computational Biology, and Health Informatics. It helped to broaden my

view.

v

Finally, I would like to thank my family who always support me and stay with

me through my graduate career. My parents taught me the value of the hard work.

Their encouragement helped me throughout this long journey. My brother, Shu-Hao,

has been the one who always reminds me the joy of learning new things. Thank you

for always providing me the courage of facing new challenges.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES . xv

1. INTRODUCTION . 1

1.1 Research Contribution . 5
1.2 Outline . 7

2. PRELIMINARIES AND RELATED WORK 8

2.1 Motion Planning . 8
2.2 Obstacle-Based Sampling . 9

2.2.1 OBPRM . 9
2.2.2 Gaussian PRM . 11
2.2.3 Bridge Test PRM . 12

2.3 Medial Axis Sampling . 12

3. UNIFORM SAMPLING FRAMEWORK 16

3.1 Uniformly Generate Configurations in Cspace 16
3.1.1 Bounding Box Adjustment . 17

3.2 Uniformity . 18
3.3 Probabilistic Completeness . 18
3.4 Uniform Sampling in Passages . 21

4. UNIFORM OBSTACLE-BASED PRM (UOBPRM) 23

4.1 Detecting Surface Membership . 23
4.1.1 Bounding Box Adjustment . 25

vii

4.2 UOBPRM v.s. Gaussian PRM . 26
4.3 Experiment Results . 29

4.3.1 Planners Studied . 30
4.3.2 Uniformity . 30
4.3.3 Cost . 40
4.3.4 Narrow Passage Analysis . 43
4.3.5 Motion Planning . 46
4.3.6 UOBPRM and Gaussian Sampling Performance Comparison . 47

5. UNIFORM MEDIAL-AXIS PRM (UMAPRM) 53

5.1 Detecting Surface Membership . 53
5.1.1 Bounding Box Adjustment . 54

5.2 Experiment Results . 56
5.2.1 Planners Studied . 57
5.2.2 Implementation Detail for Point Robot 57
5.2.3 Uniformity . 58
5.2.4 Cost . 61
5.2.5 Narrow Passage Analysis . 62
5.2.6 Motion Planning . 65

6. RANK LIGAND BINDING AFFINITY 68

6.1 Preliminaries . 69
6.1.1 Ligand Binding Affinity . 69
6.1.2 Modeling Molecular Motions 73

6.2 Method . 74
6.2.1 Protein and Ligand Models 75
6.2.2 Using UOBPRM to Rank Binding Affinity 75
6.2.3 Affinity Metrics . 78

6.3 Experiment Results . 79
6.3.1 Target Protein 3W6H . 79
6.3.2 Target Protein 4RRW . 80
6.3.3 Target Protein 4K5Y . 81

7. CONCLUSION AND FUTURE WORK 87

REFERENCES . 90

viii

LIST OF FIGURES

FIGURE Page

1.1 (a) A KUKA youBot [43] needs to pass through the narrow passage
caused by the surrounding obstacles in order to approach to the en-
trance to the next room. (b) Planning on the medial axis in the
narrow passage provides a high clearance path since the medial axis
is a surface that is equidistant to two or more obstacles. 2

1.2 (a) Binding between the protein 1UYX and two ligands. (b) The
binding pocket (binding site) is a small region on the protein surface
where the ligand can form chemical bonds to cause some biochemical
effects. The images were generated with PyMOL [25]. 3

1.3 Nodes generated by (a) PRM [40], (b) UOBPRM [22], (c) UMAPRM [73],
(d) OBPRM [2], (e) Gaussian PRM [13], (f) Bridge Test PRM [32],
and (g) MAPRM [68] in a simple 2D environment containing two
parallel obstacles. PRM, UOBPRM, and UMAPRM can guarantee
uniformly distributed samples on their respective targeted surfaces. . 4

2.1 The configuration distribution of OBPRM (in blue) is biased by (a)
the shape of the Cobst and (b) the position of the initial colliding con-
figuration cin (in red). 10

3.1 R is the target surface where uniform samples are distributed. The red
dashed line represents the small portion Rp,ǫ on R where the line seg-

ment (c, l
−→
d) crosses R. p is the intersection between the line segment

and R. Therefore, the probability of a line segment intersecting the
target surface is the probability that one endpoint of the line segment

resides in a sphere with radius l centered at p and the
−→
d intersects Rp,ǫ. 19

4.1 Finding intersections between the line segment and the obstacle by
checking the validity of intermediate configurations along segment.
The valid one is retained at every validity change. Here, the valid
nodes that are retained are solid [22]. 24

ix

4.2 The target surface R is the Cfree around Cobst. p is the intersection

between the line segment (c, l
−→
d) and the target surface which will be

retained as a roadmap node. Since the line segments are uniformly
distributed in the Cspace, the intersections found in R along the line
segments are also uniformly distributed [22]. 25

4.3 In this example, the uniformity guarantee is broken for UOBPRMbe-
cause the original bounding box (solid line) is too close to the Cobst
in the upper left and bottom right corners. This restricts the line
segments that can be placed in the red regions. The bounding box
is extended to the dashed line to allow all segments of length l that
could intersect the Cobst. 26

4.4 The example environment where directly expanding the bounding box
by the line segment length l wastes time in generating line segments
that can not find intersections in the targeted region. The solid line
shows the original bounding box, the dashed line shows the bound-
ing box directly expanded by l and the dotted line is the adjusted
bounding box we perform. 28

4.5 Four environments are used to compare the distribution of samples
produced by UOBPRM and other sampling methods. The robot is a
small cube. 31

4.6 Sample distribution example in the single ball environment. UOBPRM
has the most uniformly distributed samples around the obstacle surfaces. 33

4.7 Distribution comparison of ball (red) and free (blue) regions in the
single ball environment. Ideal percentage for ball is 25% and free is 0%. 34

4.8 Sample distribution example in the 4 balls environment. 35

4.9 Distribution comparison in the environment with 4 balls of equal size,
each ball is a different color. Ideal percentage is 6.25%. UOBPRM
and Gaussian sampling generate more uniformly distributed samples
than the others. 35

4.10 Sample distribution example in the mixture environment. 37

4.11 Distribution comparison of ball (red) and cube (blue) regions in the en-
vironment with a mixture of balls and cubes. Ideal percentage for ball
is 4.31% and cube is 8.19%. The sample distribution for UOBPRM is
the most uniform. 39

x

4.12 Normalized distribution error between different samplers. UOBPRM
has the lowest distribution error among other samplers. 40

4.13 Environments that vary the narrow passage width. Passage 1 is the
easiest problem and Passage 3 is the most difficult problem. The robot
is a small cube. 43

4.14 (a) Number of samples inside the narrow passage. (b) Time it takes
to generate 1000 samples in the roadmap. ⋆ stands for infinity value
as Bridge Test PRM is not able to generate any sample in the en-
vironment given the line segment length too short to bridge the gap
between obstacles. (c) Percentage of samples in the narrow passage.
The surface area ratio between the narrow passage and the Cobst is
0.4444. Only UOBPRM’s performance is comparable. 49

4.15 (a) Number of samples in the map in order to generate 100 samples
inside the narrow passage. (b) Time it takes to generate the configu-
rations. ⋆ indicates the infinity time that Bridge Test PRM needs in
Passage 1 since the line segment length is not long enough to bridge
the obstacles. 50

4.16 Two environments are used for the study of the motion planning prob-
lems. The robot is a small cube. 50

4.17 A relatively free environment is used to study the relationship between
UOBPRM and Gaussian sampling. The robot is a small cube. 50

4.18 Time required to generate 4000 nodes by UOBPRM and Gaussian
sampling with different line segment lengths (l in UOBPRM and d in
Gaussian sampling). Step size t is equal to line segment length. Both
methods perform similarly when the line segment length is short, and
UOBPRM is more efficient than Gaussian sampling when the line
segment length is long. 51

4.19 Distribution comparison of ball (red) and free (blue) regions. Ideal
percentage of ball is 25% and free is 0%. 52

5.1 The configurations and their closest obstacles. The medial axis is
given by the dashed line. Different colors represent different closest
obstacles. The closest obstacle is changed when the medial axis is
crossed. 54

5.2 An example showing that more than one crossing point can be iden-
tified by a line segment. 54

xi

5.3 The target surface R is the Cfree along the medial axis (dashed line).

p is the intersection between the line segment (c, l
−→
d) and the target

surface which will be retained as a roadmap node. Since line segments
are uniformly distributed in the Cspace, the intersections found in R
along the line segments are also uniformly distributed [73]. 55

5.4 An example illustrating the situation when the uniformity guarantee
is broken. The original bounding box (solid line) is too close to the
medial axis, restricting the line segments that can be placed in the
Cspace. The bounding box is extended to the dashed line to allow all
segments of length l that could intersect the medial axis. 56

5.5 Three examples showing how UMAPRM finds configurations on the
medial axis for a point robot by checking changes in closest triangles
on obstacles. The grey face is the medial axis. The medial axis is
crossed when (a) closest triangles are on different obstacles, (b) closest
triangles are on the same obstacle but not adjacent to each other, or
(c) neighboring concave triangles are on the same obstacle [73]. 58

5.6 (a, b) Two environments used to compare the distribution of UMAPRM
and MAPRM. (c, d, e) Narrow passages of varying surrounding obsta-
cle volume to compare sampling densities of UMAPRM and MAPRM.
The robot we study in every environment is a point robot. 59

5.7 The average of standard deviations of distances between each node and
its closest neighbor for roadmaps of 1000 samples between UMAPRM
(green), MAPRM (blue), and uniform random sampling on the medial
axis (red) [73]. 60

5.8 Distribution of 1000 samples generated by UMAPRM, MAPRM, and
uniform random sampling in the 2D Block environment [73]. 61

5.9 Distribution of 1000 samples generated by UMAPRM, MAPRM, and
uniform random sampling in the 3D Block environment [73]. 61

5.10 The time to generate 1000 samples for UMAPRM and MAPRM in
Obstacle 1, 2, and 3 [73]. 62

5.11 (a) Number of samples inside the narrow passage. (b) Time it takes
to generate 1000 samples in the roadmap. 63

5.12 (a) Number of samples in the map in order to generate 100 samples
inside the narrow passage. (b) Time it takes to generate the configu-
rations. 64

xii

5.13 Motion planning environments studied. The robot is a point robot for
all environments. (a) 2DMaze. The start and the goal reside at the
two ends in the free space. (b) STunnel. The start and the goal are
in the top left and the bottom right corners. (c) 2DHeterogeneous.
The start is in the top free space and the goal is placed in the bottom
cluttered region. (d) Bug Trap. The objective is to get out of the trap
through the narrow passage. 66

5.14 The time to solve the problem for UMAPRM, MAPRM, and PRM in
different environments [73]. 66

5.15 The average clearance of the path for UMAPRM, MAPRM, and PRM
in different environments [73]. 67

6.1 A protein (shown in wireframe) with a ligand (shown in spheres)
bound inside it. 69

6.2 The lock-and-key ligand binding model: (a) A ligand successfully
binds to the target protein due to complementary geometry and chem-
istry. (b) The ligand is incompatible and the protein-ligand complex
cannot form. 70

6.3 In the induced-fit model, the protein undergoes a conformational change
when ligand binds to it. The shape of the ligand becomes complemen-
tary to the shape of the binding site after the ligand binds to the
protein. 71

6.4 Protein 3W6H in wireframe (a) and in spheres (b) viewed by Py-
MOL [25]. (c) The protein is modeled as a rigid obstacle. (d)-(h)
Varying numbers of ligand samples (ligand centers of mass only shown). 76

6.5 Protein 4RRW in wireframe (a) and in spheres (b) viewed by Py-
MOL [25]. (c) The protein is modeled as a rigid obstacle. (d)-(h)
Varying numbers of ligand samples (ligand centers of mass only shown). 83

6.6 Protein 4K5Y in wireframe (a) and in spheres (b) viewed by Py-
MOL [25]. (c) The protein is modeled as a rigid obstacle. (d)-(h)
Varying numbers of ligand samples (ligand centers of mass only shown). 84

6.7 Ligand candidates from PubChem [12] for protein 3W6H (see Fig-
ure 6.4(a)) ordered by binding affinity rank best to worst. 84

6.8 Ligand candidates from PubChem [12] for protein 4RRW (see Fig-
ure 6.5(a)) ordered by binding affinity rank best to worst. 85

xiii

6.9 Ligand candidates from PubChem [12] for protein 4K5Y (see Fig-
ure 6.6(a)) ordered by binding affinity rank best to worst. 86

xiv

LIST OF TABLES

TABLE Page

4.1 Average and standard deviation of ball and free space in single ball
environment for different samplers. The ideal average for ball is 0.25
and free is 0. Error is calculated as the % difference to ideal. 33

4.2 Average and standard deviation of each ball obstacle in the environ-
ment with 4 balls of equal size for different samplers. The ideal average
for ball is 0.25. Error is calculated as the % difference to ideal. 36

4.3 Average and standard deviation of ball and cube obstacle in the envi-
ronment with a mixture of balls and cubes for different samplers. The
ideal average for ball is 0.1718 and cube is 0.3282. Error is calculated
as the % difference to ideal. 38

4.4 Generation time for various samplers and input parameters in the
single ball environment [22]. 41

4.5 Generation time for various sampling methods and input parameters
in the Tunnel environment [22]. 42

4.6 Time required to solve the heterogeneous Tunnel environment query
by different robots for various sampling methods and input parame-
ters. There are two types of robots: R for rigid body and L for linkage
robot. 47

4.7 Time required to solve the Z-Tunnel environment query by different
sampling methods. 48

6.1 Comparison of published binding affinity ranking and approximated
binding affinity ranking for 3W6H. 80

6.2 Comparison of published binding affinity ranking and approximated
binding affinity ranking for 4RRW. 81

6.3 Comparison of published binding affinity ranking and approximated
binding affinity ranking for 4K5Y. 82

xv

1. INTRODUCTION

The motion planning problem is to find a valid (e.g., collision free) trajectory for a

movable object (robot) from a start position to a goal position. Motion planning has

been studied extensively and has various applications such as robotics [11, 34, 42],

computer animation [41, 6], computer-aided design (CAD) [18, 59], and computa-

tional biology [57, 4, 1, 63]. Motion planning is very difficult, known to be intractable

for even very simple problems [55, 5]. Consequently, randomized sampling-based

planners have become the state-of-the-art methods for planning [40, 34, 47, 46, 2,

3, 13, 32, 68, 49, 30, 72, 50]. These planners build graphs [40] or trees [34, 47] that

approximate the topology of the planning space and encode representative feasible

trajectories.

The focus of this dissertation is to study motion planning on surfaces. This

is a challenging and important problem with applications in many research areas,

including traditional robotics and computational biology. The dimension of a surface

is one less than the dimension of the planning space, hence sampling on the surface

can be difficult because the surface is a relatively small space compared to the entire

planning space. For example, robots are widely used for product assembly nowadays.

In order to precisely assemble each piece, contact between the robot manipulator and

the product are required. The configurations in which the robot fingers are in contact

with the object form a surface in the planning space. However, these configurations

are only a small percentage of all possible robot configurations. Therefore, it is very

difficult to obtain such configurations with sampling-based planners.

Many problems in robotics require robots to operate in cluttered environments

with narrow passages. For example, as shown in Figure 1.1(a), a KUKA youBot [43]

1

tries to get to the next room by passing through a narrow passage. As the robot is

very close to the surrounding obstacles, even small movements can cause the robot

to collide with obstacles. The medial axis is a surface that maximizes clearance

and hence, planning paths on medial axis surfaces is desirable for many applications

(Figure 1.1(b)). Another example is when the task requires contact between the

robot and an object; since the robot configurations that are in contact with the

object form a surface in the planning space, this is a planning problem in which

paths must be found on this surface.

(a) (b)

Figure 1.1: (a) A KUKA youBot [43] needs to pass through the narrow passage
caused by the surrounding obstacles in order to approach to the entrance to the
next room. (b) Planning on the medial axis in the narrow passage provides a high
clearance path since the medial axis is a surface that is equidistant to two or more
obstacles.

Planning on surfaces also has applications in computational biology. One example

is the ligand binding problem. Protein-ligand interaction is essential to understand

many biological mechanisms. The efficiency of a drug (ligand) molecule is determined

by its ability to find a specific position and orientation on the protein surface, more

specifically, on the surface in the binding pocket (binding site, see Figure 1.2(b)).

This contact (called binding) on the protein surface can either activate or inhibit

2

some biochemical effects. For example, the binding between insulin and the insulin

receptor will trigger some intracellular insulin effects, such as fat metabolism and

glucose uptake [56]. Planning the ligand motion as it approaches and then attaches

to the protein surface is a motion planning problem requiring contact. Sampling-

based motion planning can also be used in ligand binding site prediction, which helps

to predict where on the protein surface the ligand may form contact and trigger

biochemical effects [71, 70, 67, 15, 16]. Sampling-based motion planning can be used

to map the planning space of the protein, which can be utilized to predict binding

sites (Figure 1.2(a)).

(a) (b)

Figure 1.2: (a) Binding between the protein 1UYX and two ligands. (b) The binding
pocket (binding site) is a small region on the protein surface where the ligand can
form chemical bonds to cause some biochemical effects. The images were generated
with PyMOL [25].

Many motion planning methods have been specialized for planning on or near

surfaces, such as near obstacle surfaces [2, 13, 32] or along medial axis surfaces [68,

49], to improve performance or to find paths with desirable properties (e.g., high

clearance). OBPRM [2] (Figure 1.3(d)) was the first method targeting sampling

on obstacle surfaces, and then Gaussian PRM [13] (Figure 1.3(e)) and Bridge Test

3

PRM [32] (Figure 1.3(f)) were proposed to generate samples on obstacle surfaces or in

narrow passages, respectively. MAPRM [68] (Figure 1.3(g)) biases sampling towards

medial axis surfaces. While some of these methods work well in practice, none of

them is able to provide any information regarding the distribution of the samples it

generates. It would be interesting and useful to know, for example, that a particular

surface has been sampled uniformly so that one could argue regarding the probability

of finding a path on that surface. Unfortunately, despite great interest for nearly two

decades, it has remained an open problem to develop a method for sampling on such

surfaces that can provide any information regarding the distribution of the resulting

samples.

(a) (b) (c)

(d) (e) (f) (g)

Figure 1.3: Nodes generated by (a) PRM [40], (b) UOBPRM [22], (c) UMAPRM [73],
(d) OBPRM [2], (e) Gaussian PRM [13], (f) Bridge Test PRM [32], and (g)
MAPRM [68] in a simple 2D environment containing two parallel obstacles. PRM,
UOBPRM, and UMAPRM can guarantee uniformly distributed samples on their
respective targeted surfaces.

4

1.1 Research Contribution

In this dissertation, we present a solution to a long standing open problem and

develop a general method that can uniformly sample surfaces. Instead of explicitly

constructing the target surfaces, which is generally intractable, our uniform sampling

framework only requires detecting intersections between a line segment and the target

surface, which can often be done efficiently. Intuitively, since we uniformly distribute

the line segments, the intersections between the segments and the surfaces will also

be uniformly distributed.

We use the uniform sampling framework in sampling-based motion planning to

study some important surfaces in the planning space. Uniform Obstacle-based PRM

(UOBPRM) [22] is the first example of our framework which samples obstacle sur-

faces uniformly (Figure 1.3(b)). Uniform Medial-Axis PRM (UMAPRM) [73] is

another example whose target surfaces are the medial axis of Cspace (Figure 1.3(c)).

We show that this framework generates configurations uniformly distributed on the

target surfaces of Cspace (all possible robot placements), both experimentally and

theoretically. We prove that the probability of sampling the target surfaces is pro-

portional to their surface area, which leads to important observations regarding the

probability of generating samples in narrow passages. Next, we prove that the uni-

form sampling framework is probabilistically complete. We also formalize the rela-

tionship between UOBPRM and Gaussian PRM [13] and show that Gaussian PRM

is a special case of UOBPRM with particular parameter settings.

We show applications of this uniform sampling framework in robotics (both

UOBPRM and UMAPRM) and in biology (UOBPRM). We are able to solve some

difficult motion planning problems more efficiently than other sampling methods,

including PRM [40], OBPRM [2], Gaussian PRM [13], Bridge Test PRM [32], and

5

MAPRM [68]. Our results show that both UOBPRM and UMAPRM have negli-

gible computational overhead over other sampling techniques and UMAPRM can

solve problems that others could not (e.g., a bug trap environment). We illustrate

how UOBPRM can be used to study the ligand binding affinity ranking problem

by generating uniformly distributed ligand samples on the target protein’s surfaces.

Experiments with several target proteins using two different experimental measures

for binding affinity show that UOBPRM can potentially rank binding affinities for

different ligands.

In summary, our contributions include a uniform sampling framework that uni-

formly generates configurations on surfaces and its instances for different target sur-

faces (e.g., Cobst surfaces and medial axis surfaces). We evaluate the framework on a

variety of applications. More specifically, our contributions are as follows:

• We present a general uniform sampling framework that distributes samples

uniformly on surfaces and provide examples of this framework for Cobst surfaces

(UOBPRM) and medial axis surfaces (UMAPRM).

• We provide theoretical guarantees on the distribution of samples obtained by

our method and prove that it preserves probabilistic completeness of sampling-

based motion planners and performs stably with respect to changes in the

narrow passage volume (UOBPRM) or in the surrounding obstacle volume

(UMAPRM).

• We show applications of the uniform sampling framework in robotics (both

UOBPRM and UMAPRM) and in biology (UOBPRM).

Portions of this research were previously published and presented. UOBPRM,

which generates uniformly distributed configurations around Cobst surfaces, was pub-

lished in the proceedings of the 2012 IEEE International Conference on Intelligent

6

Robots and Systems (IROS) [22]. UMAPRM, which uniformly samples the medial

axis, was published in the proceedings of the 2014 IEEE International Conference

on Robotics and Automation (ICRA) [73].

1.2 Outline

This dissertation is organized as follows. In Chapter 2, we provide background

on sampling-based motion planning. We discuss several sampling methods that

bias the sampling to specific surfaces (e.g., near Cobst boundaries or medial axis).

In Chapter 3, we present a uniform sampling framework that provably distributes

samples uniformly on surfaces in Cspace. We provide theoretical guarantees that it

preserves probabilistic completeness of sampling-based motion planners and has a

higher probability of sampling narrow passages. Chapter 4 presents UOBPRM as

one specific instance from the uniform sampling framework that distributes samples

uniformly around Cobst surfaces. We demonstrate that UOBPRM generates uniformly

distributed samples and improves the efficiency to solve the motion planning prob-

lems. The relationship between UOBPRM and Gaussian PRM is compared both

theoretically and experimentally. Chapter 5 presents another instance of the uni-

form sampling framework, UMAPRM, that generates the samples uniformly along

the medial axis in Cfree. We evaluate the uniformity and the efficiency of UMAPRM

against MAPRM. In Chapter 6, we show how we apply the uniform sampling frame-

work to study the ligand binding affinity ranking problem. We present the results

on three different target proteins and compare against experimentally determined

ranking. We conclude with some final remarks in Chapter 7.

7

2. PRELIMINARIES AND RELATED WORK

In this chapter, we discuss motion planning preliminaries and existing sampling-

based approaches. We limit the discussion to methods focused on planning on par-

ticular surfaces, such as narrow passages and along the medial axis of the free Cspace.

2.1 Motion Planning

A robot is a movable object that can be described by n parameters (degrees

of freedom, dofs) and each parameter represents an object component, such as

position and orientation. All possible robot placements (or configurations) form an

n-dimensional space, called configuration space (Cspace). Each robot configuration is

represented as a point 〈x1, x2, ..., xn〉 where xi is the ith dof in Cspace. All feasible

robot configurations form Cfree, and Cobst is the union of all infeasible configurations.

The motion planning problem is to find a path in Cfree from a start configuration

to a goal configuration. It is usually not feasible to compute the Cobst boundaries

explicitly. However, we can utilize simple collision detection in the workspace (e.g.,

the actual space where the robot moves) to determine whether the configuration is

valid or not.

Exact solutions are computationally infeasible, especially when the robot has

many dofs [5]. Some randomized algorithms have been developed to address this

issue, e.g., sampling-based methods [40, 46] which solve many previously intractable

problems. Specifically, Probabilistic RoadMap methods (PRMs) [40] construct a

graph, or roadmap, to represent Cfree by randomly sampling configurations and re-

taining valid ones. A simple local planner is applied to connect the configuration to

its closest neighbors to form a roadmap. During the query process, the start and the

goal configurations are added to the roadmap, connected by a local planner, and a

8

graph search algorithm, e.g, Dijkstra’s algorithm, extracts the solution path. PRMs

have been shown to map Cfree efficiently but are not good at mapping some particular

regions in Cspace, such as in narrow passages and along the medial axis [33].

2.2 Obstacle-Based Sampling

The probability of generating a sample in a particular region of Cspace for the

traditional uniform sampling [40] depends on the ratio of the region volume to the

Cspace volume. A narrow passage is a region in Cspace of a volume so small that

uniform random sampling is unlikely to generate any configuration in it [35] but that

is important for planning, e.g., when solution paths are required to pass through it.

Since Cobst surfaces define the boundaries of narrow passages, many PRM variants

have been proposed to sample on those surfaces to increase coverage in these difficult

regions. Here we discuss three approaches designed to address this issue: OBPRM,

Gaussian PRM, and Bridge Test PRM.

2.2.1 OBPRM

Obstacle-Based PRM (OBPRM) [2] tries to generate samples close to obstacle

surfaces. Algorithm 1 describes how OBPRM generates samples. It first finds a

configuration cin colliding with the obstacles. A random ray originated at cin is

selected and a free node c1 is found along that ray. The boundary point is found by

a bisection search between cin and c1. The boundary configurations will be kept as

the roadmap nodes. Figure 1.3(d) shows samples generated by OBPRM.

Although OBPRM can generate configurations close to Cobst surfaces, the node

distribution is dependent on the Cobst shape and the position of the initial invalid

configuration cin, as shown in Figure 2.1. There is no perfect position for the initial

colliding configuration to guarantee uniform node distribution if the shape of the Cobst

is not spherical (see Figure 2.1(a)). Even if the Cobst is a sphere, the nodes cannot

9

Algorithm 1 OBPRM: Obstacle-Based PRM Sampler(n)

Input: A maximum number of attempts n and a step size t
Output: A set of nodes V near obstacles surfaces
1: V = ∅
2: for i = 0→ n do

3: Randomly generate a point cin in a Cobst
4: Randomly select a point c1 in Cspace
5: Let ci = cin
6: while ci not in Cfree & ci in Cspace do
7: Increment ci by step size t along direction −−→cinc1
8: if ci in Cspace then
9: Bisect between ci and ci−1 to find free boundary point cout
10: Add cout to V
11: return V

be uniformly distributed on the obstacle surfaces if the initial colliding configuration

does not reside at the center of the Cobst (see Figure 2.1(b)). In particular, the

portion of the surface closer to the initial colliding configuration will have a denser

node distribution.

(a) (b)

Figure 2.1: The configuration distribution of OBPRM (in blue) is biased by (a) the
shape of the Cobst and (b) the position of the initial colliding configuration cin (in
red).

Some work has been proposed to use workspace information to achieve a better

node distribution [3]. The heuristics help to bias the initial colliding configuration

10

selection. The point representing an object (a robot or an obstacle) can be selected

in different ways that will affect how the samples are biased. For example, using a

random vertex to represent an object will bias node generation towards the portions

of the object with more vertices. Selecting a triangle with probability proportional

to its area and representing the object by a random vertex in that triangle can bias

the sampling towards triangles with larger area. After selecting the points associated

with the objects based on these heuristics, the robot is translated in order to coincide

with the selection points of the robot and the obstacle and is rotated until finding

the initial colliding configuration. Although the results show that these proposed

heuristics can improve the node distribution, there are still no guarantees about the

configuration distribution around Cobst surfaces.

2.2.2 Gaussian PRM

Gaussian PRM [13] attempts to generate configurations that are a Gaussian dis-

tance d away from the obstacle surfaces. A first configuration is randomly generated

and the second is generated a Gaussian distance d away from the first configuration,

where d is a user-specified parameter. If the validities of the two configurations are

different, then the valid one will be retained as a node in the roadmap. Otherwise,

both are discarded. Algorithm 2 illustrates the process and Figure 1.3(e) shows an

example of Gaussian samples.

Gaussian PRM can be much slower and generate fewer samples than PRM in

the same number of attempts since Gaussian PRM will discard many configurations

that PRM would retain. Also, Gaussian PRM can be costly since it may be difficult

to generate nodes with different validities. Roadmap quality is highly dependent on

how d is selected. If d is too small, it is very likely that the configuration is too close

to the Cobst causing collision. When d is large, the configurations are too far from

11

Algorithm 2 Gaussian PRM Sampler(n, d)

Input: A maximum number of attempts n and a distance d
Output: A set of nodes V a Gaussian distance d away from obstacle surfaces
1: V = ∅
2: for i = 1→ n do

3: Randomly select a configuration c1
4: Generate configuration c2 a Gaussian distance d along a random ray from c1
5: if the validity of c1 and c2 are different then
6: Add the valid one to V
7: return V

the Cobst surfaces. Gaussian PRM has an unknown node distribution.

2.2.3 Bridge Test PRM

Bridge Test PRM [32] has a similar node generation process to Gaussian PRM [13].

It also utilizes validity checking to bias sampling to the difficult regions, such as near

Cobst surfaces and narrow passages. Algorithm 3 provides the pseudocode for Bridge

Test PRM. It first generates an invalid configuration, and a second configuration is

sampled a distance d away. If the second configuration is also invalid, the midpoint

is found and its validity checked. The midpoint will be retained as a roadmap node if

it is valid. Figure 1.3(f) shows an example roadmap generated by Bridge Test PRM.

Bridge Test PRM takes longer than OBPRM and Gaussian PRM since it needs to

generate three consecutive samples in which the midpoint is valid and the endpoints

are invalid. Bridge Test PRM also suffers from tuning the parameter d which can

greatly affect the performance and the quality of the sampler. Finally, it has an

unknown node distribution around Cobst surfaces.

2.3 Medial Axis Sampling

Most methods aim to simply find a feasible path. This may lead to paths with

low clearance that may be a high risk for some applications. For example, OBPRM,

12

Algorithm 3 Bridge Test PRM Sampler(n, d)

Input: A maximum number of attempts n and a distance d
Output: A set of nodes V near obstacle surfaces
1: V = ∅
2: for i = 1→ n do

3: Randomly select a configuration c1
4: if c1 is invalid then

5: Generate configuration c2 a Gaussian distance d away along a random ray
from c1

6: if c2 is invalid then

7: if the midpoint between c1 and c2 is valid then

8: Add the midpoint to V
9: return V

Gaussian PRM, and Bridge Test PRM aim to focus the node density close to ob-

stacles which increases the probability of sampling in the narrow passages but also

results in samples that can be very close to the obstacles, making the extracted paths

have a high risk of collision in the presence of localization errors. To compute high

clearance paths, the Medial Axis Probabilistic Roadmap (MAPRM) [68, 49] gener-

ates configurations along the medial axis of Cfree. The medial axis is a set of points

that are equidistant to two or more obstacles and are guaranteed to have maximal

clearance. The medial axis is a strong deformation retraction which defines a one-

to-one mapping between every point in Cspace and the corresponding point on the

medial axis and is thus a useful construction for motion planning.

Algorithm 4 outlines how MAPRM works. A random point q is first generated

in Cspace. Depending on its validity, the configuration will be pushed either toward

(if initially invalid) or away from (if initially valid) the closest point (witness point)

on the Cobst boundaries until this closest point changes. A point on the medial axis

has at least two witness points on Cobst boundaries while a point not on the medial

axis has exactly one witness point. Therefore, the medial axis is crossed when there

13

is a change in the witness point. After detecting the medial axis, a binary search is

applied to find the configuration residing on the medial axis, at a resolution ǫ. An

example of MAPRM samples is shown in Figure 1.3(g). Note that it is not feasible

to find the exact witness point in high dimensional space. In this case, approximate

clearance and penetration computations are used [68].

Algorithm 4 Medial Axis PRM Sampler(n, t, ǫ)

Input: A maximum attempts n, a step size t, and a tolerance ǫ
Output: A set of nodes V along the medial axis
1: V = ∅
2: for i = 1→ n do

3: Randomly generate a configuration q
4: Find the witness point w of q on the obstacle boundaries
5: if q is valid then

6: Push q away from w at a step size t until the witness point changes
7: Binary search finds the configuration cma with maximal clearance at resolu-

tion ǫ
8: Add cma to V
9: else

10: Push q toward w at a step size t until the witness point changes
11: Binary search finds the configuration cma with maximal clearance at resolu-

tion ǫ
12: Add cma to V
13: return V

It has been shown that MAPRM can improve the sampling in narrow passages.

The probability to sample inside the narrow passage with MAPRM depends not only

on the volume of the free space in the narrow passage, but also on the volume of

the surrounding obstacles since it pushes configurations regardless of their validity to

the medial axis. However, it is still computationally expensive due to the clearance

calculation, even with approximation.

14

The workspace medial axis can be used to bias sampling in the narrow passage [30,

72]. Both exact and approximate medial axis calculations can be applied to improve

the sampling density in the narrow passage. However, they do not maximize the

clearance in Cspace. Medial axis sampling is computationally intensive since it relies

heavily on some expensive geometric computation.

A fast medial axis approximation is proposed in [50] which transforms the idea of

finding the workspace medial axis to calculating the classification boundary for the

labeling problem if each obstacle is labeled differently. It utilizes the max-margin

optimization technique to push the configuration to the classification boundary and

shows that it can generate samples on the medial axis more efficiently than MAPRM.

However, none of these methods have any guarantee as to the resulting node distri-

bution along the medial axis.

15

3. UNIFORM SAMPLING FRAMEWORK

Instead of sampling points in Cspace and then filtering them or manipulating them

(which is the trend of most sampling methods), our uniform sampling framework

samples fixed length line segments and then identifies where (if any) the line segment

crosses the target Cspace surface. It is much easier to identify surface membership by

detecting if the surface has been crossed than by evaluating membership at a single

point in Cspace. Places where the line segment crosses the surface are retained in the

roadmap as nodes. Which points are retained vary depending on the surfaces being

sampled (e.g., Cobst or medial axis).

Section 3.1 provides the details of this framework. We theoretically prove that

the uniform sampling framework provides guarantees of a uniform node distribution

(Section 3.2) and that the framework is probabilistically complete (Section 3.3). We

theoretically analyze its ability to generate configurations inside the narrow passage

in Section 3.4 and find that it has a higher probability of sampling in the narrow

passage.

3.1 Uniformly Generate Configurations in Cspace

We develop a methodology that uniformly samples specific surfaces in Cspace,

e.g., near obstacle or along the medial axis, as long as surface membership can be

determined by detecting the intersections between the line segment and the surfaces.

A set of uniformly distributed fixed length line segments is generated by first sampling

a random configuration c, and then selecting a direction at random
−→
d , and extending

the segment in direction
−→
d of length l from c. Then, roadmap nodes are identified

as a result of some checking along the line segment.

Algorithm 5 shows this approach. As long as there is a criterion to find the

16

roadmap nodes by continuous checking the intersections between the line segment

and the surfaces (line 5), this framework can generate uniformly distributed samples

on any surface type in Cspace. Intersect is the function that finds the intersec-

tions between the line segment and the target surfaces. Depending on where the

target surfaces are, Intersect has different checking criteria. Every valid crossing

configuration along the line segment is stored as a roadmap node.

Algorithm 5 Uniform Sampling in Specific Surfaces of Cspace
Input: A maximum attempts n, a line segment length l, a step size t, and target

surfaces R
Output: A set of uniformly distributed configurations V in R
1: Refine the bounding box
2: V = {∅}
3: while |V | < n do

4: Generate a uniformly distributed line segment s with fixed length l in Cspace
5: V ← Intersect(s, l, t, R)
6: return V

3.1.1 Bounding Box Adjustment

The motion planning problem is solved within a bounding box in the environment.

The target surface is not l-away from the bounding box, then segments that would

yield potential samples may be disqualified. Hence, in order to maintain uniformity,

we temporarily adjust the bounding box to ensure that the sampler has enough room

to generate line segments with length l (line 1 in Algorithm 5) that could cover the

full original environment. Since we still check the configuration validity with respect

to the original bounding box, the original problem is not changed.

17

3.2 Uniformity

Here we prove that the configurations generated by the uniform sampling frame-

work (Algorithm 5) are uniformly distributed on any specific target surface of Cspace.

Since the line segments are generated uniformly in Cspace, the samples which are

found on these line segments are also uniformly distributed.

Theorem 1. Given a Cspace, the probability of finding an intersection point p from

a line segment of length l chosen uniformly at random and some specific surface R

in the Cspace is constant throughout Cspace.

Proof. Let C′space be the adjusted space where the line segments are sampled. As

shown in Figure 3.1, p is a point on R, S is the sphere centered at p with radius l,

and (c, l
−→
d) is a line segment with length l where c is a random configuration and

−→
d

is a random direction. Rp,ǫ is the portion of R that is contained in a ball of radius

ǫ centered at p, i.e., Rp,ǫ = R ∩ Bp,ǫ, where ǫ > 0. p is on (c, l
−→
d) if and only if S

contains c and
−→
d intersects Rp,ǫ. Therefore, the probability PR that the line segment

intersects Rp,ǫ is equivalent to the probability that c resides in S and
−→
d intersects

Rp,ǫ, i.e., PR = P ((c ∈ S)∧ (
−→
d ∩Rp,ǫ)). Given the conditions that c and

−→
d are both

selected uniformly at random, PR is uniform in the specific region R.

Corollary 1. For n randomly generated line segments of fixed length l, the probability

of finding intersection points with some surface R is constant throughout Cspace. Since

the probability of occurrence is the same, the distribution of the intersection points

is uniform on R.

3.3 Probabilistic Completeness

Here we prove that the planner given by the uniform sampling framework (Algo-

rithm 5) is probabilistically complete.

18

Figure 3.1: R is the target surface where uniform samples are distributed. The red

dashed line represents the small portion Rp,ǫ on R where the line segment (c, l
−→
d)

crosses R. p is the intersection between the line segment and R. Therefore, the
probability of a line segment intersecting the target surface is the probability that
one endpoint of the line segment resides in a sphere with radius l centered at p and

the
−→
d intersects Rp,ǫ.

Theorem 2. Let a, b ∈ Cfree such that there exists a path γ between a and b lying in

Cfree. Then, the probability that the planner correctly answers the query (a, b) after

generating n configurations is given by

Pr[(a, b)Success] = 1− Pr[(a, b)Failure] ≥ 1−
⌈2L

t

⌉

e−σtdn,

where L is the length of the path, t is the step size of the planner. B1(·) is the unit

ball in R
d and σ = µ(B1(·))

2dµ(Cfree)
where µ denotes the volume of a region of space.

Proof. Let m =
⌈

2L
t

⌉

so that there are m points on the path a = x1, ..., xm = b

such that dist(xi, xi+1) < t/2. Let yi ∈ Bt/2(xi) and yi+1 ∈ Bt/2(xi+1). Then, the

line segment yiyi+1 must lie inside Cfree since both end points lie in the ball Bt(xi).

Let V ⊂ Cfree be a set of n configurations generated uniformly distributed by the

planner. If there is a subset of configurations {yi, ..., ym} ⊂ V such that yi ∈ Bt/2(xi),

then a path from a to b will be contained in the roadmap. Let I1, ..., Im be a set of

19

indicator variables such that each Ii witnesses the event that there is a y ∈ V and

y ∈ Bt/2(xi). It follows that the planner succeeds in answering the query (a, b) if

Ii = 1 for all 1 ≤ i ≤ m. Therefore,

Pr[(a, b)Failure] ≤ Pr

(m
∨

i=1

Ii = 0

)

≤
m
∑

i=1

Pr[Ii = 0]

The events Ii = 0 are independent since the samples are independent. The

probability of a given Ii = 0 is computed by observing that the probability of a

single randomly generated point falling in Bt/2(xi) is
µ(Bt/2(xi))

µ(Cfree)
. It follows that the

probability that none of the n uniform, independent samples falls in Bt/2(xi) satisfies

Pr[Ii = 0] =

(

1−
µ(Bt/2(xi))

µ(Cfree)

)n

.

Since the sampling is uniform and independent, then

Pr[(a, b)Failure] ≤ m×

(

1−
µ(Bt/2(·))

µ(Cfree)

)n

.

However,

µ(Bt/2(·))

µ(Cfree)
=

(t
2
)dµ(B1(·))

µ(Cfree)
= σtd,

where σ = µ(B1(·))
2dµ(Cfree)

. We know that (1− β)n ≤ e−βn for 0 ≤ β ≤ 1. Therefore,

Pr[(a, b)Failure] ≤ m×

(

1−
µ(Bt/2(·))

µ(Cfree)

)n

≤ m×e
−

µ(Bt/2(·))

µ(Cfree) n = m×e−σtdn =
⌈2L

t

⌉

e−σtdn

20

3.4 Uniform Sampling in Passages

In this section, we examine the effectiveness of the uniform sampling framework

to generate samples in Cspace passages. The uniform sampling framework generates

uniformly distributed configurations on the target surfaces by computing the in-

tersections between a fixed length line segment and the target surface as shown in

Algorithm 5. Below, we show that the probability for the uniform sampling frame-

work to generate samples in a passage is dependent only on the surface area of the

target surface in that passage and is independent of the volume of the passage.

We use the following notation:

• SA(R) represents the surface area of the region R, where R ∈ Cspace.

• CRN is the portion of the target surface CR in the passage CN .

Lemma 1. The probability for the uniform sampling framework to generate config-

urations in a passage is correlated with the surface area of the target surface in the

passage, SA(CRN).

Proof. As discussed in Section 3.2, the uniform sampling framework is proved to gen-

erate configurations that are uniformly distributed on the target surface. Therefore,

the probability that the uniform sampling framework generates configurations in CN

is

PUniform =
SA(CRN)

SA(CR)
(3.1)

That is, the probability for the uniform sampling framework to sample in a passage

is related to the proportion of the surface area of CR that lies in the passage.

Corollary 2. The probability of generating samples in a passage does not depend on

the volume of the passage.

21

Proof. By Lemma 1, if the surface area of the target surface in the passage remains

the same, then the uniform sampling framework is expected to generate the same

number of samples in the passage, regardless of the volume of the passage.

22

4. UNIFORM OBSTACLE-BASED PRM (UOBPRM)∗

UOBPRM [22] is one instance of the uniform sampling framework which generates

uniformly distributed samples near Cobst surfaces by simply defining an appropriate

checking between the fixed length line segments and Cobst surfaces.

This is discussed in detail in Section 4.1. Section 4.1.1 illustrates the approach

we use to temporarily adjust the bounding box for maintaining the uniformity. A

discussion about the relationship between Gaussian PRM and UOBPRM is given in

Section 4.2. Section 4.3 evaluates the sample distribution and efficiency of UOBPRM

against PRM, Gaussian PRM, Bridge Test PRM, and OBPRM. Additionally, we

experimentally show that UOBPRM has better performance in sampling in narrow

passages compared to PRM, and Gaussian PRM and UOBPRM perform similarly

with particular parameter settings.

4.1 Detecting Surface Membership

UOBPRM samples uniformly distributed configurations around obstacle surfaces

by identifying the intersections between line segments and Cobst boundaries. This

is done by applying validity checks to all intermediate configurations on the line

segment. All validity changes indicate surface intersections and result in roadmap

nodes. Thus, there can be more than one intersection between the segment and the

obstacles, as shown in Figure 4.1. This feature allows UOBPRM to generate multiple

nodes per segment when possible making it more efficient than other obstacle-based

methods.

∗The description of the method and some experimental results are reprinted with permission from
“UOBPRM: A uniformly distributed obstacle-based PRM” by H. Y. Yeh, S. Thomas, D. Eppstein,
N. M. Amato, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
2655-2662 [22] c©2012 IEEE.

23

Figure 4.1: Finding intersections between the line segment and the obstacle by check-
ing the validity of intermediate configurations along segment. The valid one is re-
tained at every validity change. Here, the valid nodes that are retained are solid [22].

Algorithm 6 describes in detail how UOBPRM analyzes the line segments to

find the intersections with the obstacle surfaces. The line segment length l and the

step size t determine how close the configurations are to the obstacle boundaries

and impact the efficiency of UOBPRM. The configurations are at most t-away from

the Cobst surfaces. Therefore, the smaller the t is, the closer the configurations are

to the Cobst surfaces. t needs to set based on the environment. It is usually the

same as the resolution for collision detection in local planning. l and t play an

important role in affecting the time for UOBPRM to generate nodes. If l is large and

t is small, UOBPRM generally takes a long time since there are more intermediate

configurations to check.

The specific surfaces R for UOBPRM in Corollary 1 where the uniform configu-

rations are distributed is near Cobst as shown in Figure 4.2. The probability to find a

line segment (c, l
−→
d) which crosses the target surface at point p is uniform throughout

the environment since the fixed length line segment is distributed uniformly in the

whole space.

24

Algorithm 6 UOBPRM Intersect(s, l, t, R)

Input: A line segment s of length l, a step size t, and target surfaces R
Output: A set of intersections I
1: R← Cobst
2: for i = 1→ (l/t) do
3: Generate node ci along s
4: if validity(ci) 6= validity(ci+1) then
5: Add the valid one to I
6: return I

Figure 4.2: The target surface R is the Cfree around Cobst. p is the intersection

between the line segment (c, l
−→
d) and the target surface which will be retained as a

roadmap node. Since the line segments are uniformly distributed in the Cspace, the
intersections found in R along the line segments are also uniformly distributed [22].

4.1.1 Bounding Box Adjustment

For UOBPRM, if the distance between the bounding box and the obstacles is less

than l, then segments which would yield points on the Cobst surfaces may be disqual-

ified. Figure 4.3 shows an example when the bounding box needs to be adjusted to

maintain uniformity for UOBPRM.

UOBPRM adjusts the bounding box based on the information from the workspace

25

Figure 4.3: In this example, the uniformity guarantee is broken for UOBPRMbecause
the original bounding box (solid line) is too close to the Cobst in the upper left and
bottom right corners. This restricts the line segments that can be placed in the red
regions. The bounding box is extended to the dashed line to allow all segments of
length l that could intersect the Cobst.

obstacles as described in Algorithm 7. The bounding box for each workspace obstacle

is found first, and then a new bounding box in the workspace is determined that is

the union of them all. This new bounding box expands each dimension by l + r

where l is the line segment length and r is the robot diameter, providing a bounding

box which ensures that UOBPRM has enough space to generate line segments with

length l around Cobst surfaces. We do not directly expand the original bounding box

by l + r since it may provide a bounding box larger than needed and may waste

time on generating line segments without finding any intersection between the line

segment and Cobst. Figure 4.4 shows an example in which UOBPRM would suffer if

the updated bounding box is directly expanded from the original one.

4.2 UOBPRM v.s. Gaussian PRM

Gaussian sampling [13] was proposed to improve the coverage of the difficult parts

of Cspace by only retaining samples near Cobst surfaces. A free configuration is added

26

Algorithm 7 Refine Bounding Box for UOBPRM Sampler

Input: The length l of the line segments used in sampling, maximum robot diameter
r, and a set of obstacles O

Output: A new bounding box denoted by min′{x, y, z} and max′{x, y, z}
1: original bounding box = {min{x, y, z}, max{x, y, z}}
2: l = l + r
3: minO{x, y, z} = min(mino{x, y, z}; ∀o ∈ O)
4: maxO{x, y, z} = max(maxo{x, y, z}; ∀o ∈ O)
5: min′{x, y, z} = max(minO{x, y, z} − l, min{x, y, z})
6: max′{x, y, z} = min(maxO{x, y, z}+ l, max{x, y, z})

to the roadmap only if there is an invalid configuration nearby. Gaussian sampling is

like a filter for uniform sampling that reduces the samples in Cfree. Gaussian sampling

employs the same uniform sampling. However, it discards some valid samples that

PRM will keep in order to ensure the roadmap nodes are close to Cobst surfaces.

In terms of the method presented here, Gaussian sampling can be thought of as

generating line segments of length d where d follows the Gaussian distribution (µ, σ)

and, when the validity of the endpoints differs, identifying the valid endpoint as a

roadmap node. UOBPRM instead generates line segments with fixed length l and

finds the roadmap nodes when there is a validity change between two neighboring

configurations along the line segment with a step size t. Gaussian sampling can be-

have like UOBPRM with some parameters setting: when they generate line segments

with the same length and UOBPRM only checks the validities of the two endpoints.

Thus, UOBPRM and Gaussian sampling are identical if l = µ = t and σ → 0.

When the length of the line segment (d in Gaussian sampling and l in UOBPRM) is

small, these two methods are expected to behave very similarly. The running time

for applying these methods is determined by the expected number of trials to collect

n nodes in the roadmap. In the following lemma, we illustrate that UOBPRM with

line segment length l and step size t has the same performance as Gaussian sampling

27

Figure 4.4: The example environment where directly expanding the bounding box
by the line segment length l wastes time in generating line segments that can not
find intersections in the targeted region. The solid line shows the original bounding
box, the dashed line shows the bounding box directly expanded by l and the dotted
line is the adjusted bounding box we perform.

with Gaussian distribution (µ, σ) when l = µ, t converges to l and σ converges to 0.

Lemma 2. The expected number of trials to obtain one roadmap node by UOBPRM

with line segment length l and step size t and Gaussian sampling with Gaussian

distribution (µ, σ) are the same if l = µ = t and σ → 0.

Proof. Since σ converges to 0, the length of every line segment generated by Gaus-

sian sampling is very similar and is close to µ. Thus, both Gaussian sampling and

UOBPRM generate line segments of the same length since µ = l. When t = l,

UOBPRM only checks the validity for the two endpoints along the line segment. In

this case, both methods only check line segment endpoints of line segments of length

µ = l. The starting points of line segments for both methods are selected uniformly

at random. Therefore, UOBPRM and Gaussian sampling perform very similarly

when l = µ = t and σ converges to 0.

Corollary 3. The expected number of trials to obtain n roadmap nodes by UOBPRM

28

with line segment length l and step size t and Gaussian sampling with Gaussian

distribution (µ, σ) are the same if l = µ = t and σ → 0.

Note that the previous Corollary is an extreme case for UOBPRM. Generally,

Gaussian PRM is slower than PRM because while PRM randomly generates a con-

figuration and adds the configuration to the roadmap if it is valid, Gaussian PRM

only adds one configuration between two configurations and discards both of them if

their validities are the same. However, UOBPRM may be faster than Gaussian PRM

since UOBPRM can potentially generate more than one configuration from one line

segment but Gaussian PRM gets at most one configuration from a line segment.

4.3 Experiment Results

In this section, we show some experimental results regarding node distribution

and some motion planning problems for UOBPRM. All sampling methods are im-

plemented in the C++ motion planning library developed in the Parasol Lab at

Texas A&M University which contains a number of PRM variants and uses a dis-

tributed graph data structure from the Standard Template Adaptive Parallel Library

(STAPL) [61], a C++ library designed for parallel computing.

The results show that UOBPRM is able to generate uniformly distributed con-

figurations in the targeted surfaces in Cspace (e.g., around Cobst surfaces) while other

methods cannot. The computational cost for UOBPRM is comparable to other

methods, and even less in some cases. We demonstrate that UOBPRM provides

more stable performance with respect to the narrow passage width as compared to

other obstacle-based sampling methods and it has higher probability to sample in-

side the narrow passage. UOBPRM can solve the motion planning problems more

efficiently than other non-uniform sampling methods.

The results for UOBPRM are presented as follows:

29

• Planners studied — Section 4.3.1

• Uniformity analysis demonstrates the uniform distribution guarantee — Sec-

tion 4.3.2

• Cost to generate configurations — Section 4.3.3

• Narrow passage analysis — Section 4.3.4

• Application to actual motion planning problems — Section 4.3.5

• Relationship between UOBPRM and Gaussian PRM as Gaussian PRM is a

special case of UOBPRM when the parameters are set as noted in Section 4.2

— Section 4.3.6

4.3.1 Planners Studied

We compare five different sampling strategies: PRM [40], Gaussian PRM [13],

Bridge Test PRM [32], OBPRM [2], and UOBPRM [22]. PRM is used as a con-

trol, and all the other sampling methods are developed for generating samples near

obstacle surfaces.

The cost for node generation depends on how each sampling method generates

configurations. Both Gaussian PRM and Bridge Test PRM are affected by a dis-

tance parameter d. OBPRM’s cost is determined by the step size t and the cost of

UOBPRM depends on l/t where l is the line segment length. We study different

values for t, l, and d for these samplers. The results are averaged over 40 runs.

4.3.2 Uniformity

We study the performance of each sampler in different environments shown in

Figure 4.5. Figure 4.5(a) has a unit radius ball obstacle at the center of an environ-

ment whose bounding box is 8× 8× 8. Figure 4.5(b) has four unit balls placed on a

30

grid in a bounding box that is 8× 8× 8. Figure 4.5(c) is a variant of Figure 4.5(b).

It has a mixture of two unit balls and two cubes which are 2× 2× 2. Figure 4.5(d)

has a torus as the concave obstacle. The robot is a small cube for all environments.

(a) Single Ball (b) 4 Ball

(c) Mixed (d) Torus

Figure 4.5: Four environments are used to compare the distribution of samples pro-
duced by UOBPRM and other sampling methods. The robot is a small cube.

We first study the configuration distribution obtained by each method. In Fig-

ure 4.5(a), 4.5(b), and 4.5(c), we generate 4000 configurations with each sampling

method and compute the node distribution by counting the number of configurations

generated in each cell of a regular grid covering the environment by partitioning the

space into 16 same sized cells. If the nodes are uniformly distributed, then the num-

ber of nodes should be proportional to the surface area for every region. In the torus

environment (Figure 4.5(d)), we generate 4000 configurations and find the closest

obstacle component each configuration belongs to. The obstacle is modeled as a

31

polyhedra composed of triangles. If the nodes are uniformly distributed, the number

of configurations will be proportional to the area of the triangle.

4.3.2.1 A Single Ball Environment

The grid equally partitions the space into 16 cells. Starting from 1, the cells are

indexed from left to right from top to bottom. Since the ball symmetrically occupies

the center four cells (numbered 6, 7, 10, and 11), a similar number of configurations

in these four cells is expected if the distribution is uniform around obstacle surfaces.

The configurations generated by PRM are dispersed throughout the environment,

as shown in Figure 4.6(a). Figure 4.6(b) shows that Gaussian sampling still generates

some configurations quite distant from the obstacle surfaces. Figure 4.6(c) shows the

configurations generated by OBPRM with step size t = 0.1 and Figure 4.6(d) is for

UOBPRM with step size t = 0.1 and line segment length l = 1. UOBPRM gives a

more uniform distribution, and the configurations are closer to the obstacle surfaces

compared to other sampling methods (see Figure 4.6).

Figure 4.7 compares the node distribution among different sampling methods.

The red bars in Figure 4.7 show the percentage of configurations in the regions

occupied by the ball and the blue bars represent the free space. If the configurations

are uniformly distributed around obstacle surfaces, each red bar should result in 25%

and the blue bar is 0%. OBPRM and UOBPRM are able to generate configurations

near obstacles but PRM, Gaussian sampling, and Bridge Test sampling still have

configurations scattered in the free space, especially PRM. Table 4.1 shows how the

configuration distribution around ball and free space are for each sampling method.

UOBPRM has the most uniformly distributed configurations among all sampling

methods since its average is ideal and its standard deviation is the lowest. PRM,

Gaussian PRM, and Bridge Test PRM still have some configurations distributed in

32

(a) PRM (b) Gaussian sampler
d = 2

(c) OBPRM t = 0.1 (d) UOBPRM t =
0.1, l = 1

Figure 4.6: Sample distribution example in the single ball environment. UOBPRM
has the most uniformly distributed samples around the obstacle surfaces.

the free space.

Table 4.1: Average and standard deviation of ball and free space in single ball
environment for different samplers. The ideal average for ball is 0.25 and free is 0.
Error is calculated as the % difference to ideal.

Sampler Ball Free
Avg Std Error Avg Std Error

PRM 0.0629 0.0079 -0.7484 0.0624 0.0071 n/a
Gaussian, d =
0.2

0.2328 0.0086 -0.0688 0.0057 0.0093 n/a

Bridge Test, d =
3

0.0411 0.0090 -0.8356 0.0696 0.0090 n/a

OBPRM 0.2500 0.0093 0.0000 0.0000 0.0000 0.0000
UOBPRM, l = 1 0.2500 0.0089 0.0000 0.0000 0.0000 0.0000

33

Figure 4.7: Distribution comparison of ball (red) and free (blue) regions in the single
ball environment. Ideal percentage for ball is 25% and free is 0%.

4.3.2.2 Environment With 4 Balls of Equal Size

Here the step size t is 0.1 and the line segment length l is 1. Since we equally

partition the space and the obstacle, we have a total of 16 cells with the same obstacle

surface area. Ideally, a uniformly distributed obstacle-based sampler will generate

same amount of the configurations in each cell.

Figure 4.8(a), 4.8(b), and 4.8(c) show the samples generated by Gaussian sam-

pler, OBPRM and UOBPRM, respectively. Here UOBPRM and Gaussian sampling

produce a distribution that is closer to uniform distribution than other sampling

methods. As shown in Figure 4.8(b) and 4.8(c), OBPRM has fewer nodes on the

boundary side than it should for a uniform distribution.

Figure 4.9 shows the node distribution comparison. Each color represents a dif-

ferent ball obstacle. If the distribution is uniform, each region will have 6.25% of the

nodes. Table 4.2 shows how the configurations are distributed around each ball ob-

stacle for various sampling methods. UOBPRM has the most uniformly distributed

34

(a) Gaussian sam-
pler, d = 0.2

(b) OBPRM, t = 0.1 (c) UOBPRM, t =
0.1, l = 1

Figure 4.8: Sample distribution example in the 4 balls environment.

configurations comparing to other methods due to its lowest standard deviation.

Figure 4.9: Distribution comparison in the environment with 4 balls of equal size,
each ball is a different color. Ideal percentage is 6.25%. UOBPRM and Gaussian
sampling generate more uniformly distributed samples than the others.

4.3.2.3 Environment With a Mixture of Balls and Cubes

The step size t here is 0.025 and the line segment length l is 1. After generating

4000 nodes, we separate the environment into four regions where one region contains

35

Table 4.2: Average and standard deviation of each ball obstacle in the environment with 4 balls of equal size for different
samplers. The ideal average for ball is 0.25. Error is calculated as the % difference to ideal.

Sampler Ball 1 Ball 2 Ball 3 Ball 4
Avg Std Error Avg Std Error Avg Std Error Avg Std Error

PRM 0.2151 0.0128 -0.1396 0.2848 0.0125 0.2500 0.2848 0.0126 0.2500 0.2153 0.0128 -0.1388
Gaussian, d =
0.2

0.2505 0.0029 0.0020 0.2503 0.0030 0.0012 0.2488 0.0032 -0.0048 0.2504 0.0034 0.0016

Bridge Test, d =
3

0.1975 0.0526 -0.2100 0.3152 0.0524 -0.2608 0.3107 0.0526 0.2428 0.1765 0.0523 -0.2940

OBPRM 0.2089 0.0153 -0.1644 0.2907 0.0150 0.1628 0.2925 0.0148 0.1700 0.2078 0.0156 -0.1688
UOBPRM, l = 1 0.2488 0.0038 -0.0048 0.2511 0.0034 0.0044 0.2495 0.0039 -0.0020 0.2494 0.0033 -0.0024

36

one obstacle, either a ball or a cube. The node distribution should be proportional

to the obstacle surface area if the nodes are uniformly distributed around obstacle.

The surface area for a ball is 4π and for a cube is 24. So ideally there should be

about 1.9 times more nodes in the cube regions than in the ball regions. We again

separate each obstacle into four same sized cells resulting in 16 cells for the entire

environment.

Figure 4.10 shows that UOBPRM generates more uniformly distributed configu-

rations within each cell than Gaussian sampling and OBPRM especially in the area

close to the boundary.

(a) Gaussian sam-
pler, d = 0.2

(b) OBPRM, t =
0.025

(c) UOBPRM, t =
0.025, l = 1

Figure 4.10: Sample distribution example in the mixture environment.

Figure 4.11 shows the node distribution for each sampler. The configuration per-

centage of the ball is colored in red and the cube is colored in blue. 4.31% is the

ideal percentage of the nodes for the cells containing the balls and 8.19% is the ideal

percentage of the nodes for the cells containing the cubes. The node distribution

for UOBPRM is better than other sampling methods. Table 4.3 shows the config-

uration distribution around each obstacle (ball and cube respectively) for different

sampling methods. UOBPRM has the most uniformly distributed configurations

around obstacle surfaces since it has the lowest standard deviation.

37

Table 4.3: Average and standard deviation of ball and cube obstacle in the environment with a mixture of balls and cubes
for different samplers. The ideal average for ball is 0.1718 and cube is 0.3282. Error is calculated as the % difference to
ideal.

Sampler Ball 1 Ball 2 Cube 1 Cube 2
Avg Std Error Avg Std Error Avg Std Error Avg Std Error

PRM 0.2660 0.0136 0.5483 0.2670 0.0137 0.5541 0.2339 0.0131 -0.2873 0.2330 0.0134 -0.2901
Gaussian, d =
0.2

0.1948 0.0040 0.1339 0.1938 0.0042 0.1281 0.3057 0.0048 -0.0686 0.3057 0.0045 -0.0686

Bridge Test, d =
3

0.2407 0.0629 0.4010 0.2789 0.0632 0.6234 0.2408 0.0481 -0.2663 0.2396 0.0473 -0.2700

OBPRM 0.1897 0.0109 0.1042 0.1897 0.0109 0.1042 0.3107 0.0188 -0.0533 0.3099 0.0194 -0.0558
UOBPRM, d =
1

0.1734 0.0032 0.0093 0.1728 0.0029 0.0058 0.3266 0.0039 -0.0049 0.3271 0.0039 -0.0034

38

Figure 4.11: Distribution comparison of ball (red) and cube (blue) regions in the
environment with a mixture of balls and cubes. Ideal percentage for ball is 4.31%
and cube is 8.19%. The sample distribution for UOBPRM is the most uniform.

4.3.2.4 A Torus Environment

The outer radius of the torus is 2.5 and the inner radius is 1. The step size t is

0.01 and the line segment length l is 1 in this experiment. We generate 4000 nodes

with each sampling method. For each configuration, we find the closest obstacle

component it belongs to. The obstacle is modeled as a polyhedra composed by

triangles. If the configurations are uniformly distributed around obstacle surfaces,

the number of configurations should be proportional to the area of the triangles.

This distribution error is calculated by the following where SA refers to the surface

area:

distribution error =

∣

∣

∣

∣

SA(triangle)

SA(model)
−

of nodes belong to triangle

total # of nodes

∣

∣

∣

∣

39

The distribution error is used as a uniformity metric. The smaller value indicates

a better uniform distribution.

Figure 4.12 shows the distribution error results normalized to PRM for each

sampling method. UOBPRM can generate more uniformly distributed configurations

around the obstacle surfaces compared to other sampling methods.

Figure 4.12: Normalized distribution error between different samplers. UOBPRM
has the lowest distribution error among other samplers.

4.3.3 Cost

We are not only interested in the node distribution, but also in the cost of gen-

erating samples. PRM is fast when the Cspace is free, but it does not work well in

the difficult problems such as narrow passages. Gaussian sampling takes longer to

generate samples because it must sample two configurations with different validities.

Similarly, Bridge Test sampling needs to find a sequence of three samples such that

the endpoints are invalid and the midpoint is valid. The cost for OBPRM is related

to the step size t. The smaller the step size, the longer it takes to generate nodes.

For UOBPRM, the time to generate nodes depends on both the length of the line

40

segment l and the step size t. If the segment is long and the step size is longer,

then few intermediate configurations need to be tested. When the segment is short

but the step size is small, then more intermediate configurations need to be checked.

Therefore, the main factor determining the cost for UOBPRM is l/t.

Table 4.4: Generation time for various samplers and input parameters in the single
ball environment [22].

Sampler Parameter Time (sec)

PRM n/a 0.07

Gaussian
d = 0.1 22.91
d = 0.2 7.08

Bridge Test
d = 0.1 128.58
d = 0.2 86.73

OBPRM

t = 0.025 19.34
t = 0.05 18.34
t = 0.1 15.34
t = 0.2 6.02

UOBPRM

l/t = 2 8.70
l/t = 4 8.69
l/t = 5 9.08
l/t = 10 9.88
l/t = 20 11.69
l/t = 40 16.67

We examine the cost to generate configurations in two environments: the single

ball environment (Figure 4.5(a)) and the Tunnel environment (Figure 4.16(a)). Ta-

bles 4.4 and 4.5 display the time for each sampling method to generate 1000 nodes

in both environments. Both environments have similar trends. As expected, PRM

takes the least amount of time. However, these samples are not distributed on the

obstacle surfaces and PRM’s performance degrades with increasing the problem dif-

41

ficulty. Bridge Test sampling takes the longest time and is sensitive to d. It is

because it is hard to sample two invalid points whose endpoint is valid. Depend-

ing on the parameters chosen, OBPRM and UOBPRM take the shortest amount of

time. OBPRM increases generation time as the step size t is decreased. The time

for UOBPRM is related to l/t. The generation time increases when l/t is increasing.

Note that only UOBPRM makes any claim as to the distribution of samples on the

obstacle surfaces, and it can do so with similar or even less computational time than

the other methods.

Table 4.5: Generation time for various sampling methods and input parameters in
the Tunnel environment [22].

Sampler Parameter Time (sec)

PRM n/a 0.39

Gaussian
d = 2 28.66
d = 4 44.39
d = 8 82.41

Bridge Test
d = 2 85.86
d = 4 172.29

OBPRM

t = 0.025 14.54
t = 0.05 13.28
t = 0.1 11.94
t = 0.2 8.74

UOBPRM

l/t = 2 11.04
l/t = 4 13.05
l/t = 5 13.64
l/t = 8 17.04
l/t = 10 18.56
l/t = 20 31.04
l/t = 40 33.60
l/t = 80 62.83

42

4.3.4 Narrow Passage Analysis

The probabilities to sample in the narrow passage for PRM, OBPRM, Gaussian

PRM, and Bridge Test PRM are proportional to the volume of the narrow passage.

However, the ability of UOBPRM to sample inside the narrow passage is less af-

fected with respect to the changes in the narrow passage volume. In particular, the

probability for UOBPRM to sample inside the narrow passage PUOBPRM is SA(∂CN)
SA(∂Cobst)

,

where SA(·) is the surface area of a region and CN is the narrow passage in Cspace.

Here we conduct two sets of experiments in the Passage 1, 2, and 3 environments

(Figure 4.13). Passage 1 is an easy problem that contains a lot of free space. Passage

2 and Passage 3 have narrow passages where the robot can still rotate in Passage 2

but cannot in Passage 3. Note that the volume of the narrow passage varies while

its surface area remains constant since the obstacles defining it remain unchanged.

(a) Passage 1 (b) Passage 2 (c) Passage 3

Figure 4.13: Environments that vary the narrow passage width. Passage 1 is the
easiest problem and Passage 3 is the most difficult problem. The robot is a small
cube.

4.3.4.1 Fixed Actual Number of Samples in the Map

We generate 1000 samples in the map using PRM, Gaussian PRM, Bridge Test

PRM, OBPRM, and UOBPRM samplings. The number of configurations inside the

narrow passage and the node generation time are collected for each sampling method.

43

Note that since OBPRM and UOBPRM can generate more than one sample in one

attempt, the results are normalized to maps containing 1000 samples if needed.

Figure 4.14(a) first shows how many nodes are inside the narrow passage. When

the passage width decreases, the probability of sampling inside the passage decreases

for PRM, Gaussian PRM, and OBPRM. Bridge Test PRM always generates samples

inside the narrow passage due to its nature. However, if the line segment cannot

bridge the gap between obstacles (e.g., Passage 1 environment in Figure 4.13(a)),

Bridge Test PRM is not able to generate any sample. The performance of UOBPRM

is consistent with respect to the narrow passage width since the probability for

UOBPRM to sample inside the narrow passage is affected by the surface area of

the narrow passage.

Figure 4.14(b) shows the node generation time for each method sampling in three

environments. PRM and Gaussian PRM are fast but their ability to sample inside

the narrow passage highly depends on the volume of the narrow passage as shown in

Figure 4.14(a). Bridge Test PRM again has the problem that its line segment length

is problem dependent. It can only generate a sample when the line segment is long

enough to bridge the obstacles. The node generation time for UOBPRM is relatively

stable compared to OBPRM.

We also compute the percentage of samples that lie in the narrow passage for

UOBPRM as shown in Figure 4.14(c). The surface area ratio between the narrow

passage and the Cobst is 0.4444. Our result shows that 42.95% of the UOBPRM

configurations are in the narrow passage which is very close to the ideal percentage

of 44.44%.

44

4.3.4.2 Fixed Number of Samples inside Narrow Passage

The second experiment we have is to measure how many configurations are needed

to generate a fixed number of samples inside the narrow passage by each sampling

method. Here we generate 100 configurations in the narrow passage by PRM, Gaus-

sian PRM, Bridge Test PRM, OBPRM, and UOBPRM. The results are normalized

again to maps with 100 configurations in the narrow passages if the sampling method

can generate more than one configuration by one attempt.

Figure 4.15(a) shows how many configurations are needed for each sampling

method to obtain 100 samples inside the narrow passage. As the passage width

decreases, PRM, Gaussian PRM, and OBPRM need to generate more samples in

order to generate 100 configurations in the narrow passage. Although the perfor-

mance of Bridge Test PRM is stable, it cannot generate any sample in the Passage

1 environment since the line segment is too short. UOBPRM performs very stably

among three environments, and it also takes fewer nodes than other obstacle-based

sampling methods (except Bridge Test PRM since all samples Bridge Test PRM

generates will be inside the passage).

Figure 4.15(b) shows the time each sampling method takes to generate 100 sam-

ples in the narrow passage. The node generation time increases when the problem

gets harder for all sampling methods except UOBPRM. The probability for PRM,

Gaussian PRM, Bridge Test PRM, and OBPRM to generate configurations inside

the narrow passage depends on the volume of the narrow passage. However, the per-

formance of UOBPRM is affected by the surface area of the narrow passage. Thus,

UOBPRM is more stable with respect to the changes in the narrow passage width.

We also compute the percentage of samples that lie in the narrow passage for

UOBPRM. There should be about 44.44% of UOBPRM configurations in the narrow

45

passage by calculating the surface area ratio between the narrow passage and the

Cobst. Our experimental result shows that 43.00% of the UOBPRM samples lie in the

narrow passage which is very close to the ideal percentage of 44.44%.

4.3.5 Motion Planning

In addition to the configuration distribution, we are also interested in how well the

sampling method solves an actual motion planning problem. We study two difficult

motion planning problems: a heterogeneous Tunnel environment as shown in Fig-

ure 4.16(a) which has various narrow passages with different widths and a Z-Tunnel

environment (Figure 4.16(b)) which contains a narrow passage that a robot needs

to traverse through. We try to use different sampling methods and the straightline

local planner to find a path between the start and the goal configurations which

reside in the free space at the two ends of the environment. The more uniform the

configurations are, the faster the sampler is able to find a path by fewer nodes and

edges.

Table 4.6 shows the average results in the heterogeneous environment (Figure 4.16(a))

for both a rigid body and a 4-link linkage robot by using different sampling methods

with various parameters to solve the problem. UOBPRM with t = 1 performs the

best since it needs the least configurations and edges to find the query path. PRM is

not good at solving this kind of difficult problem. For UOBPRM, since a small step

size t generates configurations closer to the obstacle surfaces, it needs more config-

urations and longer time to solve the problem. For the linkage robot, Bridge Test

PRM takes more than one hour to find the solution path.

Table 4.7 shows the average results for solving the query in the Z-Tunnel environ-

ment by various sampling methods. UOBPRM outperforms other sampling methods

by using fewer nodes and edges to efficiently solve the problem. Gaussian sampling,

46

Table 4.6: Time required to solve the heterogeneous Tunnel environment query by
different robots for various sampling methods and input parameters. There are two
types of robots: R for rigid body and L for linkage robot.

Robot Sampler # Nodes # Edges Time (sec) CD Calls

R

PRM 7345.60 92259.00 1433.55 1017504.20
Gaussian d = 0.6 1240.40 11381.60 39.68 147283.50
Bridge Test d = 4 969.00 12031.50 11.13 125304.90
OBPRM 763.00 5839.30 17.26 91578.10
UOBPRM l = 2, t = 0.2 4790.10 51881.30 850.91 556786.00
UOBPRM l = 2, t = 0.25 1507.20 13198.00 69.09 155927.80
UOBPRM l = 2, t = 0.4 777.60 6237.70 22.13 63387.00
UOBPRM l = 2, t = 0.5 908.10 7828.00 25.78 69271.20
UOBPRM l = 2, t = 1 104.50 388.60 1.70 5769.30

L

PRM 566.90 2918.40 565.80 101407.30
Gaussian d = 0.6 280.00 1795.10 731.73 147053.60
Bridge Test d = 4 420.80 3119.80 8675.55 278293.10
OBPRM 356.70 2226.20 477.21 70205.70
UOBPRM l = 2, t = 0.2 322.20 1211.60 3012.32 785714.20
UOBPRM l = 2, t = 0.25 319.70 1113.40 2915.46 538420.50
UOBPRM l = 2, t = 0.4 224.90 868.30 73.63 41140.00
UOBPRM l = 2, t = 0.5 87.20 214.50 8.41 9064.40
UOBPRM l = 2, t = 1 72.30 252.00 4.25 5039.20

Bridge Test sampling and OBPRM are obstacle-based sampling methods. Therefore,

they can find the solution path faster than PRM which is not good at solving the

problem with difficult area such as narrow passages.

4.3.6 UOBPRM and Gaussian Sampling Performance Comparison

We compare Gaussian sampling and UOBPRM in a relatively free environment

with a unit radius ball obstacle at the origin and a bounding box of 8×8×8 (shown

in Figure 4.17).

Figure 4.18 shows the node generation time normalized to Gaussian sampling for

both methods to collect 4000 nodes with varying line segment lengths. When the line

47

Table 4.7: Time required to solve the Z-Tunnel environment query by different sam-
pling methods.

Sampler # Nodes # Edges Time (sec) CD Calls

PRM 10661.10 105701.40 1850.42 1331432.80
Gaussian d = 0.2 1894.00 15251.50 39.89 198697.10
Bridge Test d = 3 8359.20 73126.60 637.34 332410.20

OBPRM 3294.90 25720.00 503.51 267913.90
UOBPRM l = 1, t = 0.01 516.30 3936.60 29.59 117561.10

segment length is relatively small, both sampling methods have similar performance.

As the line segment length increases, UOBPRM becomes increasingly more efficient

than Gaussian sampling.

Figure 4.19 shows the configuration distribution for both UOBPRM and Gaus-

sian sampling with various line segment lengths. The red bars in Figure 4.19 show

the node distribution in the ball regions and the blue ones show the node distribution

in the free regions. 25% is the ideal percentage in the ball regions if the configu-

rations distributed uniformly around obstacle surfaces, and there shouldn’t be any

configurations in the free regions. When the line segment length is short, Gaus-

sian sampling also generates uniformly distributed configurations around obstacle

surfaces like UOBPRM (as shown in Figure 4.19(a) and Figure 4.19(b)). However,

when the line segment is long, only UOBPRM achieves a uniform distribution (as

shown in Figure 4.19(c)).

48

(a) Number of Samples (b) Node Generation Time (sec)

(c) Percentage of Samples

Figure 4.14: (a) Number of samples inside the narrow passage. (b) Time it takes
to generate 1000 samples in the roadmap. ⋆ stands for infinity value as Bridge Test
PRM is not able to generate any sample in the environment given the line segment
length too short to bridge the gap between obstacles. (c) Percentage of samples in
the narrow passage. The surface area ratio between the narrow passage and the Cobst
is 0.4444. Only UOBPRM’s performance is comparable.

49

(a) Number of Samples in the map (b) Node Generation Time (sec)

Figure 4.15: (a) Number of samples in the map in order to generate 100 samples
inside the narrow passage. (b) Time it takes to generate the configurations. ⋆
indicates the infinity time that Bridge Test PRM needs in Passage 1 since the line
segment length is not long enough to bridge the obstacles.

(a) Tunnel (b) Z-Tunnel

Figure 4.16: Two environments are used for the study of the motion planning prob-
lems. The robot is a small cube.

Figure 4.17: A relatively free environment is used to study the relationship between
UOBPRM and Gaussian sampling. The robot is a small cube.

50

Figure 4.18: Time required to generate 4000 nodes by UOBPRM and Gaussian sam-
pling with different line segment lengths (l in UOBPRM and d in Gaussian sampling).
Step size t is equal to line segment length. Both methods perform similarly when the
line segment length is short, and UOBPRM is more efficient than Gaussian sampling
when the line segment length is long.

51

(a) l = d = 0.05 (b) l = d = 0.1

(c) l = d = 2

Figure 4.19: Distribution comparison of ball (red) and free (blue) regions. Ideal
percentage of ball is 25% and free is 0%.

52

5. UNIFORM MEDIAL-AXIS PRM (UMAPRM)∗

UMAPRM [73] is the instance of the uniform sampling framework that uniformly

distributes samples along the medial axis by computing the crossing between the fixed

length line segments and the medial axis surfaces.

We next describe in more detail how we generate samples uniformly distributed

on the medial axis in Section 5.1. Section 5.2 demonstrates some experimental results

including the node distribution, the performance to sample along the medial axis in

the narrow passage, and the efficiency for solving some difficult motion planning

problems.

5.1 Detecting Surface Membership

The medial axis is a set of points equidistant to two or more obstacles. Since

every configuration on the sampled line segment has a corresponding closest obstacle,

the medial axis is crossed when the closest obstacles changes. Figure 5.1 shows some

configurations colored by the correspondingly closest obstacle.

Algorithm 8 outlines how UMAPRM detects the medial axis and uniformly sam-

ples on it. UMAPRM generates intermediate configurations at a step size t along

the line segment and determine their closest obstacles. If there is a closest obstacle

change between a consecutive pair of configurations, the medial axis has been crossed

and a bisection search is used to find a configuration on the medial axis. Note that a

single line segment might cross the medial axis multiple times and result in multiple

medial axis points, as shown in Figure 5.2.

∗The description of the method and some experimental results are reprinted with permission
from “UMAPRM: Uniformly sampling the medial axis” by H. Y. Yeh, J. Denny, A. Lindsey, S.
Thomas, N. M. Amato, 2014 IEEE International Conference on Robotics and Automation (ICRA),
pp. 5798-5803 [73] c©2014 IEEE.

53

Figure 5.1: The configurations and their closest obstacles. The medial axis is given
by the dashed line. Different colors represent different closest obstacles. The closest
obstacle is changed when the medial axis is crossed.

Figure 5.2: An example showing that more than one crossing point can be identified
by a line segment.

The specific surfaces R for UMAPRM in Corollary 1 is along the medial axis of

Cfree. Figure 5.3 shows an example from UMAPRM. Since the line segments are

generated uniformly at random, the probability to find a line segment (c, l
−→
d) which

crosses the targeted surfaces at point p is uniform throughout the environment.

5.1.1 Bounding Box Adjustment

When the medial axis is too close to the bounding box, some line segments may

not be considered because they are not fully in the bounding box, decreasing the

54

Algorithm 8 UMAPRM Intersect(s, l, t, R)

Input: A line segment s of length l, a step size t, and target surfaces R
Output: A set of intersections I
1: R← medial axis in Cfree
2: for i = 1→ (l/t) do
3: Generate node ci along s
4: if closest obstacle(ci) 6= closest obstacle(ci+1) then
5: I ← BinarySearch(ci, ci+1)
6: return I

Figure 5.3: The target surface R is the Cfree along the medial axis (dashed line).

p is the intersection between the line segment (c, l
−→
d) and the target surface which

will be retained as a roadmap node. Since line segments are uniformly distributed
in the Cspace, the intersections found in R along the line segments are also uniformly
distributed [73].

probability for UMAPRM to generate line segments with length l. In particular,

UMAPRM will invalidate the guarantee of uniformly sampling the medial axis when

the medial axis is within distance l of the bounding box. To address this issue,

UMAPRM temporarily adjusts the bounding box by expanding it by the line segment

length l+r to provide enough space for UMAPRM to generate uniformly distributed

line segments in Cspace. Figure 5.4 shows an example when the bounding box needs

55

to be adjusted to maintain the uniformity for UMAPRM.

Figure 5.4: An example illustrating the situation when the uniformity guarantee
is broken. The original bounding box (solid line) is too close to the medial axis,
restricting the line segments that can be placed in the Cspace. The bounding box is
extended to the dashed line to allow all segments of length l that could intersect the
medial axis.

5.2 Experiment Results

In this section, we show some experimental results regarding node distribution

and some motion planning problems for UMAPRM. All sampling methods are im-

plemented in the C++ motion planning library developed in the Parasol Lab at

Texas A&M University which contains a number of PRM variants and uses a dis-

tributed graph data structure from the Standard Template Adaptive Parallel Library

(STAPL) [61], a C++ library designed for parallel computing.

The results show that UMAPRM is able to generate uniformly distributed con-

figurations in the target surface in Cspace (e.g., along the medial axis) while other

methods cannot. This uniformity feature can benefit a real motion planning prob-

lem that other non-uniform sampling method is not able to solve. The computational

56

cost for UMAPRM is comparable to other methods, and even less in some cases. The

probability for UMAPRM to sample in the narrow passage depends on the surface

area of the medial axis in the narrow passage. Thus, UMAPRM is unaffected when

there is a change in the surrounding obstacle volume while MAPRM’s performance

varies a lot due to the changes.

The results for UMAPRM are presented similarly as UOBPRM:

• Planners studied — Section 5.2.1

• Uniformity analysis demonstrates the uniform distribution guarantee — Sec-

tion 5.2.3

• Cost to generate configurations — Section 5.2.4

• Narrow passage analysis — Section 5.2.5

• Application to actual motion planning problems — Section 5.2.6

5.2.1 Planners Studied

We compare UMAPRM, MAPRM, and PRM (uniform sampling) in this study.

PRM is used as control, and the other two sampling methods are developed for gener-

ating samples along the medial axis. All methods use PQP [45] for collision detection

and the Euclidean distance metric for distance calculation. We only consider point

robots in this work. The results are averaged over 40 runs.

5.2.2 Implementation Detail for Point Robot

UMAPRM looks for crossings between the segments and the medial axis. Here

we assume the robots are all point robots, so the medial axis of Cspace is the same as

of workspace. It first computes the closest witness point on the boundary of Cfree and

identifies which obstacle component it belongs to. Since the obstacles are modeled

57

as polyhedra composed of triangles, the obstacle component is either a vertex or a

triangle. There are three cases causing ci and ci+1 to be on the opposite sides of the

medial axis as follows:

• Witness points belong to different obstacles (Figure 5.5(a)).

• Witness points belong to the same obstacle but are not on the adjacent obstacle

components (Figure 5.5(b)).

• Witness points belong to the same obstacle and are on the adjacent obstacle

components, but they are on the opposite side of a concavity in the model, e.g.,

two neighboring concave triangles (Figure 5.5(c)).

(a) (b) (c)

Figure 5.5: Three examples showing how UMAPRM finds configurations on the me-
dial axis for a point robot by checking changes in closest triangles on obstacles. The
grey face is the medial axis. The medial axis is crossed when (a) closest triangles are
on different obstacles, (b) closest triangles are on the same obstacle but not adjacent
to each other, or (c) neighboring concave triangles are on the same obstacle [73].

5.2.3 Uniformity

In this section, we provide a set of experiments showing the configuration dis-

tribution along the medial axis between UMAPRM and MAPRM. We show how

certain environments (as shown in Figure 5.6(a) and Figure 5.6(b)) cause MAPRM

58

samples to be non-uniformly distributed, while UMAPRM samples do not have such

bias.

(a) 2D Block (b) 3D Block

(c) Obstacle 1 (d) Obstacle 2 (e) Obstacle 3

Figure 5.6: (a, b) Two environments used to compare the distribution of UMAPRM
and MAPRM. (c, d, e) Narrow passages of varying surrounding obstacle volume to
compare sampling densities of UMAPRM and MAPRM. The robot we study in every
environment is a point robot.

5.2.3.1 2D and 3D Environments With Two Unit Blocks

We first compare the configuration distribution generated by MAPRM and UMAPRM

in simple 2D and 3D environments which contain a narrow passage created by two

unit blocks (as shown in Figure 5.6(a) and 5.6(b)). We generate 1000 nodes by each

sampling method along the segment of the medial axis between the blocks (we ignore

the portion of the medial axis related to the boundary). Because the medial axis

is simple (either a line or a plane), we compare with uniformly distributed points

59

generated by PRM along this structure. As a measure of uniformity, we compute

the standard deviation of the distances between each node and its closest neighbor.

If the nodes are uniformly distributed, this uniformity metric will be small.

Figure 5.7 shows that UMAPRM has the lowest average standard deviation in

both environments, which implies that UMAPRM can generate more uniformly dis-

tributed nodes. Additionally, UMAPRM has roughly the same average as uniformly

random distributed points along the medial axis plane.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

2DBlock 3DBlock

S
t.

D
ev

.

UMAPRM
MAPRM

UniformRandom

Figure 5.7: The average of standard deviations of distances between each node and its
closest neighbor for roadmaps of 1000 samples between UMAPRM (green), MAPRM
(blue), and uniform random sampling on the medial axis (red) [73].

Figure 5.8 and 5.9 show the sample distributions from the 1000 node roadmap

generated by UMAPRM, MAPRM, and uniform random sampling on the medial axis.

MAPRM is highly biased towards the area between the blocks in the environment,

while UMAPRM is uniformly distributed along the medial axis for both 2D and 3D

environments. MAPRM nodes are biased because MAPRM pushes samples away

from the witness point on the Cobst boundary. Only samples whose closest points are

on the corners of the block will be pushed towards the portion of the medial axis not

covered by the block. The probability of this happening is much lower than for other

portions of the medial axis. However, UMAPRM uniformly generates and analyzes

line segments which do not have biases based on Cobst boundaries.

60

 0
 10
 20
 30
 40
 50
 60

-5 -3 -1 1 3 5

F
re

qu
en

cy

y

(a) UMAPRM

 0
 50

 100
 150
 200
 250
 300

-5 -3 -1 1 3 5

F
re

qu
en

cy

y

(b) MAPRM

 0
 10
 20
 30
 40
 50
 60

-5 -3 -1 1 3 5

F
re

qu
en

cy

y

(c) Uniform random

Figure 5.8: Distribution of 1000 samples generated by UMAPRM, MAPRM, and
uniform random sampling in the 2D Block environment [73].

 0
 10
 20
 30
 40
 50

-5 -3 -1 1 3 5

F
re

qu
en

cy

x

(a) UMAPRM X-Axis

 0
 20
 40
 60
 80

 100
 120
 140

-5 -3 -1 1 3 5

F
re

qu
en

cy

x

(b) MAPRM X-Axis

 0
 10
 20
 30
 40
 50
 60

-5 -3 -1 1 3 5

F
re

qu
en

cy

x

(c) Uniform random X-Axis

 0
 10
 20
 30
 40
 50

-5 -3 -1 1 3 5

F
re

qu
en

cy

z

(d) UMAPRM Z-Axis

 0

 40

 80

 120

 160

-5 -3 -1 1 3 5

F
re

qu
en

cy

z

(e) MAPRM Z-Axis

 0
 10
 20
 30
 40
 50
 60
 70

-5 -3 -1 1 3 5

F
re

qu
en

cy

z

(f) Uniform random Z-Axix

Figure 5.9: Distribution of 1000 samples generated by UMAPRM, MAPRM, and
uniform random sampling in the 3D Block environment [73].

5.2.4 Cost

We are also interested in how the costs of the sampling methods are affected when

the surrounding obstacle width is varied. The three environments (Figure 5.6(c),

Figure 5.6(d) and Figure 5.6(e)) have the same narrow passage width, while Obstacle

1 has the smallest obstacle volume and Obstacle 3 has the largest. We generate 1000

samples along the medial axis of the entire space and measure the node generation

time for each method. The results are shown in Figure 5.10.

UMAPRM is also more consistent in the time it takes to generate samples in the

narrow passages across the three environments, while MAPRM’s efficiency is related

to the distance for each node to be pushed to reach the medial axis. As obstacle

61

width increases, each node needs to traverse a smaller distance to the medial axis.

Thus, MAPRM takes less time to generate successful samples in the Obstacle 3

environment than in the Obstacle 1 environment. However, UMAPRM is slightly

affected in the third case. Although the change in the obstacle volume does not affect

the probability of sampling in the narrow passage for UMAPRM, the total surface

area of the medial axis has changed, which causes the average time for UMAPRM

to generate samples to increase.

 0
 200
 400
 600
 800

 1000
 1200

Obst1 Obst2 Obst3

T
im

e(
se

c)

UMAPRM
MAPRM

Figure 5.10: The time to generate 1000 samples for UMAPRM and MAPRM in
Obstacle 1, 2, and 3 [73].

UMAPRM has a uniform distribution along the medial axis of the space while

the distribution of samples in MAPRM can be highly non-uniform. The efficiency

for UMAPRM is not affected by the volume of the surrounding obstacle volume.

Conversely, MAPRM is hampered when the surrounding obstacle volume is small.

5.2.5 Narrow Passage Analysis

The probability to sample in the narrow passage for MAPRM is dependent on

the volume of the narrow passage and the surrounding obstacle volume. However,

the performance of UMAPRM sampling in the narrow passage is unaffected by the

changes in the surrounding obstacle volume. Here we perform two sets of experiments

for various environments in Figure 5.6(c), Figure 5.6(d) and Figure 5.6(e). Obstacle

62

1 has the smallest surrounding obstacle volume and Obstacle 3 has the largest. Note

that the volume of the narrow passage is the same for these three environments.

5.2.5.1 Fixed Actual Number of Samples in the Map

We generate 1000 samples along the medial axis of the entire environment by

PRM, MAPRM, and UMAPRM. The number of configurations inside the narrow

passage and the node generation time are collected for each sampling method. Note

that the results are normalized if needed since UMAPRM can generate more than

one sample in a single attempt.

Figure 5.11(a) first shows how many nodes there are inside the narrow passage.

When the surrounding obstacle volume increases, MAPRM is able to generate more

samples in the narrow passage. UMAPRM consistently generates almost the same

number of samples in the narrow passage regardless the changes since the surface

area of the medial axis in the narrow passage is fixed.

(a) Number of Samples (b) Node Generation Time (sec)

Figure 5.11: (a) Number of samples inside the narrow passage. (b) Time it takes to
generate 1000 samples in the roadmap.

Figure 5.11(b) shows the node generation time for each method sampling in three

63

environments. MAPRM takes longer to generate samples than UMAPRM in the

three environments. Also, the node generation time for UMAPRM is relatively

stable compared to MAPRM.

5.2.5.2 Fixed Number of Samples inside Narrow Passage

The second experiment we have is to measure how many configurations are

needed to generate a fixed number of samples inside the narrow passage for each

sampling method. Here we generate 100 configurations in the narrow passage by

PRM, MAPRM, and UMAPRM. The results are normalized again if the sampling

method can generate more than one configuration in a single attempt.

(a) Number of Samples in the map (b) Node Generation Time (sec)

Figure 5.12: (a) Number of samples in the map in order to generate 100 samples
inside the narrow passage. (b) Time it takes to generate the configurations.

Figure 5.12(a) shows how many configurations are needed for each sampling

method in order to get 100 samples inside the narrow passage. As the surround-

ing obstacle volume increases, MAPRM needs fewer configurations in the map in

order to have 100 configurations in the narrow passage. However, UMAPRM per-

forms very stably among three environments and it always takes fewer nodes than

64

MAPRM.

Figure 5.12(b) is the time each sampling method takes to generate 100 samples in

the narrow passage. MAPRM spends less time to generate 100 configurations in the

narrow passage when the surrounding obstacle volume increases since its performance

depends not only on the narrow passage volume but also on the surrounding obstacle

volume. On the other hand, the performance of UMAPRM is related to the surface

area of the medial axis in the narrow passage. Thus, UMAPRM is more stable with

respect to the changes in the surrounding obstacle volume.

5.2.6 Motion Planning

In this section, we compare how UMAPRM, MAPRM, and PRM can solve the

planning problem by finding a path from a start to a goal configuration in the en-

vironment as shown in Figure 5.13. There is a long narrow passage in the 2DMaze

environment (Figure 5.13(a)). In the STunnel environment (Figure 5.13(b)), the

narrow passage is surrounded by thin obstacles. In the 2DHeterogeneous environ-

ment (Figure 5.13(c)), there are multiple narrow passages with different types. In

the Bug Trap environment (Figure 5.13(d)), the robot needs to escape from the trap

by traversing a small opening.

5.2.6.1 Time

We first study the efficiency of each sampling method to solve the query. The

result is normalized to PRM. Figure 5.14 shows that UMAPRM takes less time to

find the solution than MAPRM, but is slower than PRM in the 2DMaze and the

2DHeterogeneous environments. This is because PRM has fewer collision detection

calls in these environments. In the STunnel environment, UMAPRM outperforms

both MAPRM and PRM. PRM takes longer because the volume of the narrow pas-

sage is small compared to the rest of the planning space. MAPRM is also hampered

65

(a) (b) (c) (d)

Figure 5.13: Motion planning environments studied. The robot is a point robot for
all environments. (a) 2DMaze. The start and the goal reside at the two ends in the
free space. (b) STunnel. The start and the goal are in the top left and the bottom
right corners. (c) 2DHeterogeneous. The start is in the top free space and the goal
is placed in the bottom cluttered region. (d) Bug Trap. The objective is to get out
of the trap through the narrow passage.

in this environment because the volume of the surrounding obstacle volume is still

small compared to the rest of the planning space. In the Bug Trap environment,

only UMAPRM is able to find the solution within the 10-hour running time limit.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

2DMaze STunnel 2DHetero

T
im

e(
se

c)

UMAPRM
MAPRM

UniformRandom

Figure 5.14: The time to solve the problem for UMAPRM, MAPRM, and PRM in
different environments [73].

5.2.6.2 Clearance

In addition to the efficiency, we are also interested in the quality of the path by

calculating the average path clearance for each sampling method. The average path

clearance is the average of the edge clearances for each solution path. Figure 5.15 is

the normalized results to PRM. It shows that UMAPRM can generate higher quality

66

paths than MAPRM and PRM in the 2DMaze and the STunnel environments. In

the 2DHeterogeneous environment, the quality between UMAPRM and MAPRM is

comparable. Since only UMAPRM is able to solve the query problem in the Bug

Trap environment, there is no normalized quality result for this environment.

 0
 1
 2
 3
 4
 5
 6

2DMaze STunnel 2DHetero

C
le

ar
an

ce

UMAPRM
MAPRM

UniformRandom

Figure 5.15: The average clearance of the path for UMAPRM, MAPRM, and PRM
in different environments [73].

67

6. RANK LIGAND BINDING AFFINITY

In the pharmaceutical industry, the drug screening process rigorously tests po-

tential drugs to select the most promising candidates for further study. Since the

drug discovery process is quite costly [36], computationally screening drug candidates

against target proteins is becoming increasingly important. Analysis of surfaces is

essential to study the ligand binding problem. The uniform sampling framework

presented in Chapter 3 is a strategy for sampling uniformly on a particular surface.

Hence, the uniform sampling framework can be applied in drug screening.

The drug, or ligand, is a small molecule which attempts to bind to a specific site

(called the binding site or the binding pocket) on the target protein, as shown in

Figure 6.1. This interaction is essential to many biochemical processes as well as

to the efficacy of various drug candidates. Drug design in the disease treatment is

an inhibition case during binding. In AIDS (acquired immunodeficiency syndrome)

treatment, the virus is no longer able to cause further infection only when the drug

can successfully bind to the enzyme [29, 69]. The strength of this interaction is known

as the ligand binding affinity. Ligands that bind with higher affinities have a higher

likelihood to be more effective drugs that bind quicker, be more stable, and remain

bound longer than ligands with low affinities. Thus, the pharmaceutical industry is

always searching for ligands with high binding affinities to their particular protein

target.

Many computational approaches have studied ligand binding. In particular, many

robotics techniques that compute feasible motions for a robot have been applied to

this domain by considering the ligand as the robot [57, 7, 23, 24]. However, none of

these techniques rank ligands based on their affinity.

68

Figure 6.1: A protein (shown in wireframe) with a ligand (shown in spheres) bound
inside it.

We present a method to rank binding affinity by sampling ligand conformations

uniformly distributed over the target protein’s surface, analyzing the resulting sample

set, and computing an affinity based properties of these samples. Specifically, we

use UOBPRM sampling [22] originally developed for robotic motion planning, to

generate samples guaranteed to be uniformly distributed over the protein’s surface,

regardless of the complexity of that surface. We present two different affinity metrics

and test their ability to correctly rank ligands as determined by experimental data

on three different target proteins. We show that one of our metrics, in particular,

can correctly rank all the ligands for all protein targets.

6.1 Preliminaries

In this section, we discuss some approaches that are used to compute ligand

binding affinity, including experimentally and computationally (Section 6.1.1.1 and

Section 6.1.1.2 respectively). Next, we explain how the motion planning framework

can be adjusted to study molecule’s motion in Section 6.1.2.

6.1.1 Ligand Binding Affinity

Ligand binding affinity quantifies the ability (or inability) of a particular ligand

to bind, or dock, to a target protein. Figure 6.1 shows an example of a ligand (shown

in spheres) bound to a target protein (shown in wireframe). The ligand binding pro-

69

cess, sometimes called molecular docking, can be described by two important models.

The lock-and-key model assumes that there is a high degree of similarity between

the shape of the protein and the ligand (Figure 6.2). The ligand with complemen-

tary geometry can trigger the binding process, like a key in a lock (Figure 6.2(a)).

Otherwise, incompatible ligand fails to bind to the protein (Figure 6.2(b)). The lock-

and-key model does not take the protein flexibility into account when discussing the

binding process. The second model which considers that protein has some flexibility

is called the induced-fit model. The ligand binding induces some protein’s confor-

mational change that results in a complementary fit between the protein and the

ligand, see Figure 6.3.

(a)

(b)

Figure 6.2: The lock-and-key ligand binding model: (a) A ligand successfully binds
to the target protein due to complementary geometry and chemistry. (b) The ligand
is incompatible and the protein-ligand complex cannot form.

70

Figure 6.3: In the induced-fit model, the protein undergoes a conformational change
when ligand binds to it. The shape of the ligand becomes complementary to the
shape of the binding site after the ligand binds to the protein.

6.1.1.1 Experimental Approaches

Normally, binding affinity can be calculated by IC50 and Ki where Ki can be de-

rived by IC50 [17]. IC50 is the concentration required to achieve 50% inhibition of a

biochemical function. It can be measured by linear regression which starts with some

concentration of an agonist (a chemical compound that will activate some biological

response when binding) and keeps increasing the concentrations of an antagonist to

inhibit the response. The greatest value of the response will be normalized to 100%

and all the other response values are computed as the percentage of the greatest

response.

IC50 can also be computed by competition binding which is done by measuring

the agonist with a radioactive isotope attached when increasing antagonist concen-

trations. IC50 is the amount when there are 50% of the binding of the radio-agonist.

Unlike IC50 changes depending on the experiment, Ki is an absolute value and

is often referred to the inhibition constant of a drug. Ki is the concentration of the

drug when 50% of the receptors is occupied and there is no radio-agonist present.

Ki can be calculated by the following equation where [L] is the concentration of the

71

radioligand used and Kd is the dissociation constant of the radioligand:

Ki =
IC50

(1 + [L]
Kd

)

The lower the IC50 or Ki values are, the more potent the drug is and the greater

affinity it has for the receptor.

Many databases collect the protein-ligand interaction information. BindingDB [51]

is a public database which provides ligands with different binding affinities for a spe-

cific target protein. Binding MOAD [8] and BioLiP [70] collect protein structures and

their relevant ligands with experimentally determined binding data. An improved

benchmark for molecular docking, DUD-E [54], includes ligands and their target pro-

teins. More importantly, DUD-E provides decoys for each ligand which can be used

to improve molecular docking screening.

6.1.1.2 Computational Approaches

Ligand binding experiments are accurate but expensive and labor-intensive [64].

In light of this, many computational molecular docking approaches have been de-

veloped which use Monte Carlo and Genetic Algorithms to predict protein-ligand

binding. DOCK [44], AutoDock [53], Gold [28], and FTDock [39] are some such ap-

proaches. None of these approaches treats the ligand as fully flexible [65]. Moreover,

the exploration space is very large and computation times are extremely long. In

addition, the success ratio is often relatively low (2–20%) [66].

There are approaches which use motion planning to study protein-ligand bind-

ing [57, 7]. In [57], they first uniformly generate ligand conformations over the space

and then sample more densely in the known binding site. Samples are connected to-

gether if there exist energetically feasible transitions between them. A low-potential

72

path is extracted from the resulting graph. This path represents a possible ligand

binding path. In [7], obstacle-based sampling (OBPRM) [2, 3] and human input via

a haptic device provide better quality ligand samples. They were better able to pre-

dict the ligand binding site on the protein surface. However, they did not specifically

study ligand binding affinity.

Other approaches also focus on finding ligand access and exit pathways. Rapidly

exploring random trees (RRTs) [47] is used in [23] to study how (R, S)-enantiomers

exit the active site of Burkholderia cepacia lipase. An extended ML-RRT method is

applied to compute the exit pathways of TDG from lactose permease (LacY) and the

exit pathways of carazolol from β2-adrenergic receptor in [24]. MoMA-LigPath [26]

is a web server to simulate ligand unbinding process by ML-RRT method. Steered

Molecular Dynamics [37], Random Acceleration Molecular Dynamics [52], and Monte

Carol techniques [14] are used to study the ligand binding simulation. They also did

not specifically rank ligands according to their binding affinity.

6.1.2 Modeling Molecular Motions

Similar to robots, molecules also have motions. Moreover, these motion are usu-

ally essential to activate many important mechanisms or even to cause some diseases.

For example, a protein can fold to its final, stable three dimensional structure. When

a protein misfolds into a different structure, it can possibly lead to many devastating

diseases, such as Alzheimer’s, Mad Cow, and Parkinson’s disease [20]. When insulin

binds to the insulin receptor, it will activate the formation of the insulin receptor

substrate. This substrate will later cause some intracellular insulin effects, such as

fat metabolism and glucose uptake [56].

As modeling motions has been well studied in robotics in the past several decades,

we can surprising study many biology problems by changing the definition of the

73

robot and a valid robot placement with the same motion planning framework in

traditional robotics [57, 4, 1, 62].

The overall strategy follows the general approaches presented in robotics, only

with some modifications in order to adapt molecules to the framework as discussed

in Section 6.1.2.1 and Section 6.1.2.2.

6.1.2.1 Molecule Model

The molecule is modeled as an articulated linkage robot. Depending on the

motion that the protein can have, the degree of freedoms (dofs) are assigned to the

bond angles with some range (such as a revolute joint ranging between [0, 2π)).

6.1.2.2 Molecule Validity

A valid molecule configuration depends on the definition of a “collision-free”

sample. The criteria can be a energetically stable structure or a molecule that has

no geometric collision with another molecule (for example, a ligand and a protein

cannot collide to each other).

6.2 Method

To rank ligand binding affinity, we first generate a set of ligand conformations

uniformly distributed over the target protein surface using UOBPRM for each ligand

under consideration. We then analyze the resulting ligand-protein conformation

sample sets and compute various binding affinity metrics. We use the metrics to then

rank the relative affinities of several different ligands to the same target protein.

We first discuss how we model the protein and the ligand in Section 6.2.1. We then

present the methodology for using UOBPRM to rank binding affinity in Section 6.2.2.

Finally, we present binding affinity metrics in Section 6.2.3

74

6.2.1 Protein and Ligand Models

We model the protein as a rigid obstacle (as shown in Figure 6.4(c), Figure 6.5(c),

and Figure 6.6(c)) and the ligand as a flexible linkage robot. Note that the protein

”obstacle” (Figure 6.4(c) for 3W6H, Figure 6.5(c) for 4RRW, and Figure 6.6(c) for

4K5Y) is very similar to the protein viewed in spheres by PyMOL [25] (Figure 6.4(b)

for 3W6H, Figure 6.5(b) for 4RRW, and Figure 6.6(b) for 4K5Y).

The ligand is modeled as a free base articulated linkage robot where the torsional

movement of the bond is modeled by one dof revolute joint ranging from 0 to 2π. A

dof value is assigned to a bond between two atoms only if the rotation between these

two atoms can change the shape of the ligand. Therefore, we treat ring structures as

rigid. Note that unlike most other work, the ligand is treated as completely flexible

(apart from ring structures) instead of modeling the ligand as a static structure or

only minimally flexible.

6.2.2 Using UOBPRM to Rank Binding Affinity

Since we assume the protein remains mostly static, we treat it as an rigid obstacle.

We can then apply UOBPRM where the protein is the obstacle and the ligand is

sampled around it. This generates a set of ligand samples uniformly distributed over

the protein’s surface, including any binding pockets or cavities.

Note that there are several important parameters to set: the number of samples

n, the length l of line segments, and the resolution t at which to check consecutive

points along the line segments. (These are the same input parameters to the uniform

sampling framework, see Algorithm 5). We discuss each in the following sections.

75

(a) Protein (in wireframe) (b) Protein (in spheres)

(c) Rigid Protein Ob-
stacle

(d) 100 Ligand Samples (e) 500 Ligand Samples

(f) 1000 Ligand Sam-
ples

(g) 2000 Ligand Sam-
ples

(h) 5000 Ligand Sam-
ples

Figure 6.4: Protein 3W6H in wireframe (a) and in spheres (b) viewed by PyMOL [25].
(c) The protein is modeled as a rigid obstacle. (d)-(h) Varying numbers of ligand
samples (ligand centers of mass only shown).

6.2.2.1 The Number of Samples, n

We determine the appropriate number of UOBPRM ligand samples by checking

whether the exposed residues are covered well enough based on a coverage measure-

ment. The exposed residues are identified based on the relative solvent accessible

area information. The DSSP (Define Secondary Structure of Proteins) file [38] is

parsed to extract the ACC (accessibility) information. The relative solvent accessi-

ble area is computed by dividing ACC by the total surface area of the residue [21].

Those who had relative solvent accessible area below 20% are defined as buried while

76

others are exposed residues [19]. For every ligand sample, we identify which exposed

residue it is close to and calculate the distance between each sample and its closest

neighboring sample. The average of all the distances is computed. If the average

distance is below certain percentage of the ligand diameter, we have enough samples

to cover the protein surfaces. Otherwise, we need more samples to approximate the

protein surfaces. Figures 6.4, 6.5, and 6.6 show the varying coverage with different

values of n of the ligand over the protein surface for 3W6H, for 4RRW, and for 4K5Y,

respectively. For clarity, only the ligand’s center of mass is shown. Although it has

been proven that the number of samples does not affect the uniformity [22], we need

to have enough samples to cover the protein surface well in order to evaluate them

and determine an affinity.

6.2.2.2 The Line Segment Length, l

The second input parameter to UOBPRM is the length of the line segments.

However, in [22], it was proven that l does not affect the resulting distribution.

Thus, we simply fix l to 10 in all the experiments here.

6.2.2.3 The Checking Resolution, t

The final parameter to consider is the step size t at which to check consecutive

points along the line segment for surface membership. Because we are defining

surface membership as near obstacle surfaces, t will greatly affect the distances ligand

samples are to the protein surface. Here, we want the ligand samples as tight to the

protein surface as possible to more accurately model the binding interaction. To do

so, we set t to be the same resolution at which steric collisions are typically set.

77

6.2.3 Affinity Metrics

Given a set of UOBPRM ligand configurations, we would like to use them to ap-

proximate the ligand binding affinity with respect to the target protein. To compute

such an affinity, we look at several different metrics. For each metric, we examine

the minimum value, the average value of the minimum 1%, and the average value of

the minimum 10%.

In this paper, we investigate the following affinity metrics:

• Distance. This calculates the distance between the center of mass of the tar-

get protein and the center of mass of each UOBPRM ligand sample. This is

based off the idea that ligands with higher binding affinities are more likely

to be buried deeper in the protein. Thus, the smaller the distance, the higher

the affinity. Note that this metric requires no knowledge of the binding site

location.

• Energy. The potential energy between the protein and the UOBPRM ligand

sample measures the energetic compatibility of the complex. It is calculated

as:

U =
∑

atom pairi,j

A/r12ij − B/r6ij + Ehydrophobic

where rij refers to the distance between protein atom i and ligand atom j.

Parameters A and B are taken from [48]. Since the ligand searches for a stable

low potential conformation during binding, the lower the energy, the higher the

affinity. Note that this metric also requires no knowledge of the binding site

location.

78

6.3 Experiment Results

We compare the ligand binding affinity ranking from our method to the experi-

mentally determined affinity ranking order for three different target proteins: 3W6H

with 3 ligands, 4RRW with 5 ligands, and 4K5Y with 4 ligands. Binding affinities

were obtained from BindingDB [51], and proteins were obtained from the Protein

Data Bank [9]. We apply UOBPRM on each protein-ligand pair to generate a set of

ligand configurations around the target protein’s surface and use the affinity metrics

discussed in Section 6.2.3 to approximate the binding affinity.

6.3.1 Target Protein 3W6H

The first set of experiments contains 3 ligands with different binding affinities

with respect to protein 3W6H (see Figure 6.4(a)). Figure 6.7 displays the ligands

structure studied ordered by affinity ranking from best to worst. 3W6H is a human

carbonic anhydrase I (hCAI) which is a lyase catalyzing the removal of some bonds

from a compound [60]. Carbonic anhydrase converts carbon dioxide and water to

bicarbonate. Thus, it helps balance the acid base in the body [58].

Table 6.1 shows the binding affinity ranking determined by the experiments and

our affinity metrics. All ligands are identified by PubChem Database CID [12]. Here,

experimental binding affinity is determined by theKi value. We generate and analyze

5000 UOBPRM ligand samples.

The distance affinity metric is able to correctly capture the affinity ranking order

as determined by experiment for all three statistics: minimum value, 1% average,

and 10% average. The energy affinity metric performs well when only considering

the average of the top 1% ligand samples. As more conformations are considered in

the average, there is a greater likelihood that they will not all reside closely to the

binding pocket.

79

Table 6.1: Comparison of published binding affinity ranking and approximated bind-
ing affinity ranking for 3W6H.

Ligand Affinity Published Distance Energy
CID (Ki nM) Rank Min. 1% Avg. 10% Avg. Min. 1% Avg. 10% Avg.
768 5× 10−4 1 1 1 1 1 1 1
24530 12× 10−4 2 2 2 2 3 2 3

19366655 200× 10−4 3 3 3 3 2 3 2

6.3.2 Target Protein 4RRW

The second set of experiments has 5 ligands which bind to protein 4RRW with

different strengths. The structures for the protein and 5 ligands are shown in Fig-

ure 6.8 ordered by affinity ranking from best to worst. Note that for this target

protein, the ligand structures are much more complex than before (e.g., containing

many ring structures and multiple branches). 4RRW is a cyclooxygenase-2 (COX-

2) that helps synthesize prostaglandin in the body [10]. Cyclooxygenase (COX) is

found when there is inflammation. Therefore, the inflammation and the pain can

be relieved by inhibiting COX [27]. Here, we generate and analyze 7000 UOBPRM

ligand samples.

Table 6.2 shows the binding affinity ranking determined by the experiments and

our affinity metrics. All ligands are identified by PubChem Database CID [12]. Here,

experimental binding affinity is determined by the IC50 value.

Again, we see that the distance affinity metric performs well. It was able to

capture the correct affinity ranking order most of the time, except for the top 10%

average statistic. The ligands will be less likely placed in the binding pocket when

we analyze more conformations, particularly if the binding pocket is relatively small.

The energy affinity metric performs similarly as it did for the previous experiment

80

Table 6.2: Comparison of published binding affinity ranking and approximated bind-
ing affinity ranking for 4RRW.

Ligand Affinity Published Distance Energy
CID (IC50 nM) Rank Min. 1% Avg. 10% Avg. Min. 1% Avg. 10% Avg.

46224069 2.07 1 1 1 1 1 1 1
11441881 30 2 2 2 2 2 2 4
3672 1100 3 3 3 4 4 3 2
2244 13900 4 4 4 3 3 4 3

71460125 ¿ 50000 5 5 5 5 5 5 5

that it can correctly rank the binding affinity order when considering the top 1%

average statistic.

6.3.3 Target Protein 4K5Y

The third set of experiments has 4 ligands with different binding affinities with

respect to protein 4K5Y (as shown in Figure 6.9 ordered by affinity ranking from best

to worst). 4K5Y is Corticotropin-releasing hormone receptor 1 that is in the family of

G protein-coupled receptor. This protein will activate stress-related hormone. Thus,

it is important in the treatment of depression and anxiety disorder [31]. We generate

and analyze 5000 UOBPRM ligand samples for this protein.

Table 6.3 shows the binding affinity ranking determined by experiments and our

affinity metrics. All ligands are identified by PubChem Database CID [12].

The distance affinity metric again performs well. It was able to correctly rank the

affinity order most of the time, except for the top 10% average statistic. Similarly,

the energy affinity metric does well in the top 1% average statistic.

81

Table 6.3: Comparison of published binding affinity ranking and approximated bind-
ing affinity ranking for 4K5Y.

Ligand Affinity Published Distance Energy
CID (Ki nM) Rank Min. 1% Avg. 10% Avg. Min. 1% Avg. 10% Avg.

10595854 10 1 1 1 1 1 1 2
11065415 526 2 2 2 3 3 2 1
10180472 2800 3 3 3 2 2 3 3
1087955 ¿ 10000 4 4 4 4 4 4 4

82

(a) Protein (in wireframe) (b) Protein (in spheres)

(c) Rigid Protein Ob-
stacle

(d) 100 Ligand Samples (e) 500 Ligand Samples

(f) 1000 Ligand Sam-
ples

(g) 2000 Ligand Sam-
ples

(h) 7000 Ligand Sam-
ples

Figure 6.5: Protein 4RRW in wireframe (a) and in spheres (b) viewed by PyMOL [25].
(c) The protein is modeled as a rigid obstacle. (d)-(h) Varying numbers of ligand
samples (ligand centers of mass only shown).

83

(a) Protein (in wireframe) (b) Protein (in spheres)

(c) Rigid Protein Ob-
stacle

(d) 100 Ligand Samples (e) 500 Ligand Samples

(f) 1000 Ligand Sam-
ples

(g) 2000 Ligand Sam-
ples

(h) 5000 Ligand Sam-
ples

Figure 6.6: Protein 4K5Y in wireframe (a) and in spheres (b) viewed by PyMOL [25].
(c) The protein is modeled as a rigid obstacle. (d)-(h) Varying numbers of ligand
samples (ligand centers of mass only shown).

(a) CID: 768 (b) CID: 24530 (c) CID: 19366655

Figure 6.7: Ligand candidates from PubChem [12] for protein 3W6H (see Fig-
ure 6.4(a)) ordered by binding affinity rank best to worst.

84

(a) CID: 46224069 (b) CID: 11441881 (c) CID: 3672

(d) CID: 2244 (e) CID: 71460125

Figure 6.8: Ligand candidates from PubChem [12] for protein 4RRW (see Fig-
ure 6.5(a)) ordered by binding affinity rank best to worst.

85

(a) CID: 10595854 (b) CID:
11065415

(c) CID: 10180472 (d)
CID:11087955

Figure 6.9: Ligand candidates from PubChem [12] for protein 4K5Y (see Fig-
ure 6.6(a)) ordered by binding affinity rank best to worst.

86

7. CONCLUSION AND FUTURE WORK

In this dissertation we present a novel framework to uniformly sample surfaces

in Cspace. Instead of explicitly constructing the target surfaces, which is generally

intractable, our uniform sampling framework only requires detecting intersections

between a line segment and the target surface, which can often be done efficiently.

Intuitively, since we uniformly distribute the line segments, the intersections between

the segments and the surfaces will also be uniformly distributed. We present two

instances of our framework, Uniform Obstacle-based PRM (UOBPRM) [22] whose

target surfaces are Cobst surfaces, and Uniform Medial-Axis PRM (UMAPRM) [73]

whose target surfaces are the medial axis of Cspace. Sampling on the surface can

be difficult since the dimension of a surface is one less than the dimension of the

planning space and thus the surface only occupies a small proportion of the entire

planning space.

Many motion planning methods have been proposed to sample on surfaces to

improve performance or to find high-clearance paths. OBPRM [2] and Gaussian

PRM [13] target sampling on obstacle surfaces. Bridge Test PRM [32] was proposed

to improve sampling in narrow passages. MAPRM [68, 49] biases sampling towards

medial axis surfaces. While some of these methods work well in practice, none of

them provides any information regarding the sample distribution on target surfaces.

It is useful to know that the surface is sampled with some know distribution, e.g.,

a uniform distribution, so that one could argue the properties the surface holds

such as the probability to plan a solution path on it. The work presented in this

dissertation provides for the first time a method for sampling on surfaces with a

known distribution, in this case, a uniform distribution.

87

Our uniform sampling framework works by first uniformly distributing a set of

fixed length line segments in Cspace and then identifying intersections between line

segments and target surfaces (Chapter 3, Section 3.1). We prove that this frame-

work generates configurations uniformly distributed on the target surfaces of Cspace

(Chapter 3, Section 3.2). Next we provide theoretical guarantees that the uniform

sampling framework preserves probabilistic completeness of sampling-based motion

planners (Chapter 3, Section 3.3) and demonstrate that its ability to generate sam-

ples in the narrow passage is proportional to the surface area of the target surface

that bounds the narrow passage (Chapter 3, Section 3.4).

UOBPRM samples Cobst surfaces (Chapter 4, Section 4.1). We evaluated the dis-

tribution and efficiency of UOBPRM against other obstacle-based sampling meth-

ods and showed that UOBPRM generates more uniformly distributed configurations

around Cobst surfaces than other approaches. Moreover, UOBPRM is able to solve

some difficult problems more efficiently without computational overhead (Chapter 4,

Section 4.3). Finally, we demonstrated that Gaussian PRM is a special case of

UOBPRM with particular parameters settings (Chapter 4, Section 4.2).

UMAPRM samples the medial axis of Cfree (Chapter 5, Section 5.1). We again

evaluated the sample distribution and the efficiency of UMAPRM comparing to

MAPRM. We found that UMAPRM configurations are distributed more uniformly

along the medial axis and UMAPRM can solve problems that others could not (e.g.,

a bug trap environment) with negligible computational overhead (Chapter 5, Sec-

tion 5.2).

In the future, we plan to investigate strategies that balance sample quality and

the cost of the node generation, including approaches to tune this for different appli-

cations. Since it is difficult to calculate nearest surface witness points in high dimen-

sions, we plan to further explore approximate strategies for applying UMAPRM for

88

higher dimensional robots. Furthermore, we plan to study if there are other surfaces

in Cspace on which we could apply this framework in order to improve the quality

of node generation in those areas and maybe further generalize to uniformly sample

other types of target surfaces.

We used UOBPRM to study the ligand binding affinity ranking problem in com-

putational biology area. By modeling the protein as a rigid obstacle and the ligand

as a linkage robot, UOBPRM ligand samples are generated uniformly near protein

surfaces which can provide potential ligand/protein binding configurations (Chap-

ter 6, Section 6.2). We analyzed the UOBPRM ligand samples based on affinity

metrics to approximate the binding affinity with respect to the protein (Chapter 6,

Section 6.2.3). We experimented on three different target proteins and showed our

method has potential to rank the ligand binding affinities (Chapter 6, Section 6.3).

In future research, we aim to relax our assumption that the protein is rigid and allow

some flexing of the protein conformation in response to the ligand. This will be par-

ticularly important for protein-ligand complexes that undergo large conformational

changes upon binding. We also plan to investigate other affinity metrics including

different energy functions.

89

REFERENCES

[1] N. M. Amato and G. Song. Using motion planning to study protein folding

pathways. J. Comput. Biol., 9(2):149–168, 2002. Special issue of Int. Conf.

Comput. Molecular Biology (RECOMB) 2001.

[2] N. M. Amato and Y. Wu. A randomized roadmap method for path and ma-

nipulation planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages

113–120, 1996.

[3] Nancy M. Amato, O. Burchan Bayazit, Lucia K. Dale, Christopher Jones, and

Daniel Vallejo. OBPRM: an obstacle-based PRM for 3d workspaces. In Proceed-

ings of the third Workshop on the Algorithmic Foundations of Robotics, pages

155–168, Natick, MA, USA, 1998. A. K. Peters, Ltd. (WAFR ‘98).

[4] M.S. Apaydin, A.P. Singh, D.L. Brutlag, and J.-C. Latombe. Capturing molec-

ular energy landscapes with probabilistic conformational roadmaps. In Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), pages 932–939, 2001.

[5] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed

representation approach. Int. J. Robot. Res., 10(6):628–649, 1991.

[6] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better flocking behaviors using

rule-based roadmaps. In Proc. Int. Workshop on Algorithmic Foundations of

Robotics (WAFR), pages 95–111, Dec 2002.

[7] O. B. Bayazit, G. Song, and N. M. Amato. Ligand binding with OBPRM and

haptic user input: Enhancing automatic motion planning with virtual touch. In

Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 954–959, 2001. This work

was also presented as a poster at RECOMB 2001.

90

[8] Mark L. Benson, Richard D. Smith, Nickolay A. Khazanov, Brandon Dimch-

eff, John E. Beaver, Peter Dresslar, Jason Nerothin, and Heather A. Carlson.

Binding moad, a high-quality protein-ligand database. Nucleic Acids Research,

36:674–678, 2008.

[9] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.

Shindyalov, and P.E. Bourne. The protein data bank. Nucleic Acids Research,

28(1):235–242, 2000.

[10] Anna L. Blobaum, Shu Xu, Scott W. Rowlinson, Kelsey C. Duggan, Surajit

Banerjee, Shalley N. Kudalkar, William R. Birmingham, Kebreab Ghebreselasie,

and Lawrence J. Marnett. Action at a distance: Mutations of peripheral residues

transform rapid reversible inhibitors to slow, tight binders of cyclooxygenase-2.

The Journal of biological chemistry, 290:12793–12803, 2015.

[11] R. Bohlin and L. E. Kavraki. A randomized algorithm for robot path planning

based on lazy evaluation. In P. Pardalos, S. Rajasekaran, and J. Rolim, ed-

itors, Handbook on Randomized Computing, pages 221–249. Kluwer Academic

Publishers, 2001.

[12] E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant. PubChem: Inte-

grated Platform of Small Molecules and Biological Activities. Annual Reports

in Computational Chemistry, 4, 2008.

[13] V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sampling

strategy for probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot.

Autom. (ICRA), volume 2, pages 1018–1023, May 1999.

[14] Kenneth W. Borrelli, Andreas Vitalis, Raul Alcantara, and Victor Guallar.

PELE:Protein Energy Landscape Exploration. A Novel Monte Carlo Based

Technique. J. Chem. Theory Comput., 1(6):1304–1311, 2005.

91

[15] Michal Brylinski and Jeffrey Skolnick. A threading-based method (FINDSITE)

for ligand-binding site prediction and functional annotation. PNAS, 1(105):129–

134, 2008.

[16] Michal Brylinski and Jeffrey Skolnick. Comparison of structure-based and

threading-based approaches to protein functional annotation. Proteins,

1(78):118–134, 2010.

[17] Regina Z. Cer, Uma Mudunuri, Robert M. Stephens, and Frank J. Lebeda. Ic50-

to-ki: a web-based tool for converting ic50 to ki values for inhibitors of enzyme

activity and ligand binding. Nucleic Acids Research, 37:441–445, 2009.

[18] H. Chang and T. Y. Li. Assembly maintainability study with motion planning.

In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 1012–1019, 1995.

[19] Huiling Chen and Huan-Xiang Zhou. Prediction of solvent accessibility and

sites of deleterious mutations from protein sequence. Nucleic Acids Research,

33(10):3193–3199, 2005.

[20] F. Chiti and C. M. Dobson. Protein misfolding, functional amyloid, and human

disease. Annu. Rev. Biochem., 75:333–366, 2006.

[21] C. Chothia. The nature of the accessible and buried surfaces in proteins. Journal

of Molecular Biology, 105(1):1–12, 1976.

[22] Hsin-Yi Yeh (Cindy), Shawna L. Thomas, David Eppstein, and Nancy M.

Amato. UOBPRM: A uniformly distributed obstacle-based PRM. In 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

2012, Vilamoura, Algarve, Portugal, October 7-12, 2012, pages 2655–2662, 2012.

[23] Juan Cortés, Thierry Siméon, Vicente Ruiz de Angulo, David Guieysse, Mag-

ali Remaud-Simon, and Vinh Tran. A path planning approach for computing

92

large-amplitude motions of flexible molecules. In ISMB (Supplement of Bioin-

formatics), pages 116–125, 2005.

[24] Juan Cortés, Duc Thanh Le, Romain Iehl, and Thierry Siméon. Simulating

ligand-induced conformational changes in proteins using a mechanical disassem-

bly method. Physical chemistry chemical physics : PCCP, 12(29):8268–8276,

August 2010.

[25] W.L. DeLano. The pymol molecular graphics system (2002). DeLano Scientific,

Palo Alto, CA, USA., 2002.

[26] Didier Devaurs, Léa Bouard, Marc Vaisset, Christophe Zanon, Ibrahim Al-

Bluwi, Romain Iehl, Thierry Siméon, and Juan Cortés. MoMA-LigPath: A

web server to simulate protein-ligand unbinding. Nucleic Acids Research, vol.

41:297–302, May 2013.

[27] Raymond N. Dubois, Steven B. Abramson, Leslie Crofford, Rajnish A. Gupta,

Lee S. Simon, Leo B. A. Van De Putte, and Peter E. Lipsky. Cyclooxygenase

in biology and disease. FASEB Journal, pages 1063–1073, 1998.

[28] P. Willett G. Jones and R. C. Glen. Molecular recognition of receptor sites using

a genetic algorithm with a description of desolvation. J. Mol. Biol., 245:43–53,

1995.

[29] Yehuda Goldgur, Robert Craigie, Gerson H. Cohen, Tamio Fujiwara, Tomokazu

Yoshinaga, Toshio Fujishita, Hirohiko Sugimoto, Takeshi Endo, Hitoshi Murai,

and David R. Davies. Structure of the hiv-1 integrase catalytic domain com-

plexed with an inhibitor: A platform for antiviral drug design. Proc. Natl. Acad.

Sci. USA, 96:13040–13043, 1999.

93

[30] Christopher Holleman and Lydia E. Kavraki. A framework for using the

workspace medial axis in prm planners. In Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), volume 2, pages 1408–1413, San Franasisco, CA, 2000.

[31] Kaspar Hollenstein, James Kean, Andrea Bortolato, Robert K. Y. Cheng, An-

drew S. Doré, Ali Jazayeri, Robert M. Cooke, Malcolm Weir, and Fiona H.

Marshall. Structure of class b gpcr corticotropin-releasing factor receptor 1.

Nature, 499(7459):438–443, 2013.

[32] D. Hsu, T. Jiang, J.H. Reif, and Z. Sun. Bridge test for sampling narrow passages

with probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), pages 4420–4426, 2003.

[33] D. Hsu, J-C. Latombe, and H. Kurniawati. On the probabilistic foundations of

probabilistic roadmap planning. Int. J. Robot. Res., 25:627–643, July 2006.

[34] D. Hsu, J-C. Latombe, and R. Motwani. Path planning in expansive configura-

tion spaces. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2719–2726,

1997.

[35] D. Hsu, J-C. Latombe, and R. Motwani. Path planning in expansive configura-

tion spaces. Int. J. Comput. Geom. & Appl., pages 495–517, 1999.

[36] J. P. Hughes, S. Rees, S. B. Kalindjian, and K. L. Philpott. Principles of Early

Drug Discovery. British journal of pharmacology, 162(6):1239–1249, 2011.

[37] B Isralewitz, Mu Gao, and K Schulten. Steered molecular dynamics and me-

chanical functions of proteins. Current opinion in structural biology, 11:224–30,

2001.

[38] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary struc-

ture: Pattern recognition of hydrogen-bonded and geometrical features. Biopoly-

94

mers, 22(12):2577–2637, December 1983.

[39] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A.A. Friesem, and C. Aflalo I.A.

Vakser. Molecular surface recognition: Determination of geometric fit between

proteins and their ligands by correlation techniques. In Natl. Acad. Sci. USA,

volume 89, pages 2195–2199, 1992.

[40] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Trans. Robot. Automat., 12(4):566–580, August 1996.

[41] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe. Planning motions with

intentions. In Proc. ACM SIGGRAPH, pages 395–408, 1995.

[42] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, , and H. Inoue. Motion planning

for humanoid robots. In Proc. 20th Int.l Symp. Robotics Research, 2003.

[43] KUKA. http://www.youbot-store.com.

[44] I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, and T. E. Ferrin. A

geometric approach to macromolecule-ligand interactions. JMB, 161(2):269–

288, 1982.

[45] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. Distance

queries with rectangular swept sphere volumes. In Proc. IEEE Int. Conf. Robot.

Autom. (ICRA), volume 4, pages 3719–3726 vol.4, 2000.

[46] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), pages 473–479, 1999.

[47] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int. J.

Robot. Res., 20(5):378–400, May 2001.

95

[48] M. Levitt. Protein folding by restrained energy minimization and molecular

dynamics. J. Mol. Biol., 170:723–764, 1983.

[49] Jyh-Ming Lien, S.L. Thomas, and N.M. Amato. A general framework for sam-

pling on the medial axis of the free space. In Robotics and Automation, 2003.

Proceedings. ICRA ’03. IEEE International Conference on, volume 3, pages

4439–4444, sept. 2003.

[50] Guilin Liu and Jyh-Ming Lien. Fast medial axis approximation via max-margin

pushing. In IROS, 2015.

[51] T. Liu, Y. Lin, X. Wen, R. N. Jorissen, and M. K. Gilson. BindingDB: a

web-accessible database of experimentally determined protein-ligand binding

affinities. Nucleic Acids Res, 35:198–201, January 2007.

[52] Susanna K. Lüdemann, Valére Lounnas, and Rebecca C. Wade. How do sub-

strates enter and products exit the buried active site of cytochrome p450cam?

1. random expulsion molecular dynamics investigation of ligand access channels

and mechanisms. Journal of Molecular Biology, 303(5):797–811, 2000.

[53] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew,

and A.J. Olson. Automated docking using a lamarckian genetic algorithm and

empirical binding free energy function. J. Computational Chemistry, 19:1639–

1662, 1998.

[54] Michael M. Mysinger, Michael Carchia, John J. Irwin, and Brian K. Shoichet.

Directory of useful decoys, enhanced (dud-e): Better ligands and decoys for

better benchmarking. Journal of Medicinal Chemistry, 55(14):6582–6594, 2012.

[55] J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc.

IEEE Symp. Foundations of Computer Science (FOCS), pages 421–427, San

96

Juan, Puerto Rico, October 1979.

[56] Alan R. Saltiel and C. Ronald Kahn. Insulin signalling and the regulation of

glucose and lipid metabolism. Nature, 414:799–806, 2001.

[57] Amit P. Singh, Jean-Claude Latombe, and Douglas L. Brutlag. A motion plan-

ning approach to flexible ligand binding. In Int. Conf. on Intelligent Systems

for Molecular Biology (ISMB), pages 252–261, 1999.

[58] William S. Sly and Peiyi Y. Hu. Human carbonic anhydrases and carbonic

anhydrase deficiencies. Annual Review of Biochemistry, 64:375–401, 1995.

[59] S. Sundaram, I. Remmler, and N.M. Amato. Disassembly sequencing using a

motion planning approach. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),

pages 1475–1480, 2001.

[60] Yousuke Takaoka, Yoshiyuki Kioi, Akira Morito, Junji Otani, Kyohei Arita,

Eishi Ashihara, Mariko Ariyoshi, Hidehito Tochio, Masahiro Shirakawa, and

Itaru Hamachi. Quantitative comparison of protein dynamics in live cells and

in vitro by in-cell 19f-nmr. Chem. Commun., 49:2801–2803, 2013.

[61] Gabriel Tanase, Antal A. Buss, Adam Fidel, Harshvardhan, Ioannis Papadopou-

los, Olga Pearce, Timmie G. Smith, Nathan Thomas, Xiabing Xu, Nedal

Mourad, Jeremy Vu, Mauro Bianco, Nancy M. Amato, and Lawrence Rauch-

werger. The STAPL parallel container framework. In Proceedings of the 16th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, PPOPP 2011, San Antonio, TX, USA, February 12-16, 2011, pages 235–

246, 2011.

[62] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato. Using motion

planning to study RNA folding kinetics. In Proc. Int. Conf. Comput. Molecular

97

Biology (RECOMB), pages 252–261, 2004.

[63] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato. Using motion

planning to study RNA folding kinetics. J. Comput. Biol., 12(6):862–881, 2005.

Special issue of Int. Conf. Comput. Molecular Biology (RECOMB) 2004.

[64] M. Teodoro, G.N. Phillips, Jr, and L.E. Kavraki. Molecular docking: A problem

with thousands of degrees of freedom. In Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), pages 960–965, 2001.

[65] Maxim Totrov and Ruben Abagyan. Derivation of sensitive discrimination po-

tential for virtual ligand screening. In Third Annual International Conference

on Computational Molecular Biology, pages 312–320, 1999.

[66] Maxim Totrov and Ruben Abagyan. Derivation of sensitive discrimination po-

tential for virtual ligand screening. In RECOMB, pages 312–320, 1999.

[67] MN Wass, LA Kelley, and MJE Sternberg. 3dligandsite: predicting ligand-

binding sites using similar structures. NUCLEIC ACIDS RESEARCH,

38:W469–W473, 2010.

[68] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic

roadmap planner with sampling on the medial axis of the free space. In Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), volume 2, pages 1024–1031, 1999.

[69] Alexander Wlodawer and Jiri Vondrasek. Inhibitors of hiv-1 protease: a major

success of structure-assisted drug design. Annual Review of Biophysics and

Biomolecular Structure, 27:249–284, 1998.

[70] J. Yang, Ambrish Roy, and Y. Zhang. Biolip: a semi-manually curated database

for biologically relevant ligand-protein interactions. Nucleic Acids Research,

2012.

98

[71] Jianyi Yang, Ambrish Roy, and Yang Zhang. Protein-ligand binding site recog-

nition using complementary binding-specific substructure comparison and se-

quence profile alignment. Bioinformatics, 29(20), 2013.

[72] Yuandong Yang and O. Brock. Adapting the sampling distribution in prm

planners based on an approximated medial axis. In Proc. IEEE Int. Conf.

Robot. Autom. (ICRA), volume 5, pages 4405–4410, 2004.

[73] Hsin-Yi (Cindy) Yeh, Jory Denny, Aaron Lindsey, Shawna Thomas, and

Nancy M. Amato. UMAPRM: Uniformly sampling the medial axis. In Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), pages 5798–5803, Hong Kong, P. R.

China, June 2014.

99

