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ABSTRACT 

 

Proper management of oil and gas reservoirs as dynamic systems reduces operational 

expenditures, alleviates uncertainty, and increases hydrocarbon recovery. In this 

dissertation, we focus on two issues in reservoir management: multiobjective integration 

and channelized reservoir calibration. Multiple objectives, including bottom-hole pressure 

(BHP), water cut, and 4-D seismic data, are utilized in model ranking, history matching, 

and production optimization. These objectives may conflict, as they represent 

characteristics coming from different measurements and sources, and, significantly, of 

varying scales. A traditional weighted-sum method may reduce the solution space, often 

leading to loss of key information for each objective. Thus, how to integrate multiple 

objectives effectively becomes critical in reservoir management. This dissertation presents 

a Pareto-based approach to characterize multiobjective and potentially conflicting features 

and to capture geologic uncertainty, preserving the original objective space and avoiding 

weights determination as in the weight-sum method. For channelized reservoirs, 

identification of the channel geometry and facies boundaries, as well as characterization 

of channel petrophysical properties are critical for performance predictions. Traditional 

history matching methods, however, are unable to preserve the channel geometry. We 

propose a level set based method, integrated with seismic constraint and coupled with the 

Grid Connectivity Transform (GCT) for channelized reservoirs calibration. 

We first develop the Pareto-based model ranking (PBMR) to rank multiple 

realizations, taking into consideration seismic and production data. We demonstrate that 
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this approach can be applied to select multiple competitive realizations compared with the 

weighted-sum method, and uncertainty range of each objective can be effectively 

addressed. 

Next, we extend the Pareto-based framework to full-field history matching and 

production optimization of the Norne Field in the North Sea. A hierarchical history 

matching workflow including global and local updates helps to capture the large- and fine-

scale heterogeneity. A two-step polymer flood optimization consisting of the streamline-

based rate optimization and the Pareto-based polymer optimization is shown to be 

beneficial for reducing the impact of heterogeneity and increasing production 

improvement as well as NPV.  

Finally, we propose a two-step history matching workflow for facies and property 

calibration of the channelized reservoirs, where the channel geometry is modeled using 

the level set method, and smaller scale heterogeneity is modeled using the GCT. 

Moreover, the seismic constraints incorporated into the level set improves facies model 

calibration.  
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1.                                               CHAPTER I  

                            INTRODUCTION AND STUDY OBJECTIVES 

 

Proper management of oil and gas reservoirs as dynamic systems reduces operational 

expenditures, alleviates uncertainty, and increases hydrocarbon recovery. This dissertation 

focuses on two issues of reservoir management: multiobjective integration and 

channelized reservoir calibration. First, the research aims to establish a systematic 

multiobjective workflow consisting of model ranking, history matching, and production 

optimization, especially in field application. Second, a channelized reservoir history 

matching workflow will be proposed in terms of seismic integration.  

 

1.1 Overview of Multiobjective Integration in Reservoir Management 

Model ranking, history matching, and production optimization play the important roles in 

the reservoir management. The Model ranking acts as a bridge between geological 

modeling and reservoir engineering, and provides several good candidates for history 

matching and optimization in the next stage. History matching is used to calibrate selected 

geological models under the guidance of seismic and production data for more accurate 

prediction of future production. Production optimization provides optimal operation 

schedules and development plans to maximize reservoir recovery while reducing 

operational expenditures. These three processes either use a single measurement or include 

multiple objectives, such as bottom-hole pressure (BHP), water cut and 4-D seismic data, 
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which are potentially conflicting due to incorrect assumptions on variables, measurement 

errors, and uncertainty on the inverted data.  

 

1.1.1 Model Ranking  

In model ranking, research studies focus on a single reservoir performance parameter to 

evaluate models. Alabert and Modot (1992) proposed a ranking method based on 

connected pore volumes around the wells. Hirsch and Schuette (1999) proposed a ranking 

approach looking at the permeability connectivity from the graph theory perspective, using 

a shortest-path algorithm. Similarly in the graph theory framework, Kim and Dobin (2008) 

considered a Fast Marching Method (FMM), taking the absolute permeability-porosity 

ratio as the speed function in the estimation of connected pore volumes as a measure of 

reservoir performance. These approaches pay more attention to static properties, which 

cannot account for dynamic flow behavior. In that line, Idrobo et al. (2000) and Mishra et 

al. (2000) applied thresholds to the convective time-of-flight contour to estimate the 

volumetric sweep efficiency, 𝐸𝑉, which was used as a surrogate parameter for ranking 

multiple geologic models. Hird and Dubrule (1998) proposed the drainable Hydrocarbon 

Pore Volume (HCPV) concept based on a Resistivity Index (RI) method, which was well 

correlated with ultimate recovery. However, all these applications are based on a single 

measurement, no matter whether they are static or dynamic properties. 

Getting around this problem has resulted in the evaluation of geologic models using 

multiple criteria for equiprobable realizations. Odai and Ogbe (2011) used the static and 

dynamic measures — stock tank oil originally in place, geometric average permeability, 
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connected HCPV, average breakthrough time, and cumulative recovery — to select 

models for history matching of field water, but this method deals with each measurement 

separately rather than considering them together. The Pareto-based concept, which can 

handle multiple objectives simultaneously, has been incorporated in the multiobjective 

optimization evolutionary algorithm (MOEA) to find multiple representative Pareto-

optimal solutions instead of solutions biased toward some preferred objective (Deb et al. 

2002; Li and Zhang 2009; Srinivas and Deb 1994). In recent years, a fully explored 

solution space and consideration of conflicting characteristics made the Pareto-based 

algorithm popular in multiobjective history matching (Mohamed et al. 2011; Park et al. 

2013). However, the Pareto-based concept has not been used in the model ranking area 

for handling multiple criteria.   

 

1.1.2 History Matching and Production Optimization 

Instead of manual history matching method, which is impractical for large and complex 

fields, the assisted history matching (AHM) method has drawn a lot of attention over the 

past decades. AHM mainly includes the gradient-based methods, sensitivity-based 

methods and derivative-free methods in terms of minimizing the difference between 

simulation and observed data. The gradient-based methods, such as the Levenberg–

Marquardt, BFGS, and limited-memory BFGS are efficient when the objective function is 

sufficiently smooth, but are inappropriate for discrete properties (Gao and Reynolds 2006; 

McCormick and Tapia 1972). Also, the convergence of Gradient-based methods is 

typically very slow. Instead, the sensitivity-based methods can converge faster. In 
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particular, the streamline-based generalized travel time inversion (GTTI) (Wu and Datta-

Gupta 2002) approach has been widely adopted in many field applications (Cheng et al. 

2005; Kam and Datta-Gupta 2014; Tanaka et al. 2015). These deterministic techniques, 

such as the gradient-based and sensitivity-based methods, are easily trapped in the local 

optimum and are not robust for the uncertainty analysis. In contrast, the derivative-free 

methods, such as the genetic algorithm (Holland 1992) and the Markov Chain Monte Carlo 

(MCMC) (Hastings 1970) are powerful to search global optimum for the complex 

reservoir models and more effectively quantify the uncertainty by providing more 

alternative simulation models without requiring any gradient calculation. The 

disadvantage of derivative-free methods is that the computation is highly prohibitive 

because of plenty of simulation running requirement, especially for relatively large 

number of parameters to be updated.   

In practice, history matching always involves multiple objectives. The traditional 

technique typically aggregates all the objectives into the single objective space, called the 

weighted-sum method, regardless of whether these objectives conflict. It will be 

problematic for the weighted-sum method when the objectives are conflicting. The more 

conflicting the objectives are, the worse results weighted-sum method produces. 

Weighted-sum method squeezes the objectives solution space, and each objective is tied 

with each other, resulting that the original solution space cannot be preserved. Moreover, 

the weighting factor assignment for each objective is very subjective, mainly relying on 

the prior knowledge and degree of confidence. Cheng et al. (2008) used weighted sum of 

squares difference between the observed values and calculated model values for joint 
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integration of static gradient surveys (SGS) and modular dynamic tests (MDT) pressure 

data. Rey et al. (2012) applied a penalized misfit function in which the weighting factors 

control the balance between production and seismic data misfit. Similarly, Denney (2012) 

assigned different weighting factors for production misfit and seismic misfit respectively.  

Similar issues can be found in the polymer optimization. Polymer injection during 

water flooding can effectively reduce viscous fingering and increase sweep efficiency by 

decreasing the mobility of the injected water, which results from the increase of water 

viscosity and reduction of rock permeability to water. The objective of polymer 

optimization is to maximize the net present value (NPV) (Van Doren et al. 2011). To 

evaluate polymer performance, generally, oil production improvement after injecting 

polymer can be used as a measurement. Polymer utility factor (UF), which the ratio 

between the total injected polymer and incremental oil production, is also proven to be an 

effective measurement for polymer usage efficiency (Clemens et al. 2011). Unfortunately, 

large oil production improvement always comes with poor polymer usage efficiency. It is 

a challenge to find an optimal solution considering oil production improvement and UF.  

To solve the above issues, the Pareto-based concept, which is used for the model 

ranking, is incorporated into the MOEA, contributing to finding multiple representative 

Pareto-optimal solutions instead of solutions biased toward some preferred objective (Deb 

et al. 2002; Li and Zhang 2009; Srinivas and Deb 1994). Mohamed et al. (2011) developed 

the Multi-Objective Particle Swarm Optimisation approach (MOPSO) which coupled the 

Pareto-based algorithm with particle swarm method to keep the solution diversity.  Park 

et al. (2013) replaced the classical genetic algorithm with the Pareto-based MOEA to 
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update the GCT coefficients in the hierarchical workflow framework for history matching 

with potentially conflicting objectives.Olalotiti-Lawal and Datta-Gupta (2015) proposed 

a multiobjective MCMC approach to sample multiple trade-off solutions along the Pareto 

front for history matching and uncertainty quantification.  

 

1.2 Overview of Model Calibration of Channelized Reservoirs  

Identification of the channel geometry, facies boundaries and characterization of channel 

petrophysical properties are critical for performance prediction of channelized reservoirs. 

On account of the sharp contrast between facies, the orientation and geometry of channels 

with high permeability contribute most to the fluid flow, followed by the heterogeneity 

within the channel. Thus, it is important to efficiently update channel geometry as well as 

channel petrophysics during history matching.  

There are many difficulties for traditional geostatistical techniques, such as the two-

point geostatistical method, the object-based modeling approach, and the multi-point 

geostatistical method, to calibrate channelized reservoirs. The two-point geostatistical 

method is inappropriate for the channel geometry reproduction because a variogram 

cannot represent spatial continuity at more than two locations simultaneously (Koltermann 

and Gorelick 1996). Although the object-based method (Deutsch and Wang 1996) has 

been widely used in generating channelized facies distributions, it is difficult and time-

consuming to incorporate into history matching to honor dynamic data. The multi-point 

geostatistical (Strebelle and Journel 2001) method, overcoming the downsides of the two-
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point and object-based methods, heavily relies on the quality of the training image, which 

possesses too many uncertainties. 

Parameterization methods have been successfully applied in the image reconstruction 

(Bhark et al. 2011; Jafarpour 2011; Jafarpour et al. 2009b) and the inverse problem 

(Awotunde and Horne 2010; Jafarpour et al. 2009a; Kang et al. 2014) by reducing 

parameter dimensionality. Especially in the history matching of channelized reservoirs, 

parameterization may mitigate the issues brought by geostatistical approach in terms of 

keeping the large-scale channel continuity while honoring dynamic data. The Discrete 

Cosine Transform (DCT) uses a small number of coefficients to capture dominant features 

of reservoir permeability distributions and helps capture spatial continuity of geological 

facies in channelized environments during history matching (Jafarpour and McLaughlin 

2009).  Currently, the main limitation of the DCT is that it can only be used in spatial 

domains with regular spatial structure. In contrast, the GCT can be extended from structure 

grids to unstructured grids (Bhark et al. 2011b; Bhark et al. 2012). The Discrete Wavelet 

Transform (DWT) is another attractive approach for the history matching of channelized 

reservoirs on account of its ability of capturing both frequency and location information. 

Jafarpour (2011) calculated the sensitivity of flow response with respect to important 

wavelet coefficients and used the Ensemble Kalman Filter (EnKF) to update this subset of 

wavelet coefficients to approximate the spatial distribution of permeability. The DWT is 

also powerful in the integration of different sources of data. For the integration, production 

and variogram information can be integrated sequentially into the reservoir model by 

calculating a sensitivity matrix of production response to wavelet coefficients (Kind and 
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Quinteros 2007; Sahni and Horne 2005, 2006a, 2006b). However, the difficulties in 

location and estimation of significant DWT coefficients become the bottleneck to improve 

the DWT performance in the inverse problem.  

The level set method, as a numerical algorithm for surface and shape tracking (Osher 

and Fedkiw 2002; Osher and Sethian 1988; Osher and Santosa 2001), has shown great 

promise to effectively parameterize facies boundaries and allows for changing channel 

geometry and connectivity during history matching. Xie et al. (2011) applied the two-stage 

MCMC to perturb the coefficients of velocity eigenvectors, followed by the channel 

boundaries evolution through solving the level set equation. Ping and Zhang (2014) 

parameterized channelized reservoirs into a group of parameters: level set function, real 

radius and virtual radius, which are updated by the EnKF. These approaches simply 

assumed constant properties within each facies, ignoring the heterogeneity of the reservoir 

field. In that line, Agbalaka and Oliver (2011) and Lorentzen et al. (2012) used the EnKF, 

combined with the level set method, to jointly update facies boundaries and estimate 

petrophysical properties within each facies. The approaches listed above mainly focus on 

conditioning models to well data but seismic constraint in the level set has not been 

mentioned in the current literature. The successful integration of seismic constraint can 

help to not only significantly improve channelized reservoir history matching 

performance, but also extend the level set from simple channelized models to more 

complicated ones. 
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1.3 Objectives and Dissertation Outline 

This dissertation mainly focuses on the Pareto-based multiobjective optimization 

application and channelized reservoir calibration in the reservoir management. The 

specific objectives and main chapters are outlined as follows:  

In Chapter II, we will design the Pareto-based model ranking workflow to select 

favorable realizations for history matching and optimization based on multiple conflicting 

objectives. This approach, coupled with cluster analysis, can capture more plausible 

solutions, which keep potentially conflicting information. 

In Chapter III, we will apply a hierarchical history matching workflow and a two-step 

polymer flood optimization on the Norne Field. Both history matching and polymer 

optimization employ the Pareto-based framework to consider multiple objectives. We aim 

to provide well calibrated models and optimized production parameters for production and 

NPV improvement.  

In Chapter IV, we implement a two-step history matching workflow, where the 

channel geometry is modeled using the level set with/without seismic constraint, and 

internal scale heterogeneity is modeled using the GCT. Our objective is to improve 

channelized geometry calibration with seismic constraints and efficiently update channel 

petrophysics.  
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2.                                                CHAPTER II 

    RANKING GEOLOGIC MODELS USING PARETO OPTIMALITY CRITERION 

 

In this chapter, we present Pareto-based model ranking (PBMR) approach for model 

ranking, taking into account multiple and potentially conflicting objectives. In the model 

ranking, when multiple objectives, such as seismic and production data, are encountered, 

the traditional weighted-sum method presents difficulty in determine weighting factors, 

and does not fully explore the solution space. The proposed Pareto-based approach can 

effectively overcome these difficulties by avoiding interference between multiple 

objectives. Thus, the original objective space is preserved by avoiding weights 

determination, and more plausible solutions can be captured, while keeping conflicting 

information. The coupled cluster analysis serves choosing final models from selected 

optimal model set in the absence of prior knowledge.  

 

2.1 Introduction 

Significant uncertainties in petroleum exploration investment decisions can be primarily 

tied to uncertainties in subsurface model parameters. Uncertainties abound in the spatial 

distribution of static and dynamic properties, such as porosity, permeability, phase 

saturations, phase contacts, fault structures, and facies distribution. These uncertainties 

may be reduced as more data, such as well log, well test, production, and seismic data, are 

integrated into existing geologic models (Hu et al. 1999).  



 

11 

 

Geostatistical methods have widely been adopted as an important tool in geologic 

modeling and uncertainty quantification (Hu et al. 1999; Journel 1990). This generally 

involves generating multiple equiprobable realizations of models that satisfy the available 

information. If all the models are used in the history matching and production 

optimization, it can be computationally prohibitive for high resolution geologic models at 

the field scale. Thus, model ranking/evaluation is needed to reduce the number of 

realizations before reservoir simulation based on some specific reservoir performance 

parameters. 

Model ranking technologies have evolved over time, starting from the Dykstra-

Parsons method of characterizing and ranking model permeability heterogeneities 

(Johnson Jr 1956).  Alabert and Modot (1992) proposed a ranking method based on 

connected pore volumes around the wells, but this method was later shown in a waterflood 

system to give poor correlations with oil recovery factor, which was the measure of 

reservoir performance (Saad et al. 1996). Hirsch and Schuette (1999) proposed a ranking 

approach looking at the permeability connectivity from the graph theory perspective, using 

a shortest-path algorithm. Similarly in the graph theory framework, Kim and Dobin (2008) 

considered a Fast Marching Method (FMM), taking the absolute permeability-porosity 

ratio as the speed function in the estimation of connected pore volumes as a measure 

reservoir performance. However, these approaches pay more attention to static properties, 

which cannot account for dynamic flow behavior.   

Recent advances in streamline simulation (Datta-Gupta and King 2007) has helped in 

the incorporation of more realism to ranking geologic models. Idrobo et al. (2000) and 
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Mishra et al. (2000) applied thresholds to the convective time-of-flight contour to estimate 

the volumetric sweep efficiency, 𝐸𝑉, which was used as a surrogate parameter for ranking 

multiple geologic models. Similarly, Shook and Mitchell (2009) proposed a model ranking 

approach that uses the 𝐸𝑉 as the surrogate parameter but was however calculated using 

only the dynamic flow capacity. Although these approaches account for a fair amount of 

system dynamics into the ranking procedure, streamlines and the concept of swept 

volumes were designed for convective flows, rather than diffusive transport. In that line, 

the concept of ranking geologic models based on efficient drainage volume calculations 

becomes more attractive. Hird and Dubrule (1998) proposed the drainable Hydrocarbon 

Pore Volume (HCPV) concept based on a Resistivity Index (RI) method which was well 

correlated with ultimate recovery. This method has been acclaimed useful for ranking 

geologic models under primary recovery (Shook and Mitchell 2009). However all these 

applications are based on a single measurement, no matter whether they are static or 

dynamic properties. 

Getting around this problem has resulted in the evaluation of geologic models using 

multiple criteria for the equiprobable realizations. Odai and Ogbe (2011) used the static 

and dynamic measures — stock tank oil originally in place, geometric average 

permeability, connected HCPV, average breakthrough time, and cumulative recovery — 

to select models for history matching of field water, but this method deals with each 

measurement separately rather than considering them together. The Pareto-based concept, 

which can handle multiple objectives simultaneously, has been incorporated in the multi-

objective evolutionary algorithm (MOEA) to find multiple representative Pareto-optimal 
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solutions instead of solutions biased toward some preferred objective (Deb et al. 2002; Li 

and Zhang 2009; Srinivas and Deb 1994). In recent years, a fully explored solution space 

and consideration of potentially conflicting characteristics of multiple data sets made the 

Pareto-based algorithm popular in multi-objective history matching. Mohamed et al. 

(2011) developed the Multi-Objective Particle Swarm Optimization approach (MOPSO), 

which coupled the Pareto-based algorithm with particle swarm method to keep the solution 

diversity. Park et al. (2013) replaced the classical genetic algorithm with the Pareto-based 

MOEA to update the Grid Connectivity Transform (GCT) coefficients in the hierarchical 

workflow framework for history matching with potentially conflicting objectives. 

However, the Pareto-based concept has not been used in the model ranking area for 

handling multiple criteria.   

The Pareto-based model ranking is proposed to reduce geologic models set by ranking 

using dynamic data. The outline of this chapter is as follows. We first review the idea and 

formulation for Pareto concept as it applies to ranking multiple solutions. Then, we briefly 

introduce the PBMR workflow for ranking multiple geologic realizations based on field 

data misfits. The PBMR workflow will first be illustrated with a synthetic case of 102 

geologic realizations and then applied to the Brugge field (Peters et al. 2009) having 104 

realizations. In both cases, production and seismic objectives are considered, which 

explains why the Pareto-based approach is a promising way to integrate different types of 

data. The K-means clustering algorithm (Elphick and Moore 1999; L.N.Y.Wong and 

G.Liu 2010; Tokhmechi et al. 2008) is included to assist PBMR workflow to reduce the 

model set while preserving the model spread. The combination of the Pareto-based method 
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and K-means clustering approach takes into account the conflicting nature of different 

objectives in selecting the desired number of models for reservoir engineering and 

subsurface uncertainty analysis. 

 

2.2 Pareto Concept 

Dominance relationship among conflicting solutions forms the basis for Pareto concept. 

For a minimization problem involving n conflicting objectives defined by objective 

function f, solution a dominates b if all objectives represented by a are not greater than 

those of b, and at least one objective of a is strictly smaller than the corresponding 

objective(s) of b. This is mathematically described by the following expression:    

 
∀𝑖 ∈ {1,2, … , 𝑛}: 𝑓𝑖(𝑎) ≤ 𝑓𝑖 (𝑏) ∧  ∃𝑗 ∈ {1,2, … 𝑛}: 𝑓𝑖(𝑎) < 𝑓𝑖(𝑏) (2.1) 

 

 

Figure 2-1 Domination concept. 

  

The Pareto concept is also graphically explained in Figure 2-1. To explain the idea, 

we start by projecting the solutions to the objective space defined by objectives obj1 and 

obj2 under consideration. To describe the dominance relationship with solution O selected 

at random, we draw vertical and horizontal lines at this solution point to partition the entire 
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objective space into four parts as shown in the diagram. In partition A, both obj1 and obj2 

of all three solutions are smaller than those of solution O. In other words, for a 

minimization problem, solutions in partition A are better solutions and dominate solution 

O. In partition C, both obj1 and obj2 of the two solutions are larger than those of solution 

O. Hence, these solutions represent worse solutions, and they are dominated by solution 

O. In partitions B and D, solutions have one of obj1 and obj2 smaller than either of those 

of solution O. As such, these solutions are comparable, and there are no domination 

relationships between partition B and D solutions and solution O.  

Similar analysis can be performed on every solution point to obtain the rank level of 

each, as shown in Figure 2-2. First, a set of models, which are not dominated by the rest 

models, can be classified as rank 1 level models. Then, the rank 1 models are excluded 

from the solutions set, and similar analysis performed to obtain the rank 2 level. Rank 2 

(and rank 1) models are then excluded to obtain the next rank level of non-dominated 

solutions. This is continued until all models in the domain have been assigned a rank level. 

Solutions on each rank level exhibit certain features. First, solutions on the same Pareto 

front are equally optimal. It is mathematically difficult to decide which model is better 

than the other on the same rank level without prior information. Second, the lower rank 

solutions are more competitive than higher rank ones for a minimization problem. Since 

our objectives here are misfit between observed and calculated data, the solutions on the 

lower rank levels, regarded as highly ranked models, are closer to the observed data and 

therefore, more competitive than models on the higher rank levels. Finally, trade-offs of 



 

16 

 

the front reveal potential conflict between objectives. If the objectives are highly 

conflicting, we will expect a large trade-off.     

 

 

Figure 2-2 Rank level concept. 

 

2.3 Pareto-based Modeling Ranking Workflow 

Before illustration, the Pareto-based model ranking workflow (Figure 2-3) is proposed to 

show the whole picture. To start PBMR, we get initial model set using the geostatistical 

method and determine the types of objectives involved in model ranking. Forward 

simulations based on the model set are then carried out to obtain objective values. Next, 

all the models should be projected into the objective space, and Pareto algorithm is 

implemented to get multiple rank levels. Highly ranked models will be focused, since they 

are best selections considering multiple objectives at the same time. Finally, cluster 

analysis is made to select several models from highly ranked models to compose our final 

model set.  
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Figure 2-3 Proposed Pareto-based model ranking workflow. 

 

2.4 Illustration of Procedure 

To illustrate PBMR, a simple 5 spot synthetic case (one injector in the middle and four 

producers in the corner) with multiple objectives was developed. The model contains 2500 

cells with single layer (50 × 50 × 1), and six years production history was simulated.  

 

2.4.1 Initial Model Set 

Figure 2-4 shows the model generation procedure: first, sequential indicator simulation 

(SIS) was used to generate facies models, which are composed by floodplain and channel 

sand; second, porosity model was generated using facies control method to ensure that the 

property model follows the facies pattern; at last, permeability model was constructed by 

co-kriging method on porosity model. As such, our initial models are classified into 6 

groups based on different azimuth values, and each group includes 17 realizations. Figure 

2-5 shows the first 4 realizations for each group. The azimuth value changes every 30 
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degree, and the differences are very clear between six groups. Our true permeability model 

is shown in Figure 2-6 (a) and the arrow in the roulette chart in Figure 2-6 (b) is azimuth 

direction in each group, which corresponds to channel sand trend in Figure 2-5. The red 

arrow means that our true model comes from group 3.  

 

Figure 2-4 Model generation procedure. 

 

          

Figure 2-5 First four realizations for six groups. 
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Figure 2-6 (a) Reference permeability field (left) and (b) roulette chart of initial models 
(right). 

        

2.4.2 Potentially Conflicting Objectives and Forward Simulation 

In practice, our objectives may appear conflicting because of the underlying assumptions 

on variables, measurement errors and uncertainties on the inverted data. To simulate 

practical situation, seismic objective was intentionally made to conflict with production 

objectives. The observed production responses: field water cut (Figure 2-7 (a)) and 

bottomhole pressure (Figure 2-7 (c)) came from group 3 as shown in Figure 2-6 (b) while 

seismic saturation changes (Figure 2-7 (b)) came from group 4 shown by green arrow 

(Figure 2-6 (b)). Since the production responses and seismic observed data come from 

different groups, the corresponding objectives are conflicting, which means if models 

come from group 3, it should have low water cut misfit and high seismic saturation 

difference, and models coming from group 4 have a high chance to get high water cut 

misfit and low seismic saturation difference. Models of the other groups may have 

relatively small misfit values compared with those of groups 3 and 4. We cannot abandon 

the models, which have relatively high production misfit or seismic saturation difference, 
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because they still have high probability to be or close to true model, particularly with 

limited data.    

 

(a) Field water cut observed data. 

                       

 

(b) Seismic saturation changes. 

 

 

(c) Bottomhole pressure observed data. 

 

Figure 2-7 Production and seismic observed data in synthetic case. 
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Next step, forward simulation is carried out (Schlumberger 2012) based on our initial 

model set, and production and seismic responses are generated. Differences are taken 

between the observed data and responses to get water cut (Figure 2-8 (a)) and BHP misfit 

(Figure 2-8 (b)). The third objective is seismic saturation differences (Figure 2-8 (c)).  

 

(a) Field water cut misfit versus production time. 

                        

 

(b) Field bottomhole pressure misfit versus production time. 

 

Figure 2-8 Production misfits and seismic saturation difference in synthetic case. 
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(c) Seismic saturation difference versus model index. 

 

Figure 2.8 continued. 

 

2.4.3 Model Projection and Pareto Ranking 

After the three objectives of each model were obtained, we projected our models into BHP, 

seismic saturation differences, and water cut coordinates, and ranked the models. Six 

ranking levels are shown in Figure 2-9, where color bar represents different ranking levels, 

and model index is labeled above the point.  

Rank 1 level (dark blue) has included 14 models, which are competitive compared to 

the other rank level models and spread largely among each objective considering the 

conflicting characteristic of these three objectives. Thus, we exclude other level models 

and just focus on rank 1 level. Figure 2-10 (b), (c) and (d) show three 2-D figures, which 

are projection of 3-D figure of Rank 1 level (Figure 2-10 (a)). The red lines are imaginary 

Pareto fronts of rank 1 level, which are projection of Pareto surface. As mentioned above, 

trade-offs of the front reveal conflict between objectives. The large trade-off, such as 

seismic saturation differences and water cut misfit, indicates that they are conflicting.   
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Figure 2-9 Pareto ranking result in synthetic case. 

 

 

(a) 

 

(b) 

 

(c) 

 

 (d) 

 

Figure 2-10 Rank 1 models visualization in synthetic case. 
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2.4.4 Cluster Analysis for Highly Ranked Models 

Our model set has been reduced from 102 models to 14 models, which are still too many 

for decision making. To reduce model set further while preserving model diversity, the K-

means clustering is adopted for grouping highly ranked models. In this case, the rank 1 

models were grouped into four clusters, and the models which are close to the centroids 

were selected (Figure 2-11) to keep maximum differences between models. 

 

Figure 2-11 Cluster analysis for rank 1 models in synthetic case. 

 

Table 2.1 Selected models in synthetic case 

  Cluster   Model Index   Group   

  1   21   2   

  2   38   3   

  3   56   4   

  4   83   5   

 

Table 2.1 shows the models we chose. Model 38 comes from group 3, which is our 
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respect to well P4 and P2 (or well P1 and P3), and they may have the same production 

response. Hence, Model 21 coming from group 2 is also a satisfied result. Model 56 comes 

from group 4, which possess small seismic saturation differences. However, we also 

include model 83 from group 5. Although it is inevitable to include models from other 

uncompetitive group, which are not from group 3 and 4, we can capture plausible solutions 

by PBMR. All the models together we chose here reflect the complementary as well as 

conflicting characteristic of the three objectives.  

Our goal is that we expect to select the models (like model 38) from true model group 

before history matching. However, in general if the initial model set does not incorporate 

true models, the models that are close to the true models (like model 21) are our best 

choices. The advantage of small seismic saturation difference pushes model 56 into our 

final choices. In this case, we know that group 4 is not the true model group, but in practice, 

it is difficult to distinguish which group (group 3 or group 4) is true model group in the 

absence of prior knowledge. We generate Pareto fronts to capture these plausible solutions 

together, which serve our uncertainty analysis.  

Figure 2-12 shows selected models dynamic responses. The red line and red dot are 

model 21 responses that show the low field water cut misfit, high bottomhole pressure 

misfit and high seismic saturation differences. Model 83 responses, the black line and dot, 

show the opposite result for each objective. This phenomenon shows that the models we 

selected spread largely along the front, and at the same time, the misfit for each objective 

has been reduced correspondingly. This is the balanced state we want to achieve. 
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(a) Field water cut misfit versus production time.       

                                                                  

                    

(b) Bottomhole pressure misfit versus production time. 

 

 

(c) Seismic saturation differences versus model index. 

 

Figure 2-12 Selected models dynamic responses in synthetic case. 
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2.4.5 Comparison with Weighted Sum Method  

To compare with the PBMR method, the weighted sum method (Eq. 2.2) is applied for 

model ranking with the same initial model set. We assign different weights and pick 

models which have smallest overall objective (Table 2.2). However, different weight 

assignments produce various results, and also these solutions are pushed into different 

limited areas by the weights, causing the result that it may lose some plausible solutions 

(no models come from group 2 or group 3) while it includes more uncompetitive solutions 

for the same selected model size (model 76 comes from rank 6).  

 
𝑜𝑏𝑗 = 𝑤1 × 𝑊𝑊𝐶𝑇 + 𝑤2 × 𝐵𝐻𝑃 + 𝑤3 × 𝑆𝑊_𝐷𝐼𝐹𝐹                                                                                 (2.2) 

Table 2.2 Model ranking result with weighted sum method. 

  Weights   Models   Group   Rank   

  𝑤1=1; 𝑤2=1; 𝑤3=1   #56 #76 #85 #91   G4  G5  G5  G6   R1 R6 R5 R3   

  𝑤1=1; 𝑤2=1; 𝑤3=0.1   #54 #85 #87 #91   G4  G5  G6  G6   R5 R5 R3 R3   

  𝑤1=1; 𝑤2=1; 𝑤3=0.01   #10 #54 #85 #56   G1  G4  G5  G4   R1 R5 R5 R1   

             

2.5 Field Application 

Brugge field has one fault at the north edge, going through nine layers with 60048 grids. 

There are twenty producers, which are surrounding by eight water injectors, each 

providing the observation data for ten years. 104 realizations are classified into eight 

groups based on different geostatistical methods (Table 2.3).  

In the Brugge case, the groups which are close to the true model group are unknown. 

To select competitive models (closer to the original point relatively), which can preserve 

the conflicting information given chosen objectives, the PBMR workflow is employed to 
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the Brugge field model ranking. Objectives are the same as those of synthetic case: water 

cut misfit, bottomhole pressure misfit, and seismic saturation difference. Through forward 

simulation, corresponding responses are shown in Figure 2-13. 

Then we project models and implement Pareto ranking. Six ranking levels are 

obtained shown in Figure 2-14. 

Table 2.3 Brugge model set with different geostatistical methods. 

Geostatistical methods 

1. FY-SF-KM 2. FY-SF-KS 3. FY-SF-KP 4. FY-SS-KM

5. FY-SS-KS 6. FY-SS-KP 7. FN-SS-KS 8. FN-SS-KP

Terms explanation 

1st term: Facies      

- FY: Classify facies 

- FN: Ignore facies 

2nd term: Fluvial 

- SF: Single shale 

- SS: Sequential  

 indicator simulation 

3rd term: Perm. Poro. 

- KM: Regression per facies 

- KS: Single regression 

- KP: Co-kriging on porosity 

(a) Field water cut misfit versus production time.    

Figure 2-13 Production misfit and seismic saturation difference in Brugge case. 
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(b) Field bottomhole pressure misfit versus production time.        

           

 

(c) Seismic saturation difference versus model index 

 

Figure 2.13 continued. 
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Figure 2-14 Pareto ranking result in Brugge case. 

 

 

Figure 2-15 Cluster analysis for rank 1 models in Brugge case. 
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and 8 (Table 2.4). Their permeability and dynamic responses are shown in Figure 2-16 

and Figure 2-17 respectively. In Figure 2-17, the four colored lines are dynamic responses 

of selected models. Uncertainty range is reduced for each objective, and it reflects the 

complementary as well as conflicting characteristic between objectives.     

 

Table 2.4 Selected models in Brugge case 

  
Cluster   Model Index   Group 

  

  
1   22   2 

  

  
2   60   5 

  

  
3   80   7 

  

  
4   92   8 

  

 

 

Figure 2-16 Selected models permeability field in Brugge case. 
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(a) Field water cut misfit versus production time.  

                         

   

(b) Bottomhole pressure misfit versus production time.     

                     

 

(c) Seismic saturation differences versus model index. 

 

Figure 2-17 Selected models dynamic responses in Brugge case. 
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2.6 Summary  

In this chapter, we proposed a Pareto-based modeling ranking approach to rank geological 

models considering multiple sources of data: production and seismic. We tested the PBMR 

approach on a 2-D synthetic example and then applied it to the SPE benchmark Brugge 

field with three types of dynamic data: bottom-hole pressure, field water cut and 4-D 

seismic derived saturation differences. For all cases, we demonstrated the benefits of the 

proposed PBMR approach for model ranking. The main findings are summarized as 

follows: 

1. The Pareto-based approach can effectively handle multiple objectives to avoid 

interference between them. In this way, we get more accurate and comprehensive 

model set solution: complementary as well as conflicting characteristic of multiple 

objectives can be preserved, selected models are competitive, and uncertainty 

range can be effectively analyzed for each objective. 

2. The weighted-sum method may lose some plausible solutions and include more 

uncompetitive solution simultaneously, because different weight assignments will 

push these solutions into different limited areas. Moreover, the weighting factor 

determination is avoided by PBMR.  

3. Cluster analysis is useful to reduce the plausible model set while keeping the model 

spread in the absence of prior knowledge. We can also pick several favorable 

models from highly ranked models based on the prior knowledge of the field.  
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3.                                    CHAPTER III 

   PARETO-BASED MULTIOBJECTIVE HISTORY MATCHING AND POLYMER 

                     OPTIMIZATION: APPLICATION TO NORNE FIELD* 

In this chapter, we apply a hierarchical history matching workflow consisting of global 

and local updates, followed by polymer optimization on the Norne Field, North Sea. Both 

history matching and production optimization are performed under the multiobjective 

framework, considering the potential conflicting objectives features. In the history 

matching part, 4-D repeat seismic surveys are efficiently integrated with well production 

data: globally, both seismic (acoustic impedance change misfit) and production objectives 

(cumulative field water & gas production misfit) are minimized using the Pareto-based 

multiobjective evolutionary algorithm (MOEA) (Park et al. 2013), coupled with the Grid 

Connectivity Transform (GCT) (Bhark et al. 2011b) parameterization; locally, pressure 

and saturation effects on acoustic impedance changes are considered sequentially based 

on streamline-based sensitivity approach, and water cut data is finally integrated by the 

streamline-based generalized travel time inversion (GTTI) (He et al. 2002). In the polymer 

optimization part, production and injection rates are allocated using the streamline-based 

rate optimization for maximizing sweep efficiency, and then the MOEA is applied to 

                                                 

*Part of the data reported in this chapter is reprinted with permission from “Streamline-Based Time Lapse 

Seismic Data Integration Incorporating Pressure and Saturation Effect” by Watanabe, S., Han, J., Datta-

Gupta, A. et al. 2013: Paper SPE-166395-MS Presented at the SPE Annual Technical Conference and 

Exhibition, 30 September – 2 October New Orleans, Louisiana, USA. Copyright 2014 Society of Petroleum 

Engineers.  
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optimize polymer concentration and slug size for maximizing oil production while 

preserving high polymer usage efficiency.   

 

3.1 Introduction  

History matching is used to calibrate geologic models under the guidance of seismic and 

production data for more accurate prediction of future production. The more accurate the 

geologic models are through history matching, the more reliable the prediction of reservoir 

performance is. Instead of manual history matching method, which is impractical for large 

and complex fields, the assisted history matching (AHM) method has drawn a lot of 

attention over the past decades. The AHM mainly includes the gradient-based methods, 

sensitivity-based methods, and derivative-free methods in terms of minimizing the 

difference between simulation and observed data. The gradient-based methods, such as 

the Levenberg–Marquardt, BFGS, and limited-memory BFGS, are efficient when the 

objective function is sufficiently smooth, but are inappropriate for discrete properties (Gao 

and Reynolds 2006; McCormick and Tapia 1972). Also, the convergence of gradient-

based methods is typically very slow. Instead, the sensitivity-based methods can converge 

faster. In particular, the streamline-based GTTI (Wu and Datta-Gupta 2002) approach has 

been widely adopted in many field applications (Cheng et al. 2005; Kam and Datta-Gupta 

2014; Tanaka et al. 2015). These deterministic techniques, such as the gradient-based and 

sensitivity-based methods, are easily trapped in the local optimum, and are not robust for 

the uncertainty analysis. In contrast, the derivative-free methods, such as the genetic 

algorithm (Holland 1992) and Markov Chain Monte Carlo (MCMC) (Hastings 1970), are 
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powerful to search global optimum for the complex reservoir models, and more effectively 

quantify the uncertainty by providing more alternative simulation models without 

requiring any gradient calculation. The disadvantage of derivative-free methods is that the 

computation is highly prohibitive because of plenty of simulation running requirement, 

especially for relatively large number of parameters to be updated.   

In practice, history matching always involves multiple objectives. The traditional 

technique typically aggregates all the objectives into the single objective space, called the 

weighted-sum method, regardless of whether these objectives conflict. It will be 

problematic for the weighted-sum method when the objectives are conflicting. The more 

conflicting the objectives are, the worse results weighted-sum method produces. 

Weighted-sum method reduces the objectives solution space, and each objective is tied 

with each other, resulting that the original solution space cannot be preserved. Moreover, 

the weighting factor assignment for each objective is very subjective, mainly relying on 

the prior knowledge and degree of confidence. Cheng et al. (2008) used weighted sum of 

squares difference between the observed values and calculated model values for joint 

integration of static gradient surveys (SGS) and modular dynamic tests (MDT) pressure 

data. Rey et al. (2012) applied a penalized misfit function in which the weighting factors 

control the balance between production and seismic data misfit. Similarly, Denney (2012) 

assigned different weighting factors for production misfit and seismic misfit respectively.  

Similar issues can be found in the polymer optimization. Polymer injection during 

water flooding can effectively reduce viscous fingering and increase sweep efficiency by 

decreasing the mobility of the injected water, which results from the increase of water 
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viscosity and reduction of rock permeability to water. The objective of polymer 

optimization is to maximize the net present value (NPV) (Van Doren et al. 2011). To 

evaluate polymer performance, generally, oil production improvement after injecting 

polymer can be used as a measurement. Polymer utility factor (UF), which the ratio 

between the total injected polymer and incremental oil production, is also proven to be an 

effective measurement for polymer usage efficiency (Clemens et al. 2011). Unfortunately, 

large oil production improvement always comes with poor polymer usage efficiency. It is 

a challenge to find an optimal solution considering oil production improvement and UF.  

To solve the above issues, the Pareto-based concept, which is used for the model 

ranking, is incorporated into the MOEA, contributing to finding multiple representative 

Pareto-optimal solutions instead of solutions biased toward some preferred objective (Deb 

et al. 2002; Li and Zhang 2009; Srinivas and Deb 1994). Mohamed et al. (2011) developed 

the Multi-Objective Particle Swarm Optimisation approach (MOPSO) which coupled the 

Pareto-based algorithm with particle swarm method to keep the solution diversity.  Park 

et al. (2013) replaced the classical genetic algorithm with the Pareto-based MOEA to 

update the GCT coefficients in the hierarchical workflow framework for history matching 

with potentially conflicting objectives.Olalotiti-Lawal and Datta-Gupta (2015) proposed 

a multiobjective MCMC approach to sample multiple trade-off solutions along the Pareto 

front for history matching and uncertainty quantification.  

Here, we will apply the Pareto-based framework to the history matching and 

production optimization of the Norne Field. The outline of this chapter is as follows. We 

start with the reservoir description of the Norne Field. Then we show the global update 
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application of history matching in the Norne Field, coupled with the Pareto-based genetic 

algorithm and GCT. Seismic objective involved in the workflow includes the petro-elastic 

modeling level seismic data integration and time-lapse acoustic impedance change derived 

from the post-stack seismic amplitude date. Next, we apply the local update workflow into 

fine-scale tuning of the Norne Field using the streamline-based analytic sensitivities for 

fluid saturation and pressure data integration. Finally, based on the history-matched 

models obtained above, production is optimized on the Norne Field through the streamline 

rate optimization, followed by the multiobjective polymer optimization.  

 

3.2 Norne Field Description 

The Norne Field, located in North Sea, was discovered in December 1991, and started oil 

production in November 1997. High quality 4-D seismic data and production data are 

available in the field. Horizontally, there are Norne C, D, E, G segments, and vertically 

five reservoir zones are Garn, Not, Ile, Tofte and Tilje. The sandstones are buried at the 

depth of 2500-2700 m. Porosity and permeability are 25-30% and 20-2500 md 

respectively (Osdal et al. 2006; Rwechungura et al. 2012; Steffensen and Karstadt 1996). 

We demonstrate the practical feasibility of our approach by carrying out full field 

history matching of the Norne Field. The reservoir model includes 44431 active cells, and 

it contains 36 wells (9 injectors and 27 producers) as shown in Figure 3-1. We consider 

the time frame from 1997 to 2006 as the history matching period and from 2006 to 2016 

as the production optimization period. The actual simulation model containing all 

information and properties was provided by the operator. In addition, production and 
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injection data from 1997 to the end of 2006 and multiple sets of 4-D seismic data for the 

same period (2003-2001, 2004-2003, 2006-2004) were provided. The production data 

includes water, oil, and gas rates and bottom-hole pressures at the producers. The seismic 

data were externally processed and provided for the model calibration as near, mid, far, 

and full offset stacked 3-D volumes of the reflection amplitude together with the 

corresponding horizons for the top and base of the reservoir. Also, the time-lapse 

differences of the reflection amplitude were provided with interpreted horizons used for 

identification of movement of the water-oil contacts. More details of the data set can be 

found in Rwechungura et al. (2012).  

 

Figure 3-1 Norne Field skeleton model. 

 

3.3 Global Update Step: Pareto-based Multiobjective Evolutionary Algorithm 

Workflow 

In the global step, we couple the Pareto-based genetic algorithm and the GCT 

parameterization to calibrate permeability field by minimizing the seismic and production 
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objective misfits in the Norne Field. First, we introduce the petro-elastic model (PEM) 

and seismic data processing procedure for the acoustic impedance change misfit 

calculation, and then present the GCT parameterization and the MOEA methodology. 

Global update results on the Norne Field using the mentioned approaches are shown in the 

end.   

  

3.3.1 Petro-Elastic Model 

A petro-elastic model is a set of equations, such as the Gassmann equation (Gassmann 

1951) and Hertz-Mindlin contact theory (Mindlin 1949), which relates reservoir properties 

(pore volume, pore fluid saturations, reservoir pressures and rock composition) to seismic 

rock elastic parameters (P-wave and S-wave velocities, Vp and Vs, respectively) (Mohsen 

et al. 2009).  

The Hertz-Mindlin model is used to compute seismic rock elastic parameter changes 

from pressure changes (Mavko et al. 1998). The effective bulk modulus of a dry random 

identical sphere pack can be computed as 

 𝐾HM = 𝐾ma √𝑃eff (𝑃ext − 𝑃i)⁄
𝑛

 (3.1) 

where 𝐾HM is the bulk modulus at critical porosity (Dadashpour et al. 2009). Here, 𝑃eff is 

the effective pressure, 𝐾ma is the bulk modulus of the matrix, and 𝑛 is the coordination 

number. In the Norne Field application, 𝑃eff  is the difference between the lithostatic 

pressure 𝑃ext and the hydrostatic pressure 𝑃 (Christensen and Wang 1985), 𝐾ma is given 

in Table 3.2, n is set to five based on the literature (Dadashpour et al. 2009), the initial 
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pressure is taken as 270 bar, and the lithostatic pressure is written as a function of the true 

vertical depth (TVD) shown by Eq. 3.2 (Mohsen et al. 2010).  

 
𝑃ext = 0.0981. (9 × 10−5 × TVD + 1.7252) × TVD (3.2) 

The Gassmann equation expresses the bulk modulus of a fluid saturated rock from 

three terms: (1) the bulk modulus of the mineral matrix 𝐾HM, (2) the bulk modulus of the 

porous rock frame 𝐾fr, (3) the bulk modulus of the pore-filling fluids 𝐾f as given by the 

following formula (Dadashpour et al. 2009), 

 
𝐾sat = 𝐾fr +

(𝐾HM − 𝐾fr)
2

𝐾HM (1 − 𝜙 + 𝜙
𝐾HM

𝐾f
−

𝐾fr

𝐾HM
)
 (3.3) 

𝜙 is the effective porosity, and 𝐾f is calculated shown below (Reuss 1929) 

 1

𝐾f
=

𝑆o

𝐾o
+

𝑆w

𝐾w
+

𝑆g

𝐾g
  (3.4) 

Here 𝐾o,  𝐾w, and 𝐾g are oil, water, and gas bulk moduli respectively, and 𝑆o, 𝑆w, and 𝑆g 

are oil, water, and gas saturations, respectively. The density of the saturated rock is given 

by the weighted average of the densities of the components (Vasco et al. 2003): 

 𝜌sat = (1 − 𝜙)𝜌ma + 𝜙(𝑆o𝜌o + 𝑆w𝜌w + 𝑆g𝜌g)  (3.5) 

Here 𝜌o, 𝜌w, 𝜌g , and 𝜌ma  are the densities of oil, water, gas, and the rock matrix, 

respectively. With the saturated rock bulk modulus, shear modulus, and density, we can 

compute the compressional (p-wave) velocity for an isotropic, layered, elastic medium 

(Kennet 1983) as 

 

𝑉p = √
𝐾sat+

4

3
𝐺fr

𝜌sat
  (3.6) 
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Here the shear modulus, 𝐺fr, is the frame shear modulus, which is not affected by fluid 

saturations. The acoustic (p-wave) impedance can be computed as 

 
𝑍p = 𝜌sat𝑉p = √𝜌sat (𝐾sat +

4

3
𝐺fr)  (3.7) 

For the Norne Field application, all the parameters for petro-elastic model are 

provided in Table 3.1, Table 3.2 and Table 3.3. With the above PEM model for the Norne 

Field application, we examined the sensitivity of the acoustic impedance with pressure 

and saturation changes. In a simple two phase (oil, water) system, Figure 3-2 (a) shows 

the increase of acoustic impedance with increasing water saturation for a fixed pressure. 

Figure 3-2 (b) shows the decrease of acoustic impedance with increasing pressure with 

fixed saturation values.  

    

                                                               (a)                                                                                                 (b) 

Figure 3-2 Acoustic impedance calculation sensitivity by PEM model in oil and water two 
phase system, (a) with respect to water saturation changes under a fixed pressure (P=270 

bar) and (b) with respect to pressure changes under a fixed saturation value (Sw=0.5). 
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Table 3.1 Shale properties for the petro-elastic model in Norne Field. 

 

Parameters 

 

Shale type 1  

 

Shale type 2  

 

Shale type 3  

 P-wave velocity, 𝑉𝑝 , [m/s] 3200 3350 3350 

S-wave velocity, 𝑉𝑠 , [m/s] 1600 1800 1900 

Shale density, 𝜌 , [kg/m3] 2300 2450 2450 

 

Table 3.2 Sand properties for the petro-elastic model in Norne Field. 

 

Parameters 

 

Garn formation 

(lay 1-3)  

 

Garn formation 

(lay 5-22) 

  
Frame bulk modulus, 𝐾𝑓𝑟 , [Gpa] 18.8-36.8 𝜙 18.5-27.4 𝜙 

Frame shear modulus, 𝐺𝑓𝑟, [Gpa] 11.8-21.4 𝜙 10.9-13.0 𝜙 

Matrix bulk modulus, 𝑘𝑚𝑎, [Gpa] 37 37 

Matrix density, 𝜌 , [kg/m3] 2650 2650 

 

Table 3.3 Fluid properties for the petro-elastic model in Norne Field. 

 

Parameters 

 

Fluid bulk modulus when temperature = 98.3o 

(Batzle and Wang 1992) and Fluid density  

 

Oil bulk modulus, 𝐾𝑜 , [Gpa] 1.35 

Water bulk modulus, 𝐾𝑤, [Gpa] 2.79 

Gas bulk modulus, 𝐾𝑔, [Gpa] 6.49×10-2 

Oil density, 𝜌𝑜 , [kg/m3] 860 

 Water density, 𝜌𝑤 , [kg/m3]  1000 

 Gas density, 𝜌𝑔 , [kg/m3]  190 

 

3.3.2 Seismic Data Processing 

In our data calibration procedure, the seismic volumes of reflection amplitude needs to be 

inverted to changes in acoustic (p-wave) impedance. Using commercial software, we 
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conduct seismic data processing, which consists of (1) time to depth data conversion, (2) 

well log quality check and acoustic impedance log calculation, and (3) genetic inversion 

for generating an acoustic impedance map from the seismic amplitude data. As for the 

post-stack seismic sections, we decided to use near-offset stacking data set, because the 

acoustic (p-wave) impedance changes are more evident in the small angle reflection waves 

in AVO analysis (Aki and Richards 1980).  

Time to depth data conversion is achieved by using a velocity model that the operator 

used for the reservoir model construction. The layering of the reservoir model is consistent 

with the depth converted seismic amplitude data as shown in Figure 3-3. Well log data 

quality is reviewed especially for the density logs and the sonic logs with the aim of 

computing acoustic impedance at the well locations shown in Figure 3-4. We adapt a 

genetic inversion of the seismic amplitude, as proposed by Veeken et al. (2009). The 

method only requires the post-stack seismic cube as input. The acoustic impedance logs 

at the wells are used as training data for a neural network to construct the non-linear 

operator that transforms the seismic traces into the equivalent acoustic impedance 

response. The weights of the operator are updated by a genetic algorithm to minimize the 

difference between the predicted acoustic impedance response and the training acoustic 

impedance logs at wells. The seismic cube can be transformed to acoustic impedance map 

estimates using the neural network derived operator (Figure 3-5). The acoustic impedance 

changes correspond to the interpreted motion of the water oil contact between surveys. 

They are consistent with the PEM model responses: the positive change reflects the aquifer 

encroachment and the negative change below the water oil contact corresponds to the 
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simulated pressure increases in Figure 3-5. The cross validation of the predicted acoustic 

impedance values from the genetic inversion and the training acoustic impedance logs 

show overall agreement (Figure 3-4). 

 

                          (a)                                                   (b)                                             (c) 

Figure 3-3 Time to depth data conversion. (a) Reservoir model intersected by the depth 
domain seismic amplitude inline and crossline slices, (b) the inline slice with reservoir 
model layer horizons, and (c) the crossline slice with reservoir model layer horizons. 

 

 
 

Figure 3-4 The acoustic impedance log comparisons. The black line is the calculated 
acoustic impedance log, and the red line is the response taken from the acoustic-

impedance cube through genetic inversion. 
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Figure 3-5 Acoustic impedance change data in an inline slice between 2003 and 2001 
surveys from genetic inversion. Water oil contact interpretations are superimposed (red 

line is at 2001 survey and black line is at 2003 survey). The water saturation and pressure 
changes from the initial model are compared. 

 

3.3.3 Grid Connectivity Transform Method 

The Grid Connectivity Transform is a linear transformation from spatial domain to 

spectral domain, where the heterogeneity is updated based on eigen-decomposition 

Laplacian/connectivity matrix (Bhark et al. 2011b; Bhark et al. 2012). The property field 

can be parameterized into the linear combination of the GCT coefficients, which are 

constructed from the eigenvalues of a grid Laplacian, and the GCT bases, which are 

eigenvectors of the Laplacian matrix. A property field can be mapped into the spectral 

domain through orthogonal basis, 

 𝐯 = 𝚽𝐓𝐮 ⇔ 𝐮 = 𝚽𝐯  (3.8) 

where 𝐮 is N×1 dimension property in the spatial domain, such as permeability or porosity. 

The column vector 𝐯 is the M-length GCT coefficient in the spectral domain, and 𝚽 is a 

(N×M) matrix, containing M-column that defines the discrete basis functions with length 

N. Take single layer permeability of the Norne Field for example (Figure 3-6), 

permeability field is parameterized into linear combination of the first 15 GCT coefficients 
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𝐯 and the GCT bases 𝚽. The first GCT basis is a constant vector, corresponding to the 

reservoir average energy. The latter GCT basis contains high frequency information, 

helping depict the heterogeneity of the reservoir.  

          

Figure 3-6 GCT parameterization illustration of single layer in the Norne Field.    

 

In history matching calibration, this parameterization method can efficiently reduce 

parameter dimensionality and enhance spatial continuity/smoothness of the property. 𝚽𝐯 

acts as the spatial multiplier field in Eq. 3.9, 

 𝐮 = 𝐮𝟎    ⃘ 𝚽𝐯 (3.9) 

where 𝐮𝟎   is the initial or prior property field, and (  ⃘) is the Schur product operator, which 

means element-wise product between 𝐮𝟎   and 𝚽𝐯. It can honor the prior permeability 

heterogeneity in the model updates.  

 

3.3.4 Pareto-based Genetic Algorithm with GCT 

For the global updates, the geological model is first parameterized using the GCT. A few 

bases are selected to represent the main spatial information of the reservoir in order to 

reduce dimension of parameters. Then, the corresponding GCT coefficients are updated 

by a Pareto-based multi-objective history matching workflow (Park et al. 2013), leading 

to the global changes in the geologic model.  
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Figure 3-7 Global history matching workflow. 

 

As shown in Figure 3-7, initial populations (GCT coefficients 𝐯) are generated using 

the Latin hypercube sampling (LHS) to maximally stratifying each variable’s marginal 

distribution (Yin et al. 2010). Next, all the transformed models from spectral space are fed 

into forward reservoir simulation running, generating well production responses and 

pressure and saturation distributions for the history matching objectives calculation. 

Further, all the models are sorted based on Pareto algorithm to get multiple rank levels in 

the objective space. Only GCT coefficients from highly ranked models are selected to be 

utilized by genetic operations: crossover and mutation. It is then followed by the 

transformation of the new generated the GCT coefficients from spectral domain to spatial 

domain for the next generation evaluation. The iterations continue until reaching stopping 

criteria. Finally, the cluster analysis is implemented to select several models for further 
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local updates. This approach is particularly well suited for minimizing the multiple and 

potentially conflicting objectives involved in matching both seismic data and production 

data. 

 

3.3.5 Global Update on the Norne Field 

The reservoir model provided by the operator was already calibrated to match the reservoir 

energy (regional pressure and pore volume). Our objective was to minimally update the 

permeability at locations and scales required to improve the history matching performance 

further.  

Based on the global update workflow (Figure 3-7), we first parameterize the 

permeability field by each layer individually to preserve the vertical stratification. The 

GCT parameterization of a multiplier field is shown in Figure 3-8. In this case, we used a 

total of 420 coefficients (20 basis vectors per layer × 21 active layers) to represent the 

geologic model consisting of 44431 active cells. As for the Pareto-based multi-objective 

minimization, we define three objective functions: (1) grid block acoustic impedance 

change misfit (𝐴𝐼 = 𝑍𝑝), (2) cumulative field water production (𝐹𝑊𝑃𝑇) misfit, and (3) 

cumulative field gas production (𝐹𝐺𝑃𝑇) misfit expressed as 

 

 𝑜𝑏𝑗1 = ∑ √ ∑ (𝛿𝐴𝐼𝑖,𝑡𝑖𝑚𝑒
𝑜𝑏𝑠 − 𝛿𝐴𝐼𝑖,𝑡𝑖𝑚𝑒

𝑐𝑎𝑙 )
2

𝑁𝑐𝑒𝑙𝑙

𝑖=1

3

𝑡𝑖𝑚𝑒=1

 (3.10) 
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 𝑜𝑏𝑗2 = ∑ √ ∑ (𝐹𝑊𝑃𝑇𝑖,𝑗
𝑜𝑏𝑠 − 𝐹𝑊𝑃𝑇𝑖,𝑗

𝑐𝑎𝑙)
2

𝑁𝑡𝑖𝑚𝑒

𝑖=1

𝑁𝑤𝑒𝑙𝑙

𝑗=1

 (3.11) 

 

 𝑜𝑏𝑗3 = ∑ √ ∑ (𝐹𝐺𝑃𝑇𝑖,𝑗
𝑜𝑏𝑠 − 𝐹𝐺𝑃𝑇𝑖,𝑗

𝑐𝑎𝑙)
2

𝑁𝑡𝑖𝑚𝑒

𝑖=1

𝑁𝑤𝑒𝑙𝑙

𝑗=1

 (3.12) 

Here 𝑡𝑖𝑚𝑒 is the time-lapse period, 𝑁𝑐𝑒𝑙𝑙 is the total number of grid blocks, 𝑁𝑤𝑒𝑙𝑙 

is the total number of history matching wells, and 𝑁𝑡𝑖𝑚𝑒 is the total number of timesteps. 

Figure 3-9 shows the results of the multi-objective function minimization in the global 

step of the model calibration. The Pareto-based evolutionary algorithm produces a suite 

of optimal solutions from the diverse initial population around the prior model in a multi-

dimensional objective space. In the two-dimensional projection spaces in Figure 3-9, the 

Pareto-fronts are clearly shown to depict the trade-off between objectives. 

 

 

Figure 3-8 Parameterization of the permeability multiplier field as the weighted linear 
combination of leading GCT basis vectors. 
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Figure 3-9 Multiobjective function comparisons between initial models and the final 
models in the global step model calibration. 

 

3.4 Local Update Step: Streamline-based Inversion Workflow 

In the local step, the grid block permeability changes are introduced via the streamline-

based inversion algorithm. The time-lapse acoustic impedance changes and well by well 

water cut production data are further integrated, and the fine scale permeability variations 

between well locations are refined. The sensitivity of the acoustic impedance with respect 

to grid block permeability considering pressure and saturation effects are derived, and 

local update results on Norne Field using streamline-based inversion algorithm are shown 

in the end. 
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3.4.1 Time of Flight Sensitivity Calculation  

We start with the definition of the streamline time of flight, which is the travel time of a 

neutral tracer along a streamline (Datta-Gupta and King 2007), 

 
𝜏(𝜓) = ∫ 𝑠(𝒙)𝑑𝑟

𝜓

 (3.13) 

Here, 𝜓  is the streamline trajectory, r is distance along the streamline, and 𝑠  is the 

slowness, which is the reciprocal of the interstitial velocity: 

 
𝑠(𝒙) =

1

|𝜈⃗(𝒙)|
 (3.14) 

According to Darcy’s law, the slowness is expressed as 

 
𝑠(𝒙) =

𝜙(𝒙)

𝜆𝑟𝑡 ∗ (𝒙)𝑘(𝒙)|∇𝑃|
 (3.15) 

Here, 𝜆𝑟𝑡 is the total relative mobility, 𝜆𝑟𝑡(𝒙) = 𝜆𝑟𝑜(𝒙) + 𝜆𝑟𝑤(𝒙) + 𝜆𝑟𝑔(𝒙), and |∇𝑃(𝒙)| 

is the pressure gradient along the streamline. The first order variation of the slowness, 

assuming a fixed pressure gradient, will be given by 

 
𝛿𝑠(𝒙) =

𝜕𝑠(𝒙)

𝜕𝑘(𝒙)
𝛿𝑘(𝒙) +

𝜕𝑠(𝒙)

𝜕𝜙(𝒙)
𝛿𝜙(𝒙) (3.16) 

From Eq. 3.15, the partial derivatives are  

 

𝜕𝑠(𝒙)

𝜕𝑘(𝒙)
≈

−𝜙(𝒙)

𝜆𝑟𝑡(𝒙)𝑘2(𝒙)|∇𝑃|
= −

𝑠(𝒙)

𝑘(𝒙)
 (3.17) 

 

 

𝜕𝑠(𝒙)

𝜕𝜙(𝒙)
≈

1

𝜆𝑟𝑡(𝒙)𝑘(𝒙)|∇𝑃|
=

𝑠(𝒙)

𝜙(𝒙)
 (3.18) 
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The approximation in Eq. 3.17 and Eq. 3.18 is that the pressure changes can be negligible 

for the local perturbations in permeability or porosity. This approximation implies that 

these small perturbations do not cause streamlines to shift. Then the change in time of 

flight 𝛿𝜏 can be related to the change in slowness by integrating along each streamline 

trajectory as 

 
𝛿𝜏(𝜓) = ∫ 𝛿𝑠(𝒙)𝑑𝑟

𝜓
=∫ [

𝜕𝑠(𝒙)

𝜕𝑘(𝒙)
𝛿𝑘(𝒙) +

𝜕𝑠(𝒙)

𝜕𝜙(𝒙)
𝛿𝜙(𝒙)] 𝑑𝑟

𝜓
 (3.19) 

Thus, by computing the integral from the inlet to the outlet of the streamline within the 

grid block, the sensitivity of streamline time of flight with respect to permeability and 

porosity at location 𝒙 can be expressed as 

 

𝛿𝜏(𝜓)

𝛿𝑘(𝒙)
= ∫ [−

𝑠(𝒙)

𝑘(𝒙)
] 𝑑𝑟

outlet

inlet

= −
Δ𝜏(𝒙)

𝑘(𝒙)
 (3.20) 

 

 

𝛿𝜏(𝜓)

𝛿𝜙(𝒙)
= ∫ [

𝑠(𝒙)

𝜙(𝒙)
] 𝑑𝑟

outlet

inlet

=
Δ𝜏(𝒙)

𝜙(𝒙)
 (3.21) 

Here Δ𝜏(𝒙) is the time-of-flight across the grid block at location 𝒙. 

 

3.4.2 Saturation Front Arrival Time Sensitivity  

The sensitivities of streamline time of flight with respect to porosity and permeability have 

been developed. We now relate the time of flight sensitivity to the travel time sensitivity 

of the water saturation. For two phase flow, this sensitivity is used after water 

breakthrough at a producing well to calibrate the reservoir properties to water cut response, 

and can be generalized to three phase flow. According to the Buckley-Leverett equation, 



 

54 

 

we take the streamline time of flight as the spatial coordinate in the two phase (oil and 

water) incompressible flow (Datta-Gupta and King 2007), 

 

 

𝜕𝑆𝑤

𝜕𝑡
+

𝜕𝐹𝑤

𝜕𝜏
= 0 (3.22) 

The solution of Eq. 3.22 is given by 

 
(

𝜕𝜏

𝜕𝑡
)

𝑆𝑤

=
𝑑𝐹𝑤

𝑑𝑆𝑤
 (3.23) 

Eq. 3.23 relates the travel time of a saturation, 𝑡(𝑆𝑤, 𝜏; 𝜓) to the time of flight 𝜏, 
𝜏

𝑡
=

𝑑𝐹𝑤

𝑑𝑆𝑤
. 

The sensitivity of the saturation arrival time can be computed using that of the streamline 

time of flight as follows 

 

𝛿𝑡(𝑆𝑤, 𝜏; 𝜓)

𝛿𝑘(𝒙)
=

𝛿𝜏(𝜓)

𝛿𝑘(𝒙)
/

𝑑𝐹𝑤

𝑑𝑆𝑤
 (3.24) 

 

 

𝛿𝑡(𝑆𝑤, 𝜏; 𝜓)

𝛿𝜙(𝒙)
=

𝛿𝜏(𝜓)

𝛿𝜙(𝒙)
/

𝑑𝐹𝑤

𝑑𝑆𝑤
 (3.25) 

After water breakthrough on a streamline, these arrival times are evaluated at the total time 

of flight, 𝜏(𝜓), for the streamline. 

 

3.4.3 Water Saturation Sensitivity Calculation 

We now derive expressions for the sensitivity of water saturation with respect to variations 

in permeability. For two phase flow, water saturation is a function of the streamline time 

of flight, 𝜏 and time, 𝑡. First consider self-similar solutions to Eq. 3.22, as have just been 

derived. Along a streamline the saturation is a function of the dimensionless ratio /t. This 
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allows us to relate the derivative of saturation with respect to time to the derivative with 

respect to  as follows: 

 

𝜕𝑆𝑤

𝜕𝑡
= −

𝜏

𝑡2

𝑑𝑆𝑤(τ 𝑡⁄ )

𝑑(τ 𝑡⁄ )
 (3.26) 

 

 

𝜕𝑆𝑤

𝜕𝜏
=

1

𝑡

𝑑𝑆𝑤(τ 𝑡⁄ )

𝑑(τ 𝑡⁄ )
 (3.27) 

Hence: 

 

𝜕𝑆𝑤

𝜕𝜏
= −

𝑡

𝜏

𝜕𝑆𝑤

𝜕𝑡
 (3.28) 

From this we have the water saturation sensitivity: 

 

𝛿𝑆𝑤(𝜏, 𝑡)

𝛿𝑘(𝑥)
=

𝜕𝑆𝑤

𝜕𝜏

𝛿𝜏

𝛿𝑘(𝑥)
= −

𝑡

𝜏

𝜕𝑆𝑤

𝜕𝑡

𝛿𝜏

𝛿𝑘(𝑥)
 (3.29) 

The partial derivative of water saturation with respect to time in Eq. 3.28 can be calculated 

numerically by a backward time difference as 

 

𝜕𝑆𝑤(𝜏, 𝑡)

𝜕𝑡
≈

𝑆𝑤(𝜏, 𝑡) − 𝑆𝑤(𝜏, 𝑡 − Δ𝑡)

Δ𝑡
 (3.30) 

Here, Δ𝑡 is the timestep size. This requires saving the saturation information for the time 

step immediately prior to the time lapse survey time. Therefore, the saturation sensitivity 

at location 𝜏 at a given time 𝑡 can be calculated by: 

 

𝛿𝑆𝑤(𝜏, 𝑡)

𝛿𝑘(𝑥)
= −

𝑡

𝜏

𝑆𝑤(𝜏, 𝑡) − 𝑆𝑤(𝜏, 𝑡 − Δ𝑡)

Δ𝑡

𝛿𝜏

𝛿𝑘(𝑥)
 (3.31) 

where the last partial derivative of travel time with respect to permeability can be obtained 

from Eq. 3.20. 
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3.4.4 Pressure Data Integration 

Pressure data integration is performed by converting the spatial distribution of pressure to 

a spatial distribution of the viscous pressure drop along a streamline from each location, 

to the producing well where that streamline terminates. Specifically, for a particular 

location i, and pressure 𝑃𝑖  then the pressure drop, ∆𝑃|𝑤
𝑖  along the streamline passing 

through the location i and leading to well w with bottom-hole pressure 𝑃𝑤 (Figure 3-10) 

is: 

 
𝑃𝑖 = 𝑃𝑤 + ∆𝑃|𝑤

𝑖  (3.32) 

This utilizes the (known) bottom-hole flowing pressure at the time at which the spatial 

distribution of pressure data was obtained. If distributed time lapse pressure data and well 

bottom hole pressure are available, we can compute the pressure drop from Eq. 3.32 and 

use it as our observation data, 

 
∆𝑃|𝑤,𝑜𝑏𝑠

𝑖 = 𝑃𝑖,𝑜𝑏𝑠 − 𝑃𝑤,𝑜𝑏𝑠 (3.33) 

Now, the data misfit between the simulation response and observation can be written as 

 

𝛿𝑑𝑖 = ∆𝑃|𝑤,𝑜𝑏𝑠
𝑖 − ∆𝑃|𝑤,𝑐𝑎𝑙

𝑖  

= (𝑃𝑖,𝑜𝑏𝑠 − 𝑃𝑤,𝑜𝑏𝑠) − (𝑃𝑖,𝑐𝑎𝑙 − 𝑃𝑤,𝑐𝑎𝑙) 

= (𝑃𝑖,𝑜𝑏𝑠 − 𝑃𝑖,𝑐𝑎𝑙) − (𝑃𝑤,𝑜𝑏𝑠 − 𝑃𝑤,𝑐𝑎𝑙) 

(3.34) 

The first term is the pressure difference at location i, and the second term is the bottom 

hole pressure difference at well w.  
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3.4.5 Pressure Drop Sensitivity Calculation 

The pressure drop along a streamline can be expressed as 

 
∆𝑃 = ∫ ∆𝑃(𝒙)𝑑𝑟

𝜓

 (3.35) 

This can be computed by simply summing up the pressure drop across the grid blocks that 

intersect the streamline as shown in Figure 3-10. Further, we can express the local pressure 

drop along a streamline using Darcy’s law as 

 
∆𝑃(𝒙) =

𝑞(𝒙)∆𝐿(𝒙)

𝐴(𝒙)𝜆𝑟𝑡𝑘(𝒙)
 (3.36) 

where 𝐴(𝒙) is the cross sectional area, 𝑞(𝒙) is the flow rate along a streamline, 𝜆𝑟𝑡 is the 

total relative mobility, and ∆𝐿(𝒙) is the arc length of the streamline within the grid block. 

The pressure drop is a composite quantity involving reservoir properties. We assume that 

the streamline trajectories, flow rate along streamline, and the total mobility do not change 

due to small perturbations in permeability. We can now relate the change in local pressure 

drop to a small change in permeability as 

 
𝛿∆𝑃(𝒙) =

𝜕∆𝑃(𝒙)

𝜕𝑘(𝒙)
𝛿𝑘(𝒙) (3.37) 

where the partial derivative is 

 

𝜕∆𝑃(𝒙)

𝜕𝑘(𝒙)
≈

−𝑞(𝒙)∆𝐿(𝒙)

𝐴(𝒙)𝜆𝑟𝑡(𝑘(𝒙))
2 = −

∆𝑃(𝒙)

𝑘(𝒙)
 (3.38) 

The pressure drop to a location i, ∆𝑃|𝑤
𝑖  will be given by integration along the streamline 

trajectory passing through i to well w,  
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𝛿∆𝑃|𝑤

𝑖 = ∫ 𝛿∆𝑃(𝒙)𝑑𝑟
𝜓

=∫ [
𝜕∆𝑃(𝒙)

𝜕𝑘(𝒙)
𝛿𝑘(𝒙)] 𝑑𝑟

𝜓
 (3.39) 

and the pressure drop sensitivity for a particular grid block at location 𝒙 follows from Eq. 

3.39, 

 

𝜕∆𝑃|𝑤
𝑖 (𝜓)

𝜕𝑘(𝒙)
= ∫ [−

∆𝑃(𝒙)

𝑘(𝒙)
] 𝑑𝑟

outlet

location

= −
∆𝑃(𝒙)

𝑘(𝒙)
 (3.40) 

 

Figure 3-10 A streamline between well pairs connecting grid blocks. 

 

3.4.6 Local Update on the Norne Field 

After the global calibration step, we select a few candidate models for the local updates 

by a cluster analysis in the objective space as shown in Figure 3-9. For the local updates, 

we need the sensitivity of the acoustic impedance with respect to grid block permeability. 

This can be obtained via a chain rule, 

 
𝑆𝑍p

=
𝛿𝑑𝑍p

𝛿𝑘
= [

𝜕𝑍𝑝

𝜕𝑆𝑤

𝛿𝑆𝑤

𝛿𝑘
+

𝜕𝑍𝑝

𝜕𝑆𝑔

𝛿𝑆𝑔

𝛿𝑘
+

𝜕𝑍𝑝

𝜕P

𝛿P

𝛿𝑘
] (3.41) 

Here the partial derivatives of acoustic impedance, 𝜕𝑍𝑝 𝜕𝑆𝑤⁄ , 𝜕𝑍𝑝 𝜕𝑆𝑔⁄ , and 𝜕𝑍𝑝 𝜕𝑃 ⁄ are 

computed by numerical perturbation from the current saturation and pressure grid block 

values using Eq. 3.7, while water saturation sensitivity 𝜕𝑆𝑤 𝜕𝑘⁄  is computed by Eq. 3.31. 

Streamline=1D Grids

Producer

Injector
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Notice that we have ignored porosity dependence in Eq. 3.41 and assumed that the changes 

in porosity because of compaction are not significant. For the gas saturation sensitivity, 

𝜕𝑆𝑔 𝜕𝑘⁄ , we follow the same derivation as for the water saturation sensitivity in Eq. 3.31. 

This assumption applies mainly for gas-oil 2 phase system near the top layers of the Norne 

Field where the free gas cap and oil rim are located. For the pressure sensitivity, we utilize 

the pressure drop sensitivity given by Eq. 3.40. 

 

Figure 3-11 Local step streamline-based model calibration workflow. 
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Figure 3-12 The objective function misfit for acoustic impedance change data integration 
comparisons among the prior model, global step calibrated model, and the final updated 

model from the local step calibration. 

 

 

Figure 3-13 Water cut production data history matching comparisons between the initial 
model and the final updated model. 
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Our history matching follows a sequential approach (Figure 3-11). To start with, the 

pressure effects on acoustic impedance changes are integrated to calibrate the model. Next, 

the saturation effects on the acoustic impedance changes are integrated to update the 

model. Water saturation sensitivity and gas saturation sensitivity are separately integrated 

in the inversion process. The inversion performance for acoustic impedance change is 

shown in Figure 3-12 for one of the models. The majority of the reduction of the acoustic 

impedance change data misfit was achieved in the global step of the model calibration. 

Finally, the GTTI (He et al. 2002) is applied to integrate water cut data. The well by well 

water cut responses are improved as shown in Figure 3-13. The final updated model is 

shown in Figure 3-14. The final model responses in terms of acoustic impedance changes 

are compared in Figure 3-15. For the second time-lapse period (2004-2003), a large 

negative time-lapse acoustic impedance change (red color) misfit in the prior model in the 

north right part of reservoir (G-segment) was corrected by the inversion. This resulted 

from an improved matching of the time-lapse pressure change in the final updated model. 

Overall, the misfit of the time-lapse acoustic impedance change and well production 

response are improved substantially from the prior model. 
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Figure 3-14 Permeability model update comparison by layers: the prior model (Top), the 
final updated model (middle), and the model changes between the prior and the final 

models. 
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Figure 3-15 Time-lapse acoustic impedance changes comparisons in selected layers 
among the observation data, the prior model responses, and the final updated model 

responses. 

 

3.5 Multiobjective Design and Optimization of Polymer Flood Performance 

After history matching, the polymer flood optimization is designed based on three selected 

Norne Field realizations in order to maximize oil production and improve polymer usage 

efficiency. However, these two objectives are normally conflicting, and then the Pareto-

based framework needs to be considered. We first introduce streamline-based rate 

optimization to allocate production and injection rates in the Norne Field to account for 

heterogeneity of the reservoirs. Then the optimized production and injection rates are 

coupled with the Pareto-based polymer optimization to find a trade-off between oil 

production maximization and polymer usage efficiency improvement.  
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AI Change
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3.5.1 Streamline-based Rate Optimization  

Streamline-based rate optimization is used to allocate production and injection rates for 

maximizing sweep efficiency while accelerating production/injection before applying 

polymer optimization. As shown in Eq. 3.42 (Taware et al. 2010), the objective function 

we need to minimize contains two terms. The first term minimization is for maximizing 

sweep efficiency by reducing the variance of water arrival time in producers. 𝑡𝑖,𝑚 is the 

calculated arrival time of well i in group m, and 𝑡𝑑,𝑚 is average arrival time of all the wells 

in group m. The vector q includes the production/injection rates and the number of well 

rates to be optimized (Alhuthali et al. 2007). The second term minimization is for 

accelerating production/injection by reducing the magnitude of arrival times to avoid 

delayed water breakthrough because of reducing production and injection rates of the 

wells too much. The weight 𝜂  controls the balance between the maximizing sweep 

efficiency and accelerating production/injection.  

 𝑝(𝑞) = ∑ ∑ [𝑡𝑑,𝑚(𝒒) − 𝑡𝑖,𝑚(𝒒)]
2

+ 𝜂

𝑁𝑝𝑟𝑜𝑑,𝑚

𝑖=1

∑ ∑ [𝑡𝑖,𝑚(𝒒)]
2

𝑁𝑝𝑟𝑜𝑑,𝑚

𝑖=1

𝑁𝑔𝑟𝑜𝑢𝑝

𝑚=1

𝑁𝑔𝑟𝑜𝑢𝑝

𝑚=1

 (3.42) 

The arrival time 𝑡 is defined as the travel time from waterfront current position to the 

producer. For calculation purpose, we take the time of flight of the top 20% (user defined 

parameter) fast streamlines as the average arrival time. As shown in Eq. 3.43, 𝑁𝑓𝑠𝑙,𝑖 

represents the number of fast streamlines connected to the producer i in group m, and 𝜏𝑙,𝑖 

represents the time of flight of streamline l connected to the producer i in group m. The 

streamline time of flight equation is defined in Eq. 3.13. 𝑡𝑑,𝑚, the average arrival time of 
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all the wells in group m, is an arithmetic average of the calculated arrival time of all the 

wells in group m (Eq. 3.44), 

 𝑡𝑖,𝑚(𝒒) =
1

𝑁𝑓𝑠𝑙,𝑖
∑ 𝜏𝑙,𝑖,(𝒒)

𝑁𝑓𝑠𝑙,𝑖

𝑙=1

 (3.43) 

 

 𝑡𝑑,𝑚(𝒒) =
1

𝑁𝑝𝑟𝑜𝑑,𝑚
∑ 𝑡𝑖,𝑚(𝒒)

𝑁𝑝𝑟𝑜𝑑,𝑚

𝑖=1

 (3.44) 

The objective function Eq. 3.42 is minimized using streamline-based analytic 

sensitivities and a Sequential Quadratic Programming (SQP) technique (Alhuthali et al. 

2007).   

 

3.5.2 Polymer Flood Mechanism and Performance Measures 

Polymer Flood Mechanism 

Polymer injection during water flooding can effectively reduce viscous fingering and 

increase sweep efficiency by decreasing the mobility of the injected water, which results 

from increase of water viscosity and reduction of rock permeability to water. The 

ECLIPSE reservoir simulation software is used to model polymer property and simulate 

polymer flooding (Schlumberger 2012).    

The increase of the polymer concentration drives up the water viscosity, leading to 

mobility decrease of the injected water. As shown in Eq. 3.45, the partially mixed water 

viscosity is the multiplication between the viscosity of a fully mixed polymer solution 

(𝜇𝑚(𝐶𝑝)) and water viscosity (𝜇𝑤). 𝜔 is the Todd-Longstaff mixing parameter, describing 



 

66 

 

the degree of segregation between the water and polymer solution in the range of 0 to 1. 

𝜇𝑚(𝐶𝑝), an increasing function of the polymer concentration in solution (𝐶𝑝), should be 

input as a table format, and then the calculated 𝜇𝑤,𝑒 is used to obtain the effective water 

viscosity, which is fed into the polymer flood simulation model (Schlumberger 2012).  

 
𝜇𝑤,𝑒 = 𝜇𝑚(𝐶𝑝)𝜔 ∗ 𝜇𝑤

1−𝜔 (3.45) 

The increase of the polymer concentration also drives up the amount of adsorbed 

polymer by the rock. The polymer adsorption, which is considered as an instantaneous 

effect in the model, results in a reduction in the permeability of the rock to the aqueous 

phase. In the polymer flood simulation, the permeability reduction factor ( 𝑅𝑘 ) is 

proportional to the amount of adsorbed polymer in the rock formation shown by Eq. 3.46 

(Schlumberger 2012).  𝐶𝑝
𝑎𝑚𝑎𝑥  denotes the maximum absorbed concentration, and 𝐶𝑝

𝑎 

represents absorbed polymer concentration in the rock. When the adsorbed polymer 

reaches the maximum, 𝑅𝑘 is equal to 𝑅𝑅𝐹, which is the residual resistance factor.  

 
𝑅𝑘 = 1.0 + (𝑅𝑅𝐹 − 1.0)

𝐶𝑝
𝑎

𝐶𝑝
𝑎𝑚𝑎𝑥 (3.46) 

 

Performance Measures 

To consider economics of polymer flooding, the optimal slug size and polymer 

concentration are selected as control variables, and they are important factors for 

successful operation (Al-Sofi and Blunt 2011). There are two conventional measurements 

to evaluate polymer flood performance. One is incremental oil production (Δ𝑁𝑝), which 

is the difference between cumulative oil production with and without polymer (Eq. 3.47). 
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The other measurement is polymer utility factor (UF), which is the ratio between total 

injected polymer and incremental oil production (Eq. 3.48). UF describes the polymer 

injection efficiency.  

 
Δ𝑁𝑝 = 𝑁𝑝(𝑤𝑖𝑡ℎ 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 ) − 𝑁𝑝(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 ) (3.47) 

 

 
𝑈𝐹 =

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑙𝑦𝑚𝑒𝑟

Δ𝑁𝑝
 

(3.48) 

 

  

(a) Sensitivity analysis of 𝚫𝑵𝒑 and UF on 

polymer concentration 
 

(b) Trade-off between 𝚫𝑵𝒑 and UF (polymer 

concentration sensitivity) 
 

  

(c) Sensitivity analysis of 𝚫𝑵𝒑 and UF on 

slug size 

(d) Trade-off between 𝚫𝑵𝒑 and UF (slug 

size sensitivity) 

 

Figure 3-16 𝚫𝑵𝒑 and UF conflicting feature analysis. 
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Unfortunately, large oil production improvement always comes with poor polymer 

usage efficiency. As shown in Figure 3-16 (a), sensitivity analysis of  Δ𝑁𝑝 and UF is 

conducted on polymer concentration. With increase of polymer concentration, Δ𝑁𝑝 

increases, and polymer performance become worse. After projecting solution into 

objective space, Figure 3-16 (b) shows the conflicting feature clearly between  Δ𝑁𝑝 and 

UF. The slug size sensitivity analysis comes to the same conclusion (Figure 3-16 (c) and 

Figure 3-16 (d)). Because of the conflicting features of these two objectives, the 

multiobjective Pareto-based optimization framework is employed in the polymer flood 

optimization. Thus, our optimal strategy is that we want to find optimal combination of 

polymer concentration and slug size to increase Δ𝑁𝑝  while maintaining high polymer 

usage efficiency. 

 

3.5.3 Pareto-based Polymer Optimization 

To consider Δ𝑁𝑝 and UF these two conflicting objectives, the Pareto-based framework is 

utilized again in the optimization stage, and the workflow (Figure 3-17) is similar with 

that in the global history matching stage. First, the polymer concentration and slug size 

are initialized using Latin hypercube sampling. Next, all the models with difference 

combination of polymer concentration and slug size are fed into forward reservoir 

simulation running. Further, the Pareto-based model ranking are implemented based on 

the simulation results in the objective space (Δ𝑁𝑝 and UF). Then highly ranked models 

are selected to be utilized by genetic operations: crossover and mutation. After several 

generations, the optimal solution is chosen from the Pareto front of the last generation. 
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Figure 3-17 Pareto-based polymer optimization workflow. 

 

The workflow is illustrated using the mathematical minimization problem. We want 

to minimize 𝑓1 and 𝑓2 simultaneously and find an optimal solution for these two objectives 

(Eq. 3.49). By applying the Pareto-based optimization workflow, Figure 3-18 shows 

Pareto front movement with the increase of generation. In the 1st generation, there are 

many uncompetitive solutions in the objective space. Those uncompetitive solutions 

becomes less in the 3rd generation, and they all convert to Pareto optimal solutions in the 

7th generation. Pareto optimal solutions on the trade-off curve include (0,0) point, which 

optimizes 𝑓1 only, and (5,5) point, which optimizes 𝑓2 only. Mathematically, it is difficult 

to make the decision that which solution is better than the other. However, in practice, we 

need to pick up an optimal solution to consider the trade-off between these two conflicting 
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objectives. Here, mean square error (MSE) algorithm is adopted to choose the optimal 

solution (Talbert et al. 2008).  

 

𝑓1(𝑥) = 𝑥1
2 + 𝑥2

2 

                                                 𝑓2(𝑥) = (𝑥1 − 5)2 + (𝑥2 − 5)2 

(3.49) 

   
1st generation 3rd generation 7th generation 

 

Figure 3-18 Pareto-based optimization workflow illustration. 

 

MSE aims to search the solution with the smallest square error, which is the 

compromised solution between the two objectives. First, final trade-off curve between 

Δ𝑁𝑝  and UF is obtained (Figure 3-19 (b)), and the data is sorted from minimum to 

maximum with respect to UF (or Δ𝑁𝑝). For each point on the curve, draw regression line 

for both left and right sides, and calculate sum square error for both sides. Thus, each point 

has one square error, and the square errors of all the points are plot with respect to UF (or 

Δ𝑁𝑝) (Figure 3-19 (a)). Finally, select the point with the minimal square error (red point 

in Figure 3-19 (a)), which is the optimal point on the trade-off curve (red point in Figure 

3-19 (b)). 



 

71 

 

  

(a) Square error vs. UF (b) 𝚫𝑵𝒑 vs. UF 

 

Figure 3-19 MSE algorithm for trade-off optimal point selection. 

 

3.5.4 Two-Step Polymer Flood Optimization Workflow 

All the information are summarized in the two-step polymer flood optimization workflow 

(Figure 3-20). Streamline-based rate optimization is used to modify production/injection 

rates to capture reservoir heterogeneity, and the Pareto-based polymer optimization is 

applied to get an optimal combination of polymer concentration and slug size to generate 

an optimal trade-off between Δ𝑁𝑝 and UF. The explanation for this two-step worflow is 

as follows: 

(a) Run reservoir forward simulation and trace streamline.  

(b) Compute analytical sensitivity and use SQP to minimize the objective for 

maximizing sweep efficiency while accelerating production/injection. 

(c) The optimized production/injection rates are fed into polymer optimization step.  

(d) LHS is utilized to initialize polymer concentration and slug size values.  

(e) The multiobjective genetic algorithm is implemented to get Pareto front trade-off. 

(f) Pick the optimal compromised solution from trade-off curve using MSE algorithm.     
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Figure 3-20 Two-step polymer flood optimization workflow. 

 

3.5.5 Norne Field Polymer Flood Optimization 

Here, we apply the two-step polymer flood optimization workflow to the Norne Full Field. 

We have got three history matched realizations under the Global-Local hierarchical 

history matching workflow in section 3.2 and 3.3. Figure 3-21 shows the first realization 

history matched model for gas, oil and water saturation. From the property distribution, it 

is clear to see that gas is on the top, oil locates in the middle and water is at the bottom.  
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   (a) Gas saturation model           (b) Oil saturation model           (c) Water saturation model 

 

Figure 3-21 1st realization history matched models. 

 

Well Configuration 

Figure 3-22 (a) shows the well schedules at the end of history matching period (Dec. 01, 

2006). There are only five injectors: two water injectors and three gas injectors. If we keep 

the original schedule, F-1H and F-2H are the only two choices to inject polymer and the 

Norne Field cannot be swept efficiently by polymer. That's why we develop the new well 

schedules as follows (Figure 3-22 (b)): 

(a) Reopen eight wells (C-4H, D-1H, D-4H, F-3H, B-4BH, B-1H, B-4H, and C-2H) 

and close  three wells (B-4DH, E-1H, and E-2AH). Injectors are around the boundary of 

Norne Field in order to control the whole field area and increase sweep efficiency.   

(b) Turn injectors C-1H and C-2H to producers and turn producers D-4H and D-1H 

to injectors.  

(c) Keep C-4AH injecting gas, F-1H and F-2H injecting water, and the rest five 

injectors injecting water and polymer.  

The new schedule is adjusted based on well location, well perforation, and oil 

saturation distribution, etc. For example, the reason why F-1H and F-2H do not inject 
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polymer is that these two wells locate near the edge water (Figure 3-23 (a)). If we inject 

polymer, polymer will be mixed in edge water largely, and the portion which displace oil 

become less. Hence, it may become unfavorable for oil sweep efficiency and NPV 

calculation. Also, well location and oil saturation distribution are another reasons to make 

producer-injector transformation. Figure 3-23(b) shows that two well groups are clearly 

formed after producers D-4H and D-1H are turned to the injectors. D-4H and D-1H locate 

in the middle of their respective well groups, which help injected polymer of D-4H and 

D-1H evenly distribute in the reservoir. It is beneficial for the uniform water front arrival 

from injectors to producers, and then rate optimization algorithm can converge faster.   

                         

(a) Original Schedule                                                  (b) New Schedule 

    

Figure 3-22 Comparison between original and new schedules (layer 6 oil saturation map 
of the 1st realization). 
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(a) F-1H & F-2H well location.        (b) D-4H&D-1H well groups. 

 

Figure 3-23 New schedule illustration.  

       

Rate Optimization 

Based on the new schedule, the Norne Field injection and production rates are optimized 

by the streamline-based method to capture reservoir heterogeneity under the production 

constraints (Table 3.4). The rate of selected injectors and producers are shown in Figure 

3-24. With the help of the optimized injection and production rates, it is much easier for 

polymer to reduce viscous fingering.  

Rate optimization performance can be measured by Δ𝑁𝑝  and NPV. Figure 3-25 

compare these two measurements in two cases: (I) the base case using injection and 

production rates without optimization; (II) the new case with optimized rates before 

polymer optimization. Economic parameters in Table 3.5 are applied in NVP calculation. 

It is clearly to see that rate optimization can help improve Δ𝑁𝑝 and NPV significantly.  
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 Table 3.4 Rate optimization production constraints 

  Parameters  Input Values   

  Max. Inj. BHP, [Bar]  450    

 Min. Prod BHP, [Bar]  150   

 Max. Water Inj. Rate, [sm3/day]  12,000   

 Max. Liquid Prod Rate, [sm3/day]  6,000   

 Max. Water Cut, [%]  95   

 

 Table 3.5 Polymer flooding optimization economic parameters 

  Parameters  Input Values   

  Discount Rate, [%]  10    

 Oil Price, [$/bbl]  80   

 Water Inj./Prod. Cost, [[$/bbl]  6   

 Gas Inj. Cost, [$/Mscf]  1.2   

 Polymer Inj/Prod Cost, [$/lb]  10   

                                                                                   

 

(a) Optimized rates of selected injectors             (b) Optimized rates of selected producers  

 

Figure 3-24 Optimized injection and production rates.  
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                      (a) 𝚫𝑵𝒑 VS Time                                                     (b) NPV Vs Time 

 

 

Figure 3-25 Plots comparing base case without rate optimization and new case with rate 
optimization. 

                       

Polymer Optimization 

After rate optimization, it is followed by polymer optimization. Polymer concentration 

ranges between 0 and 1 kg/sm3, and slug size ranges between 1 and 10 years. To address 

geologic uncertainty and find an approach to pick an optimal solution from multiple 

realizations, the average objectives are calculated from three realization objectives (Eq. 

3.50 and Eq. 3.51), and then the average Pareto front is generated where we pick the 

optimal point. In Figure 3-26, red, blue, and purple lines are optimal Pareto fronts of three 

realizations, and green line, which locates among the three lines, is the average Pareto 

front between Δ𝑁𝑝 and UF. The average Pareto front avoids extreme pessimistic or 

optimistic realizations and becomes a good representative to capture geologic uncertainty. 
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The red point, the comprised optimal solution between production improvement and 

polymer efficiency, is picked by MSE algorithm from the average Pareto front.       

 𝛥𝑁𝑝𝑎𝑣𝑔
= ∑ 𝛥𝑁𝑝𝑖

𝑁𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑖=1

 (3.50) 

 

 𝑈𝐹𝑎𝑣𝑔 = ∑ 𝑈𝐹𝑖

𝑁𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑖=1

 (3.51) 

 

 

Figure 3-26 Three realizations Pareto front and average Pareto front. 

 

Figure 3-27 shows the Np and NPV performance among three cases. (I) the base 

case using injection and production rates without the rate optimization (blue line); (II) the 

case using optimized rates without the polymer optimization (green line); (III) the case 

using optimized rates with the polymer optimization (red line). We can see that the rate 

optimization and polymer optimization improves ∆𝑁𝑝  and NPV sequentially. This 
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optimization workflow considers two objectives concurrently and gives a balanced 

candidate, which results in higher oil production increment and profit. In Figure 3-27 (b), 

there is a turning point, which is around 3 years. Before the turning point, the green line 

is a little higher than the red line, while after the turning point, the red line outperforms 

the green line. That's because the polymer should need a period of time to take effect 

before forming favorable water front, and even play a negative role in the reservoir 

dynamic flow behavior at the beginning.   

 

                  (a) 𝚫𝑵𝒑 VS Time                                                      (b) NPV Vs Time 

 

Figure 3-27 Plots comparing polymer optimization, rate optimization without polymer and 
base case. 

 

3.6 Summary  

In this chapter, we have presented the Norne Field history matching using a global-local 

history matching workflow, and then applied a two-step polymer flood optimization 

workflow including the streamline-based rate optimization and the Pareto-based polymer 
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optimization on the Norne Field production optimization. The main findings are 

summarized as follows: 

1. The Norne Field application demonstrates the practical feasibility of the 

multiobjective Pareto-based framework in the history matching and production 

optimization.  

2. The hierarchical history matching workflow consisting of global and local updates 

can be successfully applied to Norne Field. This approach is particularly well-

suited for the calibration of the reservoir properties of high-resolution geologic 

models. Through the global and fine scale updates, the acoustic impedance 

changes and well by well water cut data matching are improved substantially.  

3. The Pareto-based approach integrates production and seismic conflicting 

objectives simultaneously and discovers trade-off between them, accounting for 

the influence of each objective in the global history matching update.  

4. The streamline-based inversion workflow can reduce data misfit further through 

integration with seismic (pressure and saturation effects) and production data 

(water-cut) sequentially in the local updates.  

5. The coupling of rate optimization and multi-objective genetic algorithm provides 

an effective approach for the optimization of slug size and polymer concentration 

in the Norne Field. The selected optimal solution from the average Pareto front of 

three realizations provides a compromise for ∆𝑁𝑝 and UF. The rate optimization 

and polymer optimization improves ∆𝑁𝑝 and NPV sequentially and significantly. 
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6. The rate optimization allocates production and injection rates for maximizing 

sweep efficiency and accelerating production/injection. The optimized production 

and injection rates can help to improve the role of polymer in reducing viscous 

fingering in the polymer optimization.  

7. The multi-objective genetic algorithm generates a set of optimal solutions, which 

represent a compromise for maximizing oil production while maintaining low 

polymer utility factor. The average Pareto front from three realizations captures 

geologic uncertainty and avoids extreme pessimistic or optimistic results.               
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4.                                CHAPTER IV 

    A COMPARATIVE ANALYSIS OF REPARAMETERIZATION METHODS FOR 

                       HISTORY MATCHING CHANNELIZED RESERVOIRS 

In this chapter, a novel two-step history matching workflow is proposed where the channel 

geometry is modeled using the level sets, and the internal heterogeneity within the channel 

facies is modeled using the parameterization with linear basis functions, specifically the 

Grid Connectivity Transform (GCT) basis. Facies boundaries are represented by the level 

set function where seismic information is incorporated, and the boundaries are gradually 

moved by solving the level set equation under the seismic constraint. For history matching, 

the Markov Chain Monte Carlo (MCMC) method is employed to minimize production 

data misfit by adjusting channel geometry and also channel petrophysics by perturbing the 

GCT coefficients. Moreover, seismic constraint, for the first time, is incorporated into the 

level set method to improve the facies calibration performance. 

 

4.1 Introduction 

Identification of the channel geometry, facies boundaries and characterization of channel 

petrophysical properties are critical for performance prediction of channelized reservoirs. 

The sharp contrast between facies, the orientation and geometry of channels with high 

permeability contribute most to the fluid flow, followed by the heterogeneity within the 

channel. Thus, it is important to efficiently update channel geometry as well as channel 

petrophysics during history matching.  
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There are many difficulties for traditional geostatistical techniques, such as the two-

point geostatistical method, the object-based modeling approach, and the multi-point 

geostatistical method, to calibrate channelized reservoirs. The two-point geostatistical 

method is inappropriate for the channel geometry reproduction because a variogram 

cannot represent spatial continuity at more than two locations simultaneously (Koltermann 

and Gorelick 1996). Although the object-based method (Deutsch and Wang 1996) has 

been widely used in generating channelized facies distributions, it is difficult and time-

consuming to incorporate into history matching to honor dynamic data. The multi-point 

geostatistical (Strebelle and Journel 2001) method, overcoming the downsides of the two-

point and object-based methods, heavily relies on the quality of the training image, which 

possesses too many uncertainties. 

Parameterization methods have been successfully applied in the image reconstruction 

(Bhark et al. 2011; Jafarpour 2011; Jafarpour et al. 2009b) and the inverse problem 

(Awotunde and Horne 2010; Jafarpour et al. 2009a; Kang et al. 2014) by reducing 

parameter dimensionality. Especially in the history matching of channelized reservoirs, 

Parameterization may mitigate the issues brought by geostatistical approach in term of 

keeping the large-scale channel continuity while honoring dynamic data. The Discrete 

Cosine Transform (DCT) uses a small number of coefficients to capture dominant features 

of reservoir permeability distributions and helps capture spatial continuity of geological 

facies in channelized environments during history matching (Jafarpour and McLaughlin 

2009).  Currently, the main limitation of the DCT is that it can only be used in spatial 

domains with regular spatial structure. In contrast, the GCT can be extended from structure 
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grids to unstructured grids (Bhark et al. 2011b; Bhark et al. 2012). The Discrete Wavelet 

Transform (DWT) is another attractive approach for the history matching of channelized 

reservoirs on account of its ability of capturing both frequency and location information. 

Jafarpour (2011) calculated the sensitivity of flow response with respect to important 

wavelet coefficients and used the Ensemble Kalman Filter (EnKF) to update this subset of 

wavelet coefficients to approximate the spatial distribution of permeability. The DWT is 

also powerful in the integration of different sources of data. For the integration, production 

and variogram information can be integrated sequentially into the reservoir model by 

calculating a sensitivity matrix of production response to wavelet coefficients (Kind and 

Quinteros 2007; Sahni and Horne 2005, 2006a, 2006b). However, the difficulties in 

location and estimation of significant DWT coefficients become the bottleneck to improve 

the DWT performance in the inverse problem.  

The level set method, as a numerical algorithm for surface and shape tracking (Osher 

and Fedkiw 2002; Osher and Sethian 1988; Osher and Santosa 2001), has shown great 

promise to effectively parameterize facies boundaries and allows for changing channel 

geometry and connectivity during history matching. Xie et al. (2011) applied the two-stage 

MCMC to perturb the coefficients of velocity eigenvectors, followed by the channel 

boundaries evolution through solving the level set equation. Ping and Zhang (2014) 

parameterized channelized reservoirs into a group of parameters: level set function, real 

radius and virtual radius, which are updated by the EnKF. These approaches simply 

assumed constant properties within each facies, ignoring the heterogeneity of the reservoir 

field. In that line, Agbalaka and Oliver (2011) and Lorentzen et al. (2012) used the EnKF, 
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combined with the level set method, to jointly update facies boundaries and estimate 

petrophysical properties within each facies. The approaches listed above mainly focus on 

conditioning models to well data but seismic constraint in the level set has not been 

mentioned in the current literature. The successful integration of seismic constraint can 

help to not only significantly improve channelized reservoir history matching 

performance, but also extend the level set from simple channelized models to more 

complicated ones. 

Here, we propose a history matching workflow for conditioning the calibrated 

realizations to the production data, facies observation at the wells, and seismic constraint. 

The proposed approach is applied to a 2D example. First, we examine the effectiveness of 

the level set approach by comparison with other approaches for channelized reservoirs: 

for example, the DCT, GCT, and DWT. The level set approach is shown to significantly 

outperform in terms of reproducing channel geometry. Second, we show that the use of 

seismic constraint helps preserve the structure of facies distribution and geologic realism 

during history matching. Finally, the calibrated facies models are further updated by 

adjusting the internal channel permeability distribution to fine-tune the history matching. 

The GCT method is selected to carry out heterogeneity characterization, since it has been 

successfully applied in the field-scale history matching (Watanabe et al. 2013). In this 

sense, the GCT integration in the model characterization can help enhance the 

applicability and stability of the level set in the field-scale application.     
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4.2 Traditional Parameterization Methods for Channelized Reservoirs 

Traditional parameterization methods, such as the DCT, GCT, and DWT, show great 

promise to effectively parameterize property model in the non-channel system. However, 

direct application of these methods on the channelized reservoirs is questionable. In this 

section, we first discuss the DCT and DWT methodologies. Then the DCT, GCT, and 

DWT are compared in the image reconstruction and history matching performances to 

have an understanding for these three methods before introducing the level set method. 

 

4.2.1 Discrete Cosine Transform Method 

The Discrete Cosine Transform is a Fourier-based transform widely used for data 

compression (Gonzalez and Woods 2002). For a 2-D reservoir model including 𝑁𝑥 × 𝑁𝑦 

grids, 𝑢(𝑥, 𝑦) is the property parameter needed to be estimated. The forward equation of 

the DCT is written as (Gonzalez and Woods 2002):  

𝑣(𝑟, 𝑠) =  𝛼(𝑟)𝛼(𝑠) ∑ ∑ 𝑢(𝑥, 𝑦)

𝑁𝑦−1

𝑦=0

𝑐𝑜𝑠 [
(2𝑥 + 1)𝑟𝜋)

2𝑁𝑥
] 𝑐𝑜𝑠 [

(2𝑦 + 1)𝑠𝜋)

2𝑁𝑦
]

𝑁𝑥−1

𝑥=0

 (4.1) 

where 𝑟 = 0, 1, 2, … , 𝑁𝑥 − 1  and 𝛼(𝑟 = 0) = √
1

𝑁𝑥
 and 𝛼(𝑟 ≠ 0) = √

2

𝑁𝑥
. 𝑁𝑦  and 𝛼(𝑠) 

take the same expression. 𝑣(𝑟, 𝑠)  is the DCT coefficient and the product of cosine 

functions is the DCT basis. Eq. 4.1 can be rewritten as matrix-vector form: 

 v = ΦTu (4.2) 

where v and u are in the vectors form of the DCT coefficients and property parameter set 

respectively, and Φ is the matrix form of the DCT basis. Figure 4-1 shows the DCT basis 
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in an 8×8 grids reservoir. The basis images are arranged based on orientation and 

frequency in a descending order from upper left to lower right (Bhark et al. 2011a; 

Jafarpour and McLaughlin 2009).  

The linear combination of the DCT basis and coefficient can help us reconstruct the 

original property model and carry out history matching based on Eq. 4.3, which is the 

inverse equation of the DCT.  

 u = Φv (4.3) 

Although the DCT has strong image compression and is suited for dimension reduction in 

history matching, the main problem for the DCT is that it is limited to spatial domains 

with regular spatial structure. In contrast, the GCT can be extended from structured grids 

to unstructured grids (Bhark et al. 2011b; Bhark et al. 2012).  

 

Figure 4-1 DCT basis for a 2-D model 
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4.2.2 Discrete Wavelet Transform Method 

The Discrete Wavelet Transform is any wavelet transform for which the wavelets are 

discretely sampled (Mistry and Banerjee 2013), which is widely used in the image 

compression. The forward equation of the DWT is shown by Eq. 4.4 and Eq. 4.5, and the 

inverse equation is shown by Eq. 4.6.  

 

 
𝛼(𝑗, 𝑘) = ∑ 𝑢(𝑡) 𝜙𝑗,𝑘(𝑡)

𝑡

 
(4.4) 

 
𝛽(𝑗, 𝑘) = ∑ 𝑢(𝑡)𝜓𝑗,𝑘(𝑡)

𝑡

 (4.5) 

 
𝑢(𝑡) = ∑ 𝛼(𝑗0, 𝑘)

𝑘

𝜙𝑗0,𝑘 + ∑ ∑ 𝛽(𝑗, 𝑘)𝜓𝑗,𝑘

𝑘

∞

𝑗=𝑗0

 (4.6) 

where 𝑡 = 0, 1, 2, … , 𝑁 − 1, and 𝑢(𝑡) is the property parameter set. In Eq. 4.6, the scaling 

part, shown by the scaling coefficient 𝛼(𝑗0, 𝑘) and the scaling function 𝜙𝑗0,𝑘(𝑡), contains 

low frequency information, and the wavelet part, shown by the wavelet coefficient 𝛽(𝑗, 𝑘)  

and the wavelet function 𝜓𝑗,𝑘(𝑡), contains high frequency information, which help depict 

reservoir boundaries shape and location. Jafarpour (2011) summarized that the scaling 

coefficients 𝛼(𝑗, 𝑘)  at scale j can be decomposed into the scaling coefficients 𝛼(𝑗 + 1, 𝑘) 

and the wavelet coefficients 𝛽(𝑗 + 1, 𝑘) at the next coarser scale level j+1.  

As shown in Figure 4-2 (b), after six levels of decomposition of a 2-D channelized 

reservoir (Figure 4-2 (a)), the first level in the upper left contains the scaling coefficients, 

corresponding to the average energy of the reservoir. The other five levels contain the 

wavelet coefficients, related with the detail information of the reservoir. The wavelet 



 

89 

 

coefficients, showing clear channel boundary shape in Figure 4-2 (b), are named as 

boundary coefficients, which helps depict the channel boundaries. For the DCT, Figure 

4-2 (c) shows that the left corner contains high energy coefficients and no localization 

advantage is observed.  

      
(a) 2-D channelized 

reservoir 
(b) Scaled DWT coefficients (c) DCT coefficients 

 

Figure 4-2 Comparison between DWT and DCT parameterization coefficients: (a) 2-D 
channelized reservoir, (b) scaled DWT coefficients and (c) DCT coefficients. 

 

Although compared to the DCT, the DWT can capture frequency and location 

information in the image reconstruction because of the existence of boundary coefficients, 

there are some obstacles for the DWT to be effectively used in the history matching. First, 

it is difficult to locate and estimate the significant DWT coefficients properly in the inverse 

problem (Jafarpour 2011). Second, the significant DWT coefficients, such as boundary 

coefficients, may not be sensitive to the observed data. We still can apply the DWT in 

history matching regardless of the coefficients’ location and sensitivity to the observed 

data, although the breakthrough of these difficulties can improve the DWT history 

matching performance significantly. 

 

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.05

0.1

0.15

0.2

0.25

ln|DCT|

 

 

10 20 30 40 50 60

10

20

30

40

50

60 -8

-6

-4

-2

0

2

4

6
True Image

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

2

4

6

8

10



 

90 

 

4.2.3 Image Reconstruction Performance Comparison  

In this section, the image reconstruction performance is compared among the DCT, GCT, 

and DWT. For each reparameterization method, 50, 500, and 1000 coefficients are taken 

to reconstruct the original image: the 2-D channelized reservoir shown in Figure 4-2 (a). 

The Root Mean Square Error (RMSE) (Eq. 4.7) is calculated to show the definition of 

reconstructed image. The less the RMSE value is, the smaller the difference between 

original image and reconstructed image.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

 (4.7) 

Figure 4-3 shows that for each reparameterization method, with the increase of 

number of coefficients, the images become clearer because more bases and energy are 

introduced. When the number of the coefficients is 50, the DCT reconstructed image is 

closer to the original one. However, when it increases to 500 or 1000, the DWT has the 

clearer definition of image with the smallest RMSE value compared with the other two, 

especially for the depiction of the channel boundary.  

If the number of coefficients are introduced continuously, the RMSE is reduced with 

the increase of number of coefficients (Figure 4-4). With less than around 280 coefficients, 

the DCT is better than the others with the smallest RMSE value, while with more than 280 

ones, the DWT shows the super performance. That is because we have more chances to 

include more boundary coefficients to help depict the image more clearly with the increase 

of number of coefficients. Figure 4-3 and Figure 4-4 stress the GCT’s smooth effect 

compared with the DCT and DWT.  
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 50 Coefficients 500 coefficients 1000 coefficients 

DCT 

RMSE= 0.3914 RMSE=0.1009 RMSE=0.0485 

   

GCT 

RMSE=0.4768 RMSE=0.1357 RMSE=0.1209 

   

DWT 

RMSE=0.6041 RMSE=0.0658 RMSE=0.0061 

   

 
Figure 4-3 Image reconstruction performance comparison. 
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Figure 4-4 RMSE versus number of coefficients for the DCT, GCT, and DWT. 

 

4.2.4 History Matching Performance Comparison 

The channelized reservoir used for history matching has 50 × 50 × 1 meshes with 

rectangular coordinates, and the two phases flow (oil and water) is considered. Three 

injectors are under pressure control, and four producers are under oil rate control. The true 

permeability model is heterogeneous, and the initial model is homogeneous within the 

channel (Figure 4-5). The average permeability of channel for both models is 300md, and 

floodplain’s perm is 0.01md. Here, we assume the flow dynamics are bounded within the 

channel, and the floodplain’s flow effect is negligible.  Compared to the true model, the 

initial model connects the path between producer 2 and injector 2, and disconnects the 

path between producer 1 and producer 3. Through history matching oil rate, water cut, 
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producer BHP, and water injection rate, we aim to reproduce the main structure of the true 

model starting from the initial model.   

  

(a) True model  (b) Initial model 

 

Figure 4-5 The true and initial models in a 2-D case. 

 

History matching objective is the summation of four objectives misfit — oil rate, 

water cut, producer BHP, and water injection rate — between observed historical data and 

calculated reservoir simulation results. The MCMC (Hastings 1970; Xie et al. 2011) is 

employed to update reparameterization coefficients in order to minimize history matching 

objective. Figure 4-6 (a) shows the acceptance rate variation of the DCT, GCT, and DWT 

with the increase of iterations. Although the acceptance rate can reduce to the stationary 

state after 500 iterations, the low value (below 10%) means that the proposals brought by 

these three parameterization methods are not good enough. Also, the overall data misfit is 

reduced from 4000 to 2000, which is still relatively high. The level set method can reduce 

the data misfit further, which will be shown in the next section. Only one sample is picked 

from the stationary state of these three methods respectively to compare updated 

permeability models with the true model (Figure 4-7). Although the low permeability is 
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around producer 1 can be captured, the channel boundaries are smeared, which causes the 

low acceptance rate and relatively high history matching data misfit. In the respect of 

history matching results, there is no big difference between the three parameterization 

methods. Generally, direct application of the DCT, GCT, and DWT on channelized 

reservoir history matching is not satisfied. 

 

(a) Acceptance rate versus number of iterations for Markov chain. 

 

 

(b) Data misfit versus number of iterations for Markov chain. 

 

Figure 4-6 MCMC simulation performance: (a) acceptance rate, (b) data misfit  
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(a) True model (b) GCT updated model 

  

(c) DCT updated model (d) DWT updated model 

  

Figure 4-7 Update models for synthetic case. 

 

4.3 Level Set Method as an Alternative 

The level set method can be used to update facies model as an alternative. In this section, 

we first introduce the level set method to show how the level set method transform discrete 

facies into continuous variables, and how it gradually changes channel geometry in the 

continuous domain, followed by property model calibration using GCT. Then we 

demonstrate our approach using a 2-D channelized reservoir example.  
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4.3.1 Level Set Method Methodology 

The level set method is a numerical algorithm for dynamic implicit surfaces and evolution 

(Osher and Fedkiw 2002; Osher and Sethian 1988; Osher and Santosa 2001). The implicit 

surface is defined as function  𝜑(𝑡, 𝑥).  

 Γ = {𝑥 ∈ Ω|𝜑(𝑡, 𝑥) = 0} 

Ω+ = {𝑥 ∈ Ω|𝜑(𝑡, 𝑥) > 0} 

Ω− = {𝑥 ∈ Ω|𝜑(𝑡, 𝑥) < 0} 

(4.8) 

Take the 2-D channel model for example (Figure 4-8 (a)). Domain Ω+ is surrounded 

by a closed curve Γ. Outside domain area is Ω−. When 𝜑(𝑡, 𝑥) > 0, it represents the area 

within the domain (Ω+), corresponding to the channel/sand facies in the 2-D channel 

model. When  𝜑(𝑡, 𝑥) > 0, it represents the area outside domain (Ω−), corresponding to 

the floodplain/shale facies. When 𝜑(𝑡, 𝑥) = 0, it is the closed curve (Γ), which is called 

zero level set of the function 𝜑(𝑡, 𝑥), corresponding to facies boundary.  

However, the implicit surface is discontinues, which is difficult to be solved for facies 

boundary evolution. The signed distance function (SDF), 𝜑𝑑(𝑡, 𝑥), can be used to avoid 

discontinuous the implicit surface. The signed distance function is defined as the smallest 

distance between any point in the reservoir and facies boundary (Xie et al. 2011). When 

the point is within the channel, the positive distance is assigned to 𝜑𝑑(𝑡, 𝑥). Otherwise, 

the negative one will be assigned (Eq. 4.9). 

 
𝜑𝑑(𝑡, 𝑥) = {

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥, Γ)   ∀𝑥 ∈ Ω+

−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, Γ) ∀𝑥 ∈ Ω− (4.9) 
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To achieve the signed distance function, the reinitialization equation Eq. 4.10 need to 

be solved.  

 𝜕𝜑𝑑(𝑡, 𝑥)

𝜕𝑡
+ 𝑠𝑖𝑔𝑛(𝜑𝑑(0, 𝑥))(|𝛻𝜑𝑑(𝑡, 𝑥) − 1|) = 0 (4.10) 

where 

 
𝑠𝑖𝑔𝑛(𝜑𝑑(0, 𝑥)) = {

1     𝑥 ∈ 𝛺+

−1  𝑥 ∈ 𝛺−
 (4.11) 

After the reinitialization equation reaches the stead state, SDF has a nice property:  

 |∇𝜑𝑑(𝑡, 𝑥)| = 1 (4.12) 

Figure 4-8 (b) shows the signed distance function after solving the reinitialization equation 

of the 2-D channel model (Figure 4-8 (a)). 

  

(a) 2-D Channel model  (b) Signed distance function 

 

Figure 4-8 2-D channel model and its singed distance function. 

 

Then, Eq. 4.12 is applied into the level set equation Eq. 4.13, which is related with the 

facies boundary evolvement. 

𝛺+
 

𝛺−
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 𝜕𝜑𝑑(𝑡, 𝑥)

𝜕𝑡
+ 𝑣𝑛(𝑥)|𝛻𝜑𝑑 (𝑡, 𝑥)| = 0 (4.13) 

𝑣𝑛(𝑥) is the normal velocity. Discretize Eq. 4.13, which is can be rewritten as Eq. 4.14: 

 

 
 
𝜑𝑑

𝑡+1 − 𝜑𝑑
𝑡

△ 𝑡
= −𝑣𝑛(𝑥) (4.14) 

Finally, we get the following equation: 

  𝜑𝑑
𝑡+1 = 𝜑𝑑

𝑡 − 𝑣𝑛(𝑥)𝛥𝑡 (4.15) 

𝛥𝑡 is the artificial time, rather than the physical time, which can be assigned any values 

here. 𝜑𝑑
𝑡  is the current SDF starting from the initial model’s SDF, like the one shown in 

Figure 4-8 (b). In order to get 𝜑𝑑
𝑡+1, which is the next time step SDF, the only unknown is 

𝑣𝑛(𝑥). 

The Sequential Gaussian Simulation (SGSIM) is used to generate the Gaussian 

random field (GRF) as velocity (Remy et al. 2009; Xie et al. 2011). If we want to condition 

the new facies model to facies observations at well locations, we can easily set the GRF 

as 0 at wells. Thus, there is no variation for 𝜑𝑑(𝑡, 𝑥) over time.   

Figure 4-9 illustrates how to update facies model by conditioning hard data. First, 

solve the reinitialization equation to get initial model’s SDF. Second, generate the GRF as 

velocity field, and condition the GRF to 0 at well locations to preserve facies observation. 

Third, by adding velocity field (GRF) to initial model’s SDF, obtain the deformed SDF. 

Finally, transform back from the deformed SDF to the new facies based on the principle 

that positive value in the deformed SDF corresponds to the channel in new facies model 

and negative value corresponds to the floodplain facies.  
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Figure 4-9 Facies boundary perturbation flowchart. 

 

4.3.2 Two-Step Channelized Reservoir Calibration Workflow 

After facies calibration, property modeling within the channel is evolved. Figure 4-10 

shows a two-step history matching workflow for channelized reservoirs involving facies 

modeling and property modeling. The property modeling is as same as the process 

mentioned in section 4.2.4. The difference is that we update facies model first, followed 

by property calibration using the GCT. The reason why we choose the GCT here is that 

the DCT is limited in the regular grid structure and the DWT’s localization advantage is 

difficult to be fully used in the history matching. Also, the GCT method has been 

successfully applied in the field-scale history matching (Watanabe et al. 2013), which can 

help enhance the applicability and stability of the level set in the field-scale application.    

Furthermore, since channels dominate the flow dynamics, we only update permeability 

within the channel, and keep the floodplain’s properties unchanged. The explanation for 

this flowchart is as follows:  

(a) Transform initial model to the SDF domain.  

(b) By adding the GRF, transform back and propose new channel model. 
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(c) Check the proposed channel model with the sand/shale ratio. If it is satisfied, run 

forward reservoir simulation. Otherwise, go back to propose another new channel model. 

(d) Based on the MCMC acceptance probability to accept or reject the new facies 

proposals. After reaching stop criteria, the calibrated facies models are fed into property 

modeling process. 

(e) Utilize the GCT to parameterize property model into the linear combination the 

GCT bases and GCT coefficients. 

(f) Apply the MCMC to optimize the GCT coefficients in order to propose new 

property models. 

(g) Still based on the MCMC acceptance probability to accept or reject the new 

property proposals. The final calibrated reservoir models can be got after reaching stop 

criteria.   



 

101 

 

 

 (a) Step 1: Facies modeling                              (b) Step2: Property modeling 

 

Figure 4-10 A two-step history matching workflow: (a) facies modeling, (b) property 
modeling. 

 

4.3.3 A 2-D Case Application 

As mentioned in the section 4.2.4, the calibration on property without facies update using 

traditional parameterization methods does not apply very well on the channelized 

reservoirs. For comparison purpose, we applied the level set method on the same 2-D 

example (Figure 4-5) to calibrate facies first, followed by property calibration using the 

GCT.  

Through the facies modeling workflow (Figure 4-10 (a)), Figure 4-11(a) shows that 

after 500 iterations, the acceptance rate in the MCMC using the level set method reaches 

to around 20% (orange line), which is higher than that of the other three methods. Also, 
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the data misfit (orange line) is reduced down to 500, which is lower than the other three 

(Figure 4-11 (b)). Four realizations sampled from the stationary state are displayed in 

Figure 4-12. Although the channel distributions are different with each other, the key 

feature of channel architecture is captured. For instance, the path between producer 2 and 

injector 2 is reconnected, and the one between producer 1 an producer 3 is disconnected 

in comparison with true and initial models. Since the channel distribution dominates 

reservoir fluid flow, and updated facies models can reproduce the pivotal flow path of the 

true model, the good proposals make acceptance rate higher and history matching data 

misfit lower.   

 

(a) Acceptance rate versus number of iterations for Markov chain. 

 

Figure 4-11 MCMC simulation performance in facies model calibration: (a) acceptance 
rate, (b) data misfit.  
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(b) Data misfit versus number of iterations for Markov chain. 

 

Figure 4.11 continued. 

 

   

(a) True model (c) 1st realization (e) 3rd realization  

   

(b) Initial model (d) 2nd realization (f) 4th realization 

 

Figure 4-12 Calibrated facies models versus true and initial models.  
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(a) Acceptance rate versus number of iterations for Markov chain 

 

 

(b) Data misfit versus number of iterations for Markov chain. 

 

Figure 4-13 MCMC simulation performance in property model calibration: (a) 
acceptance rate, (b) data misfit. 

 

The four facies models (Figure 4-12) serve as starting models in the property models 

calibration process. The GCT is used to parameterize these four models into spectral 

domain, and 20 GCT coefficients are updated by the MCMC. Hence, four MCMC chains 
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are shown in Figure 4-13. It is clearly to see that the acceptance rate of four chains are 

around 20%, and the data misfit is reduced further from 500 to 200. Another four property 

realizations are sampled from the stationary state to present property change staring from 

homogeneous state (Figure 4-14). The high and low permeability regions are clearly 

depicted within the channel. For example, the feature of low permeability around producer 

1 and high permeability around producer 4 are captured. Thus, with the help of facies 

model updated using the level set method, the property calibration can reach to a better 

level compared with using parameterization directly on the channelized reservoir. Figure 

4-15 shows well by well history matching results. The updated models (blue lines) can 

match observed data (red dots) very well for oil rate, water cut, producer BHP, and water 

injection rate.  

   

(a) True model (c) 1st realization  (e) 3rd realization  

   

(b) Initial model (d) 2nd realization  (f) 4th realization 

 

Figure 4-14 Calibrated property models versus true and initial models. 
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(a) Oil rate 

 

 

(b) Water cut 

 

 

(c) Producer BHP 

 

(d) Water injection rate 

 

Figure 4-15 History matching results: (a) oil rate, (b) water cut, (c) producer BHP, (d) water 
injection rate. 
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4.4 Level Set Method under Seismic Constraint 

The seismic constraint plays an important role for the complicated channel reservoirs. 

Thus, although the level set method serves as a great alternative to change facies boundary, 

we still need to know how to incorporate seismic information into the level set when 

seismic data is available. In this section, we first present the methodology of seismic 

integration in the level set method. Then a 2-D channelized reservoir is used to show how 

seismic integration can help to reproduce the channel structure.    

 

4.4.1 Level Set Method under Seismic Constraint Methodology 

There are many types of seismic derived information. Here, we take the seismic acoustic 

impedance (AI) for example in the rest of discussion. Assume that the seismic acoustic 

impedance has the same resolution as the reservoir model after seismic processing after 

seismic processing, and there is a good relationship between the acoustic impedance 

values and the types of facie. In this assumption, seismic derived facies can be obtained 

from given measured AI model. Figure 4-16 shows the seismic data integration flowchart. 

First of all, the initial facies model is represented by the initial SDF; second, the seismic 

derived facies is acquired from the measured AI model, followed by the AI SDF; third, 

the initial SDF and AI SDF are combined together to generate the deformed initial SDF 

and transform back to get the new initial facies model.  
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Figure 4-16 Facies boundary perturbation under seismic constraint flowchart. 

 

 𝜑𝑑
𝑡0 = 𝜑𝑔 + 𝑤(𝜑𝐴𝐼 − 𝜑𝑔) (4.16) 

Eq. 4.16 shows how to combine the initial SDF and AI SDF. 𝜑𝑔 is the initial SDF, 

𝜑𝐴𝐼  is the AI SDF, and 𝜑𝑑
𝑡0  is the deformed SDF after combination. 𝑤  is the seismic 

weight, describing how strong an impact of the AI SDF should have on the deformed SDF. 

0 means no correlation at all, while 1 means 100% correlation between 𝜑𝐴𝐼 and 𝜑𝑑
𝑡0. As 

shown in Figure 4-17, initially we have the initial facies model and seismic derived facies.  

A range of  𝑤 from 0 to 1 at interval of 0.2 is assigned to Eq. 4.16 to get the deformed 

SDF, which is transformed back to facies model. When 𝑤 is equal to 0, the transformed 

facies model is almost identical with the initial facies model without seismic influence. 

With the increase of 𝑤, the transformed facies becomes more similar with the seismic 

derived facies, away from the initial facies model. When 𝑤 is equal to 0.6, the transformed 

facies has captured the main feature of the seismic derived facies. When 𝑤 is equal to 1, 

𝜑𝑔is canceled, and only 𝜑𝐴𝐼 takes effect without any initial model impact.  
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The seismic weight plays the same function as the correlation coefficient used to 

determine the impact of the secondary variable in the co-kriging of the geological 

modeling. The determination of the seismic weight is subjective, based on the prior 

knowledge of seismic information and geological knowledge. As shown in Figure 4-18, 

the only difference in the new two-step history matching flowchart under seismic 

constraint, compared with the one without seismic, is that the initial model is integrated 

with seismic information, and the rest of the workflow remains unchanged.  

 

  

Initial facies model Seismic derived facies 

  

Deformed SDF (w = 0) Transformed facies model (w = 0)  

 

Figure 4-17 Seismic weight impact on facies perturbation. 
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Deformed SDF (w = 0.2) Transformed facies model (w = 0.2)  

  

Deformed SDF (w = 0.4) Transformed facies model (w = 0.4)  

  

Deformed SDF (w = 0.6) Transformed facies model (w = 0.6)  

 

Figure 4.17 continued. 
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Deformed SDF (w = 0.8) Transformed facies model (w = 0.8)  

  

Deformed SDF (w = 1.0) Transformed facies model (w = 1.0)  

 

Figure 4.17 continued. 
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              (a) Step 1: Facies modeling                     (b) Step2: Property modeling 

 

Figure 4-18 A two-step history matching workflow under seismic constraints: (a) facies 
modeling, (b) property modeling. 

 

4.4.2 A 2-D Case Application 

The 2-D channelized reservoir (Figure 4-19) is a modified version of the Stanford V 

reservoir (Mao and Journel 1999). The reservoir model has 100×120×1 grids, and two-

phase flow (oil and water) is considered. There are three injectors at pressure control, and 

three injectors at oil rate control. As in the 2-D model in section 4.2.4, only flow dynamics 

within the channel is considered. Also, the true permeability model is heterogeneous, and 

initial model is homogeneous within the channel. The average permeability of channel for 

both models is 300md, and floodplain’s perm is 0.01md. Compared to the true 

permeability model (Figure 4-19 (a)), the path is connected between producer 3 and 

injector 3 in the initial permeability model (Figure 4-19 (b)). The measured acoustic 
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impedance model (Figure 4-19 (c)) serves as the seismic constraint in the facies model 

calibration process.  

    

(a) True permeability 
model 

(b) Initial permeability 
model 

(c) Measured acoustic 
impedance model 

 

Figure 4-19 A 2-D synthetic case: (a) true permeability model, (b) initial permeability 
model, (c) measured acoustic impedance model. 

 

According to the seismic integration workflow (Figure 4-16 and Figure 4-18), different 𝒘 

values are assigned to show the seismic weight influence on the facies model evolution. 

Figure 4-20 shows the acceptance rate and data misfit within 500 iterations when 𝒘 is 

equal to 0, 0.5, 0.7 in the facies update step. For discussion purpose, the cases when 𝒘 is 

equal to 0, 0.5, 0.7 are named as case 1, case 2, and case 3 respectively. Data misfit (Figure 

4-20 (b)) decreases largely from about 28000 to below 1000. The red dash area is 

magnified and left corner is focused on in Figure 4-20 (c). Case 2 and 3 with the seismic 

constraint reach to lower data misfit compared with case 1 without the seismic constraint, 

and especially larger 𝒘 contributes to the lower data misfit. Then, three facies realizations 

are sampled from the stationary sate for each case (Figure 4-21, Figure 4-22 and Figure 

4-23). It is clear that with the increase of 𝒘, the seismic constraint imposes the stronger 
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impact on facies model evolution, and the three realizations become more similar with the 

true model. In particular, the path between producer 3 and injector 3 in the 3rd realization 

is still connected without the seismic constraint (Figure 4-21 (d)), although the data misfit 

is reduced enough, and acceptant rate is also acceptable (Figure 4-20 (a)). 

 

(a) Acceptance rate versus number of iterations for Markov chain. 

 

  

(b) Data misfit versus number of iterations for Markov chain. 

 

Figure 4-20 MCMC simulation performance in facies model calibration: (a) acceptance 
rate, (b) data misfit, (c) amplified data misfit area. 
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(c) Data misfit versus number of iterations for Markov chain (Amplified area). 

 

Figure 4.20 continued. 

 

   

(a) True model  (b) 1st Facies realization  

 

Figure 4-21 Calibrated facies models versus true model (𝒘 = 𝟎). 

 

0

500

1,000

1,500

2,000

2,500

3,000

0 100 200 300 400 500

D
a
ta

 m
is

fi
t

Iterations

Without AI (w=0)

With AI (w=0.5)

With AI (w=0.7)



 

116 

 

  

(c) 2nd Facies realization  (d) 3rd Facies realization  

 

Figure 4.21 continued. 

 

   

(a) True model  (b) 1st Facies realization  

 

Figure 4-22 Calibrated facies models versus true model (𝒘 = 𝟎. 𝟓). 
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(c) 2nd Facies realization  (d) 3rd Facies realization  

 

Figure 4.22 continued. 

 

   

(a) True model  (b) 1st Facies realization  

 

Figure 4-23 Calibrated facies models versus true model (𝒘 = 𝟎. 𝟕). 
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(c) 2nd Facies realization  (d) 3rd Facies realization  

 

Figure 4.23 continued. 

 

On the basis of the updated facies models, the property model calibration is conducted 

as follows. Taking 0.2 as the reference acceptance rate for comparison convenience 

purpose (Figure 4-24), with the increase of seismic weight, the acceptance rate of three 

MCMC chains increases. Similarly, taking 200 as the reference data misfit, the data misfit 

displays a lower trend with more weight of seismic constraint. That is because the seismic 

helps to guide facies variation to the true facies distribution, which establishes an 

important basis for property modelling. The high and low permeability regions within the 

channel are clearly depicted (Figure 4-26, Figure 4-27 and Figure 4-28). As mentioned 

above, the choice of seismic weight is subjective based on the quality of seismic data, and 

the prior knowledge on the geological evaluation. In our case, 0.7 is the optimal selection 

compared with 0 and 0.5, but it does not mean that the larger the seismic weight is, the 

better results we can get in other applications. Oil rate, water cut, producer BHP, and water 

injection rate are matched very well for all the wells when 𝑤 is equal to 0.7 (Figure 4-29). 
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(a) Acceptance rate versus number of iterations for Markov chain (𝒘 = 𝟎). 

 

 

(b) Acceptance rate versus number of iterations for Markov chain (𝒘 = 𝟎. 𝟓). 

 

Figure 4-24 Acceptance rate versus number of iterations for different 𝒘. 
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(c) Acceptance rate versus number of iterations for Markov chain (𝒘 = 𝟎. 𝟕). 

 

Figure 4.24 continued. 

 

 

(a) Data misfit versus number of iterations for Markov chain (𝒘 = 𝟎). 

 

Figure 4-25 Data misfit versus number of iterations for different 𝒘. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400 500

A
c
c
e
p

ta
n

c
e
 r

a
te

Iterations

Chain 1

Chain 2

Chain 3

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500

D
a
ta

 m
is

fi
t

Iterations

Chain 1

Chain 2

Chain 3



 

121 

 

 

(b) Data misfit versus number of iterations for Markov chain (𝒘 = 𝟎. 𝟓). 

 

 

(c) Data misfit versus number of iterations for Markov chain (𝒘 = 𝟎. 𝟕). 

 

Figure 4.25 continued. 
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(a) True model  (b) 1st Property realization  

  

(c) 2nd Property realization  (d) 3rd Property realization  

 

Figure 4-26 Calibrated property models versus true model (𝒘 = 𝟎). 
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(a) True model  (b) 1st Property realization  

  

(c) 2nd Property realization  (d) 3rd Property realization  

 

Figure 4-27 Calibrated property models versus true model (𝒘 = 𝟎. 𝟓). 
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(a) True model  (b) 1st Property realization  

  

(c) 2nd Property realization  (d) 3rd Property realization  

 

Figure 4-28 Calibrated property models versus true model (𝒘 = 𝟎. 𝟕). 
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(a) Oil rate 

 

 

(b) Water cut 

 

 

(c) Producer BHP 

 

 

(d) Water injection rate 

 

Figure 4-29 History matching results: (a) oil rate, (b) water cut, (c) producer BHP, (d) water 
injection rate. 
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4.5 Summary 

In this chapter, we compared different parameterization methods and their performance in 

the image reconstruction and history matching, and then proposed a two-step history 

matching workflow for the channelized reservoir facies model calibration using the level 

set and property calibration within the channel using the GCT. The main findings are 

summarized as follows: 

1. In the image reconstruction part, the DCT performs better with less coefficients, 

while the DWT surpass the other methods with more coefficients involved. The 

GCT behaves smoothly compared with the other two.  

2. All the reparameterization methods studied here (the DCT, GCT, and DWT) do 

not seem to be able to reproduce the channel geometry during the history matching 

without the help of the level set.  

3. The level set method provides an excellent framework for reparameterizing facies 

boundaries during history matching by changing channel geometry and 

connectivity. The main channel feature can be captured, and final history matching 

results perform better in comparison with directly applying parametrization 

methods on the reservoir.  

4. For complicated channelized reservoirs, if seismic information is available, it can 

be effectively incorporated into the level set method to improve facies model 

calibration further. That’s because generally seismic can provide accurate channel 

distribution pattern, which is the direction where the facies model can evolve 

toward. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this dissertation, we presented two applications of the Pareto-based method and the 

level set method in reservoir characterization: multiobjective optimization framework in 

the model ranking, history matching, and optimization as well as facies and property 

calibration for the channelized reservoir.    

First, we have presented the Pareto-based model ranking (PBMR) approach for 

multiple geologic models with multiscale data, such as seismic and production data.  

Second, we have applied a hierarchical history matching workflow, followed by a 

two-step polymer flood optimization for the Norne Field. The history matching workflow 

includes the global and local updates, and production optimization consists of the 

streamline-based rate optimization for waterflood and the Pareto-based polymer flood 

optimization. The Pareto-based framework is utilized not only in the history matching, but 

also in the production optimization process. 

Third, a two-step history matching workflow is proposed where the channel geometry 

is modeled using the level set with/without seismic constraint, and internal scale 

heterogeneity is modeled using the GCT. 

The main findings in this work are summarized below: 

1. The Pareto-based framework is easily integrated into the model ranking, history 

matching, and production optimization processes. It has been proved to be 
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powerful method to integrate different scales of data and characterize the 

complementary as well as conflicting features of multiobjective, especially for the 

seismic and production data. The optimal Pareto front consisting of highly ranked 

models provides optimal choices in mathematics, which gives petroleum engineers 

a strong flexibility to make decision considering the model uncertainties.  

2. The proposed Pareto-based model ranking approach can effectively incorporate 

accurate and comprehensive model set solution: the conflicting characteristic of 

multiple objectives can be preserved, selected models are competitive, and 

uncertainty range can be effectively addressed for each objective. In contrast, the 

weighted-sum method may lose some plausible solutions, and include more 

uncompetitive solutions simultaneously.  

3. The Norne Field history matching application showed substantial improvement in 

matching acoustic impedance changes and also well by well water cut data 

matching after the global and fine scale updates. Seismic and production data are 

simultaneously integrated in the global updates. Moreover, the pressure and 

saturation effects on acoustic impedance changes are integrated sequentially in the 

local updates. 

4. The Norne Field production application demonstrated the feasibility of the two-

step polymer flood optimization for improving sweep efficiency by coupling the 

streamline-based rate optimization and the Pareto-based polymer optimization. 

The Rate optimization provides favorable production/injection rates for the 

polymer optimization, and the optimal solution, compromising production 
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improvement and utility factor, is successfully found from the average Pareto front. 

The cumulative production and NPV are improved substantially after production 

optimization.     

5. Our observation shows that the traditional parameterization methods (the DCT, 

GCT, and DWT) cannot calibrate the channelized reservoirs directly. However, 

the two-step history matching workflow can effectively update the channel 

boundaries, and characterize the high/low permeability region within the channel. 

What’s more important is that the integration of seismic data into the level set 

provides the potential extension from synthetic model to more complicated field 

channelized reservoirs.   

 

5.2 Recommendations 

Although the methods and workflow proposed here work well, there are still many places 

that need to be improved further. The recommendations are summarized as follows: 

1. In the Pareto-based model ranking, although lower rank level models are 

competitive than the higher ones, sometimes the difference is very small between 

different rank levels. It is more reasonable to classify the rank level models with 

small differences together. Thus, the tolerance needs to be considered when we 

assign rank levels. If the difference is within the tolerance, the models, which 

belong to different levels mathematically, should be assigned to the same rank 

level from engineering point of view. In other words, the distance measurement 

between multiple rank levels may help improve the PBMR performance.  
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2. In the Norne Field production optimization, we implemented the rate optimization 

and polymer optimization sequentially. However, after injecting the polymer, the 

pressure and velocity field will change, and the production and injection rates 

needs to be re-optimized through streamline-based approach for the current 

reservoir conditions. It means that the better results can be obtained if we optimize 

production and injection rates after the optimization of each polymer simulation 

time step. The more accurate results are at the cost of simulation speed, because 

we need apply multiple rate optimization in the polymer optimization. Thus, it is 

a challenge to balance the speed and accuracy.  

3. For the channelized reservoir, the seismic is incorporated into the level set in the 

very first step to modify the initial model before entering optimization iterations. 

If the MCMC includes the seismic derived information in each iteration, the level 

set method can be applied into more complicated and larger field models.  

4. Currently, the seismic weight is a subjective variable, which needs to be decided 

by reservoir engineer, geologist, and geophysicist together. The establishment of 

relationship (equation or interpolation table) between seismic weight and some 

given reservoir parameters should benefit for the quick determination of seismic 

weight. Also, the seismic weight can be expressed as a function of location or 

facies type, which helps to build more accurate relationship between initial SDF 

and AI SDF.         
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NOMENCLATURE 

 

AI = Acoustic Impedance 

BHP   = Bottom-hole Pressure 

DCT = Discrete Cosine Transform 

DWT                            = Discrete Wavelet Transform 

GRF = Gaussian Random Field 

FBHP = Field Bottom-hole Pressure 

FGPT = Field Cumulative Gas Production 

FMM = Fast Marching Method    

FWCT = Field Water Cut 

FWPT = Field Cumulative Water Production      

GCT   = Grid Connectivity Transform 

GTTI = Generalized Travel Time Inversion 

HCPV = Hydrocarbon Pore Volume 

HM = History Matching 

LHS = Latin Hypercube Sampling 

MCMC = Markov Chain Monte Carlo 

MOEA = Multi-objective Optimization Evolutionary Algorithm 

MOPSO = Multi-objective Particle Swarm Optimization 

MSE = Mean Square Error 

NPV = Net Present Value 

PBMR = Pareto-based Model Ranking 

PEM = Petro-elastic Model 

RI = Resistivity Index 

RMSE = Root Mean Square Error 

RRF = Residual Resistance Factor 
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SDF = Signed Distance Function 

SGSIM   = Sequential Gaussian Simulation 

SQP = Sequential Quadratic Programming 

SIS = Sequential Indicator Simulation 

SW DIFF                     = Seismic Saturation Difference 

TVD = True Vertical Depth 

UF = Utility Factor 

WWCT = Well Water Cut 

   

𝐸𝑣                                 = Volumetric sweep efficiency 

w = Data misfit weights 

f    = Objective function 

𝜏 = Time of flight 

𝜓      = Streamline trajectory 

𝑠 = Slowness 

𝑆 = Saturation 

𝜈⃗ = Interstitial velocity 

𝜆 = Mobility 

𝑘 = Permeability 

𝜙 = Porosity 

𝑡 = Time 

𝑆𝑤 = Water saturation 

𝐹𝑤 = Fractional flow of water 

𝑃 = Hydrostatic pressure 

𝑃eff = Effective pressure 

𝑃ext = Lithostatic pressure 

∆𝑃 = Pressure drop along streamlines 
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𝛿𝑚 = Model parameter change 

𝐾HM = Bulk modulus of the Hertz-Mindlin formula 

𝐾ma = Bulk modulus of the matrix 

𝐾fr = Bulk modulus of the porous rock frame 

𝐾f = Bulk modulus of the pore-filling fluids 

𝐾sat = Bulk modulus of the fluid saturated rock 

𝜌sat = Density of the fluid saturated rock 

𝜌ma = Density of rock matrix 

𝐺fr = Shear modulus of the porous rock frame 

𝑉p = P-wave velocity 

𝑉s = S-wave velocity 

𝑍p = Acoustic (p-wave) impedance 

u = Property vector 

Φ = Basis matrix 

v = Coefficient vector 

𝐴 = Cross sectional area 

𝑞 = Flow rate 

𝑡𝑖,𝑚 = Arrival time of well 𝑖 in group 𝑚 

𝑡𝑑,𝑚 = Average arrival time for group 𝑚 

𝜂 = 
Weight trade-off between equalizing arrival time and 

production  acceleration 

𝑁𝑓𝑠𝑙,𝑖                            = Number of fast streamlines connected to the producer 𝑖 

𝑁𝑝𝑟𝑜𝑑,𝑚 = Number of producers in group 𝑚 

𝜏𝑙,𝑖 = Time of flight of streamline 𝑙 connected to the producer 𝑖 

𝛥𝑁𝑝 = Cumulative oil gain 

𝑅𝑘 = Permeability reduction factor 

𝐶𝑝 = Polymer concentration 
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𝐶𝑝
𝑎𝑚𝑎𝑥 = Maximum absorbed polymer concentration 

𝐶𝑝
𝑎                                  = Absorbed polymer concentration 

𝜇𝑤                                 = Water viscosity 

𝜇𝑤,𝑒 = Partially mixed water viscosity 

𝜔 = Todd-Longstaff mixing parameter 

𝛼 = Scaling coefficient 

𝛽 = Wavelet coefficient 

𝜙𝑗 = Scaling function at scale level 𝑗 

𝜓𝑗 = Wavelet function at scale level j 

𝛤 = Closed curve 

𝜑 = Implicit surface function 

𝜑𝑑 = Signed distance function 

𝜑𝑑
𝑡0

′

 = Initial signed distance function 

𝜑𝑑
𝑡0 = Deformed signed distance function 

𝜑𝐴𝐼 = AI signed distance function 

𝑣𝑛 = Normal velocity 
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