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ABSTRACT

Navigation is a fundamental task for mobile robots in applications such as exploration,

surveillance, and search and rescue. The task involves solving the simultaneous local-

ization and mapping (SLAM) problem, where a map of the environment is constructed.

In order for this map to be useful for a given application, a suitable scene representation

needs to be defined that allows spatial information sharing between robots and also be-

tween humans and robots. High-level scene representations have the benefit of being more

robust and having higher exchangeability for interpretation. With the aim of higher level

scene representation, in this work we explore high-level landmarks and their usage using

geometric and appearance information to assist mobile robot navigation in urban areas.

In visual SLAM, image registration is a key problem. While feature-based methods

such as scale-invariant feature transform (SIFT) matching are popular, they do not utilize

appearance information as a whole and will suffer from low-resolution images. We study

appearance-based methods and propose a scale-space integrated Lucas-Kanade’s method

that can estimate geometric transformations and also take into account image appearance

with different resolutions. We compare our method against state-of-the-art methods and

show that our method can register images efficiently with high accuracy.

In urban areas, planar building facades (PBFs) are basic components of the quasi-

rectilinear environment. Hence, segmentation and mapping of PBFs can increase a robot’s

abilities of scene understanding and localization. We propose a vision-based PBF segmen-

tation and mapping technique that combines both appearance and geometric constraints to

segment out planar regions. Then, geometric constraints such as reprojection errors, ori-

entation constraints, and coplanarity constraints are used in an optimization process to

improve the mapping of PBFs.
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A major issue in monocular visual SLAM is scale drift. While depth sensors, such as

lidar, are free from scale drift, this type of sensors are usually more expensive compared

to cameras. To enable low-cost mobile robots equipped with monocular cameras to obtain

accurate position information, we use a 2D lidar map to rectify imprecise visual SLAM

results using planar structures. We propose a two-step optimization approach assisted by

a penalty function to improve on low-quality local minima results.

Robot paths for navigation can be either automatically generated by a motion planning

algorithm or provided by a human. In both cases, a scene representation of the environ-

ment, i.e., a map, is useful to specify meaningful tasks for the robot. However, SLAM

results usually produce a sparse scene representation that consists of low-level landmarks,

such as point clouds, which are neither convenient nor intuitive to use for task specifica-

tion. We present a system that allows users to program mobile robots using high-level

landmarks from appearance data.
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1. INTRODUCTION AND RELATED WORK

Navigation is a fundamental task for mobile robots in applications such as exploration,

surveillance, and search and rescue. When a robot navigates through an unknown envi-

ronment, it has to keep track of its location and also construct a map of the environment

using sensor measurements. The former and latter tasks, i.e., localization of the robot and

mapping the environment, are coupled problems and is referred as simultaneous local-

ization and mapping (SLAM). For the map generated in SLAM to be useful for a given

application, a suitable scene representation needs to be defined.

When the application involves more than a single robot, the scene representation be-

comes more important. It can be considered as a language for robot-to-robot or human-

to-robot interactions, where robots will not understand each other with different scene

representations, and humans will have difficulties using a robot without a proper scene

representation. (See Fig. 1.1 for illustration.) To mitigate this problem, a suitable scene

representation needs to be developed to allow information sharing between robots and

improve interactions between humans and robots.

Different types of scene representation have been used for the SLAM problem. In the

early 80’s, occupancy grid maps [84] have been proposed to represent the environment.

Occupancy grid maps typically have fixed resolution, and each cell holds a probability

value about the occupancy. In this representation, no assumptions are made on the type

of features. At a similar time, landmark-based maps have also been proposed [68]. The

advantage of landmark-based map is that it can be more precision. Example features that

are used in landmark-based SLAM are points, lines, and planes. Nowadays, the majority

of the SLAM work uses landmarks to represent the environment.

To represent the scene, early monocular SLAM work use feature points as landmarks.
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Figure 1.1: A scene representation for robot-to-robot and human-to-robot interactions

Over a decade ago, Davison and Kita [20] have presented a SLAM framework using an

extended-Kalman filter (EKF) for a controlled robot. Subsequently, Davison [19] demon-

strates a real-time monocular SLAM with a hand-held camera using a constant velocity

model. This method is termed as MonoSLAM in [21]. Klein and Murray [58] present a

feature point-based parallel tracking and mapping (PTAM) system for a real-time aug-

mented reality application. To achieve real-time performance, both MonoSLAM and

PTAM use sparse point clouds to map the environment which results in limited scene

reconstruction.

While point features are usually more accurate and easy to detect, many lines exist

in structured environment which makes it useful for depth estimation. Smith et al. [95]

present a real-time monocular SLAM with straight lines. In their work, lines are rep-

resented by their two endpoints so that it can be easily integrated into the point-based

MonoSLAM framework. Lemaire and Lacroix [67] use Plücker coordinates to represent

3D lines for an EKF-based SLAM. Eade and Drummond [27] presents a method using

2



edgelets for landmarks in a particle filter framework. Each edgelet is represented by the

center point and direction of the edglet. Zhao et al. [108] parameterizes line features by

the azimuth and elevation angles of the plane passing each camera center and observed

line segment.

Planes are also used for landmarks in vision-based SLAM and can provide a more se-

mantically meaningful and compact representation of the environment. Molton et al. [83]

present a real-time SLAM framework that estimates the normal of small planar patches.

However, these plane normals are not included in the state vector of the EKF. Gee et

al. [40] develop a method that reduces the state size in the EKF by collapsing points ly-

ing on a common plane. Haines et al. [45] show the potential of using machine learning

for mapping planes. Their method learns planar structures from appearance and use it

for 3D plane mapping in keyframes. Concha and Civera [14] presents a method that uses

the contour of segmented regions to estimate planes in monocular SLAM. In their work,

segmented regions are assumed to be planar regions and planes are initialized through hy-

pothesis testing. The results show that featureless planes can be correctly estimated in a

SLAM framework.

A combination of the above landmarks have also been used. In [41], Gee et al. detect

lines and planes during the SLAM process. Martinez-Carranza and Calway [81] present

a method that unifies the point and plane representation by adding normal vectors to each

3D point. In [77], Lu et al. propose a building facade mapping method where they use

a multi-layered feature graph (MFG) [69] that expresses the relationship between points,

lines, and planes for robust estimation.

The landmarks described above are from different levels of the scene representation

spectrum illustrated in Fig. 1.2, where feature points and point clouds are at the lowest-

level and planes/regions and objects are at the higher-end which has more semantic mean-

ing. Different scene representations have different properties: low-level features are easy

3
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Figure 1.2: Scene representation spectrum and properties

to extract but difficult to be shared among different robots for interpretation, while high-

level landmarks are more difficult to extract but are more robust to use for SLAM applica-

tions. With the aim of higher level scene representation, in this work we further develop

landmarks and their usage using geometric and appearance (i.e., a region of pixel intensi-

ties) information to assist mobile robot navigation in urban areas. A brief introduction to

each chapter is given in the following.

In chapter 2, we study the image registration problem which is a key problem in visual

SLAM. While feature-based methods such as scale-invariant feature transform (SIFT) [76]

matching is popular for image registration, it does not utilize pixel intensities as a whole

and will suffer from registering low-resolution images without many features. We study

appearance-based methods and propose a method that can register planar regions with

sub-pixel accuracy based on their appearance. This is achieved by integrating the scale-

space model in SIFT into the appearance-based Lucas-Kanades method [79] so that it

can estimate geometric transformations and also take into account images with different

resolutions. We compare our method against state-of-the-art methods and show that our

4



method can register images efficiently with high accuracy.

In chapter 3, we propose a vision-based planar building facade (PBF) segmentation

and mapping technique. In urban areas, PBFs are basic components of the quasi-rectilinear

environment. Hence, segmentation and mapping of PBFs can increase the robot’s abilities

of scene understanding and localization. Our method first combines both appearance and

geometric constraints to segment out planar regions. Then, geometric constraints such

as reprojection errors, orientation constraints, and coplanarity constraints are used in an

optimization process to improve the mapping of PBFs. We have tested our method on the

building structures at Texas A&M University. The experiments included segmenting out

PBFs from images and estimating their 3D position from two views with short baseline.

The results show that our method reduces the angular error of the reprojection error-based

3D mapping by an average of 82.82%.

Visual SLAM using a monocular camera often generates low-quality maps due to scale

drift. On the other hand, while depth sensors, such as lidar, are free from scale drift, these

type of sensors are usually more expensive and less portable. To overcome these issues,

in chapter 4, we consider the case where a 2D lidar map is pre-built using a single lidar

sensor and shared by multiple mobile robots equipped with a monocular camera. This

will enable low-cost mobile robots to rectify imprecise visual SLAM results to obtain

accurate position information. Using vertical planar structures which can be identified

in both sensing modalities, we propose a two-step optimization approach to address the

high-dimensional map fusion problem.

Finally, we present a system in chapter 5 that allows users to program mobile robots

for navigation. For navigation, a robot path needs to be preprogrammed, automatically

generated by a motion planning algorithm, or given by a human in a teleoperation sce-

nario. In these cases, a good scene representation of the environment is needed to specify

meaningful tasks for the robot. However, SLAM results usually produce a sparse scene

5



representation that consist of low-level landmarks, such as point clouds, which are nei-

ther convenient nor intuitive to humans, who normally have poor spatial reasoning. The

average user will need easier and flexible robot programming tools for mobile robots as

opposed to the specialized programming skills used for industrial robots [8]. Our system

allows the user to program the robot with a set of motion commands and high-level land-

marks selected directly from appearance data. The system automatically generates a robot

path from these high-level commands and can be used to for robot navigation.
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2. APPEARANCE-BASED IMAGE REGISTRATION WITH SCALE-SPACE∗

2.1 Introduction

Image registration is a crucial step in a variety of computer vision tasks, from image

stitching to object recognition and super-resolution (SR). In general, registration aims to

align two images (the reference image and the observed image) by estimating translation,

rotation, and scale. Mainly two image registration approaches exist: feature-based and

area-based methods; the former tries to align images using local features, whereas the

latter uses the whole image region [110]. Classical examples of each approach are scale-

invariant feature transform (SIFT) matching [76] and Lucas-Kanade’s (LK) method [79],

respectively.

In SIFT matching, scale-invariant local features are extracted from the two images us-

ing a scale-space model [73] and then corresponding features are matched. The advantages

of SIFT are that it can register images with high disparity and that it is robust to occlusion.

However, if the image region is small, as is the case of very low resolution images, SIFT

becomes problematic since the images will not contain enough features to be matched.

SIFT is also computationally intensive because it first builds an explicit image pyramid [1]

structure, which approximates the scale-space, by downscaling the images and then esti-

mates scale changes at every level. In case of a video, where neighbouring frames have

similar scale, estimating scale changes at every level becomes unnecessary. Also, since

feature matching is usually followed by RANSAC [35], to reject outlier correspondences,

the computational load will increase.

On the other hand, the LK method jointly optimizes the affine registration parame-

∗Reprinted with permission from “SILK: Scale-space integrated Lucas-Kanade image registration for
super-resolution from video” by J. Lee, R. Gutierrez-Osuna, S. S. Young, 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing c©2013 IEEE.
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ters with an area-based approach. The advantage of this method is that it can efficiently

register images by searching in the gradient direction and that it avoids the feature corre-

spondence problem by using the whole image. In the LK method, the relationship between

the reference image Ir and observed image Io is expressed as

Io(x) = Ir(w(x;p)) , (2.1)

where w(x;p) warps the two-dimensional coordinate x with affine transformation param-

eters p [6]. The algorithm iteratively estimates p by minimizing ‖Io(x)− Ir(w(x;p))‖2.

A drawback of this approach, however, is that equation (2.1) does not consider changes

in image intensity as in SIFT, which occur when the scale changes (i.e., due to image

resolution) [23].

Motivated by the limitation of these two classical problems when dealing with LR

video, we present an image registration technique for SR that integrates the scale-space

model of SIFT into the LK framework; this is achieved by embedding the Gaussian ker-

nels used in the scale-space model into a non-linear least squares estimation. We adopt the

area-based approach since the method has to work on very small image regions without

many features, while the scale-space model is adopted to handle scale changes correctly.

Additionally, the non-linear least squares framework allows us to avoid building a predeter-

mined pyramid structure and compares the two images only at the scale levels selected by

the gradient direction. Thus, the method has the efficiency of LK and can simultaneously

estimate sub-pixel translation, rotation, and scale while still addressing the resolution issue

of equation (2.1). Though the latter issue can be somewhat alleviated by interpolation or

smoothing, our approach handles this issue naturally by explicitly relating the image scale

to image resolution. This allows the method to automatically smooth and downsample

(anti-alias) correctly in scale-space for each iteration update.
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2.2 Related Work

Our work is related to SR registration methods based on the LK algorithm. One of

the earliest algorithms was proposed by Keren et al. [56]. To obtain high-accuracy sub-

pixel motion, the authors developed a spatial domain technique that iteratively estimates

translation and rotation. The classical work by Irani and Peleg [50] also applied this regis-

tration method and used a back-projection kernel to update the SR image. Recently, Costa

et al. [16] examined the effect of registration errors under x-y translation using the LK

method; the authors show that some degree of registration errors can be advantageous for

SR since they provide some degree of regularization. These previous studies, however,

do not consider the pixel intensities affected by image resolution and scale; which our

proposed method takes into account. Besides the LK registration, SIFT matching has also

been used recently for SR registration. Vrigkas et al. [105] have used SIFT matching to

estimate registration parameters and generate higher-resolution images using mutual infor-

mation. Ferreira et al. [34] present an example-based video super-resolution method with

mixed-resolution image sequences. However, the images used in these studies are of suf-

ficient resolution to contain many features. In contrast, our aim is to super-resolve images

with a small image size with very low resolution, where a 2-fold increase in resolution can

have a significant impact.

2.3 Image Model

Consider the problem of registering two images Io(x,y) and Ir(x,y), defined by their

pixel intensities at index (x,y). Namely, we wish to find the registration parameters tx, ty,

θ , and s that minimize the difference between Ir and Io where (tx, ty) is the x-y translation,

θ is the rotation angle, and s is the scale factor.

The scale factor between Ir and Io determines the inherent image resolution. The rela-
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tionship between these two images can be expressed as

Io(i, j) = ∑
x,y

G(x,y; i, j,s)Ir(x,y) , (2.2)

where (x,y) are the indices of reference image Ir, and (i, j) are the indices of image Io, and

the scale parameter s determines the width of a two-dimensional Gaussian kernel G:

G(x,y;xm,ym,σ) =
1

2πσ2 e−
(x−xm)2+(y−ym)2

2σ2 , (2.3)

where σ is the standard deviation and (xm,ym) is the mean vector. By using a Gaussian

kernel, we ensure that the number of local extrema of image intensity does not increase at

coarser levels [73]. The model in equation (2.2) represents a single observation pixel as a

weighted sum of all the pixels in the reference image.

For convenience, we assume that the pixel width and height of the reference image

Ir(x,y) are set to unit length. Thus, if the observed image is scaled by a factor s relative

to the reference image, an observed pixel will cover a width of 1/s in the reference image.

Since most of the mass in a Gaussian density is contained within±3σ , equating the obser-

vation pixel and the Gaussian window yields 6σ = 1/s. Therefore, the standard deviation

σ can be expressed in terms of the scaling factor s as σ = 1/(6s).

The mean location of the kernel G(x,y; i, j,s) can be expressed in terms of the observed

image coordinates (i, j) and the observed image pixel width 1/s as

xm

ym

=

xo +(i−1)/s+1/(2s)

yo +( j−1)/s+1/(2s)

 , (2.4)

where (xo,yo) are the coordinates of the image origin of the observed image. Substituting
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expressions σ and (xm,ym) in the kernel equation (2.3) yields

G(x,y; i, j,s) =
1

2π
( 1

6s

)2 e
−(

x−xo− 2i−1
2s )

2
+(y−yo− 2 j−1

2s )
2

2( 1
6s)

2

. (2.5)

The above equation expresses the Gaussian weights as a function of the observation pixel

locations and scale parameter. Therefore, when combined with equation (2.2) we are able

to relate Ir and Io with a single scale parameter s. More importantly, because the scale

parameter is a continuous variable, the observed image Io can be simulated at any scale in

the scale-space of the reference image Ir. When compared to equation (2.1), though, the

scale parameter is no longer linear as in the transformation w(x;p).

In order to generalize equation (2.2), translation and rotation parameters tx, ty, and θ

are incorporated into the Gaussian kernel mean location. The mean location (xm,ym) of

the Gaussian window can be transformed by

x′m

y′m

=

 cosθ sinθ

−sinθ cosθ


xm

ym

+
tx

ty

 . (2.6)

Therefore, we can generalize equation (2.5) as

G(x,y; i, j, tx, ty,θ ,s) =
1

2π
( 1

6s

)2 e
− (x−x′m)2+(y−y′m)2

2( 1
6s)

2

. (2.7)

Finally, the model equation (2.2) for the reference image and the observed image becomes

Io(i, j) = ∑
x,y

G(x,y; i, j, tx, ty,θ ,s)Ir(x,y) . (2.8)

As in equation (2.5), the translation and rotation parameters are no longer linear terms. In

contrast with the previous models, though, equation (2.8) allows us to take into account
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the physical effects of the scale parameter when representing each observed pixel Io(i, j)

as a weighted sum of the reference pixels Ir(x,y).

2.4 Image Registration Algorithm

Since the registration parameters tx, ty, θ , and s are non-linear terms of the model

equation (2.8), we estimate them by non-linear least-squares using Gauss-Newton method

[17]. Namely, we wish to find an estimate p̂ that minimizes the objective function

J =
1
2
[ỹ− f(p̂)]TW [ỹ− f(p̂)] , (2.9)

where ỹ is the observed image in raster scan order and f(p̂) is a transformed image of the

reference image with registration parameters p̂; i.e., f(p̂) is obtained from equation (2.8).

The weight matrix W in equation (2.9) allows us to emphasize certain observation pixels.

For the experiment in this study, we use an identity matrix, which puts equal weight to

each observed pixel.

An initial value pc for p̂ is required to start the estimation process. Since adjacent

frames are close to each other, we assume that a good initial estimate between the reference

and observed image is provided. For a given estimate pc, its goodness is computed by the

error term ∆yc = ỹ− f(pc). The Jacobian matrix ∂ f
∂p , which expresses the linear change of

the predicted image at current state pc, is computed as

∂ f
∂p

=



∂ f1

∂ p1

∣∣∣∣
pc

· · · ∂ f1

∂ p4

∣∣∣∣
pc

... . . . ...

∂ fm

∂ p1

∣∣∣∣
pc

· · · ∂ fm

∂ p4

∣∣∣∣
pc


, (2.10)

where [p1, p2, p3, p4]
T = [tx, ty,θ ,s]T and m is the number of observation pixels. Once ∆yc
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and ∂ f
∂p have been computed, the correction term can be expressed as:

∆p =

[(
∂ f
∂p

)T

W
(

∂ f
∂p

)]−1(
∂ f
∂p

)T

W∆yc . (2.11)

Once the correction term ∆p has been calculated, the current state estimate pc is up-

dated as pc = pc+∆p. The above process continues iteratively until the maximum number

of iterations is reached or when the stopping criteria given by |Ji−Ji−1|
Ji

< ε

‖W‖ is satisfied,

where Ji = ∆yT
c W∆yc is the predicted residual at the i-th iteration and ε is a small value

that determines the tolerance [17].

How does the proposed update equation compare to the LK method? In the original

LK algorithm, the parameter p is updated according to:

∆p =

[
∑
x

(
∇Ir

∂w
∂p

)T (
∇Ir

∂w
∂p

)]−1

∑
x

(
∇Ir

∂w
∂p

)
∆yc , (2.12)

where ∆yc = Io(x)− Ir(w(x;pc)). When compared to our update equation (2.11), the LK

update in equation (2.12) multiplies the gradient image ∇Ir = (∂ Ir
∂x ,

∂ Ir
∂y ) with the Jacobian

warp to compute the steepest descent image ∇Ir
∂w
∂p . The LK update has the advantage

that the gradient image is computed only once, and only the Jacobian warp needs to be

computed in each iteration. However, the LK model does not correctly represent how the

images are affected by scale changes. Instead of using only the gradient image ∇Ir in the x-

y directions, our method directly computes the gradient ∂ f
∂p with respect to x-y translation,

rotation, and scale in scale-space.

To compare the computational cost with LK, assume n registration parameters and an

image Io of size m. For each iteration, the computational complexity of computing ∇Ir
∂w
∂p

in equation (2.12) is O(mn) [6]. In our proposed method, when the Gaussian kernel size is

k at an iteration, the algorithm will take time O(kmn) to compute ∂ f
∂p according to equation
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(2.10).

2.5 Experiments

We tested our proposed method on registering LR license-plate images. The registered

images were then used for SR. We first demonstrate the proposed technique on synthetic

sequences of LR frames where the ground-truth is known. Then we use real image se-

quences to generate SR images. For each experiment, we compared our proposed method

against both LK optical flow and SIFT matching. The LK optical flow implementation in

OpenCV [10] and Lowe’s SIFT implementation [75] were used for comparison.

2.5.1 Synthetic Image Sequences

For the simulated experiment, we use the 91 images in the license-plate category of

the Caltech-256 [44] dataset. We manually cropped the license-plate regions from each

image and generated 100 LR frames for each sequence by applying translation, rota-

tion, and scale. For translation, the x-y translation followed a spiral trajectory (x,y) =

(at cos(2t),at sin(2t)) where a is the amplitude and t is the frame index. Throughout the

frame sequence, the license-plate moved within ±2 pixels in the LR domain. For rotation,

a random value within ±5 degrees was applied to each frame. The downscaling was per-

formed by pixel averaging (as described in [5]) so that each LR sequence was no greater

than 40x40 pixels.

We illustrate the performance of the method on three image registration scenarios:

image sequences with (1) x-y translation only, (2) x-y translation and rotation, and (3) x-y

translation, rotation, and scaling. For the LK optical flow method, we used a 3x3 kernel to

smooth the images beforehand so that the method does not suffer from aliasing effects, and

we used a 7x7 window to compute the flow vectors [74]. After computing the dense optical

flow of LK, we estimate the global transformation using the flow vectors. Our proposed

method did not require any manual smoothing and worked directly on the images.
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Figure 2.1: RMS error between ground-truth and estimated parameters for the three syn-
thesized sequences: (a) translation only, (b) translation and rotation, (c) translation, rota-
tion, and scale. For each scenario, SIFT includes only (a) 18%, (b) 11%, and (c) 10% of
the 91 image sequences.

Fig. 2.1 shows the root-mean-square (RMS) error of the length
√

t2
x + t2

y between the

ground-truth and estimated parameters (tx, ty). In particular, these results indicate that the

LK optical flow method can work relatively well when there is only translation. However,

as rotation and scale changes are introduced, the LK optical flow becomes less accurate.

In addition, and as shown in Fig. 2.1(b) and (c), registration errors of the LK optical flow

can be more than a pixel width, when sub-pixel accuracy is required for SR. Although

SIFT matching appears to be able to effectively estimate the registration in each scenario,

Fig. 2.1 only includes the cases when SIFT was able to find more than 5 feature matches

between the reference and observed images. Overall, SILK is almost always more accurate

than SIFT matching unless SIFT can find enough features, in which case both algorithms

perform comparably.

We also compared SIFT and SILK in terms of run time; although SIFT is known to be

computationally intensive for typical sizes of images, our experiment involves only a small
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Figure 2.2: Speed comparison between SIFT keypoint detection and SILK. Each data point
represents the average run time of the third scenario in Fig. 2.1(c). As shown, SIFT key-
point detection takes approximately constant time for each image. In contrast, registration
time for SILK depends on the number of iterations performed for each image match.

image region. Results are summarized in Fig. 2.2, which shows the average run time over

the 9 image sequences in the third scenario of Fig. 2.1(c) (translation, rotation, and scale).

On a dual-core 2.6GHz processor with 6MB cache, SIFT takes an average of 0.20 seconds

per frame. In contrast, our method takes 0.08 seconds per frame or twice as fast as the

SIFT feature extraction. However, because SILK uses a gradient search, the registration

requires more iterations as the images become more separated, as shown in Fig. 2.2.

Finally, we compared the three algorithms in terms of their ability to produce accu-

rate registrations for SR. Namely, given the estimated registration data from each image

sequence, we construct a linear system y = Hx as in [72] where x is the unknown high-

resolution pixels and H is the weight matrix that relates the high-resolution pixels to the

observation pixels y. Since the matrix H is sparse, we use LSQR [90] to super-resolve the
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Figure 2.3: SR results from synthetic sequences of images; the image sequence was ob-
tained by applying the three transformation scenarios shown in Fig. 2.1. The reference
image (rightmost) was super-resolved after aligning the frame sequence. For each sample,
the row corresponds to each scenario: (a) translation only (b) translation and rotation (c)
translation, rotation, and scale. The first three columns show the reconstruction results
from LK optical flow, SIFT matching, and SILK. The fourth column shows the SR result
with ground-truth alignment.

reference image [88]. Fig. 2.3 shows some examples of the super-resolved images. The

SR results are consistent with the previous plots: (1) LK performs well when there is only

translation, and (2) SIFT is robust to rotation and scale.

2.5.2 Real Image Sequences

For our second experiment, we applied the method to register real LR image sequences.

We used a web-camera and captured a video of stationary cars from a distance so that the

text on the license-plate would be difficult to read. The license-plate regions were smaller

than a 20x40 image; see Fig. 2.4. The web-camera was hand held so that a jittering motion

could be applied. For each sample sequence, we captured 300 frames. We also took an
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Figure 2.4: SR results from registration parameters of real image sequences. The reference
image (a) is reconstructed using (b) LK optical flow, (c) SIFT matching, and (d) proposed
SILK. Column (e) are the verification images. For each sample sequence, SIFT was able
to match 16, 5, and 3 frames out of 300 frames.

image of the license plate at a closer distance to verify the characters on the license plate

after super-resolving an image.

The same image fusion method was used as in the previous experiment for SR. Re-

construction results are shown in Fig. 2.4. After registering the LR images with SILK,

we were able to obtain a super-resolved image where the characters on the license-plate

become readable. In contrast, SIFT matching failed to find enough features for most of the

frames; less than 6% of the frames had more than 5 matches). As shown in the figure, LK

optical flow gave poor reconstruction results as well.

2.6 Conclusions

In this work we have presented an image registration technique (SILK) that can si-

multaneously estimate translation, rotation, and scale between images and also take into

account intensity differences caused by discretization. Compared to SIFT matching, our

method assumes that a rough initial estimate is given. However, our method can estimate
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scale changes as accurately as SIFT and more efficiently in the continuous scale-space.

Compared to the original LK method, the improvements in accuracy comes at the price of

higher computational complexity; however, when run on LR image regions (e.g., 40x40)

the algorithm can run at frame rates on a contemporary office workstation. Our experi-

mental results show that SILK can outperform LK optical flow and SIFT matching for the

purpose of SR from very low resolution image sequence when translation, rotation, and

scaling are present.
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3. PLANAR BUILDING FACADE MAPPING FROM TWO VIEWS∗

3.1 Introduction

Vision is an important sensory modality for robots navigating in GPS-challenged en-

vironments. Since such environments are mostly man-made urban environments, they are

often quasi-rectilinear. Planar building facades (PBFs) can be viewed as basic components

of quasi-rectilinear environments. For better scene understanding and the establishment of

high level landmarks for robust motion estimation, it is important to detect PBFs. Unfor-

tunately, this is a nontrivial task. At first sight, PBFs may be detected using homographies

between two images due to their geometric relationship. However, the plane homography

can be difficult to be obtained when a PBF is far away relative to the baseline distance be-

tween the two camera views. This often happens when a monocular robot takes an image

with a small step or when the baseline of a stereo camera is limited by the physical size of

the robot. Also, the non-planar objects in the scene often bias the homography estimation.

In this study, we propose a method that uses both geometric and appearance informa-

tion to extract PBFs and uses geometric constraints to refine the PBF mapping. Fig. 3.1

partially illustrates our approach. The contribution of this work is twofold: 1) we pro-

pose a rectilinear index metric which allows us to identify building regions from its sur-

roundings. Then we identify homographies using vanishing points as constraints for better

planar surface detection, and 2) we combine three geometric constraints, i.e., the repro-

jection error, orientation constraint, and coplanarity constraint, in an optimization process

to improve the mapping of the building structure. We have tested our method in physical

experiments. We compare our algorithm with the state-of-the-art J-linkage-based PBF de-

∗Reprinted with permission from “Planar building facade segmentation and mapping using appearance
and geometric constraints” by J. Lee, Y. Lu, D. Song, 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems c©2014 IEEE.
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tection [37] and reprojection error-based 3D mapping. The results show that our method

outperforms the J-linkage-based approach by an average of 45.27% precision increase and

reduces the angular error of the reprojection error-based 3D mapping by an average of

82.82%.

3.2 Related Work

Reconstructing PBFs in a man-made environment has been widely studied for visual-

ization and robot navigation. For visualization, computer graphics research has focused on

reconstructing complex and accurate architectural models using polygonal meshes [54].

This usually requires either repetitive scene scanning or range finders that can produce

dense measurements with high precision. In this work we do not focus on fully recon-

structing the robot’s environment since this is often not the main task in robot navigation.

In robot navigation, when a range finder is used, planes can be mapped by directly

fitting a 3D plane model to the depth data. For example, in [54], a real-time plane

segmentation algorithm is developed for noisy 3D point clouds acquired by less accu-

rate and portable LIDAR. Recently, as RGB-D sensors became more available, a num-

ber of researchers have used these sensors to map planar surfaces in an indoor environ-

ment [101, 65, 99]. Delmerico et al. [24] present a stereo-based building facade mapping

method which fits a plane model in the 3D disparity space. In their facade detection step,

local surface normals are first computed for each point in 3D with a Markov random field

model. Then, random sample consensus (RANSAC) [35] is used to progressively cluster

these points with the same plane normal one plane at a time. Although they do not use a

range finder, their plane mapping method is similar to the range finder-based methods in

that the plane is directly fitted in the 3D space. Our work only uses a passive vision sensor

which does not provide depth measures. However, this allows us to explore the usage of

appearance data for planar surface segmentation in 2D prior to estimating building facades
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in 3D so that noise from non-planar objects can be reduced.

For vision-based navigation, detection of planes in the 2D domain precedes the 3D

mapping. Plane detection in 2D is usually done by using the homography constraint.

Since RANSAC is not suited to detect multiple models, Fouhey et al. [37] use an agglom-

erative clustering technique, called J-linkage [103], to detect multiple building facades

from two images using the homography model. Baillard and Zisserman [4] propose a

method that reconstructs piecewise planar building rooftops from multiple aerial images

using half-planes and their associated homographies. Zhou and Li [109] develop a mod-

ified expectation-maximization (EM) algorithm that uses the homography constraint to

classify ground-plane pixels and non-ground plane pixels for a mobile robot. Other ex-

isting methods use appearance information to help planar surface detection and mapping.

Li and Birchfield [71] use an image-based segmentation method to detect ground planes

in an indoor corridor. In their method, vertical and horizontal line segments are used to

find the wall-floor boundary. Visual mapping has also been done using learned structural

priors from appearance data [45]. In our work, we use both geometric and appearance

information to help the homography detection process.

Previously, a building facade mapping method was proposed in [77] where they use

a multi-layered feature graph [69] for robust estimation of building facades. For better

reconstruction results, the reconstruction process enforces geometric constraints such as

parallelism and coplanarity. In this work we focus on extracting coplanar features using

appearance data and use different cost functions for the coplanarity constraint.

3.3 Problem Statement

3.3.1 Notations

We denote two input images by I and I′, where the prime symbol (′) denotes the entities

of the second image. Feature points in projective space P2 and P3 are denoted as x and
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(a)

Figure 3.1: Computing rectilinearity of regions. (a) Detected line segments on an image
(b) Segmented homogeneous regions (color-coded) (c) Ground line segments removed
below the (green) horizontal vanishing line. (d) Heat map visualization of rectilinearity
indices. Regions with warmer color indicate rectilinear regions.

X, respectively. Similarly, e ∈ P2 and E ∈ P3 denote line-segment endpoints. We define

line segments by their two endpoints, i.e., s := (e1,e2) and S := (E1,E2). A plane in P3 is

defined by Π := [nT,d]T, where n is the plane normal and d/‖n‖ is the distance from the

plane to the origin. Formally, we define:

Definition 1 (PBF) A PBF in I is defined as a 3-tuple

φ := (X ,S,G), (3.1)

where X and S denote a set of nx feature points {xi}nx
i=1 and a set of ns line segments
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{si}ns
i=1, respectively, which lie in the pixel region G. In 3D world coordinates, a PBF is

defined by

Φ := (X ,S,Π), (3.2)

where X and S denote a set of feature points {Xi}nx
i=1 and a set of line segments {Si}ns

i=1,

respectively, which are associated to plane Π.

3.3.2 Assumptions

We make the following assumptions in our approach.

• Lens distortion is removed from I and I′.

• The intrinsic camera parameter matrices K and K′ are known from pre-calibration.

• The distance between the camera centers for I and I′ is known and nonzero.

3.3.3 Problem Definition

Problem 1 Given I and I′, extract a set of n f corresponding PBFs {φi}
n f
i=1 and {φ ′i }

n f
i=1

and map their 3D positions {Φi}
n f
i=1 relative to the cameras. Also, estimate the extrinsic

camera parameters of rotation R′ and translation t′.

3.4 System Design

Fig. 3.2 shows an overview of our system which consists of three main blocks: 1)

feature detection and matching, 2) PBF segmentation, and 3) 3D structure estimation. The

second and third blocks are the main contribution of this work.

Given images I and I′, the first block extracts geometric primitives, such as feature

points and line segments, along with regions with homogeneous appearance. Feature

points are detected and matched using scale-invariant feature transform (SIFT) [75], and

line segments detected by the Line Segment Detector [39] are matched using the method
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proposed by Fan et al. [32] which uses keypoint matches. From the raw line segments,

vanishing points are estimated using [104]. We use only vanishing points v where the

vanishing direction K−1v and R′K′−1v′ match. Then, vanishing lines are computed from

each pair of vanishing points. For appearance data, we use a graph-based segmentation

algorithm in [33] to extract regions with homogeneous appearance (see Fig. 3.1b for an

example).

The second block uses the geometric and appearance data from above to detect corre-

sponding 2D building facades {φi} ↔ {φ ′i } using a two-step approach. In the first step,

rectilinear building regions are segmented out using both line segments and homogeneous

appearance regions (Sec. 3.5.1). Then, the next step detects each PBF by homography

clustering using only the feature points and line segments that lie on the segmented build-

ing region (Sec. 3.5.2).

The final block estimates the 3D structure of the building by estimating the set of

PBFs {Φi}. The camera pose, R′ and t′, and the 3D positions of the feature points and line

segments are first initialized. Then, the parameters of {Φi} are further optimized using

geometric constraints (Sec. 3.6).

3.5 2D PBF Segmentation

In this section, we describe how a set of PBFs {φi} are segmented from a 2D im-

age using both geometric and appearance data. When detecting multiple PBFs using a

homography-based clustering approach such as in [37], two problems can occur: 1) fea-

tures from non-building objects will clutter the homographies and 2) facade boundaries

become more ambiguous when the building is relatively far away compared to the base-

line distance. These problems cannot be solved by merely adjusting the parameters of

the clustering technique. Here, we propose a two-step approach, i.e., the building region

segmentation step and the planar facade extraction step (Boxes 1&2 in Fig. 3.2), where
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the above two issues are addressed step by step. The first step extracts the target building

region to suppress the non-building objects by combining geometric and appearance data.

In the second step, to avoid ambiguous boundaries, homography clustering is applied to

each group of feature points with the same horizontal vanishing direction.

3.5.1 Building Region Segmentation

Let {gi}
ng
i=1 be the set of ng homogeneous pixel regions segmented from I using the

algorithm in [33]. Since buildings are usually characterized by their rectilinear structure,

we use line segments to determine which region gi belongs to a PBF. We use the following

steps (Boxes 2.1-2.5 in Fig. 3.2) to segment the building region.

3.5.1.1 Remove Ground Line Segments

When an image is taken from a ground robot, most of the line segments below the

horizontal vanishing line belong to the ground. Although this is not valid for near objects,

in many cases, this is true for line segments on a distant building. Suppose a horizon-

tal vanishing point vi = [xi,yi,1]T is counterclockwise from another horizontal vanish-

ing point v j = [x j,y j,1]T with respect to the zenith vanishing point vz = [xz,yz,1]T, i.e.,∣∣ xi−xz x j−xz
yi−yz y j−yz

∣∣ < 0. Let w denote the vanishing line computed by vi× v j. Then, we can

remove line segments (e1,e2) that satisfy the condition:

eT1 w > 0∨ eT2 w > 0. (3.3)

Fig. 3.1c shows an example. After removing ground line segments, we use the remaining

line segments to extract rectilinear regions in the following steps.

3.5.1.2 Compute Rectilinearity of Regions

If a region gi contains a group of line segments, it is a strong cue for gi being a recti-

linear region. To measure the rectilinearity of a region we define the rectilinearity index
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(RI) as follows:

Definition 2 (RI) Suppose bi is the set of boundary pixel coordinates of region gi. The RI

of gi is measured by finding the nearest line segments to each pixel coordinate p ∈ bi and

computing their average distance by

ri =
1
|bi| ∑

p∈bi

d(p,sp), (3.4)

where sp is the nearest line segment to p, and d(p,sp) is the shortest distance from p to

line segment sp.

A smaller RI indicates a higher rectilinearity of region gi. Fig. 3.1d shows an example

of computing the RIs. If none of the regions have an RI smaller than a certain threshold,

we determine that the view does not contain a distinguishable rectilinear structure.

3.5.1.3 Estimate RI Density

After computing the RI for each region, we use kernel density estimation to compute

the density of the RIs. The density of the RIs can be computed by

p̂(r) =
1

nghopt

ng

∑
i=1

K
(

r− ri

hopt

)
(3.5)

where K is a normalized Gaussian kernel

K(x) =
1√
2π

e−
1
2 x2

, (3.6)

and hopt is the optimum kernel bandwidth estimated using leave-one-out cross-validation.

The example in Fig. 3.3 shows a typical shape of the density estimate when the image

contains a rectilinear building structure. A peak exists where the RI is small.
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Figure 3.3: Thresholding RI density. The solid (blue) line is the estimated RI density, and
the dotted (red) line is its derivative. Segmentation results are shown for (a) below selected
threshold, (b) selected threshold, and (c) above selected threshold.

3.5.1.4 Thresholding RI Density

To extract regions g that belong to a PBF, we segment the peak of the RI density using

a threshold. Instead of using a fixed threshold, we want to find the rectilinear regions based

on the estimated distribution. Hence, we set the second zero-crossing of the first derivative

of the kernel density estimate

p̂′(r) =
1

nghopt

ng

∑
i=1

K′
(

r− ri

hopt

)
(3.7)

as our threshold. An example result is shown in Fig. 3.3b.
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3.5.1.5 Extract Building Feature Points

After the building region is segmented, we extract the feature points that lie on the

building region.

3.5.2 Planar Facade Extraction

In the second step, our goal is to detect a set of corresponding PBFs {φi} ↔ {φ ′i }

by clustering feature points and line segments using homographies. Since a PBF should

contain only one horizontal vanishing direction, the horizontal vanishing direction is an

important cue to separate PBFs. Instead of applying J-linkage to the entire feature points

that would result in ambiguous boundary problems, we apply J-linkage to each group of

features that have the same horizontal vanishing direction. We use the following steps

(Box 2.6-2.9 in Fig. 3.2) to separate PBFs.

3.5.2.1 Label Feature Points

We label each feature point x with a horizontal vanishing direction. Let sh = (eh
1,e

h
2)

be a line segment associated to a horizontal vanishing point and lh = eh
1× eh

2, where eh
1 is

counterclockwise from eh
2 with respect to the zenith vanishing point vz. For each sh, we

compute two vertical lines lv1 = vz× eh
1 and lv2 = vz× eh

2. Feature point x is then assigned

with the vanishing direction of the nearest sh that satisfies

xTlh < 0∧ (xTlv1)(x
Tlv2)< 0. (3.8)

Fig. 3.4a shows an example after feature points are labeled with their horizontal plane

direction.
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(d)

(a) (b)

(c)

Figure 3.4: Extracting PBFs. (a) Feature points associated to vanishing direction of neigh-
boring (color-coded) horizontal line segments. (b) Vertical line segments associated to
vanishing direction of neighboring (color-coded) horizontal line segments. (c) Homogra-
phy clustering applied to feature points with same vanishing direction. (d) Convex hull for
each homography cluster.

3.5.2.2 Label Line Segments

We also label each vertical line segment sv = (ev
1,e

v
2) with a horizontal vanishing direc-

tion. As in the previous step, for each horizontal line segment sh, we compute lines lh, lv1,

and lv2. We find the line segment sh that has the smallest min(d(ev
1, l

v
1)+d(ev

2, l
v
1),d(e

v
1, l

v
2)+

d(ev
2, l

v
2)) that satisfies

ev
1
Tlh < 0∧ ev

2
Tlh < 0. (3.9)

Then, sv is assigned with the vanishing direction of sh. See Fig. 3.4b for example.
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3.5.2.3 Homography Clustering

After feature points are associated with a horizontal vanishing direction, we apply

homography clustering using J-linkage on the feature points with the same horizontal van-

ishing direction. This avoids ambiguities between facade boundaries and separates the

facades that are in different horizontal directions. Fig. 3.4c shows an example of the clus-

tering on one horizontal vanishing direction.

3.5.2.4 Segment Planar Facades

Finally, a convex hull is computed for the set of feature points that belong to the same

cluster obtained in the previous step. See Fig. 3.4d for illustration. The pixel region in this

convex hull is set to G. The feature points and line segments that lie in G are denoted as X

and S, respectively.

Thus, we have the three components X , S, and G for a PBF φ in an image I. The

algorithm for the PBF segmentation and its expected running time are summarized below.

Algorithm 1 Planar Building Facade Segmentation

Input: {xi}nx
i=1, {si}ns

i=1, {wi}nw
i=1, {gi}

ng
i=1

Output: {φi}
n f
i=1

1: remove ground line segments with {wi} . O(nwns)
2: compute region RI for all g . O(ngns)
3: estimate RI density using cross-validation . O(n2

g)
4: label x by horizontal direction . O(nx)
5: label vertical s by horizontal direction . O(ns)
6: {Xi}← cluster feature points . O(n3

x)
7: {φi}← segment planar facade regions . O(n2

x)

Since nw is usually small, it can be considered as a constant. Hence, the overall com-

putational complexity of Algorithm 1 is O(n3
x +nsng +n2

g).
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3.6 3D PBF Estimation

After a set of corresponding PBFs {φi} ↔ {φ ′i } is extracted from two views, we si-

multaneously estimate the camera pose and 3D PBF positions. The camera pose, R′ and

t′, is initialized using the standard steps in [46]; the fundamental matrix F is fit to key-

point matches using RANSAC; the camera pose R′ and t′ are obtained by decomposing

the essential matrix E= K′TFK. The 3D PBF positions {Φi} are initialized by triangulating

the set of feature points and the set of line segment endpoints. The plane is initialized by

fitting Π to the triangulated feature points and line segment endpoints.

To refine the initial estimates using geometric constraints, our goal is to solve

argmin
R′,t′,{Φi}

Jrep + Jori + Jcop, (3.10)

where Jrep, Jori, and Jcop are the cost terms for the reprojection error, orientation constraint,

and coplanarity constraint, respectively. Each cost term Jrep, Jori, and Jcop is defined in the

following subsections.

3.6.1 Reprojection Error

The reprojection error Jrep in (3.10) is minimized when the projections of the estimated

3D points and line segments are close to their image measurements. We compute the

reprojection error by

Jrep =
Jx

rep

λ x
rep

+
Jl

rep

λ l
rep

+
Je

rep

λ e
rep

, (3.11)

where Jx
rep, Jl

rep, and Je
rep are the reprojection errors for feature points, lines, and line-

segment endpoints, respectively. The λ values for each cost term will be described at the

end of the section.

To compute Jx
rep, we use the standard reprojection error in [46]. Let X be the set of
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feature points. The reprojection error over X is defined by

Jx
rep = ∑

x∈X
d(x, x̂)2 +d(x′, x̂′)2, (3.12)

where d(x, x̂) is the distance between the observation x and estimation x̂ in image coordi-

nates.

We use the line reprojection error in [102] to compute Jl
rep. The cost function for lines

is

Jl
rep =

1
4 ∑

s∈S
(d(ê1,p1)d(p1,p3))

2 +(d(ê2,p2)d(p2,p3))
2

+
(
d(ê′1,p

′
1)d(p

′
1,p
′
3)
)2

+
(
d(ê′2,p

′
2)d(p

′
2,p
′
3)
)2
, (3.13)

where p1 and p2 are the projections of the estimated endpoints ê1 and ê2 on the line e1×e2.

The point p3 is the intersection of the estimated line ê1× ê2 and the observed line e1× e2.

If the reprojection error for lines is used alone, the estimated line segments would

“grow” or “shrink” during the estimation process. To avoid this, we also apply the repro-

jection error to line-segment endpoints by

Je
rep = ∑

s∈S
d(e1, ê1)

2 +d(e′1, ê
′
1)

2 +d(e2, ê2)
2 +d(e′2, ê

′
2)

2. (3.14)

3.6.2 Orientation Constraint

The 3D orientation of each line segment and plane can be computed since their asso-

ciated vanishing direction is known. To constrain the overall orientation of the building
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structure, we minimize the following cost function

Jori =
Jv

ori
λ v

ori
+

Jn
ori

λ n
ori

+
Jp

ori
λ

p
ori
, (3.15)

where Jv
ori and Jn

ori constrain the line segment orientation and Jp
ori constrains the plane

orientation.

The first term in (3.15) makes each line segment S parallel to its associated vanishing

direction by

Jv
ori = ∑

i
∑
S∈S
‖d̂s×di‖2, (3.16)

where d̂s is the direction of the line segment S and di is the vanishing direction of the

vanishing point vi. As in the line reprojection error, the above cost function represents the

area between the line segment direction vector and the vanishing direction vector.

Each line segment direction d̂s is also enforced to be perpendicular to its associated

plane normal n̂ by

Jn
ori = ∑

i
∑
S∈S

(d̂s · n̂i)
2. (3.17)

The above cost function prevents line segments becoming perpendicular to the plane due

to the coplanarity constraint in (3.21), which is described in the next section.

Each plane normal n̂i is constrained so that it is perpendicular to the associated hori-

zontal vanishing direction dh and vertical vanishing direction dz using

Jp
ori = ∑

i
(dh · n̂i)

2 +(dz · n̂i)
2. (3.18)

3.6.3 Coplanarity Constraint

A strong constraint to reduce the depth ambiguity of 3D points and line segments is

the coplanarity constraint. The coplanarity constraint for feature points and line segments
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Figure 3.5: Test image examples

is defined by

Jcop =
Jx

cop

λ x
cop

+
Js

cop

λ s
cop

, (3.19)

where Jx
cop, and Js

cop are the cost terms for feature points and line-segment endpoints,

respectively.

We compute Jx
cop by

Jx
cop = ∑

i
∑

X∈Xi

d⊥(X̂,Π̂i)
2, (3.20)

where d⊥(X̂,Π̂i) is the perpendicular distance from point X̂ to plane Π̂i.

For line segments, we enforce coplanarity by minimizing the area between the line

segment and the plane by

Js
cop = ∑

i
∑
S∈S

(Ê · Π̂i) d(E1,E2). (3.21)

The area between a line segment and plane Πi becomes zero when they are coplanar.
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Figure 3.6: Sensitivity and specificity of PBF region detection
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Figure 3.7: Precision comparison of PBF detection

We use the Levenberg-Marquardt algorithm to solve our non-linear optimization prob-

lem in (3.10). To balance the three cost terms in (3.10), as in [52], we set each weight λ

as the initial value of its corresponding J so that the initial cost of Jrep + Jori + Jcop = 8.

3.7 Experiments

To measure the performance of our proposed method, we have tested the method on

real data. We have taken a pair of images of 20 different buildings on Texas A&M Univer-

sity campus (see Fig. 3.5). Two experiments have been conducted to test the performance
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of our method: the PBF segmentation test and the PBF mapping test.

3.7.1 PBF Segmentation Test

We have measured the performance of each step in our PBF segmentation method

described in Sec. 3.5. For the building region segmentation step (Sec. 3.5.1), we have

counted the number of true-positive (TP), true-negative (TN), false-positive (FP), and

false-negative (FN) feature points after the building region segmentation has been per-

formed. The ground-truth was obtained by manually examining whether each feature point

was on a building facade. Fig. 3.6 shows the sensitivity (TP/(TP+FN)) and specificity

(TN/(FP+TN)) of our method.

Next, for the planar facade detection step (Sec. 3.5.2), we have computed the precision

(TP/(TP+FP)). We have compared the precision of our proposed method with a base-line

method, i.e., the J-linkage in [103] which uses J-linkage directly on the image without use

of the horizontal vanishing direction information. It is worth noting that our method also

uses J-linkage as a sub-step. The parameters for the J-linkage step are the same in both

methods. Fig. 3.7 shows that our proposed method is always better. In fact, the average

precision increase over the J-linkage method is 45.27%.

3.7.2 PBF Mapping Test

We have compared our proposed method with a base-line method which minimizes

the standard reprojection error in structure estimation. Since the camera baseline distance

is relatively small compared to the building distance, the camera positional error is not

significant in either method. Hence, we present two measures, (1) the PBF depth error and

(2) the PBF angular error, to illustrate the performance of our proposed method.

First, we measure the depth error of the mapped building. Each image has been taken

so that the principal axis passes through the intersection of the two primary PBFs, i.e., the

building corner. We set the baseline distance to be 1/60 of the distance to the building
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corner. Suppose lk is the intersection of the estimated 3D planes Π̂i and Π̂ j of PBFs, and

let Πz be the plane passing through the camera center C with the normal vector dx×dz,

where dx = [1,0,0]T and dz = K−1vz. Then, we can measure the depth error of a building

corner lk by

εdepth =

∣∣∣∣∣d̄− d⊥(Q̂1,Πz)+d⊥(Q̂2,Πz)

2

∣∣∣∣∣ (3.22)

where the ground-truth depth d̄ is measured from a top-down view aerial map and a preci-

sion laser ranger (BOSCH GLR225) with 1 mm accuracy. If P is the set of feature points

Xi∪X j ∪Ei∪E j of Φi and Φ j, then the points Q̂1 and Q̂2 are the intersections of lk with

the plane parallel to Πz which passes the points

max
P∈P

(PTdz) ·dz and min
P∈P

(PTdz) ·dz, (3.23)

respectively. Fig. 3.8a shows that the overall depth error decreases after the refinement. In

fact, the average depth error is reduced from 22.39 to 8.95, a 60% reduction.

Next, to measure how well the building structure is recovered, we measure the angular

error of PBFs by

εangle =
∣∣θ̄a− θ̂a

∣∣ , (3.24)

where θ̄a is the ground-truth angle between the two primary PBFs measured from a top-

down view aerial map and the same high precision laser ranger, and θ̂a is the estimated

angle which is computed by

θ̂a = arccos
(

n̂T
i n̂ j

‖n̂i‖‖n̂ j‖

)
. (3.25)

where ni and n j are plane normal vectors for Π̂i and Π̂ j, respectively. Fig. 3.8b shows that

the pairwise angular errors are reduced using our proposed method. The average angular
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error reduction is 82.82%.

3.8 Conclusions

We reported a novel algorithm for PBF segmentation and 3D estimation. We proposed

a new RI to distinguish building regions based on homogeneous region detection results.

We combined J-linkage with vanishing point constraints to detect individual PBFs in a 2D

scene. Then, we combined the reprojection errors, orientation constraints, and coplanarity

constraints as cost functions in an optimization process to improve the 3D estimation of

the building structure. We tested our method in physical experiments. We compared

our algorithm with state-of-the-art J-linkage-based facade detection for segmentation and

reprojection error-based 3D mapping. The results showed that our method increases pre-

cision in segmentation and reduces depth and angular errors in 3D estimation. Specially,

our method reduced the angular error of the reprojection error-based 3D mapping by an

average of 82.82%.
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Figure 3.8: Comparison of the reprojection error-based 3D estimation and that of the
proposed method
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4. MAP FUSION FOR MONOCULAR VISION AND LIDAR INPUTS

4.1 Introduction

Knowing the accurate location of an indoor robot or a mobile device user is of great

importance in the era of mobile computing. It is an enabling technology for many location-

aware applications. Since GPS signals are often challenged in indoor or urban environ-

ments, many researchers focus on developing localization and mapping algorithms using

onboard sensors. However, power, costs and physical limits of sensors often hinder the

development. For example, the size of small mobile devices does not allow wide base-

line distance for stereo cameras, and a monocular camera often suffers from scale drift.

Also, regular cameras are always sensitive to lighting and feature distributions in the en-

vironment despite their low cost. A lidar is often considered as the most reliable mapping

sensor, but it is too power hungry, bulky, and expensive for many mobile robots or devices.

RGB-D cameras can be small but unreliable when strong sun light exists. No single sensor

can offer an ideal solution to application needs.

One possible solution is to decouple the process of simultaneous localization and map-

ping (SLAM). After all, humans almost always use maps built by others. High accuracy

2D lidar mapping, which often consists of point clouds (see Fig. 4.1(b)), can be estab-

lished by a scanning robot to provide prior knowledge for other cellphone users or robots

only equipped with a low cost camera. A monocular vision-based SLAM algorithm often

generates low-quality maps as illustrated in Fig. 4.1(a) due to scale drift. The output may

even be disconnected maps because of the uneven distribution of features. If we can rec-

tify the low quality map to the lidar-level accuracy (see Fig. 4.1(c)), mobile device users

and robots can enjoy high localization accuracy by just using low cost cellphone cameras,

which has a huge advantage in applications.
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(a)

(b)

(c)

Figure 4.1: Map fusion. (a) A 3D monocular vision-based map with scale drift, (b) a 2D
lidar map, and (c) the rectified map of (a) using our proposed method.
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Since 2D lidar maps consist of 2D point clouds in the world coordinate system, and im-

age data generate 2D feature points in an image coordinate system, they cannot be directly

registered to each other. This requires us to fuse the spatial knowledge (i.e., landmarks

of maps) asynchronously captured from different perspectives and platforms by heteroge-

neous sensors, which presents a new research problem. Building on high-level landmarks

such as vertical planes that can be identified in both sensing modalities, we propose a

two-step optimization approach to address this high dimension map fusion problem. We

have implemented the system and tested it with real world data. The experimental results

show that our algorithm significantly improves localization and mapping quality of visual

SLAM by as much as 71.1% in mapping accuracy.

The rest of the chapter is organized as follows. After reviewing related work in Sec-

tion 4.2, we define our map fusion/rectification problem in Section 4.3. We present our

map fusion algorithm in Section 4.4. Experimental results are presented in Section 4.5

before we conclude the work in Section 4.7.

4.2 Related Work

The map fusion problem can be viewed as a post processing step in visual SLAM,

which is a fast developing area. More specifically, this work builds upon recent works on

visual SLAM including optimization techniques, different sensor and feature configura-

tions, and collaborative map merging for multiple robots.

A SLAM algorithm simultaneously estimates camera/robot pose and landmark posi-

tions, which is a fundamental problem in robotics and computer vision. A full fledged

SLAM framework consists of subproblems such as tracking, mapping, and loop closing.

For efficiency, recent systems [57, 97, 93, 29, 85] implement a front-end and back-end

system running in parallel, where the front-end performs tracking in real-time while the

back-end refines both the resulting trajectory and the map, and closes loops occasionally.
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To increase the speed of the back-end, different optimization techniques are proposed.

Recent optimization methods take advantage of sparse matrix structures in the SLAM

problem. In [62], an implementation of a hypergraph-based sparse non-linear optimiza-

tion framework called g2o is presented. An optimization method known as iSAM2 [51]

uses a Bayes tree to incrementally update the sparse matrix for an on-line SLAM system.

Building on the g2o framework to exploit sparse matrix computation, our proposed map

fusion can be viewed as a back-end system which runs asynchronously from a front-end

tracking and mapping process.

SLAM can be performed with different exteroceptive sensors or their combinations

including regular cameras, lidars, and RGB-D cameras. Regular camera-based SLAM is

also referred as visual SLAM, where two main approaches exist: filtering and structure-

from-motion (SFM) using an optimization approach. For filtering, the extended Kalman

filters (EKF) or its variants have been used extensively [26, 13, 91, 12], whereas the dom-

inating method for SFM is bundle adjustment (BA) [92, 60, 31]. The BA method is an

optimization-based method which minimizes the reprojection error over multiple image

frames. Strasdat et al. [98] have compared EKF against BA and pointed out that unless

in high uncertainty situations, BA has a better performance and accuracy than EKF. Our

proposed method uses a batch optimization to estimate the fused map. However, monoc-

ular vision-based SLAM is the most difficult problem due to the infamous scale drifting

issue. Stereo vision can relieve the issue but is often limited by the baseline and power

constraints of small devices.

Depth sensors such as RGB-D cameras or lidars [47, 28, 86] can help address the scale

drifting issue in monocular vision. While RGB-D cameras are widely used for indoor envi-

ronments, lidars are still the most favorable sensor due to longer sensing range, wide field

of view, and robustness to sun light, making it suitable for both indoor and outdoor [42].

Kohlbrecher et al. [59] registers 2D lidar scans to a 2D occupancy grid map based on an
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image registration technique. Zhang and Singh [106] use a 2-axis lidar and develop a real-

time 3D mapping method with low-drift by separating the odometry and mapping task. In

these methods, the lidar map is accurate enough so that post-processing is not required.

Combining both vision and lidar inputs to utilize the benefit of each sensor has been

proposed as well. Newman et al. [87] use a 3D lidar to map buildings and use vision

to detect loop closure. Zhang and Singh [107] use vision to handle rapid motion while

the lidar warrants low-drift and robustness to lighting changes. However, these methods

require that the vision and lidar data are synchronized and captured by the same robot. The

resulting map is also limited to the hosting robot for the localization usage. Our method is

intended to fuse the vision and lidar maps acquired by different robots and generate maps

that can help different cameras or mobile device users.

Map merging has been studied for multi-robot systems in indoor environments. In [22],

Dedeoglu and Sukhatme combines topological maps using landmarks detected by sonar,

vision, and laser. Fox et al. [38] merges lidar maps with robots actively detecting each

other to estimate their relative positions. Carpin [11] proposed a map merging technique

based on Hough transforms to merge occupancy grid maps. Baudouin et al. [7] propose

a method that merges robot paths with different scales generated by multi-modal vision

sensors such as perspective, fish-eye, or omnidirectional cameras. These prior works shed

light on our problem but they focus on maps building with the same or similar kind of

sensors.

In a 2D lidar map, the most visible features are wall planes. Therefore, we adopt a vi-

sual SLAM method which has landmarks consisting of planes in addition to point features.

Many studies make use of the fact that urban environments have planar structure [9]. Lu

and Song introduce a multilayer feature graph (MFG) [78] for a visual SLAM approach

using heterogeneous landmarks including planes. Taguchi et al. [100] use an RGB-D cam-

era and propose a method that uses combinations of primitives, i.e., points and planes, for
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faster pose estimation. More recently, Salas-Moreno et al. [94] have proposed a dense

planar SLAM using an RGB-D camera. For our fusion method, we use the output from

MFG since it provides planar structures with only vision.

4.3 Problem Definition

4.3.1 Background and Notations

Because a 2D lidar map cannot be directly registered to image feature points or lines,

we plan to use high-level landmarks such as planes for the registration between lidar map

and image features. One immediate choice is the 3D MFG [78], which is a sparse 3D

feature structure built by examining geometric relationship among heterogeneous low-

level features. For completeness, we briefly introduce it here. Let us denote the 3D MFG

map by G. The map G is a graph where the nodes represent heterogeneous 3D landmarks

and the edges represent the relationship between the landmarks. The landmarks include

key points, line segments, lines, vanishing points, and planes while the edges represent

constraints such as parallelism, collinearity, and coplanarity. (See Fig. 4.2 for illustration.)

The map G is augmented with new landmarks at each key frame and refined by a local BA

scheme in [78].

To describe the landmarks in G, we denote the image measurement and estimate of

landmark X by x̃ and X̂, respectively. Let I j be the j-th key frame, and let the camera

pose associated with I j be denoted as m j. The measurement of a key point Pi ∈ R3 in I j

is denoted by p̃i j ∈ R2, and the projection of P̂i in I j is denoted by p̂i j. Let s̃i jk be the

k-th observed line segment in I j that should be collinear to the line Li. Let Π = (n,d) be

a plane, where n ∈ R3 is the plane normal, and d/||n|| is the distance between the origin

and Π.

It is worth noting that the choice of visual SLAM in our method is not limited to the

MFG. In fact, any visual SLAM method that can provide plane estimation can use our
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approach since we only use planes to register image landmarks with the 2D lidar map.

Denote the 2D lidar map by L. In this work we use the 2D lidar map generated with the

method in [59]. Similarly, any 2D lidar-based SLAM method works with our approach.

The coordinate system/frame of L and G are denoted by {L} and {G}, respectively.

4.3.2 Assumptions and Problem Definition

In our study, we assume the following:

A.1 An initial MFG map G and camera trajectory {m j} is available from visual SLAM.

A.2 A lidar map L is available from a depth-based SLAM.

A.3 The set of corresponding wall corners between G and L are available. This can

be achieved by 1) converting the Euclidean map into a topological map based on

corners and connectivities, 2) aligning the maps using topological graph matching

techniques [15], and 3) extract corners from the identified correspondence.

Our problem is defined as

Problem 2 Given G, {m j}, {p̃i j}, {s̃i jk}, and L, estimate the rectified camera trajectory

{m̂ j} and MFG map Ĝ.

4.4 Map Fusion Algorithm

To solve the map fusion problem, we first extract vertical planes from 2D lidar map L

and 3D MFG map G. The vertical planes will then be used as the reference to rectify G

using a two-step optimization framework along with a penalty-barrier type method. We

begin with vertical plane extraction.

4.4.1 Vertical Plane Extraction

In a 2D lidar map L, let l be a line that passes through the 2D point cloud that corre-

sponds to a planar wall surface. Then, the intersection of two joining lines is defined as a
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collinearity

parallelism

coplanarity

Figure 4.2: A glance at the MFG [78]. The top figure illustrates parallel, collinear, and
coplanar features extracted from a scene. A subgraph of the MFG representing the rela-
tionship between extracted features is shown in the bottom.
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wall corner in L. We denote the i-th wall corner in L as cl
i .

In a 3D map G, a wall corner coordinate is computed from the intersection of two join-

ing vertical planes and a plane that is parallel to the ground plane. The vertical planes can

be easily distinguished from other planes by verifying whether its normal is perpendicular

to the vertical vanishing point. Without loss of generality, we assume that the x-z plane is

parallel to the ground plane. Let the two joining vertical planes be Πa = [a1,a2,a3,a4]
T

and Πb = [b1,b2,b3,b4]
T, and let Πg = [0,1,0,0]T be the plane parallel to the ground

plane. Then the wall corner c = [c1,c2,c3]
T in {G} is computed by


c1

c2

c3

=


a1 a2 a3

b1 b2 b3

0 1 0


−1
−a4

−b4

0

 . (4.1)

The 2D coordinates of the wall corner c lying on the horizontal plane Πg is defined as

cg
j = [c1,c3]

T, where j is the index.

Given the set of 2D-2D corresponding wall corners {cl
i ↔ cg

j} (see assumptions A.3

in Section 4.3.2), a non-reflective similarity transformation T̂ is estimated by the least-

squares method to provide an initial alignment frame which maps planes in world frame

of L to frame of G. We will rectify G in this frame. Let cr be the reference wall corner

computed by

cr
i = T̂ cl

i. (4.2)

Let lr = [l1, l2, l3]T be the line that passes two reference wall corners cr
a and cr

b, i.e., lr =

c̄r
a× c̄r

b, where the ¯ symbol represents homogeneous coordinates. Then we can obtain a

reference vertical plane in {G} by

Π
r = [l1,0, l2, l3]T. (4.3)
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In the next step, we use the set of vertical planes {Πr
i} to guide the estimation process for

Ĝ.

4.4.2 Rectification of MFG

Given the set of vertical planes {Πr
i}, our goal is to rectify G by forcing the coplanar

features to lie on the planes Πr
i to which they belong. This can be viewed as constrained

optimization with global bundle adjustment (GBA). The equality-constrained optimization

problem that we want to solve is

min
{mim},{Pip}

{Lil },{Viv},{Πiπ }

Jim = Jp +λlJl +λvJv (4.4)

subject to,

∑
i

∑
j

d(Pi j,Π
r
i ) = 0, (4.5)

∑
i

∑
j
∑
k

d(Ai jk,Π
r
i )+d(Bi jk,Π

r
i ) = 0, (4.6)

where Jp, Jl , and Jv are the image domain cost for key points, lines, and vanishing points,

respectively. The cost functions are the robustified version of the corresponding cost func-

tions in [78]. For completeness, we detail them in section 4.6. The weight terms λl and λv

are determined empirically. Eq. (4.5) refers to coplanar constraints for key points where

Pi j is the j-th key point that belongs to plane Πr
i . Eq. (4.6) refers to coplanar constraints

for line segments where Ai jk and Bi jk are end-points of the k-th line segment that lies on L j

that is coplanar to Πr
i . The function d(P,Π) denotes the perpendicular Euclidean distance

between point P and plane Π.

Since the optimization problem (4.4) is a high dimensional nonlinear optimization

problem with many decision variables and constraints, naively applying a nonlinear opti-
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Figure 4.3: Examples of low-quality local minimum solutions during camera trajectory
and map estimation when solving (4.4) by directly applying a nonlinear optimization
solver. (a) A local minima solution where the estimated camera trajectory and map signif-
icantly deviates from the square-shaped environment. (b) Another local minima where the
trajectory become discontinuous while the robot travels at a constant velocity.
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mization solver often results in low quality local minima where either the map is distorted

or the camera trajectory is discontinuous. Fig. 4.3 shows an example. To alleviate this

problem, we rectify the 3D MFG G by solving a sequence of optimization problems de-

scribed in the following. The approach combines a penalty-barrier type technique, which

converts a constrained optimization to an unconstrained optimization with an iterative two-

step optimization method to handle the high dimensionality.

4.4.2.1 Step 1: Optimization without Fixed Planes

We decide to solve our optimization problem using a recent sparse optimization solver

named g2o [62]. G2o exploits hypergraph and sparse structures to achieve superior com-

putation speed. Recently, g2o becomes a dominating solver for large scale bundle adjust-

ment. However, it is unable to directly handle constrained optimization problems. Adopt-

ing the penalty-barrier methods in optimization, we convert the constrained problem in

(4.4) to an unconstrained optimization problem by adding a penalty function Jπ as the cost

of violating coplanarity constraints (4.5) and (4.6),

argmin
{mim},{Pim}

{Lil },{Viv},{Πiπ }

Jim + Jπ , (4.7)

where we seek the optimal camera trajectory {mim}, key points {Pim}, lines {Lil}, vanish-

ing points {Viv}, and planes {Πiπ}. The coplanarity cost Jπ in the 3D domain is defined

by

Jπ = λπpJπp +λπl Jπl , (4.8)

where Jπp is the coplanarity cost for key points, and Jπl is the coplanarity cost for lines.

The weight terms λπp and λπl are increased progressively by a scalar factor w,

λπp = wλπp and λπl = wλπl , (4.9)
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in each iteration. This is a typical penalty method in optimization that gradually guides

the solution to satisfy the constraints. The coplanarity costs Jπp and Jπl are defined by

Jπp = ∑
i

∑
j

ρ(eπp
i j ,δπp) (4.10)

and

Jπl = ∑
i

∑
j

ρ(eπl
i j ,δπl), (4.11)

respectively, where i is the plane number, j is the index of the feature that lies on Πi. The

Huber function [49]

ρ(e,δ ) =


e2 if |e|< δ

2δe−δ 2 otherwise
(4.12)

makes the cost function more robust to outliers which have a residual larger than the thresh-

old δ . The coplanarity error eπp
i j for key point P̂ j is computed by

eπp
i j = d(P̂ j,Π̂i), (4.13)

and the coplanarity error eπl
i j is computed by

eπl
i j =

1
n

n

∑
k=1

d(Âi jk,Π̂i)+d(B̂i jk,Π̂i), (4.14)

where n is number of line segments Si jk that should be collinear with L j, and Ai jk and Bi jk

are the end-points of Si jk. The output of the step yields a new estimated Ĝ, which serves

as the initial value for the next step, where we plan to tighten the optimization problem

with fixed planes known from lidar data (4.3).
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Algorithm 2 Map fusion with the two-step optimization
Input: G,{mi},{p̃i j},{s̃i jk},{Πr

i}
Output: Rectified {m̂ j} and Ĝ

1: while (Jk−1− Jk)/Jk ≥ ε do
2: while i < N do
3: /* Optimization without fixed planes */
4: Solve (4.7)
5: Increase weights by (4.9)
6: i = i+1
7: end while
8: while i < N do
9: /* Optimization with fixed planes */

10: Solve (4.15)
11: Increase weights in (4.16)
12: i = i+1
13: end while
14: end while

4.4.2.2 Step 2: Optimization with Fixed Planes

Since we fix planes, the optimization problem in (4.4) is transformed to a lower di-

mensional problem as follows,

argmin
{mim},{Pip},
{Lil },{Viv}

Jim + Jr
π . (4.15)

Note that planes are removed from decision variables if compared to (4.4). The penalty

function Jr
π

Jr
π = λπpJr

πp
+λπl J

r
πl
, (4.16)

follows a similar format to those in (4.8–4.14) except that the planes Π̂i are replaced with

known values Πr
i in (4.3). During the process of optimization, we increase weighting on

the penalty function using the same way as before.

The above two steps are repeated until (Jk−1−Jk)/Jk < ε where Jk is the error Jim+Jr
π
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at the k-th iteration, and ε is the error threshold. The overall algorithm is summarized in

Algorithm 2.

Remark 1 Algorihtm 2 can also be used to rectify piecewise visual SLAM maps. Due to

uneven distribution of features, a visual SLAM method tends to fail in featureless environ-

ments (e.g. when its camera faces a large white wall). Such regions are not unusual in

indoor environments and cause maps from visual SLAM to become disconnected. How-

ever, with our algorithm, we can relink those piecewise maps from the same or different

robots / mobile device users using the 2D lidar data. All we need to do is to ensure wall

corners exist in each disconnected map.

4.5 Experiments

We have implemented our proposed algorithm in C++. To evaluate the performance

of our proposed algorithm, we test our method on real data collected from an indoor en-

vironment containing many planar walls. As mentioned in the previous section, the 3D

landmark map and 2D lidar map have been generated using the implementation of [78]

and [59], respectively, which is publicly available.

To generate the 3D landmark map, we have used an indoor image sequence with a

resolution of 640×360 taken by a camera with 65◦ HFOV. An example image is shown in

Fig. 4.4(a). Due to low image resolution and lack of distinctive features on planar walls,

the trajectory estimate becomes less accurate and contains significant scale drift. The

ground-truth camera trajectory has been obtained by first placing artificial patterns on the

wall with the 3D positions measured manually and then computing the camera position at

the best frames using the perspective-n-point method with the manually specified 3D-2D

point correspondences. The test data set consists of 12,000 images with a trajectory length

of over 68 meters.
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Artificial
landmark

Figure 4.4: Sample image frame where visible artifical landmarks are used to compute the
ground-truth camera position.

Lidar data have been acquired by a lidar mounted on a robot shown in Fig. 4.4(b). The

lidar data have been collected by a Hokuyo UTM-30LX with a 30m and 270◦ scanning

range at a scanning frequency of 25Hz. Although loop-closing has not been performed,

the lidar map is more accurate when compared to the 3D landmark map due to less scale

drift in the mapping.

4.5.1 Mapping Error

To assess the quality of the fused map, we compute the mapping error by measuring the

error between the estimated wall corner positions and the reference lidar map wall corner

positions. To measure the corner error, we first align the estimated trajectory to the ground-

truth trajectory using Horn’s method [48]. The method estimates the transformation T that

minimizes

Ek = P−1
k TP̂k, (4.17)
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where Pk ∈ SE(3) and P̂k ∈ SE(3) are the ground-truth and estimated camera pose, re-

spectively. After the ground truth and estimated trajectories are aligned, we compute the

Euclidean distance between the corresponding corner positions i by

ei = d(cr
i ,c

g
i ). (4.18)

The mean and standard deviation (SD) of the mapping error at each optimization step are

shown in Table 4.1. In Table 4.1, row vSLAM refers to the direct output of visual SLAM

results using [78]. It also provides initial inputs to two algorithms that we are comparing:

the naive approach and the proposed method. The naive approach refers to the method of

simply fixing the estimated planes to the reference planes from lidar data during the whole

optimization process. It is worth noting that the test data is challenging for visual SLAM

due to regions with very few features.

The results show that the proposed approach significantly reduces mapping error in

visual SLAM results in both mean and SD of wall corners. Comparing with vSLAM,

the proposed method reduces mean error from 2.94 to 0.85 meters, which is a reduction of

71.1%. Moreover, the results show that the proposed method is able to further reduce error

if compared to the naive approach. Mean error is reduced by 24.1% and SD is reduced by

19.7%.

4.5.2 Absolute Trajectory Error

Furthermore, the fusion process improves the estimated robot trajectory quality. We

employ the absolute trajectory error (ATE) to measure the global consistency of the esti-

mated trajectory. Using (4.17), the ATE is computed by

e = ∑
k
||trans(Ek)||, (4.19)
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Figure 4.5: Trajectory comparison. (Best viewed in color). (a) Initial trajectory estimate
from vSLAM, (b) trajectory estimate from the naive method, and (c) trajectory estimate
from the proposed method.

where trans(Ek) is the translation component. Table 4.2 shows the root-mean-square error

(RMSE), RMSE normalized by length, SD, and max error for the ATE measured for our

data. Fig. 4.5 shows the corresponding trajectories. The results show that the proposed

approach significantly reduces ATE in visual SLAM results in all performance metrics.

Again, our method outperforms the naive approach.

4.6 Objective Functions in (4.4)

The individual cost terms in (4.4) are described in the following.

4.6.1 Key Points

Assuming Gaussian noise in the measurement p̃i j, the error between p̃i j and p̂i j is

defined by

ep
i j(m j) = (p̃i j− p̂i j)

T
Σ
−1
p (p̃i j− p̂i j), (4.20)

where Σp = σ2
pI. Then,

Jp = ∑
j
∑

i
ρ(ep

i j(m j),δp) (4.21)
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where i is the feature number, and j is the key frame index.

4.6.2 Collinear Line Segments

Let Li := (Qi,Di) be a 3D line, where Qi ∈ R3 is a point on Li, and Di ∈ R3 is a

vector that represents the direction of Li. The projection of L̂i in I j is denoted by l̂i j. Let

s̃i jk := (p̃i jk, q̃i jk) be the k-th observed line segment in I j that should be collinear to Li. Let

p̂′i jk and q̂′i jk be the perpendicular foot of p̃i jk and q̃i jk on l̂i j, respectively. Then the error

between line segments s̃i jk and l̂i j is defined by

el
i j(m j) =∑

k
(p̃i jk− p̂′i jk)Σ

−1
l (p̃i jk− p̂′i jk)+

∑
k
(q̃i jk− q̂′i jk)Σ

−1
l (q̃i jk− q̂′i jk).

respectively, Σl = σ2
l I. Then,

Jl = ∑
j
∑

i
ρ(el

i j(m j),δl) (4.22)

where i is the feature number, and j is the key frame index.

4.6.3 Vanishing Points

Let Vi ∈P3 be a vanishing point. The observation of Vi in I j is denoted by ṽi j ∈R2, and

the projection of V̂i in I j is denoted by v̂i j. Assuming Gaussian noise in the measurement,

the error between ṽi j and v̂i j is defined by

ev
i j(m j) = (ṽi j− v̂i j)

T
Σ
−1
vi j
(ṽi j− v̂i j), (4.23)

60



Table 4.1: Mapping errors

Mean (m) SD (m)
vSLAM 2.94 1.93
Naive 1.12 0.66

Proposed 0.85 0.53

Table 4.2: Absolute trajectory errors

RMSE (m) SD (m) Max (m) RMSE
length

vSLAM 2.96 2.10 8.00 4.4%
Naive 0.78 0.56 2.69 1.2%

Proposed 0.67 0.38 1.55 1.0%

where Σvi j = σ2
v I. Then,

Jv = ∑
j
∑

i
ρ(ev

i j(m j),δv). (4.24)

where i is the feature number, and j is the key frame index.

4.7 Conclusions

We presented a method that can fuse two maps generated from different sensory modal-

ities, i.e., monocular vision and a 2D lidar, with the hope to assist low-cost devices/robots

to obtain high quality localization information. We formulated a new heterogeneous map

fusion problem that takes data from a camera and a 2D lidar captured at different perspec-

tive and time. We extracted planes from both sensing modalities and used them as the

anchoring information for map rectification. Since the fusion process is a large non-linear

optimization problem, the solution can fall into an undesirable local minimum even with

the anchoring planes available. We proposed a two-step optimization method assisted by

a penalty function. We implemented the algorithm and tested with real data. The initial
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results showed that the proposed algorithm significantly improves visual SLAM results in

both mapping accuracy and trajectory errors. The approach was compared to the naive

approach which simply applied a nonlinear optimization solver to the same problem. The

proposed method also outperforms the naive approach in all performance metrics.
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5. VISUAL PROGRAMMING FOR MOBILE ROBOTS USING HIGH-LEVEL

LANDMARKS

5.1 Introduction

As service-oriented robots increase, they have to be programmed by users without

much technical background. The average user will need easier and more flexible robot

programming tools as opposed to the specialized programming languages used for in-

dustrial robots [8]. For mobile robots, the most fundamental task is to program robot

navigation capabilities, which direct a robot to move from point A to point B in an envi-

ronment in which prior maps often are not available. For a novice user, generating a path

of waypoints on a sparse landmark map produced by prior simultaneous localization and

mapping (SLAM) outputs is nontrivial due to the combination of human’s poor spacial

reasoning capability and lack of contextual information.

Here we propose a visual programming system that allows users to specify navigation

tasks for mobile robots using high-level landmarks in a virtual reality (VR) environment

constructed from the output of visual SLAM (vSLAM) (See Fig. 5.1). The VR graphical

user interface (GUI) of our system allows users to take a virtual tour similar to Google

Street View to familiarize themselves with the robot’s working environment. Users can

directly specify image regions of objects as high-level landmarks from the scene. With

each specified landmark, the user creates task-level motion commands. In the preprocess-

ing step, our system builds a roadmap by using the pose graph from the vSLAM outputs.

Based on the roadmap, the high-level landmarks, and task-level motion commands, our

system generates an output path for the robot to accomplish the navigation task.

We present data structures, architecture, interface, and algorithms for our system.

Given ns search-type motion commands, our system generates a path in O(ns(nr lognr +
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Figure 5.1: Mobile robot programming with our proposed system (Best viewed in color).
Our system generates a robot path from a user-defined motion command sequence that
uses high-level landmarks. This enables users to program mobile robots at the object level
without dealing with low-level map coordinates.
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mr)) time, where nr and mr are the number of roadmap nodes and edges, respectively.

We have implemented our system and tested it with real indoor data acquired by a mobile

robot equipped with a synchronized camera array and a lidar sensor. The experimental

results show that our system can generate robot paths that satisfy the user commands.

5.2 Related Work

Our proposed robot programming system relates to the areas of robot programming,

motion planning, SLAM, and teleoperation.

In [8], Biggs and MacDonald provide a survey on robot programming which divides

the methods into manual programming and automatic programming. In manual program-

ming, the user directly programs the robot using either text-based [53] or graphical sys-

tems [18], whereas automatic programming refers to methods such as learning and pro-

gramming by demonstration, a common technique used for manipulator robots [2, 80].

For mobile robots, Kanayama and Wu [53] develop a high-level programming language

for text-based programming. Nicolescu and Mataric [89] develop an instructive system

that programs a mobile robot using learning by demonstration. However, the effort to train

a mobile robot in this approach will grow linear to space, and many training examples are

required to increase flexibility. Our system can be viewed as a new task-level automatic

programming using VR.

Robot motions can be generated by motion planning algorithms with classic methods

such as [55, 63]. However, motion planning requires a complete scene representation

which is often unavailable for service mobile robots in unstructured environments. Also,

motion planning can be a difficult task for a robot and can benefit from human input. For

example, a human-assisted motion planner is proposed in [25] where the user can steer the

planner towards/away from certain regions. In [66], a remote human-in-the-loop gripper

is presented where the user can assist motion planning by moving a virtual gripper in the
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display and specifying waypoints. Our path generation step can be viewed as a motion

planning problem with a given roadmap. However, inspired by the existing works, the

main focus of our system is to translate user intention into the motion planning framework

to automate the path generation process.

To display the robot’s working environment, our system employs VR built by keyframes

from vSLAM. We also use pose graph from the vSLAM as a starting point for the roadmap

construction. SLAM can be performed using depth sensors and visual sensors, i.e., regular

cameras. SLAM methods based on depth sensors such as lidar [87, 106] and RGB-D cam-

eras [47, 28, 86] have low scale-drift issues, whereas visual sensors provide both geometric

and appearance data. In vSLAM, the extended Kalman filter [26, 13, 91, 12] and bundle

adjustment [92, 60, 31] are mainly used. In our work, we use a 2D lidar map generated

by the method in [59] and use the pose graph and keyframes of the multi-layered feature

graph (MFG) proposed by [78] which exploits the regularities of urban environment such

as rectilinear structures.

Integrating trajectory following and obstacle avoidance capabilities [3], our system can

be used as a supervisory control system in teleoperation. Fong and Thorpe [36] classify

vehicle teleoperation interfaces into four categories: direct [64], multimodal/multisensor,

supervisory control [82], and novel [30]. To allow a free-look of the environment, a visual

teleoperation display is also proposed for unmanned vehicles using a spherical camera and

an Oculus Rift [61]. It has been shown that VR can significantly improve telepresence.

Our system falls into this category. However, directly controlling the robot can be difficult

due to poor spacial reasoning of the user from the display. Our high-level landmark-based

supervisory control can avoid this issue.

Our experience in vSLAM using mobile robots [70, 78] and teleoperation [43, 96] has

prompted a need for a system that allows users to easily assist robot navigation in urban

environments.
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Figure 5.2: System diagram
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5.3 System Design

5.3.1 Overall Structure

The system diagram of our visual programming system is depicted in Fig. 5.2. Using

our system, a user explores and navigates through the robot’s environment as a virtual tour

and specifies high-level landmarks which are used for object-oriented task-level (OTL)

motion sequencing. Given the OTL motion commands, our system generates a robot path.

From the GUI, the user first loads the MFG data and 2D lidar map to construct the

robot’s environment and roadmap. The environment is created using both keyframes and

the pose graph of the MFG data, and the roadmap is created from the pose graph as a

preprocessing step. The user navigates along the roadmap and keeps track of his current

pose in the roadmap view, where the roadmap is overlaid on the 2D lidar map. From

the scene view, the user selects high-level landmarks which are used for OTL motion

sequencing. After the user completes motion sequencing, the system generates a path

from the given motion commands. The robot path is then displayed to the user and used

by a mobile robot.

The generated path is not limited to our robot but can be used among different type

of mobile robots. When the path is generated off-line, the path can be used to program a

mobile robot. However, as noted previously, our system can also be used as an interface

for on-line robot control in a teleoperation scenario.

5.3.2 Data Structures

The data structures in the MFG data that are used in our system are listed as follows:

• Keyframe is a camera image denoted by Ik
i , where k denotes the key index, and i

denotes the camera index in the synchronized camera array.

• Keypose is an estimated robot pose when keyframe Ik
i is captured. Let the camera
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pose for Ik
i be defined by a rotation matrix Rk

i ∈ SO(3) and a translation vector tk
i ∈

R3. Then the keypose is aligned with the reference camera pose in the camera array,

i.e., Rk
0 and tk

0.

• Pose graph is an undirected graph P, where nodes represent keyposes and edges

represent their dependencies.

Additionally, the required data structures used to generate a robot path from user com-

mands are illustrated in Fig. 5.1 and defined below.

• High-level landmark is a user-specified image region in Ik
i . The image region is

defined by a bounding box and labeled by the user. However, if an image recognition

algorithm is available, high-level landmarks can also be identified by the system.

• Motion command is a text command paired with a high-level landmark by the user.

The text commands specify robot tasks, such as start at, go to, and avoid.

• Motion command sequence is a directed graph M, where a node mi represents a

motion command, and edge (mi,m j) represents the transition from mi to a child

node m j. Each edge has a condition that should be satisfied to make the transition.

• Roadmap is an undirected graph R, where the k-th node rk represents a waypoint

rk ∈ R3. An edge (rk1,rk2) in R represents the Euclidean distance between rk1 and

rk2 .

• Path is a continuous sequence S where the elements are robot positions in R3.

5.3.3 User Interface

In this section, we describe the GUI of our system (Fig. 5.2 Box 1) that facilitates

robot programming using high-level landmarks. Our GUI, shown in Fig. 5.3, consists
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primarily of four components: scene view, roadmap view, motion command panel, and

motion sequencing panel. These components support mainly three user activities for robot

programming: exploration and navigation, high-level landmark selection, and OTL motion

sequencing. We detail them in the following sections.

5.3.3.1 Exploration and Navigation

When the user loads the MFG data and 2D lidar map (Fig. 5.2 Box 2), the scene view

and roadmap view display the robot’s environment in an interactive OpenGL scene. Both

scene view and roadmap view assist the user with exploration and navigation and provide

situation awareness.

From the scene view, the user views the scene as a panorama image that is constructed

using the MFG keyframes (Fig. 5.2 Box 3). For immersive viewing experience, we use a

spherical panorama, i.e., a panorama texture mapped on a spherical surface. The user can

explore the environment using pan, tilt, and zoom controls in the scene view. The roadmap

R is also overlaid in the scene view so that the user can see the navigable paths.

In the roadmap view, the roadmap R is overlaid on the 2D lidar map that is viewed top-

down. The roadmap R is constructed from the pose graph P using the algorithm described

in Sec. 5.3.4 (Fig. 5.2 Box 4). When the user navigates through the environment, the

scene view camera moves along the nodes in R and the spherical panorama is created

at the current position of the scene camera. The roadmap view allows translating and

zooming for exploration of the environment.

5.3.3.2 High-level Landmark Selection

When the user explores the environment using the scene view, the user can spec-

ify high-level landmarks directly from the panorama image (Fig. 5.2 Box 7). To spec-

ify a high-level landmark, the user uses a mouse to specify a bounding box corner in

the panorama image to extract objects of interest. When the user clicks the spherical
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panorama, an intersection point X between the sphere and the ray that originates from the

mouse position is computed.

Let Πk
i be the image plane of the camera image Ik

i , and let Ck
i be the camera center. The

intersection point I between Πk
i and the line L = Ck

i +(X−Ck
i )t where t ∈R is computed

by

I = Ck
i +(X−Ck

i )((P−Ck
i ) ·Nk

i )/((X−Ck
i ) ·Nk

i ), (5.1)

where P is a point on Πk
i and Nk

i is its normal. Then, the (x,y) image coordinates of I, i.e.,

the bounding box corner, in image Ik
i is computed.

When the bounding box is defined, the high-level landmark is highlighted in the spher-

ical panorama. The region inside the bounding box in Ik
i is colored and mapped to the

panorama texture T k(u,v) by using the maps

mx
i (u,v) = x, my

i (u,v) = y, (5.2)

which transforms Ik
i (x,y) to T k(u,v) by

T k(u,v) = Ik
i (m

x
i (u,v),m

y
i (u,v)), (5.3)

where (u,v) is the texture coordinate and is related to the spherical coordinates by θ = vπ

and φ = π(2u−1), where θ and φ are the latitude and longitude angles of the coordinates

of the sphere

S = [r sin(θ)cos(φ),−r cos(θ),−r sin(φ)sin(θ)], (5.4)

where r is the radius.

A label of the landmark can be added through the landmark list and is displayed in the

scene view. The high-level landmarks can be saved as a file and can be loaded for later
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usage.

5.3.3.3 OTL Motion Sequencing

The user performs motion sequencing using the motion command panel and the motion

sequencing panel. The motion command panel contains two list views: the command list

and landmark list. The user selects an item from each list view to form a motion command.

Here, we only focus on six commands: go to, start at, stop at, left at, right at, and avoid.

New commands can be added per task requirement.

When a high-level landmark is specified by the user, it is displayed as an iconized

landmark in the landmark list in the motion command panel. The user selects an item

from each list, i.e., a text command and high-level landmark, to form a motion command.

When the user presses the Add motion command button, an orphan node corresponding to

the user-defined motion command is created in the motion sequencing panel.

After the user creates motion commands, which are the building blocks of a motion

command sequence, the user can arrange motion commands in the motion sequencing

panel to create a motion command sequence M for higher-level tasking. Since high-

level landmarks are displayed in the nodes, the user can create high-level commands in

an object-oriented fashion. After an orphan node is created from the motion command

panel, using a mouse, the user can connect the nodes with directed edges to create a mo-

tion sequence. The interface allows the user to add/remove nodes and edges in the graph.

When an edge is selected, the user can add transition conditions. In our system, a transi-

tion condition is whether a motion command node is visited for a certain number of times

(See Fig. 5.7d for example.) After the user constructs a sequence, the user presses the

Generate path button, and the system will compile the motion command sequence M and

generate a path S that satisfies the commands (Fig. 5.2 Box 8). The path S is overlaid on

the roadmap view which allows the user to map the high-level commands into physical
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Algorithm 3 Pose Graph To Roadmap Preprocessing
Input: Pose graph P, search radius d, number of nearest neighbors k to search
Output: Roadmap R

1: /* Initialize roadmap */
2: R← P . O(np +mp)
3: /* Build kd-tree */
4: T ← KD-TREE-CREATE(V (R)) . O(np lognp)
5: /* Connect near keyposes */
6: for each vertex r ∈V (R) do . O(np)
7: /* Find k-nearest neighbors within fixed radius */
8: Q← KD-TREE-SEARCH(T,r,k,d) . O(k lognp)
9: for each vertex q ∈ Q do . O(k)

10: if edge (r,q) /∈ E(R) then
11: R← R∪{(r,q)}
12: end if
13: end for
14: end for

space at a glance. High-level landmarks associated with the motions are also displayed

along the path in the roadmap view.

5.3.4 Algorithms

When the user loads the MFG data, the pose graph P is converted into the roadmap

R as a preprocessing step using Algorithm 3 (Fig. 5.2 Box 4). When the user creates

the motion sequence and presses the Generate path button the path is generated using

Algorithm 4 (Fig. 5.2 Box 8). In the following, for a graph G, we denote the set of vertices

and edges by V (G) and E(G), respectively.

In Algorithm 3, roadmap R is first initialized by copying the nodes and edges from P.

The value of each node rk ∈V (R) is set as the keypose position rk =−Rkᵀ
0 tk

0, and the value

of each edge (ra,rb)∈E(R) is set by distance[(ra,rb)] = ‖ra−rb‖. We build a kd-tree with

the roadmap node values rk. Then, for each rk, we perform a k-nearest neighbor search

within a fixed radius and obtain the set of nodes Q. We add an edge from node rk to each
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d

r

Figure 5.4: Pose graph to roadmap. (a) Nearest neighbors search region. (b) Newly added
edges and navigable paths.

node in Q if it is not already a neighboring node. This is illustrated in Fig. 5.4. If we let

np = |V (P)| and mp = |E(P)|, the time complexity of Algorithm 3 is O(knp lognp +mp).

Algorithm 4 generates a path S from a motion command sequence M. In a graph

point of view, there are two types of motion commands in our system: graph-search-type

commands and graph-editing-type commands. The former includes start at, stop at, and

go to, and performs a search in the current roadmap Rc. The latter includes avoid, left

at, and right at which modifies edge weights in Rc. For graph-search-type commands, a

shortest path search using Dijkstra’s algorithm is performed. For the graph-editing-type

commands, the edges extracted from EXTRACT-EDGES, which depends on the specified

command, are modified. For example, see Fig. 5.5. Let dr be the maximum degree of

R, and let dm be the maximum outdegree of M. If we let nr = |V (R)| and mr = |E(R)|,

the graph-search-type commands run in O(nr lognr +mr), whereas the graph-editing-type

command runs in O(dr). Let the number of graph-search-type commands be ns and let the

number of graph-editing-type commands be ne. Then the worst case time complexity of

Algorithm 4 is O(ns(nr lognr +mr +dm)+nedr). If we consider that dm, dr, ns, and ne are

usually small compared to nr and mr the time complexity becomes O(ns(nr lognr +mr)).
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(a) (b)





cr

cr

Figure 5.5: Modified edge weights and navigable paths using graph-editing-type com-
mands (a) avoid and (b) left at.

5.4 Experiments

We have implemented our system in C++. To evaluate the effectiveness of our sys-

tem, we have tested our system using real world data. We use a set of motion command

sequences as input and verify that the generated output paths are correct. We have also

tested the runtime of our algorithm and show numerical test results.

5.4.1 Data Set

Our ground mobile robot that was used to collect data is built on an X80Pro platform.

The wheel-based platform has two 12V motors and can move at a maximum speed of

75cm/sec. A SICK TiM571 lidar which has a 25m-depth range, a 270◦-angular coverage

range, and a scanning frequency of 15Hz is mounted on the platform. On top of the

robot, six Point Grey USB3 2.1MP color cameras (BFLY-U3-23S6C-C) are mounted. The

cameras are synchronized by an external trigger and capture 960×600 resolution images

at a frequency of 1Hz. This frame rate is suitable for our application due to slow robot

movement. Here, we present data collected from two environments: office and garage.

The size of the environment is shown in Fig. 5.6, where each chessboard square in the

background of the 2D lidar map is 1m2. The office data contains 45 keyposes, and the

garage data contains 181 keyposes in the pose graph.
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5.4.2 Roadmap Construction and Path Generation

We have tested our system using a set of motion command sequences to verify whether

our system can generate correct motion paths. For each dataset, we first load the MFG

data and 2D lidar map into our system. Then we provide the system with different motion

command sequences for testing.

When the MFG data is loaded, our system constructs a roadmap from the pose graph

using Algorithm 3. Figs. 5.6a and 5.6e show the constructed roadmaps for the office and

garage data, respectively. Note that in Fig. 5.6a, the original sequential pose graph is

converted into a loop which allows the user to navigate in different directions.

Next, we use a set of motion command sequences (MCSs) to test Algorithm 4. Fig. 5.7

shows the high-level landmarks and motion command sequences that are used for testing:

MCS #1 and MCS #2 are used for the office data, and MCS #3 is used for the garage

data. Fig. 5.6b shows the generated path from MCS #1 which contains only graph-search-

type commands. The resulting path is the shortest path on the roadmap. We use MCS #2

to test a combination of graph-search-type and graph-editing-type commands. Figs. 5.6c

and 5.6d show the resulting partial paths where a longer route is taken due to the avoid

command. Finally, we use MCS #3 to test the transition conditions used in a repetitive

motion task. Figs. 5.6f, 5.6g, and 5.6h show that the generated partial paths. Due to the

transition conditions, the pillar, sign, and object high-level landmarks are visited twice.

5.4.3 Runtime Test

We test the runtime of our algorithm under different parameter settings. The testing

computer is a PC laptop with a 1.9GHz Intel Core i7 CPU and 8GB RAM. The operating

system is a 64-bit Windows 8. We test both algorithms in Sec. 5.3.4 on the garage data to

see how they perform depending on the size of the input pose graph and roadmap. Fig. 5.8a

shows the runtime of Algorithm 3 respect to the pose graph size np. For each k nearest
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neighbor settings, we compute the average of 1000 runs. Fig. 5.8b shows the runtime of

Algorithm 4 respect to the roadmap size nr. We increase the number of graph-search-type

commands ns from 1 to 5 in a motion command sequence. The results show an average

of 100 runs for each ns. Trends in both Figs. 5.8a and 5.8b conform to our complexity

analysis.

5.5 Conclusions

We proposed a new system that allows users to visually program mobile robots. The

system used a VR environment constructed from keyframes in vSLAM results to allow

users to experience robot working environment and define high-level landmarks associate

with OTL motion commands. Our algorithms converted the OTL motion commands to

weight point paths to guild robots without overtaxing on human spatial reasoning capabil-

ity. We presented the data structures, system architecture, user interface, and algorithms.

We tested our system using real world data and showed that the generated paths satisfied

the motion task requirements.
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Algorithm 4 Path Generation
Input: Motion command sequence M, roadmap R, current node rc ∈ R
Output: Path S

1: mcurr← head[M]
2: while mcurr 6= NIL do
3: /* Handle motion command */
4: c← command[mcurr]
5: rt ← target[mcurr]
6: if c = START or c = STOP or c = GOTO then
7: /*graph-search-types */
8: T ← DIJKSTRA(Rc,rc,rt) . O(nr lognr +mr)
9: S← S∪T

10: rc← rt
11: /* Restore graph edges */
12: Rc← R
13: else if c = AVOID or c = LEFT or c = RIGHT then
14: /*graph-edit-types */
15: E← EXTRACT-EDGES(Rc,rc,c,S) . O(dr)
16: for each e ∈ E do . O(dr)
17: distance[e]← ∞

18: end for
19: end if
20: /* Handle transition conditions */
21: mnext ← NIL

22: k← 0
23: for each edge e ∈ outedge[mcurr] do . O(dm)
24: if condition[e] = TRUE then
25: mnext ← head[e]
26: k← k+1
27: end if
28: end for
29: if k > 1 then
30: error “invalid motion command sequence”
31: end if
32: mcurr← mnext
33: end while
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(a) High-level landmarks in Figs. 5.6a and 5.6e

(b) MCS #1: Graph-search-type commands only

(c) MCS #2: Graph-search-type commands with graph-editing-type commands

(d) MCS #3: Graph-search-type commands with a cycle

Figure 5.7: Sample motion command sequences (MCSs) for testing (Best viewed in color).
The color of the motion command nodes correspond to the colors of their resulting path
segments in Fig. 5.6.
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Figure 5.8: Runtime results
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6. CONCLUSIONS AND FUTURE WORK

In our work we developed both system and algorithms that utilizes geometric and ap-

pearance information to assist robot navigation in urban areas. First, we developed SILK,

an appearance-based image registration method, which estimates geometric transforma-

tion between two images and takes into account of the image resolution. The method fully

exploits appearance information and is especially useful when registering low-resolution

image regions in video. Next, we proposed a segmentation and mapping method for PBFs,

an important landmark in urban environments. Our method showed that appearance infor-

mation can be used effectively to distinguish man-made object from natural objects and

multiple geometric constraints can be used to obtain accurate position information. By us-

ing the vertical planes in urban areas, we have also proposed an algorithm that can rectify

visual SLAM results using a 2D lidar map. This method enables benefiting from both the

accuracy of lidar and the lower cost in cameras in a distributed robot system, where a sin-

gle robot with a lidar sensor can assist localization of other robots with a camera. Finally,

we develop a novel system that enables mobile robot programming where a user can define

high-level landmarks directly from appearance data. By using appearance information, the

user can specify high-level commands and assign tasks in a more intuitive manner.

During our studies, we have identified problems that we felt important to address. We

list these problems in the following as future work.

In chapter 2, our proposed method, SILK, estimates similarity transformations, i.e.,

translation, rotation, and scale, between images. Since the Gaussian function, used in

(2.8), behaves well under affine transformations, extending SILK to work for affine trans-

formation is trivial. However, it is unclear how to extend the method for projective trans-

formation at this moment. Also, future work will involve extending our method to use
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a coarse-to-fine strategy to avoid local minima and develop performance metrics of the

proposed registration method.

When estimating the 3D structure of PBFs in chapter 3, the weights in the objective

function (3.10) are used to balance the cost of each geometric constraints, e.g. reprojection

error and coplanarity error. Since these costs are in different units, e.g. the reprojection

error is computed in the image domain while the coplanarity error is computed in 3D,

finding the right balance for the weights of geometric constraints can be difficult. In our

approach, each weight is determined by the initial value of its corresponding geometric

cost and is used to normalize each geometric cost so that each cost does not overwhelm

the others. However, the initial value of each cost term will not accurately capture the

unit difference between geometric constraints. Hence, we will explore geometric costs

that can be computed in the same domain. Another issue is that the weights in objective

function (3.10) are fixed during the entire optimization process. Since this can affect

the optimization performance, we will explore the effects of weight updating during the

optimization process using penalty methods in non-linear programming.

In chapter 4, the visual SLAM map and lidar map is matched by manually specifying

corresponding wall corners. We will improve wall corner correspondence by developing a

topological graph matching algorithm. Also, a shortcoming of the proposed method is the

reliance on vertical plane distribution. Although most indoor environments are dominated

by vertical planes, this method would fail in an environment with very few vertical planes.

We are interested in extracting other signatures such as object boundary points to handle

the problem.

In our current visual programming system, the user commands are limited to motion

commands that are related to the robot’s position. To meet different application needs,

an extended set of commands need to be developed so that the commands can be used

to control the robot’s orientation. We would also like to extend our method so that the
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optimal motion sequencing is not restricted to the exact pose graph locations.

High-level scene representation for mobile robots has yet to be explored fully. Addi-

tional to the problems mentioned above, our long term goal is aimed toward the devel-

opment of higher-level scene representation that uses landmarks with semantic meaning.

This can be achieved with the help of recent advances in statistical learning methods.

The outcome of new high-level scene representations will allow mobile robot navigation

systems to be more robust and enable communication and sharing of spatial knowledge

among robots and humans.
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