
INVESTIGATION OF A MARKOV CHAIN ON FERRERS BOARDS

A Thesis

by

WILLIAM BARHAM LINZ

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Catherine Yan
Committee Members, Joel Zinn

Michael Longnecker
Head of Department, Emil Straube

May 2016

Major Subject: Mathematics

Copyright 2016 William Barham Linz



ABSTRACT

This thesis is an investigation of some of the basic combinatorial, algebraic and

probabilistic properties of a Markov chain on Ferrers Boards (i.e., a Markov chain

whose states are permutations on a given Ferrers Board). This is an extension of

extensive work done over the last fifty years to understand the properties of a Markov

chain known as the Tsetlin library. We will review the extensive literature surround-

ing the Tsetlin library, which also allows for the problem to be contextualized as a

particularly nice model of a procedure for searching a database of files. Some of the

specific questions we will explore include the transitivity of the Tsetlin library (in

fact, we will prove that the extended library is transitive and at most n steps are

needed to reach any state from an arbitrarily chosen state); the Tsetlin library’s re-

lation to permutation inversions and some other combinatorial statistics; and finally

the computation of the Tsetlin library’s stationary distribution and eigenvalues in

some easy cases.

Although our analysis of the combinatorial aspects of the extended Tsetlin library

is complete, we have been unable to fully describe the probabilistic aspects of the

Tsetlin library. We are able to describe the stationary distribution for specific easy

cases, but further analysis for more complicated cases has proven difficult. Compu-

tations have been done using the mathematical software Maple to determine if any

patterns may be discerned from specific examples of the more complicated cases.

However, the data indicates that the actual stationary distribution differs from our

conjectured formula for the stationary distribution, which gives a need for further

analysis in future work. We have also not been able to describe the eigenvalues or

convergence to stationary for even the simplest Ferrers boards, but we do have var-
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ious computations which we hope will be the basis for future exploration of these

topics.
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1. INTRODUCTION AND BACKGROUND MATERIAL

This thesis is designed to be as self-contained and comprehensive as possible. We

therefore begin with a review of basic notions and definitions.

1.1 Review of Permutations and Ferrers Boards

1.1.1 Permutations

Throughout this section, we let [n] = {1, 2, 3, . . . , n}, the set consisting of the

first n positive integers. A permutation on [n] is some ordering (or arrangement)

of the elements of [n]. More formally, a permutation may be defined as a bijective

function σ : [n] → [n] (where we identify the permutation σ corresponding to an

arrangement i1i2 · · · in with the bijective function σ such that σ(j) = ij for each

j ∈ [n]). For example, considering the set [4], 1234 and 3142 are permutations of

size 4 (size, of course, is defined as the number of elements of the permutation). The

study of permutations and their properties is very ancient and a fundamental part

of combinatorial theory.

We now present a more pictorial way to view permutations; namely, by viewing

a permutation of size n as a placement of n tokens on an n× n grid so that no two

tokens are in the same row or column. More illuminatingly, this placement may be

described as a placement of n nonattacking rooks on an n × n chessboard (since a

rook in chess can only attack along rows or columns). We present an example to

demonstrate this placement.

In Figure 1.1, we have placed the permutation 3142 on a 4 × 4 grid with bullet

points denoting the elements of the permutation. The placement is accomplished by

identifying the horizontal columns with the placement of elements of the permutation

(with the ith element in the permutation corresponding to the ith column in the
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•

•

•

•

Figure 1.1: The permutation 3142 on a 4× 4 grid

board) and by identifying the vertical rows of the board with the values placed in

the permutation (so that if a token is placed in the jth row from the bottom row, it

corresponds to the element j in the permutation). For example, in the permutation

3142, as 3 is in the first position, in the first column of the board a token will be

placed on the third row up from the bottom of the board; since 1 is in the second

position of 3142, in the second column a token will be placed in the first row up from

the bottom; and so forth. It is clear from this description that the set of permutations

of [n] is in one-to-one correspondence with the placement of n nonattacking rooks

on an n× n grid.

1.1.2 Ferrers Boards

We are now able to define the concept of a Ferrers Board, which in some sense

distorts the permutation setup. We let the rows of an n × n board be labeled

ascendingly r1, r2, . . ., rn, (so that r1 corresponds to the bottom row), and also let

|ri| denote the number of squares in row ri.

Definition 1. A Ferrers Board is an n× n board (or shape) such that |r1| ≤ |r2| ≤

· · · ≤ |rn| and so that |ri| ≥ i for each i ∈ [n]. Equivalently (although somewhat

informally), a Ferrers board B is an n × n shape with a missing section λ in the

lower right corner, so that λ has no “holes” and so that the main southwest-northeast
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diagonal is in B. We may write B = (n× n)− λ.

Since the classical case of a full board is achieved when λ = ∅, it is clear that the

Ferrers board description is a generalization of the previous setting. Permutations on

Ferrers boards are defined in the analogous way as in the full board, as a collection

of n nonattacking rooks. In general, the set of permutations on a Ferrers board

B = (n × n) − λ does not form a subgroup of the symmetric group Sn, so we must

study the combinatorial properties of permutations on Ferrers boards more closely.

We will also make a distinction between rectangular and nonrectangular Ferrers

boards. A rectangular Ferrers board is a board in which λ is a rectangle, i.e. λ = a×b

for some a, b ≥ 0. A nonrectangular Ferrers board is a board in which λ is not

rectangular. Examples of both of these kinds of boards are given in Figure 1.2.

(a) A rectangular Ferrers Dia-
gram

(b) A non-rectangular Ferrers
Diagram

Figure 1.2: Examples of rectangular and nonrectangular Ferrers boards.

Although many of our combinatorial results will apply to arbitrary Ferrers boards,

previous work and new computations indicate that rectangular Ferrers boards should

be easier in principle to study, as many some properties which are held in the classical

full board case are only preserved by rectangular Ferrers boards.
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We will also sometimes use the following combinatorial structure as the setting

for the problem. This structure is equivalent to a Ferrers board (and we will give an

example demonstrating this equivalence), but proceeds from a different viewpoint.

Suppose that the set [2n] = {1, 2, . . . , 2n} is divided into two sets of n elements.

One set L is a of “left arcs,” the members of which are denoted by Li, 1 ≤ i ≤ n,

while the second set R is a set of “right arcs,” the members of which are denoted Ri,

for 1 ≤ i ≤ n. We use the symbol < to mean “to the left of.” Then, a pattern P is

an arrangement of the left arcs and right arcs so that the following holds:

1. If i < j (the usual ordering on the natural numbers), then Li < Lj and Ri < Rj.

2. For each i ∈ [n], Li < Ri

For example, if n = 4, L1L2R1L3R2L4R3R4 is one possible pattern. If the rows of

a Ferrers boards are labeled {ri}i=1 ascendingly, and the columns are labeled {ci}i=1

left-to-right, then under the maps Li ↔ ci and Rj ↔ rj, we can transform any

pattern P on [2n] into a Ferrers board B of size n, and this transformation is a

one-to-one correspondence. We give an example to illuminate this correspondence:

•

•

•

•

1 2

3
4

5
6

7

8

1 2 3 4 5 6 7 8

Figure 1.3: Equivalence between Ferrers Board of size 4 and Pattern on [8]
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In Figure 1.3, the left and right arcs are drawn how they are usually pictorially

represented (like arcs of a circle). Figure 1.3 also shows the equivalence between

permutations on a Ferrers board and what are called matchings on a pattern P . We

now subsequently define matchings on patterns P .

A matching is a set of n pairs {(Li, Rj)} such that in each pair Li < Rj and

such that each Li and Rj occur in exactly one pair (although not necessarily in the

same pairs). There is an easy one-to-one correspondence between matchings M and

permutations σ: (Li, Rj) ∈M ↔ σ(i) = j.

Although we will mostly work with Ferrers boards or the traditional permutation

formulation, many of the combinatorial results will be easier to state (and prove) in

terms of matchings.

1.2 Review of Markov Chains

We will now give a brief review of the elementary definitions of and relating to

Markov chains. This will then enable us to define the Tsetlin library.

A Markov chain is a sequence of trials such that the probability the chain is in

a given state E after k trials is only dependent on the state the chain is in after

k−1 trials [3]. More precisely, if X1, X2, . . . , Xn denote the states of a finite system

at time t = 1, t = 2, . . ., t = n, then the defining characteristic of Markov chains

(considering the Xi’s as random variables) [8]:

P (Xn = xn|X1 = x1, X2 = x2, . . . Xn−1 = xn−1) = P (Xn = xn|Xn−1 = xn−1).

We will always assume that the Markov chain has stationary distribution variables

- that is, P (Xn = xn|Xn−1 = xn−1) is independent of the choice of n (so when

considering a transition from state i to state j, we are free to assume that the chain

is initially in state i). If i and j are two states of a Markov chain, then we can

5



let pij = P (Xn = j|Xn−1 = i) for each choice of i and j. These are the transition

probabilities of the Markov chain, and we can form T = (pij), the transition matrix

of the Markov chain. The eigenvalues of T are referred to as the eigenvalues of the

Markov chain.

The stationary distribution of a Markov chain is a probability vector π (i.e. a

vector whose entries sum to 1) such that πT = π. The stationary distribution need

not in general exist or be unique. Under some suitable technical hypotheses, the

vector π may be understood as the limiting distribution to which the Markov chain

converges. For the Markov chain, we will consider, the Tsetlin library, the existence

and uniqueness of a stationary distribution is guaranteed, since the chain is finite,

aperiodic and irreducible [3].

1.3 Three Equivalent Definitions for the Tsetlin Library

We will first define the Tsetlin library in the classical case of a full board (with

λ = ∅) and then generalize to the case of arbitrary Ferrers boards. The original

definition was in the case of permutations as list of elements, and since the full

board is symmetric, there is little confusion about how the equivalent definitions

relate to each other. In the case of an arbitrary Ferrers board, however, certain care

must be taken, as an arbitrary Ferrers board will not in general possess the same

symmetry as the full board. In addition to the description of the Tsetlin library on

Ferrers boards, we will give equivalent definitions in terms of lists of elements (the

typical word formulation) and also a description in terms of matchings on certain

combinatorial patterns.

1.3.1 The Classical Tsetlin Library

Suppose that B1, B2, B3, . . ., Bn are a set of n books placed on a shelf in some

order. At any time t, a librarian may select a book Bj with some probability pj
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(
∑n

i=1 pi = 1), and place it at the left end of the shuffle, moving other books to the

right as needed to fill in the gap now created. Thus, if the initial arrangement of the

books was B1B2 · · ·Bn, and book Bj was selected, the new arrangement of the books

would be (from left to right)BjB1B2 · · ·Bj−1Bj+1 · · ·Bn. This process defines a finite,

aperiodic Markov chain known as the Tsetlin library (the term library comes from

this image of placing and arranging books on a shelf), and the operation of selecting

a book and placing it at the leftmost spot on the shelf is known as the move-to-front

rule. More formally, given a permutation σ (which we understand in this context as

a bijective function from positions in the permutation to the actual placeholders of

the elements), we can more formally define the Markov chain as follows:

Definition 2. For each j ∈ [n], let Oj denote the operation which selects j from a

given permutation σ and such that Oj(σ) = τ . Then, τ satisfies the following:

τ−1(i) =


σ−1(i) + 1, if σ−1(i) < σ−1(j)

1, if i = j

σ−1(i), if σ−1(i) > σ−1(j)

.

The Tsetlin library may be generalized in many ways - one particular way would

be to be look at other classes of permutation operations, which takes as inputs per-

mutations of size n, and outputs another permutation of size n depending on which

element of the permutation was chosen. We will instead consider a generalization of

the Tsetlin library to Ferrers boards.

1.3.2 The Tsetlin Library on Ferrers Boards

Let B be a Ferrers board, and let ci denote the ith column from the left of

B. Then there is a lowest row rβi such that the square (rβi , ci) ∈ B. Consider a

permutation σ on B, and suppose that initially σ contains the square (rj, ci) (where
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the indexing of rows is ascending and the indexing of columns is from left-to-right).

The Tsetlin library defined on B will be viewed as choosing the column ci (denoted

by operation Oi) so that in Oi(σ), the token in column ci will move to the lowest row

in ci, and all rows in between the token”s original and final positions will be moved

up by one. Formally:

Definition 3. For each j ∈ [n], let Oi denote the operation which selects a column ci,

and suppose that σ is a permutation such that (rj, ci) is in σ. Then, the permutation

Oj(σ) satisfies the following properties:

1. (rβi , ci) ∈ Oi(σ)

2. (rm+1, ck) ∈ Oi(σ) if (rm, ck) ∈ σ and βi < m < i

3. (rb, cl ∈ Oi(σ) if (rb, cl) ∈ σ and b < βi or b > i

We show an example in Figure using the pictorial representation of a Ferrers

board below.

We can equivalently define the Tsetlin library on permutation using the tradi-

tional element approach on [n] with a few modifications. First, by identifying rβi

with the number βi, we obtain a nondecreasing sequence of numbers {βj}nj=1. It is

not difficult to see that given any board B, the sequence {βj}j=1 can be defined, and

conversely given such a nondecreasing sequence, with the condition that βi ≤ i for

each i ∈ [n], a unique Ferrers board B is defined. We can now define the Tsetlin

library on permutations as classically understood:

Definition 4. For each j ∈ [n], let Oj denote the operation which selects j from a

given permutation σ and such that Oj(σ) = τ . Then, τ satisfies the following:

8



τ−1(i) =


σ−1(i) + 1, if βj ≤ σ−1(i) < σ−1(j)

βj, if i = j

σ−1(i), if σ−1(i) > σ−1(j) or σ−1(i) < βj

.

The third formulation of the Tsetlin library on Ferrers boards will be on patterns

and heir associated matchings. Given Li in some pattern P , let Ji = {j|Rj > Li}

and set βi = min (Ji). Let M be any initial matching on P , and let Oi denote the

operation transforming M via Li. If we set M ′ = Oi(M), then the following holds:

1. (Li, Rβi) ∈M ′

2. (Lj, Rm+1) ∈M ′ if (Lj, Rm) ∈M and βi < m < i

3. (Lb, Rk) ∈M ′ if (Lb, Rk) ∈M and k < βi or k > i

By the earlier equivalences of permutations as elements to permutations on Fer-

rers boards, and permutation on Ferrers boards to matchings on patterns, it is clear

that all three of these formulations of the Tsetlin library are equivalent. In any case,

the formulation preserves the essential viewpoint of a move-to-front rule, but defines

the “front” for a given permutation element based on the structure of an underlying

Ferrers board.

9



2. LITERATURE REVIEW

We now briefly state the main results relating to the study of the classical Tsetlin

library and also briefly consider applications of the Tsetlin library and different

generalizations that have been studied.

2.1 Review of Basic Results in the Existing Literature

The Tsetlin library is named after the Soviet mathematician Tsetlin, who studied

some simple examples of self-organizing systems in his work on automata [12]. Hen-

dricks defined the Markov chain on permutations now known as the Tsetlin library,

and computed its stationary distribution in two different ways (one by induction

and using the defining equations of a stationary distribution [5], and one by more

combinatorial reasoning[7]). Hendricks was able to prove that for the permutation

α = 123 · · ·N , the stationary probability µα is given by

µα =
N∏
i=1

(
pi∑N
j=1 pj

)
,

and similar results apply for other permutations. Hendricks also considered basic

rules similar to the move-to-front rule, such as a transposition rule (where when

i is selected, i is moved one to the left, instead of to the front of the line)[6][7].

Much of the work surrounding these questions has focused on the eigenvalues of

the chain’s transition matrix, or on the average search cost for the items. Rivest

[11] was able to show, for instance, that the long term average search cost for the

transposition rule is less than for the move-to-front rule. However, Bitner[1] was

able to show that, on the contrary, certain distributions yielded quicker convergence

to stationary for the move-to-front rule than for the stationary rule. As the Tsetlin
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library models a relatively simple system for searching a collection of files, the area

continues to be of interest to mathematicians and computer scientists, with Fill[4]

noting applications to binary search trees, VLSI circuit simulation, data compression

and communications networks.

2.2 Relation to Previous Work by the Author

The eigenvalues for the classical Tsetlin library have been computed indepen-

dently by Donnelly[2] and Phatarfod[10]. It is known that the eigenvalues are sums

of the form
∑
pi where the sum may be taken over any number of terms except

for n − 1. 0 and 1 are also clearly eigenvalues (and it is known that in general 1 is

the maximal eigenvalue). The multiplicities of the eigenvalues correspond to certain

permutations called derangements, which are permutations for which no element is

in its “proper place” (in particular, a derangement is a permutation σ with no fixed

points). Thus, if an eigenvalue is a sum taken over m elements of the permutation,

then its multiplicity is Dn−m, the number of derangements on n−m elements.

The author’s undergraduate thesis [9] investigated properties of derangements on

Ferrers boards. Given any permutation σ, one can in general define a derangement to

be any permutation which has no elements in the same place as σ. On a Ferrers board,

this is equivalent to stipulating that the derangement have no tokens overlapping

with one of the initial permutation. It is clear in the classical case that the number

of derangements is independent of the initial choice of permutation. The author

investigated the conditions under which derangment number is still independent of

the initial permutation in the Ferrers board case. The answer is that the derangement

number is independent of the initial permutation only in the case that the Ferrers

board is rectangular. Hence, it has been conjectured that the eigenvalues of the

Tsetlin library defined on the Ferrers board should have a connection to derangements
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on the Ferrers board in a similar way to that observed in the classical case. At present,

we have only computations and conjectures - no actual formula for the eigenvalues

or their multiplicities in even simple cases of the Ferrers boards.
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3. COMBINATORIAL AND ALGEBRAIC PROPERTIES OF THE TSETLIN

LIBRARY

In the classical setting of the Tsetlin library, the shape of the board on which

the permutations exist is highly symmetric, so certain combinatorial properties of

the Tsetlin library (that in some sense describe how the operations act on the per-

mutations) are not very interesting. However, in the more general case of a Ferrers

Board B, these operations are much more nontrivial and interesting. In the classical

case, not only is it clear that the Tsetlin library is transitive, but it is very easy to

see that transitivity can be accomplished in at most n moves. We will in fact prove

that, as in the classical case, not only is the Tsetlin library transitive, but also any

permutation can be reached from any other permutation by a sequence of at most

n operations (and further, this sequence may be chosen independently of the initial

permutation). We also investigate some results related to permutation inversions

under the operation of the Tsetlin library, and consider some algebraic properties

such as commutativity of the various operations on the Tsetlin library.

3.1 Transitivity of the Tsetlin Library

Transitivity is clear in the classical case for the full set of permutations. Suppose

that one wishes to reach the permutation i1i2 · · · in. Then, the sequence of opera-

tions OinOin−1 · · ·Oi1 will yield the desired permutation. Note that this sequence

of operations will give i1i2 · · · in regardless of what the initial permutation is. This

procedure will not in general work for an arbitrary Ferrers board. In fact we can

describe precisely the permutations on an arbitrary Ferrers board B for which this

procedure is satisfactory.

Theorem 1. Suppose that there are k distinct levels of B (k distinct values of βi in

13



the sequence defining B). Then the sequence of operations described above will yield

the permutation i1i2 · · · in if and only if βik ≤ βik+1
for each k ∈ [n− 1].

One can induct on the number of levels of B to obtain this theorem, or simply note

that by the conditions the highest level will be set first (in relation to each other),

than the second-highest level, and so on, and there is no possibility of distortion in

the values.

We now consider transitivity for an arbitrary Ferrers board, for which we will

prove the following result:

Theorem 2. Given any two states i and j of the Tsetlin library on an arbitrary

Ferrers board B, there is a sequence of n operations that will transform state i into

state j. Furthermore, this sequence of operations is independent of the initial state

i.

From the discussion of the classical case, we can determine the appropriate way

to order the elements within each level in the permutation (and it is clear that this is

necessary to obtain the permutation). From this observation, with an induction and

some small manipulations, we can determine that for each σ on B, there is a sequence

of operations which will yield σ starting from any permutation. Furthermore, each

operation is selected only once, so transitivity can always be achieved in n moves or

less (as in the classical case).

Proof. We first consider a rectangular board B = (n× n)− (a× b). Let A1 and A2

be the distinct levels of B. If σ = σ1σ2 · · · σn is a desired permutation on B, we can

describe the sequence of operations necessary to achieve σ as follows:

1. The elements of σ in the two levels A1 and A2 can be properly sorted (e.g. by

restriction)
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2. If the topmost elements of σ are in A2, their operations may come first until a

first element in A1 is reached.

3. For all other σi:

(a) If σi is in level A1, do nothing.

(b) If σi is in level A2, then interlace σi by moving σi to the right past a

elements of the permutation in level A1 (starting initially from the classical

permutation construction and keeping the elements of A1 and A2 sorted

in their correct order).

The statement in the third part has an equivalent formulation: suppose that

σi is destined to be in row rk, where k ≥ a. Then, the operation Oσi will be the

(n − (|rk| − a)th operation performed (equivalently, the (|rk| − b + 1)th operation

from the end).

It is clear that this interlacing can always be done: by construction, each of the

elements of A2 has at least a elements of A1 below it in B, so this movement to the

left by a spaces is always possible.

If the topmost m elements of σ are in A2, selecting these elements first followed

by some sequence including all elements above it after the first m movements will

push these elements to the top. We may therefore suppose that some element j of

A1 precedes the elements of A2. Then, j will be selected first by the algorithm, and

there must be a elements of A1 that can push j forward enough so that the next

element of A2 can follow. But we have seen that such elements always exist, so this

interlacing will yield the desired sequence σ.

Now, suppose that we know how to order the operations for a board with k − 1

levels, and consider a board B with k levels A1, A2, . . ., Ak. By the inductive
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hypothesis, the order of operations for the restriction to the first k − 1 levels is

known. To achieve any σ on B, we can order as follows:

1. If the topmost c elements of σ are on level Ak, these can be ordered first (by

the rule for permutation ordering).

2. After the first element of σ not on level Ak is chosen, for all subsequent elements

in level Ak, let the operations proceed as they normally would if Ak were not

present. Then, if εi ∈ Ak, perform operation Oεi after the element in the desired

permutation immediately following εi moves to βεi (which is the lowest row to

which the elements in level Ak can go).

By following the order given by the inductive hypothesis, one can always push up

the necessary elements to follow εi (since indeed, if they are m elements over level

Ak, there must be l rows at the top above βεi , where l ≥ m). Therefore, if it is

possible for there to be a permutation with elements not from Ak in the topmost l

rows, then there are l −m such elements in the topmost rows in any permutation.

Thus, when these elements drop down, if the order given by the inductive hypothesis

is followed, the necessary elements in the desired σ will be eventually pushed to the

top, and must eventually be in one of the topmost l rows. But, they must find βεi

first, so the εi can be interlaced as necessary to yield the desired sigma. We thus

conclude that given any permutation σ on arbitrary B, there is a sequence of moves

which will achieve σ from any starting point.

We have shown that at most n moves are necessary, although in most particular

cases fewer than n moves will suffice. Further, for any particular case, the order

of operations certainly need not be unique. From the proof above, one can in fact

derive an order that will work (and an algorithm to produce the order), but both are

very messy to describe in the general case.
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We can also deduce some additional nice results in particular cases of desired per-

mutations, namely in the case of noncrossing and nonnesting permutations. We will

show what these permutations are by example (see Figure 3.1). They are equivalent

to the case of noncrossing and nonnesting matchings on a given pattern P .

R

R

R

R

(a) A Noncrossing Permutation

R

R

R

R

(b) A Nonnesting Permutation

Figure 3.1: Examples of noncrossing and nonnesting permutations

Proposition 3. Let P be any pattern and M a given matching on P . Then the

noncrossing matching can be reached by the sequence of operations O1O2 · · ·On and

the nonnesting matching by a sequence of operations OnOn−1 · · ·O1.

Proof. In this proof, we will abuse notation slightly as follows: if M is a matching,

and (Li, Rj) ∈M , then we will define ρ to be the function such that ρ(Li) = Rj. The

notation of ρ is meant to invoke the equivalence of permutations on Ferrers boards

and matchings.

The nonnesting permutation (which is the permutation on the northwest-southeast

diagonal) is a special case of Theorem 1, since {βi}i=1 is nondecreasing.

For the noncrossing permutation, we will use one of its properties: if i, j ∈ [n],

Li < Lj, then it is not the case that Li < Lj < ρ(Li) < ρ(Lj). We claim that,
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beginning from any arbitrary matching, selecting the vertices in the left part of the

matching in the sequence O1, O2, O3, . . ., On will give the noncrossing matching.

Suppose that τ is the resulting matching after this sequence of n moves is performed.

Let i, j be arbitrary elements of [n] as above. We have two cases: βi = βj and βi < βj.

If βi = βj, if ρ′ is the new matching after Lj is selected, then since Li has already

been selected ρ′(Li) > βi = βj, hence Li < Lj < ρ′(Lj) < ρ′(Li). Since Li and Lj

are not selected in any subsequent matching, this ordering relation is preserved, and

Li < Lj < τ(Lj) < τ(Li).

If βi < βj, let ρ1 be the matching before Lj is selected. There are then two

subcases: ρ1(Li) ≥ βj and ρ1(Li) < βj. The first subcase is equivalent to the

case above. In the second subcase, selecting Lj will leave ρ1(i) fixed, so we will

subsequently have Li < ρ(Li) < Lj < ρ(Lj) for all matching states σ following ρ1.

In particular, Li < τ(Li) < Lj < τ(Lj). It is thus never the case that Li < Lj <

τ(Li) < τ(Lj), so we conclude that τ is the noncrossing matching.

3.2 Combinatorial Properties of the Tsetlin Library

We now investigate some combinatorial properties of the Tsetlin library, mostly

in relation to inversions of permutations, commutativity, and relation to noncrossing

and nonnesting permutations.

Noncrossing and nonnesting permutations are particularly nice cases of permu-

tations on Ferrers boards that correspond in some sense to opposite extremal cases

(in the full board case, the nonnesting permutation would be the diagonal from

northwest to southeast).
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3.2.1 Commutativity and Fixed Points of the Tsetlin Library

We will assume that a board B is given (but place no special restrictions on the

board). We now make a few observations about fixed points of an operation Oi being

performed on σ.

Proposition 4. The operation Oi fixes σ if and only if (rβi , ci) ∈ σ.

Proof. This follows from Oi((rk, ci)) = (rβi , ci), and simply noting that if (rβi , ci),

then there are no squares to move.

By considering the square token that is located in the bottom row, it is easily

seen that every σ admits at least one operation which fixes σ. In a similarly easy

way, it can be shown that the only board on which every permutation is fixed by

every operation is the case when βi = i for all i (this is in some sense the trivial case

of a Ferrers board).

We now state a few results related to commutativity on the board. For these

results, we will use the language of patterns and matchings. We may suppose a

pattern P is given, on which a matching M is placed.

Proposition 5. Suppose that Li and Lj are two left arcs with Li < Lj. Then, if

(Li, Ra), (Lj, Rb) ∈M and Li < Ra < Lj < Rb, we have that OiOj(M) = OjOi(M).

Proof. The only elements of P on which Oi operates are those in between Li and

Ra, while the only elements on which Oj operates are those in between Lj and Rb.

These two sets are distinct.

Corollary 6. Apart from the classical permutation matching pattern, on any pattern

P there is a matching M and operations Oj and Ok for which OjOk(M) = OkOj(M).
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Proof. The classical permutation case is the only one in which there are no Li, Lj,

Ra, Rb such that Li < Ra < Lj < Rb. On any other pattern, such pairs exist, so

select M containing those pairs.

In a similar way, it can be shown that an operation Oj which commutes with

every other operation for every matching is possible if and only if the pair (Li, Ri)

exists in every matching on P , which happens if and only if Li is isolated in some

sense (that is, if every matching consists of a matching on the first 2i − 2 arcs, the

pair (Li, Ri) and a matching on the final 2n− 2i arcs).

We thus observe that commutativity of the operations is closely related to the

pairs (Li, Ra), (Lj, Rb) in a matching M for which Li < Ra < Lj < Rb. This

number is known as the alignment number of the matching. We will investigate

these pairs more closely in the subsequent section, along with the crossing pairs

(where Li < Lj < Ra < Rb) and nesting pairs (where Li < Lj < Rb < Ra).

3.2.2 Inversions

We first note that for any matchingM on any given pattern P , alignment number+

crossing number + nesting number =
(
n
2

)
, since each pair of matchings must satisfy

one of the three cases, and there are
(
n
2

)
such pairs. The trivial pattern is the pattern

for which there is maximal alignment, while the classical pattern is the pattern for

which there is minimal alignment. In fact, alignment is a property of the pattern

independent of the matching placed on it, and crossing number + nesting number is

a constant for any matching M on a given pattern P . We now relate some of these

quantities to the inversion number of a permutation on a given Ferrers board B.

Definition 5. Suppose that we have a permutation ρ (with no restrictions). Then,

for each i ∈ [n], we define the inversion number of i to be invρ(i) = {j|ρ−1(i) >

ρ−1(j), i < j}. By computing the inversion number for each i, we can write out the
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inversion table (which is a sequence of n numbers cataloging the number of inversions

each number possesses). The sum of all inversion numbers of σ gives the number of

inversions of σ.

We now briefly describe what crossings, nestings and alignments look like on a

Ferrers board. Nestings correspond to pairs of tokens for which one is down and to

the right from the other (i.e. i < j, σ(i) > σ(j)). Alignments are pairs of tokens

where one is up and to the right, but the column of the token up and to the right

does not extend to the row of the other one. Crossings are all other pairs of tokens.

We now note the following: in the Tsetlin library formulation, we utilize σ−1, to

be able to describe the operation in a similar way to the move-to-front rule. We find

that invσ−1(i) = {j|i < j, σ(i) > σ(j)}, which is the number of inversions in which i

is up and to the left. Thus, the inversion number of a permutation is related to its

inverse permutation description, which is transformed via the different operations to

form a Markov chain.
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4. PROBABILISTIC PROPERTIES OF THE TSETLIN LIBRARY

We investigate some of the probabilistic properties of the Tsetlin library, in par-

ticular looking at the chain’s stationary distribution and eigenvalues. Although these

questions have been well-studied and analyzed in the classical case, in the case where

the library is defined on a Ferrers Board B we mostly have only partial results and

computations of specific examples. These computations do serve to demonstrate

that one of the obvious conjectures for a generalization to the Ferrers board case is

invalid, and that some deeper properties of the Ferrers board or the operations of the

Tsetlin library on the permutations of B may be needed to give a complete analysis

of the Tsetlin library on Ferrers boards.

4.1 Stationary Distribution Computations

In section 2, we gave Hendricks’[5] result for the stationary distribution in the

classical permutation case. Computations were carried out in Maple for boards of

size 4 with λ variously 1 × 1, 2 × 1, 1 × 2 and the single nonrectangular case (the

case 2 × 2 was not considered since it reduces to a product of two permutations of

size 2, for which the result is already known). The computations did not reveal any

sort of recognizable pattern for the non-permutation case, and were different from

Hendricks’ result in the 2×1 case (which is 2 squares missing from the last column).

Thus, for even relatively simple configurations, there are extra terms which need to

be accounted for in a complete description of the stationary distribution, and for

which we are at present unable to provide an adequate explanation. However, for

the case of λ = 1 × k, we are able to give a complete description of the stationary

distribution, and find that it is similar to Hendricks’ result in the classical case. We

will first show the case when B = (n× n)− (1× 1) and then proceed to λ = 1× k.
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The argument is essentially an adaptation of Hendricks’ original argument[5], so it

will give us the ability to see how the distribution is proven in the classical case as

well.

Consider the Ferrers Board B with one missing square in the lower right corner

(thus if |ri| represents the number of squares in row ri, we have |r1| = n− 1, |rj| = n

for 2 ≤ j ≤ n). We denote the probability that column ci is selected by pi.

To prove his claimed stationary distribution, Hendricks defined a family of func-

tions as follows: Let {xi}Ni=1 be any set of N distinct positive real numbers, and let

X be the collection of permutations of {xi}i=1. Then, we can define the real-valued

function φN on X by

φN(x) =
N∏
n=1

(
xin∑N
j=n xij

)
,where x = (xi1 , . . . , xiN ) ∈ X.

We can define a similar function under the same setup to that which Hendricks

described as follows:

Let ψN be a real-valued function on X defined as follows:

Definition 6. If x = (xi1 , . . . , xiN ) ∈ X, then set

ψN(x) =
xi1∑n

j=1 xij − xN

N∏
n=2

(
xin∑N
j=n xij

)
.

Note that under this definition, ψN(x) =
xi1∑N

j=1 xij−xN
φN−1(xi2 , . . . , xiN ).

We are now in position to state the proposition for the stationary distribution:

Proposition 7. Suppose that the permutations on the Ferrers Board B = (n× n)−

{(r1, cn)} are enumerated by the integers 1, . . . , n!− (n− 1)!. Let τk = (i1, . . . , in) be

one such permutation, and let B(τk) be the corresponding state of the Markov chain.
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If µk represents the stationary probability of B(τk), then we have that

µk =
pi1∑

j=1 pij − pn

n∏
m=2

(
pim∑n
j=m pij

)
.

Proof. Since pi1 + · · ·+ pin = 1, we can write that

ψn(pi1 , · · · , pin) =
1

1− pn
φn(pi1 , . . . , pin).

Thus, since the function ψn is equivalent to φn multiplied by a constant factor, we

can freely use many of the results that Hendricks utilizes in his calculations.

We proceed by induction on n, noting that the result is easy to see when n = 2

and can be verified computationally for n = 3. To achieve the permutation i1i2 · · · in

there are two separate cases to consider: the case where n is not in the second

position of the permutation, and the case where n is in the second position of the

permutation.

For the first case, we consider the permutation i1i2 · · · in. Now, using our inductive

hypothesis, we can borrow a result from Hendricks and have the following statement:

φn(pi1 , pi3 , . . . , pin+1) + φn(pi3 , pi1 , pi4 , . . . , pin+1) + · · ·+ φn(pi3 , pi4 , . . . , pin+1 , pi1)

=
1− pi2
pi1

φn(pi1 , pi3 , . . . , pin+1)

The stationary distribution µk is the unique solution of the system of equations

µk =

n!−(n−1)!∑
j=1

µjpjk for k = 1, 2, . . . , N !− (N − 1)!

For the permutation i1i2 · · · in, we can only reach this state of the Markov Chain
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by passing i1 from some permutation of i2 · · · in for which i2 6= n. Thus,

∑
j=1

µjpjk = pi1 [ψn+1(pi1 , pi2 , . . . , pin+1) + ψn+1(pi2 , pi1 , . . . , pin+1) + · · ·+

+ψn+1(pi2 , pi3 , . . . , pin+1 , pi1)]

= pi1 [
pi1

1− pn+1

φn(pi2 , . . . , pin) +
pi2

1− pn+1

φn(pi1 , pi3 , . . . , pin+1) +

+ · · ·+ pi2
1− pn+1

φn(pi3 , pi4 , . . . , pin+1 , pi1)]

= pi1µk +
pi2

1− pn+1

[φn(pi1 , pi3 , . . . , pin+1) + · · ·+ φn(pi3 , . . . , pin+1 , pi1)]

= pi1µk +
(1− pi2)
1− pn+1

φn(pi1 , pi3 , . . . , pin+1)

= pi1µk + (1− pi1)µk = µk.

Note that the above proof is essentially equivalent to Hendricks’ original proof.

For the second case, we can consider the permutation i1 n+ 1 i2 · · · in for ease of

notation, and let the corresponding state be B(τk′). There are two separate ways

that the permutation can reach B(τk′): one can be in the state already and select

i1, or one can be in a permutation of the form i1i2i3 · · · n+ 1 · · · in and select n+ 1.

Thus,
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∑
j=1

µjpjk′ = pi1ψn+1(pi1 , pn+1, pi2 , . . . , pin) + pn+1(ψn+1(pi1 , pn+1, pi2 , . . . , pin) +

+ · · ·ψn+1(pi1 , pi2 , . . . , pin , pn+1))

= pi1µk′ +
pn+1pi1

1− pn+1

(φn(pn+1, pi2 , . . . , pin) +

+ · · ·+ φn(pi2 , pi3 , · · · , pn+1))

= pi1µk′ +
pn+1pi1

1− pn+1

(
1− pi1
pn+1

)
φn(pn+1, . . . , pin)

= pi1µk′ + (1− pi1)ψn+1(pi1 , pn+1, . . . , pin) = µk′

This same method works when the missing section is of the form 1× k.

Proposition 8. Suppose that the permutations on the Ferrers Board B = n × n −

{(r1, cn−k+1), . . . , (r1, cn)} are enumerated by the integers 1, . . . , (n− k)(n− 1)!. Let

τm = (i1, . . . , in) be one such permutation, and let B(τm) be the corresponding state

of the Markov chain. If µm represents the stationary probability of B(τm), then we

have that

µm =
pi1∑

j=1 pij − (pn−k+1 + · · ·+ pn)

n∏
m=2

(
pim∑n
j=m pij

)
.

Proof. We can define the corresponding function

ψk,n(pi1 , . . . , pin) =
1

1− (pn−k+1 + · · ·+ pn)
φn(pi1 , . . . , pin).

The base case n = k + 1 is satisfied, since then the Ferrers Board can be thought of

as the disjoint union of one square (r1, c1) with a full k × k board, and it is easy to
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see that the claimed stationary distribution matches the computed one for the k× k

library computed by Hendricks.

Now, for the inductive step, assume that the stationary distribution matches the

claimed one for some N ≥ k+ 1. We have two separate cases - those for which there

no in the set {(r2, cn−k+1), . . . , (r2, cn)} are in the permutation, and those for which

no square from the bottom row above the missing section λ are in the permutation.

In the first case, the computation proceeds exactly as above in the 1× 1 case.

In the second case, we may for ease of notation suppose that the given permuta-

tion is of the form i1ji2i3 · · · , where j ≥ n− k+ 1. If B(m) corresponds to this state

in the Markov Chain, then we can compute

∑
j=1

µjpjm = pi1ψk,n+1(pi1 , pj, pi2 , . . .) + pj(ψn+1(pi1 , pj, pi2 , . . . , ) +

+ · · ·ψn+1(pi1 , pi2 , . . . , pj))

= pi1µm +
pjpi1

1− (pn−k+1 + · · ·+ pn+1)
(φn(pj, pi2 , . . . , ) + · · ·+

+φn(pi2 , pi3 , · · · , pj))

= pi1µm +
pjpi1

1− (pn−k+1 + · · ·+ pn+1)

(
1− pi1
pj

)
φn(pn+1, . . . , pin)

= pi1µm + (1− pi1)ψn+1(pi1 , pin+1 , . . . , pin) = µm

To show that is the stationary distribution, we must additionally show that∑
ψk,n(x) = 1. By induction, we know that φn(x) = 1 for all n. Then, if

(xi1 , xi2 , . . . , xin) is a n-tuple, we have that
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ψk,n(x) =
xi1∑

j=1 xj − (xn−k+1 + · · ·+ xn)
φn−1(xi2 , . . . , xin)

Summing over all permutations beginning with xi1 , and noting that the first

element of any permutation can only come from the set {1, . . . , n− k}, we have that

∑
ψk,n(x) =

n−k∑
j=1

xj∑
xi − (xn−k+1 + · · ·+ xn)

= 1.

4.2 Eigenvalues and Other Computations

As mentioned previously, computations have been carried out for the case where

the Ferrers board B is of size 4. In computing the eigenvalues for the rectangular

cases, we find that the eigenvalues are always of the form that was found by Donnelly

and Phatarfod (e.g. p1, p1 +p2, etc. are eigenvalues), and further no cases other than

the summation of some of the pi arise. However, even for the simplest case where

λ = 1× k, we do not know what the multiplicities of the eigenvalues are, and we do

not even have a proof that these are the only eigenvalues. We have some evidence

that these should be the only eigenvalues, and we speculate that the multiplicities of

the eigenvalues will have some relation to the derangement number (for rectangular

Ferrers boards).

Phatarfod [10] derives the eigenvalues in the classical case partly from a con-

sideration of time-dependent probabilities of the form P (Bi < Bj|t), where the Bi

notation is used to follow Phatarfod and is in reference to the book formulation

of the Tsetlin library (for our purposes, P (i < j|t) is an equivalent way to write

the associated probability). The “<” means Bi is to the left of Bj (or on the Fer-

rers board, the token in column i is below the token in column j). Since terms of

the form 1 −
∑
pi appear in the computation of the time-dependent probabilities,
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Phatarfod heuristically reasons that terms of that form should appear as eigenvalues

of the Tsetlin library (and rigorously proves this assertion). The computation in the

classical case is:

P (Bi < Bj|t) =
pi

pi + pj
+

(pi − pj)(1− pi − pj)t

2(pi + pj)

so that in the equilibrium case, as t→∞, P (Bi < Bj) = pi
pi+pj

.

We now compute P (Bi < Bj|t) for B = n× n− (1× k). If Bi and Bj are on the

same level (βi = βj), then the computation reduces to that above. We may therefore

suppose that βi = 1 and βj = k (we can compute P (Bj < Bi|t) = 1− P (Bi < Bj|t)

for the other case). There are exactly two cases: either Bi was initially to the left

of Bj and Bi was not subsequently selected, while Bj did not move ahead of it, or

after Bi’s last selection, Bj was not selected after another element on Bi’s level was

selected.

In the first case, there are (n − k)(n − 1)! permutations on B. If Bi is in the

bottom row, then in each permutation Bi < Bj, and there are (n− 1)! such permu-

tations. It does not matter if Bj is selected - since Bj cannot enter the first row,

Bi < Bj always, if none of B1, . . ., Bn−k are selected. This occurs with probability

(1−(p1+···+pi−1+pi+1+···+pn−k))t

n−k .

If Bi is not in the first row, then there are (n− k− 1)(n− 1)! such permutations,

and half of them have Bi < Bj. Thus, the initial probability is

P (Bi < Bj|t = 0)Biabove first row =
1
2
(n− k − 1)(n− 1)!

(n− k)(n− 1)!
=

1

2
− 1

2(n− k)
.
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Hence, the probability that Bi < Bj at time t in the first case is

(
(
1

2
− 1

2(n− k)
)(1− pi − pj)t

)

.

Combining this with the above calculation gives P (Bi < Bj|t = 0).

In the second case, there are two subcases - after Bi is selected for the last time

(or in the first row), Bj is not selected at all, or is not selected after one of B1,

. . ., Bi−1, Bi+1, . . ., Bn−k are selected. In the first case, the probability is relatively

straightforward to compute. If the last time Bi is selected is at time m, then the

probability is

P (Bi < Bj|t) = pi

t∑
m=1

(1− pi − pj)t−m = pi

(
1

pi + pj
− (1− pi − pj)t

pi + pj

)

In the second subcase, suppose that Bj is last selected at time l. Then, at times

m+ 1, . . ., l− 1, the only selections can have come from Bn−k+1, . . ., Bn. Therefore,

we compute that in this case

P (Bi < Bj|t) = pi

t∑
m=1

t∑
l=m+1

(1− (p1 + · · ·+ pn−k))
l−m−1pj(1− pi − pj)t−l

= pipj

t∑
m=1

(1− (p1 + · · ·+ pn−k))
t−m − (1− pi − pj)t−m

(1− (p1 + · · ·+ pn−k))− (1− pi − pj))
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=
pipj

(1− (p1 + · · ·+ pn−k))− (1− pi − pj))

(
1− (1− (p1 + · · ·+ pn−k))

t

p1 + · · ·+ pn−k
− 1− (1− pi − pj)t

pi + pj

)

Combining the above three expressions together gives P (Bi < Bj|t). In the

equilibrium case, as t→∞, we have that

PF (Bi < Bj) =
pi

pi + pj
+

pipj
(p1 + · · ·+ pn−k)(pi + pj)

,

where PF is used to indicate that this is the associated probability for Ferrers

boards of the form B = (n × n) − (1 × k). Note that if the uniform distribution is

assumed, then one obtains that P (Bi < Bj) = 1
2

+ 1
2(n−k)

, which is expected.

One can compute in theory compute more expressions of this sort along the same

lines, but the computations are not very elegant and become quite cumbersome. We

hope that this gives heuristic evidence in support of the conjecture for the eigenvalues,

but have not been able to prove a conjecture from this result.
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5. SUMMARY OF RESULTS AND FUTURE DIRECTIONS

In the course of this investigation, we have been able to extend the classical notion

of the Tsetlin library on permutations to the more general class of permutations

on Ferrers boards. We have been able to rigorously define the Tsetlin library as

a Markov chain in three equivalent ways, on equivalent combinatorial structures

(as permutations on Ferrers boards; in the classical formulation of permutations as

words; and as matchings on given patterns). We have been able to show that this

new Tsetlin library retains several properties of the classical Tsetlin library; most

prominently, that it is transitive, and that each permutation may be reached from

any other permutation by a sequence of at most n steps. We have also been able

to characterize the combinatorial action of the Tsetlin library on the permutations

of a Ferrers boards, and relate these movements to the well-known combinatorial

statistics of permutation inversions and nestings in matchings. We have also been

able to compute the stationary distribution in the case that the missing section of

the Ferrers board is of the form 1× k, and we have computations for cases of other

types. We also have computed specific expressions that we hope will be helpful in

analyzing the stationary distribution in the outstanding cases, and to more generally

compute the eigenvalues of the chain.

As there is a discrepancy between our actual computed stationary distribution

for the Markov chain in higher cases (cases where λ = a× b, with a ≥ 2, b ≥ 1), the

next step will be to investigate the source of this discrepancy, and to see if we are able

to assign a combinatorial interpretation for these new values. It is also hoped that

from these investigations, we may be able to study the eigenvalues of the chain and

their corresponding multiplicities in greater depth, and again assign a combinatorial
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interpretation to those values. Finally, as this research has applications in modeling

database searches, it may be interesting to compute particular values for the search

cost of the chain and other parameters that show how easy, efficient, or effective it

is to search for a given file in a database whose search is defined by this extended

Tsetlin library.
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