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ABSTRACT

Matrix multiplication is commonly used in scientific computation. Given matrices

A = (aij) of size l×m and B = (bij) of size m×n, the standard way to compute the

product C := AB is computing cij =
∑m

k=1 aikbkj. In this case, lmn multiplications

and ln(m− 1) additions are used. In 1969, V. Strassen found a surprising algorithm

to multiply 2 × 2 matrices using 7 multiplications instead of 8 in the standard al-

gorithm. In this way, n × n matrix multiplication can be computed using O(nlog
7
2)

scalar multiplication operations. If n is large, the Strassen algorithm is much more

efficient than the standard algorithm. After Strassen’s algorithm, numerous efforts

were made to reduce the complexity for n × n matrix multiplication. By 1986, the

bound was reduced to O(n2.38) by Coppersmith and Winograd. However this is an

asymptotic result rather than an implementable algorithm. The complexity has not

been significantly improved for 30 years.

Matrix multiplication is a tensor and one way to measure the complexity is using

its tensor rank. Any tensor can be written as finite sum of rank one tensors and

the rank for a tensor is the least number of rank-one tensors needed in the sum.

A theorem due to Strassen shows the tensor rank is a good measurement for the

complexity. One Bini’s theorem demonstrates that the border rank of the matrix

multiplication tensor M<n> is a complexity measurement for matrix multiplication .

Even though the problem may sound simple, the border ranks of small matrix mul-

tiplication tensors are still unknown. Suppose one wants to compute the border

rank of the tensor for the matrix multiplication of size m× 2 and 2× 2 denoted by

R(M<m,2,2>). R(M<m,2,2>) is closely related to the border rank of reduced matrix

multiplication tensor TBCLRS,m, where one entry is set equal to zero. For small m
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like 2 and 3, there are good geometric configurations in the border rank algorithms

for the tensor TBCLRS,m. My project is to understand the geometry of the good ex-

isting algorithms in the cases m = 2, 3. In the configuration of case m = 2, the limit

5-plane in the Grassmannian plane in the algorithm intersects with the Segre variety

in three special lines. For the case m = 3, the intersection of the limiting 8-plane and

the Segre variety consists of the union of a family of lines passing through a plane

conic and a special sub-Segre variety. I also try to find analogous algorithms to the

m = 2 case or disprove the existence of such algorithms.

iii



ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Professor J.M. Landsberg at Texas

A&M University. He helped me whenever I had some problems in the research or in

my writing.

I would like to thank my friend Yonghui Guan, a PhD student at Texas A&M

University. He would explain the concepts which I was confused about.

Finally, I would like to thank my roommate Yanhe Huang and my parents. They

supported me whenever I had a hard time in my master study.

iv



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Tensor products of vector spaces . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Dual space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Definitions for tensor products . . . . . . . . . . . . . . . . . . 2

1.2 Complexity of tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Tensor rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Border rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Relation between tensors and matrix multiplication . . . . . . . . . . 5

2. GEOMETRIC CONFIGURATIONS IN REDUCED MATRIX MULTIPLI-
CATION ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Border rank bounds for BCLRS tensors . . . . . . . . . . . . . . . . . 8
2.2 Geometric notations for border rank algorithm . . . . . . . . . . . . . 9
2.3 Configuration for TBCLRS,2 . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Configuration for TBCLRS,3 . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Similarities between above two border rank algorithms . . . . . . . . 14

3. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Nonexistence of certain improvement for algorithm in TBCLRS,3 . . . . 16
3.2 Generalizing the algorithm to case m = 4 . . . . . . . . . . . . . . . . 19

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



1. INTRODUCTION

1.1 Tensor products of vector spaces

1.1.1 Dual space

For a vector space V of dimension n, the dual vector space of V is defined as all

linear maps from V to C. It is a vector space over C under the addition and scalar

multiplication of linear maps.

V ∗ := {f : V → C|f is linear}

Given a basis of V denoted by {v1, v2, . . . , vn}, there is a natural dual basis for

V ∗–{v∗i }. v∗i is defined on the basis of V by v∗i (vj) = δi,j, then extends to V linearly.

V and V ∗ is of the same dimension. We can identify elements in V as column vectors

after fixing a basis in V , and identify elements in V ∗ with row vectors under its dual

basis. Then for the given basis, there is an isomorphism between V and V ∗ simply

by transposing the column vector to the row one, furthermore for f ∈ V ∗, v ∈ V ,

f(v) is just the row-column matrix multiplication.

f(v) =

(
a1, . . . , an

)
b1

...

bn

 =
n∑
i=1

aibi

with f =
∑n

i=1 aiv
∗
i and v =

∑n
i=1 bivi.

When V is a finite dimension vector space, there is a canonical vector space
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isomorphism Φ between V and (V ∗)∗ defined by

Φ(v)(f) = f(v)

with v ∈ V and f ∈ V ∗. Easy to check Φ is a one-one linear map and dimV=

dim(V ∗)∗, thus Φ is an isomorphism.

1.1.2 Definitions for tensor products

Next we define the tensor product of two vector spaces A and B in several ways,

where dim A= n and dim B=m.

1. A⊗1 B := {f : A∗ → B| f is linear}

2. A⊗2B := linear span of {a⊗2b; a ∈ A, b ∈ B|(a1+a2)⊗2b = a1⊗2b+a2⊗2b, a⊗2

(b1 +b2) = a⊗2 b1 +a⊗2 b2, ka⊗2 b = a⊗2 kb; a1, a2, a ∈ A; b1, b2, b ∈ B, k ∈ C}

3. A⊗3 B := {T : A∗ ×B∗ → C|T is bilinear}

Given a basis {ai}ni=1 of A and a basis {bj}mj=1 of B, it is easy to check:

1. A⊗1B is a mn dimensional vector space with basis ai⊗1 bj. Here ai⊗1 bj(a
∗
k) =

δi,kbj then extends to A∗ linearly.

2. A⊗2 B is a vector space with basis ai ⊗2 bj, it is of dimension mn.

3. A⊗3 B is a vector space with basis ai⊗3 bj. And ai⊗3 bj(a
∗
k, b
∗
l ) = δi,kδj,l, then

extends linearly.

From the argument above, we can see these three definitions are equivalent by

identifying their bases and checking the linear structure. So we can just write the

tensor product using A⊗B.
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Remark. There is a canonical isomorphism Φ13 between A⊗1 B and A⊗3 B defined

by

Φ13(f)(a∗, b∗) = b∗(f(a∗))

Easy to check that Φ13 is injective linear map between two vector spaces having the

same dimension. Thus it is an isomorphism. There is also a canonical isomorphism

Φ21 between A⊗2 B and A⊗1 B defined by

Φ21(a⊗2 b)(f) = f(a)b

then extends linearly to A⊗2 B. Also we can show Φ21 is injective,

Remark. From the definition 2 and 3, we can see the order of A,B doesn’t matter.

(ie. A⊗B ∼= B ⊗ A).

Next we extend the notion of tensor products to n vector spaces. Let A1, . . . , An

be vector spaces over C. Define by induction A1⊗ · · · ⊗An := (A1⊗ · · ·An−1)⊗An.

Claim. It is the space of n-linear maps A∗1×· · ·×A∗n → C. A∗1⊗· · ·⊗A∗n ∼= (A1⊗· · ·⊗

An)∗. Any element a1⊗· · ·⊗an ∈ A1⊗· · ·⊗An is defined as a1⊗· · ·⊗an(β1, . . . , βn) =

a1(β1) · · · an(βn) for any β1 ∈ A∗1, . . . , βn ∈ A∗n

We can prove the claim by induction. Since any f ∈ (A1 ⊗ · · · ⊗ An−1) ⊗ An, f

is a map (A1 ⊗ · · · ⊗ An−1)∗ → An. It is also a map A∗1 ⊗ · · · ⊗ A∗n−1 → An. Use f̄

to denote the n-linear map induced by f . f̄(a1, . . . , an−1, an) := an(f(a1⊗· · ·⊗an−1)).

1.2 Complexity of tensors

1.2.1 Tensor rank

Definition. T ∈ A1⊗ · · · ⊗An is said to have rank one if there exists ai ∈ Ai for any

i = 1, . . . , n such that T = a1 ⊗ · · · ⊗ an.
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Definition. T ∈ A1⊗· · ·⊗An, the rank of T is defined to be the smallest r such that

T can be written as the sum of r rank one tensors. Denoted by R(T ) = r.

Remark. For matrix A ∈ Cl×m, it can be viewed as an element f in V ∗ ⊗ U with

dimU = m and dimV = l. Claim that R(f) = rank of A (also rank of f as a linear

map). So the rank of a tensor is a natural generalization of rank of a matrix.

To see this, write A = (A1, . . . , Am) with Am ∈ Cl×1, we can assume after re-

ordering {A1, . . . , Ar} is linearly independent with r = rank ofA. Then {Ar+1, . . . , Am} ⊂

span{A1, . . . , Ar}. So f =
∑m

i=1 e
i⊗Ai, here ei is a fixed basis of V ∗, and Ai is the el-

ement in U with coordinate expression Ai, substitute Ar+1, . . . , Am with A1, . . . , Ar.

Then f =
∑r

i=1 v
i ⊗ Ai for some vi ∈ V ∗. So R(f) ≤ r.

For the other inequality, by the same argument above we know if f =
∑R(f)

i=1 bi⊗ui,

{bi} must be linear independent. Thus it can be extended to a basis for V ∗. The

rank of f is the dimension of Image(f)=span of all ui. Thus rank of f ≤ R(f).

1.2.2 Border rank

Definition. Let T ∈ A1 ⊗ · · · ⊗ An, the border rank of T is the least number r such

that T = limt→0 T1(t) + · · · + Tr(t) with Ti(t) of rank one for any t 6= 0 and any

i = 1, . . . , r. The border rank is denoted by R(T ) = r.

Remark. 1. In the definition given above, it is equivalent to say T lies in the

limiting r-plane of the r-planes spanned by T1(t), . . . , Tr(t).

2. Another way to define the border rank of a tensor is via the Zariski topology.

Use σ̂0
r ⊂ A1 ⊗ · · · ⊗ An to denote all tensors with rank at most r. σ̂r is the

Zariski closure of σ̂0
r , R(T ) can also be defined as the smallest r such that

T ∈ σ̂r, the two definitions are equivalent since the Euclidean and the Zariski

closure of σ̂0
r are the same.(see [6], §2.4.3)

4



3. R(T ) ≥ R(T ). Furthermore, if T ∈ A1 ⊗ A2, R(T ) = R(T ), because in this

case σ̂0
r ⊂ A1 ⊗ A2 is a closed set and can be viewed as matrices with all the

(r + 1) minors zero.

Example. Let T = a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1 ∈ A1 ⊗ A2 ⊗ A3, with

{a1, a2}, {b1, b2} and {c1, c2} linearly independent.

R(T ) = 3.

If not, case 1: R(T ) = 1; assume T = a ⊗ b ⊗ c; case 2: R(T ) = 2 assume

T = u1⊗ v1⊗w1 +u2⊗ v2⊗w2, we can assume that {u1, u2} are linear independent.

T can also be viewed as a map A∗1 → A2 ⊗ A3. In case 2, assume u1 = λ1a1 + λ2b1

with λ1 6= 0. T (u∗1) = v1⊗w1, and it is of rank 1. However, T (u∗1) = λ1(b1⊗ c2 + b2⊗

c1) + λ2(b1 ⊗ c1), which is of rank 2. Similarly we can say case 1 is not valid either.

But R(T ) = 2. Since we have T = limt→0
1
t
[(a1 + ta2)⊗ (b1 + tb2)⊗ (c1 + tc2)−

a1⊗ b1⊗ c1], so R(T ) ≤ 2, and the border rank can’t be one. Since if it is, T will be

of rank one.

1.3 Relation between tensors and matrix multiplication

Consider U, V,W are three vector spaces over C of dimension l,m, n respectively.

{u1, . . . , ul} is one basis for U , {u1, . . . , ul} is dual basis of U∗. Use column vectors to

denote elements in U , while row vectors are for elements in U∗. Similar conventions

are for V and W . By definition above, U∗ ⊗ V is the set of all linear maps from

U to V (using canonical isomorphism between U and (U∗)∗). ui ⊗ vj corresponds

the map ui ⊗ vj(uk) = δijvk and corresponding matrix is Eji := (e
(m)
j )T e

(l)
i ∈ Cm×l.

Here e
(l)
i ∈ C1×l and its only nonzero entry is ith entry with value 1, Eji is just the

matrix having only nonzero entry at jth row ith column with value 1, here T means

the transpose of a matrix.

Every rank one tensor u∗ ⊗ v is the map u∗ ⊗ v(a) = u∗(a)v, corresponding
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matrix is the product of a column vector and a row vector, the two vectors are just

coordinates of v and u∗ respectively.

Claim. There is a canonical isomorphism between (U∗ ⊗ V )∗ and U ⊗ V ∗.

View u⊗ v∗ as a linear map by u⊗ v∗(a∗ ⊗ b) = a∗(u)v∗(b). To see this in basis,

A ∈ Cl×m (A ∈ U ⊗ V ∗) and B ∈ Cm×l (B ∈ V ⊗ U∗), A(B) =
∑l

i=1

∑m
j=1 aijbji =

trace(AB).

Next we will view matrix multiplication as a tensor.

Let A ∈ Cl×m (thus in V ⊗U∗ ∼= (U∗⊗ V )∗) and B ∈ Cm×n (in (U∗⊗ V )∗), then

AB is in Cl×n ∼= W ∗ ⊗ U . Matrix multiplication M is a bilinear map

M<l,m,n> : (U∗ ⊗ V )∗ × (V ∗ ⊗W )∗ → W ∗ ⊗ U

which can also be viewed as a trilinear map

M<l,m,n> : (U∗ ⊗ V )∗ × (V ∗ ⊗W )∗ × (W ∗ ⊗ U)∗ → C

In basis the trilinear map sends (X, Y, Z) to trace(XY Z).

Since (XY )ij =
∑m

k=1 xikykj for i = 1, . . . , l and j = 1, . . . , n, M<l,m,n>(X, Y, Z) =

XY (Z) =
∑l

i=1

∑n
j=1(XY )ijZji =

∑l
i=1

∑m
k−1

∑n
j=1 xikykjzji = trace(XY Z) (by the

last claim). By the definition, we also have M<l,m,n> ∈ (U∗⊗V )⊗ (V ∗⊗W )⊗ (W ∗⊗

U) ∼= (U ⊗ U∗)⊗ (V ⊗ V ∗)⊗ (W ⊗W ∗).

Claim. M<l,m,n> = IdU ⊗ IdV ⊗ IdW = IdU⊗V⊗W

Proof. Consider M<l,m,n> : (U∗⊗V )∗×(V ∗⊗W )∗ → W ∗⊗U mapping (v∗⊗ū, w∗⊗v̄)

to v∗(v̄)w∗ ⊗ ū for any ū ∈ U, v∗ ∈ V ∗, v̄ ∈ V and w∗ ∈ W ∗. (Since in basis, it

corresponds aūb
T
v∗cv̄d

T
w∗ = (bTv∗cv̄)aūd

T
w∗ here aū is the corresponding column vector

for ū and bTv∗ is the row vector for v∗, and bTv∗cv̄ means v∗(v̄). )
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So for M<l,m,n> : (U∗ ⊗ V )∗ × (V ∗ ⊗ W )∗ × (W ∗ ⊗ U)∗ → C, it maps (v∗ ⊗

ū, w∗ ⊗ v̄, u∗ ⊗ w̄) to u∗(ū)v∗(v̄)w∗(w̄) ∈ C, thus maps v∗ ⊗ ū ⊗ w∗ ⊗ v̄ ⊗ u∗ ⊗ w̄ to

u∗(ū)v∗(v̄)w∗(w̄). Thus M<l,m,n> = IdU⊗IdV ⊗IdW (In basis, send ui⊗u∗j⊗vk⊗v∗l ⊗

ws⊗w∗t to δijδklδst, thus M<l,m,n> =
∑

i,j

∑
k,l

∑
s,t δijδklδstu

∗
i⊗uj⊗v∗k⊗vl⊗w∗s⊗wt =∑

i,k,s u
∗
i ⊗ ui ⊗ v∗k ⊗ vk ⊗ w∗s ⊗ ws, and IdU =

∑
i ui ⊗ u∗i ).

Studying the complexity for matrix multiplication turns to study the border rank

for the tensor M<l,m,n> = IdU ⊗ IdV ⊗ IdW . And by the below theorems, rank and

border rank are both good measures for complexity.

Theorem. (Strassen[1])R(M<n>) = O(nw)

Theorem. (Bini[3])R(M<n>) = O(nw)

w := inf{h ∈ R|n× n matrices may be multiplied using O(nh) arithmetic opera-

tions. }

For any efficient matrix multiplcation algorithm, the total complexity is deter-

mined by the number of scalar multiplications.[2], so rank and boder rank are both

good measurement for matrix multiplication.
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2. GEOMETRIC CONFIGURATIONS IN REDUCED MATRIX

MULTIPLICATION ALGORITHMS

2.1 Border rank bounds for BCLRS tensors

Define the generalized Bini-Capovani-Lotti-Romani-Smirnov tensor.

TBCLRS,m := M<m,2,2> − x1
1 ⊗ (y2

1 ⊗ z2
1 + y1

1 ⊗ z1
1)

Here M<m,2,2> =
∑m

i=1

∑
j=1,2

∑
k=1,2 x

i
jy
j
kz

k
j , and the TBCLRS,m corresponds them×2

and 2 × 2 matrix multiplication with entry x1
1 equals 0. The observation below

enables us to prove upper bounds for R(M<m,2,2>) by finding the upper bounds for

R(TBCLRS,m).

Observation. [4] If R(TBCLRS,m) = r and R(TBCLRS,m′) = r′, then for n = m+m′−1,

R(M<n,2,2>) ≤ r + r′.

To see this, assume in TBCLRS,m, we consider the matrix multiplication AB with

A of size m × 2 and B of size 2 × 2 . Here for A, entry xm2 is missing. And in

TBCLRS,m′ , assume the entry x1
1 is missing. We put these two incomplete matrices

together, we will get one with size m+m′ − 1. Just like below,


|


(2.1)

Then we just combine these two algorithms together, we will get a algorithm for
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matrix multiplication tensor of (m+m′ − 1)× 2 and 2× 2.

By now, there exists algorithms for TBCLRS,m when m = 2, 3, 4, they show

R(TBCLRS,m) ≤ 3m − 1. If we could generalize the results when m is bigger, the

claim above tells us that R(M<m,2,2>) ≤ 3m + 1, which would be an improvement

for the existing upper bounds R(M<m,2,2>) ≤ 3m+ bm
7
c. In the existing algorithms,

there are good configurations hidden in these good algorithms. Next, we will analyze

these algorithms and trying to find the similar algorithms when m is large.

2.2 Geometric notations for border rank algorithm

Definition. Let A,B,C be three vector spaces, Seg(PA × PB × PC) := P{T ∈

A⊗B⊗C| there exist a ∈ A, b ∈ B, c ∈ C such that T = a⊗ b⊗ c} ⊂ P(A⊗B⊗C).

It is the set of rank one tensors up to scalar.

And there are only three types of lines on Segre variety Seg(PA × PB × PC):

α-line is of the form P(< a1, a2 > ⊗b ⊗ c) for some a1, a2 ∈ A and b ∈ B, c ∈ C.

And β-line and γ-line are defined similarly. For the matrix multiplication tensor

M<U,V,W>, A,B and C corresponds U∗⊗V, V ∗⊗W and W ∗⊗U . And there are two

special types of α-lines, one is called the (α, u∗)-line and another one is (α, v)-line,

where (α, u∗)-line is of the form P((< u∗1, u
∗
2 >)⊗ b⊗ c >). Notice besides these two

types, there are other α− lines, like P((su∗1 + tu∗2)⊗ (sv1 + tv2)⊗ b⊗ c).

A border rank algorithm for matrix multiplication is given in the form

T = lim
t→0

T1(t) + · · ·+ Tr(t)

with Ti(t) ∈ is of rank one for t 6= 0. {Ti(t)} are linear independent when t 6= 0.

Use Et to denote the r-plane spanned by {T1(t), . . . Tr(t)}, Et ∈ G(r, A⊗B ⊗C). E

denotes the limit r-plane of Et when t goes to 0. T lies in E. The configurations
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arising in border rank algorithms for T<BCLRS,m> are interesting.

2.3 Configuration for TBCLRS,2

The slightly modified reduced BCLR algorithm is given below. Notice that in

the given algorithm, one point is stationary.

p1(t) = x1
2 ⊗ (y2

2 + y2
1)⊗ (z2

2 + tz1
1)

p2(t) = −(x1
2 − tx2

2)⊗ y2
2 ⊗ (z2

2 + t(z1
1 + z2

1))

p3(t) = x2
1 ⊗ (y2

1 + ty1
2)⊗ (z2

2 + z1
2)

p4(t) = (x2
1 − tx2

2)⊗ (−y2
1 + ty1

1 − ty1
2)⊗ z1

2

p5(t) = −(x2
1 + x1

2)⊗ y2
1 ⊗ z2

2

TBCLRS,2 = limt→0
1
t
[p1(t) + · · ·+ p5(t)]

Consider the limit 5-plane E := limt→0 < p1(t), . . . , p5(t) >∈ G(5, A ⊗ B ⊗ C),

and TBCLRS,2 is inside the 5-plane. Write pi = pi(0), we have (up to scalar);

p1 = x1
2 ⊗ (y2

2 + y2
1)⊗ z2

2

p2 = x1
2 ⊗ y2

2 ⊗ z2
2

p3 = x2
1 ⊗ y2

1 ⊗ (z2
2 + z1

2)

p4 = x2
1 ⊗ y2

1 ⊗ z1
2

p5 = (x2
1 + x1

2)⊗ y2
1 ⊗ z2

2

S := {p1, p2, p3, p4} are linear independent and the limit 5-plane is spanned by S ∪

{TBCLRS,2}.

Claim. [5] The intersection of the limiting plane E and Seg(PA × PB × PC) is the

union of three lines. They are a special (β, w)-line L12,(β,w) = x1
2 ⊗ (v2 ⊗W ) ⊗ z1

2 ,
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a special (γ, w∗)-line L21,(γ,w∗) = x2
1 ⊗ y2

2 ⊗ (W ∗ ⊗ u2) and a special α-line Lα =

(x1
2 +x2

2)⊗y2
2⊗z1

2 . The special line Lα is the unique line lying in Seg(PA×PB×PC)

and intersecting with both L12,(β,w) and L21,(γ,w∗). Two points p1, p2 lie on the line

L12,(β,w), the other two points p3, p4 are on L21,(γ,w∗), the stationary point p5 lies on

Lα.

Proof. Easy to check p1, p2 ∈ L12,(β,w) and L12,(β,w) is the unique line in the Segre

connecting p1 and p2. Thus L12,(β,w) ⊂ E ∩ Seg(PA×PB×PC). Similarly, L21,(γ,w∗)

is the unique line on the Segre through points p3 and p4. Then any line in Segre

connecting one point of L21,(γ,w∗) and another point on L12,(β,w) is in the span of set

S, thus in the intersection. Easy to check the unique connecting line is just Lα. Thus

these three lines are in the intersection, furthermore the three lines are exactly the

intersection of spanS and the Segre.

Next need to show that no other points are in the intersection. Since E is the span

of S ∪ {TBCLRS,2}, any point q in E is of the form λ1q1 + λ2TBCLRS,2 with q1 ib the

span of S. Notice that if q ∈ Seg(PA×PB×PC), then λ2 = 0. If not, the coefficients

of term x2
2⊗ (y2

2 ⊗ z2
2 + y2

1 ⊗ z1
2) is λ2 6= 0 in q. Since rank of x2

2⊗ (y2
2 ⊗ z2

2 + y2
1 ⊗ z1

2)

is 2, thus q can not lie in the Segre. Thus λ2 = 0, E ∩ Seg(PA× PB × PC) = span

of S ∩Seg(PA× PB × PC)= the three lines.

2.4 Configuration for TBCLRS,3

Below is an algorithm for TBCLRS,3 with one stationary point, it is a slightly

modified version of Alekseev − Smirnov for TBCLRS,3. Comparing the algorithm in

11



[6], here we make a linear transformation to make p8(t) a stable point.

p1(t) = (−1

2
t2x3

2 −
1

2
tx2

2 + x2
1)⊗ (−y2

1 + y2
2 + ty1

1)⊗ z1
3

p2(t) = (t2x3
2 + tx3

1 −
1

2
tx2

2 − x2
1)⊗ (y2

1 + y2
2 + ty1

2)⊗ (z2
3 − tz2

2)

p3(t) = (
1

2
t2x3

2 − tx3
1 −

1

2
tx2

2 + x2
1)⊗ (y2

1 + y2
2 − ty1

1)⊗ (z1
3 − tz1

2)

p4(t) = (
1

2
tx2

2 + x2
1)⊗ (−y2

1 + y2
2 + ty1

2)⊗ z2
3

p5(t) = (−t2x3
2 + tx2

2 − x1
2)⊗ y2

1 ⊗ (z2
3 +

1

2
tz1

2 −
1

2
tz2

2 − t2z1
1)

p6(t) = (tx2
2 + x1

2)⊗ y2
2 ⊗ (z1

3 −
1

2
tz1

2 +
1

2
tz2

2 + t2z2
1)

p7(t) = (−tx3
1 + x2

1 +
1

2
x1

2)⊗ (y2
1 + y2

2)⊗ (−z1
3 + tz1

2 + z2
3 − tz2

2)

p8(t) = (x2
1 +

1

2
x1

2)⊗ (y2
1 − y2

2)⊗ (z1
3 + z2

3)

And

TBCLRS,3 = lim
t→0

1

t2
[p1(t) + · · ·+ p8(t)]

Claim. [6] Define E := limt→0 < p1(t), . . . , p8(t) >∈ G(8, A ⊗ B ⊗ C). In the

algorithm, E ∩ Seg(PA× PB × PC) is the union of three variety.

The first one is a sub-Segre variety Seg21,(β,w),(γ,w∗) := [x2
1]⊗P(v2⊗W )⊗P(W ∗⊗

u3), it is isomorphic to P1 × P1.

The second one is a plane conic curve C12,(β,w),(γ,w∗) := P(∪[s,t]∈P1x1
2⊗(sy2

1−ty2
2)⊗

(sz2
3 + tz1

3)), it is isomorphic to P1.

The third variety is a family of lines Lα := P(∪[σ,τ ]∈P1 ∪[s,t]∈P1 ((σx1
2 + τx2

1) ⊗

(sy2
1− ty2

2)⊗ (sz2
3 + tz1

3)). These lines pass through the conic curve and the sub-Segre

variety. Lα is isomorphic to P1 × P1.

12



Let pi denote the initial point pi(0), points {p1, p2, p3, p4} are on the sub-Segre

Seg21,(β,w),(γ,w∗), points {p5, p6} lie on the conic curve C12,(β,w),(γ,w∗) and the left two

points p7, p8 are on lines Lα.

Proof. {p1, . . . , p7} are linearly independent and p8 is in the span of S := {p1, . . . , p7}.

The limit 8-plane E is the span of S ∪ {TBCLRS,3}. Consider the initial points (up

to scalar)

p1 = x2
1 ⊗ (−y2

1 + y2
2)⊗ z1

3

p2 = x2
1 ⊗ (y2

1 + y2
2)⊗ z2

3

p3 = x2
1 ⊗ (y2

1 + y2
2)⊗ z1

3

p4 = x2
1 ⊗ (−y2

1 + y2
2)⊗ z2

3

Easy to check the span of {p1, p2, p3, p4} intersected with Seg(PA×PB×PC) is just

the sub-Segre Seg21,(β,w),(γ,w∗).

p5 = x1
2 ⊗ y2

1 ⊗ z2
3

p6 = x1
2 ⊗ y2

2 ⊗ z1
3

p7 = (x2
1 +

1

2
x1

2)⊗ (y2
1 + y2

2)⊗ (−z1
3 + z2

3)

Notice p′7 := 2(p7−x2−1⊗(y2
1 +y2

2)⊗(−z1
3 +z2

3))−p5 +p8 = x1
2⊗y2

1⊗z1
3−x1

2⊗y2
2⊗z2

3

is also in E, actually span {p5, p6, p
′
7} intersects with Seg(PA×PB×PC) is just the

plane conic curve C12,(β,w),(γ,w∗). To see this, any point q in the intersection must be

of the form x1
2 ⊗ (α1y

2
1 + α2y

2
2) ⊗ (β1z

2
3 + β2z

1
3), and q is in the span of {p5, p6, p

′
7},

thus α1β2 + α2β1 = 0. There for the intersection is C12,(β,w),(γ,w∗).

By the same argument as before, any q ∈ E ∩ Seg(PA × PB × PC) is a linear
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combination of points in S (if the coefficient of TBCLRS,3 is not zero, the point q

can’t be of rank one). Thus, q lies on the lines in the Segre connecting points from

Seg21,(β,w),(γ,w∗) and C12,(β,w),(γ,w∗), which is just Lα.

2.5 Similarities between above two border rank algorithms

Firstly, for every matrix entry appeared in the algorithm, its order (eg, if tx2
2

appears in the algorithm, the order for entry x2
2 is 2) follows some pattern, for

m = 2, ? 0

0 1

×
1 1

0 0

×
1 0

1 0


Here ? means x1

1 is removed in the reduced matric multiplication tensor.

For m = 3, 
? 0

0 1

1 2

×
1 1

0 0

×
2 1 0

2 1 0


So can we find similar algorithms with this pattern when m ≥ 4?

Next, in the configuration when m = 3, the three varieties C12,(β,w),(γ,w∗),

Seg21,(β,w),(γ,w∗) and Lα respectively are analogous to the lines L12,(β,w), L21,(γ,w∗) and

lines Lα. In m = 3 case, the last two varieties are isormorphic to P1×P1 and for the

case m = 2, the first two lines are isomorphic to P1. In these two cases, Lα are lines

in the Segre connecting points in these two varieties. So for large m, do there exist

algorithms having similar ocnfigurations?

Notice that in m = 2 case, there is a stationary point lying on Lα. So can we

improve the exsiting algorithm of TBCLRS,3 such that only one stationary point lies

on Lα, three limiting points are on the conic curve and the left four points are on

the sub-Segre variety?
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In the last part, we will give partial answers to these questions.
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3. CONCLUSIONS

3.1 Nonexistence of certain improvement for algorithm in TBCLRS,3

Assume the desired algorithm is of order 2. And the intersection of the limit

8-plane of the desired algorithm and the Segre variety Seg(PA× PB × PC) consists

of two irreducible algebraic varieties, and lines connecting the points of these two

surfaces. The first surface is

Seg21,(β,w),(γ,w∗) := [x2
1]× P(v2 ⊗W )× P(W ∗ ⊗ u3)

The second curve is

C12,(β,w),(γ,w∗) := P(∪[s,t]∈P1 x1
2 ⊗ (sy2

1 − ty2
2)⊗ (sz2

3 + tz1
3))

The family of lines Lα is

Lα := P(∪[σ,τ ]∈P1 ∪[s,t]∈P1 (σx1
2 + τx2

1)⊗ (sy2
1 − ty2

2)⊗ (sz2
3 + tz1

3))

In the desired algorithm, four initial points p1(0), p2(0), p3(0), p4(0) are on

Seg21,(β,w),(γ,w∗), three initial points p5(0), p6(0), p7(0) lie on the plane conic

C12,(β,w),(γ,w∗) and the last stationary point p8 lies on Lα but not on C or on Seg21.

If we want to make it a reduced border rank algorithm, we need point pi(t) is of

rank 1 (i = 1, . . . , 8), and satisfy

TBCLR,3 = lim
t→0

1

t2
[p1(t) + · · ·+ p8(t)]

16



where TBCLR,3 =
∑

i=1,2,3

∑
j=1,2

∑
k=1,2 x

i
j ⊗ y

j
k ⊗ zki − x1

1 ⊗ y1
1 ⊗ z1

1 − x1
1 ⊗ y1

2 ⊗ z2
1 .

Since the algorithm is of order 2 and with only one stationary point, so the term

x2
1 ⊗ y1

1 ⊗ z1
2 + x2

1 ⊗ y1
2 ⊗ z2

2 must come from the t2 coefficient of the sum of four

points on Seg21,(β,w),(γ,w∗). From the assumptions, only considering terms dealing

with x2
1 ⊗ y1

1 ⊗ z1
2 + x2

1 ⊗ y1
2 ⊗ z2

2 we can set



p1(0)

p2(0)

p3(0)

p4(0)


= x2

1 ⊗ (ay2
1 + by2

2 + λ1y1
1t+ λ2y1

2t)⊗ (cz1
3 + dz2

3 + µ1z1
2t+ µ2z2

2t))

and

p8 = (sx1
2 + x2

1)⊗ (ηy2
1 − ξy2

2)⊗ (ηz2
3 + ξz1

3)

with a, b, c, d, λ1, λ2, µ1, µ2, η, ξ ∈ C4 and ξ, η can not both be zero.

For the five points, the constant term and the term t should sum up to zero. And

the t2 term should sum up to x2
1⊗ y1

1 ⊗ z1
2 +x2

1⊗ y1
2 ⊗ z2

2 , so we can set up equations.

For the t2 term,

λ1 · µ1 = 1 (3.1)

λ2 · µ2 = 1 (3.2)

λ1 · µ2 = 0 (3.3)

λ2 · µ1 = 0 (3.4)
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For the t term, with k = 1, 2

a · µk = 0 (3.5)

b · µk = 0 (3.6)

λk · c = 0 (3.7)

λk · d = 0 (3.8)

For the constant term,

a · d = η2 (3.9)

a · c = ηξ (3.10)

b · c = −ξ2 (3.11)

b · d = −ηξ (3.12)

where a · b =
∑4

i=1 aibi, and a = (a1, a2, a3, a4), b = (b1, b2, b3, b4)

Claim that either {a, b} or {c, d} is linear dependent.

If not, then both {a, b} and {c, d} are linear independent. From (1) (3), {µ1, µ2}

are linear independent. From (5) (6), span{a, b} is perpendicular to span {µ1, µ2},

and by linear independence, we have span{a, b}⊥ = span{µ1, µ2}. Similarly, span{c, d}⊥

= span{λ1, λ2}.From (9)–(12), ξd − ηc ∈ span{a, b}⊥. So ξd − ηc = αµ1 + βµ2, by

(1)–(4) α = (ξd − ηc) · λ1 = 0 and β = 0 too. Thus ξd − ηc = 0 which contradicts

that they are linearly independent.

Assume {c, d} is linearly dependent, and since the group action of GL(W ) will

still keep the algorithm and the configuration (since for any A ∈ GL(W ), A · (sw1−

tw2) ⊗ (sw2 + tw1) = (sw1 − tw2) ⊗ (sw2 + tw1)), thus we can assume d = 0, now

it is easy to see the four initial points pi(0) are linearly dependent, thus in this case
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the configuration would not be Seg21,(β,w),(γ,w∗). This means the desired algorithm

would not exist.

3.2 Generalizing the algorithm to case m = 4

For the existing algorithm when m = 4, the geometry configuration is not good.

So I am trying to come up with an algorithm with similar configurations when m = 4.

I start to assume the algorithm is of order 3 and is following the pattern below:



? 0

0 1

1 2

2 3


×

1 1

0 0

×
3 2 1 0

3 2 1 0



I am trying to find 11 points in the Segre variety such that

TBCLRS,4 = lim
t→0

1

t3
(T1(t) + · · ·+ T11(t))

I am still in the progress trying to find the desired algorithm.
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