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ABSTRACT

A ship traveling in irregular sea with a steady forward speed is a classical hydro-

dynamics problem which still presents many challenges. An in-house computational

code MDLHydroD based on potential theory has been developed to address this

problem. A Green function based approach is followed in frequency domain to ob-

tain the linear forces and motion of the vessel. A perturbation approach is then

applied to extract the second order forces, and the added resistance on the ship is

thus obtained.

The numerical method is then extended to consider finite water depth effects. A

new finite depth Green function is developed and implemented in the 3D potential

code. This allowed analysis of ship motion with forward speed in intermediate water

depths.

An optimization framework is then developed to solve the inverse problem of

ship hull optimization which is classified as a multi variable multi objective prob-

lem with nonlinear constraints. The three main problems encountered in the inverse

design of ship hull are: automated geometry creation, prediction of forces due to

fluid structure interaction and modifying the hull towards a better performing hull

form. For this study, a parametric hull form based on typical ship parameters is

developed which can be altered to obtain different ship hulls that can be analyzed

using the developed hydrodynamic code MDLHydroD. A number of different opti-

mization solvers are studied to understand and select appropriate solver for ship hull

optimization. Solvers based on evolutionary algorithms were found to be adequate

and used to demonstrate the capabilities of the hull optimization framework. Both

single and multi-objective optimization algorithms are implemented. A selected op-
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timized design from the Pareto front is then compared with initial design to show

the effectiveness of the optimization method.

This study will provide a thorough analysis of hydrodynamic load prediction

methodologies and its application in obtaining safer, fuel efficient and more stable

hull forms.
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NOMENCLATURE

U ship forward speed

h water depth

β wave heading

A wave amplitude

k wave number

ωI incident wave frequency

ωe encounter wave frequency

φI incident wave potential

φs steady translation potential

φD diffraction wave potential

φj radiation potential due to unit motion in jth direction

ηj jth vessel motion amplitude

g acceleration due to gravity

mj gradient of the forward speed potential

G Green function

Ajk added mass coefficient

Bjk radiation damping coefficient

Mjk vessel mass matrix

Cjk hydrostatic stiffness coefficient

FI Froude Krylov force
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FD diffraction force

~n unit normal pointing outward from the hull surface

P hydrodynamic pressure on hull

σ source strength

∆Sj surface area of jth panel

J0 Bessel function of the first kind

Y0 Bessel function of the second kind

K0 Modified Bessel function of the second kind
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1. INTRODUCTION

The growing demand for energy efficient ships and offshore platforms capable

of operating in harsher environments continues to motivate researchers to develop

efficient and robust techniques for hull form design. A number of conditions based

on propulsive power requirement, vessel motion in operational and survival condi-

tion and safety of the vessel in terms of capsizing criteria must be validated for

every design. Therefore, the combination of sophisticated numerical tools capable

of predicting hydrodynamic loads on vessels with automated geometry modeling

and efficient global optimization algorithms could aid design engineers to meet the

demanding requirements of the industry. Design to meet predefined targeted perfor-

mance properties is known as the inverse design approach and is extensively applied

in the materials and nanostructure design. This is of recent research interest in the

field of Simulation Based Design (SBD) for both aerospace and marine engineering.

ships are much larger in size compared to automobiles and airplanes where design op-

timization is regularly applied and performing high fidelity methods using full scale

fully nonlinear viscous analysis is beyond the current computational capabilities.It

is however possible to apply the hull form optimization approach using potential

flow methods to obtain optimized hull forms. The SBD architecture requires solving

following fundamental problems:

• Automatic hull form generation

• Computation of fluid forces and motion prediction of the hull

• Global search of optimized hull satisfying given constraints and performance

goals
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A large number of parameters are required to represent the complicated shape

of the ship hull. Also, the ship hull is expected to achieve multiple performance

goals such as the maximum vertical motion being less than a set value in a given

seaway or having minimum drag in still water. To evaluate many combinations of

hull parameters and objectives, it is necessary to use time efficient numerical methods

for evaluating the performance of each hull.

A computational tool has been developed that can predict the linear forces and the

added resistance of ships with steady forward speed in a seaway. Both deep water and

intermediate water depths are considered and vessel motion is solved with or without

forward speed. The developed tool is then integrated into an optimization framework

which modifies the NURBS based parametric hull form using global optimization

techniques and returns a hull form with the desired performance properties. The

optimization techniques and the hydrodynamic analysis methodologies are discussed

in this dissertation.

The numerical tool MDLHydroD has been developed in modules. First the fluid

structure interaction in deep water at zero forward speed condition is developed. The

details of this work and validation results are published in [1, 2]. The forward speed

condition is applied and the motion prediction results are compared with published

numerical and experimental results in [3]. The second order drift forces and added

resistance is obtained using near field pressure integration method and published

in [4, 5]. The effect of hull emergence angle on added resistance is shown here.

The numerical tool is then applied in the optimization framework and a parametric

container ship hull is optimized for reduction in motion and added resistance. This

work has been published in [6].
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2. BACKGROUND

Potential theory methods have been in development for applications in aerody-

namic and hydrodynamic problems for many decades. The mathematical derivation

of the results using the fundamental laws of fluid mechanics has attracted researchers

from around the world. Also the marine industries including naval, commercial ship

building and the offshore oil and gas industries are currently using different sea-

keeping computer programs based on these theories for the design and operation of

marine vehicles and structures.

The idea of representing irregular ocean waves as a superposition of many linear

sinusoidal waves was first proposed by St. Denis and Pierson [7]. This opened

the door for the development of both experimental and theoretical techniques to

predict vessel response in random waves. Linear two dimensional strip theories for

seakeeping analysis were the most popular ones before the revolution in computing

technologies. The widespread availability of high computational power has allowed

the development and application of three dimensional linear theories. Nonlinearities

resulting from high seas have also been considered and later incorporated in both

strip theory and three dimensional panel methods.

The first strip theory for heave and pitch motions of ships in head seas was

given by Korvin-Kroukovsky and Jacobs [8]. This was then refined by Gerritsma

and Beukelman [9]. However, the most popular strip theory method is the one by

Salvesen et al. [10] known as the STF method. In that work, the authors presented

a complete linear potential theory considering forward speed of the vessel initially

without any strip theory assumptions and then they applied strip theory to obtain the

final results. The authors also mention that the theory presented is exact for the zero
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speed case within the assumptions of linear potential theory which allows analysis of

non-slender bodies such as offshore platforms. The strip theory assumption restricts

the use of these methods to slender bodies and only for the high frequency range and

for low Froude numbers.

For higher sea states and higher speed, the nonlinear effects may become impor-

tant. The nonlinear strip theory methods try to capture these through instantaneous

wave elevation at every ship section. Petersen [11] gives one such non-linear time-

domain strip theory analysis method.

One of the limitations of the strip theory method is that it is only valid for the

high encounter frequency range. Newman [12] developed a method and then Newman

and Sclavounos [13] modified the same to solve the seakeeping problem for different

frequency range using near and far field methods and then joined them both to give

a unified solution.

The era of the three dimensional methods began when Hess and Smith [14] first

introduced flow calculation about arbitrary, non-lifting, three dimensional bodies us-

ing Rankine sources. Later, Hess and Wilcox [15] developed a computer program

which included the previous method along with an undisturbed free surface by in-

troducing a system of image sources. The Rankine source method has been used for

solving ship motions problems in both the frequency domain (Nakos and Sclavounos

[16]) and the time domain (Nakos, Kring, and Sclavounos [17]). The main difference

between the Rankine source method and the 3D Green function method is that the

Rankine sources do not automatically satisfy the free surface boundary condition,

and hence require panel discretization of the free surface around the floating body.

This significantly increases the total number of panels in the computation.

The use of Green functions to represent the source potential in solving wave

loads on floating offshore structures in the frequency domain was first introduced by
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Garrison [18]. This method became popular among many researchers and engineers.

These authors include Inglis and Price [19], Newman [20], Ponizy et al. [21], Telste

and Noblesse [22], Ba and Guilbaud [23], Bingham [24] who have worked extensively

in developing efficient methods to numerically evaluate the Green function. Efforts

have been also made in developing a time domain 3D Green function as well by Liapis

[25] and Beck and Liapis [26]. The strength of this method is that the Green function

satisfies the free surface boundary conditions, and hence only the submerged part of

the hull needs to be discretized. The lower number of panels improves calculation

speed. However, it should be noted that the evaluation of the Green function is more

time consuming compared to simple Rankine sources.

Even though the frequency domain potential theory and 3D panel method tech-

niques have been around for a few decades and have been studied by many re-

searchers, it is still a challenging task to implement them in a practical numerical

code. Recent developments includes the panel free method using NURBS surface and

potential theory based code presented by Qiu and Peng [27]. Kjellberg, Contento, and

Janson [28] attempt to couple boundary element methods with a semi-Lagrangian

free surface model to incorporate all nonlinearities of potential flow methods. Kashi-

wagi and Wang [29] show a method to remove the moderate forward speed restriction

in potential theory codes. A number of codes based on time domain potential theory

have been also developed of which the most recent is by He [30]. In order to focus

this dissertation in the frequency domain, a complete literature review of the time

domain methods is not presented here.

It was found that the existing commercially available computer programs impose

many constraints such as resolution or total number of frequencies for which analysis

can be performed or the number of bodies for which full QTFs can be calculated (See

[31]). In order to overcome these difficulties an in-house program called MDLHydroD
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has been developed. McTaggart [32] gives a concise guideline on implementing the

3D method and the work of Filkovic [33] provides a method for panel discretization.

The derivation of forces and motions given by Salvesen et al. [10] using potential flow

is also valid for 3D methods as well and therefore used here to obtain the final results.

It is important to understand all the assumptions made in developing these theories

and intricacies involved in implementation of the code. Any further development

towards analysis of more complicated problems such as estimation of parametric

roll, optimization of hull forms, multi-body interaction or coupled hydrodynamics

with mooring and risers relies on accurate evaluation of the linearity assumptions.
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3. HYDRODYNAMIC LOAD PREDICTION USING LINEAR

POTENTIAL THEORY INCLUDING LOW TO MODERATE

FORWARD SPEED∗

Sea bottom

Free Surface
Submerged Hull

Figure 3.1. Definition sketch

A ship moving with a steady forward speed U in deep water with regular waves

of wave amplitude A and incident frequency ωI traveling at an angle β is considered

(See Figure 3.1). A generalized coordinate system is defined with an earth fixed

global coordinate system, an inertial coordinate system translating with the body

and a body-fixed coordinate system (See Figure 3.2). The translating reference frame

allows us to formulate the vessel response in six degree of freedom due to incident

waves and steady current of speed U in −x direction which is equivalent to forward

speed with respect to a fixed reference frame. A linear boundary value problem can

be defined under the small amplitude wave assumption to determine the velocity

∗Part of the data reported in this chapter is reprinted with permission from “Estimation of
hydrodynamic forces and motion of ships with steady forward speed” by Amitava Guha, Jeffrey
Falzarano, 2015. International Shipbuilding Progress, in press, Copyright 2015 by IOS Press.
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Global 

Coordinate 

System

Body 

Coordinate 

System

Inertial 

Coordinate 

System

Wave Heading

Figure 3.2. Generalized coordinate system

potential of the flow field. A complex velocity potential can be defined under the

assumption of inviscid, incompressible and irrotational fluid as:

Φ(~x, t) = [−Ux+ φS(~x)] +
[
φI(~x, β, ωI) + φD(~x, β, ωI) +

6∑
j=1

ηjφj(~x, U, ωe)
]
eiωet

(3.1)

where ωe denotes encounter frequency; φS represents the perturbation potential due

to steady translation; φI is the incident wave potential; φD is the diffracted wave

potential; φj and ηj are the radiation potential due to unit motion and vessel motion

amplitude respectively in the jth direction. The encounter frequency is expressed in

terms of the incident wave frequency as:

ωe = ωI −
ω2
I

g
Ucosβ (3.2)
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The perturbation potential φS is ignored due to the complexity of derivation and its

relatively insignificant effect at moderate ship speed. The remaining incident wave

potential φI , diffraction potential φD and radiation potential φj are determined by

solving the following boundary value problem:

The velocity potentials satisfy the Laplace equation in the fluid domain:

∇2(φI , φD, φj) = 0 (3.3)

The boundary conditions to be satisfied by the potential functions are:

1. Free-surface boundary condition:

[(
iωe − U

∂

∂x

)2

+ g
∂

∂z

]
(φI , φD, φj) = 0 on z = 0 (3.4)

2. The bottom boundary condition

∂

∂z
(φI , φD, φj) = 0 on z → −∞ (3.5)

3. The Sommerfeld Radiation Condition: The waves generated by the oscillating

body must radiate outward from the body [34].

lim
kr→∞

√
kr

(
∂

∂r
− ik

)
(φ− φI) = 0 (3.6)

4. The body surface boundary condition:

∂φj
∂n

= iωenj + Umj on S (3.7)
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and

∂φI
∂n

+
∂φD
∂n

= 0 on S (3.8)

where ~n = (n1, n2, n3) is the unit normal pointing outward from the hull surface and

(n4, n5, n6) = ~r × ~n, ~r being the position vector of a point on the surface . The

well known m-terms (mj) are the components of the generalized vector involving the

gradient of the forward speed potential,

(m1,m2,m3) = (~n · ∇)∇Φ

(m4,m5,m6) = (~n · ∇)(~r ×∇Φ) (3.9)

which are simplified to be

mj ≈ (0, 0, 0, 0, n3,−n2) (3.10)

The linear incident wave potential satisfying the above boundary conditions is given

by:

φI =
igA

ωI
e−ikI(xcosβ+ysinβ)ekz (3.11)

It has been shown in [10] that the radiation potential in the forward speed case can

be represented in terms of the zero speed potentials as:

φj = φ0
j for j = 1, 2, 3, 4

φ5 = φ0
5 +

U

iωe
φ0

3

φ6 = φ0
6 −

U

iωe
φ0

2 (3.12)

Salvesen et al. [10] also show by using Greens identity and a variant of Stokes theorem
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that the whole boundary value problem in forward speed condition can be solved by

obtaining the zero speed condition results and modifying them appropriately.The

zero speed boundary value problem can be solved using the method introduced by

Garrison [18] based on a free surface Green function.
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4. NUMERICAL EVALUATION OF THE VELOCITY POTENTIAL

4.1 Source Distribution Method

Determination of the complex potential on the submerged surface of the vessel

is the key to solving the hydrodynamic problem. It will be shown that once the

potential is known, all the hydrodynamic coefficients required to obtain the vessel

response, i.e. added mass, damping and excitation forces can be calculated.

To obtain a numerical solution, sources of unknown strengths are distributed on

the surface of the body. The velocity potential function can be written in terms of

the unknown source strengths as:

φ0(~x) =
1

4π

∫
S

σ(~xs)G(~x, ~xs)ds (4.1)

where ~x denotes the point where the potential is being evaluated due to a source at

~xs on the body surface S. The superscript on φ0 denotes the potential for the zero

speed case. σ(~xs) denotes the source strength which is unknown and needs to be

calculated by solving the boundary value problem. The function G(~x, ~xs) is a Green

function which satisfies the Laplace equation , the free surface, radiation and bottom

boundary conditions. The derivation of the potential using the Green function can be

found in [18]. However, for numerical implementation, the Green function developed

by Telste and Noblesse [22] is used.

The unknown source strengths are calculated using the radiation and diffraction

body boundary conditions separately by substituting (4.1) into (3.7) and (3.8) .

The resulting integral equation is:
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− 1

2
σi +

1

4π

∫
S

σ(~xs)
∂G

∂n
(~x, ~xs)ds = vni

(4.2)

where,

vn = iωenj (Radiation Potentials)

= −∂φ
0
I

∂n
(Diffraction Potential) (4.3)

Quadrilateral panels are used to discretize the submerged hull surface. The surface

integral may be written as the sum of the integrals over N panels (excluding the ith

panel) of area ∆Sj. As an approximation, the source strength σ(~xs) may be taken

as constant over each panel. The resulting discretized equation is:

−1

2
σi +

1

2

N∑
j=1

αijσj = vni
(i = 1 . . . N) (4.4)

where,

αij =
1

2π

∫
∆Sj

∂G

∂n
(~x, ~xs)ds (4.5)

The potential φ0 at the center of each panel can be calculated using (4.1) as:

φ0
i =

N∑
j=1

βijσj (4.6)

where,

βij =
1

4π

∫
∆Sj

G(~x, ~xs)ds (4.7)

The evaluation of matrix α in (4.5) and β in (4.7) requires integration of the

Green function and its derivatives over the panel surface. Katz and Plotkin [35]

give an analytical expression for integrating the singular but frequency independent
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part of the Green function,

∫
Sj

(
1

r

)
ds and Hess and Smith [14] give an analyti-

cal expression for integrating the derivatives of the frequency independent part of

the Green function

∫
∆Sj

∂

∂n

(
1

r

)
ds. The same analytical expressions can also be

used to calculate the image source portion of the Green function

∫
Sj

(
1

r′

)
ds and∫

Sj

∂

∂n

(
1

r′

)
ds.

The integration of the frequency dependent term

∫
Sj

G̃0(~x, ~xs)ds and its derivative∫
Sj

∂G̃0

∂n
(~x, ~xs)ds can be obtained in multiple ways. A Gauss Quadrature method may

be applied for higher accuracy. However, these terms are regular throughout the fluid

domain and oscillate approximately with the wave length [18]. In practice,the panel

size is generally small compared to the wave length and hence G̃0(~x, ~xs) can be

considered constant over the panel surface ∆Sj. Hence, a convenient approximation

to the integral is to evaluate the integrand at the centroid of the panel and multiply

it by ∆Sj.

The collection of equations required for calculation of panel properties such as

the normal vector, panel area and finally evaluation of the α and β matrices are

given in [1, 2] in further detail.

4.2 Hydrodynamic Coefficients

Once the velocity potential is obtained at each panel, the hydrodynamic coeffi-

cients can be easily solved by calculating the pressure on the hull and integrating

the pressure on the hull surface. The pressure on the hull can be found using the

Bernoulli’s equation:

P =
1

2
ρU2 − ρ∂Φ

∂t
− 1

2
ρ|∇Φ|2 − ρgz (4.8)
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and the hydrostatic and hydrodynamic force can be calculated by:

FHj
= −

∫
S

Pnjds j = 1, 2, . . . , 6 (4.9)

The zero speed hydrodynamic coefficients are given by:

A0
jk = − ρ

ωe

∫
S

Im(φk)njds (4.10)

B0
jk = −ρ

∫
S

Re(φk)njds (4.11)

with speed correction terms given as:
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A15 = A0
15 −

U

ω2
e

B0
13

B15 = B0
15 + UA0

13

A51 = A0
51 +

U

ω2
e

B0
31

B51 = B0
51 − UA0

31

A35 = A0
35 −

U

ω2
e

B0
33

B35 = B0
35 + UA0

33

A53 = A0
53 +

U

ω2
e

B0
33

B53 = B0
53 − UA0

33

A26 = A0
26 +

U

ω2
e

B0
22

B26 = B0
26 − UA0

22

A62 = A0
62 −

U

ω2
e

B0
22

B62 = B0
62 + UA0

22

A46 = A0
46 +

U

ω2
e

B0
24

B46 = B0
46 − UA0

24

A64 = A0
64 −

U

ω2
e

B0
24

B64 = B0
64 + UA0

24

A55 = A0
55 +

U2

ω2
e

A0
33

B55 = B0
55 +

U2

ω2
e

B0
33

A66 = A0
66 +

U2

ω2
e

A0
22

B66 = B0
66 +

U2

ω2
e

B0
22

(4.12)

The incident wave excitation force also known as the Froude Krylov force is given

by:

FI = iωIρ

∫
S

φInjds (4.13)
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and the diffraction wave excitation force is

FD = ρ

∫
S

(iωenj − Umj)φDds

= −ρ
∫
S

φ0
j

∂φI
∂n

ds for j = 1, 2, 3, 4

= −ρ
∫
S

φ0
j

∂φI
∂n

ds+
ρU

iωe

∫
S

φ0
3

∂φI
∂n

ds for j = 5

= −ρ
∫
S

φ0
j

∂φI
∂n

ds− ρU

iωe

∫
S

φ0
2

∂φI
∂n

ds for j = 6 (4.14)

The calculated added mass, damping and wave excitation forces are used to solve

the equation of motion to get the vessel response.

6∑
k=1

[−ω2
e(Mjk + Ajk) + iωeBjk + Cjk]ηk = F I

j + FD
j j = 1, 2, . . . , 6 (4.15)

where Mjk is the mass matrix, Cjk is the hydrostatic stiffness matrix and ηk the

vessel response in kth mode of motion.

4.3 Added Mass and Damping at Zero and Infinite Frequency

The added mass and damping coefficients for the frequency limits ω = 0 and

ω → ∞ are important for calculating impulse response functions for time domain

analysis. The frequency domain approach described in the previous section presents

numerical limitations for high frequency oscillations based on panel size and requires

modification in the potential theory formulation.

The time dependent velocity potential is represented as:

Φ = Real{φeiωet} (4.16)

In the above equation, for zero and infinite frequency φ is replaced by:
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φ = iωeφ
′ (4.17)

The body boundary condition for radiation potential becomes:

∂φj
∂n

= iωenj

iωe
∂φ′j
∂n

= iωenj

∂φ′j
∂n

= nj (4.18)

The solution of φ′ is obtained using the source distribution method. The governing

equation for φ′ is:

~∇2φ′j = 0 (4.19)

The free surface boundary condition is given by:

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 at z = 0

−ω2
eφ+ g

∂Φ

∂z
= 0

−ω2
eφ
′ + g

∂Φ′

∂z
= 0

(4.20)

At low frequency limit ωe = 0, the free surface appears as a rigid boundary. This

gives the free surface boundary condition as:

∂Φ′

∂z
= 0 at z = 0 for ωe = 0 (4.21)
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At the high frequency limit ωe →∞, the free surface boundary condition becomes:

φ′ = 0 at z = 0 and ωe →∞ (4.22)

The Green functions that satisfy the above governing equations are given by:

G (~x, ~xs) =
1

r
+

1

r′
for ωe = 0 (4.23)

G(~x, ~xs) =
1

r
− 1

r′
for ωe →∞ (4.24)

The boundary condition equations shown above for zero and infinite frequency are

real numbers and the Green function is also a real number. This gives us a real φ′k.

Hence,

Im(φ′k) = 0 (4.25)

Substituting φ′k in zero speed added mass (4.10) and damping (4.11) equation

and using Im(φ′k) = 0, we get:

A0
jk = − ρ

ωe

∫
S

Im(iωeφ
′
k)njds = −ρ

∫
S

Re(φ′k)njds

B0
jk = −ρ

∫
S

Re(iωeφ
′
k)︸ ︷︷ ︸

0

njds = 0 (4.26)

We find that for zero speed (U = 0), added mass coefficients are non zero and

damping coefficients are zero. For the forward speed case we use the added mass and

damping modifications as explained in the previous section. The terms that will be

19



affected due to forward speed are listed below:

For both ω = 0 and ω =∞:

B15 = UA0
13

B51 = −UA0
31

B35 = UA0
33

B53 = −UA0
33

B26 = −UA0
22

B62 = UA0
22

B46 = −UA0
24

B64 = UA0
24

(4.27)

For ω → ∞, the forward speed modification part becomes zero and hence:

A55 = A0
55

B55 = B0
55

A66 = A0
66

B66 = B0
66 (4.28)

The added mass and damping coefficients A55, B55, A66, B66 cannot be obtained

for ω = 0 for the forward speed case. This however does not affect the calculation

of the impulse response function by a large amount if the first nonzero frequency is

chosen very close to zero i.e. ω = 0.01. Figure 4.1 shows the heave added mass (A33)

of a floating hemisphere at zero forward speed (a) and at Fn = 0.16 (b) for both

zero and infinite frequency (infinite frequency value shown at the end point of the

extended tail). The zero speed case has been validated against an industry standard

computer program [36]. The validity of the forward speed case can be noticed easily

at zero frequency as the curve is continuous and at infinite frequency the value is the

same as the zero speed infinite frequency value as expected.

The above mentioned numerical scheme is implemented in the code MDLHydroD

written in the FORTRAN programming language. All recent advancements in the

potential theory field have been studied thoroughly during the development of the
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Figure 4.1. Added mass (A33) of a floating hemisphere at zero forward speed(a) and at
forward speed with Fn = 0.16(b) showing results for zero and infinite frequency (extended
tail)

code. Keeping in mind the ease of use, the panel definition is obtained through

commercial software [37] as a Geometric Data File format. This allows creating

vessel geometry and studying its response about any point of origin on the hull

easier and also encourages automated hull generation that can be used for hull form

optimization purposes. Not requiring a free surface discretization removes possible

user error in deciding upon the size of the free surface domain and panelization

errors near the hull waterline which may result in erroneous or inconsistent results.

Using only the hull surface below the mean waterline without surface discretization

makes MDLHydroD robust, computationally efficient and useful for both manual and

automatically generated hulls. However, this required using linearized free surface

boundary condition which is a compromise as compared to Rankine source based

codes with free surface panels. It must be recalled that the free surface nonlinearities

become significant beyond Froude number Fn = 0.4 and in high seas [38].
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5. NUMERICAL EVALUATION OF FINITE AND INFINITE

DEPTH GREEN FUNCTIONS

5.1 Introduction

The boundary integral equation under the assumption of incompressible, inviscid,

and irrotational fluid uses the Green’s theorem with appropriate boundary conditions

to obtain the velocity potential of a floating or submerged body. The numerical

algorithm uses a discretized panel model for the body geometry, in which sources

of unknown strength are distributed. The rigid body boundary condition is used to

solve for the unknown source strengths. These sources are defined using the Green

function so that the free surface, radiation and the bottom boundary conditions are

automatically satisfied. The influence on each panel due to the rest of the panels

requires at least one evaluation of the Green function. Hence, for a N panel body,

the Green function must be evaluated for at least (N−1)× (N−1) number of times,

more in the case of a higher order integration method such as Gauss quadrature,

which consumes a large portion of the CPU time. This requires development of

efficient algorithms for numerical evaluation of the free surface Green function.

Wehausen and Laitone [39] give the analytical expressions for the oscillatory free

surface Green functions. The free surface Green functions can be broadly divided

into two categories:

• Infinite Depth Green Functions

• Finite Depth Green Functions

A considerable amount of research has been done in the development of efficient

algorithms for both kinds of Green functions. In this dissertation work, both of these
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are implemented and the numerical details are presented here.

5.2 The Infinite Depth Green Function

The infinite depth Green function is applicable in the hydrodynamic analysis of

ships or floating offshore platforms operating at water depth greater than four times

the draft (h/T > 4) [40]. A number of variants of the infinite water depth Green

function have been proposed by researchers during the 1940s and early 1950s. These

studies are reviewed in Wehausen and Laitone [39].

The analytical expression of the Infinite depth Green function as given by John

[41, 42] is:

G(p; q) =
1

r
+

1

r′
+ 2KPV

∫ ∞
0

eµ(z+ζ)

µ−K
J0(kR)dµ+ i2πKeK(z+ζ)J0(KR) (5.1)

The numerical evaluation of this function however requires considerable manipu-

lation for efficient computing due to the presence of transient functions. Currently,

two such numerical implementations, one by Newman [43] knowns as FINGREEN and

the other by Noblesse [44] are well known and used in a number of commercial

applications.

5.2.1 Numerical Implementation of the Infinite Depth Green Function

The numerical implementation of the infinite depth Green function is achieved

following the method proposed by Telste and Noblesse [22]. The coordinates ~x are

non-dimensional values obtained using some reference length L characterizing the size

of the wave-radiating/diffracting body. Thus, ~x = ~X/L where ~X is dimensional. The

mean sea is taken as the lower half space z ≤ 0, zs ≤ 0. The Green function G(~x, ~xs)

is the ”spatial component” of the velocity potential Re[G(~x, ~xs)e
−iωt] corresponding

to the flow at ~x(x, y, z) caused by a singularity at ~xs(xs, ys, zs). Here t is time and ω
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is the radian frequency of the waves.

The following non-dimensional variables are defined:

f =
ω2L

g
(5.2)

ρ = [(x− xs)2 + (y − ys)2]1/2 (5.3)

r = [ρ2 + (z − zs)2]1/2 (5.4)

r′ = [ρ2 + (z + zs)
2]1/2 (5.5)

h = f, v = f · (z + zs), d = (h2 + v2)1/2 = fr′ (5.6)

The Green function and its gradients can be expressed in the form:

G =
1

r
+

1

r′
+ G̃0(~x, ~xs, f) (5.7)

G̃0(~x, ~xs, f) = 2f [R0(h, v)− iπJ0(h)ev] (5.8)

The derivatives of the Green function are given by:

∂G̃0

∂ρ
= −2f 2[R1(h, v)− iπJ1(h)ev] (5.9)

∂G̃0

∂x
=

(x− xs)
ρ

∂G̃0

∂ρ
(5.10)

∂G̃0

∂y
=

(y − ys)
ρ

∂G̃0

∂ρ
(5.11)

∂G̃0

∂z
= 2f 2

[
1

d
+R0(h, v)− iπJ0(h)ev

]
(5.12)

where J0(h) and J1(h) are the usual Bessel functions of the first kind and R0(h, v) and

R1(h, v) are real functions calculated using the subroutine sub GRADIF re-developed

following the work of Telste and Noblesse [22].
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5.3 The Finite Depth Green Function

The finite depth Green function is required for analysis of vessel motion in water

depth less than four times the draft of the vessel (h/T < 4) [40]. The analytical

form of the finite depth Green function has been given by John[41, 42] which is also

summarized in Wehausen and Laitone [39]. The numerical treatment of the finite

depth Green function was found to be significantly more computationally demanding

compared to the deep water Green function. The implementation by Newman [43]

using economized polynomials is found to be efficient enough for practical hydrody-

namic analysis purposes. Linton [45] and Pidcock[46] provide further insight about

the numerical treatment of the Green function at finite depth. Recently Li[47] and

Liu [48] developed finite depth Green functions for marine applications.

In this thesis work, a new finite depth Green function is developed and imple-

mented in the frequency domain solver MDLHydroD. The detailed procedure for this

development is described in this chapter. The next chapter will present the valida-

tion results for motion and wave exciting forces for floating bodies at finite water

depth.

5.3.1 Solution of the Dispersion Relation

The dispersion relation for water waves at constant depth is given by:

ω2 = gk tanh kh (5.13)

Here, the unknown wave number k needs to be determined for a given wave fre-

quency ω at water depth h. Non-dimensional parameters x = ω2h/g and y = kh are
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introduced to simplify the equation to:

x = y tanh y (5.14)

where a real, positive root y(x) is required for a prescribed value of x.

The method for solving these transcendental equations involves choosing a rela-

tively crude first approximation of the root to start and then iterate with an appro-

priate algorithm until the desired degree of accuracy is achieved. The computational

speed is proportional to the number of iterations and care must be taken to ensure

that the desired level of accuracy is achieved for all possible values of x. Here, the

semi-infinite domain (0 < x <∞) is divided into two sub-domains (0 < x ≤ 2) and

(2 ≤ x <∞) and separate complementary approximations are used in each domain.

A higher order iterative technique is used to obtain the wave number with six digit

precision. It is however possible to increase the precision to any desired level within

the limitations of the variable definitions for a particular programming language.

The algorithm described here corresponds to a procedure developed by Newman[49].

5.3.1.1 Higher-Order Iterative Technique

The root of the equation f(y) = 0 may be determined iteratively by Newton’s

method. The Taylor series expansion about the initial approximation yn is given by:

f(y) = f(yn) + (y − yn)f ′(yn) +
1

2
(y − yn)2f ′′(yn) + . . . (5.15)

The usual Newton-Raphson method neglects the second derivative and the right

hand side is solved for the value y = yn+1 where f(y) = 0:

yn+1 = yn − f(yn)/f ′(yn) (5.16)
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In the higher order method, this approximation is improved by including the sec-

ond derivative term. Substituting the approximate first-order solution (y − yn =

−f(yn)/f ′(yn)) in the last term of (5.15) we get:

yn+1 = yn −
f(yn)

f ′(yn)

(
1 +

1

2

f(yn)f ′′(yn)

(f ′(yn))2

)
(5.17)

Each iteration of this scheme converges with an error proportional to the third power

of the error in the preceding iteration. This convergence rate is significantly faster

compared to the conventional first order approach which has a quadratic rate of

convergence.

The function f(y) and its derivatives are derived from (5.14) as:

y = tanh−1

(
x

y

)
=

1

2
log

(
y + x

y − x

)
(5.18)

f(y) =
1

2
log

(
y + x

y − x

)
− y (5.19)

f ′(y) =− x

y2 − x2
− 1 (5.20)

f ′′ =
2xy

(y2 − x2)2
(5.21)

The starting approximations to use in this scheme are:

y0 =
√
x(0.9994 + 0.1701x+ 0.0305x2) (0 < x ≤ 2) (5.22)

y0 =x+ 2xe−2x − 6x2e−4x (2 < x <∞) (5.23)

The error in the starting approximation (5.23) is of order x2e−4x, and it is unnec-

essary to correct the approximation if x is sufficiently large. The equation (5.23) is

accurate to 8S when x ≥ 5, and to 18S when x ≥ 10. Here “S” signifies the number
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of significant digits. Using this approximation without an iterative correction in the

above ranges removes the instability in the iterative scheme (5.17) - (5.21) when

x� 1 and y = x.

The first iteration using the approximation (5.22) - (5.23) with (5.17) yields

an approximation y1 with 7-8S accuracy, equivalent to full single-precision accuracy.

For single precision subroutine the iteration is unnecessary when x ≥ 5, and should

be skipped in this region to avoid the instability in (5.17) - (5.21). In terms of

computational efficiency of the iterative schemes, the second order scheme (5.17)

is inherently more efficient than the Newton-Raphson approach (5.16) as the main

computational burden in the calculation of the transcendental function in (5.19) is

common in both but the higher order scheme requires a lower number of iterations.

5.3.1.2 Imaginary Roots

The dispersion relation (5.13) and its non-dimensional form (5.14) has an infinite

number of discrete imaginary solutions. These imaginary roots are essential for the

formulation of the series form of the finite depth Green function. Reformulating the

equation as:

x+ y tan y = 0 (5.24)

allows solving for roots as real variables for a given value of x > 0. It is convenient

to redefine the n’th root as yn = πn − δn, where 0 < δn < π/2. The higher order
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iterative scheme is used to determine δ where:

f(δ) = tan−1(x/y)− δ (5.25)

f ′(δ) =
x

x2 + y2
− 1 (5.26)

f ′′(δ) =
2xy

(x2 + y2)2
(5.27)

and the initial approximation for δ is obtained by:

δ1 =0.0159 + 0.1032u+ 4.3152u2 − 2.8768u3 (5.28)

u =
3x

7 + 3x
(5.29)

The maximum absolute error in (5.28) is 0.025, but one iteration of this approxima-

tion with (5.17) gives a maximum absolute error less than 3.4×10−7. For subsequent

roots it is convenient to employ the starting approximation

δn+1 − δn =
−πx

x2 + π(n+ 1)(πn− δn)
(5.30)

One iteration from these starting values is accurate to 6S, and a second iteration

yields approximately 17S.

5.3.2 Integral Form of the Green Function in Finite Depth of Water

The finite water depth Green function is developed using two separate functions

applicable in the region R/h < 0.5 and R/h ≥ 0.5, where R is the horizontal distance

of the source from the field point and h is the water depth. The integral form of the

finite depth Green function is applicable in the region R/h < 0.5 and it was found

to be unstable beyond R/h > 7. A series form of the Green function is used in the

region R/h ≥ 0.5. Since numerical integration needs to be performed, the integral
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form is not favored beyond R/h > 0.5 as it requires significantly large number of

iterations to achieve the required accuracy level compared to the series form of the

Green function. Vice versa the series form of the Green function requires significantly

more iterations below R/h < 0.5 compared to the integral form and hence is not used

in this region.

The integral form of the Green function is given by Wehausen & Laitone ([39])

as:

G(p; q) =
1

r
+

1

r∗

+ 2PV

∫ ∞
0

(µ+K)e−µh cosh(µ(ζ + h))cosh(µ(z + h))

µ sinh(µh)−K cosh(µh)
J0(µR)dµ

+ i
2π(k +K)e−kh sinh(kh) cosh(k(ζ + h)) cosh(k(z + h))

Kh+ sinh2(kh)
J0(kR) (5.31)

where

K =
ω2

g
= k tanh(kh) (5.32)

r =[(x− ξ)2 + (y − η)2 + (z − ζ)2]
1
2 (5.33)

r∗ =[(x− ξ)2 + (y − η)2 + (z + 2h+ ζ)2]
1
2 (5.34)

R =[(x− ξ)2 + (y − η)2]
1
2 (5.35)

(5.36)

5.3.2.1 Numerical Treatment of the Integral Form of the Green Function

To numerically evaluate the integral form of the Green function, the function is

broken into real (GIR) and imaginary (GII) parts. The real part is further broken

into summation of the Rankine source and image source term (GIR1) and the prin-
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cipal integral part (GIR2). The Rankine part (GIR1) can be evaluated analytically

following Hess & Smith [14] and its derivatives can be evaluated analytically follow-

ing Katz & Plotkin [35]. See Guha [1] for the related analytical expressions. The

imaginary part (GII) can be calculated directly as they are simple functions. The

only computationally intensive term is the principal value integral term GIR2 which

is evaluated using a Gauss-Laguerre quadrature method.

The final expressions required for numerical implementation of the integral form

of the Green function and its derivatives are described below:

G(p; q) = GIR1 +GIR2 +GII (5.37)

where

GIR1 =
1

r
+

1

r∗
(5.38)

GIR2 =2PV

∫ ∞
0

(µ+K)e−µh cosh(µ(ζ + h))cosh(µ(z + h))

µ sinh(µh)−K cosh(µh)
J0(µR)dµ (5.39)

GII =− i2π(k +K)e−kh sinh(kh) cosh(k(ζ + h)) cosh(k(z + h))

Kh+ sinh2(kh)
J0(kR) (5.40)

The non-dimensionalized Integral Form of the Green Function is

σ = Kh v0 = kh v = µh

r1 =
R

h
r2 =

ζ

h
r3 =

z

h

Substituting K, k, µ,R, ζ and z into (5.39) and (5.40), we obtain:
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GIR2h = 2PV

∫ ∞
0

e−v (v + σ) cosh(v(r2 + 1)) cosh(v(r3 + 1))

v sinh v − σ cosh v
J0(vr1)dv (5.41)

There is a singularity at v = v0 in the principal value of the integral in (5.41).

Using following substitutions:

f(v) =(v + σ) cosh(v(r2 + 1)) cosh(v(r3 + 1))J0(vr1) (5.42)

g(v) =v sinh(v)− σ cosh v (5.43)

g′(v) = sinh v + v cosh v − σ sinh v (5.44)

The equation (5.41) then becomes,

GIR2h =2

∫ ∞
0

e−v
[

(v + σ) cosh(v(r2 + 1)) cosh(v(r3 + 1))J0(vr1)

v sinh v − σ cosh v

−(v0 + σ) cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J0(v0r1)

(v − v0)(sinh v0 + v0 cosh v0 − σ sinh v0))

]
dv

− 2e−v0Ei(v0)
(v0 + σ) cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J0(v0r1)

sinh v0 + v0 cosh v0 − σ sinh v0

(5.45)

The equation (5.45) will be solved by Gauss-Laguerre quadrature. The imaginary

part in (5.40) can be written as;

GIIh = −i2π (v0 + σ)e−v0 sinh v0 cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J0(v0r1)

σ + sinh2 v0

(5.46)

GII can be calculated directly from (5.46).
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5.3.2.2 Analytical Expressions for the Derivatives of the Integral Form

of Green Function

The derivatives of the Green function can be obtained from (5.45) and (5.46).

∂GIR2

∂x
=− 2

h3

∫ ∞
0

e−v
[

(v + σ) cosh(v(r2 + 1)) cosh(v(r3 + 1))J1(vr1)v

v sinh v − σ cosh v
· (x− ξ)

r1

−(v0 + σ) cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J1(v0r1)v0

(v − v0)(sinh v0 + v0 cosh v0 − σ sinh v0)
· (x− ξ)

r1

]
dv

+
2

h3
e−v0Ei(v0)

(v0 + σ) cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J1(v0r1)v0

sinh v0 + v0 cosh v0 − σ sinh v0

· (x− ξ)
r1

(5.47)

∂GIR2

∂y
=− 2

h3

∫ ∞
0

e−v
[

(v + σ) cosh(v(r2 + 1)) cosh(v(r3 + 1))J1(vr1)v

v sinh v − σ cosh v
· (y − η)

r1

−(v0 + σ) cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J1(v0r1)v0

(v − v0)(sinh v0 + v0 cosh v0 − σ sinh v0)
· (y − η)

r1

]
dv

+
2

h3
e−v0Ei(v0)

(v0 + σ) cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J1(v0r1)v0

sinh v0 + v0 cosh v0 − σ sinh v0

· (y − η)

r1

(5.48)

∂GIR2

∂z
=

2

h2

∫ ∞
0

e−v
[

(v + σ) cosh(v(r2 + 1)) sinh(v(r3 + 1))J0(vr1)v

v sinh v − σ cosh v

−(v0 + σ) cosh(v0(r2 + 1)) sinh(v0(r3 + 1))J0(v0r1)v0

(v − v0)(sinh v0 + v0 cosh v0 − σ sinh v0)

]
dv

− 2

h2
e−v0Ei(v0)

(v0 + σ) cosh(v0(r2 + 1)) sinh(v0(r3 + 1))J0(v0r1)v0

sinh v0 + v0 cosh v0 − σ sinh v0

(5.49)
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and,

∂GII

∂x
=i

2π

h3

(v0 + σ)e−v0 sinh v0 cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J1(v0r1)v0

σ + sinh2 v0

· (x− ξ)
r1

(5.50)

∂GII

∂y
=i

2π

h3

(v0 + σ)e−v0 sinh v0 cosh(v0(r2 + 1)) cosh(v0(r3 + 1))J1(v0r1)v0

σ + sinh2 v0

· (y − η)

r1

(5.51)

∂GII

∂z
=− i2π

h2

(v0 + σ)e−v0 sinh v0 cosh(v0(r2 + 1)) sinh(v0(r3 + 1))J0(v0r1)v0

σ + sinh2 v0

(5.52)

5.3.3 Series Form of Green Function in Finite Depth of Water

John [41, 42] derived the following infinite-series expansion form for the Green

function in finite depth of water.

G(p; q) =2π
K2 − k2

k2h−K2h+K
cosh(k(z + h)) cosh(k(ζ + h)) [Y0(kR) + iJ0(kR)]]

+ 4
∞∑
n=1

k2
n +K2

k2
nh+K2h−K

cos(kn(z + h)) cos(kn(ζ + h))K(knR) (5.53)
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where, p = p(x, y, z) is the field point; q = q(ξ, η, ζ) is the source point; h is the

water depth; J0 is Bessel function of the first kind; Y0 is Bessel function of the

second kind; and K0 is the modified Bessel function of the second kind; and R =

[(x− ξ)2 + (y − η)2]
1
2 .

k is positive real root of the transcendental equation:

K =
ω2

g
= k tanh(kh) (5.54)

And kn denotes the set of corresponding positive real roots of equation:

kn tan(knh) = −K (5.55)

From (5.53)

G(p; q) = Re{G}+ Im{G} = GSR +GSI (5.56)

where,

GSR =2π
K2 − k2

k2h−K2h+K
cosh(k(z + h)) cosh(k(ζ + h))Y0(kR)

+ 4
∞∑
n=1

k2
n +K2

k2
nh+K2h−K

cos(kn(z + h)) cos(kn(ζ + h))K0(knR) (5.57)

GSI = −i2π K2 − k2

k2h−K2h+K
cosh(k(z + h)) cosh(k(ζ + h))J0(kR) (5.58)
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5.3.3.1 Non-dimensionalized Series Form of Green’s Function

Similar to the integral form, we choose non-dimensional parameters as follows:

σ = K · h, v0 = k · h, αn = kn · h

r1 =
R

h
=

√
(x− ξ)2 + (y − η)2

h
, r2 =

ζ

h
, r3 =

z

h

Substituting K, k, kn, R, ζ, z into (5.57), we obtain:

GSRh =2π · σ2 − v2
0

v2
0 − σ2 + σ

· cosh(v0(r2 + 1)) cosh(v0(r3 + 1))Y0(v0r1)

+ 4
∞∑
n=1

α2
n + σ2

α2
n + σ2 − σ

· cos(αn(r2 + 1)) cos(αn(r3 + 1))K0(αnr1) (5.59)

The rate of convergence of (5.59) depends primarily on the ratio of R/h. Equation

(5.59) is not applicable for small values of R/h, since each term of the series contains

a logarithmic singularity when R/h = 0. A six decimal accuracy can be achieved

using approximately 6h/R number of terms in the series in the domain R/h > 1/2.

The imaginary part of the series Green function can be rewritten using the relation

given by Wehausen and Laitone [39]:

exp(−kh) sinh(kh)

Kh+ sinh2(kh)
=

2 exp(−kh) cosh(kh)

2kh+ sinh 2(kh)
=

k −K
k2h−K2h+K

(5.60)
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Applying this in (5.58):

K2 − k2

k2 −K2h+K
= −(k +K) · k −K

k2 −K2h+K
= −(k +K) · exp(−kh) sinh(kh)

Kh+ sinh2(kh)

(5.61)

Hence,

GSI = −i2π (k +K) exp(−kh) sinh(kh) cosh(k(z + h)) cosh(k(c+ h))J0(kR)

Kh+ sinh2(kh)

(5.62)

(5.59) is same as (5.40) i.e. the imaginary parts of the integral form and series

form of Green function in finite depth of water have the same expression (GSI =

GII). Therefore, they have the same non-dimensional form GSIh = GIIh and can be

calculated directly.

5.3.3.2 Analytical Expressions for the Derivatives of the Series Form of

Green Function

Based on the above derivations, it is possible to find the derivatives of GSR and

GSI as follows:

∂GSR

∂x
=− 2π

h3
· σ2 − v2

0

v2
0 − σ2 + σ

cosh(v0(r2 + 1)) cosh(v0(r3 + 1))Y1(v0r1)v0
(x− ξ)
r1

− 4

h3

∞∑
n=1

α2
n + σ2

α2
n + σ2 − σ

cos(αn(r2 + 1)) cos(αn(r3 + 1))K1(αnr1)αn
(x− ξ)
r1

(5.63)
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∂GSR

∂y
=− 2π

h3
· σ2 − v2

0

v2
0 − σ2 + σ

cosh(v0(r2 + 1)) cosh(v0(r3 + 1))Y1(v0r1)v0
(y − η)

r1

− 4

h3

∞∑
n=1

α2
n + σ2

α2
n + σ2 − σ

cos(αn(r2 + 1)) cos(αn(r3 + 1))K1(αnr1)αn
(y − η)

r1

(5.64)

∂GSR

∂z
=

2π

h2
· σ2 − v2

0

v2
0 − σ2 + σ

cosh(v0(r2 + 1)) sinh(v0(r3 + 1))Y0(v0r1)v0

− 4

h2

∞∑
n=1

α2
n + σ2

α2
n + σ2 − σ

cos(αn(r2 + 1)) sin(αn(r3 + 1))K0(αnr1)αn (5.65)

and

∂GSI

∂x
=
∂GII

∂x
,

∂GSI

∂y
=
∂GII

∂y
,

∂GSI

∂z
=
∂GII

∂z
(5.66)

5.3.4 Validation of the Finite Depth Green Function

The developed finite depth Green function is validated against published results

by Li[47] and Liu [48] for a range of wave number and R/h values. Figure 5.1 shows

a comparison of the series and integral Green function with calculation of Li[47] and

Monacella [50] where both the series and integral form are stable for R/h < 7. An

extended range plot for the same condition is shown in Figure 5.2 where the integral

form of the Green function is shown to be unstable beyond R/h > 7, but the series

form is found to be stable and coincident with the results obtained by Li[47].

Figures 5.3 - 5.6 show comparison of the series and integral form of Green function

with the result obtained by Li[47] for a number of wave numbers. For all of these

comparisons G(0, 0,−h, ξ, 0, 0, ) is used where h = 21.336 and ξ is varied to get a
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range of R/h values.

The z-derivative of the Green function is validated against the results published

by Liu [48]. Figure 5.7 shows a comparison of the Green function and its z-derivative

for small wave number with Newman’s Green function. Figure 5.8 shows a similar

comparison for large wave number. For both cases, the developed Green function is

found to be in good agreement with the published results.

The combined form where the integral form of the Green function is used for

0 ≤ R/h ≤ 0.5 and the series form of the Green function is used for 0.5 < R/h <∞

is the resultant finite depth Green function. The distribution of this Green function

with respect to depth and horizontal distance between the source and field point is

shown in Figure 5.9.
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Figure 5.1. The real part of Gh when Kh = 5.0, kh = 5.000454 and 0 < R/h < 7
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Figure 5.2. The real part of Gh when Kh = 5.0, kh = 5.000454 and 0 < R/h < 20
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Figure 5.3. The real part of Gh when Kh = 0.2, kh = 0.46268 and 0 < R/h < 20
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Figure 5.4. The real part of Gh when Kh = 1.0, kh = 1.19968 and 0 < R/h < 20
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Figure 5.5. The real part of Gh when Kh = 2.0, kh = 2.06534 and 0 < R/h < 20
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Figure 5.6. The real part of Gh when Kh = 4.0, kh = 4.00267 and 0 < R/h < 20
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Figure 5.7. Comparison of Green function and its z-derivative for small wave number
(k = 0.005m−1, ω = 0.2215rad/s, h = 2.0m, ζ = −0.2m, sz = −0.3m)
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Figure 5.8. Comparison of Green function and its z-derivative for large wave number
(k = 2m−1, ω = 4.4294rad/s, h = 1.0m, ζ = −0.1m, z = 0.0m)
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6. FIRST ORDER FORCES AND MOTIONS

Prediction of forces and motions of a ship or an offshore platform in an irregular

seaway is the ultimate goal of hydrodynamic analysis. Often the purpose of perform-

ing hydrodynamic analysis is to predict the extreme motions expected in a storm or

to measure the fatigue life of a structure or the mooring system due to repetitive

wave loads. The hydrodynamic pressure acting on the hull is another quantity of

interest for structural analysts. First order forces and motions correspond to the

wave frequency and are particularly important for all of the above purposes.

6.1 Frequency Domain Analysis

Frequency domain methods allow us to evaluate the forces and motions of the

structure in a regular wave of a particular wave frequency. A range of such results

for different wave frequencies are known as the transfer function H(ω) or Response

Amplitude Operator (RAO). These results can be used to obtain the first order

motions in an irregular seaway using spectral density functions (e.g. Jonswap wave

spectrum, Figure 6.1) as given by Journee [51].

The wave energy spectrum is defined by:

Sζ(ω) · dω =
1

2
ζ2
a(ω) (6.1)
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Similarly, the energy spectrum for the heave response z(ω, t) can be defined by:

Sz(ω) · dω =
1

2
z2
a(ω)

=

∣∣∣∣zaζa (ω)

∣∣∣∣2 · 1

2
ζ2
a(ω)

=

∣∣∣∣zaζa (ω)

∣∣∣∣2 · Sζ(ω) · dω (6.2)

which implies:

Sz(ω) =

∣∣∣∣zaζa (ω)

∣∣∣∣2 · Sζ(ω) (6.3)

Here, the transfer function or the heave RAO,

∣∣∣∣zaζa (ω)

∣∣∣∣ can be obtained using the

developed tool as shown in Figure 6.2. The moment of the heave response spectrum

is given by:

mnz =

∫ ∞
0

Sz(ω) · ωn · dω with n = 0, 1, 2, . . . (6.4)

The significant heave amplitude or the mean value of the highest 1/3rd part of

the amplitude can be obtained as:

z̄a1/3 = 2 ·
√
m0z (6.5)

The mean period, T1z and the average zero crossing period T2z can be obtained by:

T1z = 2π ·
√
m0z

m1z

and T2z = 2π ·
√
m0z

m2z

(6.6)

47



Frequency in Hz
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Sp
ec

tr
al

 d
en

si
ty

 in
 m

2 /H
z

0

5

10

15

20

25

30

35

40

45

50
Jonswap Spectrum

Figure 6.1. Jonswap spectrum

Figure 6.2. Heave RAO
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6.2 Hydrodynamic Pressure

The hydrodynamic pressure on the submerged hull can be obtained using the

Bernoulli’s equation:

p = −ρ∂φ
∂t

= −iρω

[
φI + φD +

6∑
j=1

ηjφj

]
(6.7)

The pressure on each panel is obtained for each wave frequency and heading combi-

nation. Figure 6.3 shows the pressure amplitude distribution over the KVLCC2 hull

for the wave frequency ω = 0.038 in following sea condition.

Figure 6.3. Hydrodynamic pressure on the KVLCC2 hull
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6.3 Time Domain Analysis

Time domain response prediction for floating structures is of interest for many

offshore applications such as analysis of coupled mooring systems, parametric exci-

tations and Floating Offshore Wind Turbine. This approach allows consideration of

nonlinear Froude-Krylov forces, nonlinear hydrostatic forces and inclusion of external

nonlinear viscous damping.

The time domain diffraction forces FD can be obtained by taking the Fourier

transform of the wave elevation time series and multiplying it with the force or

motion RAOs, and then taking an inverse Fourier transform. The radiation forces

are obtained using the impulse response function as:

{FR} = − [A(∞)] {η̈} − [B(∞)] {η̇} −
∫ t

−∞
[K(t− τ)] {η̇(τ)} dτ (6.8)

Both linear or nonlinear values for Froude-Krylov force {FI} and hydrostatic

forces FRes can be obtained. The equation of motion can then be solved in time

domain as:

m[η̈ + ω̇ × (~xG − η) + ω × [ω × (~xG − η)]] = FI + FD + FR (6.9)

For further details on time domain formulation considering nonlinearities and

large amplitude motions see [52].

The wave elevation obtained from a Jonswap spectrum (Figure 6.1) using Hs =

7m and Tz = 8s is shown in Figure 6.4. A time domain analysis is performed for

the KVLCC2 vessel using OrcaFlex and the time domain tool SIMDYN [52]. The

frequency domain results from MDLHydroD are used as an input to both programs.
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The heave force and pitch moment time history is shown in Figure 6.5 and Figure 6.6.

Corresponding heave and pitch motions are shown in Figure 6.7 and Figure 6.8. It

was found that the frequency domain program MDLHydroD and the time domain

program SIMDYN can be used together to successfully simulate vessel motions in an

irregular sea.
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Figure 6.4. Irregular wave elevation using Jonswap spectrum with Hs=7m and Tz=8s
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Figure 6.5. Wave excitation heave force time series
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Figure 6.6. Wave excitation pitch moment time series
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Figure 6.7. Heave motion time series
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Figure 6.8. Pitch motion time series

53



7. SECOND ORDER FORCES AND MOMENTS ∗

7.1 Introduction

The influence of nonlinear wave forces is particularly important for vessels travel-

ing in ocean waves and platforms operating in a fixed location offshore. The nonlin-

ear effects are significant when waves and induced motions are large. However, these

forces are often ignored in hydrodynamic analysis at the structures design phase due

to lack of understanding and complexity of application. The work presented here

attempts to explain the complete derivation of the second order steady wave forces

on an arbitrary shaped body moving with a steady forward speed or stationed in a

constant current using the three dimensional potential theory method including the

advancements achieved over the years such as short wave length effects and non-wall

sided structures. In addition, the work herein is capable of considering not only head

and stern seas but also oblique headings at forward speed and calculate the first and

second order loads in all six degrees of freedom.

The second order forces are better known by their physical effects on a floating

body as the added resistance or the mean drift forces. The added resistance is defined

as the increase in resistance of a ship in waves compared to its calm water resistance.

It is a second order force with respect to the wave amplitude acting in longitudinal

direction opposite to the ships forward speed. At zero speed the added resistance

is equivalent to the longitudinal drift force [53]. There are primarily two ways to

calculate the added resistance; either by the far-field method introduced by Maruo

[54] or the near-field method introduced by Boese [55].

∗Part of the data reported in this chapter is reprinted with permission from “The effect of
hull emergence angle on the near field formulation of added resistance” by Amitava Guha, Jeffrey
Falzarano, 2015. Ocean Engineering,105(1) 10-24, Copyright 2015 by Elsevier.
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The far field methods are based on the diffracted and radiated wave energy and

momentum flux at infinity. This method has been later improved by Maruo [56, 57]

and Joosen[58]. Gerritsma and Beukelman [59] proposed a similar method based on

the radiated energy. Salvesen [60] used this method along with the STF seakeeping

results ([10]) and found good comparison with the experimental observations. The

far-field method has been applied only to the slender strip theory based programs

until Iwashita and Ohkusu [61] used the same in a 3D Green function based panel

method and obtained very good results for the added resistance of a fully submerged

spheroid. Kashiwagi et al. [62] used the Enhanced Unified Theory (EUT) which is a

modified version of Maruo’s method and obtained good agreement with experimental

results. Kashiwagi [63] also performed experimental study on two Wigley hulls, one

slender and one blunt to show the effectiveness of the unsteady wave analysis for

added resistance calculations.

The near-field methods are relatively more intuitive and easier to apply to multi-

body problems. The added resistance is found by direct integration of pressure on

the submerged hull surface and considering the mean of the second order terms. The

method originally proposed by Boese [55] was applicable only for head sea and was

overly simplified. The method suggested by Faltinsen et al. [64] is so far the most

complete in theory, and gives added resistance along with the transverse drift forces

and yaw moments. They also provide an alternate expression to calculate added

resistance and drift forces for short wavelengths. The first 3D panel method imple-

mentation of the near-field approach is found in Hsiung and Huang [65]. However,

they did not implement the short wavelength case in their calculations.

The evaluation of the added resistance, the sway drift force and the yaw drift

moment including the forward speed effect using the frequency domain 3D panel

method based on Green function is shown here. This developed method is capable
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of accurately considering motions and loading in all six degrees of freedom. The

in-house software is developed by implementing the described theory and the results

obtained are presented here. The seakeeping problem including the forward speed

effect has been solved using the potential theory as presented in Salvesen et al. [10]

with the source-sink distribution method as per Hess and Smith [14] and Garrison

[18]. The zero speed results were validated extensively with analytical results for

simple shapes and with commercial programs and published in [1, 2]. The forward

speed seakeeping results have been validated with the results published by ITTC Sea-

keeping Committee [66]. Then, the method suggested in Faltinsen et al. [64] is used

to calculate the added resistance and drift forces using direct pressure integration

over the body’s wetted surface.

7.2 The Perturbation Expansions

Assuming small amplitude motion oscillations about the mean position of the

body, we can approximately obtain motions up to second order with respect to the

wave amplitude. We perturb the quantities of interest using a small parameter ε of

the order of the wave slope.

The unsteady velocity potential function (φ = φT e
iωet):

φ = εφ(1) + ε2φ(2) + . . . (7.1)

The free surface elevation:

ζ = εζ(1) + ε2ζ(2) + . . . (7.2)

The relative wave elevation, which is the distance between the wave surface and the
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instantaneous waterline:

ζr = εζ(1)
r + ε2ζ(2)

r + . . . (7.3)

The vessel motion:

~η(t) = ε~η(1) + ε2~η(2) + . . . (7.4)

where ~η(1) = (η1, η2, η3, η4, η5, η6) represents the first order surge,sway, heave,roll,

pitch and yaw motions respectively.

The pressure field in the fluid:

p = p(0) + εp(1) + ε2p(2) + . . . (7.5)

7.3 Derivation of the Pressures

The pressure using Bernoulli’s equation is given as:

P =
1

2
ρU2 − ρ∂Φ

∂t
− 1

2
ρ |∇Φ|2 − ρgz (7.6)

which upon substituting the perturbed quantities gives us the pressure with respect

to different orders of ε.

p(0) = −ρg(zB + Z0) (7.7)

where ~X0 = (X0, Y0, Z0) is the location of the body co-ordinate system origin with

respect to the global coordinate system.

p(1) = −ρgz(1) − ρ∂φ
(1)

∂t
+ ρU

∂φ(1)

∂x
(7.8)
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where z(1) = [η3 − η5xB + η4yB] and

p(2) = −ρ∂φ
(2)

∂t
+ ρU

∂φ(2)

∂x
− ρ

2

{(
∂φ(1)

∂x

)2

+

(
∂φ(1)

∂y

)2

+

(
∂φ(1)

∂z

)2
}

− ρ
{
~x(1) · ∇

(
∂φ(1)

∂t
− U ∂φ

(1)

∂x

)}
− ρgz(2) (7.9)

where z(2) =

[
η4η6xB + η5η6yB −

1

2
(η2

4 + η2
5)zB

]
. The derivatives of the potentials

are taken at the mean position ~x = ~X0 + ~xB. In the second-order pressure the term

−ρ
{
~x(1) · ∇

(
∂φ(1)

∂t
− U ∂φ

(1)

∂x

)}
arises by application of a Taylor series expansion

of the first-order pressure in the mean position,

− ρ∂φ
(1)

∂t

∣∣∣∣∣
S
(1)
B

= −ρ∂φ
(1)

∂t

∣∣∣∣∣
S
(0)
B

+~x(1) · ~∇∂φ
(1)

∂t

∣∣∣∣∣
S
(0)
B

(7.10)

where

~x(1) = ~X(1) + ~θ(1) × ~xB

= (η1 − η6yB + η5zB )̂i+ (η2 + η6xB − η4zB)ĵ + (η3 − η5xB + η4yB)k̂

7.4 Derivation of Forces

The hydrodynamic force is given as:

FHj = −
∫
S

Pnjds j = 1, 2, . . . , 6 (7.11)

We get the expression for the forces at the body fixed origin as:
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~F = −
(∫

S0

ds+

∫
wl

ζrdl

)(
p(0) + εp(1) + ε2p(2)

) (
~n(0) + ε(~θ(1) × ~n(0)) + ε2H~n(0)

)
(7.12)

where wl is the waterline of the ship. Separating terms with ε0, ε1 and ε2 gives the

zeroth, first and second order force respectively.

~F (0) =−
∫
S0

p(0)~n(0)ds (7.13)

~F (1) =−
∫
S0

p(0)(~θ(1) × ~n(0))ds−
∫
S0

p(1)~n(0)ds−
∫
wl

ζ(1)
r p(0)~n(0)dl (7.14)

~F (2) =−
∫
S0

p(0)
(
H~n(0)

)
ds−

∫
S0

p(1)(~θ(1) × ~n(0))ds−
∫
S0

p(2)~n(0)ds

−
∫
wl

ζ(1)
r p(0)(~θ(1) × ~n(0))dl −

∫
wl

ζ(1)
r p(1)~n(0)dl −

∫
wl

ζ(2)
r p(0)~n(0)dl (7.15)

The waterline integral arises due to consideration of the first order wetted sur-

face area S1 which is the additional instantaneous surface of the hull below water

considering both wave elevation and the motion of the body.

∫
S1

. . . ds =

∫
wl

dl

∫ ζr

0

. . .
dz√

1− n2
3

(7.16)

where ζr is the relative wave elevation and dz/
√

1− n2
3 is the inclined height for

non-wall sided surfaces. Figure 7.1 shows the calculation of hull emergence angle

correction for the waterline integration. The normal component n3 is obtained from

the panel intersecting the waterline, hence taking care of the three dimensional effect

of the hull form.
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=

Figure 7.1. Waterline integration limit change due to hull emergence angle

Figure 7.2. Waterline element and panel used for absolute wave elevation calculation
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To calculate the relative wave elevation, first the absolute wave elevation needs to

be calculated along the waterline. The waterline is obtained by extracting the edges

of the panels which are at the water surface (see Figure 7.2). These edges are called

waterline elements. The effect of the first order incident wave as well as the diffracted

and radiated waves must be included in the relative wave elevation calculation. The

pressure at the center of the panel closest to the waterline is used to calculate the

absolute wave elevation using the dynamic free surface boundary condition, i.e. the

pressure at z = ζ equal to zero.

p = 0 = ρgζ + ρ
∂φ

∂t
− ρU ∂φ

∂x
on z = ζ (7.17)

This gives:

ζ(1) = −1

g

(
iωeφT − U

∂φT
∂x

)
eiωet (7.18)

The relative wave elevation is calculated by subtracting the total movement of the

body in the z direction from the absolute wave elevation.

ζ(1)
r = ζ(1) − (η3 − η5x+ η4y) (7.19)

where (x, y) is the center of the waterline element. Note that the pressure is evalu-

ated at the centroid of the panel adjacent to the waterline, and not actually on the

waterline. This means that the panels adjacent to the waterline should be of small

depth.

Substituting expressions for pressures and rotation matrices in (7.15) and per-

forming some simplifications following [67] leads to the second order force equation.
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~F (2) =−
∫
wl

1

2
ρg
(
ζ(1)
r

)2 ~n(0)√
1− n2

3

dl +

∫
S0

ρ

(
∂φ(2)

∂t
− U ∂φ

(2)

∂x

)
~n(0)ds

+

∫
S0

ρ

2

{(
∂φ(1)

∂x

)2

+

(
∂φ(1)

∂y

)2

+

(
∂φ(1)

∂z

)2
}
~n(0)ds

+

∫
S0

iωeρ

{
(η1 − η6yB + η5zB)

∂φ(1)

∂x

+ (η2 + η6xB − η4zB)
∂φ(1)

∂y
+ (η3 − η5xB + η4yB)

∂φ(1)

∂z

}
~n(0)ds

− ρgA(0)

[
η4η6xB,f + η5η6yB,f +

1

2
(η2

4 + η2
5)Z0

]
k̂

− ω2
e {−η2η6m+ η4η6mzg − η6η6mxg + η3η5m+ η4η5yg − η5η5mxg} î

− ω2
e {η1η6m+ η5η6mzg − η6η6myg − η3η4m− η4η4myg + η4η5mxg} ĵ

− ω2
e {−η1η5m− η5η5mzg + η5η6myg + η2η4m− η4η4mzg + η4η6mxg} k̂

(7.20)

Similarly, the second order moment can be derived to be equal to:
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~M (2) =−
∫
wl

1

2
ρg
(
ζ(1)
r

)2 (
~xB × ~n(0)

)
dl

+ ρ

∫
S0

(
∂φ(2)

∂t
− U ∂φ

(2)

∂x

)(
~xB × ~n(0)

)
ds

+
ρ

2

∫
S0

{(
∂φ(1)

∂x

)2

+

(
∂φ(1)

∂y

)2

+

(
∂φ(1)

∂z

)2
} (

~xB × ~n(0)
)
ds

+ iωeρ

∫
S0

{
(η1 − η6yB + η5zB)

∂φ(1)

∂x

+ (η2 + η6xB − η4zB)
∂φ(1)

∂y

+ (η3 − η5xB + η4yB)
∂φ(1)

∂z

}(
~xB × ~n(0)

)
ds

− ω2
e {η2η4myg − η1η6mzg − η4η6I54 − η5η6I55 − η6η6I56

+η3η4mzg − η1η5myg + η4η5I64 + η5η5I65 + η5η6I66} î

− ω2
e {η3η5mzg − η2η6mzg + η4η6I44 + η5η6I45 + η6η6I46

+η1η5mxg − η2η4mxg − η4η4I64 − η4η5I65 − η4η6I66} ĵ

− ω2
e {η1η6mxg − η3η5myg − η4η5I44 − η5η5I45 − η5η6I46

+η2η6myg − η3η4mxg + η4η4I54 + η4η5I55 + η4η6I56} k̂

+ ρg

[
−V (0)η1η6 + V (0)η4η5xCB − V (0)η5η6zCB −

1

2
V (0)(η2

4 − η2
6)yCB

−η4η6L12 − η5η6L22 −
1

2
(η2

4 + η2
5)Z0A

(0)yf + η5η6V
(0)Z0

]
î

+ ρg

[
−V (0)η2η6 + V (0)η4η6zCB +

1

2
V (0)(η2

5 − η2
6)xCB

+η4η6L11 + η5η6L12 +
1

2
(η2

4 + η2
5)Z0A

(0)xf − η4η6Z0V
(0)

]
ĵ

+ ρgV (0)(η1η4 + η2η5 + η5η6xCB − η4η6yCB)k̂ (7.21)

The mean drift forces in regular waves are calculated by taking a time average of
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the second order force over one time period. In regular waves the term containing the

second order potential φ(2) becomes zero on time averaging. The remaining terms

are simplified using the following complex number identities:

The time average of a complex number product can be written as:

Real{Z1}Real{Z2} =
1

2
Real{Z1Z

∗
2} (7.22)

which gives:

(
ζ

(1)
r

)2

=
1

2

∣∣ζ(1)
r

∣∣2 (7.23)

ηiηj =
1

2
(Real{ηi}Real{ηj}+ Imag{ηi}Imag{ηj}) (7.24)

7.5 The Components of the Added Resistance

The added resistance is said to have four constitutive components as shown in

Figure 7.3. The components are due to: the first order relative wave elevation (R1),

the first order velocity (R2), the product of the first order velocity and the first order

motion (R3), and, the product of first order angular motions and inertia forces (R4).

For ship shaped structures with large waterplane areas, the relative wave elevation

component has the maximum effect. All other components work against the relative

wave elevation term tending to lower the total added resistance (F1). For offshore

platforms with relatively small waterplane areas, the second component, i.e. due to

velocity squared term is found to be the dominant force. Hence, for the ships with

flare, it is very important to evaluate the waterline integral accurately including the

effect of the hull emergence angle [4].
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Figure 7.3. Components of added resistance of S175 at Fn = 0.25 in head sea

7.6 The Effect of Hull Emergence Angle

Most added resistance prediction methods ignore the effect of the hull emergence

angle in their formulation. The far-field methods are considered to be immune to

small local variations of the hull shape. The near field methods however integrate

the relative wave amplitude along the waterline to obtain the added resistance. This

integral was found to be the major component for any floating body with large

waterplane area as shown in Figure 7.3.

The hull forms studied experimentally and numerically as seen in the previous

section are with either absolutely or approximately vertical hulls at the waterline

(i.e. wall-sided). The container ship S175 and KCS have some amount of flare near

the bow, which affects the waterline integral by only a small amount. This however
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is not true for the US Navy’s Ro-Ro vessel Bob Hope. A significant portion of the

bow and stern region emerges at an extreme angle at the waterline (see Figure 7.4).

This type of fine hull form is found to provide a better calm water wave resistance

performance.

To incorporate the hull emergence angle into the added resistance predictions, the

relative wave amplitude is integrated up to the inclined height of the hull surface.

This improved formulation is demonstrated in Figure 7.1.

To demonstrate the effect of flare angle on added resistance, the US Navy ship

Bob Hope is analyzed at different forward speeds. At zero forward speed (Fn = 0.0)

the added resistance (or mean drift force in longitudinal direction) is shown in

Figure 7.5(a). The calculation performed with flare angle improvement shown as

MDLHydroD (Improved) is validated against an industry standard program WAMIT[36].

Here, the calculations without flare angle modification is also compared which is

shown as MDLHydroD(Wallsided). It is clear from this comparison that the flare

angle modification is essential in the near field formulation of added resistance.

Next, the added resistance is calculated for a number of increasing forward speed

conditions shown in Figure 7.5(b-i). As expected, the added resistance was found to

be increasing with higher forward speed and the peak value occurs close to λ/L = 1.

However, it can be observed that the effect of hull emergence angle reduces with

increase in speed. This is expected due to increased relative effect of the other

components compared to the waterline integral.

The proposed improvement would be particularly useful for hull optimization

purposes, as the method is implemented in a Green function based 3D panel method

code which requires panelization of the underwater hull surface only. This would

allow designers to more accurately evaluate the benefits of having a longer non-wall

sided hull form along the waterline on added resistance reduction.
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Figure 7.4. Panel model of the Ro-Ro ship Bob Hope showing significant non-wall sided
sections along the waterline
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Figure 7.5. Comparison of added resistance of Bob Hope with increasing Froude numbers
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8. FINITE DEPTH ANALYSIS WITH FORWARD SPEED EFFECTS

8.1 Introduction

The recent trend in building ultra large vessels such as the Maersk Triple E

class container ship, the Shell Prelude FLNG (Floating Liquefied Natural Gas) and

SHI’s 330m long FPSO (Floating Production Storage and Offloading) has created

renewed interest in understanding the behavior of floating structures with forward

speed in shallow to intermediate water depths. The large draft of these vessels

requires consideration of the seabed clearance for most harbors and even for their

operating condition in open seas.

To design channels connecting harbor to sea, it is important to study the vertical

motions of a ship to ensure no grounding occurs during the passage. The width of

the channel should also be adequate to allow maneuvering of the ship in shallow

water. For these problems, prediction of the hydrodynamic coefficient and 6DOF

motion of the vessel in finite water depth is of interest.

The second order drift forces are very important for designing mooring systems

for offshore platforms. Finite depth effects must be considered in the calculation of

drift forces and their corresponding effect on vessel motion to ensure the tension and

offsets are within the bounds for safe operation.

It was found that the water depth effects on the hydrodynamic coefficients become

perceptible when the water depth is less than about four times the draft of the ship

[40, 68]. When the depth to draft ratio becomes less than 2, the effect of bottom

becomes more significant.

The close proximity of the seabed affects the vessel motion in two ways. First,

the incident waves change due to restricted water depth where the wave length
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is related to depth by the dispersion relation: ω2 = kg tanh(kh). Secondly, the

hydrodynamic coefficients such as the added mass, radiation damping and radiation-

diffraction forces change due to the water depth. These hydrodynamic coefficients

can be obtained using potential theory by applying the finite depth Green function

developed in chapter 5.

The potential theory method applied here accounts for the free surface effect and

uniform water depth. The fluid is assumed to be ideal i.e. incompressible, inviscid

and irrotational. The forward speed approximations are applied using the encounter

frequency and simplified m-terms. The governing equations and the numerical im-

plementation of the method are described below.

8.2 Governing Equations

The governing equations for the finite water depth problem is the same as given

in Section 3 for deep water condition except the bottom boundary condition. The

bottom boundary condition for finite water depth is given as:

∂

∂z
(φI , φD, φj) = 0 on z = −h (8.1)

The linear incident wave potential satisfying the governing equations and bound-

ary conditions is given by:

φI =
igA

ωI

cosh(kI(z + h))

cosh(kIh)
e−ikI(x cosβ+y sinβ) (8.2)
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and the derivatives of the incident potential are given by:

∂φI
∂x

=
gAkI cos β

ωI
· cosh(kI(z + h))

cosh(kIh)
· e−ikI(x cosβ+y sinβ) (8.3)

∂φI
∂y

=
gAkI sin β

ωI
· cosh(kI(z + h))

cosh(kIh)
· e−ikI(x cosβ+y sinβ) (8.4)

∂φI
∂z

=
igAkI
ωI

· sinh(kI(z + h))

cosh(kIh)
· e−ikI(x cosβ+y sinβ) (8.5)

The boundary value problem for the forward speed case is then solved following

the method described in Salvesen [10] and the velocity potential is then obtained.

The forces and moments are then obtained using Bernaulli’s equation and the 6DOF

equation of motion is solved to obtain vessel motions.

8.3 Numerical Evaluation

The complex velocity potential is solved using the source distribution method.

The surface of the body is discretized into quadrilateral panels and sources of un-

known strength are placed at the center of each panel. The finite water depth Green

function is used to form the sources and hence the free surface, bottom and radiation

boundary conditions are automatically satisfied. The only remaining body bound-

ary condition is imposed by equating the normal velocity at the body to be zero (no

penetration) which leads to the solution for radiation and diffraction potentials. The

numerical details of influence matrix setup is given in Section 4.

8.4 Results and Discussion

The three dimensional source method described above is applied to obtain the

added mass, radiation damping, wave excitation forces and the free floating motions

RAOs for a number of structures. First the results are validated for the zero forward

speed condition and different water depths using industry standard code WAMIT
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[36]. Then, forward speed cases were analyzed and compared with published results.

8.4.1 Cylinder

A truncated cylinder of radius 1m and draft 0.5m is considered. The water depth

of 1m corresponds to the depth to draft ratio(h/T ) of 2. The vertical center of

gravity is set at z = 0 and radius of gyrations in roll, pitch and yaw are considered

to be 1m. The frequency domain results are obtained for wave heading 150 degrees

and zero forward speed. Figure 8.1 shows the panel model of the cylinder.

Figure 8.2 shows the comparison of added mass and radiation damping for surge

and heave mode of motion. The first order forces and moments are compared in

Figure 8.3. Figure 8.4 shows the comparison of response amplitude operators and

Figure 8.5 shows the comparison of the second order mean drift forces. The results

obtained using the developed code MDLHydroD were found to be in very good

agreement with the commercial program WAMIT.

Figure 8.1. Panel model of the cylinder
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Figure 8.2. Comparison of added mass and radiation damping for cylinder at Fn = 0 and
h/T = 2

8.4.2 Series 60

The finite depth forward speed motion prediction results are relatively scarce in

the open literature. Here the added mass and damping coefficients are compared

with published results of Huijsmans and Dallinga [69] for the Series 60 hull with

Cb = 0.7. The depth to draft ratio h/T = 1.15 is considered and forward speed

corresponding to Fn = 0.2 is selected.

The added mass and radiation damping coefficients are compared in Figure 8.6.

The added mass comparison was found to be satisfactory and the radiation damping

comparison for B35 and B53 was also found to be acceptable. B33 and B55 however

showed large differences from the experimental results. This discrepancy could be

the result of our assumed location of the center of gravity and the coordinate system
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Figure 8.3. Comparison of wave exciting forces and moments for cylinder at Fn = 0 and
h/T = 2
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Figure 8.4. RAO comparison for cylinder at Fn = 0 and h/T = 2
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Figure 8.5. Comparison of mean drift forces for cylinder at Fn = 0 and h/T = 2

as these data are not provided in the paper. Further validation studies are required

for the finite depth forward speed case.

8.4.3 Tanker

To understand the effect of water depth on motion and added resistance, a tanker

hull is chosen. The principal particulars of the hull is given in Table 8.1. The deep

water or infinite water depth condition is plotted in black colored lines. The red

and blue lines represent water depth corresponding to h/T = 3 and h/T = 1.5

respectively. The heave and pitch motion and the added resistance are calculated for

three forward speeds corresponding to Fn = 0, 0.13 and 0.26 in head sea condition.

Figure 8.7, Figure 8.8 and Figure 8.9 show the results for the zero speed case where

it can be observed that the water depth has almost no effect on the vessel motion

or the drift forces. Where Figure 8.10 to Figure 8.15 shows that with an increase of

forward speed the effect of water depth becomes more perceptible. Both motion and

added resistance were found to be reduced with a decrease in water depth. While

this may be the favorable condition when a ship enters the port channel, the viscous

effects of the seabed are expected to be more significant which is not considered in

the potential flow method applied here. One should also consider the squat and
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Figure 8.6. Comparison of added mass and radiation damping for Series 60 (Cb = 0.7) hull
at Fn = 0.2 and h/T = 1.15
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trim of the vessel in shallow water to avoid vessel grounding. This method however

provides a quick way to evaluate the vertical motions expected for ships entering

intermediate water depths or analysis of platforms operating in finite water depths.

Table 8.1. Principal Particulars of the Tanker

Length L 158.5 m
Breadth B 23.2 m
Draft T 7.75 m
Displacement ∆ 18000 t
Longitudinal Center of Gravity LCG 0.317 m
Radius of Gyration in Roll kxx 49.9275 m
Radius of Gyration in Pitch kyy 39.625 m
Radius of Gyration in Yaw kzz 39.625 m
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Figure 8.10. Heave amplitude at Fn = 0.13 in head sea condition
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Figure 8.11. Pitch amplitude at Fn = 0.13 in head sea condition
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Figure 8.12. Added resistance at Fn = 0.13 in head sea condition
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Figure 8.13. Heave amplitude at Fn = 0.26 in head sea condition
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Figure 8.14. Pitch amplitude at Fn = 0.26 in head sea condition
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Figure 8.15. Added resistance at Fn = 0.26 in head sea condition
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9. VALIDATIONS∗

The numerical scheme described here is implemented in a computer code named

MDLHydroD. The free surface zero speed Green function of Telste and Noblesse [22]

is used with forward speed corrections to obtain the motion and loads in the frequency

domain. The effect of forward speed is included using the encounter frequency while

simplified m-terms are used in the radiation boundary conditions. The zero speed

seakeeping results have been extensively validated against the commercial program

WAMIT [36] in [1, 2]. Preliminary results for added resistance and its impact on

reduction of the Energy Efficiency Design Index(EEDI) is shown in [5].The program

MDLHydroD is further extended to incorporate nonlinear hydrostatics, nonlinear

Froude Krylov force and empirical viscous damping effects in a time domain large

amplitude motion program [52].

Here, a number of validations against experimental and numerical studies on the

vessel motion and first and second order wave forces are presented.

9.1 Submerged Spheroid

A shallowly submerged spheroid of length to breadth ratio L/B = 5 and draft

to breadth ratio d/B = 0.75 was studied by Iwashita and Ohkusu[61]. The draft d

is defined as the depth of the center of spheroid from the free surface. All motion

of the spheroid is restricted and there is no waterline intersection, which allowed

evaluation of just the velocity squared component of the drift force. The comparison

in Figure 9.1 shows good agreement with the experimental results.

∗Part of the data reported in this chapter is reprinted with permission from “The effect of
hull emergence angle on the near field formulation of added resistance” by Amitava Guha, Jeffrey
Falzarano, 2015. Ocean Engineering,105(1) 10-24, Copyright 2015 by Elsevier.

83



λ/L
0 1 2 3 4

R
A

W
/(
ρ

 g
 A

2  B
2  /L

)

0

0.25

0.5

0.75
MDLHydroD
Iwashita(1992)

Figure 9.1. Surge mean drift force of submerged spheroid at Fn = 0.0 in head sea

9.2 Wigley Hull

The experiments on a series of Wigley hulls performed by Journee [70] provide

the means to evaluate the effect of form factor on ship motion and wave loads. The

surface of the Wigley hulls are expressed as following analytical expression:

η = (1− ζ2)(1− ξ2)(1 + a2ξ
2 + a4ξ

4) + αζ2(1− ζ8)(1− ξ2)4 (9.1)

where ξ = x/(L/2) ,η = y/(B/2) and ζ = z/T . a2 = 0.2 and a4 = 0 , For Wigley

I with midship coefficient Cm = 0.909, α = 1.0 and for Wigley III with midship

coefficient Cm = 0.667 , α = 0. Figure 9.2 shows the added resistance comparison

with experimental results for Wigley I at forward speed corresponding to Fn=0.3.

The peak value of the added resistance estimated by the numerical method is close

to the experimental value, however there is a slight shift towards shorter wave length

side. On the other hand, the comparison for Wigley III, which has a less fuller form

than Wigley I, is shown in Figure 9.5 . The far field result obtained by [71] denoted

as NDfar is also included here. A similar trend of a shifted peak at the resonance
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frequency is found. Also, the peak value is over estimated, which may be attributed

to a well-known deficiency of linear seakeeping methods based on potential theory,

i.e. under prediction of the damping coefficients leading to increased first order

motion prediction (hence increased added resistance) near the resonance frequency.

The heave and pitch response at Fn = 0.2 is compared with the result obtained by

Seo et al. [72] in Figure 9.3 and Figure 9.4.
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Figure 9.2. Added resistance of Wigley I at Fn = 0.3 in head sea

9.3 KVLCC2

A full form tanker KVLCC2 is also analyzed at forward speed corresponding to

Fn = 0.142. The principal particulars are given in Table 9.1. The results were

compared with experimental results of Lee at al.[73] and numerical results of Seo et

al. [72] as shown in Figure 9.6 and Figure 9.7.
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Figure 9.3. Heave motion amplitude of Wigley hull III in head wave at Fn = 0.2
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Figure 9.4. Pitch motion amplitude of Wigley hull III in head wave at Fn = 0.2

Table 9.1. Principal Particulars of KVLCC2

Principal particulars

Length (L) 320m
Breadth (B) 58m
Draft (T ) 20.8m
Displacement (∆) 312622m3

LCG 11.1m
GM 5.71m
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Figure 9.5. Added resistance of Wigley III at Fn = 0.3 in head sea
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Figure 9.6. Heave motions of KVLCC2 in head wave at forward speed Fn = 0.142
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Figure 9.7. Pitch motions of KVLCC2 in head wave at forward speed Fn = 0.142

9.4 Series 60 Hull with Cb = 0.8

Five hulls with incremental block coefficient (Cb=0.6-0.8) were studied experi-

mentally to determine their seakeeping performance in the early 70’s. Strom-Tejsen

et al. [74] provides the details of these experiments. Here, calculations are performed

for a relatively blunt model with Cb=0.8. Two forward speed are considered and

the corresponding results are presented in Figure 9.8 and Figure 9.9, where both

experimental and analytical results are compared with numerical calculations. It is

clearly seen that the peak value and values for longer wavelengths are predicted rea-

sonably well, however the short wavelength values ae significantly under predicted.

A number of methods, including [75], and [64] provides added resistance for short

wave lengths with better accuracy.

9.5 S175 Container Ship

Motion and loads on the container ship S175 has been studied by both experi-

mental and numerical methods by many researchers. Fujii & Takahashi [75], Fonseca

& Soares [76] and the ITTC Seakeeping Committee [66] give the experimental data
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Figure 9.8. Added resistance of the Series 60 CB=0.80 at Fn = .147 in head sea
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Figure 9.9. Added resistance of the Series 60 CB=0.80 at Fn = .165 in head sea
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for the comparisons. The principal particulars of the vessel are given in Table 9.2.

The heave and pitch motion at Fn = 0.25 is compared in Figure 9.11 and Fig-

ure 9.12 with results obtained by the Rankine Panel Method, the Strip Theory

Method and the Cartesian Grid Method (CFD) presented in [72] and experimen-

tal data given by [76]. The motions were found to be in good agreement. The

corresponding added resistance is shown in Figure 9.13, also agrees well with both

experimental and near field formulation of Faltinsen [64]. At a higher Froude num-

ber Fn = 0.275, the heave and pitch motions are compared in Figure 9.14 and

Figure 9.15 for the head seas condition.

Figure 9.10 shows the added resistance comparison at Fn = 0.15 with experimen-

tal results of [75] and the near field results obtained using strip theory methods by

[64]. The near field method is found to under predict added resistance by a certain

amount near the resonance frequency region. This is contrary to the far-field method

which generally over predicts the added resistance values as can be seen in [71].

The heave and pitch motion in oblique sea is presented in Figure 9.16 and Fig-

ure 9.17. Prediction of the added resistance in oblique seas is another advantage of

the modified near-field method. Many of the earlier methods such as the far-field

method of [59] and the near field method [55] were only capable of calculating added

resistance in head sea condition. Kashiwagi [77] developed a far-field method to

obtain the added resistance with sway force and yaw moment in oblique seas. Fig-

ure 9.18 and Figure 9.19 show the added resistance of the S175 encountering waves

with heading angle of 150 deg at Fn = 0.15 and 0.25.

9.6 KCS

The KRISCO Container Ship (KCS) is a 230m long vessel with 52030m3 displace-

ment. The experimental study was performed on an appended model of 1 : 52.667

90



Table 9.2. Principal Particulars of S175

Principal particulars

Length between perpendiculars (L) 175m
Breadth (B) 25.4m
Height (H) 15.4m
Design draught (T ) 9.5m
Displacement(∆) 24856t
Vertical center of gravity (from baseline) (Zg) 9.5m
Roll Radius of Gyration (kxx) 8.33m
Pitch Radius of Gyration (kyy) 42m
Yaw Radius of Gyration (kzz) 35.4m
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Figure 9.10. Added resistance of S175 at Fn = 0.15 in head sea
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Figure 9.11. Heave motion of S175 at Fn = 0.25 in head sea
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Figure 9.12. Pitch motion of S175 at Fn = 0.25 in head sea
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Figure 9.13. Added Resistance of S175 at Fn = 0.25 in head sea
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Figure 9.14. Heave motion of S175 at Fn = 0.275 in head sea

93



0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

η
5
/k

A

ω√(L/g)

MDLHydroD

Experiment (ITTC, 1978)

Hsiung & Huang (1995) [Full m-terms]

Hsiung & Huang (1995) [Simplified m-terms]

Figure 9.15. Pitch motion of S175 at Fn = 0.275 in head sea
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Figure 9.16. Heave motion of S175 at Fn = 0.275 in oblique sea (β = 150 deg)
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Figure 9.17. Pitch motion of S175 at Fn = 0.275 in oblique sea (β = 150 deg)
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Figure 9.18. Added resistance of S175 at Fn = 0.15 in oblique sea (β = 150 deg)
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Figure 9.19. Added resistance of S175 at Fn = 0.25 in oblique sea (β = 150 deg)

scale tested at the FORCE Technologys towing tank. The model was attached to

a carriage using two trim holders and restrained in surge, sway and yaw motion.

Simonsen [78] presents the results of these experiments and compares them with two

CFD codes i.e. CFDSHIP-Iowa [79] and Star CCM+ [80] and the potential flow code

AEGIR [81]. The principal particulars are given in Table 9.3.

Three forward speeds corresponding to Fn = 0.26, 0.33 and 0.40 are considered

and the motion and added resistance comparisons are presented in Figure 9.20-

Figure 9.28. The heave motion is slightly over predicted by both the Green function

based MDLHydroD and the Rankine Source based AEGIR. Pitch motion prediction

is found to be better for MDLHydroD for Fn = 0.26 and 0.33, but at higher speed

(Fn = 0.40), pitch is over predicted. This may be attributed to the more significant

nonlinear effects at higher forward speed and the approximations made due to using

a zero speed Green function. Added resistance calculated by MDLHydroD at Fn =
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0.26 as shown in Figure 9.22 is found to predict the peak value more accurately

compared to the Rankine source based potential code. At Fn = 0.33, the peak value

of added resistance has a spread, and the calculated curve passes through the average

of those values. The results however degrade for Fn = 0.40, where the experimental

results were significantly under predicted by the MDLHydroD computations.

Table 9.3. Principal Particulars of KCS

Principal particulars

Length between perpendiculars(Lpp) 230m

Length at waterline(Lwl) 232.5m

Breadth(Bwl) 32.2m

Depth(D) 19m

Draft(T ) 10.8m

Displacement(∆) 52030m3

CB 0.651

CM 0.985

LCB(%), fwd+ −1.48

GM 0.6

kxx/B 0.4

kzz/L 0.25

9.7 Modified Wigley Models

Recently, a thorough investigation of nonlinear effects on added resistance was

performed by [63]. Two modified Wigley models were used to determine the effect
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Figure 9.20. Heave motion of KCS at Fn = 0.26 in head sea

λ/L
0 0.5 1 1.5 2

η
5/k

A

0

0.5

1

1.5
MDLHydroD
Experiment(Simonsen, 2013)
AEGIR

Figure 9.21. Pitch motion of KCS at Fn = 0.26 in head sea
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Figure 9.22. Added resistance of KCS at Fn = 0.26 in head sea
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Figure 9.23. Heave motion of KCS at Fn = 0.33 in head sea
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Figure 9.24. Pitch motion of KCS at Fn = 0.33 in head sea
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Figure 9.25. Added resistance of KCS at Fn = 0.33 in head sea
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Figure 9.26. Heave motion of KCS at Fn = 0.40 in head sea

λ/L
0 0.5 1 1.5 2

η
5/k

A

0

0.5

1

1.5
MDLHydroD
Experiment(Simonsen, 2013)
AEGIR

Figure 9.27. Pitch motion of KCS at Fn = 0.40 in head sea
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Figure 9.28. Added resistance of KCS at Fn = 0.40 in head sea

of bluntness. The surface of the hulls are represented by (9.1) with parameters:

• Blunt modified Wigley model: a2 = 0.6, a4 = 1.0, α = 1.0

• Slender modified Wigley model: a2 = 0.2, a4 = 1.0, α = 1.0

The seakeeping loads and motions are obtained using MDLHydroD and com-

pared with the experiment and numerical results obtained using a 3D Higher Order

Boundary Element Method (3D-HOBEM), Strip theory based code Enhanced Uni-

fied Theory (EUT), Nonlinear Strip Method (NSM) and Rankine Panel Method

(RPM). Two speed cases, Fn = 0 and Fn = 0.2 are compared for the blunt Wigley

model and Fn = 0.2 is compared for the slender Wigley model. The models were

allowed to perform surge, heave and pitch motions and other modes were restricted.

The results are presented in Figure 9.29- Figure 9.36.
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The zero speed comparison of motions and surge drift force shows that MDL-

HydroD and the higher order 3D-HOBEM predicts the exact same results. The

forces and motions in the forward speed case for the blunt Wigley hull are shown in

Figure 9.31-Figure 9.32. The surge and pitch motions are predicted fairly well by

the RPM and MDLHydroD, where the peak value of heave is slightly over predicted

by all numerical codes. On the other hand, EUT and NSM slightly under predicts

the pitch motion. The added resistance is measured using the direct method by

dynamometer for two wave amplitudes and also using unsteady wave analysis. The

comparison between the different methods is shown in Figure 9.33. The forces and

motions for the slender Wigley hull are shown in Figure 9.34-Figure 9.35. It can be

observed here that the pitch motion is significantly under predicted by all methods

except the RPM. This can be explained by the under prediction of damping coeffi-

cients on slender vessels in linear potential flow methods. This discrepancy in pitch

motion prediction causes reduction in added resistance values as seen in Figure 9.36.

Overall, the motion and forces are found to be in excellent agreement with the

experimental results. The added resistance was also predicted within the bounds of

the spread of experimental results.
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Figure 9.29. Wave induced surge(a), heave(b) and pitch(c) motions of the blunt modified
Wigley hull at Fn = 0.0 in head sea
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Figure 9.30. Mean drift in surge of the blunt Wigley at Fn = 0.0 in head sea
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Figure 9.31. Wave-exciting surge force(a), heave force(b) and pitch moment(c) on the blunt
modified Wigley hull at Fn = 0.2 in head sea
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Figure 9.32. Wave induced surge(a), heave(b) and pitch(c) motions of the blunt modified
Wigley hull at Fn = 0.2 in head sea
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Figure 9.33. Added resistance of the blunt modified wigley hull at Fn = 0.2 in head sea
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Figure 9.34. Wave-exciting surge force(a), heave force(b) and pitch moment(c) on the
slender modified Wigley hull at Fn = 0.2 in head sea
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Figure 9.35. Wave induced surge(a), heave(b) and pitch(c) motions of the slender modified
Wigley hull at Fn = 0.2 in head sea
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Figure 9.36. Added resistance of the slender modified wigley hull at Fn = 0.2 in head sea
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10. APPLICATION OF POTENTIAL THEORY IN HULL FORM

OPTIMIZATION∗

10.1 Introduction

Prediction of design variables that results in a desired performance enhancement

is of interest in all engineering fields. The benefits of design optimization are signif-

icant and hence can be found in many disciplines including aerospace, mechanical,

material science and in marine technology. For example, a small improvement in the

fuel efficiency of a ship may result in savings on the order of millions of dollars per

year. The fuel efficiency is also important for reduction in greenhouse gas emission,

which is a major component in the evaluation of International Maritime Organization

(IMO)s Energy Efficiency Design Index (EEDI).

A number of alternatives are being evaluated to increase the energy efficiency of

the ship with careful consideration of safety of the vessel at sea. A staggering 9%

savings has been recorded by the largest ocean cargo line Maersk in the first quarter

of 2010 by reducing the ship speed [82]. This encouraged new ship developers to

reduce the installed power on the ships to increase the fuel efficiency. It is, however,

essential to ensure enough propulsive power is available to maneuver through adverse

environmental conditions. Therefore, the optimization of the hull form with speed

consideration should not only reduce the steady resistance of the hull, but also ensure

seakeeping performance and maneuverability in the rough sea conditions. Other al-

ternatives include refinement of the complete hull form for new ships or just replacing

the bulbous bow with a more suitable one for the modified operational profile of ex-

∗Part of the data reported in this chapter is reprinted with permission from “Application of
multi objective genetic algorithm in ship hull optimization” by Amitava Guha, Jeffrey Falzarano,
2015. Ocean Systems Engineering,5(2) 91-107, Copyright 2015 by Techno-Press.
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isting hull forms. Finding the optimum route based on metocean data or enhancing

the capability of autopilots to utilize real time local sea condition to select best ways

to navigate the ship are some of the other methods that are also being evaluated.

The hull form optimization in the context of naval architecture pose three main

challenges: Parametric representation of the ship hull relevant in design perspec-

tive, accurate estimation of hydrodynamic interaction forces and resulting motion

of the ship, and finally, the optimization routine that relies on definition of desired

performance objectives and searches for the global optimum associated with the com-

bination of design variables. To solve the ship hull optimization problem described

above, it requires understanding of three major research disciplines: Computer Aided

Design, Computational Hydrodynamics and Global Optimization. A brief discussion

on each of these topics and final selection of a suitable method applied for the ship

hull optimization will be presented here.

10.2 Parametric Hull Suitable for Optimization

A number of factors influence how the ship hull needs to be parameterized. The

most general case that one can imagine may be a semi-solid shape free to distort

in any direction conforming to a definitive shape that is ideal for all performance

objectives and constraints. Defining all the constraints related to manufacturing

capability, operating conditions, and aesthetics and comfort sought by human in a

useful mathematical form is yet to be achieved. Therefore, most researchers adapt

to a rather practical approach to define ship hull in terms of well-established naval

architects definition and perturb the design variables ensuring most fundamental

requirements of the ship will be satisfied naturally. Smith et al. [83] shows one

such example where the hull form is defined using Lewis forms that rely on principal

particulars such as length, breadth, draft, prismatic coefficient, center of flotation
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etc. A similar approach is found in Kkner and Sariz [84]. Harries and Valdenazzi

[85] represented the hull form of a Ro-Ro ferry completely in terms of parametric

curves and use it in optimization. This method is later followed by Maisonneuve et

al.,[86], Birk and Clauss [87], Kim [88] to name a few. Perhaps, the closest to our

imagined semi-solid hull form, is experimented by Heimann [89], where the ship hull is

represented directly in terms of panels and the panels were moved based on optimized

source strengths values. The variation in panel position allowed here, however, was

very small to keep a practical hull shape. Another approach that comes instinctively

to any naval architect is to represent the ship hull in terms of offset points. Sariz

[90] shows application of one such method in optimization where the offset points

were used as optimization variables. Even though, this approach is ideal to apply on

an existing hull form, having such large number of optimization variable is still not

suitable for optimization purposes. Hence, only a limited portion of the hull form

was optimized with limited freedom for the offset points to avoid impractical shapes.

Among all these methods, representing the ship hull using parametric curves

controlled by limited number of well understood hull parameters was found to be

most appropriate. Hence, for this study, an automatic ship hull generation script

has been developed following the work of Petersen et al.[91], which uses twenty five

hull parameters (see Table 10.1) to generate section curves and then the ship hull

surface in a common CAD format as shown in Figure 10.1.

10.3 Ship Hull Optimization Procedure

10.3.1 The Optimization Problem

Any design optimization problem may be mathematically formulated as mini-

mization of an objective function f(~x, ~p), with free variable vector ~x = (x1, x2, . . . , xN)T

representing parameters allowed to vary during optimization and fixed variable vec-
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Table 10.1. Parametric Ship Hull Data

Si # Parameters Sample values Si # Parameters Sample values

1 Length 242 14 BulbLowerAngle 0
2 Beam 32.2 15 BulbUpperAngle 47
3 Draft 10.8 16 BulbUpperLength 7
4 PropellerClearance 11 17 SternI 0
5 BilgeRadius 3 18 SternII 4
6 Height 17 19 ParallelMidshipI 32.6
7 DeadRiseAngle 3 20 ParallelMidshipII 51
8 FlatOfSideAngle1 52 21 ParallelMidshipIII 55.2
9 FlatOfSideAngle2 60 22 FlatOfSideI 63.4

10 BulbWidth 4 23 FlatOfSideII 78.6
11 BulbLength 12 24 FwdShoulder 101.1
12 BulbHeight 8 25 BowContour 111
13 BowOverHangAngle 47

Figure 10.1. Parametric ship hull
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tor ~p = (p1, p2, . . . , pM)T , which are not altered but may be required to calculate

the objective function. Afterwards, in most practical problems, the optimization

procedure has to solve the constrained minimization problem [92]:

Find the vector ~x = (x1, x2, . . . , xN)T

which satisfies the equation

f(~x, ~p) = min [f(~x, ~p)]

and the constraints

gj(~x, ~p) ≥ 0(j = 1, 2, . . . , l) (10.1)

The ship hull optimization problem may be categorized as bounded, multi vari-

able, multi objective problem with nonlinear constraints. The objective function

used in such optimization studies generally cannot be represented explicitly in terms

of the variables (~x, ~p), but are represented as a combination of selected response vari-

ables obtained by performing numerical simulations. As a result, the minimization

problem solver has to search for the global minima surrounded by many local mini-

mums. As most nonlinear programming algorithms are capable of solving a unimodal

problem, in other words, a function with only one minima, it requires application

of unconventional methods, sometimes with no theoretical certainty of achieving the

global minima. A number of such optimization solvers are evaluated to determine

the most appropriate solver for the hull optimization problem.

10.3.2 Selection of Optimization Solver and Objective Function

Considering the complexity of the hull optimization problem, an analytical func-

tion known as the Shubert Function with multiple local minima and multiple global

minima (see Figure 10.2) is chosen to determine which optimization solver is best
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suited to solve the problem. An initial selection of optimization solvers are made

from a number of available solver in the MATLAB R© Global Optimization Toolbox

(GOT), which are:

• Sequential Quadratic Programming (SQP)

• Pattern Search (PS)

• Interior-Point (IP)

• Simulated Annealing (SA)

• Particle Swarm Optimization (PSO)

• Genetic Algorithm (GA)

2
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-200
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Figure 10.2. Shubert function
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The test results are shown in Figure 10.3 where the minima and maxima of the

objective function is shown as filled contour plots and the design variable values used

in each iteration is shown as red circles. Except the Genetic Algorithm, all other

requires an initial guess which is shown as a star marker in the figure. The first three

optimization solvers (SQP, PS and IP) are found to be very sensitive to the initial

guess and prone to get stuck in a local minima. The configuration options are also

limited, which results in not being able to find the global minima unless a very good

initial guess is made. The other three (SA, PSO and GA) were considerably more

robust and were able to determine the global minima in most of the trials. Caution

must be taken in setting up the configuration properties of these solvers as well,

which otherwise may result in determining a local minima.

The literature reviewed during this study suggests that there is no standard set of

rules for determining the seakeeping or propulsive performance of a ship which would

ensure optimum performance in all conditions. Kükner and Sariöz [84] combine the

rms heave, rms pitch and probability of slamming events together to define their

objective function and uses nonlinear direct search techniques for the optimization.

Harries and Valdenazzi [85] optimize a Ro-Ro ferry in terms of calm water resistance

(calculated using WARP), added resistance and an undefined Motion Sickness Index

(MSI) calculated from the seakeeping response obtained using a strip theory based

code SOAP. A similar attempt is made by Biliotti et al. [93] to optimize a patrol

vessel considering its two main operational conditions,i.e., normal patrol at 20 knot

and maximum speed of 35 knots. The optization is based on empirical expression

containing the variance of the wave profile along the water line, the wave resistance,

the displacement and an undefined seakeeping operability index. Campana et al.

[94] uses minimization of wave resistance as the objective while setting a fixed upper

limit as an inequality constraint for the heave and pitch responses. Tahara et al. [95]
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Figure 10.3. Comparison of optimization solvers
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uses a multi objective optimization where the wave resistance and a combination of

acceleration and velocity at the bridge deck is minimized. Recently, Bagheri et al.

[96] shows optimization of the Series 60 and Wigley hull based on acceleration at

the bow of the vessel in regular head waves, while Kostas et al. [97] uses a T-spline

based geometry for resistance optimization.

Similar treatment of the objective function is found for offshore platforms as well.

Peltzer et al. [98] uses a Particle Swarm Optimization method to optimize a novel

platform design based on the weighted average of motions at different locations. Birk

and Clauss [87] minimizes the significant amplitude of cyclic tendon force obtained

in random sea created using Pierson-Moskowitz spectrum.

A number of RANSE based optimizations have also been performed by many re-

searchers. However, due to the significantly large simulation time taken for analyzing

each hull, it is prudent to fist reduce the number of test cases to a minimum and then

perform the fully nonlinear viscous analysis of the hull forms to finalize the model.

In the RANSE based optimization of Eefsen et al. [99], the objective function is

defined as a combination of total resistance at two speeds and an empirical relation

between vertical motion response in head sea at three different speeds.

10.3.3 Multi Objective Genetic Algorithm (MOGA)

As shown in the previous section, it is essential to use an algorithm capable of

determining the global optimum for hull optimization problems. In this study, the

genetic algorithm is employed in the optimization framework. The genetic algorithm,

which attempts to mimic the evolutionary principles observed in the nature, is based

on the theory known as “Survival of the fittest.” In other words, an initial population

is allowed to evolve one generation at a time keeping the desirable traits and evolving

next generation by combining the properties of better personnels, which results in
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an overall increase of fitness in the population after a few generations.

In the design optimization perspective, the initial population (or the first genera-

tion) is generated using stochastic uniform sampling spanning the allowable range for

each free variable. The fitness of each individual design (hull form) is measured based

on user defined objective functions. From this population, some elite members with

the best fitness values are transfered to the next generation and some new children

are created by either random changes to a single parent (mutation) or by combining

the vectors of a pair of parents (crossover). The population count is generally kept

constant per generation.

Practical problems such as the ship hull optimization often requires minimization

of multiple objective functions. This problem is called the multi-objective optimiza-

tion problem which can be mathematically described as:

minimize f(~x, ~p) = (f1(~x, ~p), f2(~x, ~p), . . . , fN(~x, ~p))

subjected to constraints gj(~x, ~p) ≥ 0(j = 1, 2, . . . , l) (10.2)

Commonly, the solution of a multi-objective optimization is presented as a Pareto

front. The Pareto front or Pareto optimal is defined in Coello et al. [100] as: A

solution x ∈ Ω is said to be Pareto Optimal if and only if there is no x∗ ∈ Ω for

which v = fx∗ dominates u = fx . That is, x is called a Pareto Optimal if there is no

other point x∗ in the feasible domain Ω that reduces at least one objective function

without increasing the other.

In this study, as the constraints are derived based on simulation results, the ca-

pability of solving the optimization problem with nonlinear constraint is necessary.

At this time, the optimization problems with multiple objectives and nonlinear in-

equality constraints can only be solved using the Multi-Objective Genetic Algorithm
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(MOGA) among the available methods in the GOT in MATLAB R©. Therefore, this

method is applied in the developed optimization framework.

10.3.4 Automated Optimization Framework

Apart from having the three major components required for optimization (i.e. a

CAD modeler, a Hydrodynamic solver and an Optimization solver), it is necessary

to develop a framework that allows transfer of information from one to the other.

The schematic of the framework used in this study is shown in Figure 10.4. The

optimization starts with an initial list of design variables values set by the Genetic

Algorithm (lower bound of the design variables range) which calls the automatic

hull form generation and panelization scripts. This is followed by the hydrostatic

and hydrodynamic calculations where the vessel speed is set based on the selected

Froude number (Fn = U/
√
gL) and the radius of gyrations are calculated using

standard approximations for ship hull [101].

kxx = 0.40×B

kyy = kzz = 0.25× L (10.3)

The objective function and constraints, also known as the measure of merit, are

derived using both geometric and hydrodynamic analysis results. Here, the measure

of merit is defined using two criteria: the vertical acceleration at the bow of the vessel

in head sea condition at Fn = 0.25 and the wetted surface area. The vertical bow

acceleration represents the comfort and safety of the vessel at sea while the wetted

surface area is connected with the skin friction on the vessel. As reduction in both

parameters is desired, it is found from the multi objective optimization study that
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after certain point a reduction in one can only be achieved by compromising the other.

The set of such results for the design variables are represented as a Pareto frontier.

As there is not a single solution, the optimization loop continues to develop such

a Pareto frontier until a convergence criteria, such as the number of generations or

the improvement in objective function, is met. This way the Pareto front allows the

designer to understand the relative advantage of selecting one design value compared

to another and make an informed decision.

Figure 10.4. Optimization Framework

10.4 Results

The optimization was performed by considering variables numbered 19-25 in Ta-

ble 10.1 as free variables. The lower and upper bounds for each of these variables

are listed in Table 10.2. The displaced volume of the vessel is set to be within 2%

of a given value, which is the constraint of the optimization. The objective function

used are the wetted surface area and acceleration at the bow. The Multi Objective

Genetic Algorithm is used with population size of 50 per iteration and up to 7 gen-

erations. An adaptive mutation factor is used for better convergence of the results.
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A total of 474 vessels were analyzed among which some were discarded due to not

satisfying the displacement constraint. Finally, a Pareto front representing 18 hull

forms with comparative advantage between two objective functions were obtained.

Table 10.2. Lower and Upper Bounds Used in Free Variables

Si # Free Variable LB UB

1 ParallelMidshipI 20 40
2 ParallelMidshipII 41 52
3 ParallelMidshipIII 53 60
4 FlatOfSideI 61 70
5 FlatOfSideII 71 90
6 FwdShoulder 91 102
7 BowContour 103 112

In Figure 10.5, the value of the objective function evaluated for each individual

hull form is shown. The red markers represent hull forms that didn’t satisfy the

displacement constraints and were hence discarded. The blue markers represent the

cases where the constraint was satisfied. A line can be drawn from the left enclosing

the values representing the Pareto front. These values, constituting the Pareto front,

are shown in Figure 10.6.

10.4.1 Comparison of Initial Hull with Optimized Hull

To demonstrate the variability in performance due to only changes in lateral po-

sition of the section curves, the initial hull, which is set by the Genetic Algorithm

as the lower bound of each parameters, is compared with the optimized hull. Fig-

ure 10.7, Figure 10.8 and Figure 10.9 shows the comparison between the initial and

optimized hull for heave, pitch and acceleration at the bow of the ship respectively.

All three figures show a significant improvement at the resonance frequency and for
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Figure 10.5. Objective function values at each iteration

F
1
 (Wetted surface area [m2])

9000 9100 9200 9300 9400 9500 9600

F
2 (

B
ow

 A
cc

el
er

at
io

n 
pe

r 
un

it 
w

av
e 

[m
s-2

/m
]

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
Pareto Front

Figure 10.6. Pareto front representing the best compromise between two objectives
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the larger wavelengths. The added resistance is also compared for both hull forms in

Figure 10.10, however since it was not considered in the optimization, no significant

improvement can be seen in the large wavelength range.
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Figure 10.7. Heave amplitude comparison between initial and optimized hull

A visual comparison of the initial hull and the optimized hull is shown in Fig-

ure 10.11, where significant improvement in the bow region can be observed.

10.4.2 Comparison with Commercial Vessel KCS

The parametric hull is fitted to the commercial vessel KRISCO Container Ship

(KCS) approximately by a surface comparison. The goal of this exercise was to see

by varying the sectional line positions within significantly large range, whether it is

possible to obtain similar performance after the optimization. Figure 10.12 shows

the overlapped surface comparison between the parametric hull and the commercial

ship KCS.
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Figure 10.8. Pitch amplitude comparison between initial and optimized hull
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Figure 10.9. Bow acceleration comparison between initial and optimized hull

123



λ/L
0 0.5 1 1.5 2

R
A

W
/(
ρ

gA
2 B

2 /L
)

0

5

10

15
Initial Hull
Optimized Hull

Figure 10.10. Added resistance comparison between initial and optimized hull

(a) Initial Hull (b) Optimized Hull

Figure 10.11. Initial hull (a) and optimized hull (b) showing significant improvement in
the bow region

Figure 10.12. The parametric hull (green) fitted to the commercial ship KCS(red)
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The comparison of motion properties between the optimized hull form and the

commercial KCS hull is presented in Figure 10.13 - Figure 10.16. It is clear from the

results that the optimization procedure was able to produce a hull form with similar

or for some aspects even better seakeeping performance compared to the commercial

hull KCS. An initial assessment of the optimized hull form from Figure 10.17 suggests

that the hull line at the fore part is pushed outward making the hull more blunt, while

the midship and aft sections are made more slender. Unfortunately, this behavior is

expected to be reversed when a resistance criteria is added to the optimization and

hence it is important to perform optimization with both seakeeping and resistance

together. The presented optimization process may be more relevant for FPSO and

FLNG for which motion is more important and resistance is not a concern.
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Figure 10.13. Heave amplitude comparison between KCS and optimized hull
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Figure 10.14. Pitch amplitude comparison between KCS and optimized hull
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Figure 10.15. Bow acceleration comparison between KCS and optimized hull
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Figure 10.16. Added resistance comparison between KCS and optimized hull

Figure 10.17. Body plan of initial KCS fitted hull form compared to the optimized hull
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10.4.3 Added Resistance Optimization

A multi objective optimization is performed to minimize the added resistance and

the acceleration at the bow. Figure 10.18 shows the values of both objective functions

at each iteration. Here, the red dots represents hull forms that do not satisfy the

constraints and the blue dots represents hulls which satisfies the constraints. For

this analysis the constraint is set to be the displaced volume within ±2% of a given

value. Among the blue dots the best performing designs are separated and shown as

a Pareto frontier in Figure 10.19.

From the Pareto front a particular design is selected and the motion and added

resistance is compared against the commercial hull KCS. Figure 10.20 to Figure 10.22

shows the motion comparison and Figure 10.23 shows the added resistance compar-

ison where the optimized hull was found to perform better in all aspects considered

here compared to the commercial hull.
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Figure 10.18. Objective function values at each iteration
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Figure 10.19. Pareto Front

10.5 Optimization of a Caisson Semisubmersible

The developed optimization method is further applied to a Caisson Semisub-

mersible. This is a simple four column structure whose behavior is known from both

basic understanding of wave structure interaction as well as experience with existing

offshore platforms. The goal of performing this optimization is to demonstrate the

capability of the developed optimization framework by obtaining the known final

result, which is, the upper column to be as slender as possible.

A parametric hull form is developed with four columns and each column is di-

vided into two parts with variable diameter. The separation distance between the

columns are defined as length and breadth which are also varied. The draft and

displaced volume are kept constant. The objectives of the optimization is set to be

minimization of the maximum value of heave and pitch motion, and the surge drift

force over wave period 4− 20s in a head sea condition. The parameters defining the
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Figure 10.20. Heave amplitude comparison between KCS and optimized hull
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Figure 10.21. Pitch amplitude comparison between KCS and optimized hull

130



λ/L
0 0.5 1 1.5 2

B
ow

 a
cc

el
er

at
io

n

0

0.25

0.5

0.75

1
KCS
Optimized Hull

Figure 10.22. Bow acceleration comparison between KCS and optimized hull
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Figure 10.23. Added resistance comparison between KCS and optimized hull
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semisubmersible are listed in Table 10.3 with their lower and upper bounds used in

the optimization and final optimum values.

The Multi Objective Genetic Algorithm (MOGA) is employed for the automated

optimization and 1005 hulls are analyzed over 20 generations each with a population

of 50 designs. Here only 5 extra hulls were created which do not satisfy the dis-

placement constraint as the parametric hull mostly takes care of ensuring the correct

displacement. As expected, a slender upper column radius equal to the lower bound

and larger lower column radius equal to the upper bound of the parameter setting is

obtained as a result of the optimization.

Table 10.3. Optimization Parameters for Caisson Semisubmersible

Parameter Lower Bound Upper Bound Optimum

Length [m] 40 50 46
Breadth [m] 40 50 46
Draft [m] 20 20 20
Upper Column Radius [m] 5 15 5
Lower Column Radius [m] 5 15 15
Displacement [m3] 25000 25000 25000

Figure 10.24 shows the three objective function values at each iteration and Fig-

ure 10.25 shows the final Pareto front. We choose the design with minimum drift

force to compare with the initial hull. A constant diameter column is chosen as the

initial hull as shown in Figure 10.26. We see from the pressure distribution that a

large portion of the column near the water surface experiences higher wave forces.

The optimized hull form is shown in Figure 10.27 where due to slender upper columns

the higher wave force near the water surface has less total effect. The resulting heave,

pitch and the surge drift force comparison between the initial hull and the optimized
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hull are shown in Figure 10.28-10.30 where in every case the optimized hull shows

significantly better performance.

Figure 10.24. Objective function values at each iteration during Caisson Semisubmersible
optimization

10.6 Conclusions

Hull form optimization was identified as one of the major areas in ship trans-

portation system where significant improvement can be achieved in terms of fuel

economy, CO2 emission and safety at sea. In this study three separate technical ar-

eas: computer-aided design, computational hydrodynamics and optimization, were

investigated and corresponding modeling and analysis tools have been developed and

integrated in an optimization framework. The key findings from the study can be

summarized as:

1. A practical geometry modeling method is the first step of any optimization
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Figure 10.25. Pareto front for the Caisson Semisubmersible optimization

(a) Initial Hull (b) Pressure on initial hull

Figure 10.26. Caisson Semisubmersible initial hull and pressure distribution
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(a) Optimized Hull (b) Pressure on optimized hull

Figure 10.27. Caisson Semisubmersible optimized hull and pressure distribution
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Figure 10.28. Heave motion comparison between initial and optimized Caisson Semisub-
mersible
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Figure 10.29. Pitch motion comparison between initial and optimized Caisson Semisub-
mersible
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Figure 10.30. Surge drift force comparison between initial and optimized Caisson Semisub-
mersible
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procedure. Here, a B-Spline curve based ship model parameterized using com-

mon naval design terms is developed using Rhinoscript. In this approach, it

is relatively easy to know the bounds of each variable which would produce a

mutually non-intersecting surface and the fairness of the hull is automatically

ensured.

2. In order to investigate a large number of hull forms, it is essential to have a

robust, accurate and time efficient numerical tool for the hydrodynamic anal-

ysis. An in-house tool MDL-HydroD has been developed with consideration

of factors beneficial in optimization process. Specifically, only the underwa-

ter hull surface needs to be discretized (i.e. no free surface required), and 3D

frequency domain analysis is very time efficient and more accurate than strip

theory methods.

3. A number of optimization algorithms were investigated and the non-gradient

based algorithms were found to be best suited for the ship hull optimization

purposes. The MATLAB R© Global Optimization Toolbox is utilized in this

study to complete the optimization framework, which allows selection of a

number of optimization algorithms. The Multi Objective Genetic Algorithm

(MOGA) is employed to optimize a ship hull for the seakeeping performance

enhancement where a large number of hull forms were analyzed and a Pareto

front representing best achievable performance for two competing objectives is

obtained.

4. Significant improvement in the heave, pitch and acceleration at the bow of

the ship is achieved compared to the initial hull form. The optimized hull

form is then compared with an equivalent commercial ship hull, where a close

agreement between the performances of the two hull forms were found.
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5. To further demonstrate the capability of the developed optimization framework,

a parametric Caisson Semisubmersible with variable upper and lower diameter

is optimized. The optimization resulted in expected values for the upper and

lower radii and corresponding enhancement in heave, pitch and drift forces are

shown.

In conclusion, the optimization framework provides a way of quick hull form

assessment for multiple performance criteria. For a more formal optimization proce-

dure, the seakeeping performance evaluation criteria needs to consider multiple wave

headings, speed, irregular seaway and number of slamming events. Apart from this,

the minimization of wave resistance also needs to be considered. These modifications

and validations are currently in progress.
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11. CONCLUSIONS

In this dissertation the potential theory for predicting wave induced loads on

floating structures is studied and based on this a numerical tool MDLHydroD is

developed using the three dimensional source distribution method.

Motion and loads including the forward speed effect on both submerged and

floating bodies are obtained within the linear seakeeping assumptions as derived

by Salvesen [10]. The approach of Faltinsen [64] is extended with a generalized

coordinate system to obtain expressions for second order forces and moments in all six

degrees of freedom. Furthermore, the added resistance component that depends on

integration of relative wave elevation along the waterline is improved by incorporating

the effect of the hull flare angle.

A new Green function for finite water depth is developed and validated. The

Green function is then implemented in the three dimensional potential code to solve

for the hydrodynamic loads and motions in a finite water depth with or without

forward speed. The effect of water depth on a vessel translating with steady forward

speed is then analyzed.

A systematic validation for different hull forms with varying wavelengths and

speeds was performed. The results were compared with experimental as well as

a number of contemporary numerical methods published by other well established

researchers. These include far field methods based on nonlinear strip theory, the

Rankine panel method, the Enhance Unified Theory and near field methods based

on the Green function method, Rankine panel method and volume of fluids method

(CFD). The first order motion and loads were found to be in excellent agreement for

both zero and forward speed conditions, suggesting accurate numerical implementa-
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tion for the velocity potential evaluation using the source distribution method.

The added resistance being a second order force was found to be sensitive to

different numerical schemes. Given the spread of experimental results suggesting

similar difficulty in measuring added resistance through model tests, the numerical

predictions were found to be within reasonable bounds. The trend of added resistance

for the range of wavelengths is captured accurately by both far field and near field

methods. Based on a narrower observation, it may be concluded that the far field

methods shows a slight over predictive tendency, and the near field methods, an

under predictive tendency compared to the experimental results near the resonance

peak. This behavior is in accordance with the results obtained by [64] where the

near field method is compared with far field method of [59] using strip theory.

On establishing the added resistance prediction capability of the numerical im-

plementation (MDLHydroD) at zero and forward speed for mostly wall sided hull

forms, the effect of hull emergence angle on added resistance is studied. Here, an

improvement to the waterline integral term to incorporate hull emergence angle has

been implemented. Comparison of results for a Ro-Ro vessel at Fn = 0−0.25 is pre-

sented, which shows the significance of the improvement for lower Froude numbers

in the near field formulation.

The newly developed 3D panel method code is found to be capable of predicting

wave exciting forces and motions of the ships within reasonable accuracy. The com-

putational time required to obtain first order forces, motion and added resistance for

a 1080 panel ship hull is about 2.52 sec per wavelength per speed on a PC with Intel

Core i7-4710HQ CPU at 2.50GHz. The time efficiency of the method is a very desir-

able feature for most practical purposes, particularly in ship operation management

and hull optimization.

An optimization framework is developed connecting an automated hull form gen-
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eration technique and evolutionary optimization solver to the hydrodynamic load

prediction tool. This optimization framework is used to enhance the motion and

reduce added resistance of a container ship and a semisubmersible platform.
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