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ABSTRACT

With increasing number of cores on a chip, the complexity of modeling hardware
using virtual prototype is increasing rapidly. Typical SOCs today have multipro-
cessors connected through a bus or NOC architecture which can be modeled using
SystemC framework. SystemC is a popular language used for early design exploration
and performance analysis of complex embedded systems. TLM2.0, an extension of
SystemC, is increasingly used in MPSOC designs for simulating loosely and approxi-
mately timed transaction level models. The OSCI reference kernel which implements
SystemC library runs on a single thread, slowing up the simulation speed to a large
extent. Previous works have used the computational power of multi-core systems
and GPUs which can run multiple threads simultaneously, speeding up the simu-
lation. Multi-core simulations are not as effective in cases where thread runtime
is low, because synchronization overhead becomes comparable to thread runtime.
Modern GPUs can run thousands of threads at a time and have shown good results
for synthesizable designs in recent efforts. However, development in these works are
limited to synthesizable subsets of SystemC models, not supporting timed events
for process communication. In this research work, a methodology is proposed for
accelerating timed event based SystemC TLM2.0 model to GPU based kernel, which
maps SystemC processes to CUDA threads in GPU, providing high data level par-
allelism. This work aims to provide a scalable solution for simulating large MPSOC
designs, facilitating early design exploration and performance analysis. Experiments
have shown that the proposed technique provides a speed-up of the order of 100x for
typical MPSOC designs.
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1. INTRODUCTION

1.1 Brief History

The growth of the semiconductor industry in a past few decades has been tremen-
dous. Any system can be categorized into two parts namely hardware and software,
which collaborate to perform a set of tasks desired by the end user. In the early
years, majority of the research effort was spent on trying to develop a flow to deliver
an 1C in a given period of time. Performance and power are two aspects which are
critical to any electronic system performing a set of functions. Lots of effort has
thereby spent on optimizing the design to achieve good performance with low power.

Transistor is the basic element of any Integrated Circuit(IC), which combines
in large numbers to form a hardware with a particular specification. Some of the
hardware components which are most commonly used in ICs are microprocessors,
memories, PLL, PMIC, and amplifiers. Software is a layer which is built upon hard-
ware and is comprised of a series of tasks which can be performed by a microprocessor.
Software is like a driver of an integrated circuit guiding it to perform tasks in an
order desired by the user. In order to utilize the best of any system, it is essential
that both hardware and software components are utilized to their maximum.

In the industry, hardware and software are typically handled by different teams
working in parallel with timely interaction in order to ensure that the specifications
are met. First phase of the project is of the architecture team to lay down the
specifications of the design and decide what functionalities are to be supported. The
hardware team then uses a Register Transfer Level(RTL) modeling language such
as Verilog or VHDL to realise the behaviour of hardware. It is simulated multiple

times with all the possible test cases to ensure that the specifications are met with no



bugs in the design. Verified design is synthesized into a gate level netlist with actual
gates and cells. Final step is to place and route the design efficiently to achieve the
functionality with minimum area.

The software team in parallel starts the development of embedded software which
can support basic functionalities such as booting, memory operations, etc. Since,
no actual hardware is present initially, verification of software involves running the
embedded software on hardware emulators which is generally very slow. System level
models can also be used to create a virtual prototype which can emulate hardware
in a software environment.

The very first step involving key architectural decisions in the design flow as shown
in figure 1.1 is very important part of the whole process. It is in this phase that the
decision has to be taken to make sure that the system specifications can be met in a
given time. Another important aspect is the optimization of performance and power
in this stage. It is only after this stage, specifications are finalized and hardware and
software teams can begin their work. It is therefore crucial to make sure that this
step is done as soon as possible in order to meet the time to market requirements of
a chip. With the technology growing fast, there is tremendous pressure on teams to
deliver the chip to customers on time. Any delay in development cycle of chip usually
results in a huge loss to the company because the performance grows very quickly
with time as predicted by Moore’s Law in 1965. It is also necessary to make sure
that the system functions correctly under specified specifications for performance
and power. This is where system level design, popularly known as Electronic System
Level(ESL), comes into picture.

ESL design provides the highest level of abstraction present in the IC design cycle.
It provides a platform for hardware software co-design at different abstraction levels.

In order to meet the time to market for a chip, it is essential that we increase the level
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of abstraction to handle complex designs. ESL design deals with functional models of
different IPs removing the complex internal details at transistor, gate and RTL level.
It is also important to be able to reuse the models of same IP in different ICs. Some
of the common components such as microprocessor, memory and system bus are used
repeatedly in many SOC designs. Creating common models for these components
to be reused would significantly increase the productivity. Most importantly, it is
essential that we perform a design exploration at an early stage in IC design cycle to
meet performance and power requirements. Also, the power and performance targets
should be met when all the components of SOC are simulated together. The platform
should be such that it is able to model hardware and software simultaneously and
simulate the concurrency present in a real hardware. Virtual Prototyping is one

aspect of ESL design which allows users to model hardware in a system level design
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language, and run it with real applications to evaluate performance and power of
final application.

After the functional specifications of a system are finalized, the next step in the
process is to design the architecture. The algorithm which is to be implemented is
partitioned into hardware and software. With the help of ESL tools, we can perform
an analysis of system with both hardware and software components running simulta-
neously and capture the power and performance of the system. If the requirements
are not met, then the process is iterated with different mapping of hardware and
software components. Another solution would be to tweak the parameters of differ-
ent individual components, for example, using a faster memory model or increasing
the speed of microprocessor. This step has to be carefully performed by complete
analysis as it will define the architecture of the system which cannot be changed
afterwards. Also every improvement comes at a cost of something, for example in-
creasing processor speed might also increase the power of design. The parameters
of components and hardware software partitioning should be such that it meets the

targets which are set by the customer.



There are many tools which are developed by different vendors for ESL design
and are available commercially. Although each of these have their own benefits, the
scope of this research work is limited to available open source languages for system
level design. Specifically, this work aims at developing a faster simulation model for
SystemC and TLM2.0 models with the help of GPU. SystemC is a library of C++
classes which can be extended to simulate hardware. One of the main characteristics
of SystemC is that it is able to realise the concurrency present in the hardware
simulation. Unlike software, hardware components are run in parallel in reality but
we simulate it on a software platform which is usually single core and runs only one
process at a time. In order to implement a hardware functionality, SystemC therefore
imposes a rule on designer that the function implemented should not depend upon

the order in which processes execute.
1.2 Overview

Virtual Prototyping has become an essential flow in the design and development
of complex embedded applications today. Typically done using SystemC, it models
hardware by discrete event simulation in software. Among the numerous advantages
that it offers, it allows designers to validate the design, analyze the performance and
power of the system under various configurations, facilitates development of software
and also plays a key role in partitioning of a system on hardware and software.
Architectural decisions are taken at an early phase in design cycle and it is often too
costly to make changes at a later stage. Virtual Prototyping using SystemC enables
early decision making with a reasonable accuracy and can reduce the time to market
for a chip.

This research work tries to analyze the problems associated with the system

level design for the ICs being manufactured today. SystemC based approach for



virtual prototyping is a decade old and used extensively by most of the chip designers
to analyze power and performance at an early stage. With the new applications
constantly demanding high performance and low power, ICs are getting bigger and
more complex. As a result, ESL design requires modeling all components of a complex
system and simulating them at an early stage. While, the SystemC based approach
was a viable solution a decade ago, it needs to be revised to match up with the size and
complexity of SOC today. With the saturation of technology scaling and transistor
sizing, it is not possible to increase the clock frequency beyond a certain limit. People
are therefore moving towards multi-core applications. Embedded systems today have
have different processors dedicated for separate tasks to share the workload and
still match up the performance. Smartphones, laptops and tablets all have a SOC
comprising of multiple cores and this trend is likely to increase in future with people
proposing a network of hundreds of cores interconnected through multiple routers.
Simulating such a huge system and predicting the performance and power is likely
to be a big challenge in future. It is therefore necessary that we look for alternate
means for ESL simulation. This work explores some of drawbacks associated with the
current platform of system level MPSOC design in SystemC and provides a scalable
solution which is more viable to be used in future.

With the growing complexity of today’s SOC design, simulating a complete sys-
tem on software is becoming a challenging task. In order to increase the productivity,
people use available reference models of common components like processors, mem-
ory, cache and bus. Any new hardware specific for a task can be modeled and
plugged into the simulator comprising of all the basic components. A good simulator
should keep track of performance counters such as hits, misses, latency and other
metrics which can be useful to a designer. This also incurs a simulation latency

overhead, slowing it down and so only important metrics can be turned on to match



up simulator’s performance.

In order to keep developing SOC with higher productivity at lower costs, it is
important to increase the abstraction level even above the system level design with
SystemC. Every embedded system design will have multiple modules communicating
through an interface. Transaction level modeling increases the abstraction level by
providing a better predefined way of communication. It reduces time to model a
system and also reduces the probability of error within these interfaces. TLM2.0
is an extension to SystemC which provides a seamless method of communicating
between modules. SystemC modeling consists of a number of processes which define
the behaviour of the system. TLM2.0 provides an interface to communicate between
these modules in form of transactions.

Since most of the system level design work circled around SystemC and TLM,
it is therefore important that we keep developing its execution model as we evolve.
About a decade old, there has not been a significant change in the execution model
of SystemC. The reference SystemC kernel[2] runs as a single threaded application
serializing the execution of SystemC model. In order to realise the hardware and
its concurrency, each simulation time is considered like a delta cycle in which all
the functional components execute. The execution of SystemC is like discrete event
simulation model. At any instant of time, all the active processes are evaluated and
ran in a random order. If they give rise to new events, then all the processes active
to those events are run until they are exhausted. This marks the end of simulation
time. It is divided into phases namely evaluate, update and notify. Each phase
has a lot of potential for parallel execution, which is not utilized by the reference
SystemC kernel. The obvious solution would be to use the host with multiple cores
and execute each phase in a parallel fashion[32][33][41][40][38]. Special care has to

be taken while distributing the tasks to multiple processors as it should not affect
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the order in which the events are executed. Since the result of simulation does not
depend upon the order in which the processes are executed, it is logical to try to run
them in parallel. For example, as shown in figure 1.3, all execution order of processes
give the same results in single core as well as multicore hosts. People have tried this
previously and shown good results, but it is still not integrated in the open source
SystemC source code because of the complications it can produce.

In this research work, we have identified the challenges associated with the refer-
ence execution model of SystemC and tried to propose other solutions in multi-core
domain to increase the scalability for future generations. In particular, we have fo-
cused upon the GPU based approach to simulate any SystemC design with timed
event communication models and transaction level models by taking the advantage

of data level parallelism.
1.3 Motivation

Even though use of multi-core hosts for Parallel Discrete Event Simulation can

improve the simulation speed, they are not effective when process run time in a single
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Figure 1.4: Typical NOC based MPSOC schematic

delta cycle is low, because the synchronization overhead becomes comparable to
process runtime. Moreover, there are only a limited number of cores available to the
end user. So, if the design is large, the number of available cores can be a bottleneck
for parallel simulation. If we analyze some of the typically used MPSOC designs in
industry, it can be noted that there is a repetition of same modules multiple times in
the form of multiple instances(for example multiple instances of homogeneous cores or
routers in NOC topology as shown in figure 1.4). In such case, a multi-core host will
not be able to take advantage of this property and will have the same synchronization
overhead as that of a model where design of each module is different, which is high.
In order to tackle this problem, a GPU based approach is explored for system level
simulation of MPSOC designs because they execute as single instruction multiple
data(SIMD). This solution is ideal because we need to perform multiple simulations
of same design but with different parameters.

Exploring the computational power of GPU[39][36], it reduces the synchroniza-
tion overhead to some extent and has a large number of cores which can be used for
simulation of multiple processes in parallel. GPU provides a high degree of data level

parallelism which cannot be realized efficiently on multi-core hosts. This approach
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would be ideal for those case where we have less scope for thread parallelism and
more scope for data parallelism, such as a simulation of a network on chip architec-
ture which contains hundreds of routers and cores each having same code to run but
on a different data set. In this research work, a novel technique is proposed to paral-
lelize non-synthesizable and transaction level models completely on GPUs achieving
maximum parallelism in all the phases of simulation with low synchronization over-
head. This technique explores the efficient usage of the available resources in a GPU
machine for any SystemC model such as distribution of processes to different thread
blocks(multiprocessors), efficient usage of register, shared and global memory and

reduction techniques to reduce the runtime in update and notify phases.
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2. PREVIOUS WORK

System level design using SystemC and TLM?2.0 is a crucial phase in overall time
to market of a chip and due to its importance, there has been ongoing research to
find different ways to accelerate the simulation. These efforts can be divided into two
parts, one where emphasis is paid on the coding style to improve the performance
which is referred as front end techniques. Other would be to try to improve the simu-
lation kernel itself which is used as a base for all the designs, also known as back-end
techniques. Front end techniques explore the modeling of a general MPSOC envi-
ronment consisting of multiple processors, memory and other blocks interconnected
through bus or network structure. Back-end techniques focus on improving the kernel
which is used for modeling hardware in a software environment.

Front end techniques deal with the design of a simulator using a specific modeling
language like SystemC. There are many simulators, which used SystemC environ-
ment for modeling MPSOC comprising of homogeneous and heterogeneous multi-
processors, AMBA buses for modeling communication structure, memory and other
peripheral devices. MPARMJ[4] is one of these simulators which has been shown to
be effective for early architectural exploration. Many other efforts are focussed upon
building a MPSOC environment for system level simulations[18][11][37][27]. Some of
these[6] are capable of running an entire operating system as well but are really slow
in their execution due to implementation complexity. Some of the works focus on the
application based system level design such as modeling a system level environment
specifically for JPEG, MPEG and H264 decoders|15], others focus specifically on net-
work on chip topology|[35][22][16][14][3] as it is gaining a lot of popularity these days.

People have also explored design of processors with different ISA using SystemC|[29].

11



2.1 Multiprocessor Work

For back-end techniques, people have mainly worked on utilizing the high com-
puting power of Multiprocessor CPUs and GPUs as the nature of system level design
using SystemC can exploit a lot of parallelism. Early research efforts [32] tried to
map the evaluation phase of OSCI kernel to multiprocessors at a cost of synchro-
nization overhead. In order to reduce this costly synchronization, others [33] have
tried to divide the simulation into different parts, and each part is mapped to certain
processes reducing the need for synchronization. Even though both the above efforts
produced good results in some cases, they do not utilize the multi-core exploration
on other phases of OSCI kernel such as evaluate and update. The discrete event
simulation in SystemC is split-up into several delta cycles and each delta cycles have
evaluate update and notify phase, and there can be multiple delta cycles for a given
time. This makes the improvement in the evaluation phase due to parallelism only a
small part of the overall time consumed and moreover it incurs costly synchroniza-
tion overhead every delta cycle. In order to tackle this problem, people [41] have
tried to partition the simulation and map them onto different threads even before
the start of simulation and run these threads independently on individual proces-
sors. A lookahead time is calculated statically which is the minimum time required
for communication for processes from one thread to another thread. The authors call
this method parallel time decoupled simulation allowing processes to run indepen-
dently without synchronization on different processors until a minimum lookahead
time. Improving upon the same concept, in [40], authors have proposed a flexible
time decoupling based method to even reduce the synchronization overhead but at
a cost of lower timing accuracy and determinism, which can be useful if the aim of

high level design is only to get a rough estimate of performance. In [38], authors
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have designed a highly special purpose parallel simulator which can run the SystemC
design on multi-core cost and uses a kernel accelerator which reduces synchronization

by reducing the control and increasing the scalability of simulation.
2.2 GPU Work

With growing number of cores on a chip, there is a demand for scalable solution to
simulation of large SystemC models. Typically some of the MPSOC models contains
hundreds of cores with same code structure executing on different dataset. This
points us in the direction of using a GPU based approach which provides a scalable
solution to problems with high data level parallelism. Previous works [24][39][36] have
already attempted to use GPU for accelerating SystemC models. The first work [24]
translates the original SystemC code to a CUDA using a synthesizer by mapping
each process to different core. Although it was a good start, it had issues when
the process mapped on same multiprocessor shared different code structure, causing
lots of branch divergence. This was controlled in the next work [39] by replicating
the common process to different multiprocessors. These works [24][39] are restricted
only to synthesizable SystemC subsets and do not support timed event-based models
which are crucial part of higher level modeling in SystemC. They also do not support
transaction level models which are widely used in industry for modeling loosely timed
and approximately timed models. In [36], authors have addressed this problem by
mapping selected processes to GPU in the evaluation phase of reference SystemC
kernel, but their approach require synchronization between CPU-GPU every delta
cycle, which is costly. Moreover, they exploit parallelism only in the evaluation phase

thereby serializing the update and notify phase.
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3. BACKGROUND

This chapter covers some relevant background which is needed in order to under-
stand the optimizations used in this research work. The main focus of this work is to
create a simulation model for system level design which is good enough for the future
MPSOCs. Since SystemC is widely used in industry as an open source language for
system level design, it is important to understand its basic concepts before going
into further optimizations. First part of this chapter gives an in depth understand-
ing of SystemC and its execution model. Next, we try to give some insight into the
concepts related to transaction level modeling and its use in system level design. Its
programming model is briefly described for user to get an intuitive idea of TLM.

The platform provided by above languages is based on C++ libraries and its exe-
cution model based on single core is a huge bottleneck for scalable designs. Therefore,
some of the techniques are discussed to speed up the simulation by using multi-core
hosts and GPU. Conversion of a sequential code into a parallel code is a challenging
task because it involves finding scope to run multiple threads simultaneously and
still achieve same functionality. Since we would be using GPU extensively, its ar-
chitecture is described in depth here. Finally, a brief introduction to the approach

followed in this work is given which is described in depth in subsequent chapters.
3.1 SystemC

Until now we have given a brief introduction on the roadmap of using SystemC for
ESL design. In this section, we will discuss some concepts related to the execution
model of SystemC and usage of its constructs. SystemC as mentioned before is
an extension of C++ libraries which are used to realise hardware on software. Its

has its own execution kernel which executes these models as if simulating a real
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hardware by keeping track of time. Most of the system level design work touches
both hardware and software due to the close correlation between two at an early
stage. So, designing a hardware in SystemC can provide a good platform for early

development of software.
3.1.1 Hardware Constructs

The main advantage of SystemC is that while still developing in an environment
compatible with full fledged software, we are able to realise hardware and simulate
it efficiently with precise timing notations. A software basically executes a set of
instructions using a microprocessor and so runs sequentially. An actual hardware is
composed of many transistors and gates running in parallel to achieve a functionality.
In order to model that in software, SystemC runs on a kernel which takes care of the

inherent concurrency present in hardware simulation.
3.1.1.1 Time

Time is the most important concept which is needed to model hardware using
SystemC. There are multiple definitions associated with time. The time which is

required by processor to run the code is called processor time, which determines the
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efficiency of simulation. If this is the only thing running on machine, then it can
also be referred as wall clock time. Simulation time is the overall time for which the
hardware is simulated. It implies that when the hardware is fabricated to silicon, it
will take that much amount of time to run the desired application.

With the notion of modeling, we are mainly concerned with simulation time.
At any point in simulation, the kernel keeps track of the current simulation time
and executes all the runnable processes before advancing the time. The class which
implements time is known as sc_time with resolutions ranging from second to fem-
tosecond. Any hardware component has a certain delay which is referred to its
latency. If there is zero delay associated with any model, then it the model is not
realistic. A simple construct to realise delay would be to use wait. Some of the design
have delay in the form of clock cycles, so sc_clock class is implemented to achieve

that functionality.
3.1.1.2  Hierarchy and Modules

A design of SOC can be quite complex with lots of functionalities. In order to
understand and organize them properly, a hierarchical structure is followed through-
out the design. A group of processes and ports can be wrapped inside a module,
with the instantiation of SC_MODULE. This is identical to the structure used in
verilog and vhdl for modeling hardware. Since the basic language is still C++-, there
are predefined macros for defining modules and registering them with processes. A
typical module should have input-output ports and methods which define the re-
lation between input and outputs. These methods are linked with corresponding
module by defining them in the class definition of module with macro SC_METHOD
or SC_.THREAD. Processes should be defined in the constructor function, which is

defined using the macro SC_.CTOR inside a SC_MODULE.
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3.1.1.53 Data-types

SystemC provides a wide range of data-types for modelling logic signals[7]. Apart
from the native C++ counterparts which can be used any-time, SystemC provides
classes of data-types with vectors of variable width which could also handle simulation
of X’ and 'Z’ signals. It is important that we select the data type which is closest

to native C++ implementation in order to get good simulation performance.
3.1.1.4 Communication

Communication is handled in SystemC in two different ways. Inside a module,
communication between processes is done through events, their sensitivity and no-
tification. Communication between two different modules is handled by use of a
channels which connects two ports.

Firstly, discussing the communication between two modules, it is necessary that
we have a channel which derives its member functions from an interface. An interface
is a component which is an abstract class and uses the property of polymorphism.
It contains virtual methods, i.e. only definition of functions are specified in an inter-
face. A channel and a port should extend from an interface and define the internal
functioning of the particular method. The abstract nature of interface allows us to
use the same definition for multiple channels implementing different communication
details.

Another way of communication is the use of events and their sensitivity. Each
process is sensitive to a certain set of events which is declared statically in the
registration of process in constructor. Whenever each of these events occur, the
process is made runnable and is executed in the current delta cycle. Each process
can notify some other events which can invoke the processes sensitive to them. This

way, we can switch from one method to another with the help of events.
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3.1.1.5 Concurrency

Concurrency is a phenomenon which is very evident in hardware because these
units execute in parallel. In order to realise the same behaviour in software, we
need to stop the simulation time and execute each runnable process one by one.
Consistency throughout the timeline can be maintained by executing all runnable
processes at any given instant before advancing the time. The mechanics behind
the working of simulation is handled by a kernel which keeps track of all the events
occurring in the design and acts accordingly.

The simulation is divided into two phases namely elaboration and execution. In
elaboration stage, the simulator reads all the module definitions and creates a hi-
erarchical structure of the hardware. It binds all the processes, ports and signals
to their corresponding modules and registers the communication between modules
through channels and events. After completing elaboration, kernel starts execution
stage where the actual processing of hardware takes place. The way SystemC sim-
ulation runs is popularly known as cooperative multitasking where the kernel gives
control to process and waits to it to yield. In order to realise concurrency, there is
frequent switching between kernel and processes because the process yield control
to kernel when it has finished the work to be done at a particular instant of time.
In a real hardware there may be delay associated with each hardware component,
whereas in a simulation we need to model delay for a particular task. In general
we can use wait() and notify() statements to generate a delay in simulation time.
Both the commands use argument of time to predict when the process will be made
runnable next time.

SystemC reference model as shown in figure 3.3, widely used in industry for

system level modeling, is based on the concept of discrete event simulation. The
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execution phase of simulation is divided into three phases namely - evaluate, update
and notify. The execution starts when there is call to sc_start(). The time line is
divided into a series of discrete set of times and each time instant is broken down into
multiple delta cycles. Each delta cycle proceeds through all the phases until there are
no events left to process after which simulation advances to next closest time of an
active event. In evaluate phase, all the runnable methods are queued sequentially and
executed in a random yet deterministic order. After their execution, all the signals
and channels are updated to their latest values and generated events are updated
with their trigger time. In notify phase, runnable processes are identified and pushed
to runnable queue to execute in next delta cycle. This processes is repeated until
there is a call to sc_stop. Figure 3.4 shows an example of SystemC design giving

control to kernel which identifies the phase and executes accordingly.

sc_main () SystemC Simulation Kernel

Execute code possibly

issuing events or While -
Elaborate updates. Either suspend processes .notify ()
waiting or exit entirely. Ready immediate

| N

Advance

sc_start () __i fropn
> |nitialize @=——>» Evaluate Time
f\ _notify (SC_ZERO l ge(':tlae T
l\ _TIME) delayed \ Y
——————
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timed

Figure 3.2: SystemC execution kernel
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3.2 TLM2.0

In previous chapters, we have discussed the essence of transaction level mod-
eling for SOC designs. In this section, we will mainly discuss its usage which is
provided by Open SystemC Initiative(OSCI) as a TLM2.0 standard. This standard
helps generalize a way of communicating between modules by the use of sockets and

interfaces.
3.2.1 Components

TLMZ2.0 provides a set of C++ classes which can be used along with SystemC
to provide a better framework for communication between modules. If this were
to be done with traditional SystemC constructs, it would involve creating ports,
defining a channel and extending ports and channel with an interface which can be
complicated as well as time consuming. TLM2.0 provides a standardized way of

doing memory reads and writes across modules. The key components are described
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in the subsections.
3.2.1.1 Initiators and Targets

TLM2.0 consists of a set of transactions which are requested from Initiator and
are directed to Target. Initiator is a module which initiates the transaction. The
connectivity is defined through sockets in SystemC. Target is a module which receives

the transaction, processes it and returns back to the initiator.
3.2.1.2 Socket

Socket is a basic entity through which the communication is made possible. It is
very similar to a port in SystemC. Both initiators and targets have to define a socket
associated with a type of interface. These are connected together in the connectivity
file through usual SystemC constructs. A module may implement both initiator and

target sockets if it has to act in both ways.
3.2.1.3 Payload

Each transaction is associated with a bunch of parameters like command type,
command address, data pointer, burst length and many other options. All these
parameters are compressed into a data-type called payload. Initiator is responsible
to initializing these parameters, socket makes sure that it is received correctly at
target, and target is responsible for processing the payload and notifying back to the
initiator.

3.2.2  Interfaces

Interfaces are similar to intermediate components which are used to transport
payloads from initiator to target. They define the behaviour of the transaction as
how it should proceed. The sockets are usually defined with the type of interface they

are linked. There are four types of interfaces which are used for different purposes
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as defined below.
3.2.2.1 Blocking

Blocking transport interface is used when initiator thread is supposed to be
blocked until the target thread evaluates the transaction, processes it and returns
the result to initiator. The method which is used in TLM2.0 is called b_transport
which takes pointer to payload and time as arguments. Time argument can be used
to annotate the actual physical delay associated with the transaction and can be ref-
erenced as a wait() call in target. This type of interface is generally used in loosely

timed models.
3.2.2.2  Non-Blocking

Non Blocking transport interface is used to initiate a transaction to target and at
the same time keeping the current thread alive. This is done using a nb_transport call
to target. The return from target is made by another nb_transport call to initiator
from target. The direction of this is opposite to that of the initial call. This is
generally used to give the status of processed transaction to initiator if it has been
executed correctly. Based on the feedback, the initiator may choose to re-initiate

same transaction or start another transaction.
3.2.2.3 DMI

DMI or Direct Memory Interface is used to improve the simulation efficiency.
When there are multiple requests to same address in the target memory, it is ineffi-
cient to make blocking or non blocking requests repeatedly as each call will have to
go through the interface causing delay. As a better way, there is a parameter in the
payload to enable the dmi interface. The target will analyze the payload and provide

a pointer to memory to initiator if dmi interface is enabled. Subsequent transactions
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can be processed directly from initiator without having to go through the interface

saving the simulation time and complexity.
3.2.2.4 Debug

Debug transport can be used to read or write to a particular memory address in
order to debug the contents of memory at any particular time. The reason for sepa-
rating it out from normal transport interface is to provide a better debug capability

and also to make sure that there is no delays associated with this path.
3.2.3 Models

Transaction level modeling can handle different levels of abstraction depending

upon the designer’s requirement.
3.2.83.1 Loosely Timed

Loosely timed model corresponds to a transaction which communicates between
two concurrent processes with the delay of the transaction specified by user. This
delay is not the actual delay in which the transaction will complete, but rather a loose
figure based on the nature of individual transaction. They are generally implemented
with blocking interface. These models can use temporal decoupling where the some
parts of simulation may run ahead of actual simulation time in order to increase

speed.
3.2.3.2  Approzimately Timed

An approximately timed model corresponds to splitting down the transaction in
multiple phases and each phase having its own delay. Typically there are four phases
which one needs to be concerned about. Beginning and end of request and response
constitute four different types of timing specified. These models cannot be used with

temporal decoupling because of presence of multiple phases and each subsequent
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phase is dependent upon previous phase. That is why they need to run in lock step

with each other. These models generally use non-blocking interface.
3.2.3.3  Untimed

Untimed models generally have algorithmic description without any annotation
of time. So, they are called untimed models. These models usually have single thread

implementing the algorithm, so transaction level models may not be beneficial for
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this case.
3.3 GPU

GPU(Graphics Processing Unit) is a computing unit which provides high level of
parallelism in the program. This research work uses the high computing capability
of GPUs for speeding up kernel for SystemC execution. Therefore, in this section,
a brief overview of GPU architecture and its programming model using CUDA is
described. GPU is used to execute programs which are massively parallel in nature.
The main quality differentiating GPU from multi-core CPU is that while latter has
lesser number of highly powerful cores, the former has large number of small cores
capable of handling simpler tasks. They were primarily designed for handling graph-
ics which have large datasets to be processed quickly. Slowly, people started using
them to solve other problems as well, which gave rise to General Purpose Graphics
Processing Unit(GPGPU). In this work, the main idea of GPU is used to solve a sys-
tem level simulation problem requiring high level of parallelism. Another important
point to note is that the speed-up provided by GPU is primarily due to data level
parallelism while the speed-up provided by multi-core CPUs is due to instruction

level parallelism.
3.3.1 Overview

Even though GPU has large number of available cores, they are not recommended
to be used for sequential code because they are not as powerful as CPU. Any program
is divided into sequential code and parallel code. The sequential code is run on a
CPU which offloads the task to GPU when the computation required in parallel. A
GPU therefore acts like a coprocessor accelerator to speed up the program. It is
connected to CPU through a PCIE express bus which provides high bandwidth data

rate between DRAM and GPU memory. GPU has large chunk of global memory
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which is used for storing the data to be processed. CPU generates the data and
transfers it to GPU memory with the help of PCIE bus, GPU then processes and
updates the data in GPU memory, CPU lastly transfer the output from GPU memory
to its DRAM memory. The time required to complete the data transfer from CPU to
GPU memory and vice versa depends upon the speed of PCIE bus, which is usually
the bottleneck for parallel computations. It is essential that the speed-up obtained
by intensive parallel computation by GPU dominates the overhead due to memory

operations for this approach to be useful.
3.3.2  Architecture

The main component of a GPU device is called a streaming multiprocessor(SMP
or SM). There are several of these present on a GPU device sharing the global memory
of GPU. Each SMP has a capability to execute hundreds of threads at a time. There
are several hundred CUDA cores present on a SMP which are responsible for high
data level parallelism in the code. These CUDA cores work in SIMD or SIMT fashion
where only one instruction is fetched for multiple data, thus making use of the large
number of ALU units present in SMP. As evident from the execution strategy, this
method involves lots of data reads and writes, so bandwidth of the register file is high
enough to make memory operations fast. Apart from the CUDA cores, each SMP
consist of a shared memory(L1 cache), register memory, load/store units, special
function units and warp scheduler. GPU divides the total number of threads on
a SMP into groups of 32 threads called warps. Each of this warp executes one

instruction at a time on multiple data.
3.3.8  Programming Model
Programming models of a GPU present a set of rules and guidelines for using

the available hardware resources in an optimized manner. A software programmer is
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Figure 3.8: Architecture of GPU

generally aware of the programming model which is necessary to code. This model
acts as a bridge between software and hardware and tries to efficiently manage the
hardware resources based on the requirement as specified by the programmer. This
model consists of both CPU and GPU code working together as heterogeneous com-
puting. The part of code present of CPU is called host and GPU is called device.
The call from host to device is made through call to kernel which invokes GPU pro-
cessors. Since host and device both work on their independent memory, before and
after call to the GPU kernel, a data transfer has to be initiated from host to device
memory and vice versa respectively through PCIE express bus. There are dedicated
function calls in programming model to make is happen.

Execution model of GPU is characterized into three different types of abstraction
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levels forming a hierarchy. These are called threads, blocks and grids. A thread is
the most basic form of execution unit in a GPU. They can be combined together
to form blocks or thread blocks. Multiple thread blocks can combine to form a grid.
While launching a kernel, we specify the size of thread block as well as grid which
helps GPU map the individual threads to actual hardware efficiently. The mapping of
grid, block and threads to CUDA cores in SMP is done internally to ensure maximum
parallel computation.

A device may have only a limited number of SMPs. Each thread block is mapped
to a particular SMP in a GPU which cannot be changed dynamically. All the threads
in a thread block are run by the mapped SMP in GPU. Threads are combined in a
group of 32 and executed as a warp in a SMP. There are multiple warp schedulers
in a SMP making the execution of threads on a SMP concurrent. A SMP may have
multiple thread blocks assigned to it and it can choose to switch between warps of

different thread blocks depending upon the resources available.
3.83.4  Memory Hierarchy

A GPU device has different level of abstraction in memory as well. Since it pro-
vides high degree of data level parallelism, there are large number of memory accesses
required for the computation. It is therefore necessary that memory utilization is
optimized so that we may not incur significant overhead. Memory used in CPU is
generally non programmable, in which programmer cannot define where it should be
stored (for example L1 and L2 cache in CPU). In GPU, we have several options for
storing memory at a different level of hierarchy as shown in figure 3.10.

Register Memory is the fastest memory available on the chip. Data which is local
to individual thread is generally stored in register memory by simply declaring a

variable in kernel. This automatically assigns one variable for all the threads active
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in that kernel. Since this is the fastest form of memory available, it is recommended
to use register memory when variables are used frequently. There are only a limited
amount of register assigned for each SMP which are shared among all the active
warps.

Local Memory is used by GPU when there is an overflow of the available register
memory space. Similar to register memory, this is reference when a variable is defined
in a kernel with its scope limited to thread, but the register memory is full. In this
case, physically global memory is used to store all the spilled registers, so this is
much slower than the register memory.

Shared Memory is a programmable on chip memory which has very high band-
width and low latency. This is slightly slower than register memory but still very
fast. Each SMP has a fixed amount of shared memory which is partitioned among
thread blocks using the particular SMP. This are highly efficient for storing shared
variables which are utilized by multiple threads because of the low latency. There
is no alternate memory to store this if there is an overflow, and returns an error if
more than available memory is required by the program. Shared memory variables
are declared in a kernel by appending __shared__ keyword to it.

Global Memory is the slowest form of memory available of a GPU. It also has
the largest amount of size and is shared among all the thread blocks which are even
assigned to different SMPs. It is not preferred to use global memory, but since we are
bound by the available size of the shared and register memory, we use this to store
large amount of data use by GPU in the lifespan of the program. Global memory
is not lost in between multiple kernel launches so it is ideal for saving all the data
to be used by the GPU program. A part of global memory can be copied to shared

memory for faster access.
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3.4 Project Description

The first half of this research work aims at developing a framework for system
level design which can be used for performance analysis of any general external
application. A SystemC based MPSOC framework is designed which consists of
homogeneous multiprocessors(based on MIPS), cache memories, bus modeled using
TLMZ2.0 constructs, memory and other external application. A jpeg based encoder
is used to test the working of simulator under different configurations of MPSOC
and predicts the configuration for best performance. Observations made from this
framework are the motivation for next part of project. Upon increasing the number
of processors in design, the number of processes running on SystemC single core
kernel increases greatly slowing down the simulation. There is a lot of redundancy in
the way SystemC code is executed on its kernel which is designed for single threaded
application.

Next part of project aims at using the multiprocessors for increasing the simula-
tion speed of system level design using SystemC. With the saturation of clock speed,
the trend in today’s world is growing towards multiprocessors. Analysing the perfor-
mance of a design which consists of hundreds of cores can be difficult task. Virtual
Prototyping with SystemC can be difficult as single threaded application involves
lots of context switches between processes and runs serially. Another important
practical aspect is that large system level designs use TLM2.0 framework for bus
communication between modules. So, we need a solution which is extensive enough
to cover any event based communication model and also able to handle transaction
level models using TLM2.0. Visualizing the scalable nature of problem, this research
work focuses mainly upon GPU based transformation of original SystemC code such

that it can take advantage of performance gain offered by SIMD instruction types.
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The key focus of this research work are mentioned below -

e Mapping Non-Synthesizable SystemC' models to GPU: Previous works [24][39],
map original SystemC model to GPU supporting only synthesizable subsets.
These models are relatively simple with respect to their communication frame-
work between modules. They typically use value changed events for combi-
national logic and clock based events for sequential logic. In order to achieve
higher level of abstraction, timed event communication is often used in de-
signs, which come under non-synthesizable subsets. We propose a framework

to model all types of communication models on GPU.

e Parallel TLM2.0 simulation on GPU: As TLMZ2.0 is increasingly used to reduce
the complexity of simulation in cycle accurate models, there is need to paral-
lelize them efficiently. Transaction level models enable us to model memory
mapped bus communication model at a higher abstraction level using prede-
fined libraries. We propose a methodology to transform and simulate TLM?2.0

loosely and approximately timed models on GPU.

e Time Decoupled GPU simulation: As the size of design increases, there is an in-
crease in number of processes to be run in parallel. Processes are hence mapped
to different thread blocks such that maximum processes can be run in parallel.
Different thread blocks are also used when the processes have different code
structure and require multiple fetch units (only one present in a multiproces-
sor). The simulation needs to be synchronized every delta cycle which is a
non-trivial task for multiprocessors in a GPU and has a costly overhead. We
propose a time-decoupled method to reduce costly synchronization overhead

among threads mapped to different multiprocessors on a GPU.
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3.4.1 Approach/Methods

In order to tackle the problem proposed in this work, first approach that is fol-
lowed here is to design a MPSOC model in a higher level modeling language such as
SystemC and identify the shortcomings associated with it. A multi-core simulator
is designed in SystemC which is capable of attaching any external application to it
and running as a virtual prototype. The process of design of a MPSOC simulator
is a complicated task as it involves designing and assembling multiple components
which in itself are complicated. As the architectural changes involves tweaking the
design and analyzing which configuration gives the best performance, open source
simulators are not flexible enough to fulfil this purpose. Our method involves de-
signing a simulator from scratch. The processor, cache, bus and memory models
were individually designed and tested. Any external application can be attached to
the simulator and it will identify the performance of the system under a particular
configuration. Initially this was tested with smaller applications, but later on this
was successfully running a jpeg encoder application to compress images. Apart from
a few coding styles which improved the speed of simulation, one of the major notice-
able improvement was the use of TLM2.0 for communication using buses. This was
found to be highly effective in terms of speed for loosely timed models in the initial
phase of design. In order to improve the performance of encoder, when the number
of processors were increased by an order, it was found that there was a significant
slowdown in the simulation speed. This was the motivation for using multi-core
techniques for simulation and specifically GPU since the nature of problem involves
simulating a huge design consisting of many identical cores dividing the task.

Initially, some effort was spent on using the multi-core hosts by parallelizing the

concurrent part of the simulation as by definition of SystemC, the function of the de-
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sign should not depend on the order in which kernel will execute the processes. There
are previous works proving this technique is indeed very useful for small designs, it
is however not scalable. One of the major drawbacks of this approach was when the
processes in SystemC do not have large runtime, then the synchronization overhead
becomes comparable to the runtime of the process which is certainly not desirable.
Another issue is that the number of multi-core threads are usually limited so the
solution provided by this approach is not scalable to large designs. A GPU based
approached works out best to nullify both the drawbacks as it has significantly low
synchronization overhead and also the number of cores in a GPU are large providing
a scalable solution.

The hardware architecture of GPU which is desired to be used in MPSOC sim-
ulations is slightly involved and works in a unique manner. Each GPU machine has
a number of multiprocessors which have their own fetch unit and can run different
instructions in parallel. Each Multiprocessor has many small cores which execute
in SIMD fashion. For initial part of the project, this work statically identifies the
number of processes which are to be executed by the SystemC simulation engine
concurrently and maps each process to different cores of a multiprocessor in GPU.
There are a few conversion rules associated with different types of constructs during
the transformation. The modified code which is GPU compatible is then run on a
GPU multiprocessor.

After designing a basic framework for simple SystemC models, next part of the
project was to strengthen the communication models associated with SystemC. Syn-
thesizable designs in SystemC typically use clock based communication for sequential
designs and signal change based communication for combinational designs. People
have not shown interest in a more robust event based communication framework

which are used for non-synthesizable designs, so this work involves creating a sim-
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ulation model for GPU which can simulate any general communication framework
using events asynchronously. In order to create a general simulation model which
works in all the above scenarios, the variables used for communication are classified
into sensitive and trigger variables. Based upon the type of communication model,
variables used in SystemC are mapped to these variables statically. The simulation
is also divided into evaluate, update and notify phase as in the reference SystemC
model and each phase is executed in parallel by many cores in a GPU. The mapping
of sensitive and trigger variables to GPU memory is done in such a manner that
running them in parallel does not affect the original intent of the design. This work
also optimizes the memory assignment of these variables to different types of GPU
memory (register, shared and global) to reduce the runtime.

Transaction level modeling is one aspect of system level design which is being ex-
tensively for loosely and approximately timed models for predicting the performance
and power variations with low simulation runtime, good productivity and efficient
work-flow. TLM2.0 is an extension of SystemC which is typically used for memory
based bus modeling. This work identifies a TLM2.0 model and transforms it into
an equivalent event based communication model as an intermediate step which can
then be transformed using the previously mentioned techniques.

As the size of a design increases, it will eventually contain more number of Sys-
temC processes which are to be mapped to GPU. Statically, only a fixed number(say
1024) of processes can be mapped to a thread block of GPU. Some processes even-
tually will have to be mapped to different thread blocks which may be mapped to
different multiprocessors and synchronization between them is a non trivial task with
large overhead. In order to make this feasible, the work proposes a time decoupled
simulation technique for GPU by statically identifying the maximum time for which

no communication is required between thread blocks and synchronize the thread
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blocks only at regular intervals.
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4. SYSTEMC/TLM2.0 BASED SIMULATOR

Before taking a leap into the GPU based kernel level optimizations in SystemC,
it is important to understand the usage of the language and analyze some of the
coding styles that can be used to accelerate the simulation. In this chapter, we
explore the usage of SystemC to model a fully functional simulator which is able to
attach any external application to it and analyze its performance. SystemC is used
here to model hardware in a C++ based environment which supports a higher level
modeling rather than going into details of gates and transistors. We would be using
C language for modelling software to be run on microprocessor, whose code is rather
easier to translate into hexadecimal binary which is read by the simulator.

There are many components which are modeled in this simulator and each of
these components has its own purpose. A microprocessor model is required to run
the software binary which is generally available as an open source Instruction Set
Simulator(ISS) with different instruction set architecture(ISA). The problem however
with the available ISS is that most of them are available as an executable binary so
modifying the internal components according to user’s preference is restricted. In this
work, a microprocessor model is build from scratch which supports MIPS instruction
set and provides a good simulation speed of around 65K instruction per second.
This model is completely designed in SystemC and supports some of the advanced
techniques such as forwarding, branch prediction and hazard detection and handling.
Since we are mostly concerned about the performance of MPSOC environment, we
can instantiate multiple instances of each core and redesign the software such that
each processor handles certain part of the overall workload.

While a microprocessor play an important part in the whole system, for a fully
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| Simulator | Speed(instructions per second) |

Simplescaler 150KIPS
Gemb 7.5KIPS(8 cores)
SESC 1.5MIPS

MC-Sim 32KIPS(64 cores)
SystemC 65KIPS(8cores)

Table 4.1: Simulation speed comparison of this simulator with other known simulators

functional MPSOC environment, we need a good memory model as well as a bus
model which handles all the communication between the processor cores and memory.
The memory model described here is relatively simple which handles all the reads
and writes. The bus model used here is similar to AMBA AHB Lite protocol which
supports multiple masters and slaves. The processor is coupled with a fast access
cache memory model which takes advantage of spatial and temporal locality in the
code to access memory. In order to test the simulator in a working environment, we
instantiate required number of components in the top level design module and verify
it with a test-bench which drives the simulator with data and checks for correctness.
Any external application can be attached to the simulator and run it with its own
software being executed by the microprocessors. In this work, we have first tested the
simulator for simpler applications such as a simple multiplier, then a jpeg encoder
hardware is attached to MPSOC with multiple cores sharing the workload.

Finally, we implement some of the multi-core techniques in kernel to parallelize
the execution of concurrent processes and analyze its effectiveness over the traditional

SystemC kernel.
4.1 Microprocessor Design

A microprocessor is a design element which takes an instruction, decodes its func-

tionality and executes it using the ALU unit. The results are stored back to registers
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Figure 4.1: Schematic of simulation connected to a jpeg encoder

or main memory depending upon the instruction. Some of the basic components

used in its design are defined as follows.
4.1.1 Register File

Every microprocessor needs some amount of fast coupled memory for doing tem-
porary calculations such as program counter, stack pointer, frame pointer and other
temporary variables. A register file is a fast but has limited memory. There are 32
integer registers and 32 floating point registers present in the register file. The width

of the data provided is 32 bits.



4.1.2  ALU Design

Just like other components, a higher level design for ALU is created in SystemC
which is then integrated with other components to achieve the full functionality
of a microprocessor. ALU is currently configured to operate on all the arithmetic
and boolean functions. It has its own ALU Control Unit which is responsible for

translating the control signals into ALU function.
4.1.8  Single Cycle Design

There are 5 main stages in the execution of a microprocessor namely, fetch, de-
code, execute, memory and write-back. Advanced microprocessors coming lately
have much more complicated stages, but in order to explore the usability of Sys-
temC, we use a simple MIPS based design which is used in academia. All the above
components are connected together with respect to each phase and the simulation is
based on events. In this kind of design, all the five stages are executed in one cycle
and so it is called single stage design. Apart from the components designed above,
we need a logic for Control unit which decodes the instruction and sets the value of
control signals according to it. In order to maintain the simulation speed, emphasis

is made to ensure that native C++4 constructs are used where ever possible.
4.1.4  Pipelined Design

In order to introduce pipeline in the SystemC design of microprocessor, double
buffering of sc_signal makes it easier to model registers of hardware. All the contents
of control signals and other registers are stored in a register file to update the contents
of it. On the other hand, older contents of the same register file are used for processing
information in next stage. In the update stage, old contents of registers are updated

with the new values which is identical to what happens in a real hardware.
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Figure 4.2: Schematic of MIPS based microprocessor designed in SystemC

In the process of design, there are many signal connections from one stage to
another to ensure the proper working under all hazard situations. There are two
types of methods in which simulation can proceed. One is where we design all
the components like hardware with processes sensitive to events, and other is to
follow a path where least number of processes are executed every cycle. Former,
which is more similar to a hardware like simulation, is not that effective because
it causes one process to run multiple times in a delta cycle until all its inputs are
finalized. Second method uses the flexibility provided by software to model some
components like hardware and execute them on software. A process is not scheduled
to be executed until all its input are finalized, this makes this model more effective
in terms of simulation. In order to avoid data collision, the simulation proceeds in
opposite order of their actual execution in a particular cycle. This means we would
be simulating in the order of writeback, memory, execute, fetch, decode. The main

idea behind this is to prioritize the instructions which are ahead in time so that their
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data is not collided with that of next instructions.
4.1.5 Forwarding Unit

This is a block placed in decode stage to prevent read after write hazard. In
many cases, we have a immediate read proceeding a write to same register, which
would normally give wrong results as this is a 5 stage cycle and the input is required
in the third stage itself. In this case, their are direct paths of the temporary result

being fed to previous stages to remedy the hazard.
4.1.6  Hazard Detection

The method of forwarding does not work in all the cases, and for some cases we
have a real hazard which cannot be solved by moving the result. For those cases, we
have a detection unit in decode stage which identifies the hazard and inserts bubbles
in the data-path. A bubble is a nop instruction which does nothing and is only added

to ensure that the hazard is resolved.
4.2 Bus Modeling

System bus is a component in SOC which is a hub for communication of multiple
components. It could handle multiple channels of communication at a time or only
support one channel depending upon the design. It usually consists of an initiator
which places a request to a bus, which decodes the target intended by the initiator
and forwards that request to a particular recipient. The target processes the request
and returns back the result to bus which in turn finishes the transaction by providing
initiator the results. In this design, we consider a AHB type bus protocol which can
handle multiple masters and multiple slaves. There is a arbiter unit present inside
the bus which decides the priority of transaction coming to bus and queues up for

being processed.
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4.2.1 Usage of Transaction Level Modeling

Bus is an important component which is used in all the SOC designs for com-
munication between modules. A typical bus model designed in SystemC requires
lots of effort on the user end. Also the simulation model of SystemC based bus
is cycle accurate with the simulation executing in multiple delta cycles caused by
the notification of events. This model can nevertheless be designed with impecca-
ble accuracy upto cycle level but during the system level design, we are not really
concerned with accuracy that high. The aim at that stage is to create a design that
has fair amount of accuracy and is still able to predict the performance and power
variations. Transaction level design is hence used for most of the bus based memory
accesses. As an extension of SystemC, TLM2.0 is quite stable with predefined in-
terfaces for communication whose parameters are defined through a payload. In our
MPSOC design, the SystemC bus model is replaced with TLM2.0 model which is
approximately timed. with some relaxation in accuracy, the simulation model works

around 10 times faster than the original model.
4.3 Memory
4.3.1 Data Memory

All the operations which a microprocessor performs for a program requires a
permanent storage in memory such DRAM which is a high latency memory connected
to the bus. Access to DRAM are usually in the form of burst reads as we want to take
as much data as possible to explore spatial locality. The model used in this simulator
is relatively simple with each memory module providing ports and interfaces which

can be connected to bus and accesses by any master.
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4.8.2  Instruction Memory

A microprocessor fetches an instruction every cycle in the form of 32 bit numbers
which are processed later in the cycle. Assembler gives an output of the list of
hexadecimal numbers which are supposed to be processed by the microprocessor.
Instruction memory is a class which is designed in such a way that any request
coming to it goes to successive line in the executable file and returns its contents
to microprocessor. Main storage of instruction memory is also in DRAM which is
cached by the microprocessor. In order to get the ideal performance, we would have
an instruction cache memory in between microprocessor and instruction memory,

but is left out in this simulator for simplification.
4.3.3 Cache Memory

We have a configurable cache memory which is connected to microprocessor to
enable fast access to DRAM contents by exploring temporal and spatial locality.
Although, it can be increased, in the current model we just have one layer of cache
memory which can be configured at the start of simulator. The design of cache
memory model is done in a hierarchical manner with class definitions of a memory
location(node) extending cache line(node set), extending cache memory. Each class
has internal functions which facilitate the working of cache in a smooth manner.
Although there is cache for both instruction and data memory, we are currently
using only data cache for simulations here. However, instruction cache is a simple

extension of the above.
4.4 Running the Simulator

Simulator designed in this project is a full SOC system level design where both

hardware and software needs to be designed. The simulator has pre-designed com-
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ponents used in a SOC such as microprocessor, bus, memory and other hardware
resources. The user needs to instantiate these components with their required con-
figuration such as cache size, number of processors, memory size etc. and connect
their ports appropriately. The user should also create a system level hardware design
of the prototype and attach it to the bus. Important thing to take into account while
doing this is to declare the address space of the hardware such that it is accessible
to other components in the simulator.

The next part is to write the software which will actually run on the micropro-
cessor designed in SystemC and use the hardware components connected to the bus.
In case of multi-core, ideally we would be writing a parallel code in openmp or any
other parallel language, but this would requires an operating system for managing
the workload. In order to simplify things here and achieve the same results, we
would be dividing the workload to individual processors manually by writing a C
code for each of them. After compiling and assembling the code, it is converted into
executable format which is a list of 32 bit instructions ready to be executed by the
processor. This forms the instruction memory of the microprocessor. All the parallel
cores execute the code, access the hardware or memory when required.

In this work, first hardware that was tested to check the working of simulator
was a simple multiplier whose inputs were given from the software and processed on
hardware and result used by software again for further tasks. Moving towards more
complicated hardware models, we have also built a JPEG encoder model which takes

an input .png image and converts it into .jpeg format.
4.5 Multi-core Execution Kernel

Going forward, we explore some multi-core techniques to accelerate the SystemC

kernel because it is too slow for event driven MPSOC simulator. The obvious solution
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Figure 4.3: Working of simulator with an external application

is to identify the concurrent processes in evaluate stage and assign them to different
processors in a multi-core environment. We tried different scheduling techniques
and analyzed their performance on different designs namely, multiplier and JPEG
encoder.

Static scheduling is the simplest form of multi-core where threads are assigned
to multi-processors based on their index serially. This way, all the processors know
which processes they are going to execute in the beginning. There is negligible
overhead due to synchronization in this case, but the processes can be highly skewed
in runtime. So, generally, the performance of this form of scheduling is the worst.

Dynamic scheduling is an improvised method where processors pick up threads
to execute when they have finished execution of previous threads. In this case,

the operating system maintains a queue of threads to be executed and processor
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Figure 4.4: Different types of scheduling in multiprocessor host

picks one thread from top of the queue after finishing its current thread. This
form of scheduling is quite balanced but has significant synchronization overhead for
managing the queues and assigning them to different multiprocessors. Overall, this
method is still better than static scheduling in general.

Predictive scheduling is another improvement on the dynamic scheduling when
the processes are first sorted in order of their decreasing expected runtime and then
assigned dynamically to multiprocessors. The expected runtime is the time which
the process used in the previous delta cycle to run. Based on the prediction, multi-
processors are assigned threads such that most time taking threads are separated out
among different multiprocessors. This provides an even more balanced distribution
of threads and is usually slightly better than dynamic scheduling. The performance
improvement is not a drastic, and so we look forward to other means of parallel
simulation to achieve better results. From next chapter, we start looking at GPU

based techniques to accelerate SystemC kernel.
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5. GPU BASED APPROACH FOR SYSTEM LEVEL SIMULATION

5.1 Overview

As discussed in previous chapters, a GPU is a device with huge number of cores
which can run in parallel exploiting data parallelism. In order to run a SystemC
code on GPU, the kernel which is responsible for executing the processes should be
compatible. However, this is not a trivial task as GPU programming is a bit different
from standard multi-core programming. It has multiple levels of abstraction in cores
as well as memory. An ideal way to handle this would be to transform the SystemC
kernel which is designed for single processor into a GPU compatible kernel. This
could however be quite complex to handle as there are lot of internal details in the
kernel which cannot be directly translated into a GPU based code.

The flow which has been used in this work involves a parsing the SystemC code
and translating it directly to a CUDA C code which can be run on a GPU. This
method analyses the SystemC code and maps it to GPU in a way that it would still
exhibit concurrent execution. In simple words, single core kernel is flattened with all
the processes assigned a different threads on GPU. The methods which are supposed
to be running concurrently on hardware will actually be executed by different threads

of a GPU resulting in large speed-up.
5.2 GPU Execution Flow

The flow of execution in GPU is very similar to that of reference SystemC kernel.
The main concept lies behind identifying the places in code which can be executed in
parallel without changing the final outcome. The reference SystemC kernel executes
a delta cycle in three stages. Delta cycles are executed until all the events have

exhausted. This is how a discrete event simulation progresses. While doing the same

49



Design

Specifications |
]
SystemC
libraries L

SystemC design
/I: DESIGN

PHASE

Validate design

T Deoxygen
W 20 ] XMLIZATION
PHASE
Abstract

Syntax Tree

5?;'%"6 SystEmCXML EXTRACTION

PHASE
tructural
model

SYNTHESIS
SystemC PHASE
design
file
—

EXECUTION
CUDA design PHASE
[ ] ]
CUDA
compiler

Figure 5.1: SystemC to CUDA conversion

thing in GPU, each phase takes the maximum benefit of parallel computation which
GPU has to offer.

The three phases of SystemC reference kernel execution are evaluate, update and
notify. In evaluation phase, all the runnable processes execute on a processor to
produce some outputs. SystemC has a rule which is important for the concurrent
execution of processes on a single processor. It states that the final outcome of
the function modeled through SystemC should not be dependent upon the order
in which concurrent processes execute on a single core kernel. This rule applies to
multi-core simulation as well because the parallel execution of processes will cause
race conditions in code if the final outcome is dependent upon the order of execution.
Applying the same rule, all the processes are statically assigned to a thread in the

beginning when the code is translated. One main advantage here is that since the
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number of parallel cores are high, a large number of parallel processes can be handled
with less synchronization overhead. Also care must be taken to make sure that
multiple cores are not writing concurrently to a shared resource, which will then lead
to race conditions in the code. This kind of scenario is generally not preferred in
a SystemC design, but if it has to happen then we shall use the constructs which
allow only one thread to access that shared variable. All the possible processes in

the code are assigned a thread at the beginning. It is possible that in some cycles
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only a few processes needs to be executed. In order to handle this, every thread has
a conditional statement at the beginning of the code which checks if the sensitivity
of the process is met and only then proceed towards execution. This stage is followed
by a barrier of synchronization to make sure that all the processes have executed on
GPU before moving to next stage.

After the evaluation of all the processes is done, the next phase is to update
the variables with new values which are evaluated in previous phase. As we will
see in later sections, different types of events have different methods of updating
the variables. Describing briefly, simplest concept is to have a double buffering of
variables such that it would not affect the results of evaluate phase. In a single
core SystemC kernel, all the updates to events or variables are made one by one in a
serial fashion. This process is accelerated in GPU by assigning each variable to a core
which updates it every cycle. The order of update does not matter in the outcome,
so making this phase in parallel does not need special care to check race conditions
of shared variables. Similar to evaluate phase, here also we have a conditional check
to update only the required variables.

Third and final phase in a delta cycle of execution is notify phase. Its purpose
is to evaluate whether there are pending events for the current delta cycle. If active
events are indeed found, then we go through another phase of delta cycle right from
the evaluation phase. Only those processes are made runnable which are sensitive
to the events found in notify phase. The process of finding if there is atleast one
new event generated translates to finding an OR reduction of all the possible events
of the design. Translating this phase is not as trivial as the previous two because
it involves a reduction operator. Although this phase cannot be completely made
parallel, it is possible to accelerate it into logarithmic runtime. This involves use of

some common techniques which are used in GPU for reduction operators.
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5.3 SystemC to CUDA Translation

SystemC is set of libraries in C++ which provide discrete event simulation frame-
work for modeling hardware on software. In order to map this model to GPU which
recognizes CUDA, we perform a transformation with the help of a synthesizer similar
to the previous work|[24]. This synthesizer parses the SystemC code and writes out a
CUDA kernel code which can directly run on a GPU. Before getting into the details

of the translation, there are few terminologies which a user needs to be familiar with.
5.83.1 Types of Events

Since, this work mainly deals with creating a framework for advanced communi-
cation models, we need to first classify the types of events which are responsible for

communication. In general, we can classify the events into three categories -

1. Timed Synchronous Events: These are the events which occur regularly at a

fixed interval of time, for example, positive or negative edge of clock.

2. Value Changed Events: These are events which get triggered when any signal

changes its value.

3. Timed Asynchronous Events: This type of events are triggered asynchronously
at irregular intervals, for example, communication of the type wait(delay),

wait(event) and notify(event, delay).

Each of these events have a specific way of communication which needs to be
handled in the translation. The distinguishing factor from the other approaches that
try to use GPU for SystemC simulation is that while other works are generally focused
upon synthesizable models which have rather simpler means of communication. In
this work we develop a general model for SystemC simulation which can handle any

synchronous as well as asynchronous means of communication.
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_ void process2() {
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sc_event el, e2;
clk sc_in_clk clk;

Figure 5.3: Timed event based communication in SystemC

5.8.2  Types of Variables

We typically need two variables for all events to deal with all of the above methods
of communication. This method can be related to double buffering mechanism used

in discrete event simulations in order to avoid race conditions. These are briefly

described below -

1. Sensitive Variables: These variables contains information about the previous
delta cycle of a particular event and does not take into account any updates due
in the current evaluate phase. The advantage of this variable is that it separates
out sensitivity and update of same variable resulting in race conditions. It
typically has a boolean value which is read by each process in the beginning
to determine if it needs execution. These variables are read in evaluate phase

and written in update and notify phase.

2. Trigger Variables: These variables are updated by processes in evaluate phase
depending upon the function modeled. They contain the information about

when the signal or event is supposed to be triggered next. The variables are
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Timed Asynchronous Event
Evaluate Phase

If (e_sensitive == 1) // bool
// execute process

//some other process notifies
e_trigger = time + 10ns

Update Phase

If (e_trigger == time) {
e_sensitive = 1

} else {
e_sensitive = 0

}

Timed Synchronous Event
Evaluate Phase

If (e_sensitive == 1) // bool
// execute process

Update Phase

If (e_trigger == time) {
e_sensitive = 1
e_trigger = time + 10ns

Value Changed Event
Evaluate Phase

If (e_sensitive == 1) // bool
/] execute process

//Isome other process updates
e_trigger = something();

Update Phase

If (e_trigger == e_trigger_old) {
e_sensitive =0

}else {
e_sensitive = 1
e_trigger_old = e_trigger

}

time — current simulation time

Figure 5.4: Fvent mapping to GPU

altered in evaluate phase and depending upon their value, they update the
sensitive variables in update phase.
refer the next time when the event is active. In case of value changed events,
there is double buffering in trigger variables with allocated space for new and

old values. These variables are written in evaluate phase and read in update

and notify phases.

This section describes the details of algorithm which is used in translating Sys-

5.3.83 Algorithm
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In case of timed events, these variable

temC code to CUDA. The first part of translation is to extract the hierarchy of the
hardware and list of all the ports and channels in the design. In order to gather
that information, we run the SystemC code to a parser such as Doxygen tool which
creates an abstract syntax tree of all the class in the code and lists out their variables
which in our case are the boundary ports of modules in XML format. These variables

then can be used later on by a script to map processes to cores and also to identify




the variables and their scope.

In the process of translation, we proceed in the same manner as the reference
SystemC OSCI kernel progresses. Firstly, the algorithm identifies all the events and
their types based on the previously discussed categorization and also allocates the
memory required for declaring the variables. All these events are declared with their
corresponding data types. The memory allocated to events can be shared or local
depending upon the usage of variables which is discussed later. The variables which
are used to declare events are combined and renamed as arrays so that they can be
coded in the form in SIMD which works much faster on GPU. More details on this
will be discussed later in the chapter. Now, from the data generated from the XML,
we declare all the parameters in the beginning of kernel. Before executing any code,
there is an initialization phase, where all the methods and threads are initialized
unless stated otherwise. This attribute is captured while parsing and is used in the
synthesizer’s translation script. Only the part of process which is run until it yields
control is translated into initialization phase.

Next phase is translate process and map them to different cores on GPU. It is
easy to identify in the beginning where each process has yielded control to ker-
nel. Processes in SystemC are of two types, SC_.METHOD and SC_.THREAD.
SC_METHOD can be converted into SC_.THREAD by simple modifications in code
and now we describe a methodology to translate SC.THREAD to a CUDA core.
Each SC. THREAD has some points in code where it yields control to kernel. The
role of parser is to identify these points and translate the process into switch case
statements as shown in figure. It also adds a variable to identify which case block is
supposed to run. The part of code in each case block is protected by a conditional if
statement, which identifies the sensitivity of thread at that particular point. It adds

a conditional statement with all the sensitive variables of events as its parameters.
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If the event is found, the block is executed until there is a break statement. All the
updates to signals are translated to trigger variables, to avoid the race conditions in
code. For value changed events, the new trigger variable is simply updated whereas
for timed events such as wait or notify, the trigger variable(which is time) is updated
to the next time when the process is supposed to be made runnable.

The above algorithm to map SystemC threads to CUDA threads is a specific
example of a generalized mapping where there are no conditional statements in the
code. In a general case, we may have multiple conditional statements changing the
order of execution of blocks of a thread. The way to handle it is to create all possible
combinations of blocks of code which can run in one delta cycle and divide them
into separate switch case blocks. Even before the code is actually run on GPU, we
can identify statically which is the next block one process has to execute depending
upon the branch’s result. Using this idea, it is possible to map any possible SystemC
process to a GPU thread which will be run in parallel while execution.

After the evaluate phase is translated, we have a barrier synchronization com-
mand which ensures that all the processes have been completed before proceeding to
update stage. In this stage, since we have categorized all the events previously, it is
easier to write them down in single instruction multiple data fashion. Firstly, for all
the timed events, we have a conditional statement to check if the current time(trigger
variable) is equal to the time when the corresponding event is supposed to trigger. If
that is the case, then we enable its event (sensitive variable). The trigger variable is
reset to a negative value so that it does not trigger in the next delta cycle of the same
time. If this was not done, then we would be stuck in an infinite loop. For all the
value changed events, we compare if the new value is equal to the old value of trig-
ger variable. If there is a change then again we enable the event(sensitive variable).

While translating into GPU code, we have already organized all the events as arrays
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and so updates to them can be issued by a single command with different thread ids
as their thread index which picks up different data for same instruction. This style
of coding make the simulation much faster because it makes full utilization of GPU
which works on the concept of single instruction multiple data.

Moving on to next stage, we again have a barrier synchronization to avoid race
conditions. In notify stage, we basically have to check if there is atleast one event
pending to be addressed. All the sensitive variables of the events acts as a means to
find if event is triggered or not. An OR reduction of all these variables should be able
to predict if atleast one of the events is active. The whole delta cycle is repeated if an
event is found. This process is repeated until all the events have been addressed. In
the process of translation, the OR reduction is not as trivial and cannot be finished
in O(1) as two threads combine in each iteration to give the result. There are several
reduction techniques[26] which takes care of it in logarithmic time by making use of
all the cores to reduce as many possible threads as possible.

Coming out of the while loop, if no pending events are found, the next step is to
advance time to the closest possible time in future when any event is active. This
requires finding the minimum positive value of the trigger variable of all events. The
positive term is highlighted in this case because if an event is served, its trigger
variable is reset to a negative value in update stage. Finding the minimum positive
value of an array is again similar to reducing the array by taking two candidates
in array each time and storing them in same array. It takes logarithmic time to
calculate the next time to be simulated. Time is advanced to that value and the

delta cycle starts again.
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if (thread idx ==0) {
if (variable! != variablel copy)
// code structure A
y
if (thread idx==1) {
if (variablel != variablel copy)
// code structure B
|
if (thread idx ==2) {
if (variablel != variablel copy)

if (thread idx ==35) {
if (variablel !=variablel copy)
/! code structure A
}
if (thread_idx ==41) {
if (variablel !=variablel copy)
// code structure B
}
if (thread idx ==79) {
if (variablel !=variablel copy)

// code structure C /! code structure C

Same warp Different warp

Figure 5.5: Code mapping to multiple warps in GPU

5.4 Different Code Structure Optimization

GPU produces best results when we have single instruction on multiple datasets.
Each SMP has a single fetch unit and if threads are running code with different
structure, then they are effectively serialized. Execution progresses in GPU is in a
group of 32 threads which is called a warp. If a warp has different code structure,
then it cannot be executed in parallel in any way. The solution here is to identify
the processes with different code structure and map them to different warp. Figure

5.5 shows how to map them to different warps.
5.5 Shared Memory Optimization

Not much work is done to explore the memory assignment of variables as all of
them use shared memory to store all the variables in previous approaches. If processes
having different code structure are sensitive to same event, then they are mapped to
different warps with reads to same variable as shown in figure 5.6. Memory coalescing
happens only when multiple threads in a warp access same shared memory location.

In the case mentioned here, memory coalescing is not possible since warps are dif-
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Figure 5.6: Shared memory conflict in sensitive variables across multiple warps

ferent, resulting in memory access serialization. If a sensitive variable is common to
two processes which does not share the same code structure, then assigning them to
shared memory can be costly as it will cause multiple reads to same memory loca-
tion. Because of this, they are individually stored in every thread’s register memory,
reducing the serialization of reads. For remaining cases, we assign sensitive variables
to shared memory, as register memory is a limited resource. 7Trigger variables are

stored in shared memory because they do not produce conflicts.
5.6 GPU Execution of Non-Synthesizable Model

In this section, we give an overview of the execution steps followed in the trans-
formed CUDA code by taking a example shown in figure 5.3. It is composed of two

types of blocks, namely initiator and target, communicating through timed events.
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Figure 5.7 shows the corresponding execution steps performed on GPU, where solid
and dashed arrows show conditional true or false statements respectively while read-
ing the variables from memory. Apart from communication via events, we consider
different code structures among initiators and targets individually. In order to avoid
shared memory conflicts, our synthesizer maps sensitive variables for events to reg-
ister memory and trigger variables to shared memory. In execution phase, all the
cores read their sensitive variables from register memory in parallel. Since initiators
are triggered, they execute until suspended and update the trigger time for events
sensitive to targets by doing writes to shared memory as shown in figure 5.7. In up-
date phase, all the cores execute in parallel to check the current time against trigger

time, and enable the corresponding event if there is a match. Since trigger variables

Initiatorl _) Initiator2 _) C Targetl ) C Target2 )
1 1

Shared Memory
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Figure 5.7: Ezxecution mechanism of timed event communication in GPU using shared and
register memory
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Listing 5.1: TLM Model Mapped to GPU

// local sensitive variable shared trigger variable(time)
bool ev_sensitive;
int ev_trigger[2];
do {
do {// Evaluate Phase
switch (idx) {
case 0:// initiator thread wait on el
if (ev_sensitive == 1) {
// initialize payload ....
// trigger e2 after delay
ev_trigger[1] = time + delay;

¥
break;
case 1:// target thread wait on e2
if (ev_sensitive == 1) {
// decode payload ...
// process transaction ...
// trigger el in current delta cycle
ev_trigger[0] = time;
}
break;
}
__syncthreads () ;

// Notify and Update Phase
// Check time against event trigger time
if (time == ev_trigger([idx]) {// set event, reset time
ev_sensitive = 1; ev_trigger[idx] = -1;
} else {// unset event
ev_sensitive = 0;
}
__syncthreads() ;
ev = or(ev_sensitive); // find any active event
} while (ev); // do until all deta cycles finish
time = min_time(ev_time); // next trigger time
} while (time <= MAXTIME); // do until maxtime

reside in shared memory, this step causes reads to shared memory and writes to reg-

ister memory. There is no conflict in reads here as each thread is assigned separate

trigger variable stored in shared memory. After some time, events sensitive to target

processes become active and same steps are followed again.

5.7 Support for Transaction Level Modeling

In order to parallelize transaction level models, we partition the process of con-

version from TLM2.0 to GPU into two phases. TLM2.0 models are transformed into

CUDA compatible model by using timed event based communication model as an

intermediate step. Since the implementation of latter is discussed in depth in previ-
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ous sections, we are only concerned about the former. Figure 5.8 shows a possible
conversion of TLM2.0 model into event based communication model.

We study 4 basic interfaces which are widely used in most TLM2.0 models namely,
blocking, non-blocking, direct memory interface and debug interface. All these in-
terfaces are briefly described in previous chapters. In this section, we describe only
transformation of a blocking interface into a timed event communication model. For
other interfaces, the transformation is a trivial extension of the methodology de-

scribed below.
5.7.1 Blocking Interface

In this example, we have single initiator and target connected through a socket
as shown in figure 5.8. At the beginning, initiator initializes the payload with pa-
rameters such as transaction command, address, data pointer etc. In a blocking
interface, b_transport is a method which initiates a request from initiator to target.
When initiator makes a call to b_transport, it suspends the execution of initiator
thread and triggers the execution of b_transport method implemented in the target.
Initiator thread is suspended until the target method completes its execution. This
protocol can be transformed to an equivalent model using two events, el and e2, and
replacing the b_transport call as shown in figure 5.8 with notify(el) and wait(e2)
statements. The b_transport call on the target also undergoes some changes becom-
ing sensitive to el and has a delay mentioned in the argument of b_transport call
using wait(delay). Finally we add notify(e2) statement in target to return control
to initiator thread upon execution. The payload transaction which is passed as a
pointer in the b_transport method is stored in shared memory of GPU since it is
used by multiple threads. Once the model is transformed into events and waits, it

can be mapped to GPU easily using transformation into sensitive and trigger vari-
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( )
(Initiatorfpmcess() { target_process() { bool el_sensitive, e2_sensitive;
//initialize payload // decode payload int el_trigger, e2_trigger;
b_transport(*payload, 10NS) // process payload
// other functions wait(10, SC_NS); If (thread_idx == 20) {
} } switch (location_thread_20) {
case 0: If (thread_idx == 40) {
_ // initialize payload if (e1_sensitive) {
el_trigger = time + 10; // decode payload
( location_thread_20++; // process payload
sc_event el, e2; target_process() break; €2_sensitive = time;
. sensitive << el case 1: )
Initiator_process() { if (e2_sensitive) { }
//initialize payload arget_process() { -. /1 other funcions
notify (el, 10, SC_NS); /1 decode pagload breal:
L // process payload reaK;
wait (e2); K notify(c2) }
// other functions ) }
1
i _ J _J

Figure 5.8: TLM transformation of blocking interface

ables and increasing the delay for time. Listing 5.1 shows a brief transformation of
TLM2.0 model finally to GPU with detailed comments. Event el and e2 are mapped

to ev_trigger[0] and ev_trigger|[1] respectively.
5.7.2  Non Blocking Interface

A non-blocking interface can also be easily mapped to GPU threads in a similar
fashion by transforming the original TLM2.0 model into event based model with
wait and notify statements. The only difference here from the blocking interface is
that while in blocking interface the initiator thread waits until there is a return from
the target thread, so we have a wait(e2) in the end. In a non-blocking interface, the
initiator thread continues to run even after it has started the execution of b_transport
in the target thread. So, while transforming, we remove the wait(e2) statement from
the initiator thread as shown in figure, to achieve same results. But, non-blocking
interface have forward as well as backward transport calls, therefore two events are

used in this scenario as well. The transformation is completely shown in figure 5.9.

64



- —
Initiator_process() {
//initialize payload nb_transpore_f() {

nb_transport_f(*payload, 10N'S) // decode payload
// other functions /1 process payload
y wait(10, SC_NS);
nb_transport_b() { nb_transport_b(*payload, 10N'S) N
} int el_trigger, ¢2_trigger;
__J
s —\ l If (thread_idx == 20) { If (thread_idx == 40) {
// initialize payload if (c1_sensitive) {
el_trigger = time + 10 // decode payload
se_event el, €2; location_thread_20++; // process payload

Initiator_process() { . } €2_sensitive = time;
nb_transport_f() i = g
Alize pa ——>
//initlize payload BN S I (readids ==21) { }
notify (1, 10NS); if (e2_sensitive == 1) { }
// other functions ob_transpor_ { // acknowledgement received
_transport_f() { .
K)ﬂ) eansport_b // decode payload !
T ) /1 process payload
sens ; e
nb_transpore_b( { >“"“ ()
// acknowledgement received

}

Figure 5.9: TLM transformation of non-blocking interface

5.7.8  Direct Memory Interface

A direct memory interface makes the use of fact that if there are going to be
multiple transactions for same target, then we can get a pointer to memory from
the target to initiator which can do reads and writes directly at the initiator. In
this method, during the first transaction, the target sends a hint to initiator in the
payload which tells it that direct memory interface can be established. In initiator
we check for the clue and if it is found, we get the pointer to memory through a call
to get_direct_mem_pointer() and do the rest of the read writes directly through that
pointer.

Transforming this to GPU requires an additional hint variable in the shared
payload and some conditional statements to check if the DMI is allowed on the
memory. The initiator thread needs some additional checks and functions to retrieve
the pointer from target thread to current thread after which it can complete the
transaction in single delta cycle. It need not go through all the notify and wait

cycles caused through blocking interface.
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5.7.4 Debug Interface

Working of debug interface is similar to that of a blocking interface except that
it does not have any notion of timing associated with it. It is only used to get a
status of all the memory at any point of time. Transformation of this is very similar
to that of a blocking interface by removing the wait(time) statement which causes

the delay.
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6. TIME DECOUPLED GPU SIMULATION

Until now we have only discussed how to accelerate any SystemC model execution
using GPU based approach. We have talked about the translation of code from
SystemC to GPU where the mapping is done only on a single SMP. A GPU has
multiple SMPs and there are multiple reasons because of which we need to make use

of these SMPs.
6.1 Problems with Single SMP Framework

1. Different Code Structure: We have mentioned in the previous discussions that
the acceleration from GPU is mainly due to its SIMD nature which allows
multiple instances of a single design to simulate faster. This however does not
guarantee the best results when the design is largely dominated by elements
which have different code structure. If there are instances of different designs
integrated into a MPSOC, then the code will run more or less serially. This
is because there is only one fetch unit in a SMP of a GPU and it consists
of multiple stream processors which are responsible for execution of parallel
threads. If the code structure is completely different, then it is hard to find
the scope for parallel simulation. In order to avoid it, we want to split the
code with different code structure to different SMP which have different fetch
unit operating completely in parallel. This enables us to use the multiple fetch

units to allow some instruction level parallelism in the code.

2. Large Problem: Another drawback of GPU based approach is that if a problem
size is very large, we may not be able to map it to a single SMP. When there

are large number of functions mapped only to a single SMP, the device will
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split them into warps of 32 threads. There will be a lot of context switching
in the code as only limited number of functional units are present which can
execute in parallel. The other SMP on the other hand are sitting idle. So,
we would want to distribute the work load to multiple SMP when the size of

problem is large.

6.2 Trade-off in using Multiple SMP

Multiple SMPs provide us with some scope of instruction level parallelism in
GPU, but these are usually very limited. The number ranges from 2 from low end
GPU to 26 in high performance GPUs. In the hardware that we have used, we are
provided with 13 SMPs in a GPU. Dividing the code onto multiple threads may

sound good but there is a trade off in performance caused by multiple factors -

1. Shared Memory: When the processes are localized to one thread block which
is mapped onto a single SMP, shared memory is readily available for storing
an variables common to both the threads. When we divide the processes to
different thread blocks, there is no guarantee that they will be mapped to same
SMP. So, shared resources go to global memory which is much more costly in
terms of latency than shared memory. So, use of different thread blocks should
be such that common resources are handled in global memory with minimum

cost in latency.

2. Synchronization Overhead: In the execution of a delta cycle in SystemC, there
is a synchronization barrier among all the processes between each phase to
make sure that some processes may not run ahead of time and cause race
conditions. Now, when we split some processes to different thread blocks, we

need to make sure that both the thread blocks are synchronized at the end of
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Figure 6.1: Time decoupled simulation

delta cycle. Synchronization between thread blocks is not as trivial as between
the threads and is much more latency consuming. Main cause of delay is
because the control is transferred to CPU where both the thread synchronizes
and returns back the control to GPU. This context switch causes a lot of delay
in the execution. Also there would be data transfers in some cases from GPU
to CPU memory to determine stop condition which is costly. So, we need to

use this technique such that synchronization is as low as possible.

In [42], authors have analyzed some techniques for efficient inter block syn-
chronization. Nevertheless, it still becomes a bottleneck for achieving high
performance with multiprocessors. In [39], authors have replicated common
process to different multiprocessors to remove block synchronization. This is
not feasible in case of transaction level models and timed event communication
models. In this work, we have implemented time decoupled simulation to re-
duce number of synchronizations between multiprocessors of a GPU, effectively
improving the performance. This approach was recently studied for its benefits

on multi-core hosts[41][40].

69



IP core

E Network

Interface

m Router

Physical

Figure 6.2: Partitioning of a design for time decoupled simulation

6.3 Time Decoupled Parallel GPU Simulation

For large designs which cannot be mapped to a single multiprocessor, we parti-
tion the design and map them separately such that minimum communication time
between them is maximized. Each of the multiprocessor is run in parallel up-to a
decoupling time, reducing lots of costly memory transfer operations. Communication
between the two process groups shown in figure 6.1 happens rarely, which motivates
us to run them on multiprocessors in parallel without synchronization up-to a de-
coupling time. Without time decoupling, there would be lots of redundant synchro-
nizations at every step even though the processes mapped to different multiprocessor
communicate after decoupling time. The decoupling time between multiprocessors
cannot exceed the minimum communication time which would cause race conditions
in the code otherwise.

This kind of technique requires some hints from user end to provide some com-
munication delay across interfaces in order to create a partition. If the decoupling
time exceeds this limit, then there is a possible chance of losing some transactions.
So, this technique should be used carefully. Figure 6.2 shows a possible partitioning
of a NOC design to different SMPs of a GPU.
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7. EXPERIMENTAL RESULTS

7.1 Experimental Setup

We compare our results with OSCI SystemC reference kernel which runs as a
single threaded application on a Intel(R) Core(TM) i7-3632QM CPU @ 2.20GHz
machine. For GPU simulations, we use NVIDIA GK110GL [Tesla K20m], which can
run a maximum of 2496 threads at a time with each core clocked at 706 MHz and

has 13 different multiprocessors(SMPs).
7.2 MPSOC Simulator

Firstly, we will start off by stating some of the results for simulation latency
produced by SystemC MPSOC simulator which forms the basic motivation for mov-
ing towards multi-core architectures. We have designed the simulator with processor
cores capable for running MIPS ISA, with all the transactions which are either a miss
in cache or addressed to the external application(jpeg encoder) directed to their re-
spective slaves after going through the bus. Bus modeling is done in two different
ways, one is by designing an event based cycle accurate model and the other is by
using transaction level models. As seen from the results in table 7.1, after simulating
it with actual external application, transaction level modeling produces much faster

results than the cycle accurate SystemC model.

Benchmark SystemC | TLM | SpeedUp

Multiplier 1.24 0.09 13.8x
jpeg encoder(128X128) 86.40 11.40 7.6x
jpeg encoder(256X256) | 376.81 | 42.79 8.8x

Table 7.1: Variation of latency(in sec) with different types of bus modeling in a host with
4 cores
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Number of Simulator cores | Latency
3 114
6 24.8
9 41.6
12 56.3

Table 7.2: Variation of latency(in sec) with increasing number of cores for encoding
128X128 image

Benchmark OSCI | Static | Dynamic | Predictive

Multiplier 1.22 1.09 1.06 1.11
jpeg encoder(128X128) | 84.76 | 56.68 36.23 34.95
jpeg encoder(256X256) | 369.12 | 191.30 | 128.49 119.15

Table 7.3: Variation of latency(in sec) across different types of scheduling in a host with 4
cores

For the jpeg encoder benchmark, we increase the size of design and share the
work to additional cores to increase the parallelism in hardware. As shown in table
7.2, with increasing number of cores in design, the latency increasing almost linearly.
More the number of cores, greater are the number of processes with same code
structure. This is the key motivation for using GPU instead of multi-core host.

In order to accelerate the simulation, we try some of the multi-core techniques on
the same benchmarks. Multiplier has a simple hardware model used to test initial
results. For more complicated application, we consider jpeg encoder compressing
128X128 and 256X256 images by splitting some part of work to hardware and other
to software. Using a host with maximum of 4 cores, we can infer from table 7.3
that dynamic and predictive scheduling provide good results. There is although not
a major difference because the savings in time provided by predictive scheduling is
comparatively low. Static scheduling does not work at all in all these cases as it has

more chances to produce skewed scheduling.

72



7.3 Synthetic Benchmarks for GPU

In this section, we evaluate the performance of our techniques by simulating
benchmarks which are most commonly used in industry and closely mimic the prob-
lems encountered in large scale parallel SystemC simulation. We start with a se-
quential design(Shift Register) consisting of a series of flip-flops connected to each
other. Only consisting of timed synchronized events, this example is used for ana-
lyzing performance improvements from optimized memory allocation. We create a
handshake benchmark as shown in figure 5.3 which consists of timed notifications

and waits to implement a handshaking protocol between two processes.
7.8.1 Memory Optimization

Firstly, we compare the efficiency of our approach which maps sensitive variables
to register memory instead of shared memory in certain cases as described in section
5.5. Since we are comparing results against previous approach, we consider 64 in-
stances of both flip-flops in Shift Register and Handshake benchmark. As seen from
the results in Table 7.4, for a sequential circuit, we are getting a speed-up of 5x more
than the existing approach [24], and 10x speed up relative to the reference OSCI
model. Our model is better in this case than the previous work[24| because we pre-
vent the conflict in shared memory by allocating common events to register memory.
Extending our approach to Handshake benchmark which implements timed events,
we find 2.7x improvement in results when the sensitive variables were mapped to
register memory rather than shared memory. Both the benchmarks show that dis-
tributing event variables to shared and register memory is better than assigning them

always to shared memory.
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Benchmark | OSCI | GPU_Sh | GPU_Reg | SpeedUp SpeedUp
with with
GPU_Sh GPU_Reg
Shift Register | 118.1 51.1 10.3 2.3x 11.5x
Handshake 129.0 63.8 24.1 2.0x 5.4x

Table 7.4: GPU_Sh is the scgp[24] implementation of benchmarks which sensitive variables
are mapped to shared memory and GPU_Reg is our approach where sensitive variables are
mapped to register memory. Simulation time(in ms) comparison across benchmarks

7.4 Typical SystemC Benchmarks

In order to evaluate our study on implementations which are used in industry, we
use some of the typical SystemC models[31] which are used to evaluate performance

of system level modeling. It covers a variety of applications from different domains

S2CBench : 12+1 designs

| Design _| Type | _Domain_| Optimizations Tested

gsort dd Auto/Ind Loops, arrays, functions pointers

sobel dd Auto/Ind Loops, functions, |0 array expansion, multi-dimensional arrays expansion, fixed
arrays (ROM, logic)

aes cipher dd Security 10 array expansion, multi-dimensional arrays expansion , large fixed arrays
kasumi dd Security Multi-processes, delay report accuracy
md5c dd Security #define macros, delay report accuracy
snow3G dd Security Templates, delay report accuracy, function synthesis
adpcm cd Telecom Structure synthesis
FFT dd Telecom Floating point, trigonometric functions
FIR dd Consumer 10 array expansion, arrays, loops, functions, sum of products
Decimation dd Consumer Resource sharing across loops, fixed point data types
Interp dd Consumer Polynomial decomposition, fixed point data types, sum or products
IDCT dd Consumer #include statement to initialize arrays, loops, functions,

Disparity cd/dd  Consumer Hierarchical design, multi-dimensional array expansion, synthesis running time

E]

Figure 7.1: List of benchmarks
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such as Auto/Ind, Security, Telecom, Consumer etc., described in figure 7.1. In each
of these benchmarks, we have an initiator, which collects the data and communi-
cates with the the target block through transaction level modeling. Target block
processes the data based on its implementation, for example - fft, uart, interpola-
tion etc., and sends the result to initiator through transaction level modeling again.
These benchmarks are slightly modified to handle the communication between mod-
ules by TLM2.0 library. With the algorithm described in this work, we map these
benchmarks to GPU and run for 5ms, where the delay between communication is
taken 1ns. As shown in figure 7.2a, we have a master which extracts a set of data
from input file, processes it to form a packet and initiates a transport call through
TLM to slave. When the packet is received, slave decodes the contents of packet and
processes the input data depending upon the application such as fft, idct etc. The
output result is again transported through a TLM call to master which writes the

result to a file.
7.4.1 Packet Size Variation

In order to achieve the scope for parallel threading, we firstly increase the size
of data being extracted from input file. Figure 7.2b shows the corresponding block
diagram of the resultant design. The packet now contains multiple sets of data which
are to be transported through the same transport call to slave. At the other end,
when the packet is decoded, multiple threads are spawned to process each set of
data in parallel. Output results from all processes are gathered into a packet and
transported back to master. For this experiment, total input data is kept same across
different packet size.

Figure 7.3 shows a comparison of speed-up and latency for 5 different benchmarks

by varying the packet size and hence increasing the number of parallel processes.
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Figure 7.2: Schematic of benchmark with different variations

As we can observe from the graph, the latency of GPU decreases rapidly as we
include more datasets in a packet as a result speed-up also increases. The change in
latency for OSCI kernel is minor since effectively single core has to do same amount
of work. One important point to note here is that the benchmarks having higher
runtime also have the higher speed-ups increasing linearly. On the other hand, low
runtime benchmarks saturate after a point because when the runtime is very low,

synchronization overhead starts getting comparable.
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Table 7.5: Simulation time(in s) of benchmarks with increasing packet size

Number of Instances fft aes adpcm idct interpolation
OSCI | GPU || OSCI | GPU | OSCI | GPU || OSCI | GPU | OSCI | GPU
1 15.74 | 52.43 || 184.12 | 240.76 || 13.23 | 58.23 || 12.11 | 30.58 | 320.84 | 563.72
15.45 | 12.43 || 178.94 | 76.45 | 13.08 | 24.54 || 11.98 | 7.54 || 313.12 | 172.32
16 15.11 | 3.43 || 172.49 | 22.89 || 13.02 | 6.47 || 11.90 | 2.11 || 308.74 | 45.65
64 14.83 | 1.30 | 168.66 | 8.43 | 12.90 | 1.78 || 11.86 | 1.08 | 298.90 | 13.54
256 14.22 | 0.85 | 154.23 | 3.02 | 12.86 | 0.97 || 11.83 | 0.78 | 292.50 | 3.96
1024 13.76 | 0.72 | 142.75 | 1.56 12.82 | 0.77 | 11.81 | 0.67 | 284.32 | 1.21
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Figure 7.8: GPU latency and speed-up variation with size of packet

7.4.2  Number of Instances Variation

Another form of parallelism can be achieved by simply duplicating the instances
in design to perform multiple operation at the same time as shown in figure 7.2c. As
we increase the number of instances, the total data size also keeps on increasing. In
order to limit the simulation latency to numbers which are not too slow, we reduce
the initial runtime to 50000ns.

We can infer from the graph 7.4 that with increasing number of instances of the
design, the speed-up increases sharply. Latency of design running on GPU is almost
constant compared to that on single core. There is a sudden increase in latency when

we simulate 256 instances which is because at that point we have to use multiple

7



Table 7.6: Simulation time(in s) of benchmarks with increasing number of instances

Number of Tnstances fft aes adpcm idct interpolation
OSCI | GPU || OSCI | GPU || OSCI | GPU || OSCI | GPU || OSCI | GPU
1 0.07 | 0.06 0.53 | 1.22 || 0.05 | 0.03 | 0.04 | 0.02 0.60 | 0.35
0.19 | 0.06 2.28 1.23 0.13 | 0.03 0.11 | 0.02 2.35 0.38
16 0.69 | 0.07 8.63 1.24 0.47 | 0.04 0.43 | 0.03 11.95 | 0.41
64 3.16 | 0.07 || 31.54 | 1.27 1.64 | 0.05 1.50 | 0.04 37.28 | 0.45
256 12.51 | 0.23 || 130.42 | 1.39 6.51 | 0.18 5.78 | 0.12 || 140.24 | 0.67
1024 4712 | 0.26 || 511.80 | 1.41 || 21.54 | 0.24 | 22.52 | 0.14 || 529.02 | 0.73
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Figure 7.4: GPU latency and speed-up variation
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SMP of GPU because one SMP cannot accommodate all the processes. This will

cause additional latency due to synchronization across blocks and also global memory

transfers. This overhead is comparable when the runtime is low for a benchmark and

so it affects the speed-up slightly. For benchmarks with high latency, the speed-up

is linearly growing and this effect is negligible.

7.4.3  Synchronous vs Asynchronous

Synchronous designs are the ones where processes are trigger at regular interval

of time which is defined by clock period. In the above mentioned benchmarks, we

can introduce a constant delay after each cycle to make it synchronous. In order

to make it asynchronous, we have randomized the delay such that processes would
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Table 7.7: Simulation time(in s) of benchmarks with increasing number of instances for
asynchronous design

Number of Tnstances fft aes adpcm idct interpolation
OSCI | GPU || OSCI | GPU || OSCI | GPU || OSCI | GPU || OSCI | GPU

1 0.08 | 0.06 0.53 1.22 0.05 | 0.04 || 0.05 | 0.04 0.71 0.67

0.24 | 0.15 2.35 2.45 0.14 | 0.09 0.12 | 0.06 2.23 1.04

16 0.81 | 0.36 || 10.22 | 6.87 048 | 0.25 || 0.48 | 0.15 || 12,57 | 2.79

64 3.73 | 1.09 || 34.66 | 17.12 1.69 | 0.87 || 1.45 | 0.39 | 39.11 | 5.70

256 14.23 | 4.12 || 145.77 | 45.68 || 838 | 3.23 || 5.98 | 1.23 | 156.43 | 16.33

1024 47.69 | 6.23 | 643.01 | 103.28 || 20.89 | 7.45 || 24.37 | 3.07 || 594.12 | 28.31
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Figure 7.5: GPU latency and speed-up variation with increasing number of instances for
asynchronous design

be triggered at irregular intervals of time. As seen from the results in figure 7.5,
synchronous benchmarks simulate faster which is expected because it is able to make
the most out of data level parallelism. The acceleration provided by GPU in this
work is localized to processes simulating at a given time instant. So, if different
instances of same design are being simulated at different times, then their execution

in GPU will be serialized as well.
7.4.4  Scalability

Figure 7.6 shows the scalability of our solution by increasing the number of in-

stances to 16384. A design of this size cannot be effectively simulated on OSCI
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Figure 7.6: Runtime variation with number of instances across benchmarks

reference kernel because of linear scaling whereas GPU can perform the same task
with only 4-5x increase in simulation time when comparing 16384 instances to single
instance. This is achieved by mapping the instances to different multiprocessors as
there is no communication between instances. With addition of some form of cross
communication, the speed-ups are relatively lower which will be discussed in later

sections.
7.5 Multi-Initiator Target

This example has a high resemblance with any typical MPSOC model where
we have multiple processors connected to multiple memory interfaces through a bus
which serves the purpose of arbitrating and transferring the packet to its correct
destination. As shown in figure 7.8, the connectivity can be understood from the
diagram. All the previous benchmarks that we have used until now, had minimum
cross communication among duplicate instances. In this example, we will have some
form of cross communication as the number of initiators and targets can be different.

Number of Initiators are varied in this experiment to find out how much does the
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Table 7.8: Simulation time(in ms) of multi-initiator socket with increasing number of ini-
tiators across different platforms

Number of Instances || OSCI || multicore(2) | multicore(4) | GPU

1 2.5 7.8 12.1 6.2

4 8.2 10.3 13.6 6.2

16 28.1 21.1 19.1 6.6

64 67.2 49.4 41.7 7.0

256 175.6 122.5 79.4 8.8

1024 402.4 269.3 151.3 9.4
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Figure 7.7: GPU latency and speed-up variation with increasing number of initiators for
multi-initiator target

latency of GPU varies with respect to that of single core OSCI implementation and
multi-core(2 and 4) implementations with dynamic scheduling.

In this experiment, we are comparing the simulation latency of single core with
multi-core implementation as well as GPU. The scheduling algorithm used in here is
dynamic since it is easier to implement and has a balanced distribution of workload.
Analysing the data, we can infer from graph 7.7 that GPU based simulation model
gives much better results when the number of instances are high because it is able
to make the most out of GPU’s data level parallelism whereas multi-core kernels are
better than single core but not as good as GPU. Also when we have a single initiator,

we would expect the single core kernel to give better results as there is no scope for
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Figure 7.8: Multi-initiator target simulation model for benchmark

Table 7.9: Simulation time(in ms) of NOC with increasing size across different platforms

Number of Instances || OSCI | multicore(2) | multicore(4) | GPU
2X2 40.3 140.3 164.2 89.4

4X4 171.2 342.6 312.1 160.6

8X8 823.5 1109.1 845.1 311.3

16X16 3695.3 3987.8 2335.6 802.4

32X32 17342.7 13195.6 7326.2 1345.1

parallelism in the design, and which is confirmed from the results.
7.6 Network on Chip

As the number of cores on a SOC increases, the congestion in the bus grows
quickly because all the cores have to go to memory through it. As a result, network
on chip architecture is growing popularity these days in order to create a scalable
network which can communicate through a chain of routers interconnected to each
other. Another advantage that this kind of design offers for our evaluation is that
it has a lot of branches in the code and also cross communication across multiple
instances. Figure 7.9 shows the connectivity of a single router in a network of chip

architecture.

Figure 7.10 shows the latency and speed-up variation of NOC implementation
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Figure 7.10: GPU latency and speed-up variation with increasing size of NOC

across different simulation platforms such as single core, multi-core(2 and 4) and
GPU. The trend in the results is very much similar to that of figure 7.7 but the
speed-up provided by GPU for this case is not as high as previous cases. The main

reason being that with the complicated nature of design, there are lots of conditional
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statements in the code which causes some amount of branch divergence in the code.
7.7 Time Decoupled Simulation

Figure 7.12 shows the variation of simulation time with increasing decoupling
time for the Handshake benchmark where processes are mapped to different multi-
processors. As shown in figure 7.11 all the processes in a block communicate every
1ns and inter-block communication happens every 20ns. Both the blocks are mapped
to different SMP and synchronization is restricted to happen every 20ns instead of
every Ins. We can observe that simulation time decreases exponentially upon in-
creasing the decoupling time and stabilizes to a particular value eventually. In order
to achieve maximum benefit of time decoupling, we should partition our design such
that we lie as close to the stable region as possible. As we increases decoupling
time, it cannot go beyond the communication time between two processes mapped
to different multiprocessors, otherwise it will cause race conditions in design. So,
minimum time for communication between events should be as high as possible.

In order to evaluate this optimization more clearly, we would be applying time
decoupled simulation approach to NOC benchmark by restricting the communication
across columns to 20ns. Communication across rows can still happen every 1ns. In
this way, as shown in figure 7.13, we divide the simulation into multiple zones with
each zone occupying one of the row. After simulating it for two configurations and
varying the simulation latency with decoupling time, we can observe that there is a
sharp decrease in latency in both the cases with increasing decoupling time and it
tends to saturate close to 20ns when synchronization overhead and global memory
access overhead are minimum. It is also worth noting that latency for the bigger

design decreases more rapidly because it uses more SMPs and more global memory.
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8. CONCLUSIONS AND FUTURE WORK

The future of computing devices is growing towards multicore architectures and
very soon it is likely to come into mainstream products. Even current generation
devices have dual to octa-core architectures. The demand is likely to grow higher
in future with semiconductor companies trying to deliver products with a shorter
time to market. The first step of IC design involving system level simulation is
critical because it defines the architecture which rest of the teams are going to work
on. Single core platform for simulation are no longer acceptable because of the
increasing design size. This work provides a platform for simulation of SystemC
models on GPU capable of handling complex designs involving timed event based
communication which is not previously done before. It provides an infrastructure
which can handle any general non-synthesizable SystemC design on a GPU device.

This work can be further improved in future by adding some techniques to re-
solve branch divergence in GPU which can be a serious problem if the number of
conditional statements are more. This work involves a process to transformation of
original SystemC code into CUDA compatible code which can be a lengthy process.
Ideally, we would like to have an environment where we could just write the code for
our design and it can simulate without the tedious process of transformation like on
a OSCI single core kernel. Although GPU can provide a scalable solution, it may not
be good in all the cases(for example when there is branch divergence). So, it should
be able to identify beforehand if the design is best suited for CPU or GPU and run
it accordingly. Also, not each and every construct has been shown to translate in
this work. Future work could involve a simulator which defines translation of all the

SystemC constructs.
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