
GPU BASED ACCELERATION OF SYSTEMC AND TRANSACTION LEVEL

MODELS FOR MPSOC SIMULATION

A Thesis

by

ROHIT GANGRADE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu
Committee Members, Paul Gratz

Rabi Mahapatra
Head of Department, Miroslav M. Begovic

May 2016

Major Subject: Computer Engineering

Copyright 2016 Rohit Gangrade

ABSTRACT

With increasing number of cores on a chip, the complexity of modeling hardware

using virtual prototype is increasing rapidly. Typical SOCs today have multipro-

cessors connected through a bus or NOC architecture which can be modeled using

SystemC framework. SystemC is a popular language used for early design exploration

and performance analysis of complex embedded systems. TLM2.0, an extension of

SystemC, is increasingly used in MPSOC designs for simulating loosely and approxi-

mately timed transaction level models. The OSCI reference kernel which implements

SystemC library runs on a single thread, slowing up the simulation speed to a large

extent. Previous works have used the computational power of multi-core systems

and GPUs which can run multiple threads simultaneously, speeding up the simu-

lation. Multi-core simulations are not as effective in cases where thread runtime

is low, because synchronization overhead becomes comparable to thread runtime.

Modern GPUs can run thousands of threads at a time and have shown good results

for synthesizable designs in recent efforts. However, development in these works are

limited to synthesizable subsets of SystemC models, not supporting timed events

for process communication. In this research work, a methodology is proposed for

accelerating timed event based SystemC TLM2.0 model to GPU based kernel, which

maps SystemC processes to CUDA threads in GPU, providing high data level par-

allelism. This work aims to provide a scalable solution for simulating large MPSOC

designs, facilitating early design exploration and performance analysis. Experiments

have shown that the proposed technique provides a speed-up of the order of 100x for

typical MPSOC designs.

ii

DEDICATION

To my parents

iii

ACKNOWLEDGEMENTS

I would take this opportunity to thank my thesis advisor Dr. Jiang Hu for always

motivating me and providing support whenever I faced difficulty. I would also like

to thank Dr. Rabi Mahapatra and Dr. Paul Gratz for serving on my committee and

providing useful feedback on my work.

I would like to thank all my friends who have made last two years of my life

memorable. I am also grateful to the faculty at Texas A&M University who helped

my research through different courses which I took over past two years. Last but

not the least, I would like to thank my family for providing constant support and

motivation throughout my work.

iv

NOMENCLATURE

ESL Electronic System Level

MPSOC Multi Processor System on Chip

TLM Transaction Level Modelling

GPU Graphics Processing Unit

ISA Instruction Set Architecture

AMBA Advanced Microcontroller Bus Architecture

OSCI Open SystemC Initiative

CUDA Compute Unified Device Architecture

SIMD Single Instruction Multiple Data

DMI Direct Memory Interface

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xii

1. INTRODUCTION . 1

1.1 Brief History . 1
1.2 Overview . 5
1.3 Motivation . 8

2. PREVIOUS WORK . 11

2.1 Multiprocessor Work . 12
2.2 GPU Work . 13

3. BACKGROUND . 14

3.1 SystemC . 14
3.1.1 Hardware Constructs . 15

3.2 TLM2.0 . 21
3.2.1 Components . 21
3.2.2 Interfaces . 22
3.2.3 Models . 24

3.3 GPU . 26
3.3.1 Overview . 26
3.3.2 Architecture . 27
3.3.3 Programming Model . 27
3.3.4 Memory Hierarchy . 29

vi

3.4 Project Description . 32
3.4.1 Approach/Methods . 34

4. SYSTEMC/TLM2.0 BASED SIMULATOR 38

4.1 Microprocessor Design . 39
4.1.1 Register File . 40
4.1.2 ALU Design . 41
4.1.3 Single Cycle Design . 41
4.1.4 Pipelined Design . 41
4.1.5 Forwarding Unit . 43
4.1.6 Hazard Detection . 43

4.2 Bus Modeling . 43
4.2.1 Usage of Transaction Level Modeling 44

4.3 Memory . 44
4.3.1 Data Memory . 44
4.3.2 Instruction Memory . 45
4.3.3 Cache Memory . 45

4.4 Running the Simulator . 45
4.5 Multi-core Execution Kernel . 46

5. GPU BASED APPROACH FOR SYSTEM LEVEL SIMULATION 49

5.1 Overview . 49
5.2 GPU Execution Flow . 49
5.3 SystemC to CUDA Translation . 53

5.3.1 Types of Events . 53
5.3.2 Types of Variables . 54
5.3.3 Algorithm . 55

5.4 Different Code Structure Optimization 59
5.5 Shared Memory Optimization . 59
5.6 GPU Execution of Non-Synthesizable Model 60
5.7 Support for Transaction Level Modeling 62

5.7.1 Blocking Interface . 63
5.7.2 Non Blocking Interface . 64
5.7.3 Direct Memory Interface . 65
5.7.4 Debug Interface . 66

6. TIME DECOUPLED GPU SIMULATION 67

6.1 Problems with Single SMP Framework 67
6.2 Trade-off in using Multiple SMP . 68
6.3 Time Decoupled Parallel GPU Simulation 70

vii

7. EXPERIMENTAL RESULTS . 71

7.1 Experimental Setup . 71
7.2 MPSOC Simulator . 71
7.3 Synthetic Benchmarks for GPU . 73

7.3.1 Memory Optimization . 73
7.4 Typical SystemC Benchmarks . 74

7.4.1 Packet Size Variation . 75
7.4.2 Number of Instances Variation 77
7.4.3 Synchronous vs Asynchronous 78
7.4.4 Scalability . 79

7.5 Multi-Initiator Target . 80
7.6 Network on Chip . 82
7.7 Time Decoupled Simulation . 84

8. CONCLUSIONS AND FUTURE WORK 87

REFERENCES . 88

viii

LIST OF FIGURES

FIGURE Page

1.1 System level design in the flow for IC Design 3

1.2 ESL design cycle . 4

1.3 Order of execution in single core and multicore hosts 8

1.4 Typical NOC based MPSOC schematic 9

1.5 Simulation of a design using single core, multicore and GPU host . . 10

3.1 Architecture of SystemC language . 15

3.2 SystemC execution kernel . 19

3.3 SystemC execution flow . 20

3.4 SystemC execution example . 20

3.5 Initiator, interconnect and target communicating through TLM sockets 21

3.6 TLM loosely timed model . 25

3.7 TLM approximately timed model . 25

3.8 Architecture of GPU . 28

3.9 Programming model of CUDA . 30

3.10 Memory hierarchy in GPU . 30

4.1 Schematic of simulation connected to a jpeg encoder 40

4.2 Schematic of MIPS based microprocessor designed in SystemC 42

4.3 Working of simulator with an external application 47

4.4 Different types of scheduling in multiprocessor host 48

ix

5.1 SystemC to CUDA conversion . 50

5.2 Execution of SystemC kernel in GPU 51

5.3 Timed event based communication in SystemC 54

5.4 Event mapping to GPU . 55

5.5 Code mapping to multiple warps in GPU 59

5.6 Shared memory conflict in sensitive variables across multiple warps . 60

5.7 Execution mechanism of timed event communication in GPU using
shared and register memory . 61

5.8 TLM transformation of blocking interface 64

5.9 TLM transformation of non-blocking interface 65

6.1 Time decoupled simulation . 69

6.2 Partitioning of a design for time decoupled simulation 70

7.1 List of benchmarks . 74

7.2 Schematic of benchmark with different variations 76

7.3 GPU latency and speed-up variation with size of packet 77

7.4 GPU latency and speed-up variation with increasing number of instances 78

7.5 GPU latency and speed-up variation with increasing number of in-
stances for asynchronous design . 79

7.6 Runtime variation with number of instances across benchmarks . . . 80

7.7 GPU latency and speed-up variation with increasing number of initia-
tors for multi-initiator target . 81

7.8 Multi-initiator target simulation model for benchmark 82

7.9 Schematic of NOC Router . 83

7.10 GPU latency and speed-up variation with increasing size of NOC . . 83

7.11 Handshake benchmark for time decoupled simulation 85

x

7.12 Time decoupled parallel GPU simulation for handshake benchmark . 85

7.13 Time decoupling partition for NOC 86

7.14 Time decoupled parallel GPU simulation for NOC 86

xi

LIST OF TABLES

TABLE Page

4.1 Simulation speed comparison of this simulator with other known sim-
ulators . 39

7.1 Variation of latency(in sec) with different types of bus modeling in a
host with 4 cores . 71

7.2 Variation of latency(in sec) with increasing number of cores for encod-
ing 128X128 image . 72

7.3 Variation of latency(in sec) across different types of scheduling in a
host with 4 cores . 72

7.4 GPU Sh is the scgp[24] implementation of benchmarks which sensitive
variables are mapped to shared memory and GPU Reg is our approach
where sensitive variables are mapped to register memory. Simulation
time(in ms) comparison across benchmarks 74

7.5 Simulation time(in s) of benchmarks with increasing packet size . . . 77

7.6 Simulation time(in s) of benchmarks with increasing number of instances 78

7.7 Simulation time(in s) of benchmarks with increasing number of in-
stances for asynchronous design . 79

7.8 Simulation time(in ms) of multi-initiator socket with increasing num-
ber of initiators across different platforms 81

7.9 Simulation time(in ms) of NOC with increasing size across different
platforms . 82

xii

1. INTRODUCTION

1.1 Brief History

The growth of the semiconductor industry in a past few decades has been tremen-

dous. Any system can be categorized into two parts namely hardware and software,

which collaborate to perform a set of tasks desired by the end user. In the early

years, majority of the research effort was spent on trying to develop a flow to deliver

an IC in a given period of time. Performance and power are two aspects which are

critical to any electronic system performing a set of functions. Lots of effort has

thereby spent on optimizing the design to achieve good performance with low power.

Transistor is the basic element of any Integrated Circuit(IC), which combines

in large numbers to form a hardware with a particular specification. Some of the

hardware components which are most commonly used in ICs are microprocessors,

memories, PLL, PMIC, and amplifiers. Software is a layer which is built upon hard-

ware and is comprised of a series of tasks which can be performed by a microprocessor.

Software is like a driver of an integrated circuit guiding it to perform tasks in an

order desired by the user. In order to utilize the best of any system, it is essential

that both hardware and software components are utilized to their maximum.

In the industry, hardware and software are typically handled by different teams

working in parallel with timely interaction in order to ensure that the specifications

are met. First phase of the project is of the architecture team to lay down the

specifications of the design and decide what functionalities are to be supported. The

hardware team then uses a Register Transfer Level(RTL) modeling language such

as Verilog or VHDL to realise the behaviour of hardware. It is simulated multiple

times with all the possible test cases to ensure that the specifications are met with no

1

bugs in the design. Verified design is synthesized into a gate level netlist with actual

gates and cells. Final step is to place and route the design efficiently to achieve the

functionality with minimum area.

The software team in parallel starts the development of embedded software which

can support basic functionalities such as booting, memory operations, etc. Since,

no actual hardware is present initially, verification of software involves running the

embedded software on hardware emulators which is generally very slow. System level

models can also be used to create a virtual prototype which can emulate hardware

in a software environment.

The very first step involving key architectural decisions in the design flow as shown

in figure 1.1 is very important part of the whole process. It is in this phase that the

decision has to be taken to make sure that the system specifications can be met in a

given time. Another important aspect is the optimization of performance and power

in this stage. It is only after this stage, specifications are finalized and hardware and

software teams can begin their work. It is therefore crucial to make sure that this

step is done as soon as possible in order to meet the time to market requirements of

a chip. With the technology growing fast, there is tremendous pressure on teams to

deliver the chip to customers on time. Any delay in development cycle of chip usually

results in a huge loss to the company because the performance grows very quickly

with time as predicted by Moore’s Law in 1965. It is also necessary to make sure

that the system functions correctly under specified specifications for performance

and power. This is where system level design, popularly known as Electronic System

Level(ESL), comes into picture.

ESL design provides the highest level of abstraction present in the IC design cycle.

It provides a platform for hardware software co-design at different abstraction levels.

In order to meet the time to market for a chip, it is essential that we increase the level

2

System

Specifications

HW/SW Partitioning

System level Design

SystemC/C++

Cosimulation

Specifications

met ?

NO

YES

Figure 1.1: System level design in the flow for IC Design

of abstraction to handle complex designs. ESL design deals with functional models of

different IPs removing the complex internal details at transistor, gate and RTL level.

It is also important to be able to reuse the models of same IP in different ICs. Some

of the common components such as microprocessor, memory and system bus are used

repeatedly in many SOC designs. Creating common models for these components

to be reused would significantly increase the productivity. Most importantly, it is

essential that we perform a design exploration at an early stage in IC design cycle to

meet performance and power requirements. Also, the power and performance targets

should be met when all the components of SOC are simulated together. The platform

should be such that it is able to model hardware and software simultaneously and

simulate the concurrency present in a real hardware. Virtual Prototyping is one

aspect of ESL design which allows users to model hardware in a system level design

3

Figure 1.2: ESL design cycle

language, and run it with real applications to evaluate performance and power of

final application.

After the functional specifications of a system are finalized, the next step in the

process is to design the architecture. The algorithm which is to be implemented is

partitioned into hardware and software. With the help of ESL tools, we can perform

an analysis of system with both hardware and software components running simulta-

neously and capture the power and performance of the system. If the requirements

are not met, then the process is iterated with different mapping of hardware and

software components. Another solution would be to tweak the parameters of differ-

ent individual components, for example, using a faster memory model or increasing

the speed of microprocessor. This step has to be carefully performed by complete

analysis as it will define the architecture of the system which cannot be changed

afterwards. Also every improvement comes at a cost of something, for example in-

creasing processor speed might also increase the power of design. The parameters

of components and hardware software partitioning should be such that it meets the

targets which are set by the customer.

4

There are many tools which are developed by different vendors for ESL design

and are available commercially. Although each of these have their own benefits, the

scope of this research work is limited to available open source languages for system

level design. Specifically, this work aims at developing a faster simulation model for

SystemC and TLM2.0 models with the help of GPU. SystemC is a library of C++

classes which can be extended to simulate hardware. One of the main characteristics

of SystemC is that it is able to realise the concurrency present in the hardware

simulation. Unlike software, hardware components are run in parallel in reality but

we simulate it on a software platform which is usually single core and runs only one

process at a time. In order to implement a hardware functionality, SystemC therefore

imposes a rule on designer that the function implemented should not depend upon

the order in which processes execute.

1.2 Overview

Virtual Prototyping has become an essential flow in the design and development

of complex embedded applications today. Typically done using SystemC, it models

hardware by discrete event simulation in software. Among the numerous advantages

that it offers, it allows designers to validate the design, analyze the performance and

power of the system under various configurations, facilitates development of software

and also plays a key role in partitioning of a system on hardware and software.

Architectural decisions are taken at an early phase in design cycle and it is often too

costly to make changes at a later stage. Virtual Prototyping using SystemC enables

early decision making with a reasonable accuracy and can reduce the time to market

for a chip.

This research work tries to analyze the problems associated with the system

level design for the ICs being manufactured today. SystemC based approach for

5

virtual prototyping is a decade old and used extensively by most of the chip designers

to analyze power and performance at an early stage. With the new applications

constantly demanding high performance and low power, ICs are getting bigger and

more complex. As a result, ESL design requires modeling all components of a complex

system and simulating them at an early stage. While, the SystemC based approach

was a viable solution a decade ago, it needs to be revised to match up with the size and

complexity of SOC today. With the saturation of technology scaling and transistor

sizing, it is not possible to increase the clock frequency beyond a certain limit. People

are therefore moving towards multi-core applications. Embedded systems today have

have different processors dedicated for separate tasks to share the workload and

still match up the performance. Smartphones, laptops and tablets all have a SOC

comprising of multiple cores and this trend is likely to increase in future with people

proposing a network of hundreds of cores interconnected through multiple routers.

Simulating such a huge system and predicting the performance and power is likely

to be a big challenge in future. It is therefore necessary that we look for alternate

means for ESL simulation. This work explores some of drawbacks associated with the

current platform of system level MPSOC design in SystemC and provides a scalable

solution which is more viable to be used in future.

With the growing complexity of today’s SOC design, simulating a complete sys-

tem on software is becoming a challenging task. In order to increase the productivity,

people use available reference models of common components like processors, mem-

ory, cache and bus. Any new hardware specific for a task can be modeled and

plugged into the simulator comprising of all the basic components. A good simulator

should keep track of performance counters such as hits, misses, latency and other

metrics which can be useful to a designer. This also incurs a simulation latency

overhead, slowing it down and so only important metrics can be turned on to match

6

up simulator’s performance.

In order to keep developing SOC with higher productivity at lower costs, it is

important to increase the abstraction level even above the system level design with

SystemC. Every embedded system design will have multiple modules communicating

through an interface. Transaction level modeling increases the abstraction level by

providing a better predefined way of communication. It reduces time to model a

system and also reduces the probability of error within these interfaces. TLM2.0

is an extension to SystemC which provides a seamless method of communicating

between modules. SystemC modeling consists of a number of processes which define

the behaviour of the system. TLM2.0 provides an interface to communicate between

these modules in form of transactions.

Since most of the system level design work circled around SystemC and TLM,

it is therefore important that we keep developing its execution model as we evolve.

About a decade old, there has not been a significant change in the execution model

of SystemC. The reference SystemC kernel[2] runs as a single threaded application

serializing the execution of SystemC model. In order to realise the hardware and

its concurrency, each simulation time is considered like a delta cycle in which all

the functional components execute. The execution of SystemC is like discrete event

simulation model. At any instant of time, all the active processes are evaluated and

ran in a random order. If they give rise to new events, then all the processes active

to those events are run until they are exhausted. This marks the end of simulation

time. It is divided into phases namely evaluate, update and notify. Each phase

has a lot of potential for parallel execution, which is not utilized by the reference

SystemC kernel. The obvious solution would be to use the host with multiple cores

and execute each phase in a parallel fashion[32][33][41][40][38]. Special care has to

be taken while distributing the tasks to multiple processors as it should not affect

7

A: Single Core

B: Single Core

C: Multicore

Figure 1.3: Order of execution in single core and multicore hosts

the order in which the events are executed. Since the result of simulation does not

depend upon the order in which the processes are executed, it is logical to try to run

them in parallel. For example, as shown in figure 1.3, all execution order of processes

give the same results in single core as well as multicore hosts. People have tried this

previously and shown good results, but it is still not integrated in the open source

SystemC source code because of the complications it can produce.

In this research work, we have identified the challenges associated with the refer-

ence execution model of SystemC and tried to propose other solutions in multi-core

domain to increase the scalability for future generations. In particular, we have fo-

cused upon the GPU based approach to simulate any SystemC design with timed

event communication models and transaction level models by taking the advantage

of data level parallelism.

1.3 Motivation

Even though use of multi-core hosts for Parallel Discrete Event Simulation can

improve the simulation speed, they are not effective when process run time in a single

8

Figure 1.4: Typical NOC based MPSOC schematic

delta cycle is low, because the synchronization overhead becomes comparable to

process runtime. Moreover, there are only a limited number of cores available to the

end user. So, if the design is large, the number of available cores can be a bottleneck

for parallel simulation. If we analyze some of the typically used MPSOC designs in

industry, it can be noted that there is a repetition of same modules multiple times in

the form of multiple instances(for example multiple instances of homogeneous cores or

routers in NOC topology as shown in figure 1.4). In such case, a multi-core host will

not be able to take advantage of this property and will have the same synchronization

overhead as that of a model where design of each module is different, which is high.

In order to tackle this problem, a GPU based approach is explored for system level

simulation of MPSOC designs because they execute as single instruction multiple

data(SIMD). This solution is ideal because we need to perform multiple simulations

of same design but with different parameters.

Exploring the computational power of GPU[39][36], it reduces the synchroniza-

tion overhead to some extent and has a large number of cores which can be used for

simulation of multiple processes in parallel. GPU provides a high degree of data level

parallelism which cannot be realized efficiently on multi-core hosts. This approach

9

Figure 1.5: Simulation of a design using single core, multicore and GPU host

would be ideal for those case where we have less scope for thread parallelism and

more scope for data parallelism, such as a simulation of a network on chip architec-

ture which contains hundreds of routers and cores each having same code to run but

on a different data set. In this research work, a novel technique is proposed to paral-

lelize non-synthesizable and transaction level models completely on GPUs achieving

maximum parallelism in all the phases of simulation with low synchronization over-

head. This technique explores the efficient usage of the available resources in a GPU

machine for any SystemC model such as distribution of processes to different thread

blocks(multiprocessors), efficient usage of register, shared and global memory and

reduction techniques to reduce the runtime in update and notify phases.

10

2. PREVIOUS WORK

System level design using SystemC and TLM2.0 is a crucial phase in overall time

to market of a chip and due to its importance, there has been ongoing research to

find different ways to accelerate the simulation. These efforts can be divided into two

parts, one where emphasis is paid on the coding style to improve the performance

which is referred as front end techniques. Other would be to try to improve the simu-

lation kernel itself which is used as a base for all the designs, also known as back-end

techniques. Front end techniques explore the modeling of a general MPSOC envi-

ronment consisting of multiple processors, memory and other blocks interconnected

through bus or network structure. Back-end techniques focus on improving the kernel

which is used for modeling hardware in a software environment.

Front end techniques deal with the design of a simulator using a specific modeling

language like SystemC. There are many simulators, which used SystemC environ-

ment for modeling MPSOC comprising of homogeneous and heterogeneous multi-

processors, AMBA buses for modeling communication structure, memory and other

peripheral devices. MPARM[4] is one of these simulators which has been shown to

be effective for early architectural exploration. Many other efforts are focussed upon

building a MPSOC environment for system level simulations[18][11][37][27]. Some of

these[6] are capable of running an entire operating system as well but are really slow

in their execution due to implementation complexity. Some of the works focus on the

application based system level design such as modeling a system level environment

specifically for JPEG, MPEG and H264 decoders[15], others focus specifically on net-

work on chip topology[35][22][16][14][3] as it is gaining a lot of popularity these days.

People have also explored design of processors with different ISA using SystemC[29].

11

2.1 Multiprocessor Work

For back-end techniques, people have mainly worked on utilizing the high com-

puting power of Multiprocessor CPUs and GPUs as the nature of system level design

using SystemC can exploit a lot of parallelism. Early research efforts [32] tried to

map the evaluation phase of OSCI kernel to multiprocessors at a cost of synchro-

nization overhead. In order to reduce this costly synchronization, others [33] have

tried to divide the simulation into different parts, and each part is mapped to certain

processes reducing the need for synchronization. Even though both the above efforts

produced good results in some cases, they do not utilize the multi-core exploration

on other phases of OSCI kernel such as evaluate and update. The discrete event

simulation in SystemC is split-up into several delta cycles and each delta cycles have

evaluate update and notify phase, and there can be multiple delta cycles for a given

time. This makes the improvement in the evaluation phase due to parallelism only a

small part of the overall time consumed and moreover it incurs costly synchroniza-

tion overhead every delta cycle. In order to tackle this problem, people [41] have

tried to partition the simulation and map them onto different threads even before

the start of simulation and run these threads independently on individual proces-

sors. A lookahead time is calculated statically which is the minimum time required

for communication for processes from one thread to another thread. The authors call

this method parallel time decoupled simulation allowing processes to run indepen-

dently without synchronization on different processors until a minimum lookahead

time. Improving upon the same concept, in [40], authors have proposed a flexible

time decoupling based method to even reduce the synchronization overhead but at

a cost of lower timing accuracy and determinism, which can be useful if the aim of

high level design is only to get a rough estimate of performance. In [38], authors

12

have designed a highly special purpose parallel simulator which can run the SystemC

design on multi-core cost and uses a kernel accelerator which reduces synchronization

by reducing the control and increasing the scalability of simulation.

2.2 GPU Work

With growing number of cores on a chip, there is a demand for scalable solution to

simulation of large SystemC models. Typically some of the MPSOC models contains

hundreds of cores with same code structure executing on different dataset. This

points us in the direction of using a GPU based approach which provides a scalable

solution to problems with high data level parallelism. Previous works [24][39][36] have

already attempted to use GPU for accelerating SystemC models. The first work [24]

translates the original SystemC code to a CUDA using a synthesizer by mapping

each process to different core. Although it was a good start, it had issues when

the process mapped on same multiprocessor shared different code structure, causing

lots of branch divergence. This was controlled in the next work [39] by replicating

the common process to different multiprocessors. These works [24][39] are restricted

only to synthesizable SystemC subsets and do not support timed event-based models

which are crucial part of higher level modeling in SystemC. They also do not support

transaction level models which are widely used in industry for modeling loosely timed

and approximately timed models. In [36], authors have addressed this problem by

mapping selected processes to GPU in the evaluation phase of reference SystemC

kernel, but their approach require synchronization between CPU-GPU every delta

cycle, which is costly. Moreover, they exploit parallelism only in the evaluation phase

thereby serializing the update and notify phase.

13

3. BACKGROUND

This chapter covers some relevant background which is needed in order to under-

stand the optimizations used in this research work. The main focus of this work is to

create a simulation model for system level design which is good enough for the future

MPSOCs. Since SystemC is widely used in industry as an open source language for

system level design, it is important to understand its basic concepts before going

into further optimizations. First part of this chapter gives an in depth understand-

ing of SystemC and its execution model. Next, we try to give some insight into the

concepts related to transaction level modeling and its use in system level design. Its

programming model is briefly described for user to get an intuitive idea of TLM.

The platform provided by above languages is based on C++ libraries and its exe-

cution model based on single core is a huge bottleneck for scalable designs. Therefore,

some of the techniques are discussed to speed up the simulation by using multi-core

hosts and GPU. Conversion of a sequential code into a parallel code is a challenging

task because it involves finding scope to run multiple threads simultaneously and

still achieve same functionality. Since we would be using GPU extensively, its ar-

chitecture is described in depth here. Finally, a brief introduction to the approach

followed in this work is given which is described in depth in subsequent chapters.

3.1 SystemC

Until now we have given a brief introduction on the roadmap of using SystemC for

ESL design. In this section, we will discuss some concepts related to the execution

model of SystemC and usage of its constructs. SystemC as mentioned before is

an extension of C++ libraries which are used to realise hardware on software. Its

has its own execution kernel which executes these models as if simulating a real

14

Figure 3.1: Architecture of SystemC language

hardware by keeping track of time. Most of the system level design work touches

both hardware and software due to the close correlation between two at an early

stage. So, designing a hardware in SystemC can provide a good platform for early

development of software.

3.1.1 Hardware Constructs

The main advantage of SystemC is that while still developing in an environment

compatible with full fledged software, we are able to realise hardware and simulate

it efficiently with precise timing notations. A software basically executes a set of

instructions using a microprocessor and so runs sequentially. An actual hardware is

composed of many transistors and gates running in parallel to achieve a functionality.

In order to model that in software, SystemC runs on a kernel which takes care of the

inherent concurrency present in hardware simulation.

3.1.1.1 Time

Time is the most important concept which is needed to model hardware using

SystemC. There are multiple definitions associated with time. The time which is

required by processor to run the code is called processor time, which determines the

15

efficiency of simulation. If this is the only thing running on machine, then it can

also be referred as wall clock time. Simulation time is the overall time for which the

hardware is simulated. It implies that when the hardware is fabricated to silicon, it

will take that much amount of time to run the desired application.

With the notion of modeling, we are mainly concerned with simulation time.

At any point in simulation, the kernel keeps track of the current simulation time

and executes all the runnable processes before advancing the time. The class which

implements time is known as sc time with resolutions ranging from second to fem-

tosecond. Any hardware component has a certain delay which is referred to its

latency. If there is zero delay associated with any model, then it the model is not

realistic. A simple construct to realise delay would be to use wait. Some of the design

have delay in the form of clock cycles, so sc clock class is implemented to achieve

that functionality.

3.1.1.2 Hierarchy and Modules

A design of SOC can be quite complex with lots of functionalities. In order to

understand and organize them properly, a hierarchical structure is followed through-

out the design. A group of processes and ports can be wrapped inside a module,

with the instantiation of SC MODULE. This is identical to the structure used in

verilog and vhdl for modeling hardware. Since the basic language is still C++, there

are predefined macros for defining modules and registering them with processes. A

typical module should have input-output ports and methods which define the re-

lation between input and outputs. These methods are linked with corresponding

module by defining them in the class definition of module with macro SC METHOD

or SC THREAD. Processes should be defined in the constructor function, which is

defined using the macro SC CTOR inside a SC MODULE.

16

3.1.1.3 Data-types

SystemC provides a wide range of data-types for modelling logic signals[7]. Apart

from the native C++ counterparts which can be used any-time, SystemC provides

classes of data-types with vectors of variable width which could also handle simulation

of ’X’ and ’Z’ signals. It is important that we select the data type which is closest

to native C++ implementation in order to get good simulation performance.

3.1.1.4 Communication

Communication is handled in SystemC in two different ways. Inside a module,

communication between processes is done through events, their sensitivity and no-

tification. Communication between two different modules is handled by use of a

channels which connects two ports.

Firstly, discussing the communication between two modules, it is necessary that

we have a channel which derives its member functions from an interface. An interface

is a component which is an abstract class and uses the property of polymorphism.

It contains virtual methods, i.e. only definition of functions are specified in an inter-

face. A channel and a port should extend from an interface and define the internal

functioning of the particular method. The abstract nature of interface allows us to

use the same definition for multiple channels implementing different communication

details.

Another way of communication is the use of events and their sensitivity. Each

process is sensitive to a certain set of events which is declared statically in the

registration of process in constructor. Whenever each of these events occur, the

process is made runnable and is executed in the current delta cycle. Each process

can notify some other events which can invoke the processes sensitive to them. This

way, we can switch from one method to another with the help of events.

17

3.1.1.5 Concurrency

Concurrency is a phenomenon which is very evident in hardware because these

units execute in parallel. In order to realise the same behaviour in software, we

need to stop the simulation time and execute each runnable process one by one.

Consistency throughout the timeline can be maintained by executing all runnable

processes at any given instant before advancing the time. The mechanics behind

the working of simulation is handled by a kernel which keeps track of all the events

occurring in the design and acts accordingly.

The simulation is divided into two phases namely elaboration and execution. In

elaboration stage, the simulator reads all the module definitions and creates a hi-

erarchical structure of the hardware. It binds all the processes, ports and signals

to their corresponding modules and registers the communication between modules

through channels and events. After completing elaboration, kernel starts execution

stage where the actual processing of hardware takes place. The way SystemC sim-

ulation runs is popularly known as cooperative multitasking where the kernel gives

control to process and waits to it to yield. In order to realise concurrency, there is

frequent switching between kernel and processes because the process yield control

to kernel when it has finished the work to be done at a particular instant of time.

In a real hardware there may be delay associated with each hardware component,

whereas in a simulation we need to model delay for a particular task. In general

we can use wait() and notify() statements to generate a delay in simulation time.

Both the commands use argument of time to predict when the process will be made

runnable next time.

SystemC reference model as shown in figure 3.3, widely used in industry for

system level modeling, is based on the concept of discrete event simulation. The

18

execution phase of simulation is divided into three phases namely - evaluate, update

and notify. The execution starts when there is call to sc start(). The time line is

divided into a series of discrete set of times and each time instant is broken down into

multiple delta cycles. Each delta cycle proceeds through all the phases until there are

no events left to process after which simulation advances to next closest time of an

active event. In evaluate phase, all the runnable methods are queued sequentially and

executed in a random yet deterministic order. After their execution, all the signals

and channels are updated to their latest values and generated events are updated

with their trigger time. In notify phase, runnable processes are identified and pushed

to runnable queue to execute in next delta cycle. This processes is repeated until

there is a call to sc stop. Figure 3.4 shows an example of SystemC design giving

control to kernel which identifies the phase and executes accordingly.

Figure 3.2: SystemC execution kernel

19

Runnable
Present ?

NO

Update SignalsDelta Events ?

NO Update Time

End of
Simulation

YESExecute ProcessRunnable Process

Immediate Notification

Delta Notification

Timed Notification

Pop Runnable

NO

Figure 3.3: SystemC execution flow

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

D Q

Clk

D Q

Delta 0 Delta 1

Delta 2 Delta 3

Evaluate

Update

Notify

Evaluate

Update

Notify

Evaluate

Update

Notify

Evaluate

Update

Notify

Figure 3.4: SystemC execution example

20

Figure 3.5: Initiator, interconnect and target communicating through TLM sockets

3.2 TLM2.0

In previous chapters, we have discussed the essence of transaction level mod-

eling for SOC designs. In this section, we will mainly discuss its usage which is

provided by Open SystemC Initiative(OSCI) as a TLM2.0 standard. This standard

helps generalize a way of communicating between modules by the use of sockets and

interfaces.

3.2.1 Components

TLM2.0 provides a set of C++ classes which can be used along with SystemC

to provide a better framework for communication between modules. If this were

to be done with traditional SystemC constructs, it would involve creating ports,

defining a channel and extending ports and channel with an interface which can be

complicated as well as time consuming. TLM2.0 provides a standardized way of

doing memory reads and writes across modules. The key components are described

21

in the subsections.

3.2.1.1 Initiators and Targets

TLM2.0 consists of a set of transactions which are requested from Initiator and

are directed to Target. Initiator is a module which initiates the transaction. The

connectivity is defined through sockets in SystemC. Target is a module which receives

the transaction, processes it and returns back to the initiator.

3.2.1.2 Socket

Socket is a basic entity through which the communication is made possible. It is

very similar to a port in SystemC. Both initiators and targets have to define a socket

associated with a type of interface. These are connected together in the connectivity

file through usual SystemC constructs. A module may implement both initiator and

target sockets if it has to act in both ways.

3.2.1.3 Payload

Each transaction is associated with a bunch of parameters like command type,

command address, data pointer, burst length and many other options. All these

parameters are compressed into a data-type called payload. Initiator is responsible

to initializing these parameters, socket makes sure that it is received correctly at

target, and target is responsible for processing the payload and notifying back to the

initiator.

3.2.2 Interfaces

Interfaces are similar to intermediate components which are used to transport

payloads from initiator to target. They define the behaviour of the transaction as

how it should proceed. The sockets are usually defined with the type of interface they

are linked. There are four types of interfaces which are used for different purposes

22

as defined below.

3.2.2.1 Blocking

Blocking transport interface is used when initiator thread is supposed to be

blocked until the target thread evaluates the transaction, processes it and returns

the result to initiator. The method which is used in TLM2.0 is called b transport

which takes pointer to payload and time as arguments. Time argument can be used

to annotate the actual physical delay associated with the transaction and can be ref-

erenced as a wait() call in target. This type of interface is generally used in loosely

timed models.

3.2.2.2 Non-Blocking

Non Blocking transport interface is used to initiate a transaction to target and at

the same time keeping the current thread alive. This is done using a nb transport call

to target. The return from target is made by another nb transport call to initiator

from target. The direction of this is opposite to that of the initial call. This is

generally used to give the status of processed transaction to initiator if it has been

executed correctly. Based on the feedback, the initiator may choose to re-initiate

same transaction or start another transaction.

3.2.2.3 DMI

DMI or Direct Memory Interface is used to improve the simulation efficiency.

When there are multiple requests to same address in the target memory, it is ineffi-

cient to make blocking or non blocking requests repeatedly as each call will have to

go through the interface causing delay. As a better way, there is a parameter in the

payload to enable the dmi interface. The target will analyze the payload and provide

a pointer to memory to initiator if dmi interface is enabled. Subsequent transactions

23

can be processed directly from initiator without having to go through the interface

saving the simulation time and complexity.

3.2.2.4 Debug

Debug transport can be used to read or write to a particular memory address in

order to debug the contents of memory at any particular time. The reason for sepa-

rating it out from normal transport interface is to provide a better debug capability

and also to make sure that there is no delays associated with this path.

3.2.3 Models

Transaction level modeling can handle different levels of abstraction depending

upon the designer’s requirement.

3.2.3.1 Loosely Timed

Loosely timed model corresponds to a transaction which communicates between

two concurrent processes with the delay of the transaction specified by user. This

delay is not the actual delay in which the transaction will complete, but rather a loose

figure based on the nature of individual transaction. They are generally implemented

with blocking interface. These models can use temporal decoupling where the some

parts of simulation may run ahead of actual simulation time in order to increase

speed.

3.2.3.2 Approximately Timed

An approximately timed model corresponds to splitting down the transaction in

multiple phases and each phase having its own delay. Typically there are four phases

which one needs to be concerned about. Beginning and end of request and response

constitute four different types of timing specified. These models cannot be used with

temporal decoupling because of presence of multiple phases and each subsequent

24

Figure 3.6: TLM loosely timed model

Figure 3.7: TLM approximately timed model

phase is dependent upon previous phase. That is why they need to run in lock step

with each other. These models generally use non-blocking interface.

3.2.3.3 Untimed

Untimed models generally have algorithmic description without any annotation

of time. So, they are called untimed models. These models usually have single thread

implementing the algorithm, so transaction level models may not be beneficial for

25

this case.

3.3 GPU

GPU(Graphics Processing Unit) is a computing unit which provides high level of

parallelism in the program. This research work uses the high computing capability

of GPUs for speeding up kernel for SystemC execution. Therefore, in this section,

a brief overview of GPU architecture and its programming model using CUDA is

described. GPU is used to execute programs which are massively parallel in nature.

The main quality differentiating GPU from multi-core CPU is that while latter has

lesser number of highly powerful cores, the former has large number of small cores

capable of handling simpler tasks. They were primarily designed for handling graph-

ics which have large datasets to be processed quickly. Slowly, people started using

them to solve other problems as well, which gave rise to General Purpose Graphics

Processing Unit(GPGPU). In this work, the main idea of GPU is used to solve a sys-

tem level simulation problem requiring high level of parallelism. Another important

point to note is that the speed-up provided by GPU is primarily due to data level

parallelism while the speed-up provided by multi-core CPUs is due to instruction

level parallelism.

3.3.1 Overview

Even though GPU has large number of available cores, they are not recommended

to be used for sequential code because they are not as powerful as CPU. Any program

is divided into sequential code and parallel code. The sequential code is run on a

CPU which offloads the task to GPU when the computation required in parallel. A

GPU therefore acts like a coprocessor accelerator to speed up the program. It is

connected to CPU through a PCIE express bus which provides high bandwidth data

rate between DRAM and GPU memory. GPU has large chunk of global memory

26

which is used for storing the data to be processed. CPU generates the data and

transfers it to GPU memory with the help of PCIE bus, GPU then processes and

updates the data in GPU memory, CPU lastly transfer the output from GPU memory

to its DRAM memory. The time required to complete the data transfer from CPU to

GPU memory and vice versa depends upon the speed of PCIE bus, which is usually

the bottleneck for parallel computations. It is essential that the speed-up obtained

by intensive parallel computation by GPU dominates the overhead due to memory

operations for this approach to be useful.

3.3.2 Architecture

The main component of a GPU device is called a streaming multiprocessor(SMP

or SM). There are several of these present on a GPU device sharing the global memory

of GPU. Each SMP has a capability to execute hundreds of threads at a time. There

are several hundred CUDA cores present on a SMP which are responsible for high

data level parallelism in the code. These CUDA cores work in SIMD or SIMT fashion

where only one instruction is fetched for multiple data, thus making use of the large

number of ALU units present in SMP. As evident from the execution strategy, this

method involves lots of data reads and writes, so bandwidth of the register file is high

enough to make memory operations fast. Apart from the CUDA cores, each SMP

consist of a shared memory(L1 cache), register memory, load/store units, special

function units and warp scheduler. GPU divides the total number of threads on

a SMP into groups of 32 threads called warps. Each of this warp executes one

instruction at a time on multiple data.

3.3.3 Programming Model

Programming models of a GPU present a set of rules and guidelines for using

the available hardware resources in an optimized manner. A software programmer is

27

Figure 3.8: Architecture of GPU

generally aware of the programming model which is necessary to code. This model

acts as a bridge between software and hardware and tries to efficiently manage the

hardware resources based on the requirement as specified by the programmer. This

model consists of both CPU and GPU code working together as heterogeneous com-

puting. The part of code present of CPU is called host and GPU is called device.

The call from host to device is made through call to kernel which invokes GPU pro-

cessors. Since host and device both work on their independent memory, before and

after call to the GPU kernel, a data transfer has to be initiated from host to device

memory and vice versa respectively through PCIE express bus. There are dedicated

function calls in programming model to make is happen.

Execution model of GPU is characterized into three different types of abstraction

28

levels forming a hierarchy. These are called threads, blocks and grids. A thread is

the most basic form of execution unit in a GPU. They can be combined together

to form blocks or thread blocks. Multiple thread blocks can combine to form a grid.

While launching a kernel, we specify the size of thread block as well as grid which

helps GPU map the individual threads to actual hardware efficiently. The mapping of

grid, block and threads to CUDA cores in SMP is done internally to ensure maximum

parallel computation.

A device may have only a limited number of SMPs. Each thread block is mapped

to a particular SMP in a GPU which cannot be changed dynamically. All the threads

in a thread block are run by the mapped SMP in GPU. Threads are combined in a

group of 32 and executed as a warp in a SMP. There are multiple warp schedulers

in a SMP making the execution of threads on a SMP concurrent. A SMP may have

multiple thread blocks assigned to it and it can choose to switch between warps of

different thread blocks depending upon the resources available.

3.3.4 Memory Hierarchy

A GPU device has different level of abstraction in memory as well. Since it pro-

vides high degree of data level parallelism, there are large number of memory accesses

required for the computation. It is therefore necessary that memory utilization is

optimized so that we may not incur significant overhead. Memory used in CPU is

generally non programmable, in which programmer cannot define where it should be

stored (for example L1 and L2 cache in CPU). In GPU, we have several options for

storing memory at a different level of hierarchy as shown in figure 3.10.

Register Memory is the fastest memory available on the chip. Data which is local

to individual thread is generally stored in register memory by simply declaring a

variable in kernel. This automatically assigns one variable for all the threads active

29

Figure 3.9: Programming model of CUDA

Figure 3.10: Memory hierarchy in GPU

30

in that kernel. Since this is the fastest form of memory available, it is recommended

to use register memory when variables are used frequently. There are only a limited

amount of register assigned for each SMP which are shared among all the active

warps.

Local Memory is used by GPU when there is an overflow of the available register

memory space. Similar to register memory, this is reference when a variable is defined

in a kernel with its scope limited to thread, but the register memory is full. In this

case, physically global memory is used to store all the spilled registers, so this is

much slower than the register memory.

Shared Memory is a programmable on chip memory which has very high band-

width and low latency. This is slightly slower than register memory but still very

fast. Each SMP has a fixed amount of shared memory which is partitioned among

thread blocks using the particular SMP. This are highly efficient for storing shared

variables which are utilized by multiple threads because of the low latency. There

is no alternate memory to store this if there is an overflow, and returns an error if

more than available memory is required by the program. Shared memory variables

are declared in a kernel by appending shared keyword to it.

Global Memory is the slowest form of memory available of a GPU. It also has

the largest amount of size and is shared among all the thread blocks which are even

assigned to different SMPs. It is not preferred to use global memory, but since we are

bound by the available size of the shared and register memory, we use this to store

large amount of data use by GPU in the lifespan of the program. Global memory

is not lost in between multiple kernel launches so it is ideal for saving all the data

to be used by the GPU program. A part of global memory can be copied to shared

memory for faster access.

31

3.4 Project Description

The first half of this research work aims at developing a framework for system

level design which can be used for performance analysis of any general external

application. A SystemC based MPSOC framework is designed which consists of

homogeneous multiprocessors(based on MIPS), cache memories, bus modeled using

TLM2.0 constructs, memory and other external application. A jpeg based encoder

is used to test the working of simulator under different configurations of MPSOC

and predicts the configuration for best performance. Observations made from this

framework are the motivation for next part of project. Upon increasing the number

of processors in design, the number of processes running on SystemC single core

kernel increases greatly slowing down the simulation. There is a lot of redundancy in

the way SystemC code is executed on its kernel which is designed for single threaded

application.

Next part of project aims at using the multiprocessors for increasing the simula-

tion speed of system level design using SystemC. With the saturation of clock speed,

the trend in today’s world is growing towards multiprocessors. Analysing the perfor-

mance of a design which consists of hundreds of cores can be difficult task. Virtual

Prototyping with SystemC can be difficult as single threaded application involves

lots of context switches between processes and runs serially. Another important

practical aspect is that large system level designs use TLM2.0 framework for bus

communication between modules. So, we need a solution which is extensive enough

to cover any event based communication model and also able to handle transaction

level models using TLM2.0. Visualizing the scalable nature of problem, this research

work focuses mainly upon GPU based transformation of original SystemC code such

that it can take advantage of performance gain offered by SIMD instruction types.

32

The key focus of this research work are mentioned below -

• Mapping Non-Synthesizable SystemC models to GPU: Previous works [24][39],

map original SystemC model to GPU supporting only synthesizable subsets.

These models are relatively simple with respect to their communication frame-

work between modules. They typically use value changed events for combi-

national logic and clock based events for sequential logic. In order to achieve

higher level of abstraction, timed event communication is often used in de-

signs, which come under non-synthesizable subsets. We propose a framework

to model all types of communication models on GPU.

• Parallel TLM2.0 simulation on GPU: As TLM2.0 is increasingly used to reduce

the complexity of simulation in cycle accurate models, there is need to paral-

lelize them efficiently. Transaction level models enable us to model memory

mapped bus communication model at a higher abstraction level using prede-

fined libraries. We propose a methodology to transform and simulate TLM2.0

loosely and approximately timed models on GPU.

• Time Decoupled GPU simulation: As the size of design increases, there is an in-

crease in number of processes to be run in parallel. Processes are hence mapped

to different thread blocks such that maximum processes can be run in parallel.

Different thread blocks are also used when the processes have different code

structure and require multiple fetch units (only one present in a multiproces-

sor). The simulation needs to be synchronized every delta cycle which is a

non-trivial task for multiprocessors in a GPU and has a costly overhead. We

propose a time-decoupled method to reduce costly synchronization overhead

among threads mapped to different multiprocessors on a GPU.

33

3.4.1 Approach/Methods

In order to tackle the problem proposed in this work, first approach that is fol-

lowed here is to design a MPSOC model in a higher level modeling language such as

SystemC and identify the shortcomings associated with it. A multi-core simulator

is designed in SystemC which is capable of attaching any external application to it

and running as a virtual prototype. The process of design of a MPSOC simulator

is a complicated task as it involves designing and assembling multiple components

which in itself are complicated. As the architectural changes involves tweaking the

design and analyzing which configuration gives the best performance, open source

simulators are not flexible enough to fulfil this purpose. Our method involves de-

signing a simulator from scratch. The processor, cache, bus and memory models

were individually designed and tested. Any external application can be attached to

the simulator and it will identify the performance of the system under a particular

configuration. Initially this was tested with smaller applications, but later on this

was successfully running a jpeg encoder application to compress images. Apart from

a few coding styles which improved the speed of simulation, one of the major notice-

able improvement was the use of TLM2.0 for communication using buses. This was

found to be highly effective in terms of speed for loosely timed models in the initial

phase of design. In order to improve the performance of encoder, when the number

of processors were increased by an order, it was found that there was a significant

slowdown in the simulation speed. This was the motivation for using multi-core

techniques for simulation and specifically GPU since the nature of problem involves

simulating a huge design consisting of many identical cores dividing the task.

Initially, some effort was spent on using the multi-core hosts by parallelizing the

concurrent part of the simulation as by definition of SystemC, the function of the de-

34

sign should not depend on the order in which kernel will execute the processes. There

are previous works proving this technique is indeed very useful for small designs, it

is however not scalable. One of the major drawbacks of this approach was when the

processes in SystemC do not have large runtime, then the synchronization overhead

becomes comparable to the runtime of the process which is certainly not desirable.

Another issue is that the number of multi-core threads are usually limited so the

solution provided by this approach is not scalable to large designs. A GPU based

approached works out best to nullify both the drawbacks as it has significantly low

synchronization overhead and also the number of cores in a GPU are large providing

a scalable solution.

The hardware architecture of GPU which is desired to be used in MPSOC sim-

ulations is slightly involved and works in a unique manner. Each GPU machine has

a number of multiprocessors which have their own fetch unit and can run different

instructions in parallel. Each Multiprocessor has many small cores which execute

in SIMD fashion. For initial part of the project, this work statically identifies the

number of processes which are to be executed by the SystemC simulation engine

concurrently and maps each process to different cores of a multiprocessor in GPU.

There are a few conversion rules associated with different types of constructs during

the transformation. The modified code which is GPU compatible is then run on a

GPU multiprocessor.

After designing a basic framework for simple SystemC models, next part of the

project was to strengthen the communication models associated with SystemC. Syn-

thesizable designs in SystemC typically use clock based communication for sequential

designs and signal change based communication for combinational designs. People

have not shown interest in a more robust event based communication framework

which are used for non-synthesizable designs, so this work involves creating a sim-

35

ulation model for GPU which can simulate any general communication framework

using events asynchronously. In order to create a general simulation model which

works in all the above scenarios, the variables used for communication are classified

into sensitive and trigger variables. Based upon the type of communication model,

variables used in SystemC are mapped to these variables statically. The simulation

is also divided into evaluate, update and notify phase as in the reference SystemC

model and each phase is executed in parallel by many cores in a GPU. The mapping

of sensitive and trigger variables to GPU memory is done in such a manner that

running them in parallel does not affect the original intent of the design. This work

also optimizes the memory assignment of these variables to different types of GPU

memory (register, shared and global) to reduce the runtime.

Transaction level modeling is one aspect of system level design which is being ex-

tensively for loosely and approximately timed models for predicting the performance

and power variations with low simulation runtime, good productivity and efficient

work-flow. TLM2.0 is an extension of SystemC which is typically used for memory

based bus modeling. This work identifies a TLM2.0 model and transforms it into

an equivalent event based communication model as an intermediate step which can

then be transformed using the previously mentioned techniques.

As the size of a design increases, it will eventually contain more number of Sys-

temC processes which are to be mapped to GPU. Statically, only a fixed number(say

1024) of processes can be mapped to a thread block of GPU. Some processes even-

tually will have to be mapped to different thread blocks which may be mapped to

different multiprocessors and synchronization between them is a non trivial task with

large overhead. In order to make this feasible, the work proposes a time decoupled

simulation technique for GPU by statically identifying the maximum time for which

no communication is required between thread blocks and synchronize the thread

36

blocks only at regular intervals.

37

4. SYSTEMC/TLM2.0 BASED SIMULATOR

Before taking a leap into the GPU based kernel level optimizations in SystemC,

it is important to understand the usage of the language and analyze some of the

coding styles that can be used to accelerate the simulation. In this chapter, we

explore the usage of SystemC to model a fully functional simulator which is able to

attach any external application to it and analyze its performance. SystemC is used

here to model hardware in a C++ based environment which supports a higher level

modeling rather than going into details of gates and transistors. We would be using

C language for modelling software to be run on microprocessor, whose code is rather

easier to translate into hexadecimal binary which is read by the simulator.

There are many components which are modeled in this simulator and each of

these components has its own purpose. A microprocessor model is required to run

the software binary which is generally available as an open source Instruction Set

Simulator(ISS) with different instruction set architecture(ISA). The problem however

with the available ISS is that most of them are available as an executable binary so

modifying the internal components according to user’s preference is restricted. In this

work, a microprocessor model is build from scratch which supports MIPS instruction

set and provides a good simulation speed of around 65K instruction per second.

This model is completely designed in SystemC and supports some of the advanced

techniques such as forwarding, branch prediction and hazard detection and handling.

Since we are mostly concerned about the performance of MPSOC environment, we

can instantiate multiple instances of each core and redesign the software such that

each processor handles certain part of the overall workload.

While a microprocessor play an important part in the whole system, for a fully

38

Simulator Speed(instructions per second)

Simplescaler 150KIPS

Gem5 7.5KIPS(8 cores)

SESC 1.5MIPS

MC-Sim 32KIPS(64 cores)

SystemC 65KIPS(8cores)

Table 4.1: Simulation speed comparison of this simulator with other known simulators

functional MPSOC environment, we need a good memory model as well as a bus

model which handles all the communication between the processor cores and memory.

The memory model described here is relatively simple which handles all the reads

and writes. The bus model used here is similar to AMBA AHB Lite protocol which

supports multiple masters and slaves. The processor is coupled with a fast access

cache memory model which takes advantage of spatial and temporal locality in the

code to access memory. In order to test the simulator in a working environment, we

instantiate required number of components in the top level design module and verify

it with a test-bench which drives the simulator with data and checks for correctness.

Any external application can be attached to the simulator and run it with its own

software being executed by the microprocessors. In this work, we have first tested the

simulator for simpler applications such as a simple multiplier, then a jpeg encoder

hardware is attached to MPSOC with multiple cores sharing the workload.

Finally, we implement some of the multi-core techniques in kernel to parallelize

the execution of concurrent processes and analyze its effectiveness over the traditional

SystemC kernel.

4.1 Microprocessor Design

A microprocessor is a design element which takes an instruction, decodes its func-

tionality and executes it using the ALU unit. The results are stored back to registers

39

Microprocessor

cache

Microprocessor

cache

Microprocessor

cache

Microprocessor

cache

BUS

Memory

Memory

JPEG Encoder

Figure 4.1: Schematic of simulation connected to a jpeg encoder

or main memory depending upon the instruction. Some of the basic components

used in its design are defined as follows.

4.1.1 Register File

Every microprocessor needs some amount of fast coupled memory for doing tem-

porary calculations such as program counter, stack pointer, frame pointer and other

temporary variables. A register file is a fast but has limited memory. There are 32

integer registers and 32 floating point registers present in the register file. The width

of the data provided is 32 bits.

40

4.1.2 ALU Design

Just like other components, a higher level design for ALU is created in SystemC

which is then integrated with other components to achieve the full functionality

of a microprocessor. ALU is currently configured to operate on all the arithmetic

and boolean functions. It has its own ALU Control Unit which is responsible for

translating the control signals into ALU function.

4.1.3 Single Cycle Design

There are 5 main stages in the execution of a microprocessor namely, fetch, de-

code, execute, memory and write-back. Advanced microprocessors coming lately

have much more complicated stages, but in order to explore the usability of Sys-

temC, we use a simple MIPS based design which is used in academia. All the above

components are connected together with respect to each phase and the simulation is

based on events. In this kind of design, all the five stages are executed in one cycle

and so it is called single stage design. Apart from the components designed above,

we need a logic for Control unit which decodes the instruction and sets the value of

control signals according to it. In order to maintain the simulation speed, emphasis

is made to ensure that native C++ constructs are used where ever possible.

4.1.4 Pipelined Design

In order to introduce pipeline in the SystemC design of microprocessor, double

buffering of sc signal makes it easier to model registers of hardware. All the contents

of control signals and other registers are stored in a register file to update the contents

of it. On the other hand, older contents of the same register file are used for processing

information in next stage. In the update stage, old contents of registers are updated

with the new values which is identical to what happens in a real hardware.

41

Figure 4.2: Schematic of MIPS based microprocessor designed in SystemC

In the process of design, there are many signal connections from one stage to

another to ensure the proper working under all hazard situations. There are two

types of methods in which simulation can proceed. One is where we design all

the components like hardware with processes sensitive to events, and other is to

follow a path where least number of processes are executed every cycle. Former,

which is more similar to a hardware like simulation, is not that effective because

it causes one process to run multiple times in a delta cycle until all its inputs are

finalized. Second method uses the flexibility provided by software to model some

components like hardware and execute them on software. A process is not scheduled

to be executed until all its input are finalized, this makes this model more effective

in terms of simulation. In order to avoid data collision, the simulation proceeds in

opposite order of their actual execution in a particular cycle. This means we would

be simulating in the order of writeback, memory, execute, fetch, decode. The main

idea behind this is to prioritize the instructions which are ahead in time so that their

42

data is not collided with that of next instructions.

4.1.5 Forwarding Unit

This is a block placed in decode stage to prevent read after write hazard. In

many cases, we have a immediate read proceeding a write to same register, which

would normally give wrong results as this is a 5 stage cycle and the input is required

in the third stage itself. In this case, their are direct paths of the temporary result

being fed to previous stages to remedy the hazard.

4.1.6 Hazard Detection

The method of forwarding does not work in all the cases, and for some cases we

have a real hazard which cannot be solved by moving the result. For those cases, we

have a detection unit in decode stage which identifies the hazard and inserts bubbles

in the data-path. A bubble is a nop instruction which does nothing and is only added

to ensure that the hazard is resolved.

4.2 Bus Modeling

System bus is a component in SOC which is a hub for communication of multiple

components. It could handle multiple channels of communication at a time or only

support one channel depending upon the design. It usually consists of an initiator

which places a request to a bus, which decodes the target intended by the initiator

and forwards that request to a particular recipient. The target processes the request

and returns back the result to bus which in turn finishes the transaction by providing

initiator the results. In this design, we consider a AHB type bus protocol which can

handle multiple masters and multiple slaves. There is a arbiter unit present inside

the bus which decides the priority of transaction coming to bus and queues up for

being processed.

43

4.2.1 Usage of Transaction Level Modeling

Bus is an important component which is used in all the SOC designs for com-

munication between modules. A typical bus model designed in SystemC requires

lots of effort on the user end. Also the simulation model of SystemC based bus

is cycle accurate with the simulation executing in multiple delta cycles caused by

the notification of events. This model can nevertheless be designed with impecca-

ble accuracy upto cycle level but during the system level design, we are not really

concerned with accuracy that high. The aim at that stage is to create a design that

has fair amount of accuracy and is still able to predict the performance and power

variations. Transaction level design is hence used for most of the bus based memory

accesses. As an extension of SystemC, TLM2.0 is quite stable with predefined in-

terfaces for communication whose parameters are defined through a payload. In our

MPSOC design, the SystemC bus model is replaced with TLM2.0 model which is

approximately timed. with some relaxation in accuracy, the simulation model works

around 10 times faster than the original model.

4.3 Memory

4.3.1 Data Memory

All the operations which a microprocessor performs for a program requires a

permanent storage in memory such DRAM which is a high latency memory connected

to the bus. Access to DRAM are usually in the form of burst reads as we want to take

as much data as possible to explore spatial locality. The model used in this simulator

is relatively simple with each memory module providing ports and interfaces which

can be connected to bus and accesses by any master.

44

4.3.2 Instruction Memory

A microprocessor fetches an instruction every cycle in the form of 32 bit numbers

which are processed later in the cycle. Assembler gives an output of the list of

hexadecimal numbers which are supposed to be processed by the microprocessor.

Instruction memory is a class which is designed in such a way that any request

coming to it goes to successive line in the executable file and returns its contents

to microprocessor. Main storage of instruction memory is also in DRAM which is

cached by the microprocessor. In order to get the ideal performance, we would have

an instruction cache memory in between microprocessor and instruction memory,

but is left out in this simulator for simplification.

4.3.3 Cache Memory

We have a configurable cache memory which is connected to microprocessor to

enable fast access to DRAM contents by exploring temporal and spatial locality.

Although, it can be increased, in the current model we just have one layer of cache

memory which can be configured at the start of simulator. The design of cache

memory model is done in a hierarchical manner with class definitions of a memory

location(node) extending cache line(node set), extending cache memory. Each class

has internal functions which facilitate the working of cache in a smooth manner.

Although there is cache for both instruction and data memory, we are currently

using only data cache for simulations here. However, instruction cache is a simple

extension of the above.

4.4 Running the Simulator

Simulator designed in this project is a full SOC system level design where both

hardware and software needs to be designed. The simulator has pre-designed com-

45

ponents used in a SOC such as microprocessor, bus, memory and other hardware

resources. The user needs to instantiate these components with their required con-

figuration such as cache size, number of processors, memory size etc. and connect

their ports appropriately. The user should also create a system level hardware design

of the prototype and attach it to the bus. Important thing to take into account while

doing this is to declare the address space of the hardware such that it is accessible

to other components in the simulator.

The next part is to write the software which will actually run on the micropro-

cessor designed in SystemC and use the hardware components connected to the bus.

In case of multi-core, ideally we would be writing a parallel code in openmp or any

other parallel language, but this would requires an operating system for managing

the workload. In order to simplify things here and achieve the same results, we

would be dividing the workload to individual processors manually by writing a C

code for each of them. After compiling and assembling the code, it is converted into

executable format which is a list of 32 bit instructions ready to be executed by the

processor. This forms the instruction memory of the microprocessor. All the parallel

cores execute the code, access the hardware or memory when required.

In this work, first hardware that was tested to check the working of simulator

was a simple multiplier whose inputs were given from the software and processed on

hardware and result used by software again for further tasks. Moving towards more

complicated hardware models, we have also built a JPEG encoder model which takes

an input .png image and converts it into .jpeg format.

4.5 Multi-core Execution Kernel

Going forward, we explore some multi-core techniques to accelerate the SystemC

kernel because it is too slow for event driven MPSOC simulator. The obvious solution

46

Figure 4.3: Working of simulator with an external application

is to identify the concurrent processes in evaluate stage and assign them to different

processors in a multi-core environment. We tried different scheduling techniques

and analyzed their performance on different designs namely, multiplier and JPEG

encoder.

Static scheduling is the simplest form of multi-core where threads are assigned

to multi-processors based on their index serially. This way, all the processors know

which processes they are going to execute in the beginning. There is negligible

overhead due to synchronization in this case, but the processes can be highly skewed

in runtime. So, generally, the performance of this form of scheduling is the worst.

Dynamic scheduling is an improvised method where processors pick up threads

to execute when they have finished execution of previous threads. In this case,

the operating system maintains a queue of threads to be executed and processor

47

Figure 4.4: Different types of scheduling in multiprocessor host

picks one thread from top of the queue after finishing its current thread. This

form of scheduling is quite balanced but has significant synchronization overhead for

managing the queues and assigning them to different multiprocessors. Overall, this

method is still better than static scheduling in general.

Predictive scheduling is another improvement on the dynamic scheduling when

the processes are first sorted in order of their decreasing expected runtime and then

assigned dynamically to multiprocessors. The expected runtime is the time which

the process used in the previous delta cycle to run. Based on the prediction, multi-

processors are assigned threads such that most time taking threads are separated out

among different multiprocessors. This provides an even more balanced distribution

of threads and is usually slightly better than dynamic scheduling. The performance

improvement is not a drastic, and so we look forward to other means of parallel

simulation to achieve better results. From next chapter, we start looking at GPU

based techniques to accelerate SystemC kernel.

48

5. GPU BASED APPROACH FOR SYSTEM LEVEL SIMULATION

5.1 Overview

As discussed in previous chapters, a GPU is a device with huge number of cores

which can run in parallel exploiting data parallelism. In order to run a SystemC

code on GPU, the kernel which is responsible for executing the processes should be

compatible. However, this is not a trivial task as GPU programming is a bit different

from standard multi-core programming. It has multiple levels of abstraction in cores

as well as memory. An ideal way to handle this would be to transform the SystemC

kernel which is designed for single processor into a GPU compatible kernel. This

could however be quite complex to handle as there are lot of internal details in the

kernel which cannot be directly translated into a GPU based code.

The flow which has been used in this work involves a parsing the SystemC code

and translating it directly to a CUDA C code which can be run on a GPU. This

method analyses the SystemC code and maps it to GPU in a way that it would still

exhibit concurrent execution. In simple words, single core kernel is flattened with all

the processes assigned a different threads on GPU. The methods which are supposed

to be running concurrently on hardware will actually be executed by different threads

of a GPU resulting in large speed-up.

5.2 GPU Execution Flow

The flow of execution in GPU is very similar to that of reference SystemC kernel.

The main concept lies behind identifying the places in code which can be executed in

parallel without changing the final outcome. The reference SystemC kernel executes

a delta cycle in three stages. Delta cycles are executed until all the events have

exhausted. This is how a discrete event simulation progresses. While doing the same

49

Figure 5.1: SystemC to CUDA conversion

thing in GPU, each phase takes the maximum benefit of parallel computation which

GPU has to offer.

The three phases of SystemC reference kernel execution are evaluate, update and

notify. In evaluation phase, all the runnable processes execute on a processor to

produce some outputs. SystemC has a rule which is important for the concurrent

execution of processes on a single processor. It states that the final outcome of

the function modeled through SystemC should not be dependent upon the order

in which concurrent processes execute on a single core kernel. This rule applies to

multi-core simulation as well because the parallel execution of processes will cause

race conditions in code if the final outcome is dependent upon the order of execution.

Applying the same rule, all the processes are statically assigned to a thread in the

beginning when the code is translated. One main advantage here is that since the

50

Start Simulation

Process0 Process1 Process2 Process3 Process4 Process5

Update
Values0

Update
Values1

Update
Values2

Update
Values3

Update
Values4

Update
Values5

Events
Generated

Timed Events
Generated

YES

Finish

NO

Events
Generated

Events
Generated

Events
Generated

Events
Generated

Events
Generated

Events
Generated

YES

Update
Time

Update
Time

Update
Time

Update
Time

Update
Time

Update
Time

Update
Time

BARRIER

BARRIER

BARRIER

BARRIER

BARRIER

EVALUATE

UPDATE

NOTIFY

UPDATE
TIME

Figure 5.2: Execution of SystemC kernel in GPU

number of parallel cores are high, a large number of parallel processes can be handled

with less synchronization overhead. Also care must be taken to make sure that

multiple cores are not writing concurrently to a shared resource, which will then lead

to race conditions in the code. This kind of scenario is generally not preferred in

a SystemC design, but if it has to happen then we shall use the constructs which

allow only one thread to access that shared variable. All the possible processes in

the code are assigned a thread at the beginning. It is possible that in some cycles

51

only a few processes needs to be executed. In order to handle this, every thread has

a conditional statement at the beginning of the code which checks if the sensitivity

of the process is met and only then proceed towards execution. This stage is followed

by a barrier of synchronization to make sure that all the processes have executed on

GPU before moving to next stage.

After the evaluation of all the processes is done, the next phase is to update

the variables with new values which are evaluated in previous phase. As we will

see in later sections, different types of events have different methods of updating

the variables. Describing briefly, simplest concept is to have a double buffering of

variables such that it would not affect the results of evaluate phase. In a single

core SystemC kernel, all the updates to events or variables are made one by one in a

serial fashion. This process is accelerated in GPU by assigning each variable to a core

which updates it every cycle. The order of update does not matter in the outcome,

so making this phase in parallel does not need special care to check race conditions

of shared variables. Similar to evaluate phase, here also we have a conditional check

to update only the required variables.

Third and final phase in a delta cycle of execution is notify phase. Its purpose

is to evaluate whether there are pending events for the current delta cycle. If active

events are indeed found, then we go through another phase of delta cycle right from

the evaluation phase. Only those processes are made runnable which are sensitive

to the events found in notify phase. The process of finding if there is atleast one

new event generated translates to finding an OR reduction of all the possible events

of the design. Translating this phase is not as trivial as the previous two because

it involves a reduction operator. Although this phase cannot be completely made

parallel, it is possible to accelerate it into logarithmic runtime. This involves use of

some common techniques which are used in GPU for reduction operators.

52

5.3 SystemC to CUDA Translation

SystemC is set of libraries in C++ which provide discrete event simulation frame-

work for modeling hardware on software. In order to map this model to GPU which

recognizes CUDA, we perform a transformation with the help of a synthesizer similar

to the previous work[24]. This synthesizer parses the SystemC code and writes out a

CUDA kernel code which can directly run on a GPU. Before getting into the details

of the translation, there are few terminologies which a user needs to be familiar with.

5.3.1 Types of Events

Since, this work mainly deals with creating a framework for advanced communi-

cation models, we need to first classify the types of events which are responsible for

communication. In general, we can classify the events into three categories -

1. Timed Synchronous Events: These are the events which occur regularly at a

fixed interval of time, for example, positive or negative edge of clock.

2. Value Changed Events: These are events which get triggered when any signal

changes its value.

3. Timed Asynchronous Events: This type of events are triggered asynchronously

at irregular intervals, for example, communication of the type wait(delay),

wait(event) and notify(event, delay).

Each of these events have a specific way of communication which needs to be

handled in the translation. The distinguishing factor from the other approaches that

try to use GPU for SystemC simulation is that while other works are generally focused

upon synthesizable models which have rather simpler means of communication. In

this work we develop a general model for SystemC simulation which can handle any

synchronous as well as asynchronous means of communication.

53

Figure 5.3: Timed event based communication in SystemC

5.3.2 Types of Variables

We typically need two variables for all events to deal with all of the above methods

of communication. This method can be related to double buffering mechanism used

in discrete event simulations in order to avoid race conditions. These are briefly

described below -

1. Sensitive Variables: These variables contains information about the previous

delta cycle of a particular event and does not take into account any updates due

in the current evaluate phase. The advantage of this variable is that it separates

out sensitivity and update of same variable resulting in race conditions. It

typically has a boolean value which is read by each process in the beginning

to determine if it needs execution. These variables are read in evaluate phase

and written in update and notify phase.

2. Trigger Variables: These variables are updated by processes in evaluate phase

depending upon the function modeled. They contain the information about

when the signal or event is supposed to be triggered next. The variables are

54

Figure 5.4: Event mapping to GPU

altered in evaluate phase and depending upon their value, they update the

sensitive variables in update phase. In case of timed events, these variable

refer the next time when the event is active. In case of value changed events,

there is double buffering in trigger variables with allocated space for new and

old values. These variables are written in evaluate phase and read in update

and notify phases.

5.3.3 Algorithm

This section describes the details of algorithm which is used in translating Sys-

temC code to CUDA. The first part of translation is to extract the hierarchy of the

hardware and list of all the ports and channels in the design. In order to gather

that information, we run the SystemC code to a parser such as Doxygen tool which

creates an abstract syntax tree of all the class in the code and lists out their variables

which in our case are the boundary ports of modules in XML format. These variables

then can be used later on by a script to map processes to cores and also to identify

55

the variables and their scope.

In the process of translation, we proceed in the same manner as the reference

SystemC OSCI kernel progresses. Firstly, the algorithm identifies all the events and

their types based on the previously discussed categorization and also allocates the

memory required for declaring the variables. All these events are declared with their

corresponding data types. The memory allocated to events can be shared or local

depending upon the usage of variables which is discussed later. The variables which

are used to declare events are combined and renamed as arrays so that they can be

coded in the form in SIMD which works much faster on GPU. More details on this

will be discussed later in the chapter. Now, from the data generated from the XML,

we declare all the parameters in the beginning of kernel. Before executing any code,

there is an initialization phase, where all the methods and threads are initialized

unless stated otherwise. This attribute is captured while parsing and is used in the

synthesizer’s translation script. Only the part of process which is run until it yields

control is translated into initialization phase.

Next phase is translate process and map them to different cores on GPU. It is

easy to identify in the beginning where each process has yielded control to ker-

nel. Processes in SystemC are of two types, SC METHOD and SC THREAD.

SC METHOD can be converted into SC THREAD by simple modifications in code

and now we describe a methodology to translate SC THREAD to a CUDA core.

Each SC THREAD has some points in code where it yields control to kernel. The

role of parser is to identify these points and translate the process into switch case

statements as shown in figure. It also adds a variable to identify which case block is

supposed to run. The part of code in each case block is protected by a conditional if

statement, which identifies the sensitivity of thread at that particular point. It adds

a conditional statement with all the sensitive variables of events as its parameters.

56

If the event is found, the block is executed until there is a break statement. All the

updates to signals are translated to trigger variables, to avoid the race conditions in

code. For value changed events, the new trigger variable is simply updated whereas

for timed events such as wait or notify, the trigger variable(which is time) is updated

to the next time when the process is supposed to be made runnable.

The above algorithm to map SystemC threads to CUDA threads is a specific

example of a generalized mapping where there are no conditional statements in the

code. In a general case, we may have multiple conditional statements changing the

order of execution of blocks of a thread. The way to handle it is to create all possible

combinations of blocks of code which can run in one delta cycle and divide them

into separate switch case blocks. Even before the code is actually run on GPU, we

can identify statically which is the next block one process has to execute depending

upon the branch’s result. Using this idea, it is possible to map any possible SystemC

process to a GPU thread which will be run in parallel while execution.

After the evaluate phase is translated, we have a barrier synchronization com-

mand which ensures that all the processes have been completed before proceeding to

update stage. In this stage, since we have categorized all the events previously, it is

easier to write them down in single instruction multiple data fashion. Firstly, for all

the timed events, we have a conditional statement to check if the current time(trigger

variable) is equal to the time when the corresponding event is supposed to trigger. If

that is the case, then we enable its event (sensitive variable). The trigger variable is

reset to a negative value so that it does not trigger in the next delta cycle of the same

time. If this was not done, then we would be stuck in an infinite loop. For all the

value changed events, we compare if the new value is equal to the old value of trig-

ger variable. If there is a change then again we enable the event(sensitive variable).

While translating into GPU code, we have already organized all the events as arrays

57

and so updates to them can be issued by a single command with different thread ids

as their thread index which picks up different data for same instruction. This style

of coding make the simulation much faster because it makes full utilization of GPU

which works on the concept of single instruction multiple data.

Moving on to next stage, we again have a barrier synchronization to avoid race

conditions. In notify stage, we basically have to check if there is atleast one event

pending to be addressed. All the sensitive variables of the events acts as a means to

find if event is triggered or not. An OR reduction of all these variables should be able

to predict if atleast one of the events is active. The whole delta cycle is repeated if an

event is found. This process is repeated until all the events have been addressed. In

the process of translation, the OR reduction is not as trivial and cannot be finished

in O(1) as two threads combine in each iteration to give the result. There are several

reduction techniques[26] which takes care of it in logarithmic time by making use of

all the cores to reduce as many possible threads as possible.

Coming out of the while loop, if no pending events are found, the next step is to

advance time to the closest possible time in future when any event is active. This

requires finding the minimum positive value of the trigger variable of all events. The

positive term is highlighted in this case because if an event is served, its trigger

variable is reset to a negative value in update stage. Finding the minimum positive

value of an array is again similar to reducing the array by taking two candidates

in array each time and storing them in same array. It takes logarithmic time to

calculate the next time to be simulated. Time is advanced to that value and the

delta cycle starts again.

58

Figure 5.5: Code mapping to multiple warps in GPU

5.4 Different Code Structure Optimization

GPU produces best results when we have single instruction on multiple datasets.

Each SMP has a single fetch unit and if threads are running code with different

structure, then they are effectively serialized. Execution progresses in GPU is in a

group of 32 threads which is called a warp. If a warp has different code structure,

then it cannot be executed in parallel in any way. The solution here is to identify

the processes with different code structure and map them to different warp. Figure

5.5 shows how to map them to different warps.

5.5 Shared Memory Optimization

Not much work is done to explore the memory assignment of variables as all of

them use shared memory to store all the variables in previous approaches. If processes

having different code structure are sensitive to same event, then they are mapped to

different warps with reads to same variable as shown in figure 5.6. Memory coalescing

happens only when multiple threads in a warp access same shared memory location.

In the case mentioned here, memory coalescing is not possible since warps are dif-

59

5

41

79

variable1

variable1_copy

READ

Figure 5.6: Shared memory conflict in sensitive variables across multiple warps

ferent, resulting in memory access serialization. If a sensitive variable is common to

two processes which does not share the same code structure, then assigning them to

shared memory can be costly as it will cause multiple reads to same memory loca-

tion. Because of this, they are individually stored in every thread’s register memory,

reducing the serialization of reads. For remaining cases, we assign sensitive variables

to shared memory, as register memory is a limited resource. Trigger variables are

stored in shared memory because they do not produce conflicts.

5.6 GPU Execution of Non-Synthesizable Model

In this section, we give an overview of the execution steps followed in the trans-

formed CUDA code by taking a example shown in figure 5.3. It is composed of two

types of blocks, namely initiator and target, communicating through timed events.

60

Figure 5.7 shows the corresponding execution steps performed on GPU, where solid

and dashed arrows show conditional true or false statements respectively while read-

ing the variables from memory. Apart from communication via events, we consider

different code structures among initiators and targets individually. In order to avoid

shared memory conflicts, our synthesizer maps sensitive variables for events to reg-

ister memory and trigger variables to shared memory. In execution phase, all the

cores read their sensitive variables from register memory in parallel. Since initiators

are triggered, they execute until suspended and update the trigger time for events

sensitive to targets by doing writes to shared memory as shown in figure 5.7. In up-

date phase, all the cores execute in parallel to check the current time against trigger

time, and enable the corresponding event if there is a match. Since trigger variables

Initiator1

Register

Shared Memory

Initiator2

Register

Target1

Register

Target2

Register

Barrier

thread1

Register

Shared Memory

thread2

Register

thread3

Register

thread4

Register

Barrier

Initiator1

Register

Shared Memory

Initiator2

Register

Target1

Register

Target2

Register

Barrier

thread1

Register

Shared Memory

thread2

Register

thread3

Register

thread4

Register

Barrier

Evalu
ate P

h
ase

U
p

d
a

te
/N

o
tify

P
h

ase
Evalu

ate P
h

ase

U
p

d
a

te
/N

o
tify

P
h

ase

Figure 5.7: Execution mechanism of timed event communication in GPU using shared and
register memory

61

Listing 5.1: TLM Model Mapped to GPU
// local sensitive variable shared trigger variable(time)

bool ev_sensitive;

int ev_trigger[2];

do {

do {// Evaluate Phase

switch (idx) {

case 0:// initiator thread wait on e1

if (ev_sensitive == 1) {

// initialize payload

// trigger e2 after delay

ev_trigger[1] = time + delay;

}

break;

case 1:// target thread wait on e2

if (ev_sensitive == 1) {

// decode payload ...

// process transaction ...

// trigger e1 in current delta cycle

ev_trigger[0] = time;

}

break;

}

__syncthreads();

// Notify and Update Phase

// Check time against event trigger time

if (time == ev_trigger[idx]) {// set event, reset time

ev_sensitive = 1; ev_trigger[idx] = -1;

} else {// unset event

ev_sensitive = 0;

}

__syncthreads();

ev = or(ev_sensitive); // find any active event

} while (ev); // do until all deta cycles finish

time = min_time(ev_time); // next trigger time

} while (time <= MAXTIME); // do until maxtime

reside in shared memory, this step causes reads to shared memory and writes to reg-

ister memory. There is no conflict in reads here as each thread is assigned separate

trigger variable stored in shared memory. After some time, events sensitive to target

processes become active and same steps are followed again.

5.7 Support for Transaction Level Modeling

In order to parallelize transaction level models, we partition the process of con-

version from TLM2.0 to GPU into two phases. TLM2.0 models are transformed into

CUDA compatible model by using timed event based communication model as an

intermediate step. Since the implementation of latter is discussed in depth in previ-

62

ous sections, we are only concerned about the former. Figure 5.8 shows a possible

conversion of TLM2.0 model into event based communication model.

We study 4 basic interfaces which are widely used in most TLM2.0 models namely,

blocking, non-blocking, direct memory interface and debug interface. All these in-

terfaces are briefly described in previous chapters. In this section, we describe only

transformation of a blocking interface into a timed event communication model. For

other interfaces, the transformation is a trivial extension of the methodology de-

scribed below.

5.7.1 Blocking Interface

In this example, we have single initiator and target connected through a socket

as shown in figure 5.8. At the beginning, initiator initializes the payload with pa-

rameters such as transaction command, address, data pointer etc. In a blocking

interface, b transport is a method which initiates a request from initiator to target.

When initiator makes a call to b transport, it suspends the execution of initiator

thread and triggers the execution of b transport method implemented in the target.

Initiator thread is suspended until the target method completes its execution. This

protocol can be transformed to an equivalent model using two events, e1 and e2, and

replacing the b transport call as shown in figure 5.8 with notify(e1) and wait(e2)

statements. The b transport call on the target also undergoes some changes becom-

ing sensitive to e1 and has a delay mentioned in the argument of b transport call

using wait(delay). Finally we add notify(e2) statement in target to return control

to initiator thread upon execution. The payload transaction which is passed as a

pointer in the b transport method is stored in shared memory of GPU since it is

used by multiple threads. Once the model is transformed into events and waits, it

can be mapped to GPU easily using transformation into sensitive and trigger vari-

63

 Initiator_process() {

 //initialize payload

 b_transport(*payload, 10NS)

 // other functions

}

 target_process() {

 // decode payload

 // process payload

 wait(10, SC_NS);

}

sc_event e1, e2;

Initiator_process() {

 //initialize payload

 notify (e1, 10, SC_NS);

 wait (e2);

 // other functions

}

target_process()

sensitive << e1

target_process() {

 // decode payload

 // process payload

 notify(e2)

}

bool e1_sensitive, e2_sensitive;

int e1_trigger, e2_trigger;

If (thread_idx == 20) {

 switch (location_thread_20) {

 case 0:

 // initialize payload

 e1_trigger = time + 10;

 location_thread_20++;

 break;

 case 1:

 if (e2_sensitive) {

 // other functions

 }

 break;

 }

}

If (thread_idx == 40) {

 if (e1_sensitive) {

 // decode payload

 // process payload

 e2_sensitive = time;

 }

}

Figure 5.8: TLM transformation of blocking interface

ables and increasing the delay for time. Listing 5.1 shows a brief transformation of

TLM2.0 model finally to GPU with detailed comments. Event e1 and e2 are mapped

to ev trigger[0] and ev trigger[1] respectively.

5.7.2 Non Blocking Interface

A non-blocking interface can also be easily mapped to GPU threads in a similar

fashion by transforming the original TLM2.0 model into event based model with

wait and notify statements. The only difference here from the blocking interface is

that while in blocking interface the initiator thread waits until there is a return from

the target thread, so we have a wait(e2) in the end. In a non-blocking interface, the

initiator thread continues to run even after it has started the execution of b transport

in the target thread. So, while transforming, we remove the wait(e2) statement from

the initiator thread as shown in figure, to achieve same results. But, non-blocking

interface have forward as well as backward transport calls, therefore two events are

used in this scenario as well. The transformation is completely shown in figure 5.9.

64

 Initiator_process() {

 //initialize payload

 nb_transport_f(*payload, 10NS)

 // other functions

}

 nb_transport_b() {

 // acknowledgement received

}

 nb_transport_f() {

 // decode payload

 // process payload

 wait(10, SC_NS);

 nb_transport_b(*payload, 10NS)

}

sc_event e1, e2;

Initiator_process() {

 //initialize payload

 notify (e1, 10NS);

 // other functions

}

nb_transport_b()

sensitive << e2;

nb_transport_b() {

 // acknowledgement received

}

nb_transport_f()

sensitive << e1

nb_transport_f() {

 // decode payload

 // process payload

 notify(e2)

}

bool e1_sensitive, e2_sensitive;

int e1_trigger, e2_trigger;

If (thread_idx == 20) {

 // initialize payload

 e1_trigger = time + 10;

 location_thread_20++;

}

If (thread_idx == 21) {

 if (e2_sensitive == 1) {

 // acknowledgement received

 }

}

If (thread_idx == 40) {

 if (e1_sensitive) {

 // decode payload

 // process payload

 e2_sensitive = time;

 }

}

Figure 5.9: TLM transformation of non-blocking interface

5.7.3 Direct Memory Interface

A direct memory interface makes the use of fact that if there are going to be

multiple transactions for same target, then we can get a pointer to memory from

the target to initiator which can do reads and writes directly at the initiator. In

this method, during the first transaction, the target sends a hint to initiator in the

payload which tells it that direct memory interface can be established. In initiator

we check for the clue and if it is found, we get the pointer to memory through a call

to get direct mem pointer() and do the rest of the read writes directly through that

pointer.

Transforming this to GPU requires an additional hint variable in the shared

payload and some conditional statements to check if the DMI is allowed on the

memory. The initiator thread needs some additional checks and functions to retrieve

the pointer from target thread to current thread after which it can complete the

transaction in single delta cycle. It need not go through all the notify and wait

cycles caused through blocking interface.

65

5.7.4 Debug Interface

Working of debug interface is similar to that of a blocking interface except that

it does not have any notion of timing associated with it. It is only used to get a

status of all the memory at any point of time. Transformation of this is very similar

to that of a blocking interface by removing the wait(time) statement which causes

the delay.

66

6. TIME DECOUPLED GPU SIMULATION

Until now we have only discussed how to accelerate any SystemC model execution

using GPU based approach. We have talked about the translation of code from

SystemC to GPU where the mapping is done only on a single SMP. A GPU has

multiple SMPs and there are multiple reasons because of which we need to make use

of these SMPs.

6.1 Problems with Single SMP Framework

1. Different Code Structure: We have mentioned in the previous discussions that

the acceleration from GPU is mainly due to its SIMD nature which allows

multiple instances of a single design to simulate faster. This however does not

guarantee the best results when the design is largely dominated by elements

which have different code structure. If there are instances of different designs

integrated into a MPSOC, then the code will run more or less serially. This

is because there is only one fetch unit in a SMP of a GPU and it consists

of multiple stream processors which are responsible for execution of parallel

threads. If the code structure is completely different, then it is hard to find

the scope for parallel simulation. In order to avoid it, we want to split the

code with different code structure to different SMP which have different fetch

unit operating completely in parallel. This enables us to use the multiple fetch

units to allow some instruction level parallelism in the code.

2. Large Problem: Another drawback of GPU based approach is that if a problem

size is very large, we may not be able to map it to a single SMP. When there

are large number of functions mapped only to a single SMP, the device will

67

split them into warps of 32 threads. There will be a lot of context switching

in the code as only limited number of functional units are present which can

execute in parallel. The other SMP on the other hand are sitting idle. So,

we would want to distribute the work load to multiple SMP when the size of

problem is large.

6.2 Trade-off in using Multiple SMP

Multiple SMPs provide us with some scope of instruction level parallelism in

GPU, but these are usually very limited. The number ranges from 2 from low end

GPU to 26 in high performance GPUs. In the hardware that we have used, we are

provided with 13 SMPs in a GPU. Dividing the code onto multiple threads may

sound good but there is a trade off in performance caused by multiple factors -

1. Shared Memory: When the processes are localized to one thread block which

is mapped onto a single SMP, shared memory is readily available for storing

an variables common to both the threads. When we divide the processes to

different thread blocks, there is no guarantee that they will be mapped to same

SMP. So, shared resources go to global memory which is much more costly in

terms of latency than shared memory. So, use of different thread blocks should

be such that common resources are handled in global memory with minimum

cost in latency.

2. Synchronization Overhead: In the execution of a delta cycle in SystemC, there

is a synchronization barrier among all the processes between each phase to

make sure that some processes may not run ahead of time and cause race

conditions. Now, when we split some processes to different thread blocks, we

need to make sure that both the thread blocks are synchronized at the end of

68

A A A

B B B

C C C

D D D

A A A

B B B

C C C

D D D

Global

Memory

Global

Memory

Write

context to

global

memory

Reads

context

from global

memory

S
M

P
1

S
M

P
2

Decoupling Time Decoupling Time

Figure 6.1: Time decoupled simulation

delta cycle. Synchronization between thread blocks is not as trivial as between

the threads and is much more latency consuming. Main cause of delay is

because the control is transferred to CPU where both the thread synchronizes

and returns back the control to GPU. This context switch causes a lot of delay

in the execution. Also there would be data transfers in some cases from GPU

to CPU memory to determine stop condition which is costly. So, we need to

use this technique such that synchronization is as low as possible.

In [42], authors have analyzed some techniques for efficient inter block syn-

chronization. Nevertheless, it still becomes a bottleneck for achieving high

performance with multiprocessors. In [39], authors have replicated common

process to different multiprocessors to remove block synchronization. This is

not feasible in case of transaction level models and timed event communication

models. In this work, we have implemented time decoupled simulation to re-

duce number of synchronizations between multiprocessors of a GPU, effectively

improving the performance. This approach was recently studied for its benefits

on multi-core hosts[41][40].

69

Figure 6.2: Partitioning of a design for time decoupled simulation

6.3 Time Decoupled Parallel GPU Simulation

For large designs which cannot be mapped to a single multiprocessor, we parti-

tion the design and map them separately such that minimum communication time

between them is maximized. Each of the multiprocessor is run in parallel up-to a

decoupling time, reducing lots of costly memory transfer operations. Communication

between the two process groups shown in figure 6.1 happens rarely, which motivates

us to run them on multiprocessors in parallel without synchronization up-to a de-

coupling time. Without time decoupling, there would be lots of redundant synchro-

nizations at every step even though the processes mapped to different multiprocessor

communicate after decoupling time. The decoupling time between multiprocessors

cannot exceed the minimum communication time which would cause race conditions

in the code otherwise.

This kind of technique requires some hints from user end to provide some com-

munication delay across interfaces in order to create a partition. If the decoupling

time exceeds this limit, then there is a possible chance of losing some transactions.

So, this technique should be used carefully. Figure 6.2 shows a possible partitioning

of a NOC design to different SMPs of a GPU.

70

7. EXPERIMENTAL RESULTS

7.1 Experimental Setup

We compare our results with OSCI SystemC reference kernel which runs as a

single threaded application on a Intel(R) Core(TM) i7-3632QM CPU @ 2.20GHz

machine. For GPU simulations, we use NVIDIA GK110GL [Tesla K20m], which can

run a maximum of 2496 threads at a time with each core clocked at 706MHz and

has 13 different multiprocessors(SMPs).

7.2 MPSOC Simulator

Firstly, we will start off by stating some of the results for simulation latency

produced by SystemC MPSOC simulator which forms the basic motivation for mov-

ing towards multi-core architectures. We have designed the simulator with processor

cores capable for running MIPS ISA, with all the transactions which are either a miss

in cache or addressed to the external application(jpeg encoder) directed to their re-

spective slaves after going through the bus. Bus modeling is done in two different

ways, one is by designing an event based cycle accurate model and the other is by

using transaction level models. As seen from the results in table 7.1, after simulating

it with actual external application, transaction level modeling produces much faster

results than the cycle accurate SystemC model.

Benchmark SystemC TLM SpeedUp

Multiplier 1.24 0.09 13.8x

jpeg encoder(128X128) 86.40 11.40 7.6x

jpeg encoder(256X256) 376.81 42.79 8.8x

Table 7.1: Variation of latency(in sec) with different types of bus modeling in a host with
4 cores

71

Number of Simulator cores Latency

3 11.4

6 24.8

9 41.6

12 56.3

Table 7.2: Variation of latency(in sec) with increasing number of cores for encoding
128X128 image

Benchmark OSCI Static Dynamic Predictive

Multiplier 1.22 1.09 1.06 1.11

jpeg encoder(128X128) 84.76 56.68 36.23 34.95

jpeg encoder(256X256) 369.12 191.30 128.49 119.15

Table 7.3: Variation of latency(in sec) across different types of scheduling in a host with 4
cores

For the jpeg encoder benchmark, we increase the size of design and share the

work to additional cores to increase the parallelism in hardware. As shown in table

7.2, with increasing number of cores in design, the latency increasing almost linearly.

More the number of cores, greater are the number of processes with same code

structure. This is the key motivation for using GPU instead of multi-core host.

In order to accelerate the simulation, we try some of the multi-core techniques on

the same benchmarks. Multiplier has a simple hardware model used to test initial

results. For more complicated application, we consider jpeg encoder compressing

128X128 and 256X256 images by splitting some part of work to hardware and other

to software. Using a host with maximum of 4 cores, we can infer from table 7.3

that dynamic and predictive scheduling provide good results. There is although not

a major difference because the savings in time provided by predictive scheduling is

comparatively low. Static scheduling does not work at all in all these cases as it has

more chances to produce skewed scheduling.

72

7.3 Synthetic Benchmarks for GPU

In this section, we evaluate the performance of our techniques by simulating

benchmarks which are most commonly used in industry and closely mimic the prob-

lems encountered in large scale parallel SystemC simulation. We start with a se-

quential design(Shift Register) consisting of a series of flip-flops connected to each

other. Only consisting of timed synchronized events, this example is used for ana-

lyzing performance improvements from optimized memory allocation. We create a

handshake benchmark as shown in figure 5.3 which consists of timed notifications

and waits to implement a handshaking protocol between two processes.

7.3.1 Memory Optimization

Firstly, we compare the efficiency of our approach which maps sensitive variables

to register memory instead of shared memory in certain cases as described in section

5.5. Since we are comparing results against previous approach, we consider 64 in-

stances of both flip-flops in Shift Register and Handshake benchmark. As seen from

the results in Table 7.4, for a sequential circuit, we are getting a speed-up of 5x more

than the existing approach [24], and 10x speed up relative to the reference OSCI

model. Our model is better in this case than the previous work[24] because we pre-

vent the conflict in shared memory by allocating common events to register memory.

Extending our approach to Handshake benchmark which implements timed events,

we find 2.7x improvement in results when the sensitive variables were mapped to

register memory rather than shared memory. Both the benchmarks show that dis-

tributing event variables to shared and register memory is better than assigning them

always to shared memory.

73

Benchmark OSCI GPU Sh GPU Reg SpeedUp
with
GPU Sh

SpeedUp
with
GPU Reg

Shift Register 118.1 51.1 10.3 2.3x 11.5x

Handshake 129.0 63.8 24.1 2.0x 5.4x

Table 7.4: GPU Sh is the scgp[24] implementation of benchmarks which sensitive variables
are mapped to shared memory and GPU Reg is our approach where sensitive variables are
mapped to register memory. Simulation time(in ms) comparison across benchmarks

7.4 Typical SystemC Benchmarks

In order to evaluate our study on implementations which are used in industry, we

use some of the typical SystemC models[31] which are used to evaluate performance

of system level modeling. It covers a variety of applications from different domains

Figure 7.1: List of benchmarks

74

such as Auto/Ind, Security, Telecom, Consumer etc., described in figure 7.1. In each

of these benchmarks, we have an initiator, which collects the data and communi-

cates with the the target block through transaction level modeling. Target block

processes the data based on its implementation, for example - fft, uart, interpola-

tion etc., and sends the result to initiator through transaction level modeling again.

These benchmarks are slightly modified to handle the communication between mod-

ules by TLM2.0 library. With the algorithm described in this work, we map these

benchmarks to GPU and run for 5ms, where the delay between communication is

taken 1ns. As shown in figure 7.2a, we have a master which extracts a set of data

from input file, processes it to form a packet and initiates a transport call through

TLM to slave. When the packet is received, slave decodes the contents of packet and

processes the input data depending upon the application such as fft, idct etc. The

output result is again transported through a TLM call to master which writes the

result to a file.

7.4.1 Packet Size Variation

In order to achieve the scope for parallel threading, we firstly increase the size

of data being extracted from input file. Figure 7.2b shows the corresponding block

diagram of the resultant design. The packet now contains multiple sets of data which

are to be transported through the same transport call to slave. At the other end,

when the packet is decoded, multiple threads are spawned to process each set of

data in parallel. Output results from all processes are gathered into a packet and

transported back to master. For this experiment, total input data is kept same across

different packet size.

Figure 7.3 shows a comparison of speed-up and latency for 5 different benchmarks

by varying the packet size and hence increasing the number of parallel processes.

75

MASTER

READ DATA

CREATE PACKET

TLM Transport

WRITE RESULT

SLAVE

DECODE PACKET

PROCESS PACKET

TLM Transport

CREATE PACKET

(a) Normal schematic with TLM

MASTER

READ DATA

CREATE PACKET

TLM Transport

WRITE RESULT

SLAVE

DECODE PACKET

PROCESS PACKET

TLM Transport

CREATE PACKET

INPUT DATA

OUTPUT DATA

(b) Increase data sets in a packet

SLAVE
SLAVE

MASTER
MASTER

MASTER

READ DATA

CREATE PACKET

TLM Transport

WRITE RESULT

SLAVE

DECODE PACKET

PROCESS PACKET

TLM Transport

CREATE PACKET

INPUT DATA

OUTPUT DATA

(c) Increase total number of instances

Figure 7.2: Schematic of benchmark with different variations

As we can observe from the graph, the latency of GPU decreases rapidly as we

include more datasets in a packet as a result speed-up also increases. The change in

latency for OSCI kernel is minor since effectively single core has to do same amount

of work. One important point to note here is that the benchmarks having higher

runtime also have the higher speed-ups increasing linearly. On the other hand, low

runtime benchmarks saturate after a point because when the runtime is very low,

synchronization overhead starts getting comparable.

76

Table 7.5: Simulation time(in s) of benchmarks with increasing packet size

Number of Instances
fft aes adpcm idct interpolation

OSCI GPU OSCI GPU OSCI GPU OSCI GPU OSCI GPU
1 15.74 52.43 184.12 240.76 13.23 58.23 12.11 30.58 320.84 563.72
4 15.45 12.43 178.94 76.45 13.08 24.54 11.98 7.54 313.12 172.32
16 15.11 3.43 172.49 22.89 13.02 6.47 11.90 2.11 308.74 45.65
64 14.83 1.30 168.66 8.43 12.90 1.78 11.86 1.08 298.90 13.54
256 14.22 0.85 154.23 3.02 12.86 0.97 11.83 0.78 292.50 3.96
1024 13.76 0.72 142.75 1.56 12.82 0.77 11.81 0.67 284.32 1.21

1 4 16 64 256 1,020

1

10

100

1,000

Number of Instances

L
at

en
cy

(i
n

se
c)

fft

aes

adpcm

idct

interpolation

1 4 16 64 256 1,020

1

10

100

1,000

Number of Instances

S
p

ee
d
U

p

fft

aes

adpcm

idct

interpolation

Figure 7.3: GPU latency and speed-up variation with size of packet

7.4.2 Number of Instances Variation

Another form of parallelism can be achieved by simply duplicating the instances

in design to perform multiple operation at the same time as shown in figure 7.2c. As

we increase the number of instances, the total data size also keeps on increasing. In

order to limit the simulation latency to numbers which are not too slow, we reduce

the initial runtime to 50000ns.

We can infer from the graph 7.4 that with increasing number of instances of the

design, the speed-up increases sharply. Latency of design running on GPU is almost

constant compared to that on single core. There is a sudden increase in latency when

we simulate 256 instances which is because at that point we have to use multiple

77

Table 7.6: Simulation time(in s) of benchmarks with increasing number of instances

Number of Instances
fft aes adpcm idct interpolation

OSCI GPU OSCI GPU OSCI GPU OSCI GPU OSCI GPU
1 0.07 0.06 0.53 1.22 0.05 0.03 0.04 0.02 0.60 0.35
4 0.19 0.06 2.28 1.23 0.13 0.03 0.11 0.02 2.35 0.38
16 0.69 0.07 8.63 1.24 0.47 0.04 0.43 0.03 11.95 0.41
64 3.16 0.07 31.54 1.27 1.64 0.05 1.50 0.04 37.28 0.45
256 12.51 0.23 130.42 1.39 6.51 0.18 5.78 0.12 140.24 0.67
1024 47.12 0.26 511.80 1.41 21.54 0.24 22.52 0.14 529.02 0.73

1 4 16 64 256 1,020

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Instances

L
at

en
cy

(i
n

se
c)

fft

aes

adpcm

idct

interpolation

1 4 16 64 256 1,020

1

10

100

1,000

Number of Instances

S
p

ee
d

U
p

fft

aes

adpcm

idct

interpolation

Figure 7.4: GPU latency and speed-up variation with increasing number of instances

SMP of GPU because one SMP cannot accommodate all the processes. This will

cause additional latency due to synchronization across blocks and also global memory

transfers. This overhead is comparable when the runtime is low for a benchmark and

so it affects the speed-up slightly. For benchmarks with high latency, the speed-up

is linearly growing and this effect is negligible.

7.4.3 Synchronous vs Asynchronous

Synchronous designs are the ones where processes are trigger at regular interval

of time which is defined by clock period. In the above mentioned benchmarks, we

can introduce a constant delay after each cycle to make it synchronous. In order

to make it asynchronous, we have randomized the delay such that processes would

78

Table 7.7: Simulation time(in s) of benchmarks with increasing number of instances for
asynchronous design

Number of Instances
fft aes adpcm idct interpolation

OSCI GPU OSCI GPU OSCI GPU OSCI GPU OSCI GPU
1 0.08 0.06 0.53 1.22 0.05 0.04 0.05 0.04 0.71 0.67
4 0.24 0.15 2.35 2.45 0.14 0.09 0.12 0.06 2.23 1.04
16 0.81 0.36 10.22 6.87 0.48 0.25 0.48 0.15 12.57 2.79
64 3.73 1.09 34.66 17.12 1.69 0.87 1.45 0.39 39.11 5.70
256 14.23 4.12 145.77 45.68 8.38 3.23 5.98 1.23 156.43 16.33
1024 47.69 6.23 643.01 103.28 20.89 7.45 24.37 3.07 594.12 28.31

1 4 16 64 256 1,020
0

20

40

60

80

100

Number of Instances

L
at

en
cy

(i
n

se
c)

fft

aes

adpcm

idct

interpolation

1 4 16 64 256 1,020

1

10

100

Number of Instances

S
p

ee
d

U
p

fft

aes

adpcm

idct

interpolation

Figure 7.5: GPU latency and speed-up variation with increasing number of instances for
asynchronous design

be triggered at irregular intervals of time. As seen from the results in figure 7.5,

synchronous benchmarks simulate faster which is expected because it is able to make

the most out of data level parallelism. The acceleration provided by GPU in this

work is localized to processes simulating at a given time instant. So, if different

instances of same design are being simulated at different times, then their execution

in GPU will be serialized as well.

7.4.4 Scalability

Figure 7.6 shows the scalability of our solution by increasing the number of in-

stances to 16384. A design of this size cannot be effectively simulated on OSCI

79

Figure 7.6: Runtime variation with number of instances across benchmarks

reference kernel because of linear scaling whereas GPU can perform the same task

with only 4-5x increase in simulation time when comparing 16384 instances to single

instance. This is achieved by mapping the instances to different multiprocessors as

there is no communication between instances. With addition of some form of cross

communication, the speed-ups are relatively lower which will be discussed in later

sections.

7.5 Multi-Initiator Target

This example has a high resemblance with any typical MPSOC model where

we have multiple processors connected to multiple memory interfaces through a bus

which serves the purpose of arbitrating and transferring the packet to its correct

destination. As shown in figure 7.8, the connectivity can be understood from the

diagram. All the previous benchmarks that we have used until now, had minimum

cross communication among duplicate instances. In this example, we will have some

form of cross communication as the number of initiators and targets can be different.

Number of Initiators are varied in this experiment to find out how much does the

80

Table 7.8: Simulation time(in ms) of multi-initiator socket with increasing number of ini-
tiators across different platforms

Number of Instances OSCI multicore(2) multicore(4) GPU
1 2.5 7.8 12.1 6.2
4 8.2 10.3 13.6 6.2
16 28.1 21.1 19.1 6.6
64 67.2 49.4 41.7 7.0
256 175.6 122.5 79.4 8.8
1024 402.4 269.3 151.3 9.4

1 4 16 64 256 1,020

1

10

100

1,000

Number of Initiators

L
at

en
cy

(i
n

m
se

c)

OSCI

Multicore(2)

Multicore(4)

GPU

1 4 16 64 256 1,020

1

10

100

1,000

Number of Initiators

S
p

ee
d
U

p

multicore(2)

multicore(4)

GPU

Figure 7.7: GPU latency and speed-up variation with increasing number of initiators for
multi-initiator target

latency of GPU varies with respect to that of single core OSCI implementation and

multi-core(2 and 4) implementations with dynamic scheduling.

In this experiment, we are comparing the simulation latency of single core with

multi-core implementation as well as GPU. The scheduling algorithm used in here is

dynamic since it is easier to implement and has a balanced distribution of workload.

Analysing the data, we can infer from graph 7.7 that GPU based simulation model

gives much better results when the number of instances are high because it is able

to make the most out of GPU’s data level parallelism whereas multi-core kernels are

better than single core but not as good as GPU. Also when we have a single initiator,

we would expect the single core kernel to give better results as there is no scope for

81

PROC PROC PROC PROC PROC PROC PROC PROC

BUS

MEMORY MEMORY MEMORYMEMORY

Figure 7.8: Multi-initiator target simulation model for benchmark

Table 7.9: Simulation time(in ms) of NOC with increasing size across different platforms

Number of Instances OSCI multicore(2) multicore(4) GPU
2X2 40.3 140.3 164.2 89.4
4X4 171.2 342.6 312.1 160.6
8X8 823.5 1109.1 845.1 311.3

16X16 3695.3 3987.8 2335.6 802.4
32X32 17342.7 13195.6 7326.2 1345.1

parallelism in the design, and which is confirmed from the results.

7.6 Network on Chip

As the number of cores on a SOC increases, the congestion in the bus grows

quickly because all the cores have to go to memory through it. As a result, network

on chip architecture is growing popularity these days in order to create a scalable

network which can communicate through a chain of routers interconnected to each

other. Another advantage that this kind of design offers for our evaluation is that

it has a lot of branches in the code and also cross communication across multiple

instances. Figure 7.9 shows the connectivity of a single router in a network of chip

architecture.

Figure 7.10 shows the latency and speed-up variation of NOC implementation

82

 ROUTER

PE

ArbitrateArbitrate

Arbitrate

Arbitrate

Arbitrate

Figure 7.9: Schematic of NOC Router

4 16 64 256 1,020

1

10

100

1,000

10,000

100,000

Number of Routers

L
at

en
cy

(i
n

m
se

c)

OSCI

Multicore(2)

Multicore(4)

GPU

1 4 16 64 256 1,020

1

10

100

1,000

Number of Initiators

S
p

ee
d
U

p

multicore(2)

multicore(4)

GPU

Figure 7.10: GPU latency and speed-up variation with increasing size of NOC

across different simulation platforms such as single core, multi-core(2 and 4) and

GPU. The trend in the results is very much similar to that of figure 7.7 but the

speed-up provided by GPU for this case is not as high as previous cases. The main

reason being that with the complicated nature of design, there are lots of conditional

83

statements in the code which causes some amount of branch divergence in the code.

7.7 Time Decoupled Simulation

Figure 7.12 shows the variation of simulation time with increasing decoupling

time for the Handshake benchmark where processes are mapped to different multi-

processors. As shown in figure 7.11 all the processes in a block communicate every

1ns and inter-block communication happens every 20ns. Both the blocks are mapped

to different SMP and synchronization is restricted to happen every 20ns instead of

every 1ns. We can observe that simulation time decreases exponentially upon in-

creasing the decoupling time and stabilizes to a particular value eventually. In order

to achieve maximum benefit of time decoupling, we should partition our design such

that we lie as close to the stable region as possible. As we increases decoupling

time, it cannot go beyond the communication time between two processes mapped

to different multiprocessors, otherwise it will cause race conditions in design. So,

minimum time for communication between events should be as high as possible.

In order to evaluate this optimization more clearly, we would be applying time

decoupled simulation approach to NOC benchmark by restricting the communication

across columns to 20ns. Communication across rows can still happen every 1ns. In

this way, as shown in figure 7.13, we divide the simulation into multiple zones with

each zone occupying one of the row. After simulating it for two configurations and

varying the simulation latency with decoupling time, we can observe that there is a

sharp decrease in latency in both the cases with increasing decoupling time and it

tends to saturate close to 20ns when synchronization overhead and global memory

access overhead are minimum. It is also worth noting that latency for the bigger

design decreases more rapidly because it uses more SMPs and more global memory.

84

P1 P2

1ms

1ms

P3 P4

1ms

1ms

Every 20 ms

Figure 7.11: Handshake benchmark for time decoupled simulation

0 4 8 12 16 20
0

100

200

300

400

Decoupling Time(ns)

S
im

u
la

ti
on

T
im

e(
m

s)

Handshake

Figure 7.12: Time decoupled parallel GPU simulation for handshake benchmark

85

Figure 7.13: Time decoupling partition for NOC

0 4 8 12 16 20
200

300

400

500

600

700

800

Decoupling Time(ns)

S
im

u
la

ti
on

T
im

e(
m

s)

4X4
8X8

Figure 7.14: Time decoupled parallel GPU simulation for NOC

86

8. CONCLUSIONS AND FUTURE WORK

The future of computing devices is growing towards multicore architectures and

very soon it is likely to come into mainstream products. Even current generation

devices have dual to octa-core architectures. The demand is likely to grow higher

in future with semiconductor companies trying to deliver products with a shorter

time to market. The first step of IC design involving system level simulation is

critical because it defines the architecture which rest of the teams are going to work

on. Single core platform for simulation are no longer acceptable because of the

increasing design size. This work provides a platform for simulation of SystemC

models on GPU capable of handling complex designs involving timed event based

communication which is not previously done before. It provides an infrastructure

which can handle any general non-synthesizable SystemC design on a GPU device.

This work can be further improved in future by adding some techniques to re-

solve branch divergence in GPU which can be a serious problem if the number of

conditional statements are more. This work involves a process to transformation of

original SystemC code into CUDA compatible code which can be a lengthy process.

Ideally, we would like to have an environment where we could just write the code for

our design and it can simulate without the tedious process of transformation like on

a OSCI single core kernel. Although GPU can provide a scalable solution, it may not

be good in all the cases(for example when there is branch divergence). So, it should

be able to identify beforehand if the design is best suited for CPU or GPU and run

it accordingly. Also, not each and every construct has been shown to translate in

this work. Future work could involve a simulator which defines translation of all the

SystemC constructs.

87

REFERENCES

[1] NVIDIA, CUDA C Programming Guide v7.5. https://docs.nvidia.com/

cuda/cuda-c-programming-guide.

[2] Open SystemC Initiative, SystemC. www.systemc.org.

[3] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha. Garnet:

A detailed on-chip network model inside a full-system simulator. In Perfor-

mance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE Interna-

tional Symposium on, pages 33–42. IEEE, 2009.

[4] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco Menichelli, and

Mauro Olivieri. Mparm: Exploring the multi-processor soc design space with

systemc. Journal of VLSI signal processing systems for signal, image and video

technology, 41(2):169–182, 2005.

[5] Valeria Bertacco, Debapriya Chatterjee, Nicola Bombieri, Franco Fummi, Sara

Vinco, Anirudh M Kaushik, and Hiren D Patel. On the use of gp-gpus for accel-

erating compute-intensive eda applications. In Proceedings of the Conference on

Design, Automation and Test in Europe, pages 1357–1366. EDA Consortium,

2013.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh

Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer Architecture

News, 39(2):1–7, 2011.

[7] David C. Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC: From

the Ground Up, Second Edition. Springer Publishing Company, Incorporated,

88

2nd edition, 2009.

[8] Nicola Bombieri, Sara Vinco, Valeria Bertacco, and Debapriya Chatterjee. Sys-

temc simulation on gp-gpus: Cuda vs. opencl. In Proceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software codesign and

system synthesis, pages 343–352. ACM, 2012.

[9] Shuai Che, Jie Li, Jeremy W Sheaffer, Kevin Skadron, and John Lach. Ac-

celerating compute-intensive applications with gpus and fpgas. In Application

Specific Processors, 2008. SASP 2008. Symposium on, pages 101–107. IEEE,

2008.

[10] Philippe Combes, Eddy Caron, Frédéric Desprez, Bastien Chopard, and Julien

Zory. Relaxing synchronization in a parallel systemc kernel. In Parallel and Dis-

tributed Processing with Applications, 2008. ISPA’08. International Symposium

on, pages 180–187. IEEE, 2008.

[11] Jason Cong, Karthik Gururaj, Guoling Han, Adam Kaplan, Mishali Naik, and

Glenn Reinman. Mc-sim: An efficient simulation tool for mpsoc designs. In

Proceedings of the 2008 IEEE/ACM International Conference on Computer-

Aided Design, pages 364–371. IEEE Press, 2008.

[12] David Richard Cox. Ritsim: distributed systemc simulation. 2005.

[13] Rainer Dömer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-core

parallel simulation of system-level description languages. In Design Automa-

tion Conference (ASP-DAC), 2011 16th Asia and South Pacific, pages 311–316.

IEEE, 2011.

[14] Fernando Escobar, Mauricio Guerrero Hurtado, Lorena Garćıa Posada, Anto-

nio Garćıa Rozo, et al. Performance evaluation of a network on a chip router

89

using systemc and tlm 2.0. In Circuits and Systems (LASCAS), 2011 IEEE

Second Latin American Symposium on, pages 1–4. IEEE, 2011.

[15] FA Escobar-Juzga and FE Segura-Quijano. Performance analysis of a jpeg

encoder mapped to a virtual mpsoc-noc architecture using tlm 2.0.

[16] M Teresa Medina León. Fast modelling and analysis of NoC-based MPSoCs.

PhD thesis, Eindhoven University of Technology, 2006.

[17] Ye Lu, Sakir Sezer, and John McCanny. Tlm2. 0 based timing accurate modeling

method for complex noc systems. In Circuits and Systems (ISCAS), Proceedings

of 2010 IEEE International Symposium on, pages 2900–2903. IEEE, 2010.

[18] S. Mahadevan, M. Storgaard, J. Madsen, and K. M. Virk. Arts: A system-

level framework for modeling mpsoc components and analysis of their causality.

In 13th IEEE International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS). IEEE Computer

Society, sep 2005.

[19] A. Mello, I. Maia, A. Greiner, and F. Pecheux. Parallel simulation of systemc

tlm 2.0 compliant mpsoc on smp workstations. In Design, Automation Test in

Europe Conference Exhibition (DATE), 2010, pages 606–609, March 2010.

[20] Jones Y Mori and Michael Huebner. A high-level analysis of a multi-core vision

processor using systemc and tlm2. 0. In ReConFigurable Computing and FPGAs

(ReConFig), 2014 International Conference on, pages 1–6. IEEE, 2014.

[21] Youssef N Naguib and Rafik S Guindi. Speeding up systemc simulation through

process splitting. In Design, Automation & Test in Europe Conference & Exhi-

bition, 2007. DATE’07, pages 1–6. IEEE, 2007.

90

[22] Kensuke Nakajima, Tomohiro Hieda, Ittetsu Taniguchi, Hiroyuki Tomiyama,

and Hiroaki Takada. A fast network-on-chip simulator with qemu and systemc.

In Networking and Computing (ICNC), 2012 Third International Conference

on, pages 298–301. IEEE, 2012.

[23] Mahesh Nanjundappa, Akhil Kaushik, Hiren D Patel, and Sandeep K Shukla.

Accelerating systemc simulations using gpus. In High Level Design Validation

and Test Workshop (HLDVT), 2012 IEEE International, pages 132–139. IEEE,

2012.

[24] Mahesh Nanjundappa, Hiren D Patel, Bijoy Jose, Sandeep K Shukla, et al.

Scgpsim: a fast systemc simulator on gpus. In Design Automation Conference

(ASP-DAC), 2010 15th Asia and South Pacific, pages 149–154. IEEE, 2010.

[25] Jyothi Swaroop Arlagadda Narasimharaju. SystemC TLM2. 0 Modeling of

Network-on-Chip Architecture. PhD thesis, Arizona State University, 2012.

[26] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel

programming with cuda. Queue, 6(2):40–53, March 2008.

[27] Pablo Montesinos Ortego and Paul Sack. Sesc: Superescalar simulator. In 17

th Euro micro conference on real time systems (ECRTS05), pages 1–4, 2004.

[28] Kalyan S Perumalla. Discrete-event execution alternatives on general purpose

graphical processing units (gpgpus). In Proceedings of the 20th Workshop on

Principles of Advanced and Distributed Simulation, pages 74–81. IEEE Com-

puter Society, 2006.

[29] Mohammad Abdul Qayum. Design of a Mips Instruction Set Simulator for Mul-

ticore Processor Research in Systemc. PhD thesis, Oklahoma State University,

2010.

91

[30] Hao Qian and Yangdong Deng. Accelerating rtl simulation with gpus. In Pro-

ceedings of the International Conference on Computer-Aided Design, pages 687–

693. IEEE Press, 2011.

[31] Benjamin Carrion Schafer and Anushree Mahapatra. S2cbench: Synthesizable

systemc benchmark suite for high-level synthesis. Embedded Systems Letters,

IEEE, 6(3):53–56, 2014.

[32] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoff-

mann. parsc: synchronous parallel systemc simulation on multi-core host ar-

chitectures. In Proceedings of the eighth IEEE/ACM/IFIP international con-

ference on Hardware/software codesign and system synthesis, pages 241–246.

ACM, 2010.

[33] Christoph Schumacher, Jan Henrik Weinstock, Rainer Leupers, Gerd Ascheid,

Laura Tosoratto, Alessandro Lonardo, Dietmar Petras, and Thorsten Grotker.

legasci: Legacy systemc model integration into parallel systemc simulators.

In Parallel and Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2013 IEEE 27th International, pages 2188–2193. IEEE, 2013.

[34] Shye-Tzeng Shen, Shin-Ying Lee, and Chung-Ho Chen. Full system simulation

with qemu: An approach to multi-view 3d gpu design. In Circuits and Systems

(ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 3877–

3880. IEEE, 2010.

[35] Lin Xiang Shi and Zhe Zhang. A hybrid noc-based mpsoc simulator. In Advanced

Engineering Forum, volume 6, pages 238–242. Trans Tech Publ, 2012.

[36] Rohit Sinha, Aayush Prakash, and Hiren D Patel. Parallel simulation of mixed-

abstraction systemc models on gpus and multicore cpus. In Design Automa-

92

tion Conference (ASP-DAC), 2012 17th Asia and South Pacific, pages 455–460.

IEEE, 2012.

[37] N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil, G. Blanc, C. Bechara, and

R. David. Sesam: An mpsoc simulation environment for dynamic application

processing. In Computer and Information Technology (CIT), 2010 IEEE 10th

International Conference on, pages 1880–1886, June 2010.

[38] N Ventroux, J Peeters, T Sassolas, and James C Hoe. Highly-parallel special-

purpose multicore architecture for systemc/tlm simulations. In Embedded Com-

puter Systems: Architectures, Modeling, and Simulation (SAMOS XIV), 2014

International Conference on, pages 250–257. IEEE, 2014.

[39] Sara Vinco, Debapriya Chatterjee, Valeria Bertacco, and Franco Fummi. Saga:

Systemc acceleration on gpu architectures. In Proceedings of the 49th Annual

Design Automation Conference, pages 115–120. ACM, 2012.

[40] Jan Henrik Weinstock, Rainer Leupers, and Gerd Ascheid. Parallel systemc

simulation for esl design using flexible time decoupling.

[41] Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers, Gerd Ascheid,

and Laura Tosoratto. Time-decoupled parallel systemc simulation. In Proceed-

ings of the Conference on Design, Automation & Test in Europe, DATE ’14,

pages 191:1–191:4, 3001 Leuven, Belgium, Belgium, 2014. European Design and

Automation Association.

[42] Shucai Xiao and Wu chun Feng. Inter-block gpu communication via fast bar-

rier synchronization. In Parallel Distributed Processing (IPDPS), 2010 IEEE

International Symposium on, pages 1–12, April 2010.

93

[43] Dexue Zhang, Xiaoyang Zeng, Zongyan Wang, Weike Wang, and Xinhua Chen.

Mcvp-noc: Many-core virtual platform with networks-on-chip support. In ASIC

(ASICON), 2013 IEEE 10th International Conference on, pages 1–4. IEEE,

2013.

[44] Yuhao Zhu, Bo Wang, and Yangdong Deng. Massively parallel logic simulation

with gpus. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 16(3):29, 2011.

[45] Hao Ziyu, Qian Lei, Li Hongliang, Xie Xianghui, and Zhang Kun. A parallel

systemc environment: Archsc. In Parallel and Distributed Systems (ICPADS),

2009 15th International Conference on, pages 617–623. IEEE, 2009.

94

