
TOWARDS A PRINCIPLED WIRELESS SUPPORT IN SDN

A Thesis

by

PRITHVIRAJ SHOME

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Alex Sprintson
Committee Members, Paul Gratz

Radu Stoleru

Head of Department, Miroslav M. Begovic

May 2016

Major Subject: Computer Engineering

Copyright 2016 Prithviraj Shome

ABSTRACT

Software Defined Networking (SDN) has recently emerged as a transformational

tool to design and operate communication networks and services. While the SDN

approach has significant benefits for both wireline and wireless radio networks, the

support for wireless networks in SDN technologies is still in its infancy as compared

to wired networks. One of the key features of SDN is that networks can be managed

in a programmatic manner. The challenge for building such a model for wireless radio

networks is that there is a plethora of radio protocols that need to be supported, each

having its own nuances. To address this, we need to build fundamental abstractions

that provide enough visibility so that a programmer can implement protocols, while

at the same time being rigid enough not to expose excessive details that will compli-

cate the application development process. The purpose of this work is to introduce a

principled approach towards building a cross-layer architecture for wireless networks

so that they can receive the same level of programmability as wireline interfaces.

Specifically we aim to integrate wireless protocols into the general SDN framework

and to provide a logical and consistent view of physical layer radio resources. This

is achieved by proposing a new set of abstractions and their interfaces based upon

exisitng SDN terminology and the basic building blocks of Software Defined Radio

(SDR) in wireless devices. We validate our approach by implementing our design as

an extension of an existing OpenFlow data plane and deploying it in an IEEE 802.11

accesspoint as well as in a typical SDR system.

ii

DEDICATION

To my family and friends

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Alex Sprintson for

the guidance, inspiration and the mentoring he provided all throughout my graduate

career. He always provided great source of encouragement and was always available

to discuss various problems that eventually led to this thesis. I would also like to

thank the entire Flowgrammable Team who supported and provided valuable inputs

throughout the work. I greatly benefited from the discussions and hope that we

continue to work together in other projects. I am also thankful to Muxi Yan for the

interactions and brain storming sessions during the ÆtherFlow project. A special

mention also goes out to Jalil Modares and Dr. Nicholas Mastronarde from Univerity

at Buffalo for the collaborative effort which went into CrossFlow project. Finally,

I want to thank Dr. Paul Gratz and Dr. Radu Stoleru for having served as my

committe members.

Last but not least, I want to thanks my family and friends for their immense

support and encouragement, and most importantly, I would like to thank my wife

Punam for her understanding and support, without whom none of this would have

been possible.

iv

NOMENCLATURE

SDN Software Defined Networking

SDR Software Defined Radio

TLS Transport Layer Security Protocol

TCP Transmission Control Protocol

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . ix

1. INTRODUCTION . 1

2. BACKGROUND . 6

2.1 Software Defined Networking . 6
2.2 OpenFlow . 6
2.3 Software Defined Radio(SDR) . 8
2.4 GNU Radio Framework . 10

3. RELATED WORK . 11

3.1 Extension of Wireless LAN . 11
3.2 Programmatic Wireless Dataplane . 12

4. OPENFLOW EXTENSIONS . 14

4.1 ÆtherFlow Data Plane Abstractions 15
4.2 ÆtherFlow Messages . 18
4.3 CrossFlow Data Plane Abstractions 19
4.4 CrossFlow Message Extensions . 21

5. ÆTHERFLOW IMPLEMENTATION . 23

5.1 Implementation on an AP . 23

vi

5.2 ÆtherFlow Applications . 25

6. CROSSFLOW IMPLEMENTATION . 27

6.1 Illustrative CrossFlow Implementation 27
6.2 Example Applications . 29

6.2.1 Frequency Hopping Application 29
6.2.2 Adaptive Modulation Application 30
6.2.3 Cognitive Radio Application 30

7. VALIDATION . 31

7.1 ÆtherFlow Validation . 31
7.1.1 Experiment Setup . 31
7.1.2 Layer 2 Handoff Application 31
7.1.3 Experiment Procedure and Results 32

7.2 CrossFlow Validation . 34
7.2.1 Frequency Hopping Application Implementation 36
7.2.2 Adaptive Modulation Application Implementation 37
7.2.3 Cognitive Radio Application Implementation 38

8. CONCLUSION AND FUTURE WORK 40

REFERENCES . 42

vii

LIST OF FIGURES

FIGURE Page

2.1 Overview of Software Defined Networking (SDN) architecture. 7

2.2 SDN ecosystem with OpenFlow protocol. 8

2.3 Components of Software Defined Radio (SDR). 9

4.1 A UML diagram of OpenFlow data model. 15

4.2 OpenFlow interfaces abstraction. 16

4.3 UML diagram of CrossFlow model. 19

5.1 Implementation diagram of ÆtherFlow. 24

6.1 Transmitter implementation diagram of CrossFlow with two process-
ing blocks: Sink and Modulators. 28

7.1 ÆtherFlow experiment network topology 32

7.2 Comparison of throughput for ÆtherFlow with prediction and the
baseline configuration. 34

7.3 Comparison of packet loss rate for ÆtherFlow with prediction and the
baseline configuration. 35

7.4 Comparison of average handoff duration for ÆtherFlow with different
models and standard error. 35

7.5 Setup for cognitive radio application in CrossFlow 36

7.6 Range of packets loss while changing channels by keeping a fixed data
rate and a varying noise factor across each experiment 37

viii

LIST OF TABLES

TABLE Page

7.1 Variation of SNR and PER with increasing Noise Amplitude Factor
keeping a fixed data rate of 1Mbps. 36

ix

1. INTRODUCTION

Software Defined Networking (SDN) drastically changes the meaning and process

of designing, building, testing, and operating networks. The core principle of the

SDN paradigm is a separation of the network control and data planes. It enables

network administrators to have a centralized view of the network and provides a

standardized interface for remote configuration of network devices. In particular,

the SDN approach provides an abstraction of the underlying data plane and an

interface to manipulate that abstraction. This approach provides the capability to

manage and operate a large network through a logically centralized controller and

to define custom network behaviors.

The current support for wireless networking in SDN technologies has lagged be-

hind its development and deployment for wired networks. The academic and indus-

trial communities have focused primarily on wireline networks, while wireless net-

works have received significantly less attention. Currently published SDN standards,

the most popular of which is OpenFlow [16], do not provide support for wireless

protocols, which poses a major obstacle to developing SDN-enabled heterogeneous

networks with wireless components. Attempts to support wireless networking within

that framework have been ad hoc, and true network visibility is missing with re-

spect to wireless protocols. The wireless protocols are also constantly changing and

new protocols are being developed which have made the task for management of

cross-layer characteristics in wireless radio networks incredibly difficult.

With such ever-changing wireless standards and protocols, there has been a con-

scious shift towards a programmatic approach for designing and implementing wire-

less radios. This has led to a tremendous interest in Software Defined Radios (SDR).

1

SDR is a powerful concept in which filters, amplifiers, modulators and other complex

signal processing blocks are realized in software, instead of on specialized hardware.

As the task of signal processing is handed over to software, it is possible to use inex-

pensive general purpose hardware, connected to an RF front end, to create powerful

and highly flexible radios.

While the SDR paradigm has revolutionized the design of wireless radios, it does

not provide an efficient method to control a network of radios. While SDRs can be

reconfigured to provide a wide variety of radio functionalities, there does not exist

a consistent interface to expose the SDR’s functional modules to the application

developer. As modules can be added, removed or changed any time, the interface

framework must be able to adapt to these changes. As such, the requisite framework

should allow control of various constituent modules while hiding their complexity

from the network operator. This level of abstraction is necessary because, as the

network grows and becomes more heterogeneous, it is impossible for the operator to

keep track of each and every wireless radio module. Here, by the notion of hetero-

geneous networks, we take into consideration a network containing both wired and

wireless devices. Hence the architecture should enable network control, meet require-

ments of users and at the same time abstract away the details of the implementation.

The goal of this work is to fill the gap by extending the basic concepts of SDN

to support wireless networks in a principled way. We also aim to integrate two key

technologies, SDR and SDN, to provide a consistent interface to manage underly-

ing abstractions of physical layer radio resources in SDRs. Note that any reasonable

design must not be specific to a single protocol or implementation of SDN, but appli-

cable to every viable implementation. Furthermore, any solution must not be tailored

to a single application, but enable potentially any application. Some examples are:

2

• Physical layer adaptation including (i) frequency hopping to resist narrowband

interference and prevent unauthorized interception; (ii) transmission power

control to maintain a target link quality while reducing interference to other

users and/or extending battery life; and (iii) adaptive modulation and coding

to trade-off throughput and communication reliability and adapt to channel

conditions (e.g., pathloss and interference).

• Quality of service (QoS) provisioning to provide QoS policies according to pro-

files implemented through medium access control, throttling, admission control,

scheduling, and error control techniques (e.g., ARQ and FEC). This allows both

coarse-grained and fine-grained QoS policies to be defined in the network.

• Wireless handoff to efficiently manage the Layer 2 transition of a client between

APs (access points)

• Client steering optimizes the association of all the mobile stations in a wireless

network area by directing a client to connect to specific APs based on signal

strength and current usage.

• Adaptive routing to allow a distributed controller, with its global view of the

network, to dynamically switch between existing proactive and reactive rout-

ing protocols, and novel software-defined routing protocols, depending on the

network conditions and the application constraints.

• Self healing network to allow the controller to deploy fault management appli-

cations based upon self-healing mechanisms.

• Cross-layer control to allow joint optimization of parameters, algorithms, and

protocols at all layers of the protocol stack.

3

To support a broad range of applications, our approach is to extend a generalized

model of SDN derived from the OpenFlow specifications [7]. These extensions include

support for wireless ports and channels as well as the events and counters specific

to wireless networks. We also define various abstractions and their interfaces corre-

sponding to a radio physical port, which is in line with the design principles for SDR.

Our model enables SDN controllers to configure, query, and control IEEE 802.11 Ac-

cess Points (APs) with respect to a wide range of wireless events and also allows

fine-grained control of processing abilites of SDRs, which is independent of protocols

being implemented.

To validate the approach, we have implemented the model as an extension of

the OpenFlow protocol, with a corresponding software implementation in the CPqD

SoftSwitch software data plane [1]. We refer to our extension of this model and our

initial implementation in IEEE 802.11 APs as ÆtherFlow and the implementation

of programmatic control of SDRs through GNU Radio [3] framework as CrossFlow.

GNU Radio provides a modular and open-source digital signal processing environ-

ment for SDRs. The modules of GNU Radio are written in C++ and are tied together

through a Python wrapper to implement applications. We host GNU Radio on a

Universal Software Radio Peripheral (USRP) N210 device from Ettus Research and

also run CPqd SoftSwitch software [1] in a separate module as a switch agent.

We tested ÆtherFlow by developing a wireless mobility application that supports

Layer 2 handoff of mobile stations between IEEE 802.11 access points. The resulting

system performs on par with a traditional switching method. For testing Cross-

Flow, we develop three proof-of-concept applications, frequency hopping, adaptive

modulation and cognitive radio and validate its performance.

Our contributions can be summarized as follows:

4

• An extension of the generic SDN model to provide explicit support for wireless

radio interfaces and wireless access points.

• An implementation of this extension based on the OpenFlow protocol and the

CPqD SoftSwitch.

• An implementation of a controller application using ÆtherFlow framework and

experiments to demonstrate the viability of SDN-controlled access points for

efficient wireless handoff.

• Implementation of proof-of-concept applications using the CrossFlow frame-

work for design validation.

5

2. BACKGROUND

2.1 Software Defined Networking

Network reconfigurability is a major challenge in the networking industry. The ex-

plosion of mobile devices and cloud services have necessiated the need for on-demand

installation of services and reconfiguration of flow rules according to changing traffic

patterns. In addition, network elements like routers and switches have their own

unique interfaces and as such management of network components is a source of

concern for network operators. As network grows, this complexity increases expo-

nentially and rolling out new services becomes a tedious and complicated proces.

Software Defined Networking (SDN) is an architecture which addresses these

challenges by decoupling the control and forwarding functions. This enforces ab-

straction of underlying implementation and enables applications or network services

to be developed using the abstractions as shown in Figure 2.1. This simple and

elegant design also provides applications a centralized view of the network. As a re-

sult, it has sparked tremendous research interest in providing a scalable, secure and

programmatic approach towards the challenges discussed above. While SDN is a rev-

olutionary approach, it is still mainly geared towards wired networks. The wireless

networks have not recieved much attention in this regard. Through ÆtherFlow, we

provide a protocol independent approach for bringing wireless into SDN model. In

this thesis, we go a step further and provide a mechanism for dynamic radio resource

management to obtain true network visibility in a heterogeneous network.

2.2 OpenFlow

OpenFlow is an open standard, that began as research project, which allows

researchers to experiment with innovative protocols on network switches, without

6

Controller

Switch

Switch

Switch

Switch

Switch

Apps Apps Apps

Datapath
Layer

Control Layer

Application
Layer

Figure 2.1: Overview of Software Defined Networking (SDN) architecture.

the requirement of exposure to thier internal implementations. OpenFlow[16] builds

upon the control and data plane abstractions envisioned in the SDN framework, to

provide a well defined communication protocol between the two planes as well as a

flow table abstraction. Each entry in a flowtable is composed of a number of fields for

a packet to match upon, along with a set of associated instructions; each instruction

involves performing some actions on a packet or modification of the pipeline process-

ing in the form of allowing packets to be sent to other tables for processing. The

OpenFlow communication protocol allows the centralized controller to interact with

the switches so that the controller can add, delete or modify the flow table entries

to perform certain processing actions. The protocol runs over TCP/TLS (Transport

Layer Security) connection so that the communication remains secured and prevent

unwanted intrusion which can compromise the security of the entire network. In or-

der for a switch to understand controller’s commands, the switch vendors implement

7

Figure 2.2: SDN ecosystem with OpenFlow protocol.

[Reprinted from [2]]

a switch agent and in this manner the implementation detail is abstracted out from

the controller’s point of view. This abstraction paradigm helps in development of

sophisticated applications which can leverage the OpenFlow primitivies, to configure

the data plane as well as listen for specific events, thereby enabling an asynchronous

programmming model. This OpenFlow enabled SDN ecosystem opens the door for

various network innovations and in this thesis, we leverage this model to implement a

programmable control plane for radio resource management using Software Defined

Radio (SDR). An overview of the current SDN ecosystem is presented in Figure 2.2.

2.3 Software Defined Radio(SDR)

Most of the wireless protocols in use today are implemented in hardware. With

the ever increasing number of protocols to be supported and their diverse require-

ments, it has become apparent that a programmable environment for hardware is

8

Bandpass
Filter

Low Noise
Amplifier

Low-pass
Filter

Mixer
Signal

Processing

Antenna

RF/IF Components
(Hardware)

A/D

LO
Local Oscillator

User

Software

Signal Processing functions:
• Synchronization
• Modulation
• Demodulation

Figure 2.3: Components of Software Defined Radio (SDR).

the need of the hour. This requirement gave rise to the concept of Software Defined

Radio (SDR). SDR is a communications system in which various hardware-centric

features such as filters, modulators/demodulators and other signal processing blocks

are implemented in software, rather than hardware, as shown in Figure 2.3. This

is a powerful concept as this design offers high flexibility and runtime reconfigura-

tion. This methodology also has the advantage that the radio can be configured

to support various physical-layer protocols based on software, eliminating the need

of custom, inflexible, and expensive hardware implementations. This property of

reconfigurability is an important feature for various dynamic systems utilizing cogni-

tive radio functionalities.As a result there is a significant interest among researchers

and industry alike to make SDR a reality for network operators and end users. In

this thesis, we use the programmable feature of SDR to define new abstractions and

expose interfaces so that a network of radios can be controlled using SDN principle.

9

2.4 GNU Radio Framework

GNU Radio [3] is a free and open-source framework that provides signal process-

ing functionality to implement SDRs. The main constituents of the framework are

basic blocks which perform distinct signal processing functions. GNU Radio pro-

vides great leverage to compose these blocks to synthesize new radio functionality

on a general purpose hardware. But the framework alone is not suitable for devel-

oping applications to control a network of SDRs. This is because each block exposes

its own set of interfaces which does not scale with increasing numbers of radios in

the network. In this thesis, we provide uniform interfaces to control and manage

these processing block abstractions, so that an application developer does not need

to handle every block’s unique interface characteristics.

10

3. RELATED WORK

3.1 Extension of Wireless LAN

The interest for extending WLAN capabilities has been a community goal for

a long time, but traditional methods have certain constraints. For example, the

approaches reported in [17, 20] require modifications to the mobile clients (referred

to as mobile stations in the Wi-Fi standard), which makes those approaches hard to

deploy and test.

A recent technical report by the Open Networking Foundation (ONF) [10] iden-

tified the challenges of mobile networks, such as scalability, management, flexibility

and cost, and provided a brief discussion of how SDN solutions can address these

issues in few specific scenarios. A working group of Open Networking Foundation,

Wireless & Mobile Working Group (WMWG), has been focusing on devising new

SDN architecture for wireless use cases of different types [11]. However, to the best

of our knowledge no concrete solutions were proposed by either ONF or WMWG up

to now.

Several previous works presented systems that use OpenFlow extensions to achieve

specific goals in wireless networks. In particular, OpenRoad [24, 26, 25] proposes to

use the OpenFlow framework as a research platform for Wi-Fi and Wi-MAX systems.

The platform supports slicing and virtualization of network resources, allowing dif-

ferent experimental services to run at the same time. SoftCell [14] focused on LTE

networks and proposed to integrate SDN framework into the LTE core network ar-

chitecture. The objective of ÆtherFlow is to design data plane control interfaces for

wireless ports, which is different from these projects.

Other attempts to apply SDN to IEEE 802.11 networks include Odin [22] and

11

OpenSDWN [18]. They provide certain wireless interface control and configuration

capabilities to the SDN controller. In these solutions, virtual access points and asso-

ciated device contexts are created for each individual mobile device, and move across

access points when the client handoff occurs. Such type of framework can handle

user mobility gracefully, but results in overhead in terms of both computational load

and traffic load during handoff, especially in the settings with a large number of

clients and high user mobility. ÆtherFlow offers a set of interfaces that costs less

but still supports a wide variety of wireless applications.

In contrast to the existing works, ÆtherFlow provides a principled and general

definition of wireless abstractions within an existing SDN framework. Our approach

only requires incremental modifications to the existing SDN network elements.

3.2 Programmatic Wireless Dataplane

The idea of providing a programmable wireless data plane has been implemented

in [4] and [5]. Both these papers provide modular blocks and focus on real time

guarantees for processing signals. But they do not provide any logical interface

to control a network of such programmable devices. We choose GNU Radio in

our design as it provides unlimited flexibility. Gudipati et al. [12] deals with

centralized control of devices but focuses mainly on LTE networks. Our work is

orthogonal to these works as we provide a mechanism for centralized control while

making the exposed interfaces protocol independent. The combination of SDRs and

SDN has been introduced for various functionality in [8, 21], [15], [9] and [6]. [15]

deals with creation of testbed for LTE technologies while [8, 21] focuses mainly on

integration of SDN and SDR for 4G/5G technology. [13] describes a SDR model for

management of interference in dense heterogeneous networks while [9] developed a

jamming architecture using SDN and SDR principles. [6] provides a blueprint for

12

LTE self-organizing networks(SONs) using SDN and SDR principles. These papers

provide distinct solutions for various scenarios but do not provide a generic framework

for handling various protocols in a principled manner.

13

4. OPENFLOW EXTENSIONS

In our previous work, we derived a generalized SDN abstractions model, called

TinyNBI [7], from the OpenFlow specifications [16]. In TinyNBI, the OpenFlow data

plane is composed of several elements. The data plane elements and their structural

relationships are depicted as UML diagram in Figure 4.1. TinyNBI model provides

a clean low-level interpretation of the core OpenFlow abstractions and supports

development of higher layer abstractions through refinement or extension. The model

is primarily based on the notion of resources shared across a data plane.

In the TinyNBI model, each component exposes four types of interfaces: capa-

bilities, configuration, statistics and events. These interfaces and their information

flow directions are conceptually depicted in Figure 4.2.

Capabilities. Not every switch provides the same level of support for e.g.,

matching on protocol fields. Each component in the model must provide a facility

that allows a controller to discover the set of operations supported by the device.

Configuration. Each OpenFlow data model element has some configurable pa-

rameters that can be modified during switch operation. The configuration interfaces

are used to modify state and behavior of the data model element.

Statistics. OpenFlow switches gather statistical information via counters such

as the numbers of bytes received and transferred over a port. Statistics interfaces

provide the controller with access to the current state and values of these counters.

Events. The events interface reports to the controller certain types of events

that occur during switch operation.

*Reprinted with permission from “ÆtherFlow: Principled Wireless Support in SDN” published
in ICNP CoolSDN ’15 c©2015 IEEE [23], and “CrossFlow: A Cross-layer Architecture for SDR
using SDN principles” published in IEEE NFV-SDN ’15 c©2015 IEEE [19].

14

Figure 4.1: A UML diagram of OpenFlow data model. Each box represents a data
plane element and the lines show the dependencies relationship among the elements.

[Reprinted from [2]]

4.1 ÆtherFlow Data Plane Abstractions

In order to support wireless networks, we refine the notion of ports from the

TinyNBI SDN model. The SDN model already has a distinction between physical

and logical ports. A physical port corresponds to an actual interface (e.g., Ethernet

card), whereas a logical port is typically defined by software. Logical ports are often

used for protocol tunneling and link aggregation.

To support wireless SDN controllers we introduce new types of both physical

and logical ports. ÆtherFlow introduces wireless physical port corresponding to an

IEEE 802.11 (commonly known as WiFi) radio interface. This allows controllers to

query and configure the physical device over which packets are sent and received.

Because a single 802.11 radio interface can support multiple simultaneous wireless

access points (APs), ÆtherFlow also introduces wireless logical port. Each wireless

15

Figure 4.2: OpenFlow interfaces abstraction.

logical port is associated with its underlying physical port.

For packet processing, whenever a packet from a wireless AP is processed, its

metadata records its input port as the logical port for the AP and its input physical

port as the physical port the AP is created on. The frames received on the wireless

interface are adapted into regular Ethernet frames for pipeline processing, meaning

that we do not have to define any new protocol matching features for 802.11 MAC

frame fields. This also allows an existing SDN implementation to compose wireless

logical ports into link aggregation ports or various forms of tunnels.

The new data plane elements (wireless ports) defined in ÆtherFlow expose to the

controller a set of control interfaces, categorized in the same way as the TinyNBI

model, which are described as below:

Capabilities. ÆtherFlow allows the controller to query and obtain the capa-

16

bilities of the radio interfaces of an AP. The supported capabilities information for

wireless physical port includes (i) IEEE 802.11 version; (ii) channels; (iii) transmis-

sion power; (iv) encryption and key management methods; (v) maximum number of

APs supported. ÆtherFlow does not define capabilities interface for wireless logical

port.

Configuration. An OpenFlow controller can use ÆtherFlow messages to create

or remove AP and dynamically (re)configure the following properties of an AP:

• Wireless physical port: (i) IEEE 802.11 version; (ii) channel; (iii) transmission

power.

• Wireless logical port: (i) SSID; (ii) BSSID; (iii) encryption and key manage-

ment method.

In addition, ÆtherFlow allows the controller to change the state of mobile sta-

tions associated with it, e.g., drop a station. Any new configuration to an AP is

immediately applied. The configuration interfaces provide a high degree of pro-

grammability to applications that require these parameters to be adjusted during

network operation.

Events. An SDN controller can receive MAC layer events related to a mobile

station. ÆtherFlow currently supports the following types of events for wireless

logical port: (i) probe; (ii) authentication; (iii) deauthentication; (iv) association;

(v) reassociation; (vi) disassociation; (vii) authorization. ÆtherFlow does not define

any event interface for wireless physical port.

The events occur when AP receives the corresponding 802.11 management frames.

With these events reported, the controller can keep track of the 802.11 state of all

the mobile stations communicating with the APs under control.

17

Statistics. An SDN controller can query the statistics of each physical wireless

port and its associated logical ports. For a wireless logical port the following types of

statistics are supported: (i) number of packets sent and received; (ii) number of bytes

sent and received; (iii) number of retries; (iv) number of retry failures; (v) current

signal strength of a station; (vi) average signal strength of a station; (vii) connection

duration of a station. For wireless physical port the set of supported statistics is

identical to that supported by the OpenFlow protocol.

4.2 ÆtherFlow Messages

To implement ÆtherFlow in the framework of OpenFlow, we use experimenter

messages provided in OpenFlow protocol to carry ÆtherFlow messages. In the cur-

rent version, nine messages are defined in ÆtherFlow:

• Event report message – notify controller of events.

• Logical port statistics request/reply – request and reply of current statistics

from a logical port.

• Physical port configuration request – modify the configuration of a physical

port.

• Logical port configuration request – modify the configuration of a logical port.

• Physical port capabilities request/reply – request and reply of capabilities of a

physical port.

• Drop station – force a mobile station to disassociate.

• Error message – customize error reporting for wireless.

18

Modulators

Wireless Radio Port

Connection

Switch
Agent

Signal
Sources

Analyzers

Channel
Coders

Instrumentation

Sinks

Data PlaneControl Plane

1..*

1..*

0..* 0..* 0..*

0..*

1..*

1..*

Figure 4.3: UML diagram of CrossFlow model.

4.3 CrossFlow Data Plane Abstractions

We extend the data model proposed in [7] to create an abstraction model for

the CrossFlow framework, which is displayed in Figure 4.3. We build upon the radio

physical port concept proposed in [23] to create a new layer of abstractions, which we

refer to as the wireless radio port in this paper. This layer of abstractions exhibits a

composition or has-a relationship with the wireless radio port abstraction (i.e., “the

wireless radio port has a sink, modulator, or channel coder). This means that the

blocks of this layer are the objects or members that comprise the wireless radio port.

These blocks are derived from the most commonly used processing blocks in GNU

Radio [3]. This abstract wireless radio port model serves the following design vision:

• It allows visibility into the signal processing blocks from an application point

of view, without going into implementation details.

• It allows for the development of an event driven framework for radio operation.

• It allows composition of blocks to implement new functionality, as this decision

19

is handled by the higher radio physical port abstraction. The application simply

specifies the blocks to be connected for a specific wireless port instance and the

internal framework handles the implementation.

In our current design, we focus on the first point of changing and quering the

parameters of blocks at runtime. We assume that the number of blocks is fixed and

the blocks can be connected in a consistent manner. In order to change parameters,

the application needs to send 〈command,value〉 tuple in a message. For query and

receive event responses, it registers for events for each block and during an event,

appropriate callbacks are invoked. This ability to register for events is important

so that a centralized controller can receive events asyncronously and implement a

reactive model for its operations.

One of the main requirements of the CrossFlow model is that each abstraction

should implement four types of interfaces as proposed in [7], namely: capabilities,

configuration, statistics and events. The interface model for CrossFlow provides the

interfaces for a wireless radio port abstraction with only two processing blocks, Sink

and Modulators. The Sink abstraction allows the controller to manage the signal

sinks which can be a USRP device, file or a socket, while the Modulators abstraction

allows management of modulation schemes (e.g., BPSK, QPSK, and 8PSK).

The interfaces for Sink and Modulators are categorized as follows:

Sink.

• Capabilities: The interface allows the controller to query the capabilities of

sinks such as: (i) Type of sink (USRP, socket, etc.); (ii) Channels supported;

(iii) Center Frequency; and (iv) IP address.

• Configuration: The interface allows the controller to configure properties of

signal sinks such as: (i) Gain; (ii) Frequency, and (iii) Sample rate.

20

• Statistics: The interface allows the controller to gather statistics for sinks

such as: (i) Received Signal Strength Indicator (RSSI) and (ii) Temperature

on-board.

• Events: The interface allows the controller to take decisions based upon events

in a sink such as: (i) Low or high RSSI and (ii) Low or high on-board temper-

ature.

Modulators.

• Capabilities: The interface allows the controller to query the properties of

the modulator block such as: (i) Modulations supported; (ii) Current sam-

ples/symbol; and (iii) Gray code.

• Configuration: The interface allows the controller to configure properties of

the modulator block such as: (i) Choice of modulation scheme (e.g. BPSK,

QPSK and 8PSK); (ii) Samples/symbol; and (iii) Use of a Gray code.

• Statistics: The interface allows the controller to gather statistics for the mod-

ulator block such as: (i) Signal to Noise Ratio (SNR) and (ii) Bit Error Rate

(BER).

• Events: The interface allows the controller to take decisions based upon events

in the modulator block such as: (i) Low or high SNR and (ii) Low or high BER.

4.4 CrossFlow Message Extensions

CrossFlow uses SDN design principles to control a network of configurable SDRs.

As such, to enable control plane interactions between the SDN controller and the

SDR, we had two options: either we could have implemented our own control proto-

col to enable their interactions or extend the existing OpenFlow [16] framework. This

21

is because OpenFlow does not natively support wireless features. In order to enable

a cleaner implementation, we decided to extend OpenFlow by using experimenter

messages within the OpenFlow protocol, similar to ÆtherFlow. Experimenter mes-

sages are a part of the standard OpenFlow protocol which provides a mechanism for

vendors to include propriety information within the protcol. This provides us with

two advantages:

• We do not need to implement a new protocol for control and data plane inter-

actions.

• As we are using experimenter messages to carry CrossFlow messages, the SDN

controller does not need to perform special handling for these messages. This

enables the controller to remain independent of the underlying devices and

hence it can handle both wired and wireless devices.

In the current version, we define three messages in CrossFlow:

• Configuration message request - Request for modification of parameters like

gain, frequency, SNR threshold and modulation scheme.

• Statistics message request - Request for statistics such as SNR, BER and RSSI.

• Event message response - Response for events like SNR below threshold and

low BER.

22

5. ÆTHERFLOW IMPLEMENTATION

5.1 Implementation on an AP

To validate our design and to demonstrate the viability of the ÆtherFlow frame-

work as a platform for the development and deployment of intelligent wireless SDN

applications, we implemented and deployed ÆtherFlow on a commercially available

access point.

We chose the access point TP-LINK WR1034ND v2 as the hardware platform for

our implementation. This AP has five 100Mbps Ethernet ports and one 3-antenna

radio interface, supporting protocols IEEE 802.11b/g/n. We replaced the firmware

of the AP with OpenWRT 14.07 Barrier Breaker. OpenWRT is an open source

Linux distribution designed for network embedded systems. Network utilities are

integrated in OpenWRT and are optimized in size to fit in embedded environments

which usually do not have as much resources as general purpose computer systems.

In OpenWRT, when the radio interface is set up as an access point, its data plane is

managed by Linux kernel and its control plane is run in the user space by daemon

hostapd.

The native OpenWRT system does not support SDN. To make our access point

an SDN switch, we used the open source CPqD SoftSwitch (ofsoftswitch), which

implements an OpenFlow v1.3 pipeline and switch agent that can be deployed on

OpenWRT system.

An ÆtherFlow data plane extension is then implemented in ofsoftswitch. The

extension adds in wireless physical and logical ports that are mapped to the radio

interface and access points managed by hostapd. To establish communication be-

tween ofsoftswitch and hostapd, hostapd is also modified to enable control of

23

hostapd socket ofsoftswitchsocket

OpenWRT

Event report

Configuration

Statistics query

Data plane packets

TP-LINK WR1034ND v2

User space

OS

Hardware

Capabilities query

socket

Controller
ÆtherFlow Messages

ÆtherFlow Box

Figure 5.1: Implementation diagram of ÆtherFlow.

AP from ofsoftswitch and event reporting from AP to ofsoftswitch. The two

processes communicate via a Unix socket in the OpenWRT system. An overview of

this implementation is depicted in Figure 5.1.

Whenever an event related to a mobile station is triggered in hostapd, the event

summary is sent to ofsoftswitch, which forwards it to the controller using the

event port message. Whenever a statistics request from the controller is received

by ofsoftswitch, the request is forwarded to hostapd, and the statistics data is

sent to ofsoftswitch and then sent to the controller with a statistics reply message.

Similar behavior occurs for capability queries and configuration updates.

24

5.2 ÆtherFlow Applications

The design of ÆtherFlow extends the capability of OpenFlow to wireless (specif-

ically IEEE 802.11) interfaces in a natural way. ÆtherFlow enables applications to

control both wireline switches and wireless access points. As a result, network ap-

plications that used to require different protocols and cooperation of software from

different vendors can now be implemented easily using the ÆtherFlow framework.

We use a Layer 2 fast handoff application to demonstrate the flexibility and new

functionality offered by the ÆtherFlow framework. This application aims to facilitate

the process of mobile station handoff within the same subnet during which a device’s

Layer 3 address is not changed.

A typical Layer 2 fast handoff application runs in three phases. The first phase is

handoff prediction. The controller collects signal strength information of the mobile

stations by requesting statistics of all mobile stations associated with APs under its

control. At the same time, it receives the probe signal strength of the mobile stations

measured by other APs from the probe event reports. By keeping these data updated

in a timely fashion, the controller may predict that a handoff is about to happen,

e.g. when the mobile station’s signal strength to its associated AP gradually weakens

while the signal strength to another AP gradually strengthens.

The second phase of the Layer 2 fast handoff application is multicasting. When a

handoff prediction of a mobile client is made, the controller multicasts all the packets

with the client as destination to both its current associated AP and the predicted

AP. The action is completed by modifying the flow entries of the switches in the

network. Multicast guarantees that the client can receive packet immediately after

it reassociates with the new AP, thus minimizing the packet loss during the handoff.

The third phase is flow redirection. After the multicasting phase, if the client

25

associates with a new AP, the multicast is stopped and all the following packets

to the client will be redirected to the new AP. If the prediction is wrong and a

handoff did not occur within a certain timeout period, multicast is stopped and all

the following packets will be forwarded to the original AP that the client is associated

to. ÆtherFlow makes the decision possible with event report interface that provides

client association event report to the controller.

Other than Layer 2 handoff application, wireless network applications such as

client steering, user-based QoS control, etc. can also be easily implemented using

ÆtherFlow framework.

26

6. CROSSFLOW IMPLEMENTATION

6.1 Illustrative CrossFlow Implementation

In this section, we describe our implementation of adaptive modulation, frequency

hopping and cognitive radio applications using the CrossFlow framework. For il-

lustration, we implement our model on a USRP N210 embedded SDR from Ettus

Research. The N210 provides a Zynq 7020 All Programmable SoC, which combines

a dual ARM Cortex-A9 processor and FPGA on the same device. We use the CPqD

Softswitch [1] (ofsoftswitch) software as the switch agent in the SDN model. Its

main functionality is to enable communication between GNU Radio and the python

based Ryu SDN controller. As described in previous sections, the applications will

send messages to the processing blocks, e.g., to configure them. The ofsoftswitch

then forwards this request to a centralized CrossFlow Hub inside the GNU Radio

domain.

There are four main components (blocks) in the illustrative CrossFlow module, as

given in Figure 6.1, that we implement in GNU Radio, namely, the CrossFlow Hub,

the Modulation Controller (Mod Controller for brevity), and the USRP Controller.

• The CrossFlow Hub is the interface between the Mod and USRP controllers

in GNU Radio and the Ryu SDN controller. The CrossFlow Hub and the

Ryu SDN controller communicate via Socket PDU. The CrossFlow Hub is re-

sponsible for receiving commands from ofsoftswitch (or any other compliant

interface), interpreting the commands, and forwarding the commands to the

appropriate controller block (i.e., either the USRP controller or Mod controller

in our implementation). It is also responsible for receiving information from

different controller blocks and sending information to the Ryu SDN controller.

27

BPSK

QPSK

8-PSK

USRP
Controller

Data flow

Control flow

(Event/Config/Stats)

CrossFlow
Hub

USRP
Sink/

Source

Switch Agent

Ryu OpenFlow Controller

Control
Socket

GNU Radio Domain

Modulation Bank

Control Plane

Switch
Datapath

OpenFlow 1.3
Software Switch

Data
Socket

M
o

d

C
o

n
tr

o
lle

r

SNR
Monitor

Figure 6.1: Transmitter implementation diagram of CrossFlow with two processing
blocks: Sink and Modulators.

The CrossFlow Hub has in/out ports to send commands and receive informa-

tion to/from the GNU radio controller blocks. It also has in/out PDU ports

for interfacing with Socket PDU.

• The Mod Controller is one of the main controllers in the design. It is responsible

for receiving commands from the CrossFlow Hub, and selecting the appropriate

modulation scheme from the modulation bank. For illustration, we include

three modulation schemes in our modulation bank (BPSK, QPSK, and 8PSK);

however, thanks to the modular design, we can easily add more schemes. The

Mod Controller can also feedback information to the Ryu SDN controller about

the modulation scheme that is currently in use and the number of modulation

schemes available in the modulation bank.

• The SNR Monitor is responsible for monitoring the SNR level and generating an

event in case the SNR level falls below a certain threshold, which can be config-

ured by the application. Currently the framework uses the existing SNR probe

28

of GNU Radio, which supports four M -PSK SNR estimators. This monitoring

block is also responsible for relaying the SNR statistics back to CrossFlow Hub

in response to a SNR statistics query generated by the application.

• The USRP Controller is another controller block in the CrossFlow module.

It is responsible for controlling different RF parameters of the USRP Trans-

mitter/Receiver based on commands from the CrossFlow Hub. In our proof-

of-concept implementation, we control the carrier frequency and the power of

the signal. It can also feedback information to the CrossFlow Hub about the

current RSSI, temperature, SNR, carrier frequency, power, etc.

Although our illustrative implementation only has two controllers (one facili-

tating abstraction of the USRP Sink/RF implementation and the other facilitating

abstraction of the adaptive modulation implementation), additional controllers can

be easily added to support new applications, functionalities, and abstractions.

6.2 Example Applications

6.2.1 Frequency Hopping Application

Frequency hopping is a technique of transmitting radio signals by spreading the

signal over a sequence of changing frequencies. It has tremendous application in mili-

tary as it is used against jamming and for protecting against unauthorized eavesdrop-

ping. For implementation, the receiver of the signal must be aware of the sequence of

frequencies so that it can tune into the appropriate channel. This requires synchro-

nization between the transmitter and the receiver. In CrossFlow, we implement this

application easily as only the controller needs to be aware about the predetermined

sequence. This sequence can even be dynamic according to the channel conditions

and policies.

29

6.2.2 Adaptive Modulation Application

Adpative Modulation is a technique where the modulation is changed according

to the conditions of the channel. There are various estimators which are used for

obtaining channel quality. These can be Signal-to-noise ratio (SNR), Bit error rate

(BER) and other environment specific estimators. For illustration, we assume a fixed

sequence for changing the modulation schemes every 5 seconds.

6.2.3 Cognitive Radio Application

We build upon the frequency hopping application mentioned above to construct

a cognitive radio application. Cognitive radio is a type of radio in which the device

is aware of its environment and can dynamically change its operating parameters

like transmission power, frequency, gain etc in response to changing environmental

conditions. In CrossFlow, we implement an application that can configure a radio

device to switch channels based upon a low SNR event measured by the device.

30

7. VALIDATION

7.1 ÆtherFlow Validation

We use the ÆtherFlow implementation described in 5 to evaluate the performance

and demonstrate the viability of the ÆtherFlow approach. Our results demonstrate

that ÆtherFlow framework allows SDN applications to efficiently and dynamically

configure wireless networks without loss of performance.

7.1.1 Experiment Setup

Our experiment uses a simple network topology, shown in Figure 7.1. It consists

of two access points (AP1, AP2), a Layer 2 switch, a wireline traffic generator and a

wireless 802.11 mobile station (STA). We use an OpenFlow enabled Layer 2 switch

and ÆtherFlow enabled APs as described in Section 5. The mobile station has a

single WiFi radio interface.

In our experiment, both APs and the traffic generator are connected to the switch

through Ethernet. All the three boxes are connected to an OpenFlow controller

through a separate control plane subnet that is not displayed in the figure. The two

APs are located at a certain distance and have overlapping coverage areas. Both

APs are configured with the same SSID and use open authentication.

7.1.2 Layer 2 Handoff Application

Our Layer 2 handoff application accords with what we described in Section 5.2.

The investigation of good predictors and predictive models for handoff is beyond

the scope of this paper. In our implementation, the controller application always

predicts that the handoff of STA from AP1 to AP2 will occur seven seconds after

the experiment starts. The time period is selected solely for the purpose of this

31

Wi-Fi AP
Multi Radio

Wi-Fi AP
Multi Radio

Ethernet Switch

Mobility Event

Traffic
Generator

Figure 7.1: ÆtherFlow Experiment network topology.

[Reprinted from [2]]

experiment and does not apply for general cases.

After seven seconds, the controller starts to multicast packets going to STA to

both AP1 and AP2 by sending FlowMod messages to both APs and the switch. After

STA associates with AP2, the controller configures the switch to stop multicasting

and forward packets to only AP2. If the predicted handoff did not happen 15 seconds

after the prediction, the controller reverts the multicast and forwards packets to only

AP1.

7.1.3 Experiment Procedure and Results

In each round of experiment, the mobile station is initially associated with AP1.

Both the traffic generator and the mobile station are assigned static IP addresses

within the same subnet. Before the experiment starts, a UDP iperf session with

bandwidth of 9Mbps is initiated from the traffic generator to STA. After experiment

32

starts, STA moves from coverage of AP1 to coverage of AP2, which forces the client

to handoff from AP1 to AP2. We move STA in a controlled manner such that the

handoff happens at seven seconds after the experiment starts. This time is selected

such that the handoff happens almost immediately after the controller application

initiates multicasting. Throughput and packet loss rate during each round of test is

measured by iperf with an interval of 0.5s. In each round of experiment, one of the

following configurations is used:

• Bridge configuration uses neither OpenFlow nor ÆtherFlow. Instead, the

Layer 2 switch and the two APs use the Linux built-in learning bridge to

forward packets. This is the traditional way of configuring a Layer 2 network

with two access points and one switch.

• ÆtherFlow configuration with prediction enables ÆtherFlow on the APs

and the switch, and the handoff is managed by the Layer 2 handoff application

(described above) running on the ÆtherFlow controller using the Ryu controller

framework.

• ÆtherFlow configuration without prediction enables ÆtherFlow on the

APs and the switch, and the handoff is managed by a similar Layer 2 handoff

application as given above without enabling prediction.

Fifteen rounds of experiments are conducted on each of the three configurations

given above. In a single round of experiment, the mobile station is considered to

be in handoff process during an interval after time t = 7s if its average throughput

during the interval is less than 8 Mbps. By this criteria we can determine the

handoff duration of STA in each round of experiment. Our results, depicted in

Figure 7.4, indicate that the average handoff duration of ÆtherFlow configuration

33

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
2

4
6

8
12

Bridge configuration
ÆtherFlow configuration with prediction

Figure 7.2: Comparison of throughput for ÆtherFlow with prediction and the base-
line configuration.

with prediction across the fifteen rounds of experiments is 2.53s, which is lower than

that of bridge configuration 3.8s and ÆtherFlow configration without prediction

3.17s.

We compare the traffic throughput and packet loss rate of the experiments which

have median handoff duration in ÆtherFlow with prediction and bridge configura-

tions (experiment 3 for bridge configuration and experiment 4 for ÆtherFlow config-

uration). The plots are shown in Figure 7.2 and Figure 7.3. These plots demonstrate

that in terms of both throughput and loss rate, the ÆtherFlow configuration recovers

from handoff faster than the bridge configuration.

The experiment results show that even with the overhead induced by SDN data

plane processing, the performance of Layer 2 handoff application based on ÆtherFlow

is better that of Linux kernel bridge configuration.

7.2 CrossFlow Validation

We use the CrossFlow implementation described in 6 to provide a proof-of-concept

validation of our design. We demonstrate the viability of CrossFlow which allows

34

Time (s)

Lo
ss

 r
at

e
(%

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
20

60
10

0
Bridge configuration
ÆtherFlow configuration with prediction

Figure 7.3: Comparison of packet loss rate for ÆtherFlow with prediction and the
baseline configuration.

Bridge Without Prediction Prediction

A
ve

ra
ge

 H
an

d
o

ff
 D

u
ra

ti
o

n
 (

in
 s

ec
)

Average Handoff Duration for different models

Confidence level = 95 %

Figure 7.4: Comparison of average handoff duration for ÆtherFlow with different
models and standard error.

35

To/From

Controller To/From
Controller

USRP N210 Noise Source

USRP N210 Sender
Power: 10dB
Amplitude: 0.3

USRP N210 Receiver

Freq: 910 MHz
Power: 10dB
Variable Amplitude

5m Distance

Figure 7.5: Setup for cognitive radio application in CrossFlow

Table 7.1: Variation of SNR and PER with increasing Noise Amplitude Factor keep-
ing a fixed data rate of 1Mbps.

Noise Amplitude Factor Packet Error Rate SNR (in dB)

0 0.15% 5.8553

0.09 6.34% -0.2983

0.14 19.89% -0.9483

SDN applications to change the radio physical properties of wireless radio upon

various qualifying parameters like channel conditions.

7.2.1 Frequency Hopping Application Implementation

In this implementation, the Ryu SDN controller simply issues GNU-CONFIG-

FREQ command with the desired frequency and pushes this configuration to the

device. As shown in Figure 6.1, the ofsoftswitch receives this command and for-

wards it to the GNU Radio domain. The centralized CrossFlow Hub inside the GNU

Radio domain processes this request and issues appropriate commands to the USRP

Controller, which ultimately signals the USRP block to tune into the requested fre-

quency. The application uses a pre-determined sequence of 910, 915 and 920MHz

36

0

20

40

60

80

100

120

140

0.09 0.17 0.22 0.09 0.17 0.22 0.09 0.17 0.22

256Kbps 512Kbps 1Mbps

N
u

m
b

er
 o

f
Pa

ck
et

s
Lo

st

Number of packets lost before switching channels for different data rates and noise factors

Min Mid Max

Figure 7.6: Range of packets loss while changing channels by keeping a fixed data
rate and a varying noise factor across each experiment

frequencies which changes every 5 seconds along with a fixed BPSK modulation

scheme.

7.2.2 Adaptive Modulation Application Implementation

Similar to the frequency hopping application, the Ryu SDN controller issues the

GNU-CONFIG-MOD command with the appropriate modulation scheme (BPSK,

QPSK, or 8PSK) and forwards the request to the device. The request ultimately

reaches the Mod Controller, which is a multiplexer block as shown in Figure 6.1,

that selects the requested modulation scheme. The application requests the use of

a modulation scheme from among BPSK, QPSK and 8PSK modulations every 5

seconds with a fixed carrier frequency of 910 MHz.

37

7.2.3 Cognitive Radio Application Implementation

As stated in Section 6, we build upon the frequency hopping application to imple-

ment a cognitive radio application. Figure 7.5 shows the experimental setup, where

we have three USRP N210 devices that act as sender, receiver and noise source. The

sender is set at a 10 dB power level and 0.3 transmission amplitude factor, while the

noise source is set at 10 dB power with a variable amplitude factor. Note that the

amplitude factor is simply a constant that is multiplied to the transmitted signal to

adapt the effective transmission power. The sender and receiver are at a distance of

5 meters apart and the sender begins transmission at 910 MHz carrier frequency with

1 Mbps data rate and packet length of 50 Bytes. The noise source on the other hand,

sends high frequency pulses with varying amplitude factors at 910 MHz frequency.

We refer to the noise source’s transmission amplitude factor as the noise amplitude

factor (NF). When SNR falls below a specified threshold, a low SNR event is trig-

gered by the SNR Monitor block and the event summary is sent to ofsoftswitch

through CrossFlow Hub. This request is then forwarded to the Ryu SDN controller

using the event response message. The application, upon receiving this message,

sends a GNU-CONFIG-FREQ command so that the device changes the channel to

the requested frequency. The sequence of actions involved in changing the channel

is similar to the one mentioned in the previous section for frequency hopping.

Using this setup, we conduct two tests: one to measure the effect of the NF on the

receiver’s packet error rate (PER) and SNR at the 910 MHz carrier frequency (both

measured over 1,000,000 packets transmitted at 1 Mbps with NFs of 0.0, 0.09, 0.14),

and another to measure how quickly the cognitive radio can trigger and respond to a

low SNR event (with NFs 0.09, 0.17 and 0.22, and data rates 256 Kbps, 512 Kbps and

1 Mbps). Table 7.1 shows the PER and SNR values obtained in the first experiment.

38

As expected, the PER increases and SNR decreases with increasing NFs. In the

second experiment, which demonstrates a simple cognitive radio application, the

transmitter and receiver pair switch to a new carrier frequency (915 MHz) when the

instantaneous received SNR falls below the pre-defined 6 dB threshold. In Figure 7.6,

we show the number of packets that are lost over the course of time required for the

SNR to be sensed below the 6 dB threshold, for the receiver to generate the low SNR

event, and for the Ryu SDN controller to respond by issuing the GNU-CONFIG-

FREQ command, and finally for the transmitter to switch frequencies. We repeat

this experiment three times for each combination of data rate and noise factor, and

plot each measurement in Figure 7.6 as a separate bar.

39

8. CONCLUSION AND FUTURE WORK

In this paper we presented two SDN frameworks ÆtherFlow and CrossFlow.

These frameworks aim to bring the wireless networks into the SDN fold using a

principled approach and provide greater flexibility and programmability in wireless

networks. They provide new abstractions and extensions to demonstate a protocol

independent architecture and provide proof-of-concept implementations to showcase

flexible network management.

ÆtherFlow includes the ability to handle wireless packets using an OpenFlow

data path, remotely configure access points, query mobile station capabilities and

statistics, and report mobile station events.

To validate our ideas, we implemented an ÆtherFlow switch and adapted an

existing OpenFlow controller to work with our extensions of the OpenFlow protocol.

We experimented with an SDN-based mobile handoff application, and found that

our design slightly outperforms an optimized non-SDN application. We note this is

a proof-of-concept experiment designed to show that useful SDN applications can be

written against the ÆtherFlow extensions to OpenFlow.

As a general wireless SDN framework, the ÆtherFlow model can also be im-

mediately leveraged to support a number of different applications, or can easily be

extended to support them. In addition, similar extension approaches can be used on

systems other than IEEE 802.11, such as WiMAX or cellular networks, which is a

promising direction for the evolution of SDN. We leave this as our future work.

On the other hand, the CrossFlow framework allows flexible and real-time con-

figuration of software defined radio interfaces from a network controller application.

It allows a controller application to be written without worrying about the internal

40

details of implementations. In order to validate our approach, we implemented fre-

quency hopping, adaptive modulation and cognitive radio applications. This shows

that our design is viable and can extended to introduce new capabilities.

One of the challenges that we need to consider is the issue of latency between

controller and SDR framework. The issue can be mitigated, by the introduction of

distributed control module in SDR. The distributed control module will allow devices

to take local decisions while the centralized controller is responsible for introducing

policies and global management, thereby ensuring reduced latency.

The CrossFlow framework can also be extended to allow controller to create

GNU radio blocks and manipulate inter-connections between GNU radio blocks. It

requires to design new API on switch agent and can be implemented by combining

the methodology provided by GNU Radio. In GNU radio, each block has an input

and output port and the application needs to specify the connecting ports in order

to connect the blocks. Only ports which are similar, i.e, ports which operate on

same types of data(message or stream), can connect to each other. The data type

supported by a block can be obtained by sending capability messages. The decision

whether two ports are compatible can be left to the application.

Our results indicate that while current SDN protocols support the development

of very intelligent wireline network management applications, ÆtherFlow and Cross-

Flow are significant steps in bringing that same level of programmability to wireless

networks.

41

REFERENCES

[1] CPqD OpenFlow 1.3 Software Switch. http://cpqd.github.io/ofsoftswitch13/.

[Online; Accessed: 2014-09-30].

[2] Flowgrammable. http://flowgrammable.org/. [Online; Accessed: 2014-09-01].

[3] GNU Radio. http://gnuradio.org/redmine/projects/gnuradio/wiki. [Online;

Accessed: 2015-09-30].

[4] M. Bansal, J. Mehlman, S. Katti, and P. Levis. Openradio:A Programmable

Wireless Dataplane. In Proc. HotSDN, 2012, 2012.

[5] M. Bansal, A. Schulman, and S. Katti. Atomix: A Framework for Deploying

Signal Processing Applications on Wireless Infrastructure. In Proc. NSDI, 2015,

2015.

[6] C. Ramirez-Perez and V. Ramos. SDN meets SDR in Self-Organizing Networks:

Fitting the Pieces of Network Management. IEEE Communications Magazine,

54:48–57, 2016.

[7] C. J. Casey, A. Sutton, and A. Sprintson. TinyNBI: Distilling an API from

Essential OpenFlow Abstractions. In Proceedings of the Third Workshop on

Hot Topics in Software Defined Networking, HotSDN ’14, pages 37–42, New

York, NY, USA, 2014. ACM.

[8] H.-H. Cho, C.-F. Lai, T.K. Shih, and H.-C. Chao. Integration of SDR and SDN

for 5G. Access, IEEE, 2:1196–1204, 2014.

[9] C. Corbett, J. Uher, J. Cook, and A. Dalton. Countering Intelligent Jamming

with Full Protocol Stack Agility. Security & Privacy, IEEE, 12(2):44–50, 2014.

42

[10] Open Networking Foundation. Openflow-enabled mobile and wireless net-

works. Technical report, September 2013. https://www.opennetworking.

org/images/stories/downloads/sdn-resources/solution-briefs/

sb-wireless-mobile.pdf [Online; Accessed: 2014-08-26].

[11] Open Networking Foundation. Wireless & mobile working group. Technical

report, January 2014. https://www.opennetworking.org/images/stories/

downloads/working-groups/charter-wireless-mobile.pdf [Online; Ac-

cessed: 2014-02-01].

[12] A. Gudipati, D. Perry, L. E. Li, and S. Katti. SoftRAN: Software Defined Radio

Access Network. In Proceedings of the second workshop on Hot topics in software

defined networks, ser. HotSDN ’13, 2013, 2013.

[13] R. Gupta, B. Bachmann, A. Kruppe, R. Ford, S. Rangan, N. Kundargi, A. Ek-

bal, K. Rathi, A. Asadi, V. Mancuso, et al. LabVIEW based Software-Defined

Physical/MAC layer architecture for prototyping dense LTE Networks. In SDR

WInnComm, 2015.

[14] X. Jin, L.E. Li, L. Vanbever, and J. Rexford. SoftCell: Scalable and Flexible

Cellular Core Network Architecture. In Proceedings of the Ninth ACM Con-

ference on Emerging Networking Experiments and Technologies (CoNEXT ’13),

pages 163–174, 2015.

[15] V. Mancuso, C. Vitale, R. Gupta, K. Rathi, and A. Morelli. A prototyping

methodology for SDN-controlled LTE using SDR. In ETSI workshop on Re-

configurable Radio Systems - Status and novel Standards (ETSI RSS Workshop

2014), 2014.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner. Openflow: Enabling Innovation in Campus

43

Networks. ACM SIGCOMM Computer Communication Review, 38(2):69–74,

2008.

[17] R. Murty, J. Padhye, A. Wolman, and M. Welsh. Dyson: an architecture for

extensible wireless lans. In Proceedings of the 2010 USENIX conference on

USENIX annual technical conference (USENIXATC ’10), pages 15–15, 2010.

[18] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S.Schmid, and A.Feldman. OpenS-

DWN: Programmatic Control Over Home and Enterprise WiFi. In 1st ACM

SIGCOMM Symposium on Software Defined Networking Research (SOSR ’15),

2015.

[19] P. Shome, M. Yan, J. M. Najafabadi, N. Mastronarde, and A. Sprintson. Cross-

Flow: A Cross-layer Architecture for SDR Using SDN Principles. In Proceedings

of the IEEE Conference on Network Function Virtualization and Software De-

fined Networks (IEEE NFV-SDN),Nov. 2015), 2015.

[20] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee, S. Keshav, K. Papagian-

naki, and A. Mishra. CENTAUR: Realizing the Full Potential of Centralized

WLANs Through a Hybrid Data Path. In Proceedings of the 15th Annual In-

ternational Conference on Mobile Computing and Networking (MobiCom ’09),

pages 297–308, 2009.

[21] S. Sun, M. Kadoch, L. Gong, and B. Rong. Integrating network function virtu-

alization with SDR and SDN for 4G/5G networks. Network, IEEE, 29(3):54–59,

May 2015.

[22] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao. Towards

Programmable Enterprise WLANs with Odin. In Proceedings of the First Work-

shop on Hot Topics in Software Defined Networks (HotSDN ’12), pages 115–120,

2012.

44

[23] M. Yan, J. Casey, P. Shome, A. Sprintson, and A. Sutton. Aetherflow: Principled

wireless support in SDN. In Proceedings of the ICNP 2015 Workshop on Control,

Cooperation, and Applications in SDN protocols (CoolSDN ’15), 2015.

[24] K.-K. Yap, M. Kobayashi, R. Sherwood, N. Handigol, Te.-Y. Huang, M. Chan,

and N. McKeown. OpenRoads: Empowering Research in Mobile Networks.

ACM SIGCOMM Computer Communication review, 40(1):125–126, January

2010.

[25] K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian, and

N. McKeown. The Stanford OpenRoads Deployment. In Proceedings of the 4th

ACM International Workshop on Experimental Evaluation and Characterization

(WINTECH ’09), pages 59–66, 2009.

[26] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan, N. Handigol,

N. McKeown, and G. Parulkar. Blueprint for Introducing Innovation into Wire-

less Mobile Networks. In Proceedings of the second ACM SIGCOMM workshop

on Virtualized Infrastructure Systems and Architectures (VISA ’10), pages 25–

32, 2010.

45

