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ABSTRACT

The research presented in this dissertation focus on the numerical approximation

of the magnetohydrodynamic (MHD) equations in the von Kármán Sodium (VKS)

set-up. These studies are performed with the SFEMaNS MHD code developed by J.-L.

Guermond and C. Nore since 2002 for axisymmetric geometries. SFEMaNS is based

on a spectral decomposition in the azimuthal direction and a Lagrange finite element

approximation in a meridian plane. To overcome the axisymmetric restrictions, we

propose a novel numerical method to solve the Maxwell part of the MHD equations,

and use a pseudo-penalty method to model the rotating impellers. We then present

hydrodynamic and MHD simulations of the VKS set-up. Hydrodynamic results

compare well with the experimental data in the same range of kinetic Reynolds

numbers: at small impeller rotation frequency, the flow is steady; at larger frequency,

the fluctuating flow is characterized by small scales and helical vortices localized

between the blades. MHD computations are performed for two different flows. One

with small kinetic Reynolds number, and the other with a larger one. In both cases,

using a ferromagnetic material for the impellers decreases the dynamo threshold and

enhances the predominantly axisymmetric magnetic field: the resulting dynamo is a

mostly axisymmetric axial dipole with an azimuthal component concentrated in the

impellers as observed in the VKS experiment.
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1. INTRODUCTION

1.1 Motivation

Magnetohydrodynamics (MHD) is the physical-mathematical framework that

consists of describing the behavior of magnetic fields in electrically conducting flu-

ids, e.g. in plasmas and liquid metals. MHD applications are present in the fields

of astrophysics, electrical engineering, petroleum engineering, and plasma physics.

The focus on this thesis relies on the so-called dynamo effect, that is the process

through which a conducting fluid can maintain a magnetic field. This phenomenon

is of special interest in astrophysics, because it affects the formation and behavior of

galaxies, stars or planets. Therefore there exist extensive numerical and analytical

attempts to understand it.

Unfortunately, the exact mechanism by which a fluid dynamo can be put in

action in astrophysical bodies remains an open challenge. It is not until recently

that fluid dynamos have been produced in laboratory experiments, thus offering an

opportunity to test numerical tools which can then be applied to natural dynamos.

The most recent experiment, called the von Kármán Sodium 2 (VKS), was performed

in Cadarache, France in 2006, see [42]. Here a dynamo was successfully produced by

setting liquid sodium in motion in a closed cylindrical vessel; the liquid metal is kept

in motion by two counter-rotating impellers at the top and bottom of the vessel.

Each impeller, made of soft iron, is a disk fitted with curved blades. In contrast

to previous experimental dynamos, the phenomena involved in VKS experiment is

not completely understood until now [27, 26, 38]. This thesis focuses on simulating

numerically the VKS experiment in order to assist its comprehension.

There are currently several numerical codes capable to solve MHD problems in
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particular geometries, see [31, 59, 61, 65]. My thesis adviser, J.L. Guermond, has

been working together with C. Nore in the analysis and MHD simulation since 2002.

They have been developing the open source code called SFEMaNS1 for Spectral/Finite

elements for Maxwell and Navier-Stokes equations [29, 30, 31]. This code has been

validated for non-trivial MHD applications [26, 38], and it is based on a hybrid

method with a Fourier decomposition in the azimuthal direction, and Lagrange finite

elements in the meridional plane. However, using Lagrange finite elements for elec-

tromagnetic problems is quite challenging, because it has been shown by Costabel

[13] that standard methods based on those elements can cause convergence prob-

lems. Nevertheless, SFEMaNS uses a novel Lagrange element formulation which has

been proved to be convergent for electromagnetic problems, for mathematical details

see Bonito and Guermond [8], and Bonito et al. [9].

The code SFEMaNS uses Fourier spectral elements in the azimuthal direction in

the spirit of [59, 61]. This choice allows to use parallelization techniques for the

fast Fourier transform (FFT) producing a massively parallel algorithm for MHD

problems. Details of the algorithm and its implementation can be found in the

papers of Guermond et al. [30, 31]. However, the main restriction of this method

is that all parts of the domain must be axisymmetric. Nevertheless, in Guermond

et al. [31] and Giesecke et al. [26], the authors replaced the impellers with flat disks

in order to study the influence of the magnetic permeability of the impellers in the

VKS experiment.

Extending spectral methods to parts of the domain that are not axisymmet-

ric is a non-trivial problem, but doing so will keep the efficiency and usability of

pseudo-spectral codes such as SFEMaNS. Moreover, solving numerically a MHD prob-

lem involves solving the conducting fluid flow, and the magnetic field generated by

1This code can be requested to guermond@math.tamu.edu
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this flow. In this thesis we use a pseudo-penalty method to model non-axisymmetric

moving obstacles, and we propose a novel numerical method to solve the magnetic

field generated by a moving non-axisymmetric conductor using Fourier-finite element

methods. Both methods allow us to perform full MHD simulations of the VKS exper-

iment. Specifically, MHD computations are performed for two fluid flows, one with

small kinetic Reynolds number, and the other with a larger one. In both cases, using

a ferromagnetic material for the impellers, enhances the predominantly axisymmet-

ric magnetic field: the resulting dynamo is a mostly axisymmetric axial dipole as

observed in the VKS successful experiment.

1.2 Thesis Outline

Section 2 - In this section we introduce the Maxwell, Navier-Stokes, and MHD

equations. We also introduce their non-dimensionalization that leads to the use

of the kinetic Reynolds number Re and the magnetic Reynolds number Rm. We

also mention recent laboratory experiments that have successfully generated fluid

dynamos, the VKS experiment being the most recent one, and which is the focus of

this thesis.

Section 3 - Here we introduce the geometry and PDE setting for the MHD

equations. We then introduce a variational weak form, and a Fourier-finite numerical

scheme as starting points to produce a new numerical method capable to simulate

the VKS experiment. At the end of the section we introduce a simple model for

Maxwell equations that illustrates the main difficulty of using spectral Fourier-finite

elements.

Section 4 - In this section we propose an efficient numerical time stepping scheme

for the simple model proposed at the end of section 3. By efficient time stepping

scheme we mean a scheme that generates time independent matrices, and avoids im-

3



plicit convolutions when hybrid Fourier-finite elements are employed. We extend our

ideas for general scalar Partial Parabolic Equations (PDEs) with variable coefficient

in space and time.

Section 5 - In this section we extend our ideas of section 4 to the Maxwell

equations in the low-frequency regime. We then perform some convergence tests,

and report and validate kinematic dynamo computations using the half VKS setting.

Section 6 - Discretization of the Navier-Stokes equations is discussed first, and

then we perform hydrodynamic and MHD simulations for the VKS setting at moder-

ated low Reynolds numbers. It is found that for high values of magnetic permeability

µ, an axisymmetric magnetic field is predominant. This coincides with the real VKS

experiment.

Section 7 - The overall conclusion of this dissertation.

4



2. THE MHD EQUATIONS AND THE DYNAMO EFFECT

Throughout this thesis the MHD equations are numerically studied. These pro-

vide the simplest description of the dynamical coupling between matter (solid and

fluid) and the electromagnetic field. In this section we first introduce the MHD

equations; we refer to [1, 15, 41] for a detailed discussion. The MHD equations

are a coupled system of nonlinear partial differential equations (PDEs), which are

composed by the Maxwell and the Navier-Stokes equations. The Maxwell equations

govern the electromagnetic field, and the Navier-Stokes equations the fluid motion.

The two sets of equations are coupled by the Lorentz force and Ohm’s law. After in-

troducing the MHD equations, we then proceed to describe the dynamo effect which

is of special interest in the field of astrophysics. We also mention recent laboratory

experiments that have successfully generated fluid dynamos, but their complete un-

derstanding remains an open question. The VKS2 experiment is the most recent one

and is the focus of this thesis. We refer to [17, 57] for a detailed discussion about

dynamo theory.

2.1 Maxwell Equations

The classical macroscopic electromagnetic field is described by the Maxwell equa-

tions which are as follows:

∂tB = −∇×E, (2.1)

−∂tD +∇×H = j, (2.2)

∇·D = ρc, (2.3)

∇·B = 0, (2.4)
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where the fundamental field vectors E and H are called the electric and magnetic

fields respectively. The vector functions D and B, which will later be computed by

constitutive relations, are called the electric displacement and magnetic induction,

respectively. The three-dimensional vector field j denotes the current density, and

the scalar function ρc denotes the charge density. Equation (2.1) is called Faraday-

Maxwell equation, equation (2.2) is called Ampère-Maxwell equation, the divergence

condition (2.3) is called Coulomb-Maxwell equation, and the last equation (2.4) is

called Gauss-Maxwell equation. For MHD applications it is common to neglect the

term ∂tD in equation (2.5) and set ρc = 0 in (2.4), see [1, 15]. Thus we get

∇×H = j, (2.5)

∇·D = 0. (2.6)

The Maxwell equations need to be complemented by Ohm’s law which in the

MHD setting establishes

j = σ(E + u×B) + js in Ωcf , (2.7)

where σ denotes the electric conductivity of the medium, u the velocity of the con-

ducting fluid, and js describes the applied current for external sources. Observe that

we have explicitly stated that equation (2.7) is only valid in the domain Ωcf , which

we will be used to denote the fluid conducting region from now on. In conducting

solid, which we denote as Ωcs, Ohm’s law simplifies to

j = σE + js in Ωcs. (2.8)

In contrast if we are located in the vacuum region (i.e., there is not conducting-
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region) we have σ = 0, and Ohm’s law simplifies to

j = 0 in Ωv. (2.9)

Specifying the physical nature of the medium where the electromagnetic fields

propagate will give us constitutive relations to link E,D,H and B. For instance,

when the ambient medium is vacuum such relations are
D = ε0E in Ωv,

B = µ0H in Ωv,

where ε0 and µ0 denote the electric permittivity and the magnetic permeability of

the vacuum, respectively. On the other hand, inside an electrically solid or fluid

conducting medium, which we now define as Ωc such that Ωc = Ωcs ∪ Ωv, we have


D = εE in Ωc,

B = µH in Ωc,

(2.10)

where ε and µ, respectively, denote the electric permittivity and the magnetic per-

meability of the material. In this thesis we will assume that ε and µ are positive,

bounded and scalar functions of position. It is common practice to measure ε and µ

using as a reference their values in vacuum defining


ε = εrε0

µ = µrµ0,

(2.11)

where εr and µr denote the relative electric permittivity and the relative magnetic

permeability to vacuum, respectively. However, for MHD applications related with
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this thesis, the Maxwell equations are modeled in the low-frequency regime, so ε is

not relevant in the conducting region Ωc, and the condition ∇·E = 0 only applies

for the vacuum region Ωv where ε0 is constant, see [1, 15]. In summary, using all

previous equations the Maxwell system (2.1)-(2.4) becomes



∂t(µH) = −∇×E in Ω,

∇×H = σ(E + ũ×B) + js, in Ωc

∇×H = 0 in Ωv

∇·E = 0 in Ωv,

∇·(µH) = 0 in Ω,

(2.12)

where Ω = Ωc∪Ωv, and ũ is an extension of u on Ωc, i.e., ũ is equal to u on Ωcf and

is prescribed in Ωcs. It is common to set ũ to zero in Ωcs, but it can be also set as a

solid rotation velocity.

We are still left to specify the initial and boundary conditions for Maxwell Equa-

tions, a standard choice is


E× n = a on Γn,

H× n = Hd × n on Γd,

H|t=0 = H0 in Ω,

(2.13)

where Γn∪Γd = ∂Ω. In section 3 we will discuss in more detail the above initial and

boundary conditions.
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2.2 Navier-Stokes Equations

For MHD applications where a fluid is involved, an incompressible Newtonian

fluid will be considered. The time evolution of this fluid is modeled by the incom-

pressible Navier-Stokes equations which are as follows:


∂tu + (u · ∇)u− ν∆u + 1

ρ
∇p = 1

ρ
(∇×H)×(µH) in Ωcf ,

∇·u = 0 in Ωcf ,

u|t=0 = u0 in Ωcf , u|Γf = d,

(2.14)

where u is the fluid velocity, p the fluid pressure, ρ the fluid density, and ν the

kinematic viscosity. The term ∇×H×(µH) is called the Lorenz force, and makes

possible the interaction between the conducting fluid and the electromagnetic field.

The initial velocity is prescribed by u0, and on the boundary Γf = ∂Ωcf the fluid

velocity is prescribed by d.

2.3 Non-dimensionalized equations

For numerical analysis and implementation the Navier-Stokes equations and the

Maxwell equations have to be expressed in non-dimensionalized form. We denote

by L and U the reference length and velocity scales, respectively. In all this thesis

the density is assumed to be a constant ρ and the reference scale for the pressure

is P = ρU2. The reference time scale is T = L/U . We take µ0 as reference mag-

netic permeability, ε0 as reference electric permittivity, and σ0 as reference electric

conductivity. The reference scale for the magnetic field is H = U
√
ρ/µ0, and for the

electric field we choose E = µ0HU . The current source js and the data u0,d,H0 are

non-dimensionalized by HL−1,U ,U , and H, respectively. This process leaves two

non-dimensional parameters which are referred to as the dynamic Reynolds number,
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Re, and the magnetic Reynolds number, Rm, and which are defined as follows:

Re =
UL
ν
, Rm = ULσ0µ0. (2.15)

Henceforth we abuse the notation by using the same symbols for the non-dimensional

and the corresponding dimensional quantities. The non-dimensional set of equations

are: 
∂tu + (u · ∇)u− 1

Re
∆u +∇p = (∇×H)×(µH),

∇·u = 0,

u|t=0 = u0 in Ωcf , u|Γf = d.

(2.16)



∂t(µH) = −∇×E in Ω,

∇×H = Rmσ(E + ũ×B) + js, in Ωc

∇×H = 0 in Ωv

∇·E = 0 in Ωv,

∇·(µH) = 0 in Ω,

H|t=0 = H0 in Ω,

E×n = a on Γn,

H×n = Hd×n on Γd.

(2.17)
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2.4 The Dynamo Effect

The fluid dynamo effect is the process through which a conducting fluid can

maintain a magnetic field. This phenomenon is of special interest in astrophysics,

because it affects the formation and behavior of galaxies, stars or planets. Moreover,

the dynamo effect is considered responsible for the ubiquity of the magnetic field in

the Universe. Therefore there exist extensive numerical and analytical attempts to

understand this effect. Unfortunately, the exact mechanism by which a fluid dynamo

can be put in action in astrophysical bodies remains an open challenge.

It is not until recently that fluid dynamos have been produced in laboratory ex-

periments; the three known ones are in Karlsruhe, Riga and Cadarache. The first

two were produced in homogeneous conditions, i.e., µ is constant; moreover, these

dynamos are well understood by theoretical models, which establishes the presence

of non-axisymmetric magnetic field when the fluid velocity is axisymmetric. In con-

trast, the experiment in Cadarache was performed using heterogeneous and high

permeability conductors. This setting produced a dynamo which magnetic field is

mainly axisymmetric. Such dynamo has not yet been fully understood. We now

proceed to describe in more detail all these experimental dynamos.

2.4.1 The Karlsruhe Dynamo

The Karlsruhe Dynamo experiment in 2000 in Germany (see [62]) demonstrated

the model proposed by Roberts in 1970 (cf. [54, 55]). In this model a periodic fluid

flow is prescribed as

u = sin(y)ex + sin(x)ey + (cos(x)− cos(y))ez.

Roberts showed that this fluid is capable of dynamo action. The Karlsruhe Dy-
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namo experiment consisted in an array of columnar tubes with pumps filled with

liquid sodium, and confined in a cylindrical container. Such pumps created helical

vortices’s which generated two quasi-dipolar magnetic fields of opposite direction.

2.4.2 The Riga Dynamo

This experiment was done at Riga, Latvia in 2000 (see [22, 23]) which proved

the Ponomarenko model [48]. This states that a cylinder with constant angular

and axial velocities can maintain a magnetic field in an homogeneous medium. The

experimental set up consists of three concentric cylinders all filled with liquid sodium.

An helical flow is produced by a propeller situated at the top in the innermost

cylinder, and then the flow is redirected by a coaxial back-region in the middle

cylinder. The flow in the outermost cylinder is at rest at the beginning of the

experiment, but Lorentz forces are expected to produce flow movement too. In this

set up, the generated magnetic field was an helical non-axisymmetric field rotating

in the same sense as the helical velocity field.

2.4.3 The Von Kármán Sodium Experiment 2

The von Kármán Sodium 2 (VKS2) experiment in Cadarache (France) has suc-

cessfully achieved a self generated magnetic field in a conducting liquid in 2006,

see [42]. The experiment mainly consists of a cylindrical container filled of liquid

sodium heated at 140 degrees Celsius, which is stirred by two counter-rotating im-

pellers located at the top and bottom of the container. Each impeller is composed

of a supporting disk and eight curved blades. These act on the liquid sodium as

efficient centrifugal pumps, and also act as magnetic conductors in the experiment.

Figure 2.1 shows the experimental setting. This counter-rotating configuration can

drive a turbulent flow up to Reynolds numbers as high as 107 ∼ 108. Initially the

blades used in the VKS2 experiment were made of stainless steel, but dynamo action
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(a) Geometry. (b) Impeller.

Figure 2.1: VKS experimental setting.

was only achieved when the impellers were replaced by ferromagnetic ones; specifi-

cally, blades made of soft iron material. Moreover, once dynamo action occured the

measured time-averaged magnetic field was steady and axisymmetric. Thus, it can

be concluded that the presence of dynamo action with ferromagnetic impellers and

the axisymmetry of the magnetic field were interlinked, but until now there was no

satisfying explanation about the generation of the mainly axisymmetric magnetic

field observed in this experiment [27, 26, 38]. This thesis is devoted to understand

the mechanism in action in the VKS2 experiment using numerical simulation.
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3. PRELIMINARIES OF MHD FINITE ELEMENT APPROXIMATION

In this section we introduce the geometry and PDE setting for the MHD Equa-

tions (2.16) and (2.17). We then introduce a variational weak form, and a numerical

scheme as starting points to produce a new numerical method capable to simulate the

VKS experiment. Such starting scheme has been implemented in the code SFEMaNS

(for Spectral/Finite Elements for Maxwell and Navier-Stokes equations) developed

mainly by J.L. Guermond and C. Nore, see [29, 30, 26, 31, 38]. However, the origi-

nal scheme and therefore SFEMaNS, can handle only axisymmetric piecewise constant

magnetic permeability µ. Overcoming the axisymmetric restricion is not trivial as

explained in subsection 3.7.

3.1 The Geometry Setting

The MHD equations are considered in a bounded axisymmetric domain Ω ⊂ R3.

The boundary of Ω is denoted by Γ = ∂Ω and is assumed to be at least Lipchitz

continuous. Ω is assumed to be partitioned into a conducting region (subscript c)

and an insulating region (subscript v) as follows:

Ω = Ωc ∪ Ωv, Ωc ∩ Ωv = ∅.

Ωc is referred to as the conducting domain and Ωv is referred to as the non-

conducting domain. The conducting domain is further assumed to be partitioned

into a fluid region Ωcf , and a solid region Ωcs such that

Ωc = Ωcs ∪ Ωcf , Ωcs ∩ Ωcf = ∅.
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The interface between the conducting region and the non-conducting region is

denoted by,

Σ = ∂Ωc ∩ Ωv.

For the time being, the magnetic permeability µ is assumed to be dependent only

in r and z, i.e, µ = µ(r, z), and piecewise smooth over Ωc. This last assumption will

be dropped in sections 5 and 6. Being more precise, we assume that the conducting

region Ωc, can be partitioned into sub-regions Ωc1, . . . ,ΩcN so that the restriction of

µ over each sub-region Ωci, i ∈ 1, N , is smooth. In other words,

Ωc = Ωc1 ∪ · · · ∪ Ωv, Ωci ∩ Ωcj = ∅, ∀i, j ∈ 1, N.

The interface between all the conducting sub-regions is also given and denoted

by Σµ,

Σµ = ∪i,j∈1,NΩci ∩ Ωcj.

The interfaces Σ and Σµ are fixed and given; they correspond to changes of

material properties and one side of these interfaces is always a non-deformable solid.

To easily refer to boundary conditions, we introduce

Γc = Γ ∩ ∂Ωc, and Γv = Γ ∩ ∂Ωv,

so we have Γ = Γv ∪ Γc. We assume that ∂Ωv has J + 1 connected components, for

instance, Γ0
v, . . . ,Γ

J
v , where is assumed that Γ0

v is the conneceted component of ∂Ωv

that contains Γv. We also partitionate Γc to impose different boundary conditions,

so we set Γc = Γc,d ∪ Γc,n where Γc,d ∩ Γc,n = ∅.

It is useful to define the average for any scalar or vector function f that is two-
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valued at x ∈ Ωci ∩ Ωcj as,

{f}(x) =
1

2
(f1(x) + f2(x)).

We denote by nc and nv the outward normal on ∂Ωc and ∂Ωv, respectively.

Similarly, to distinguish between the limits limΩci3y→x and limΩcj3y→x whenever x

is on the interface Σµ and x ∈ Ωci ∩ Ωcj, we set

H1(x) =


limΩci3y→x H(y) if i < j

limΩcj3y→x H(y) otherwise,

(3.1)

H2(x) =


limΩcj3y→x H(y) if i < j

limΩci3y→x H(y) otherwise.

(3.2)

We define µ1(x) and µ2(x) similarly. We also denote by ni(x) and nj(x) the

outward normal at x on ∂Ωci and ∂Ωcj, respectively. Assuming that i < j, we set

n1(x) = ni(x) and n2(x) = nj(x).

3.2 PDE Setting of MHD Equations

We now write again the MHD equations (2.16) and (2.17) introduced in section

2 using the notation defined in the preceding subsection; namely, the Navier-Stokes

equations are


∂tu + (u · ∇)u− 1

Re
∆u +∇p = (∇×H)×(µH) in Ωcf ,

∇·u = 0 in Ωcf ,

u|t=0 = u0 in Ωcf , u|Γf = d,

(3.3)
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and the Maxwell equations are



∂t(µH) = −∇×E in Ω,

∇×H = Rmσ(E + ũ×(µH)) + js, in Ωci, i ∈ 1, N,

∇×H = 0 in Ωv

∇·E = 0 in Ωv,

∇·(µH) = 0 in Ω,

µ1H1 · n1 + µ2H2 · n2 = 0 on Σµ,

H1 × n1 + H2 × n2 = 0 on Σµ,

E1 × n1 + E2 × n2 = 0 on Σµ,

H|t=0 = H0 in Ω,∫
Γiv

E · n = 0, 1 ≤ i ≤ J,

E×n = a on Γv ∪ Γc,n,

H×n = Hd×n on Γc,d.

(3.4)

Observe that conditions (Hc
1×nc1 +Hc

2×nc2)|Σµ = 0, and (Ec
1×nc1 +Ec

2×nc2)|Σµ =

0, were added to ensure continuity along the tangential component for H and E,

respectively. Similarly, the condition (µ1H
c
1 ·nc1 +µ2H

c
2 ·nc2)|Σµ = 0 ensures continuity

along the normal component of µH. Moreover, the conditions
∫

Γiv
E · n = 0 were

added to equations (2.17), because those are a consequence of using heterogeneous

conductors in the low-frequency regime, see [1] for details.

The initial data are assumed to satisty the compatibility conditions ∇·(µH0) =

0,∇·u0 = 0, and u|Γf = d|t=0. Then observe that the condition ∇·(µH) = 0 is a

consequence of using ∇·(µH0) = 0, and the first equation of (3.4), so we drop it for
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the time being, but it will appear again when a discretization scheme is introduced.

It is possible to eliminate the electric field E from (3.4). We start by assuming

that Ωv is simply connected, so condition ∇×H|Ωv = 0 implies there exists a scalar

potential φ, defined up to an arbitrary constant, such that H|Ωv = ∇φ, see [43,

Theorem 3.37] for a formal proof of this statement. Also if we assume H0 satisfies

∇×H0|Ωv = 0, we can also define φ0 such that H0|Ωv = ∇φ0. Moreover, since the

distinction between Ωc and Ωv has been made, we define

H =


Hc in Ωc

∇φ in Ωv

,E =


Ec in Ωc

Ev in Ωv

, and µ =


µc in Ωc

µv in Ωv

. (3.5)

By inserting the above definitions and the scalar potential φ into (3.4) we get,



∂t(µ
cHc) = −∇×Ec, in Ωci, i ∈ 1, N,

∇×Hc = Rmσ(Ec + ũ×(µcHc)) + js, in Ωci, i ∈ 1, N,

µv∂tφ = −∇×Ev, in Ωv,

∇·Ev = 0, in Ωv,

µ1H
c
1 · nc1 + µ2H

c
2 · nc2 = 0 on Σµ,

Hc
1 × nc1 + Hc

2 × nc2 = 0 on Σµ,

Ec
1 × nc1 + Ec

2 × nc2 = 0 on Σµ,

Ec×n|Γc,n = a|Γc Ev×n|Γv = a|Γv ,

Hc×n|Γc,d = Hc
d×n|Γc,d ,∫

Γiv
E · n = 0, 1 ≤ i ≤ J,

Hc|t=0 = Hc
0 φ|t=0 = φ0.

(3.6)
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To eliminate the arbitrariness of φ, the zero mean condition
∫

Ωv
φ = 0 is enforced.

We now solve Ec in the second equation of (3.6) and inject this result to the first

equation. Taking the divergence in both sides of the third equation, we get rid of

∇×Ev. Using Ev|Γv = (Ev · nv)nv + nv × a, we eliminate the tangential component

Ev on Γv, and we finally obtain the following MHD equations system:


∂tu + (u · ∇)u−R−1

e ∆u +∇p = (∇×H)×(µH) in Ωcf ,

∇·u = 0 in Ωcf ,

u|t=0 = u0 in Ωcf , u|Γf = d,

(3.7)



∂t(µ
cHc) = −∇×(R−1

m σ−1(∇×Hc − js)− ũ× (µcHc)) in Ωci, i ∈ 1, N,

µv∂t∆φ = 0, in Ωv,

(R−1
m σ−1(∇×Hc − js)− ũ× (µcHc))× nc = a on Γc,n,

Hc × n = Hc
d×n on Γc,d,

µv∂nv∂tφ = −nv · ∇×(nv × a), on Γv,

Hc
1 × nc1 + Hc

2 × nc2 = 0 on Σµ,

µ1H
c
1 · nc1 + µ2H

c
2 · nc2 = 0 on Σµ,

Hc × nc +∇φ× nv = 0 on Σ,

µcHc · nc + µv∇φ · nv = 0 on Σ,

H|t=0 = H0, φ|t=0 = φ0 in Ω.

(3.8)
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3.3 Function Spaces

In this subsection a variational weak form is presented as one of the building

blocks to accomplish a complete VKS-MHD simulation. We begin defining some

standard functions spaces, see [19, 28, 43] for a complete treatise in this subject.

For all this subsection we assume Ω ⊂ R3 is a Lipchitz open bounded set, not

necessarily axisymmetric. Let us denote as Lp(Ω) the space of Lebesgue integrable

scalar functions with exponent 1 ≤ p ≤ ∞ defined on Ω and normed, for 1 ≤ p <∞,

by

‖v‖Lp(Ω) =

(∫
Ω

|v|p
) 1

p

,

and, for p =∞,

‖v‖L∞(Ω) = esssupx∈Ω|v|,

for which these spaces are Banach spaces. The most important case here is p = 2,

which is the set of all square-integrable functions and is a Hilbert space where we

denote as (·, ·) its scalar product.

Let s and p be two integers with s ≥ 0 and 1 ≤ p ≤ ∞. We denote by W s
p (Ω) the

Sobolev space of functions Lp(Ω) with partial derivatives (in the distribution sense)

of order up to s in Lp(Ω), that is

W s
p (Ω) = {v ∈ Lp(Ω) : ∂mv ∈ Lp(Ω), ∀ |m| ≤ s},

equipped with the norm (for which it is a Banach space)

‖v‖W s
p (Ω) =

∑
|m|=s

‖∂mv‖Lp(Ω).

A particularly important case occurs when p = 2, and it is denoted as Hs(Ω)
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which is a Hilbert space. By H1
0 (Ω) or H0(Ω) we denote the closure of C∞0 (Ω) in the

H1-norm, where C∞0 is the space of infinitely differentiable functions having compact

support in Ω. We also denote H−1 as the dual space of H0(Ω). It is well known

that for functions in H1(Ω), the trace is well defined at the boundary; namely, let

γ0 : C0(Ω) → C0(∂Ω) map functions in C0(Ω) to their trace ∂Ω, then γ0 can be

continuously extended to W 1
p (Ω), see [19, Theorem B.52]. Moreover, if v ∈ H0(Ω),

then γ0(v) = 0 almost everywhere at the boundary.

We now proceed to define spaces of vector functions, we denote as L2(Ω) the

space of functions such that each component vi is in L2(Ω) equipped with the norm

‖v‖Lp(Ω) =
3∑
i=1

‖vi‖Lp(Ω).

Similarly, we define Hs(Ω) and Hs
0(Ω). We denote as Hcurl(Ω) the space of vector

functions v in L2(Ω) such that ∇×v is in L2(Ω). The space is Hcurl(Ω) equipped by

the canonical norm (for which it is a Banach space)

‖v‖Hcurl(Ω) =
(
‖v‖2

L2(Ω) + ‖∇×v‖2
L2(Ω)

) 1
2
.

For v ∈ Hcurl(Ω) and u ∈ H1(Ω), we have the following integration by parts

formula ∫
Ω

(∇×v) · u =

∫
Ω

(∇×u) · v −
∫
∂Ω

(v × n) · u (3.9)

where v × n is the tangential trace operator, please refer to [43, Theorem 3.29] for

details. Moreover, we denote as Hdiv(Ω) the space of vector functions v in L2(Ω)

such that ∇·v is in L2(Ω). The space is Hdiv(Ω) equipped by the canonical norm (for
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which it is a Banach space)

‖v‖Hdiv(Ω) =
(
‖v‖2

L2(Ω) + ‖∇·v‖2
L2(Ω)

) 1
2
.

For v ∈ Hdiv(Ω) and φ ∈ H1(Ω), we have the following integration by parts

formula ∫
Ω

(∇·v)φ+

∫
Ω

v · ∇φ =

∫
∂Ω

(v · n)φ (3.10)

where v · n is the normal trace, please refer to [43, Theorem 3.24] for details.

Finally, because this thesis deals with time dependent problems, we also introduce

suitable notation for those. Whenever E is a normed space with norm ‖ · ‖E , we say

a function ψ : [0, T ]→ E belongs to Lp((0, T );E) if the map (0, T ) 3 t 7→ ‖ψ(t)‖ is

Lp integrable, see [20] for more details. When introducing a time disctretization, we

denote by ∆t > 0 a time step and set tn := n∆t, n ≥ 0. Also for any time dependent

function ψ : [0, T ]→ E, we denote ψn := ψ(tn).

3.4 Variational Weak Form

We now return to obtain the continous weak form of the MHD system (3.7)-(3.8),

and we start by defining the following Hilbert spaces

H1(Ωcf ) =
{
v ∈ L2(Ωcf ),∇v ∈ L2(Ωcf )

}
, L2∫

=0(Ωcf ) =

{
q ∈ L2(Ωcf ),

∫
Ωcf

q = 0

}
,

H1
0(Ωcf ) =

{
v ∈ H1(Ωcf ),v|Γf = 0

}
,

equipped with the canonical norms. So the Navier-Stokes weak form consists of

seeking the pair (u, p) ∈ L2((0,+∞);H1(Ωcf )) ∩ L2((0,+∞);L2∫
=0

(Ωcf )) such that

u|t=0 = u0,u|Γf = d, and for all (v, q) ∈ H1
0(Ωcf )× L2∫

=0
(Ωcf ) and for almost every
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t ∈ (0,+∞):


∫

Ωcf
(∂tu + (u · ∇)u +∇p) · v

−
∫

Ωcf
Re
−1∇u : ∇v −

∫
Ωcf

(∇×H)×(µH) · v +
∫

Ωcf
q∇·u = 0,

(3.11)

where ∇u : ∇v =
∑

ij ∂iuj∂jui. When the magnetic field Hc is given and sufficiently

smooth existence of weak solutions of (3.11) is known, see [63].

Let us now proceed with the continuous weak form of Maxwell equations. For

the time being and without loss of generality, let us assume we do not have Dirichlet

boundary conditions for Hc, i.e, Γc,d = ∅, and define the spaces

L =
{

(b, φ) ∈ L2(Ωc)×H1∫
=0(Ωv)

}
X =

{
(b, φ) ∈ Hcurl(Ωc)×H1∫

=0(Ωv); (b× nc +∇φ× nv)|Σ = 0
}
,

so the problem is to seek the pair (H, φ) ∈ L2((0,+∞);X) ∩ L∞((0,+∞);L) such

that H|t=0 = H0,∇φ|t=0 = ∇φ0, and for all pairs (b, ψ) ∈ X and for almost every

t ∈ (0,+∞):



∫
Ωc

[∂t(µ
cHc) · b + (R−1

m σ−1(∇×Hc − js)− ũ× (µcHc)) · ∇×b]

+
∫

Ωv
µv∂t(∇φ) · ∇ψ

+
∫

Σµ
{R−1

m σ−1(∇×Hc − js)− ũ× (µcHc)} · (b1 × nc1 + b2 × nc2)

+
∫

Σ
(R−1

m σ−1(∇×Hc − js)− ũ× (µcHc)) · (b× nc +∇ψ × nv)

=
∫

Γc
(a× n) · (b× n) +

∫
Γv

(a× n) · (∇ψ × n),

(3.12)

the integrals over Σ and Σµ are zero, but when non-conforming finite element ap-

proximations are used these integrals do not vanish. When ũ is a given and smooth
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function, existence of weak solutions of (3.12) is known, see [19, p. 313]. Existence

of weak solutions of the couple MHD system is known when Ωv = ∅, but to prove

uniqueness, smoothness assumptions must be made, see [24]. When Ωv 6= ∅ existence

of weak solutions is an open problem, nevertheless it is assumed in this thesis.

When the velocity ũ is given the MHD system (3.11)-(3.12) reduces to solve

only Maxwell equations. This is the so-called kinematic dynamo problem, and for

the rest of this section we focus only in this problem. In section 6 we discuss the

discretization of the Navier-Stokes equations and the full MHD problem, respectively.

We now proceed to discuss the discretization of the weak problem (3.12).

3.5 Finite Element Approximation

Let (r, θ, z) be the polar coordinates and t be the time variable. Assuming that Ω

is an axisymmetric domain such that Ω ⊂ R3, we choose to use spectral approxima-

tion in the azimuthal direction θ and finite elements in the meridional plane (r, z).

This is called the Fourier finite element method, see [6, 33] for details. The generic

form of approximate function is

f(r, θ, z, t) =
M∑

k=−M

fkh (r, z, t)eikθ, (3.13)

i2 = −1, fkh (r, z, t) = f−kh (r, z, t) ∀k ∈ 0,M,

where M + 1 is the maximum number of complex Fourier modes. The coefficients

fkh (r, z, t) take values in the appropriate finite element space.

As we have seen in the previous subsection the Navier-Stokes and Maxwell equa-

tions in the MHD setting are coupled, and this makes the choice of finite elements

problematic. For instance, a natural choice for Navier-Stokes is to use the so-called

Taylor-Hood finite elements, which consist of using Lagrange finite elements for v
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and p. However, using Lagrange elements and controlling the condition ∇·(µH) in

L2(Ω) for Maxwell problems is dangerous due to the fact that such elements could

not converge, see Costabel [13]. On the other hand, a natural choice of finite ele-

ments for Maxwell problems are the so called Nedelec-elements; these elements rely

on edge interpolation which is cumbersome for Navier-Stokes problems.

There are several approaches that have successfully circumvent the problem of

using Lagrange elements for Maxwell equations in the low frequency regime, see [3, 8,

9, 10, 14, 31]. The methods introduced in Bonito and Guermond [8] and more recently

in Bonito et al. [9] solve the Maxwell eigenvalue problem using Lagrange elements,

and controlling weakly the condition ∇·(µH) in the dual space of Hs
0(Ω) where 1

2
<

s ≤ 1. Using these ideas a pseudo spectral Fourier-Finite element method has been

proposed in Guermond et al. [31] to solve (3.12). This novel approach accounts for

discontinuous µ as well and it is implemented in the open source code called SFEMaNS

(for Spectral Finite Elements for Maxwell and Navier-Stokes equations). This code

has been validated for non-trivial MHD applications [26, 38]. However, the main

restriction of the approach in [31] is that µ has to be axisymmetric. Overcoming this

restriction is a non-trivial problem, and one of the goals of this thesis. Sections 5

and 6 give full details of how to handle non-axisymmetric µ. Nevertheless, for the

sake of introduction and completeness, we continue describing the original numerical

scheme implemented in the code SFEMaNS which handles only piecewise-constant

axisymmetric µ. In the last subsection, numerical convergence tests are presented

which are used for comparisons in section 5, where a different variational form of

(3.8) and a new numerical discretization are introduced.
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3.5.1 Space Discretization for the Geometry

As mentioned before, we assume Ω is axisymmetric, so we denote by Ωv
2D,Ωc

2D

and Ωc
2D
i (i = 1, . . . , N), the meridional sections of Ωv,Ωc and Ωci, respectively. We

assume that Ωv,Ωc and Ωci have piecewise quadratic boundaries. These sections are

meshed using quadratic triangular meshes.

We denote by {Fvh}h>0, {F ch}h>0 and {F cih }h>0 the corresponding regular families

of non-overlappping quadratic triangular meshes. We assume that for every given

mesh index h, F cih is a subset of F ch. We denote by Σ2D
h and Σ2D

µh the collection of

triangles faces that compose the meridional section of Σ and Σµ, respectively. The

collection of cylindrical surfaces generated by rotation around the symmetry axis by

the faces in Σ2D
h and Σ2D

µh are denoted by Σ and Σµ, respectively. For every cylindrical

surface F in Σ∪Σµ, we denote by hF the diameter of the triangle face that generates

F .

For every element K in the mesh Fvh ∪ F ch we denote by TK : K̂ → K the

quadratic transformation that maps the reference triangle K̂ := {(r, z) ∈ R2, 0 ≤

r̂, 0 ≤ ẑ, r̂ + ẑ ≤ 1} to K, and we denote by hK , the diameter of K. Finally, we

denote by K3D the volume generated by rotation around the symmetry axis by an

element K.

3.5.2 Space Discretization of Maxwell Equations

Let `H and `φ be two integers in {1, 2} with `φ ≥ `H. We define the meridional

finite element spaces as follows,

XH,2D
h := {bh ∈ L2(Ωc); bh|Ωci ∈ CCC

0(Ωci),∀i = 1, . . . , N,bh(TK)|K ∈ PPP`H , ∀K ∈ F ch},

Xφ,2D
h := {ϕh ∈ C0(Ωv); ϕh(TK)|K ∈ P`φ , ∀K ∈ Fvh},
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where Pk denotes the set of bivariate polynomials of total degree at most k, and

PPPk := Pk×Pk×Pk. Then, using the complex notation i2 = −1, the field H and the

scalar potential φ are approximated in the following spaces:

XH
h := {b =

M∑
m=−M

bmh (r, z)eimθ; bmh ∈ XH,2D
h , bmh = b−mh , k ∈ 0,M},

Xφ
h := {ϕ =

M∑
m=−M

ϕmh (r, z)eimθ; ϕmh ∈ X
φ,2D
h , ϕmh = ϕ−mh , m ∈ 0,M},

where M + 1 is the maximum number of complex Fourier modes.

As in [31] we introduce the magnetic pressure pc to control the divergence condi-

tion ∇·(µcH) = 0 weakly in the dual space of Hs
0(Ω) where 1

2
< s ≤ 1. So we define

the following finite element spaces,

Xp,2D
h :=

{
ph ∈ L2(Ωc) / ph ∈ C0(Ωc), ph(TK) ∈ P`p , ∀K ∈ F ch, ph = 0 on ∂Ωc

}
,

Xp
h :=

{
p =

M∑
m=−M

pmh (r, z)eimθ / ∀m = 1 . . . ,M, pm ∈ Xp,2D
h and pmh = p−mh

}
,

where `p is an integer in {1,2}.

3.5.3 Time Discretization

We now proceed to describe the time stepping scheme used originally in the code

SFEMaNS and reported in [29, 30, 31] to discretize (3.12). First of all let us drop the

assumption of not having Dirichlet boundary conditions, i.e, let us assume Γc,d 6= ∅.

Now, the time derivatives of Hc and φ are approximated using Backward Difference

of second order formula (BDF2), and after proper initialization at t0 and t1, we define

DHc,n+1 =
1

2
(3Hc,n+1 − 4Hc,n + Hc,n−1), (3.14)
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and

H∗ = 2Hc,n −Hc,n−1. (3.15)

Observe that for any sufficiently smooth function and using Taylor series we have

Hc,n+1 = H∗+O(∆t2), this identity is used extensively in this thesis, and its stability

properties are deeply studied in section 4. Then the solution of the Maxwell problem

(3.12) is computed in one step by solving Hc,n+1 ∈ XH
h , φn+1 ∈ Xφ

h and pc,n+1 ∈ Xp
h,

so that the following holds for all b ∈ XH
h , ϕ ∈ Xφ

h and q ∈ Xp
h,


Hc|t=0 = Hc

0,∫
Ωc
µc DHc,n+1

∆t
·b +

∫
Ωv
µv∇Dφ

n+1

∆t
·∇ϕ+ L((Hc,n+1, φn+1), (b, ϕ))

+P(φn+1, ϕ) +D((Hc,n+1, pn+1), (b, q)) + E(Hc,n+1,b) = Rn(b, ϕ),

(3.16)

where,

L((H, φ), (b, ϕ)) =

∫
Ωc

1

σRm

∇×H · ∇×b +

∫
Σµ

{
1

σRm

∇×H
}
· (b1 × nc1 + b2 × nc2)

+ g((H, φ), (b, ϕ)) +

∫
Σ

1

σRm

∇×H · (b× nc +∇ϕ× nv) .

The bilinear form g((H, φ), (b, ϕ)) penalizes the jumps conditions on Σ and Σµ
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using the so-called Interior Penalty Method (IPM) see [2],

g((H, φ), (b, ϕ)) = β3

∑
F∈Σµ

h−1
F

∫
F

(H1 × nc1 + H2 × nc2) · (b1 × nc1 + b2 × nc2)

+ β1

∑
F∈Σµ

h−1
F

∫
F

(µc1H1 · nc1 + µc2H2 · nc2) · (µc1b1 · nc1 + µc2b2 · nc2)

+ β2

∑
F∈Σ

h−1
F

∫
F

(H×nc1 +∇φ×nc2) ·(b×nc +∇ϕ×nv)

+ β1

∑
F∈Σ

h−1
F

∫
F

(µcH · nc1 +∇φ · nc2) · (µcyb · nc +∇ϕ · nv) ,

where β1, β2, β3 are penalization constant parameters and user dependent. We usually

take β3 = β2 = β1 and,

β1 =
1

Rmminx∈Ωc(σ(x))
.

This scaling can be justified by arguments from the Interior Penalty Theory

[2, 4, 30, 31]. Now, the bilinear form P(φ, ϕ) is defined as

P(φ, ϕ) =

∫
Ωv

µv∇φ·∇ϕ−
∫
∂Ωv

µvϕn·∇φ,

this is a stabilization form due to the introduction of the magnetic pressure pc, see

[31]. The bilinear form D((H, p), (b, q)) controls the divergence condition ∇·(µcH) =

0 weakly in Ωc,

D((H, p), (b, q)) =β1 ·

∫
Ωc

µc∇p·b−
∫

Ωc

µcH·∇q +
∑
K∈Fch

∫
K3D

h
2(1−α)
K ∇p·∇q


+ β1 ·

∑
K∈Fch

h2α
K

∫
K3D

∇·(µcH)∇·(µcb) (3.17)

where α is real number such that α ∈ [0.6, 0.8], see [8, 31]. All the computations
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done in this thesis we have used α = 0.6.

The bilinear form E(H,b) imposes the Dirichlet boundary conditions on Γc,d

using interior penalty method as well,

E(H,b) =

∫
Γc,d

1

σRm

(∇×H) · (b×nc)

+ β4

 ∑
F∈Γc,d

h−1
F

∫
F

(H×nc)·(b×nc)

 , (3.18)

where β4 is a user dependent parameter. Finally, the right hand side bilinear form

Rn(b, ϕ) is defined as

Rn(b, ϕ) =

∫
Σµ

{
1

σRm

js + ũ× (µcH∗)

}
· (b1 × nc1 + b2 × nc2)

+

∫
Ωc

(
1

σRm

js + ũ× (µcH∗)

)
· ∇×b

+

∫
Σ

(
1

σRm

js + ũ× (µcH∗)

)
· (b× nc +∇ϕ× nv)

+

∫
Γc,n

(a× n) · (b× n) +

∫
Γv

(a× n) · (∇ϕ× n),+Hn(b),

where the linear form Hn(b) is defined as

Hn(b) =

∫
Γc,d

(
1

σRm

js + ũ× (µcH∗)

)
· (b×nc)

+ β4

 ∑
F∈Γc,d

h−1
F

∫
F

(Hc
d×nc) ·(b×nc)

 ,

which last term balances against the bilinear form E(H,b).
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3.6 Convergence Tests

As mentioned before, the original numerical scheme implemented in the code

SFEMaNS handled only piecewise-constant axisymmetric µ. And as a part of the work

of this thesis, SFEMaNS has been extended to handle piecewise-smooth axisymmetric

µ. This worked as a starting point when µ is non-axisymmetric. We now test our

implementation with two manufactured solutions.

3.6.1 Maxwell Equations with Vacuum

We construct an analytical solution for the system (3.8) defining first the magnetic

field H and the magnetic permeablity µ by

H =


Hc in Ωc

∇ψ in Ωv

and µ =


µc in Ωc

1 in Ωv

. (3.19)

For this particular test we set µc = µc(r, z), but µc is not allowed to have jumps

in Ωc, so Σµ = ∅. Let us set Ωc as a cylinder located at the origin with radius 1 and

height 2; specifically, let Ωc = {(r, θ, z) ∈ R3 : (r, θ, z) ∈ [0, 1] × [0, 2π) × [−1, 1]},

and let Ωv = {(r, θ, z) ∈ R3 : r2 + z2 = 102, θ ∈ [0, 2π)} \ Ωc. Now, let us set

H =
1

µc
∇ψ, (3.20)

in (3.19) where ψ = ψ(r, z) such that it satisfies the Laplace equation in cylindrical

coordinates; namely,

∂rrψ +
1

r
∂rψ + ∂zzψ = 0. (3.21)

If we also set j = ∇ ×H, u = 0, then E = 0,and H satisfies (3.8). Now let us
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define

µc = µc(r, z) =
1

f(r, z) + 1
,

where

f(r, z) = b · r3 · (1− r)3 · (z2 − 1)3,

and b is a non-negative constant parameter which determines the variation of µc.

Observe that µc = 1 at (r, z) = (1,±1), then µc = 1 at Ωv. So we can set µc = µ,

and by using (3.19) allows us to have vacuum, and µ has no jumps on Ω as required.

Also notice that f(r, z) ≤ 0 for (r, θ, z) ∈ Ωc and

sup
Ωc

f(r, z) = fmax = 0, inf
Ωc
f(r, z) = fmin = − b

26
,

then

µcmin =
1

1 + fmax

, µcmax =
1

1 + fmin

, rµ =
µmax

µmin

=

1
1− b

26

1
, and b = 26

(
1− 1

rµ

)
.

To get an explicit solution in (3.20), equation (3.21) is solved using separation of

variables, that is, letting ψ(r, z) = R(r)Z(z) we solve the following system of ODEs,

Z ′′ − λZ = 0

R′′ +
R′

r
+ λR = 0,
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where λ is any real number. Here we choose λ = 1, so

ψ(r, z) = J0(r)cosh(z). (3.22)

Now, using J ′0(r) = −J1(r) and cosh′(z) = sinh(z) we get,

∇ψ =


−J1(r)cosh(z)

0

J0(r)sinh(z)

 ,

then using (3.20) we compute,

Hc = (f(r, z) + 1)


−J1(r)cosh(z)

0

J0(r)sinh(z)

 . (3.23)

Denoting by Hh the approximate magnetic field, we report in tables 3.1a and 3.1b

the relative errors using the code SFEMaNS. These tables also show the computed order

of convergence (COC). For this test PPP2,P2 and P1 Lagrange elements are employed

for Hc
h, φh and pch, respectively. Moreover, since solution (3.23) is in Fourier space

with mode m = 0, scheme (3.16) is used only for this mode. The convergence rate

observed in table 3.1a is optimal according with the theory, see Bonito et al. [9,

Theorem 5.1], while superconvergence is observed in table 3.1b.
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h ‖∇·(µH)h‖L2 COC ‖∇×(H−Hh)‖L2 COC

0.4 4.3217E-01 — 1.5558E-01 —

0.2 1.5331E-01 1.50 3.9268E-02 1.99

0.1 8.6974E-02 0.82 1.2243E-02 1.68

0.05 1.6816E-02 2.37 1.6855E-03 2.86

0.025 5.5347E-03 1.60 5.2292E-04 1.69

(a)

h ‖H−Hh‖L2 COC ‖φ− φh‖H1 COC

0.4 5.3699E-01 — 2.7142E-02 —

0.2 1.4000E-01 1.94 8.5094E-03 1.67

0.1 1.8230E-02 2.94 1.0826E-03 2.97

0.05 1.0800E-03 4.08 5.0390E-05 4.43

0.025 8.8350E-05 3.61 3.4253E-06 3.88

(b)

Table 3.1: Numerical errors computed when vacuum is nonempty, and µ is axisym-
metric using scheme (3.16).

3.6.2 Maxwell Equations with Jumps in µ

In this test we do not have vacuum, i.e, Ωv = ∅, but we allow µc to have jumps.

We first begin setting u = 0, E = 0, and Ωc = Ωc,1 ∪ Ωc,2, where

Ωc,1 = {(r, θ, z) ∈ R3 : (r, θ, z) ∈ [0, 1]× [0, 2π)× [1/4, 1]},
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and

Ωc,2 = {(r, θ, z) ∈ R3 : (r, θ, z) ∈ [1, 2]× [0, 2π)× [1/4, 1]}.

Let λµ = 10 and set

Hc =


Hr

0

Hz

 , (3.24)

where

Hr =


H1,r = rz in Ωc,1,

H2,r = rz3(3r+2)
3z2r+2z2+2λµ

in Ωc,2,

and Hz = −1

2

z2(3r + 2)

1 + r
.

We now define the magnetic permeability as

µc = µc(r, z) =


µ1 = 1 + r in Ωc,1,

µ2 = µ1 + 2λµ(1+r)

z2(3r+2)
in Ωc,2,

so we can see that µc has a jump, so Σµ 6= ∅. Finally using Hc as in (3.24) for

Dirichlet boundary conditions, the Maxwell equations (3.8) are satisfied. Denoting

by Hh the approximate magnetic field using scheme (3.16), we report in table 3.2

the relative errors, and the computed order of convergence (COC) using SFEMaNS.

For this test PPP2, and P1 Lagrange elements are used for Hc
h and pch, respectively.

Moreover, since the solution is in Fourier space with mode m = 0, scheme (3.16)

is used only for this mode. All convergence rates observed in table 3.2 exceeds by

almost one the theoretical rate, see Bonito et al. [9, Theorem 5.1].
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h ‖∇·(µH)h‖L2 COC ‖∇×(H−Hh)‖L2 COC ‖H−Hh‖L2 COC

0.2 2.6728E-01 — 7.6497E-01 — 5.1926E-01 —

0.1 3.6544E-02 2.87 6.9674E-02 3.46 4.2544E-02 3.61

0.05 9.9811E-03 1.87 8.3591E-03 3.06 1.5756E-03 4.76

0.025 1.7801E-03 2.49 1.4059E-03 2.57 5.7830E-05 4.77

0.0125 2.6337E-04 2.76 1.9085E-04 2.88 2.1993E-06 4.72

Table 3.2: Numerical errors computed when µ is axisymmetric, and has jumps using
scheme (3.16).

3.7 A Simpler Model Proposed for Maxwell Equations

To illustrate and understand what is the main difficulty of using hybrid Fourier-

Finite elements for Maxwell equations when µ is non-axisymmetric, we propose to

study the following simpler model which is similar to the first equation of the Maxwell

system (3.8),


∂t(µu)−∇ · (∇u) = f(x, t) x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 x ∈ Ω, 0 < t ≤ T,

u(x, 0) = u0 in Ω,

(3.25)

where u is the unknown scalar field, and for the time being µ = µ(r, θ, z). We assume

that Ω has smooth boundary, and the functions f, µ and u0 are smooth. Let ∆t be

the time step and set tn := n∆t, n ≥ 0. Denoting un as an approximation of u at

time tn, we discretize (3.25) using the backward Euler (BDF1) time scheme,

µun+1 − µun

∆t
−∇ ·

(
∇un+1

)
= fn+1. (3.26)
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Now, introducing the Fourier representation (3.13)

u(r, θ, z) ≈
M∑
|k|=0

ûk(r, z)eikθ, and (µu)(r, θ, z) ≈
M∑
|k|=0

(µu)∧k (r, z)eikθ,

we get the weak form of (3.26) which is to find (un+1)
∧
k in some abstract space V

such that

1

∆t

∫
Ω̂

((
µun+1

)∧
k
− (µun)∧k

)
ψ̂rdrdz

+

∫
Ω̂

∇rzû
n+1
k · ∇rzψ̂rdrdz (3.27)

+

∫
Ω̂

k2

r
ûn+1
k ψ̂drdz =

∫
Ω̂

f̂n+1
k ψ̂rdrdz, ∀ψ̂ ∈ V and k = 0,±1, ...,±M,

where Ω̂ is the meridional plane, and∇rzu = (∂ru)er+(∂zu)ez. The main difficulty of

the weak form (3.27) is the implicit term (µun+1)
∧
k involving a convolution between

(un+1)
∧
k and µ̂k. This breaks the parallelization in the linear algebra; specifically,

when finite elements are used to discretize Ω̂, the resultant matrix is full rather than

decoupled mode by mode. Due to this difficulty, we propose a change of variables

and study the following model


∂tv −∇ · (∇ (ηv)) = f(x, t) x ∈ Ω, 0 < t ≤ T,

v(x, t) = 0 x ∈ Ω, 0 < t ≤ T,

v(x, 0) = v0 in Ω,

(3.28)

where v = µu and η = µ−1. Time stepping schemes avoiding implicit convolutions

for the parabolic problem (3.28) are proposed and studied in the following section.

The case when η is time dependent is treated as well.
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4. EFFICIENT SECOND ORDER BACKWARD DIFFERENCE SCHEME FOR

PARABOLIC PROBLEMS WITH VARIABLE COEFFICIENTS

The purpose of this section is to find and analyze efficient time stepping schemes

for the model 
∂tv −∇ · (∇ (ηv)) = f(x, t) x ∈ Ω, 0 < t ≤ T,

v(x, t) = 0 x ∈ Ω, 0 < t ≤ T,

v(x, 0) = v0 in Ω,

(4.1)

where η only depends on space. As discussed in subsection 3.7, the model (4.1)

mimics the first equation of the Maxwell system (3.8), so it is natural to begin

analyzing this PDE. By efficient time stepping schemes we mean schemes that use

time independent matrices, and avoid implicit convolutions when hybrid Fourier-

finite elements are employed. Two time stepping schemes are proposed with those

properties for (4.1). One of first order, and one of second order in time. Their

stability is proved in subsection 4.1.2 for sufficiently small time steps ∆t. Then

numerical experiments are performed using these efficient schemes when Ω ⊂ Rd for

d = 2, 3.

It is worth mentioning that when η = η(x), model (4.1) mimics the kinematic

dynamo problem of the VKS experiment, which is studied in section 5. Let us recall

that the kinematic dynamo problem consists in solving only Maxwell equations (3.8)

when the fluid velocity u is given. The case for time dependent η mimics the case

when we have moving blades, which corresponds to a full MHD-VKS simulation

problem where the magnetic field H and u are unknowns. Since this case is crucial,
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in subsection 4.2 we focus our attention on the general scalar parabolic PDE with

variable coefficients in time and space; namely,


ut + A(t)u = f(x, t) x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 x ∈ ∂Ω, 0 < t ≤ T,

u(x, 0) = u0 x ∈ Ω,

(4.2)

where

A(t)u = −
∑
ij

∂

∂xj

(
ηij(x, t)

∂u

∂xj

)
+
∑
i

ηi(x, t)
∂u

∂xi
+ η(x, t)u.

We propose a novel efficient second order in time scheme to solve (4.2) and prove

its stability in subsection 4.2.1. Numerical experiments using this new scheme are

presented for Ω ⊂ R2. The standard bibliography to study parabolic PDEs such

as (4.2) is Evans [20], and Renardy and Rogers [52]. For details about numerical

methods, see the monograph of Thomée [64].

4.1 Simpler Model for Maxwell Equations

In this subsection we focus to solve numerically the following PDE,


∂tv −∇ · (∇ (ηv)) = f(x, t) x ∈ Ω, 0 < t ≤ T,

v(x, t) = 0 x ∈ Ω, 0 < t ≤ T,

v(x, 0) = v0 in Ω,

(4.3)

where we assume Ω ⊂ Rd for d = 2, 3 with smooth boundary ∂Ω, f ∈ L2(Ω) and

v0 ∈ H1
0 (Ω). By assumption η depends only in Ω, and it has minimal regularity;

namely, η ∈ W 1
∞(Ω). Moreover, we assume there exists a positive constant η0 such
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that

0 < η0 ≤ inf
x∈Ω

η(x). (4.4)

Thus the variational weak form of (4.3) consists of finding v ∈ C([0, T ];H1
0 (Ω)),

with ∂tv ∈ L2([0, T ];H−1(Ω)) such that


∫

Ω
(∂tv)w +

∫
Ω
∇(ηv) · ∇w =

∫
Ω
fw ∀w ∈ H1

0 (Ω), 0 < t ≤ T,

v(x, 0) = v0,

(4.5)

where v0 ∈ H1
0 (Ω), and f : [0, T ] → L2(Ω). To prove that the above weak problem

(4.5) is well defined, let us define the bilinear form

A(t, v, w) =

∫
Ω

∇(ηv) · ∇w =

∫
Ω

(η∇v · ∇w + v∇η · ∇w). (4.6)

Thus using the fact that η ∈ W 1
∞(Ω) we have that

|A(t, v, w)| ≤ C‖v‖H1
0 (Ω)‖w‖H1

0 (Ω), (4.7)

so A(t, v, w) is uniformly bounded. Moreover, using (4.4) we get

η0

∫
Ω

|∇v|2 ≤
∫

Ω

η|∇v|2

≤ A(t, v, v)−
∫

Ω

v∇η · ∇v

≤ A(t, v, v)− L
∫

Ω

|v||∇v|, (4.8)

where L = ‖∇η‖L∞(Ω). Now from Cauchy’s inequality with ε > 0,

ab ≤ εa2 +
b2

4ε
(a, b ∈ R), (4.9)
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we observe that

L

∫
Ω

|v||∇v| ≤ ε

∫
Ω

|∇v|2 +
L2

4ε

∫
Ω

|v|2,

thus inserting this estimate into (4.8) and choosing ε = η0

4
we obtain

3η0

4

∫
Ω

|∇v|2 ≤ A(t, v, v) +
L2

η0

∫
Ω

|v|2. (4.10)

Moreover, using Poincaré’s inequality

‖v‖ ≤ C‖∇v‖L2(Ω) for v ∈ H1
0 (Ω), (4.11)

it follows that

c‖v‖H1
0 (Ω) ≤ A(t, v, v) + λ‖v‖L2(Ω), (4.12)

for some appropiate constant c > 0 and λ = L2

η0
≥ 0. Inequality (4.12) is called

G̊arding inequality. So using (4.7) and (4.12), it is a standard result that the weak

problem (4.5) has a unique solution, see [19, Theorem 6.6] and [52, Theorem 8.19].

4.1.1 Time Discretization

Let us recall that we want to solve (4.5) using time stepping schemes which avoid

implicit convolutions when we dicretize using hybrid Fourier-finite elements. This

means that the term ∇(ηv) · ∇w in (4.6) should be handled explicitely in time. We

propose two time stepping schemes with that property, but first let us recall that for

sufficiently smooth functions in time we have that

vn+1 = vn +O(∆t), and vn+1 = 2vn − vn−1 +O(∆t2), (4.13)

41



so introducing the notation

δvn+1 = vn+1 − vn, and δ2vn+1 = vn+1 − 2vn + vn−1, (4.14)

we have

δvn+1 = O(∆t), and δ2vn+1 = O(∆t2). (4.15)

We first propose a time stepping scheme for (4.5) which uses a Backward Differ-

ence Method (BDF) approximation of order one for the time derivative, and a first

order extrapolation in time,

1

∆t

∫
Ω

δvn+1w +

∫
Ω

η∇δvn+1 · ∇w +

∫
Ω

∇ (ηvn) · ∇w =

∫
Ω

fn+1w, (4.16)

where η is a parameter function independent of time. The term
∫

Ω
η∇δvn+1 ·∇w adds

artificial diffusion, and is of first order in time accurate due to (4.15). In the same

spirit, we also propose a time stepping scheme which uses a BDF approximation of

order two for the time derivative, and a second order extrapolation in time,

1

2∆t

∫
Ω

(3vn+1 − 4vn + vn−1)w +

∫
Ω

η∇δ2vn+1 · ∇w

+

∫
Ω

∇
(
η(2vn − vn−1)

)
· ∇w =

∫
Ω

fn+1w. (4.17)

Similarly observe that the term
∫

Ω
η∇δ2vn+1 · ∇w adds artificial diffusion, and is

of second order in time accurate due to (4.15). We refer to schemes (4.16) and (4.17)

as BDF1* and BDF2*, respectively. As proved later the parameter function η needs

to be in the space L∞(Ω) and satisfy

η(x) ≤ η(x) ∀x ∈ Ω, (4.18)
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to guarantee stability of both schemes for sufficiently small time steps ∆t. Moreover,

η can be a constant function, so schemes (4.16) and (4.17) avoid implicit convolutions

when hybrid Fourier-finite elements are used. In Shen and Yang [60], the authors

use similar ideas of using time extrapolations, parameter constants and artificial

diffusion to discretize the Allen-Cahn and Cahn-Hilliard equations. Doing so they

gain stability, and avoid solving a nonlinear problem at each time step. Moreover, the

authors give a rigorous proof of stability and convergence of their methods. Similarly,

in Dong and Shen [16] a scheme is proposed to solve two-phase incompressible flows;

however, only numerical experiments are presented. In Cappanera [11] a first order

in time scheme is proposed to solve multiphase fluid flows, and a formal proof of its

stability is given.

4.1.2 Proof of Stability

We now focus in proving the stability of schemes (4.16) and (4.17). We use

energy methods for these tasks, and take inspiration from the works of Becker [5] and

Emmrich [18]; where both prove stability of an implicit BDF2 scheme for parabolic

PDEs with variable time steps. See also Samarskii [58] and Thomée [64] for an

overview of energy methods.

First of all to avoid irrelevant technicalities we assume that f = 0, and we define

the operator δk+1vn for general k as

δk+1vn := δ(δk)vn = δkvn − δkvn−1, (4.19)

which properties are summarized in the following proposition.

Proposition 4.1.1. Let a(·, ·) be a bilinear form, then

43



a) 2a(δk+1vn+1, δkvn+1) = δa(δkvn+1, δkvn+1) + a(δk+1vn+1, δk+1vn+1)

+ a(δkvn+1, δkvn)− a(δkvn, δkvn+1).

b) 2a(δkvn+1, δk+1vn+1) = δa(δkvn+1, δkvn+1) + a(δk+1vn+1, δk+1vn+1)

− a(δkvn+1, δkvn) + a(δkvn, δkvn+1).

c) 2a(δk+1vn+1, δkvn) = δa(δkvn+1, δkvn+1)− a(δk+1vn+1, δk+1vn+1)

+ a(δkvn+1, δkvn)− a(δkvn, δkvn+1).

d) 2a(δk+2vn+1, δkvn+1) = δ2a(δkvn+1, δkvn+1) + a(δk+2vn+1, δk+2vn+1)

− 2a(δk+1vn, δk+1vn) + a(δk+1vn+1, δk+1vn)

− a(δk+1vn, δk+1vn+1) + a(δkvn+1, δkvn)

− a(δkvn, δkvn+1)− a(δkvn, δkvn−1)

+ a(δkvn−1, δkvn).

Proof. We proof all items for k = 0. Their result for general k follows by induction

and using the recursive property (4.19)
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a) 2a(δvn+1, vn+1) = 2a(vn+1, vn+1)− 2a(vn, vn+1),

= a(vn+1, vn+1)− a(vn, vn) + a(vn, vn) + a(vn+1, vn+1)

− 2a(vn, vn+1)

= δa(vn+1, vn+1) + a(vn, vn) + a(vn+1, vn+1)

− 2a(vn, vn+1)

= δa(vn+1, vn+1) + a(vn, vn)− a(vn, vn+1) + a(vn+1, vn+1)

− a(vn, vn+1)

= δa(vn+1, vn+1)− a(vn, δvn+1) + a(δvn+1, vn+1)

= δa(vn+1, vn+1) + a(δvn+1, δvn+1)− a(vn+1, δvn+1)

+ a(δvn+1, vn+1)

= δa(vn+1, vn+1) + a(δvn+1, δvn+1) + a(vn+1, vn)

− a(vn, vn+1).
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b) 2a(vn+1, δvn+1) = 2a(vn+1, vn+1)− 2a(vn+1, vn),

= a(vn+1, vn+1)− a(vn, vn) + a(vn, vn) + a(vn+1, vn+1)

− 2a(vn+1, vn)

= δa(vn+1, vn+1) + a(vn, vn) + a(vn+1, vn+1)

− 2a(vn+1, vn)

= δa(vn+1, vn+1) + a(vn, vn)− a(vn+1, vn)− a(vn+1, vn)

+ a(vn+1, vn+1)

= δa(vn+1, vn+1)− a(δvn+1, vn) + a(vn+1, δvn+1)

= δa(vn+1, vn+1) + a(δvn+1, δvn+1)− a(δvn+1, vn+1)

+ a(vn+1, δvn+1)

= δa(vn+1, vn+1) + a(δvn+1, δvn+1) + a(vn, vn+1)

− a(vn+1, vn).

c) 2a(δvn+1, vn) = −2a(δvn+1, δvn+1) + 2a(δvn+1, vn+1),

and the result follows using item a) with k = 0.

d) 2a(δ2vn+1, vn+1) = 2a(δ2vn+1, δvn+1) + 2a(δ2vn+1, vn)

= I + II.

Using item a) with k = 1 for I we get

I = δa(δvn+1, δvn+1) + a(δ2vn+1, δ2vn+1) + a(δvn+1, δvn)− a(δvn, δvn+1),

and by definition

II = 2a(δvn+1, vn)− 2a(δvn, vn),

but using items c) and a) with k = 0 we have
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II =
(
δa(vn+1, vn+1)− a(δvn+1, δvn+1) + a(vn+1, vn)− a(vn, vn+1)

)
−
(
δa(vn, vn) + a(δvn, δvn) + a(vn, vn−1)− a(vn−1, vn)

)
= δ2a(vn+1, vn+1)− a(δvn+1, δvn+1)− a(δvn, δvn) + a(vn+1, vn)

− a(vn, vn+1)− a(vn, vn−1) + a(vn−1, vn),

thus

I + II = δ2a(vn+1, vn+1) + a(δ2vn+1, δ2vn+1)− 2a(δvn, δvn)

+ a(δvn+1, δvn)− a(δvn, δvn+1) + a(vn+1, vn)

− a(vn, vn+1)− a(vn, vn−1) + a(vn−1, vn).

We now prove the stability of BDF1* time scheme (4.16). Then we do the same

for the BDF2* scheme (4.17) in Theorem 4.1.2.

Theorem 4.1.1 (BDF1*). Let η ∈ L∞(Ω) such that condition (4.18) is satisfied,

and let

∆t < α2η0‖∇η‖−2
L∞(Ω), (4.20)

where

α = inf
Ω

η

η
,

then the solution of the scheme (4.16) satisfies,

1

∆t

∫
Ω

η|vn+1|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηvn+1)|2

≤ 1

∆t

∫
Ω

η|v0|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηv0)|2. (4.21)
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Proof. Summing and substracting ∇(ηvn+1) in equation (4.16) we get,

1

∆t

∫
Ω

δvn+1w +

∫
Ω

η∇δvn+1 · ∇w

−
∫

Ω

∇
(
ηδvn+1

)
· ∇w +

∫
Ω

∇
(
ηvn+1

)
· ∇w = 0.

Choosing w = 2ηvn+1, we have

2

∆t

∫
Ω

ηδvn+1vn+1 + 2

∫
Ω

η∇δvn+1 · ∇
(
ηvn+1

)
− 2

∫
Ω

∇
(
ηδvn+1

)
· ∇
(
ηvn+1

)
+ 2

∫
Ω

|∇(ηvn+1)|2 = 0. (4.22)

Observe that,

∇δvn+1 = ∇(
η

η
δvn+1)

=
1

η
∇δ(ηvn+1) + δ(ηvn+1)∇

(
1

η

)
=

1

η
∇δ(ηvn+1)− δ(ηvn+1)

(
∇η
η2

)
=

1

η
∇δ(ηvn+1)− 1

η
δvn+1∇η. (4.23)

Using (4.23) in the second term of (4.22) we get,

2

∆t

∫
Ω

ηδvn+1vn+1 + 2

∫
Ω

η

η
∇δ(ηvn+1) · ∇

(
ηvn+1

)
− 2

∫
Ω

η

η
δvn+1∇η · ∇

(
ηvn+1

)
− 2

∫
Ω

∇
(
ηδvn+1

)
· ∇
(
ηvn+1

)
+ 2

∫
Ω

|∇(ηvn+1)|2 = 0.

We now apply proposition 4.1.1.a to the first, second, and fourth terms of the left
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hand side in this last equation,

1

∆t

∫
Ω

η(δ|vn+1|2 + |δvn+1|2) +

∫
Ω

η

η
(δ|∇(ηvn+1)|2

+ |∇(ηδvn+1)|2)− 2

∫
Ω

η

η
δvn+1∇η · ∇

(
ηvn+1

)
+

∫
Ω

∣∣∇ (ηvn+1
)∣∣2 +

∫
Ω

|∇ (ηvn)|2

−
∫

Ω

∣∣∇ (ηδvn+1
)∣∣2 = 0.

Using −2
∫

Ω
η
η
δvn+1∇η · ∇ (ηvn+1) ≥ −2

∫
Ω
η
η
|δvn+1∇η · ∇ (ηvn+1)| and Cauchy’s

inequality (4.9) to the term |δvn+1∇η · ∇ (ηvn+1)|, we get the following

1

∆t

∫
Ω

η(δ|vn+1|2 + |δvn+1|2) +

∫
Ω

η

η
(δ|∇(ηvn+1)|2 + |∇(ηδvn+1)|2)

−
∫

Ω

η

η

(
1

ε
|δvn+1∇η|2 + ε|∇(ηvn+1)|2

)
+

∫
Ω

∣∣∇ (ηvn+1
)∣∣2

+

∫
Ω

|∇ (ηvn)|2 −
∫

Ω

∣∣∇ (ηδvn+1
)∣∣2 ≤ 0.

Bounding the term −
∫

Ω
η
η

1
ε
|δvn+1∇η|2 and regrouping we get,

1

∆t

∫
Ω

η|vn+1|2 +

∫
Ω

(
η

∆t
− η

ηε
||∇η||2L∞(Ω)

)
|δvn+1|2

+

∫
Ω

η

η
(1− ε) |∇(ηvn+1)|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηδvn+1)|2

≤ 1

∆t

∫
Ω

η|vn|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηvn)|2

Observe that
(
η
η
− 1
)
≥ 0, because η ≥ η by assumption. Then the third term is

positive and can be dropped. Moreover, using ε = η
η

and condition (4.20), the second

term becomes positive, so dropping it we finally obtain

1

∆t

∫
Ω

η|vn+1|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηvn+1)|2 ≤ 1

∆t

∫
Ω

η|vn|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηvn)|2.
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Applying this last inequality recursively we get (4.21).

Theorem 4.1.2 (BDF2*). Let η ∈ L∞(Ω) such that condition (4.18) is satisfied,

and let

∆t <
α2η0

2
‖∇η‖−2

L∞(Ω), (4.24)

where

α = inf
Ω

η

η
,

then the solution of the scheme (4.17) satisfies,

1

2∆t

∫
Ω

η|δvn+1|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηδvn+1)|2 +

∫
Ω

∣∣∇ (ηvn+1
)∣∣2 (4.25)

≤ 1

2∆t

∫
Ω

η|δv1|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηδv1)|2 +

∫
Ω

∣∣∇ (ηv1
)∣∣2 .

Proof. Observe first that (3vn+1 − 4vn + vn−1)/2=δvn+1 + 1
2
δ2vn+1. Moreover, sum-

ming and substracting ∇(ηvn+1) in equation (4.17) we get

1

∆t

∫
Ω

δvn+1w +
1

2∆t

∫
Ω

δ2vn+1w +

∫
Ω

η∇δ2vn+1 · ∇w

−
∫

Ω

∇
(
ηδ2vn+1

)
· ∇w +

∫
Ω

∇
(
ηvn+1

)
· ∇w = 0.

Choosing w = 2ηδvn+1, we have

2

∆t

∫
Ω

η|δvn+1|2 +
2

2∆t

∫
Ω

ηδ2vn+1δvn+1

+ 2

∫
Ω

η∇δ2vn+1 · ∇
(
ηδvn+1

)
− 2

∫
Ω

∇
(
ηδ2vn+1

)
· ∇
(
ηδvn+1

)
(4.26)

+ 2

∫
Ω

∇
(
ηvn+1

)
· ∇
(
ηδvn+1

)
= 0.
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For the third term of (4.26) we apply equation (4.23), but replace δvn+1 with

δ2vn+1 instead and get

2

∆t

∫
Ω

η|δvn+1|2 +
2

2∆t

∫
Ω

ηδ2vn+1δvn+1

+ 2

∫
Ω

η

η
∇δ2(ηvn+1) · ∇

(
ηδvn+1

)
− 2

∫
Ω

η

η
δ2vn+1∇η · ∇

(
ηδvn+1

)
− 2

∫
Ω

∇
(
ηδ2vn+1

)
· ∇
(
ηδvn+1

)
+ 2

∫
Ω

∇
(
ηvn+1

)
· ∇
(
ηδvn+1

)
= 0.

We now apply item a) of Proposition 4.1.1 to the second, third, fourth, fifth, and

sixth terms of the left hand side

2

∆t

∫
Ω

η|δvn+1|2 +
1

2∆t

∫
Ω

η(δ|δvn+1|2 + |δ2vn+1|2)

+

∫
Ω

η

η
(δ|∇(ηδvn+1)|2 + |∇(ηδ2vn+1)|2)− 2

∫
Ω

η

η
δ2vn+1∇η · ∇

(
ηδvn+1

)
+

∫
Ω

|∇ (ηδvn)|2 −
∫

Ω

∣∣∇ (ηδ2vn+1
)∣∣2 +

∫
Ω

δ
∣∣∇ (ηvn+1

)∣∣2 = 0,

Using−2
∫

Ω
η
η
δ2vn+1∇η·∇ (ηδvn+1) ≥ −2

∫
Ω
η
η
|δ2vn+1∇η · ∇ (ηδvn+1)| and Cauchy’s

inequality (4.9) with ε > 0 to the term |δ2vn+1∇η · ∇ (ηδvn+1)|, we get the following

inequality

2

∆t

∫
Ω

η|δvn+1|2 +
1

2∆t

∫
Ω

η(δ|δvn+1|2 + |δ2vn+1|2)

+

∫
Ω

η

η
(δ|∇(ηδvn+1)|2 + |∇(ηδ2vn+1)|2)−

∫
Ω

η

η

(
1

ε
|δ2vn+1∇η|2 + ε|∇(ηδvn+1)|2

)
+

∫
Ω

|∇ (ηδvn)|2 −
∫

Ω

∣∣∇ (ηδ2vn+1
)∣∣2 +

∫
Ω

δ
∣∣∇ (ηvn+1

)∣∣2 ≤ 0.
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Dropping 2
∆t

∫
Ω
η|δvn+1|2, bounding −

∫
Ω
η
η

1
ε
|δ2vn+1∇η|2, and regrouping we get

1

2∆t

∫
Ω

η|δvn+1|2 +

∫
Ω

(
η

2∆t
− η

ηε
||∇η||2L∞(Ω)

)
|δ2vn+1|2

+

∫
Ω

η

η
(1− ε) |∇(ηδvn+1)|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηδ2vn+1)|2 +

∫
Ω

∣∣∇ (ηvn+1
)∣∣2

≤ 1

2∆t

∫
Ω

η|δvn|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηδvn)|2 +

∫
Ω

|∇ (ηvn)|2 .

Observe that
(
η
η
− 1
)
≥ 0, because η ≥ η by assumption, so we drop the fourth

term. Moreover, using ε = η
η

and condition (4.24), the second term becomes positive,

so dropping it we obtain finally

1

2∆t

∫
Ω

η|δvn+1|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηδvn+1)|2 +

∫
Ω

∣∣∇ (ηvn+1
)∣∣2

≤ 1

2∆t

∫
Ω

η|δvn|2 +

∫
Ω

(
η

η
− 1

)
|∇(ηδvn)|2 +

∫
Ω

|∇ (ηvn)|2 .

Then applying this last inequality recursively we get (4.25).

Although conditions (4.20) and (4.24) in Theorems 4.1.1 and 4.1.2 are too re-

strictive, numerical evidence indicates that both schemes (4.16) and (4.17) are sta-

ble for time steps ∆t ∼ O(h) using finite elements where h is the mesh size, and

∆t ∼ O(h + M−1) using Fourier-finite elements where M is the number of complex

Fourier modes. These claims are substantiated in the following numerical tests.

4.1.3 Numerical Experiments in R2

We present numerical computations for the simple model (3.25) using schemes

(4.16) and (4.17) when Ω ⊂ R2. Specifically, we set Ω = {(x, y) ∈ R2 : r2 = x2 +y2 <
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1} and,

η(x, y) =
1

1− β · s(r)cos(θ)
,

where s(r) = r4(1 − r) and β is a parameter to adjust the desired ratio rη = ηmax
ηmin

.

To compute β, observe that the function s(r) satisfies s(r) ≥ 0 for r ∈ Ω, and its

maximum is at r∗ = 4
5

and is equal to smax = s(r∗) ≈ 0.082. Then,

ηmin =
1

1 + β · smax

, ηmax =
1

1− β · smax

,

rη =
1 + β · smax

1− λ · smax

, and β =
1

smax

·
(
rη − 1

rη + 1

)
.

Moreover, we set as an analytical solution of (4.3) the function

v(x, y, t) = η−1cos(x+ y + t),

and compute f accordingly. We also choose,

η = sup
(x,y)∈Ω

η(x, y),

so the condition (4.18) is always satisfied. Table 4.1 shows time and space conver-

gence of the schemes (4.16) and (4.17) which are referred as BDF1* and BDF2*,

respectively. This table also shows the computed order of convergence (COC). To

obtain those results, we discretized spatially using P2 Lagrange finite elements using

an uniform mesh, and setting a difference ratio rη = 100, so η = 100. Successful

convergence is always observed for both schemes.
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(a) Time convergence rate at T = 10 and using h = 2−6.

∆t
BDF1* BDF2*

L2 Rel. Error COC L2 Rel. Error COC

0.1 2.1169E-01 — 3.3748E-02 —

0.05 9.3644E-02 0.66 8.2462E-03 2.03

0.025 4.0056E-02 0.74 2.0522E-03 2.01

0.0125 1.8193E-02 0.80 5.1340E-04 2.00

0.00625 8.6826E-03 0.84 1.2906E-04 1.99

0.003125 4.2488E-03 0.87 3.2999E-05 1.97

(b) Space convergence rate at T = 1.

h
BDF1* BDF2*

L2 Rel. Error COC L2 Rel. Error COC

2−3 7.9851E-03 — 8.0138E-03 —

2−4 6.3200E-04 3.66 6.5462E-04 3.61

2−5 6.7111E-05 3.24 4.4550E-05 3.88

2−6 6.6356E-06 3.34 2.5694E-06 4.12

Table 4.1: Solving model (4.3) in R2 using FEM. L∞([0, T ], L2(Ω)) errors for rη =
100.
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4.1.4 Numerical Experiments in R3

Let Ω ⊂ R3 be an axisymmetric domain. Then using Fourier representation in

the azimuthal direction as in (3.13), the BDF2* scheme (4.17) becomes

1

2∆t

∫
Ω̂

(3v̂n+1
k − 4v̂nk + v̂n−1

k )ψ̂rdrdz +

∫
Ω̂

η∇rzδ
2v̂n+1
k · ∇rzψ̂rdrdz

+

∫
Ω̂

η
k2

r
δ2v̂n+1

k ψ̂drdz +

∫
Ω̂

∇rz[(V
n)∧k ] · ∇rzψ̂rdrdz (4.27)

+

∫
Ω̂

k2

r
(V n)∧k ψ̂drdz =

∫
Ω̂

f̂n+1
k ψ̂, k = 0,±1, ...,±M,

where Ω̂ is the meridional plane, and ∇rzv = (∂rv)er + (∂zv)ez and (V n)∧k =

(η(2vn − vn−1))
∧
k . Recall the function η is a parameter function which needs to

satisfy (4.18), but also we it set as

η = η(r, z). (4.28)

This requirement makes sense if we want to avoid convolutions involving v̂n+1
k .

The term (V n)∧k = (η(2vn − vn−1))
∧
k in (4.27) couples the Fourier modes, but it is

handled explicitly in time, so the system matrices are still decoupled mode by mode

when finite elements are used. To compute (V n)∧k we use forward and backward Fast

Fourier Transform (FFT), i.e., we apply the inverse FFT to v̂n and v̂n−1, compute

the subtraction 2vn − vn−1, then compute its product against η, and finally apply

FFT to this product.

We now investigate the stability of scheme (4.27) setting Ω = {(r, θ, z) ∈ [0, 1]×

[0, 2π]× [−1/2, 1/2]}, and v(r, θ, z, t) = (z+r2 sin(θ)) cos(t) as an analytical solution.

We also set

η = 1 + r2g̃M(θ),
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Figure 4.1: Functions g(θ) and g̃8(θ).

where g̃M(θ) approximates

g(θ) =


100 if θ ∈ [−π

2
, π

2
],

1 if θ ∈ [−π,−π
2
) ∪ (π

2
, π),

using M -complex modes and the so-called Cesáro filter, see [34]. In this experiment

we set M = 8, and figure 4.1 shows g(θ) and g̃8(θ). Observe that the difference

ratio rη ≈ 100, so we set η = 100. Observe η is not dependent on θ as requested in

(4.28). To discretize the meridional domain Ω̂, we use P2 Lagrange elements. Table

4.2 shows the successful convergence rate in time of scheme (4.27) for different time

steps ∆t, and a uniform mesh of size h = 0.0125.
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(a) Convergence rate for h = 0.0125 and T = 10.

∆t
BDF2*

L2 Rel. Error COC

1.000000 1.4127E-01 —

0.100000 3.8682E-02 1.87

0.050000 5.3183E-03 2.86

0.025000 1.4634E-03 1.86

0.012500 2.4175E-04 2.60

0.006250 6.0064E-05 2.01

0.003125 1.4922E-05 2.01

0.001563 3.7474E-06 1.99

Table 4.2: Solving model (4.3) in R3 using Fourier-FEM. L∞([0, T ], L2(Ω)) errors for
M = 8 modes and rη ≈ 100.

4.2 General Scalar Parabolic PDEs

We now focus our attention to the following initial-boundary value problem


ut + A(t)u = f(x, t) x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 x ∈ ∂Ω, 0 < t ≤ T,

u(x, 0) = u0 x ∈ Ω,

(4.29)

where we assume Ω ⊂ Rd for d = 2, 3 with smooth boundary ∂Ω, and

A(t)u = −
d∑
ij

∂

∂xj

(
ηij(x, t)

∂u

∂xj

)
+

d∑
i

ηi(x, t)
∂u

∂xi
+ η(x, t)u. (4.30)
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We also assume that ηij, ηi, and η are uniformly bounded with minimal regularity;

specifically, we assume ηij, ηi, η ∈ L∞([0, T ], L∞(Ω)). By assumption each ηij is

uniformly positive and there exists a constant cη > 0 such that
∑d

ij ηijξiξj ≥ cη|ξ|2

for ξ ∈ Rd.

Recall that our goal is to solve numerically (4.29), but let us first investigate the

well posedness of model (4.29). For instance, defining

a(t;u, v) =
d∑
i,j

∫
Ω

ηij
∂u

∂xi

∂v

∂xj
dx, (4.31)

and b(t;u, v) =
d∑
i

∫
Ω

ηi
∂u

∂xi
vdx+

∫
Ω

ηuvdx, (4.32)

we get the variational weak form of (4.29) which consists of finding u ∈ C([0, T ];H1
0 (Ω)),

with ∂tu ∈ L2([0, T ];H−1(Ω)) such that


(ut, v) + a(t;u, v) + b(t;u, v) = (f, v), ∀v ∈ H1

0 (Ω), 0 < t ≤ T,

u(0) = u0

(4.33)

where u0 ∈ H1
0 (Ω), and f : [0, T ] → L2(Ω). To simplify notation let us define

|u| := ‖u‖H1(Ω) for u ∈ H1
0 (Ω), and ‖u‖ := ‖u‖L2(Ω) for u ∈ L2(Ω). We also define

‖u‖L∞ := ‖u‖L∞([0,T ],L∞(Ω)) for u ∈ L∞([0, T ], L∞(Ω)). Observe that a(t; v, u) and

b(t; v, u) are bilinear forms; where a(t; ·, ·) is symmetric and both forms satisfy the
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following properties:

c|u|2 ≤ a(t;u, u), (4.34)

ĉ|u|2 − λ‖u‖2 ≤ a(t;u, u) + b(t;u, u), (4.35)

|a(t;u, v)|+ |a′(t;u, v)|+ |b(t;u, v)|+ |b′(t;u, v)| ≤ C|u||v|, (4.36)

|b(t; v, u)− b(t;u, v)| ≤ Ĉ(|u|‖v‖+ |v|‖u‖). (4.37)

where a′(t, ·, ·) = (d/dt)a(t, ·, ·), and c, ĉ, C, Ĉ ∈ R+. For instance the coercivity

property (4.34) is satisfied with c = cη. Now, notice that

a(t;u, u) + b(t;u, u) =
d∑
ij

∫
Ω

ηij
∂u

∂xi

∂u

∂xj
+

d∑
i

∫
Ω

ηi
∂u

∂xi
udx+

∫
Ω

ηu2dx

≥ cη

∫
Ω

|∇u|2 −
d∑
i

‖ηi‖L∞

∫
Ω

|∇u||u|dx

− ‖η‖L∞

∫
Ω

u2dx, (4.38)

but using Cauchy’s inequality (4.9) with ε = cη
2

(∑d
i ‖ηi‖L∞

)−1

, we get

d∑
i

‖ηi‖L∞

∫
Ω

|∇u||u|dx ≤ cη
2

∫
Ω

|∇u|2 +
1

2cη

(
d∑
i

‖ηi‖L∞

)2 ∫
Ω

u2, (4.39)

so using this last inequality in (4.38), property (4.35) is satisfied with ĉ = cη
2

, and λ =

1
2cη

(∑d
i ‖ηi‖L∞

)2

+ ‖η‖L∞ . We assume that coefficients ηij, ηi, and η are sufficiently

smooth in time to satisfy (4.36). Observe that property (4.37) is satisfied for Ĉ =

2
∑d

i ‖ηi‖L∞ . Now, using a similar reasoning as in (4.38) and (4.39), we see that for
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any constants ε1, ε2 > 0 we have that

ε2|b(t;u, u)| ≤ cε1
2
|u|2 + σ‖u‖2, (4.40)

where σ = 1
2cε1

ε22

(∑d
i ‖ηi‖L∞

)2

+ ε2‖η‖L∞ . Inequality (4.40) is useful to prove sta-

bility in subsection 4.2.2. Finally, if we define A(t;u, v) = a(t;u, v) + b(t;u, v), then

A(t; ·, ·) is bounded in H1
0 (Ω) and satisfies G̊arding inequality; namely,

ĉ|u|2 ≤ A(t;u, u) + λ‖u‖2,

so it is a standard result that the weak problem (4.33) has a unique solution, see [19,

Theorem 6.6], and [52, Theorem 8.19].

4.2.1 Time Discretization

Let us recall that we are looking to solve (4.33) using a time stepping scheme

which uses constant matrices at every time step, and avoids implicit convolutions

when hybrid Fourier-finite elements are employed. So both terms a(t;u, v) and

b(t;u, v) should be handled explicitely in time. We now propose a second order

time scheme with those properties,

1

∆t
(δun+1 +

1

2
δ2un+1, v) + a(δ2un+1, v)

+ a(tn+1; 2un − un−1, v) + b(tn+1; 2un − un−1, v) = (fn+1, v) (4.41)
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where a(·, ·) is a symmetric bilinear which needs to satisfy the following conditions

∀u, v ∈ H1
0 (Ω) and ∀t ∈ (0, T ]:

la|u|2 ≤ a(u, u), (4.42)

a(u, v) ≤ La|u||v|, (4.43)

a(t, u, u) ≤ a(u, u), (4.44)

where la and La are positive constants. The necessity of condition (4.44) is used in

the proof of Theorem (4.2.1). For instance, we can choose,

a(u, v) = dη

∫
Ω

d∑
i

∂u

∂xi

∂v

∂xi
dx, (4.45)

where η = sup1≤i,j≤d,Ω×[0,T ] ηij. Doing so conditions (4.42)-(4.44) are satisfied, and we

avoid implicit convolutions using time independent matrices even when the operator

A(t) is time dependent. Moreover, observe that the term a(δ2un+1, v) in (4.41) adds

artificial diffusion in the same spirit as (4.17). Scheme (4.41) we will be refered as

BDF2** from now on, and its stability is proved next.

4.2.2 Proof of Stability

In order to prove the stability of scheme (4.41), we shall need the following discrete

version of Gronwall’s lemma which proof can be found in [56].

Lemma 4.2.1. Assume that the sequence {wn} satisfies

wn ≤ an +
n−1∑
k=0

bkwk, n = 0, 1, . . . ,

where {an} is nondecreasing and bn ≥ 0. then we have the following bound:
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wn ≤ anexp

(
n−1∑
k=0

bk

)
.

Theorem 4.2.1 (BDF2**). Let a(·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R, be a symmetric bilinear

form such that satisfies (4.42)-(4.44), and let

∆t <
c

2
(
8Ĉ2(1 + %)2 + Λ

) , (4.46)

where

Λ =
1

16
(2 + %)2

( d∑
i

‖ηi‖L∞
)2

+ (2 + %)c‖η‖L∞ ,

and % = La
c

. Then the solution of the scheme (4.41) satisfies,

‖δun+1‖2 + ‖un+1‖2 + ∆t|δun+1|2 + ∆t|un+1|2

≤ C

(
‖δu1‖2 + ‖u1‖2 + ∆t|δu1|2 + ∆t|u1|2 + ∆t|u0|2

)
∀tn+1 ≤ T,

where the constant C depends on la, %, T , and the constants that appear in properties

(4.34)-(4.37).

Proof. We first sum and subtract the terms a(tn+1, un+1, v), and b(tn+1, un+1, v) in

equation (4.41) to get

1

∆t
(δun+1 +

1

2
δ2un+1, v) + a(δ2un+1, v)− a(tn+1; δ2un+1, v) + a(tn+1;un+1, v)

− b(tn+1; δ2un+1, v) + b(tn+1;un+1, v) = 0.
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Choosing v = ∆t%δun+1 + 2∆tun+1 we obtain

I1 + ∆t · (I2 + I3 + I4 + I5 + I6) = 0, (4.47)

where

I1 = 2(δun+1 +
1

2
δ2un+1, %δun+1 + un+1), I2 = 2a(δ2un+1, %δun+1 + un+1),

I3 = −2a(tn+1; δ2un+1, %δun+1 + un+1), I4 = 2a(tn+1;un+1, %δun+1 + un+1),

I5 = −2b(tn+1; δ2un+1, %δun+1 + un+1), and I6 = 2b(tn+1;un+1, %δun+1 + un+1).

Now, observe that

I1 = 2%‖δun+1‖2 + %(δ2un+1, δun+1) + 2(δun+1, un+1) + (δ2un+1, un+1),

so using 4.1.1.a with k = 0, 1 for the third and second terms respectively. And using

4.1.1.d with k = 0 for the last term we get

I1 =2%‖δun+1‖2 +
%

2
δ‖δun+1‖+

%

2
‖δ2un+1‖2

+ δ‖un+1‖2 + ‖δun+1‖2 +
1

2
δ2‖un+1‖2 +

1

2
‖δ2un+1‖2 − ‖δun‖2. (4.48)
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Similarly we compute

I2 =%δa(δun+1, δun+1) + %a(δ2un+1, δ2un+1)

+ δ2a(un+1, un+1) + a(δ2un+1, δ2un+1)− 2a(δun, δun),

I3 =− %a(tn+1; δun+1, δun+1) + %a(tn+1; δun, δun)− %a(tn+1; δ2un+1, δ2un+1)

− δ2a(tn+1;un+1, un+1)− a(tn+1; δ2un+1, δ2un+1) + 2a(tn+1; δun, δun),

and

I4 =%a(tn+1;un+1, un+1)− %a(tn+1;un, un) + %a(tn+1; δun+1, δun+1)

+ 2a(tn+1;un+1, un+1).

So summing,

I2 + I3 + I4 =
(
%δa(δun+1, δun+1)

)
+
(

(1 + %)
(
a(δ2un+1, δ2un+1)− a(tn+1; δ2un+1, δ2un+1)

))
+
(
%a(tn+1; δun, δun)− a(δun, δun)

)
+ 2a(tn+1; δun, δun)

+
(
δ2a(un+1, un+1) + %a(tn+1;un+1, un+1)− %a(tn+1;un, un)

)
+
(
a(tn+1;un+1, un+1) + 2a(tn+1;un, un)− a(tn+1;un−1, un−1)

)
.

By condition (4.44) the second term is positive, so we drop it. The third term is
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positive since % = La
c

and by (4.34) and (4.43), so we drop it too. Then we get

I2 + I3 + I4 ≥%δa(δun+1, δun+1) +
1

2
a(tn+1; δun, δun)

+ δ2a(un+1, un+1) + %a(tn+1;un+1, un+1)

− %a(tn+1;un, un) + a(tn+1;un+1, un+1) + 2a(tn+1;un, un)

− a(tn+1;un−1, un−1).

Now, summing and subtracting %a(tn;un, un), 2a(tn;un, un), and a(tn−1;un−1, un−1)

in this last inequality,

I2 + I3 + I4 ≥ %δa(δun+1, δun+1) +
1

2
a(tn+1; δun, δun) + δ2a(un+1, un+1)

+ %a(tn+1;un+1, un+1)− %a(tn;un, un)

+ %|a(tn+1;un, un)− a(tn;un, un)| (4.49)

+ |2a(tn+1;un, un)− 2a(tn;un, un)|

+ a(tn+1;un+1, un+1) + 2a(tn;un, un)− a(tn−1;un−1, un−1).

To bound the fourth and fifth terms we use property (4.36), and the mean value

theorem,

I2 + I3 + I4 ≥ %δa(δun+1, δun+1) +
1

2
a(tn+1; δun, δun) + δ2a(un+1, un+1)

+ %a(tn+1;un+1, un+1)− %a(tn;un, un) (4.50)

− C∆t|un|2 − C∆t|un−1|2

+
(
a(tn+1;un+1, un+1) + 2a(tn;un, un)− a(tn−1;un−1, un−1)

)
.
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Observe that for the last term we have

a(tn+1;un+1, un+1) + 2a(tn;un, un)

−a(tn−1;un−1, un−1) =

(
1

2
+

1

2

)
a(tn+1;un+1, un+1)

+

(
3

2
+

1

2

)
a(tn;un, un)

+ (1− 2)a(tn−1;un−1, un−1)

≥ c

2
|un+1|2 +

c

2
|un|2 + c|un−1|2

+
1

2
a(tn+1;un+1, un+1) +

3

2
a(tn;un, un)

− 2a(tn−1;un−1, un−1),

where we have used property (4.34) for the last step. Using this last inequality in

(4.50) and property (4.36) for the term 1
2
a(tn+1; δun, δun) we obtain

I2 + I3 + I4 ≥ %δa(δun+1, δun+1) +
c

2
|δun|2 + δ2a(un+1, un+1)

+ %a(tn+1;un+1, un+1)− %a(tn;un, un)

+
c

2
|un+1|2 +

c

2
|un|2 + c|un−1|2 (4.51)

+
1

2
a(tn+1;un+1, un+1) +

3

2
a(tn;un, un)

− 2a(tn−1;un−1, un−1)− C∆t|un|2 − C∆t|un−1|2.
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We now compute I5 in (4.47) using items a) and d) of Proposition 4.1.1 as follows

I5 =− %b(tn+1; δun+1, δun+1) + %b(tn+1; δun, δun)− %b(tn+1; δ2un+1, δ2un+1)

− %b(tn+1; δun+1, δun) + %b(tn+1; δun, δun+1)

− δ2b(tn+1;un+1, un+1)− b(tn+1; δ2un+1, δ2un+1) + 2b(tn+1; δun, δun)

− b(tn+1; δun+1, δun) + b(tn+1; δun, δun+1)

− b(tn+1;un+1, un) + b(tn+1;un, un+1)

+ b(tn+1;un, un−1)− b(tn+1;un−1, un),

and for I6 we use item b) of Proposition 4.1.1 to get

I6 =%b(tn+1;un+1, un+1)− %b(tn+1;un, un) + %b(tn+1; δun+1, δun+1)

− %b(tn+1;un+1, un) + %b(tn+1;un, un+1) + 2b(tn+1;un+1, un+1).

Then summing,

I5 + I6 =(2 + %)b(tn+1; δun, δun)− (1 + %)b(tn+1; δ2un+1, δ2un+1)

+ (1 + %)b(tn+1;un+1, un+1)

+ (2− %)b(tn+1;un, un)− b(tn+1;un−1, un−1)

− (1 + %)
(
b(tn+1; δun+1, δun)− b(tn+1; δun, δun+1)

)
− (1 + %)

(
b(tn+1;un+1, un)− b(tn;un, un+1)

)
+ b(tn+1;un, un−1)− b(tn+1;un−1, un).

We now bound the first five terms using inequality (4.40) with ε2 = 2 + %, and

ε1 = ε̂i for i = 1 . . . 5, these five constants will be defined later. We also bound the
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reamining terms of the above inequality with property (4.37), so we get

I5 + I6 ≥− Λ1‖δun‖2 − cε̂1
2
|δun|2 − Λ2‖δ2un+1‖2 − cε̂2

2
|δ2un+1|2

− Λ3‖un+1‖2 − cε̂3
2
|un+1|2 − Λ4‖un‖2 − cε̂4

2
|un|2

− Λ5‖un−1‖2 − cε̂5
2
|un−1|2

−
(
γ|un+1|+ |un|)‖δun‖+ γ(|un|+ |un−1|)‖δun+1‖

)
(4.52)

−
(
γ|un+1|‖un‖+ γ|un|‖un+1‖

)
−
(
Ĉ|un−1|‖un‖+ Ĉ|un|‖un−1‖

)
,

where Λj = 1
2cε̂j

(2 + %)2
(∑d

i ‖ηi‖L∞

)2

+ (2 + %)‖η‖L∞ , and γ = Ĉ(1 + %). Now,

observe that

|δ2un+1|2 = |δun+1 − δun|2

≤ |δun+1|2 + 2|δun+1||δun|+ |δun|2

≤ 2|δun+1|2 + 2|δun|2

≤ 4|un+1|+ 4|un|+ 2|δun|2, (4.53)

where Cauchy-Schwarz inequality has been used in the second and last steps. So
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using (4.53) in (4.52) and regrouping terms we get

I5 + I6 ≥−
c

2
(ε̂1 + 2ε̂2) |δun|2 − c

2
(4ε̂2 + ε̂3) |un+1|2

− c

2
(4ε̂2 + ε̂4)|un|2 − c

2
ε̂5|un−1|2

− γ(|un+1|+ |un|)‖δun‖ − γ(|un|+ |un−1|)‖δun+1‖

− γ|un+1|‖un‖ − γ|un|‖un+1‖ (4.54)

− Ĉ|un−1|‖un‖ − Ĉ|un|‖un−1‖,

− Λ1‖δun‖2 − Λ2‖δ2un+1‖2 − Λ3‖un+1‖2 − Λ4‖un‖2 − Λ5‖un−1‖2

To bound even further, we use Cauchy’s inequality (4.9) to all the terms that contain

γ and the las term of (4.54); namely,

γ
(
|un+1|+ |un|

)
‖δun‖ ≤

(
1

2cε1
+

1

2cε2

)
γ2‖δun‖2 +

cε1
2
|un+1|2 +

cε2
2
|un|2,

γ
(
|un|+ |un−1|

)
‖δun+1‖ ≤

(
1

2cε3
+

1

2cε4

)
γ2‖δun+1‖2 +

cε3
2
|un|2 +

cε4
2
|un−1|2,

γ|un+1|‖un‖+ γ|un|‖un+1‖ ≤ γ2

2cε5
‖un‖2 +

cε5
2
|un+1|2 +

γ2

2cε6
‖un+1‖2 +

cε6
2
|un|2,

and

Ĉ|un−1|‖un‖+ Ĉ|un|‖un−1‖ ≤ Ĉ2

2cε7
‖un‖2 +

cε7
2
|un−1|2 +

Ĉ2

2cε8
‖un−1‖2 +

cε8
2
|un|2.

Recall that we need to compute (4.47), so the objective is to balance all the terms

containing the norm | · | in (4.51) and (4.54). So using the above four inequalities we
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need to solve 

ε̂1 + 2ε̂2 = 1,

4ε̂2 + ε̂3 + ε1 + ε5 = 1,

4ε̂2 + ε̂4 + ε2 + ε3 + ε6 + ε8 = 1,

ε̂5 + ε4 + ε7 = 2.

(4.55)

We see that choosing ε̂3 = ε1 = ε5 = 1/8, ε̂2 = 5/32, ε̂1 = 11/16, ε̂4 = ε2 =

ε3 = ε6 = ε8 = 3/40, ε4 = ε7 = 1/2 and ε̂5 = 1 satisfy the above system of linear

equations. So we have that

I2 + I3 + I4 + I5 + I6 ≥−
(

Λ3 +
20

3c
γ2

)
‖un+1‖2

− 23

3c
γ2‖δun+1‖2 − Λ2‖δ2un+1‖2 + %δa(δun+1, δun+1)

+ δ2a(un+1, un+1) + %a(tn+1;un+1, un+1)

− %a(tn;un, un) +
1

2
a(tn+1;un+1, un+1) +

3

2
a(tn;un, un)

− 2a(tn−1;un−1, un−1)− C∆t|un|2 − C∆t|un−1|2

− C‖δun‖2 − C‖un‖2 − C‖un−1‖2.

70



Using this last inequality, and (4.48) we have in (4.47) that

(
1 +

5%

2
− 20

3c
γ2∆t

)
‖δun+1‖2 +

(
1 + %

2
− Λ2∆t

)
‖δ2un+1‖2

+

(
3

2
−
(

Λ3 +
23

3c
γ2

)
∆t

)
‖un+1‖2 + ∆t%a(δun+1, δun+1)

+ ∆ta(un+1, un+1) + ∆t%a(tn+1;un+1, un+1) +
∆t

2
a(tn+1;un+1, un+1)

≤
(

1 +
%

2
+ C∆t

)
‖δun‖2 + (2 + C∆t)‖un‖2 −

(
1

2
+ C∆t

)
‖un−1‖2

+ ∆t%a(δun, δun) + 2∆ta(un, un)−∆ta(un−1, un−1) + ∆t%a(tn;un, un)

− 3∆t

2
a(tn;un, un) + 2∆ta(tn−1;un−1, un−1) + C∆t2|un|2 + C∆t2|un−1|2,

By condition (4.46) the second term is positive, so we drop it, and summing we

get

(
1 +

%

2
− 20

3c
γ2∆t

)
‖δun+1‖2 +

(
3

2
−
(

Λ3 +
23

3c
γ2

)
∆t

)
‖un+1‖2

+ ∆t%a(δun+1, δun+1) + ∆ta(un+1, un+1) + ∆t%a(tn+1;un+1, un+1)

+
∆t

2
a(tn+1;un+1, un+1)

≤
n∑
k=2

C∆t‖δuk‖2 +
n∑
k=2

C∆t‖uk‖2 +
n∑
k=2

C∆t2|δuk|2 +
n∑
k=2

C∆t2|uk|2

+ (1 +
%

2
+ C∆t)‖δu1‖2 +

(
3

2
+ C∆t

)
‖u1‖2 + ∆t%a(δu1, δu1) + ∆ta(u1, u1)

+ ∆t%a(t1;u1, u1) +

(
∆t

2
+ C∆t2

)
a(t1;u1, u1) + (2∆t+ C∆t2)a(t0;u0, u0).

Using (4.34) and (4.42) to bound all terms of the left hand side which have a(·; ·, ·)
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and a(·; ·, ·) respectively, we finally compute

β1‖δun+1‖2 + β2‖un+1‖2

+ ∆t%la · |δun+1|2 +
(
la + c%+

c

2

)
∆t|un+1|2

≤ C

(
n∑
k=2

∆t‖δuk‖2 +
n∑
k=2

∆t‖uk‖2 +
n∑
k=2

∆t2|δuk|2 +
n∑
k=2

∆t2|uk|2

+ ‖δu1‖2 + ‖u1‖2 + ∆t|δu1|2 + ∆t|u1|2 + ∆t|u0|2
)
.

where β1 = 1 + %
2
− 20

3c
γ2∆t, and β2 = 3

2
−
(
Λ3 + 23

3c
γ2
)

∆t . By condition (4.46), β1

and β2 are positive; moreover, β−1
1 and β−1

2 are uniformly bounded below. So the

result follows using Gronwall’s Lemma 4.2.1.

As in Theorems 4.1.1 and 4.1.2, condition (4.46) is too restrictive. However, as

shown in the following experiments, numerical evidence suggests that scheme (4.41)

is stable for ∆t ∼ O(h) using finite elements where h is the mesh size.

4.2.3 Numerical experiments in R2

We test numerically our scheme (4.41) when Ω ⊂ R2 with the following parabolic

PDE, 
∂tu+ u

2
∂tη
η
−∇ · (∇ (ηu)) = f(x, t) x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 x ∈ ∂Ω, 0 < t ≤ T,

u(x, 0) = u0 x ∈ Ω,

(4.56)

where

η(x, y, t) =
1

1− β · s(r)cos(θ − 2πt)
.

Moreover, Ω, s(r) and β are the same as defined in subsection 4.1.3. Observe

(4.56) is not in conservative form as in (4.30), but we can still define the bilinear
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forms in (4.31) as

a(t;u, v) =

∫
Ω

η∇u · ∇vdx,

and b(t;u, v) =

∫
Ω

u∇η · ∇vdx+

∫
Ω

∂tη

2η
uvdx.

We set as an analytical solution of (4.56) u(x, y, t) = η−1cos(x+ y + t), and

compute f accordingly. We also choose

a(u, v) = η

∫
Ω

∇u∇vdx,

where η = sup(x,y,t)∈Ω×[0,T ] η(x, y, t) as in (4.45), so conditions (4.42)-(4.44) are satis-

fied. Table 4.3 shows time and space convergence of scheme (4.41) which is referred

as BDF2**. To get these results we discretized spatially using P2 Lagrange finite

elements using a uniform mesh, and setting a difference ratio rη = 100, then η = 100.
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(a) Time convergence rate at T = 10 and using h = 2−6.

∆t
BDF2**

L2 Rel. Error COC

0.100000 6.9898E-01 —

0.050000 2.0186E-01 1.79

0.025000 6.0391E-02 1.74

0.012500 1.4095E-02 2.10

0.006250 3.4316E-03 2.04

0.003125 8.5332E-04 2.01

(b) Space convergence rate at T = 1.

h
BDF2**

L2 Rel. Error COC

2−3 7.5515E-03 —

2−4 6.6648E-04 3.50

2−5 4.1190E-05 4.02

2−6 2.9285E-06 3.81

Table 4.3: Solving model (4.56) in R2 using FEM. L∞([0, T ], L2(Ω)) errors for rη =
100.
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5. NUMERICAL SIMULATION OF KINEMATIC DYNAMOS

In this section we first introduce a new time stepping scheme for solving Maxwell

equations (3.8) when µ = µ(x, t). This novel scheme is capable of avoiding implicit

convolutions using only constant matrices when hybrid Fourier-Finite elements are

used. Then in subsection 5.4 we report some convergence tests using this new scheme,

which has been implemented on an extended version of SFEMaNS. In subsection 5.6

we report and validate simulations for the kinematic dynamo problem using the half

VKS setting. We first compare our code SFEMaNS againts the 3D code DOLMEN (see

Zaidi et al. [67]). All figures related to DOLMEN are courtesy of C. Nore and F.

Bouillault. Part of the data reported using SFEMaNS in subsection 5.6 is reprinted

with permission from [44]. Copyright 2015 by EDP Sciences.

5.1 PDE Setting and Variational Weak Form

Following the discussion in subsection 3.7 and the results of section 4, we propose

to do a change of variables in the MHD equations; specifically, we use the magnetic

induction field B instead of H. Recalling that B = µH, the Maxwell equations (3.8)
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are now as follows:

∂tB
c = −∇×(R−1

m σ−1(∇×(B
c

µc
)− js)− ũ×Bc) in every Ωci, i ∈ 1, N,

µv∂t∆φ = 0, in Ωv,

(R−1
m σ−1(∇×(B

c

µc
)− js)− ũ×Bc)× nc = a on Γc,n,

Bc

µc
× n =

Bcd
µc
×n on Γc,d,

µv∂nv∂tφ = −nv · ∇×(nv × a), on Γv,

Bc1
µc1
× nc1 +

Bc2
µc2
× nc2 = 0 on Σµ,

Bc
1 · nc1 + Bc

2 · nc2 = 0 on Σµ,

Bc

µc
× nc +∇φ× nv = 0 on Σ,

Bc · nc + µv∇φ · nv = 0 on Σ,

B|t=0 = B0, φ|t=0 = φ0 in Ω.

(5.1)

For the time being we assume µ = µ(Ω) only, and there are no Dirichlet boundary

conditions for Bc, i.e, Γc,d = ∅. We now get a continuous weak form of the above

system (5.1). Let us recall the spaces L and X defined in subsection 3.4 as

L =
{

(b, φ) ∈ L2(Ωc)×H1∫
=0(Ωv)

}
,

X =
{

(b, φ) ∈ Hcurl(Ωc)×H1∫
=0(Ωv); (b× nc +∇φ× nv)|Σ = 0

}
.

Because we want to include the term
(

Bc

µc
× nc +∇φ× nv

)
as a natural boundary

condition, and avoid implicit convolutions involving the term ∂tB
c, we propose to

use a continuous Petrov-Galerkin weak formulation. For that we first introduce the
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space,

Y =

{(
b

µc
, φ

)
∈ Hcurl(Ω)×H1∫

=0(Ωv);

(
b

µc
× nc +∇φ× nv

)
|Σ = 0

}
.

Then the proposed continuous weak form of (5.1) is to seek the pair (B, φ) ∈

L2((0,+∞);Y) ∩ L∞((0,+∞);L) such that for all pairs (b, ψ) ∈ X and for almost

every t ∈ (0,+∞),



B|t=0 = B0, ∇φ|t=0 = ∇φ0,∫
Ωc
∂tB · b +

∫
Ωc

(
R−1

m σ−1
(
∇×

(
Bc

µc

)
− js

)
− ũ×Bc

)
· ∇×b

+
∫

Ωv
µv∂t(∇φ) · ∇ψ

+
∫

Σµ

{
R−1

m σ−1
(
∇×Bc

µc
− js

)
− ũ×Bc

}
· (b1 × nc1 + b2 × nc2)

+
∫

Σ

(
R−1

m σ−1(∇×Bc

µc
− js)− ũ×Bc

)
· (b× nc1 +∇ψ × nv)

=
∫

Γc
(a× n) · (b× n) +

∫
Γv

(a× n) · (∇ψ × n).

(5.2)

The properties of the above weak form such as existence and uniqueness of solu-

tions are left for future research.

5.2 Finite Element Discretization

We keep the same notation and setting as in subsection 3.5.1. The finite ele-

ment method we use to discretize (5.1) is still non-conforming, i.e., the continuity

constraints (b×nc + ∇ϕ×nv)|Σ = 0, and (b1×nc1 + b2×nc2)|Σµ = 0 in X, and the

continuity constraints (b
µ
×nc +∇ϕ×nv)|Σ = 0, and (b1

µ1
×nc1 + b2

µ2
×nc2)|Σµ = 0 in Y

are relaxed and enforced by means of an interior penalty method.

Let `B, and `φ be two integers in {1, 2} with `φ ≥ `B. We define the meridional
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finite element spaces,

XB,2D
h :={bh ∈ L2(Ωc); bh|Ωci ∈ CCC

0(Ωci),∀i = 1, . . . , N,bh(TK)|K ∈ PPP`B , ∀K ∈ F ch},

Xφ,2D
h :={ϕh ∈ C0(Ωv); ϕh(TK)|K ∈ P`φ , ∀K ∈ Fvh},

where Pk denotes the set of bivariate polynomials of total degree at most k, and

PPPk := Pk×Pk×Pk. Then, using the complex notation i2 = −1, the fields B, H and

the scalar potential φ are approximated in the following spaces:

XB
h := {b =

M∑
m=−M

bmh (r, z)eimθ; bmh ∈ XB,2D
h , bmh = b−mh , k ∈ 0,M},

XH
h := XB

h ,

Xφ
h := {ϕ =

M∑
m=−M

ϕmh (r, z)eimθ; ϕmh ∈ X
φ,2D
h , ϕmh = ϕ−mh , m ∈ 0,M},

where M + 1 is the maximum number of complex Fourier modes.

As in subsection 3.5.2, we introduce a magnetic pressure pc to control the diver-

gence condition ∇·B = 0 weakly in the dual space of Hs
0(Ω) where 1

2
< s ≤ 1. So let

us recall the following finite element spaces,

Xp,2D
h :=

{
ph ∈ L2(Ωc) / ph ∈ C0(Ωc), ph(TK) ∈ P`p , ∀K ∈ F ch, ph = 0 on ∂Ωc

}
,

Xp
h :=

{
p =

M∑
m=−M

pmh (r, z)eimθ / ∀m = 1 . . . ,M, pm ∈ Xp,2D
h and pmh = p−mh

}
,

where `p is an integer in {1,2}.

5.3 Time Discretization Scheme

For the rest of this section, we now consider µc to be dependent of time as well,

i.e., µc = µc(Ω, t). Moreover, let us drop the assumption of not having Dirichlet
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boundary conditions, i.e, we now assume Γc,d 6= ∅. As usual let ∆t be the time step

and set tn := n∆t, n ≥ 0. After proper initialization at t0 and t1, we define

DBc,n+1 =
1

2
(3Bc,n+1 − 4Bc,n + Bc,n−1), (5.3)

and

B∗ = 2Bc,n −Bc,n−1. (5.4)

Now, in order to avoid implicit convolutions to solve (5.1), we mimic what is done

in schemes (4.17) and (4.41). Specifically, we discretize explicitely in time the term

−∇×
(
R−1

m σ−1

(
∇×

(
Bc

µc

)∗
− js

)
− ũ×B∗

)
(5.5)

in the first equation of (5.1) and use integration by parts similarly as in (5.2). More-

over, we also add artificial difussion through the curl operator including the term

−∇×
(
R−1

m σ−1∇×
(
δ2Bc,n+1

µc

))
, (5.6)

in (5.1). Let use recall that δ2(·) is defined in (4.15), and is always consistent and

second order accurate in time. The function µc is a parameter function in the same

spirit as η in schemes (4.17), (4.41) and (4.45) where η = µ−1, and needs to satisfy

the following conditions:

µc ≤ µc in Ωc, 0 ≤ t ≤ T, (5.7)

µc = µc on Σ,Σµ, and Γc,d, 0 ≤ t ≤ T, (5.8)

µc = µc(Ω2D
ci ), i ∈ 1, N, (5.9)
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where we recall that Ω2D
ci has been defined in subsection 3.5.1 as the meridional por-

tion of the axisymmetric connected component Ωci of Ω. We give now a description

of why (5.7)-(5.9) are needed for our numerical method. Condition (5.7) is the equiv-

alent of condition (4.18), which is used to guarantee stability of schemes (4.17), and

(4.41) in Theorems (4.1.2) and (4.2.1), respectively. Using condition (5.8) avoids

cumbersome terms involving B∗ on the interfaces Σ and Σµ. Those appear when

integration by parts is used for both terms (5.5) and (5.6). Moreover, by condition

(5.8) we can implement Dirichlet boundary conditions on Γc,d similarly as it is done

in scheme (3.16). Condition (5.9) means that µc is independent of t and θ, which

makes our algorithm to generate time independent matrices that avoid implicit con-

volutions.

Our proposed scheme to solve (5.1) is to compute in one step by solving Bc,n+1 ∈

XB
h , φn+1 ∈ Xφ

h and pc,n+1 ∈ Xp
h, so that the following holds for all b ∈ XH

h , ϕ ∈ Xφ
h

and q ∈ Xp
h,


Bc|t=0 = Bc

0,∫
Ωc

DBc,n+1

∆t
·b +

∫
Ωv
µv∇Dφ

n+1

∆t
·∇ϕ+ L((Bc,n+1, φn+1), (b, ϕ))

+P(φn+1, ϕ) +D((Bc,n+1, pn+1), (b, q)) + E(Bc,n+1,b) = Rn(b, ϕ),

(5.10)

where,

L((B, φ), (b, ϕ)) =

∫
Ωc

1

σRm

∇×
(
B

µc

)
· ∇×b

+

∫
Σµ

{
1

σRm

∇×
(
B

µc

)}
· (b1 × nc1 + b2 × nc2)

+ g((B, φ), (b, ϕ)) +

∫
Σ

1

σRm

∇×
(
B

µc

)
· (b× nc +∇ϕ× nv) .
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Similar to g((H, φ), (b, ϕ)) in (3.16), the bilinear form g((B, φ), (b, ϕ)) penalizes

the jumps conditions on Σ and Σµ using interior penalty method; namely,

g((B, φ), (b, ϕ)) = β3

∑
F∈Σµ

h−1
F

∫
F

(
B1

µc1
× nc1 +

B2

µc2
× nc2

)
· (b1 × nc1 + b2 × nc2)

+ β1

∑
F∈Σµ

h−1
F

∫
F

(B1 · nc1 + B2 · nc2) ·
(
µc1b1 · nc1 + µc2b2 · nc2

)
+ β2

∑
F∈Σ

h−1
F

∫
F

(
B

µc
×nc1 +∇φ×nc2

)
·(b×nc +∇ϕ×nv)

+ β1

∑
F∈Σ

h−1
F

∫
F

(B · nc1 +∇φ · nc2) · (µcb · nc +∇ϕ · nv) ,

where β1, β2, β3 are penalization constant parameters and user dependent. The bi-

linear form P(φ, ϕ) is the same as in (3.16), but let us recall that

P(φ, ϕ) =

∫
Ωv

µv∇φ·∇ϕ−
∫
∂Ωv

µvϕn·∇φ.

Similar to D((H, p), (b, q)) in (3.17), the bilinear form D((B, p), (b, q)) controls the

divergence condition ∇·Bc = 0 weakly,

D((B, p), (b, q)) =β1

∫
Ωc

µc∇p·b−
∫

Ωc

B·∇q +
∑
K∈Fch

∫
K3D

h
2(1−α)
K ∇p·∇q


+ β1

∑
K∈Fch

h2α
K

∫
K3D

µc∇·B∇·b.

As the bilinear form E(H,b) does in (3.18), the form E(B,b) imposes the Dirichlet
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boundary conditions on Γc,d weakly

E(B,b) =

∫
Γc,d

1

σRm

(
∇×

(
B

µc

))
· (b×nc)

+ β4

 ∑
F∈Γc,d

h−1
F

∫
F

(
B

µc
×nc

)
·(b×nc)

 ,

where β4 is a user dependent parameter. The right hand side bilinear form Rn(b, ϕ)

is defined as

Rn(b, ϕ) =

∫
Ωc

1

σRm

∇×
(
B∗

µc

)
· ∇×b−

∫
Ωc

1

σRm

∇×
(
B

µc

)∗
· ∇×b

+

∫
Σµ

{
1

σRm

js + ũ×B∗
}
· (b1 × nc1 + b2 × nc2)

+

∫
Ωc

(
1

σRm

js + ũ×B∗
)
· ∇×b

+

∫
Σ

(
1

σRm

js + ũ×B∗
)
· (b× nc +∇ϕ× nv)

+

∫
Γc,n

(a× n) · (b× n) +

∫
Γv

(a× n) · (∇ϕ× n),+Hn(b).

where the linear form Hn(b) is defined as

Hn(b) =

∫
Γc,d

(
1

σRm

js + ũ×B∗
)
· (b×nc)

+

∫
Γc,d

β4

 ∑
F∈Γc,d

h−1
F

∫
F

(
Bc
d

µc
×nc

)
·(b×nc)

 ,

whose last term balances the bilinear form E(B,b).

We now make some important observations of scheme (5.2):

• Even though scheme (5.2) can handle the case µ = µ(x, t), we have assumed

µ is at least continuous in the θ component; namely, jump conditions on Σµ,
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and on Σ cannot be handled for θ. Because in Fourier space, we have lost local

information in this component. However, jumps conditions can be still handled

when depend only in (r, z).

• In practice, those terms in Rn(b, ϕ) that have
(

B
µc

)∗
or ũ×B∗ are computed

in real space, and then transfered into Fourier space.

• Although the continuous weak formulation (5.2) is a Petrov-Galerkin one, the

discrete weak formulation (3.16) is Galerkin, because we previously set XB
h =

XH
h .

5.4 Convergence Tests

The scheme (5.10) has been implemented in the code SFEMaNS, and in this sub-

section we test our implementation using manufactured solutions. Although scheme

(5.10) computes Bc, using Bc = µcHc we can compute Hc as well. All convergence

tables reported in this subsection are reported using Hc.

5.4.1 Maxwell Equations with Jumps

For this convergence test, we use the same setting and analytical solution as

in subsection 3.6.2. Denoting by Hh the approximate magnetic field, we report in

table 5.1 the relative errors, and the computed order of convergence (COC). For

this test PPP2, and P1 Lagrange elements are used for Hc
h and pch, respectively. The

convergence rate observed in table 5.1 agrees with the optimal one expected using

scheme (3.16). We recall that in table 3.2 of subsection 3.6.2 superconvergence is

observed. Nevertheless, the numerical errors in table 5.1 have a better accuracy.
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h ‖∇·(µH)h‖L2 COC ‖∇×(H−Hh)‖L2 COC ‖H−Hh‖L2 COC

0.2 6.9259E-02 — 3.3573E-01 — 2.2607E-01 —

0.1 1.3491E-04 9.00 2.3323E-04 10.49 5.3161E-05 12.05

0.05 5.0534E-05 1.42 4.9039E-05 2.25 6.1933E-06 3.10

0.025 1.1779E-05 2.10 9.7326E-06 2.33 6.8326E-07 3.18

0.0125 3.0474E-06 1.95 2.0294E-06 2.26 9.9443E-08 2.78

Table 5.1: Numerical errors computed when µ is axisymmetric, and it has jumps
using scheme (5.10).

5.4.2 Maxwell Equations with Vacuum and µ Variable in θ

For this particular test we set µc = µc(r, θ, z), but µc is not allowed to have jumps

in Ωc, so Σµ = ∅. We construct an analytical solution for the system (3.8) defining

first the magnetic field H and the magnetic permeablity µ by

H =


Hc in Ωc

∇ψ in Ωv

, and µ =


µc in Ωc

1 in Ωv

. (5.11)

We set Ωc = {(r, θ, z) ∈ R3 : (r, θ, z) ∈ [0, 1] × [0, 2π) × [−1, 1]}, and Ωv =

{(r, θ, z) ∈ R3 : r2 + z2 = 102, θ ∈ [0, 2π)} \ Ωc. Now, let us set

H =
1

µc
∇ψ, (5.12)

where ψ = ψ(r, z) = J0(r)cosh(z). Observe that ψ(r, z) is the same as the one
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defined in (3.22) which satisfies the Laplace equation in cylindrical coordinates

∂rrψ +
1

r
∂rψ + ∂zzψ = 0.

If we also set j = ∇ × H, u = 0, then E = 0, and H satisfies the Maxwell

equations (3.8). Now, let us define

µ = µ(r, θ, z) =
1

f(r, z)cos(mθ) + 1
, (5.13)

where

f(r, z) = b · r3 · (1− r)3 · (z2 − 1)3,

and b is a non-negative parameter which determines the variation of µ. Observe that

µ = 1 at (r, z) = (1,±1), then µ = 1 at Ωv. So we set µc = µ, because by using

(5.11) allows us to have vacuum, and µc has no jumps on Ω as required. Also notice

that f(r, z) ≤ 0 for (r, θ, z) ∈ Ωc and

sup
Ωc
|f(r, z)| = |f |max =

b

26
, inf

Ωc
|f(r, z)| = |f |min = 0.

Then if m 6= 0, then

µcmin =
1

1 + |f |max

, µcmax =
1

1− |f |max

,

rµ =
µmax

µmin

=
1 + |f |max

1− |f |max

, and b = 26

(
rµ − 1

rµ + 1

)
. (5.14)

Denoting by Hh the approximate magnetic field, we report in tables 5.2a and 5.2b

the relative errors using the code SFEMaNS. These tables also show the computed order
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of convergence (COC). For this test PPP2,P2 and P1 Lagrange elements are employed

for Hc
h, φh and pch, respectively. We set a variation ratio of rµ = 50, and m = 4 in

(5.13). Moreover, we have chosen

µ = µ(r, z) =
1

1 + |f(r, z)|
,

which satisfies conditions (5.7)-(5.9). Solution (5.12) is in Fourier space with modes

m = 0, 4, but our experiments run using M = 8 as the total of complex Fourier

modes, because explicit convolutions coming from the term (5.5) are performed in

real space.
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h ‖∇·(µH)h‖L2 COC ‖∇×(H−Hh)‖L2 COC

0.2 2.0159E-02 — 1.2939E-02 —

0.1 9.1712E-03 1.14 2.7943E-03 2.21

0.05 3.5180E-03 1.38 5.5778E-04 2.32

0.025 1.2798E-03 1.46 1.0640E-04 2.39

0.0125 4.8781E-04 1.39 2.3761E-05 2.16

(a)

h ‖H−Hh‖L2 COC ‖φ− φh‖H1 COC

0.2 4.4144E-03 — 3.1675E-04 —

0.1 1.1585E-03 1.93 7.0282E-05 2.17

0.05 1.8991E-04 2.61 1.1526E-05 2.61

0.025 2.7246E-05 2.80 1.7517E-06 2.72

0.0125 3.8001E-06 2.84 2.7838E-07 2.65

(b)

Table 5.2: Numerical errors computed when vacuum is nonempty, and µ is non-
axisymmetric using scheme (5.10).

5.4.3 Maxwell Equations with Jumps and µ Variable in θ

We set µc = µc(r, θ, z), Ωc = ∅, and we allow µc to have jumps. We first begin

setting u = 0, E = 0, and Ωc = Ωc,1 ∪ Ωc,2, where

Ωc,1 = {(r, θ, z) ∈ R3 : (r, θ, z) ∈ [0, 1]× [0, 2π)× [1/4, 1]},
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and

Ωc,2 = {(r, θ, z) ∈ R3 : (r, θ, z) ∈ [1, 2]× [0, 2π)× [1/4, 1]}.

Let λµ = 10 and set

Hc =


Hr

0

Hz

 , (5.15)

where

Hr =


H1,r = r(1 + s(r, z) · cos(mθ)) in Ωc,1,

H2,r = rz3(3r+2)
3z2r+2z2+2λµ

in Ωc,2,

and

Hz = −2z(1 + s(r, z) · cos(mθ)).

We now define the magnetic permeability as

µc = µc(r, θ, z) =


µ1 = 1

1+s(r,z)·cos(mθ)
in Ωc,1,

µ2 = µ1 · (1 + λµ
z

) in Ωc,2,

where,

s(r, z) = b · (r · (r − 1) · (r − 2) · (z − 1

4
) · (z − 1))3,
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and b is a non-negative parameter which determines the variation of µ1. For instance,

observe that

sup
Ωc
|s(r, z)| = |s|max ≈ 1.6× 10−4 · b, and inf

Ωc
|s(r, z)| = 0.

Then if m 6= 0,

µ1,min =
1

1 + |s|max

, µ1,max =
1

1− |s|max

,

rµ1 =
µ1,max

µ1,min

=
1 + |s|max

1− |s|max

, and b =
1

1.6× 10−4

(
rµ − 1

rµ + 1

)
. (5.16)

Denoting by Hh the approximate magnetic field, we report in table 5.3 the rel-

ative errors using the code SFEMaNS. These tables also show the computed order of

convergence (COC). For this test PPP2 and P1 Lagrange elements are employed for Hc
h

and pch, respectively. We set a variation ratio of rµ1 = 50, and m = 3 in (5.16).

Moreover, we have chosen

µ = µ(r, z) =


µ1(r, z) in Ωc,1,

µ2(r, z) in Ωc,2,

where

µ1(r, z) =
1

1 + |s(r, z)|
, and µ2(r, z) =

1

1 + |s(r, z)|
·
(

1 +
λµ
z

)
.

With these choices conditions (5.7)-(5.9) are satisfied. Solution (5.15) is in Fourier

space with mode m = 0, 3, but our experiments run using M = 8 as the total of

complex Fourier modes, because explicit convolutions coming from the term (5.5)

are performed in real space.
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h ‖∇·(µH)h‖L2 COC ‖∇×(H−Hh)‖L2 COC ‖H−Hh‖L2 COC

0.2 6.7047E-02 — 4.0861E-02 — 2.7662E-02 —

0.1 2.4419E-02 1.46 1.0172E-02 2.01 1.2171E-02 1.18

0.05 8.2856E-03 1.56 2.1516E-03 2.24 2.5106E-03 2.28

0.025 2.7117E-03 1.61 4.4641E-04 2.27 3.6161E-04 2.80

0.0125 8.7132E-04 1.64 9.1020E-05 2.29 4.8304E-05 2.90

Table 5.3: Numerical errors computed when µ has jumps and is non-axisymmetric
using scheme (5.10).

5.5 The Kinematic Dynamo Problem

We now turn our attention to the main application we have in mind, namely

the dynamo action. When the velocity ũ is given, the problem of solving Maxwell

equations (5.1) is called the kinematic dynamo problem. Validation of the kinematic

code is a prerequisite for the full nonlinear dynamo problem where the Navier-Stokes

equations (2.14) including the Lorentz force are also solved. We consider only the

kinematic situation where the velocity field ũ is constant, and the magnetic perme-

ability µ is time independent, i.e. µ = µ(x). In doing so the kinematic dynamo

problem reduces to an eigenvalue problem; namely, assuming Ωv = ∅, the solution of

(5.1) can be written as

B̃ =
∞∑
j

cjb̃je
λjt,

where cj are constants, and (b̃j, λj) is the j-th eigenpair of the problem

λb̃ = −∇×

(
R−1

m σ−1

(
∇×

(
b̃

µ

))
− ũ× b̃

)
, (5.17)

90



satisfying the jump conditions on Σµ and suitable boundary conditions. The eigen-

values can be complex numbers, since the right hand side of the eigenvalue problem

(5.17) is not symmetric. Then dynamo action is said to occur when a growing solu-

tion B̃ exists, and this happens when there exists j′ such that Re(λj′) > 0; the critical

magnetic Reynolds number Rc
m is the value corresponding to Re(λj) = 0, ∀j. A

random initial condition B0 will have some component of the growing modes, and

these dominate at large time. These kinematic dynamos go on growing for ever. In

reality, the field B affects the flow through the Lorentz force in the equation of mo-

tion, and changes u so the dynamo stops growing. This is the nonlinear saturation

process, see [15, 17, 41] for details.

5.6 Numerical Simulation of Kinematic Dynamos

In this subsection1 we show results using scheme (5.10) and SFEMaNS for the kine-

matic dynamo problem inside a half-cylinder. So the problem is to find numerically

a positive and a negative eigenvalues of (5.1) to have an estimation of Rc
m. It is

common practice to compute Rc
m by linear extrapolation. In order to compare our

results we also present numerical experiments done by the code DOLMEN, which uses

3D Whitney finite elements. See Zaidi et al. [67] for more details about the method

and numerical results. All figures in this subsection related to DOLMEN are courtesy

of C. Nore and F. Bouillault.

The computational domain is a cylindrical vessel of radius Rc = 1 and height

H = 0.7 (0 ≤ r ≤ 1, −0.2 ≤ z ≤ 0.5), and the impeller driving the flow consists of

a disk equipped with eight blades. The disk is a cylinder of radius Rd = 0.54 and

height ld = 0.06 (−0.2 ≤ z ≤ −0.14). The height of the blades is lb = 0.14, their

thickness is eb = 0.02, the angle at the rim is α = 24o, and the generator radius is

1Part of the data reported in this subsection is reprinted with permission from [44]. Copyright
2015 by EDP Sciences.
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(a) Blade and disk geometry. (b) Impeller geometry.

Figure 5.1: Half von Kármán set-up: (a) blade and disk geometry; (b) impeller
geometry. Both images reprinted with permission from [44]. Copyright 2015 by
EDP Sciences.

Rg = 0.66, see figure 5.1 (a). This geometry is shown in figure 5.1(b).

The velocity field, VF = (ur, u
F
θ , uz), in the fluid (0 ≤ r ≤ 1, 0 ≤ z ≤ 0.5) is

modeled as follows:

ur = (π/2L) cos(πz/L) r(1− r)2(1 + 2r),

uFθ = 4εr(1− r5) sin (π(L− z)/2L) , (5.18)

uz = −(1− r)(1 + r − 5r2) sin (πz/L) ,

where L = 0.5 denotes the distance between the top lid of the computational box

(i.e., equatorial plane of the VKS container) and the top of the blades, and ε measures

the ratio between the toroidal and the poloidal components of the velocity (here, ε =

0.7259 as in [40]). The velocity field in the impeller region (0 ≤ r ≤ 1, −0.2 ≤ z ≤ 0)

is assumed to be a solid-body rotation:

uIθ = r. (5.19)
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The component uθ is interpolated between the fluid region and the impeller zone

using uθ = uFθ
1+tanh(z/zdel)

2
+uIθ

1−tanh(z/zdel)
2

, with zdel = 0.05. The vector field defined

above is denoted V0 and its maximum is Umax = 1.66 in Euclidean norm. All the

computations presented in this subsection are performed in the reference frame of the

impeller, i.e., the velocity field in (3.8) is defined to be ũ := V0− reθ. We denote by

µf , µd, and µb the magnetic permeability of the fluid, disk and blades, respectively.

In all these experiments we set µf = 1.

We set Ωv = ∅, so we impose the Dirichlet boundary condition B
µc
× n = 0 at the

bottom and at the sides of the half-cylinder. Two sets of boundary conditions are set

at the top of the half-cylinder to amplify the Fourier modes m = 1 and m = 0. These

conditions are described below. Moreover, all the results reported using SFEMaNS

are done with M = 128 of total Fourier modes, PPP2 approximation for Bc
h, and P1

approximation for ph. The trace of the impeller approximated with SFEMaNS is shown

in 5.2(a). The meridian mesh is non uniform with a minimum mesh-size h = 0.0075

and a maximum mesh-size h = 0.02. The trace of the tetrahedral mesh of the

impeller and the total mesh used in DOLMEN are shown on figure 5.2(b). The mesh is

non uniform with a mesh-size h = eb/8 = 0.0025 in each blade and h = 1/15 at the

top lid z = 0.5.

5.6.1 Using Neumann Boundary Condition at the Top

In this numerical simulation we set the condition B · n = 0 at the top. We

put as initial condition the field B0 = ex plus some random noise. The magnetic

Reynolds numbers Rm = 50 and Rm = 70 are considered. For SFEMaNS, we have

run µd = µb = 5 and µd = µb = 50. The computed tresholds for these cases

are Rc
m ≈ 58.4 and Rc

m ≈ 58, respectively. The code DOLMEN cannot handle big

values of µ, so the only considered case is µb = µd = 5, which gives a computed
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(a) SFEMaNS.

(b) DOLMEN.

Figure 5.2: Discretization of the geometry involved using the half bladed von Kármán
set-up: (a) impeller and meridian mesh used in SFEMaNS for the ; (b) trace of the
tetrahedral mesh of the impeller and total mesh used in DOLMEN. Both images in (b)
are courtesy of C. Nore and F. Bouillault.
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(a) SFEMaNS.

(b) DOLMEN.

Figure 5.3: Structure of the rotating magnetic field generated in a half von Kármán
set-up in the bladed configuration (at Rm = 70 with µb = µd = 5) represented
by vectors and the isosurface ‖B‖2 (5% of maximum value) colored by the vertical
component (minimum value in white and maximum value in dark/red). Note the
m = 1 structure of the magnetic field in the bulk and the footprint on the 8 blades.
Both images in (b) are courtesy of C. Nore and F. Bouillault.

treshold Rc
m ≈ 61. The discrepancy between the two codes can have various sources:

the blades are not exactly the same and the approximation algorithms are totally

different. Nevertheless, the spatial distribution of the magnetic field is very similar for

both codes as shown on figure 5.3 where is clearly seen that mode m = 1 dominates.

5.6.2 Using Dirichlet Boundary Condition at the Top

Here we set B
µ
×n = 0 at the top, and set the axisymmetric field B0 = ez as initial

condition plus some random noise. Setting µb = µd = 5, we measure the leading

eigenvalues for the magnetic Reynolds numbers Rm ∈ [90, 750] (see figure 5.6a). The

95



modes m = 0 and m = 2 are the leading ones. DOLMEN and SFEMaNS have similar

growth rates for the mode m = 0 at Rm = 90 and Rm = 550. We have estimated the

thresholds for these modes by interpolation (or extrapolation) on the growth rates.

The dynamo threshold is Rmc ≈ 1300 for mode m = 0 and Rmc ≈ 550 for mode

m = 2.

The leading eigenvector at Rm = 750 is mode m = 2 and has a positive growth-

rate; the spatial distribution of this mode is shown in figure 5.6b. It is a bulk

eigen-mode with four helical structures. The simulations at all investigated Rm show

that the leading mode m = 0 has a negative growth-rate; the spatial distribution of

the corresponding eigenvector is shown in figures 5.4 and 5.5.

5.6.3 Conclusion

In this section we have presented two different kinematic dynamos of the half

VKS setting using a given stationary analytical velocity ũ. Using the new scheme

(5.10) implemented in the code SFEMaNS, we have found a dynamo in both cases,

and validated our numerical results against the 3D code DOLMEN. However, in none

of these cases we have observed an axisymmetric dynamo. So we conclude that the

velocity ũ is incapable of generating dynamos similar to the one observed in the real

VKS experiment. Then a full MHD simulation is still necessary, and this has been

successfully achieved in this thesis, and it is reported in the next section.
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(a) Disk region. (b) Blade region. (c) Bulk region.

Figure 5.4: Structure of the leading eigenvector using DOLMEN for mode m = 0 (stable
at Rm = 90 with µb = µd = 5) represented by vectors shown (a) in the disk, (b) in
the impeller region and (c) in the bulk region. In the latter, are plotted vectors and
the isosurface ‖B‖2 (1% of maximum value–colored by the vertical component with
minimum value in black and maximum value in white). All images in this figure are
courtesy of C. Nore and F. Bouillault.

(a) Disk region. (b) Blade region. (c) Bulk region.

Figure 5.5: Same as fig. 5.4 but using SFEMaNS at Rm = 550 with µb = µd = 5 and
the isosurface ‖B‖2 is 0.5% of maximum value, colored by the vertical component
with minimum value in brown and maximum value in white. Figure (c) is reprinted
with permission from [44]. Copyright 2015 by EDP Sciences.
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(a) Growth rates for modes m = 0
and m = 2.

(b) Leading eigenvector for mode
m = 2 (unstable).

Figure 5.6: Kinematic dynamo in a half von Kármán set-up with the velocity field
V0 and the bladed configuration with µb = µd = 5: (a) Energy growth rate of modes
m = 0 and m = 2 for Rm ∈ [90, 750] (DOLMEN results taken from [67]); (b) structure
of the leading eigenvector using SFEMaNS at Rm = 750 for mode m = 2 represented
by the isosurface ‖B‖2 (10% of maximum value, colored by the vertical component
with minimum value in dark/red and maximum value in white) and vectors shown
in the disk, in the impeller region and in the bulk region. Figure (b) is reprinted
with permission from [44]. Copyright 2015 by EDP Sciences.
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6. NUMERICAL SIMULATION OF THE VKS-MHD DYNAMO EXPERIMENT

In this section we report full MHD numerical computations of the VKS dynamo

experiment. We begin discussing the discretization of Navier-Stokes equations, and

how the code SFEMaNS has been extended to handle non-axisymmetric moving obsta-

cles such as moving blades. We then peform hydrodynamic and MHD simulations for

the VKS at moderated low Reynolds numbers. Doing so we have found that for high

values of magnetic permeability µ an axisymmetric magnetic field is predominant.

This coincides with the real VKS experiment.

6.1 MHD Equations using B

We recall that in the beginning of section 5 we have reformulated the Maxwell

equations using the magnetic induction field B instead of H. The main reason has

been explained in subsection 3.7. So for convenience we rewrite the complete MHD

system (3.7)-(3.8) in terms of B as follows:


∂tu + (u · ∇)u−R−1

e ∆u +∇p =
(
∇×

(
B
µc

))
×B in Ωcf ,

∇·u = 0 in Ωcf ,

u|t=0 = u0 in Ωcf , u|Γf = d,

(6.1)
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

∂tB
c = −∇×(R−1

m σ−1(∇×(B
c

µc
)− js)− ũ×Bc) in every Ωci, i ∈ 1, N,

µv∂t∆φ = 0, in Ωv,

(R−1
m σ−1(∇×(B

c

µc
)− js)− ũ×Bc)× nc = a on Γc,n,

Bc

µc
× n =

Bcd
µc
×n on Γc,d,

µv∂nv∂tφ = −nv · ∇×(nv × a), on Γv,

Bc1
µc1
× nc1 +

Bc2
µc2
× nc2 = 0 on Σµ,

Bc
1 · nc1 + Bc

2 · nc2 = 0 on Σµ,

Bc

µc
× nc +∇φ× nv = 0 on Σ,

Bc · nc + µv∇φ · nv = 0 on Σ,

B|t=0 = B0, φ|t=0 = φ0 in Ω.

(6.2)

The Maxwell equations (6.2) have been numerically treated previously, whereas

discretization of (6.1) is discussed next.

6.2 Discretization of the Navier-Stokes Equations

In this subsection we begin describing the original algorithm implemented in

SFEMaNS to solve the Navier-Stokes equations (6.1). Its details are reported in Guer-

mond et al. [30]. However, this only works for axysimmetric obstacles, since we

have assumed in subsection 3.5.1 that the conducting fluid domain Ωcf is axysim-

metric. To overcome this restriction, an implementation of the pseudo-penalization

method introduced by Pasquetti et al. [45] has been done in SFEMaNS. Such method

is described in subsection 6.2.3.
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6.2.1 Time Stepping Scheme

We first describe the time stepping scheme to solve (6.1), which is a pressure

correction based method in rotational form, see Guermond and Shen [32] for details.

The scheme consists of seeking the prediction ũ of the velocity u by solving first

3ũn+1 − 4un + un−1

2∆t
− 1

Re

∆ũn+1 +∇pn = fn+1, (6.3)

where we have neglected the nonlinear and the Lorentz force terms for the time

being. To satisfy the incompressible condition, we determine u such that


3

2∆t
un+1 − 3

2∆t
ũn+1 +∇

(
pn+1 − pn + 1

Re
∇·ũn+1

)
= 0,

∇·un+1 = 0.

(6.4)

In practice, the code SFEMaNS computes a scalar ψn+1 such that

∆ψn+1 = − 3

2∆t
∇·ũn+1. (6.5)

Doing so, the projected velocity u can be eliminated from (6.3) and (6.4) because

un+1 = ũn+1 − 2∆t

3
∇ψn+1. (6.6)

6.2.2 Finite Element Discretization

Now using the same notation as in subsection 3.5.1, we describe the space di-

cretization in SFEMaNS. A mixed Taylor-Hood P2/P1 finite element is used, see [28].

And for the weak formulation we define the finite-dimensional real-valued vector
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spaces:

V2D
h := {vh|Ωci ∈ CCC

0(Ωci),∀i = 1, . . . , N,vh(T
−1
K )|K ∈ PPP6

2, ∀K ∈ F
cf
h }, (6.7)

M2D
h := {qh ∈ C0(Ωv); qh(T

−1
K )|K ∈ P2

1, ∀K ∈ F
cf
h }. (6.8)

At a given time the velocity and the pressure fields are approximated by:

Vh := {v =
M∑

m=−M

vmh (r, z)eimθ; vmh ∈ V2D
h , vmh = v−mh , k ∈ 0,M}, (6.9)

Mh := {qh =
M∑

m=−M

qmh (r, z)eimθ; qmh ∈ q
φ,2D
h , qmh = q−mh , m ∈ 0,M}. (6.10)

Also let us denote Vh,0 as the subspace of Vh composed of vector fields that are

zero on Γf . After proper initialization at t0 and t1, we define,

u∗ = 2un − un−1, and Dun+1 :=
1

2
(3un+1 − 4un + un−1).

Then the weak formulation of (6.1) is to solve for un+1 ∈ Vh so that un+1|Γf =

dn+1 is an approximation of boundary data d(tn+1) and the following holds for all

v ∈ Vh,0:

∫
Ωcf

Dun+1

∆t
· v +

1

Re

∇un+1 : ∇vn+1 = −
∫

Ωcf

v · ∇
(
pn +

4

3
ψn − 1

3
ψn−1

)
(6.11)

+

∫
Ωcf

v ·
((
∇×B∗

µ

)
×B∗ − (∇×u∗)× u∗

)
.

A pressure correction is computed by solving ψn+1 and ζn+1 in Mh so that the
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following holds for all q ∈Mh:

∫
Ωcf

∇ψn+1 · ∇q =
3

2∆t

∫
Ωcf

un+1 · ∇q, (6.12)∫
Ωcf

qζn+1 =

∫
Ωcf

q∇un+1. (6.13)

The pressure is corrected by setting

pn+1 = pn + ψn+1 − 1

Re

ζn+1. (6.14)

6.2.3 Extension to Non-Axisymmetric Obstacles

As mentioned before, we have assumed so far that the conducting fluid domain

Ωcf is completely axisymmetric. To account for non-axisymmetric obstacles, such

as curved blades, the pseudo-penalty method introduced by Pasquetti et al. [45]

has been implemented in SFEMaNS. For details and validation of the code we refer to

Cappenera [11, Chapter 2].

We now review the pseudo-penalty method. We first define Ωobs as the domain

that represents the obstacle inside the fluid. Such obstacle is allowed to be non-

axisymmetric. Using the same notation as in (6.2.1), the pseudo-penalty method
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consists in solving the following equations in the whole extended domain Ωcf ∪Ωobs:

ũn+1 − χun

∆t
− 1

Re

∆ũn+1 +∇pn = χfn+1, (6.15)
un+1−ũn+1

∆t
+∇ψn+1 = 0,

∇·un+1 = 0,

(6.16)

−∆ψn+1 =
1

∆t
∇·ũn+1, (6.17)

ζn+1 = − 1

Re

∇·ũn+1, (6.18)

pn+1 = pn + ψn+1 + ζn+1, (6.19)

where χ is called the penalty function defined as

χ =


1 in Ωcf ,

0 in Ωobs.

(6.20)

It can be proven, see [45, 11], that the predicted velocity ũ computed using

(6.15)-(6.19) is also a solution of the equation

ũn+1 − χũn

∆t
− 1

Re

∆ũn+1 +∇pn + χ∇ψn = χfn+1,

so the Navier-Stokes equations (6.1) are solved in Ωcf , and a zero velocity is imposed

in Ωobs. Stability of scheme (6.15)-(6.19) has been proven in [11].

The code SFEMaNS implements a variant of scheme (6.15)-(6.19), and the case

when we have a moving obstacle, i.e., χn = χ(tn). Denoting as unobs the velocity of

the obstacle, the scheme is as follows; we solve (6.12)-(6.14) for the pressure pn+1,
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and for the velocity un+1 we solve

3un+1

2∆t
− 1

Re

∆un+1 =−∇pn + χn+1

(
4un − un−1

2∆t
−∇

(
4ψn − ψn−1

3

))
(6.21)

χn+1(−(∇×u∗,n+1)× u∗,n+1 + fn+1) +
3un+1

obst

2∆t
(1− χn+1),

where u∗ = 2un−un−1. However, despite the fact that a second order extrapolation

and BDF2 have been used to approximate un+1 and the time derivative of u, respec-

tively; scheme (6.21) is just first order in time accurate at the obstacle boundary,

see [11]. Peskin [46, 47] was the first to introduced penalty methods for immersed

obstacles; other approaches are reported in Homann et al. [35] and Fadlun et al.

[21].

6.3 The VKS Dynamo Experiment

From this subsection to the end of section we finally report the main objective

of this thesis. That is, a full MHD numerical simulation of the VKS dynamo ex-

periment. Using the methods described in section 5 and in the previous subsection,

the code SFEMaNS has been extended to solve numerically the MHD equations (6.1)-

(6.2) in the presence of non-axisymmetric conducting obstacles inside the domain

Ω. Specifically, schemes (5.10), (6.12)-(6.14) and (6.21) are completely integrated in

SFEMaNS version 3.01.

In this thesis we restrict to Direct Numerical Simulation (DNS) for moderated

Reynolds numbers (200 ≤ Re ≤ 2500), and perform 20 turns for each hydrodynamic

simulation. It is worth mentioning that in the work of Cappanera [11], SFEMaNS

v3.0 code is used as well to simulate a similar VKS set up, but with different type

of blades; the author performs only an hydrodynamic study, but uses Large Eddy

1This code can be requested to guermond@math.tamu.edu
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Simulation (LES) as well to get computations for Re ∼ 5000. His numerical results

give a reasonable approximation to experimental data, validating then the Navier-

Stokes and LES implementation code within SFEMaNS v3.0. We now begin our

report for the VKS simulations describing next the experimental setting

6.3.1 Experimental Setup

We simulate the flow driven by TM73 impellers (for Turbine Métallique, meaning

Metal Impeller in French) used in the 2006 experiment [42] (see figure 6.1b). The

set-up uses two concentric cylindrical containers: one of radius Rcyl = 206mm (with

a very small thickness) and another thick one of radius Rin = 289mm and Rout =

330mm made of copper. Both have a total height H = 412mm (we neglect the fluid

behind the impellers). The impellers are composed of two disks each supporting 8

blades. The disks have a radius Rb = 155mm and thickness of 20mm. The blades

have an angle of curvature equal to 24o, a height of 41mm and a thickness of 5mm.

Eventually the distance between the inner faces of the disks is set to 370mm such

that the aspect ratio of the fluid is 370/206 = 1.8 as in the TM28 that have been

numerically studied in [36]. The fluid in the inner cylinder is pushed by the convex

side of the blades (called the unscooping sense of rotation or (+) sense). In Cappanera

[11] the TM87 impellers are used.

6.3.2 Numerical Model

The reference length Lref is set to Rcyl so that the domain of computation for the

hydrodynamic study is Ωcf = {(r, θ, z) ∈ [0, 1] × [0, 2π) × [−1, 1]} and the domain

for the MHD study is a larger cylinder which can be decomposed in Ωcf ∪ Ωout

with Ωout = {(r, θ, z) ∈ [1, 1.6] × [0, 2π) × [−1, 1]}. Figure 6.1a shows Ωcf and

the impeller used inside as an obstacle. Denoting by σ0 the electrical conductivity

of the liquid sodium, ρ its density, µ0 the magnetic permeability of vacuum, the
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(a) Geometry. (b) TM73 Impeller.

Figure 6.1: VKS hydrodynamic experimental setting.

magnetic induction is made non-dimensional by using B = U
√
ρµ0 (with B and U =

ωRcyl the reference magnetic induction and velocity respectively with ω the angular

velocity of the impellers). Two governing parameters appear: Rm = µ0σ0R
2
cylω the

magnetic Reynolds number and Re = R2
cylω/ν the kinetic Reynolds number with ν

the kinematic viscosity of the fluid.

The parameters σ, µ are not constant since the walls and the impellers may

be composed of copper, steel or soft iron. Specifically, we take u = 0 in Ωout,

σ = 1, µ = 1 for {(r, θ, z) ∈ [1, 1.4]× [0, 2π)× [−1, 1]} (as for a stagnant lateral layer

of liquid sodium) and σ = 4.5, µ = 1 for {(r, θ, z) ∈ [1.4, 1.6] × [0, 2π) × [−1, 1]}

(as for a lateral copper wall). We impose perfect ferromagnetic boundary conditions

B× n = 0 on the outer boundaries.

As mentioned before, we investigate the hydrodynamic and MHD regimes of the

above experimental set-up, we use schemes (5.10), (6.12)-(6.14), and (6.21). All of

them are now implemented in the code SFEMaNS. To define the penalty function χ in

(6.20), the cylinder Ωcf is split into a solid obstacle domain Ωobs (composed of the

rotating impellers) and a fluid domain Ωcf that are both time dependent due to the
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impellers rotation. Recall that we define µ similarly in (3.19) as

µ =


µc in Ωc

1 in Ωv

. (6.22)

where µc corresponds to the relative magnetic permeability of the blades with respect

to the vacuum. However, in our simulations we make χ and µ to have a smooth

profile. We also specify the velocity of the obstacle unobs that appears in scheme

(6.21) as

unobs(r, θ, z) =

 −reθ if z > 0,

reθ if z ≤ 0.
(6.23)

6.4 Hydrodynamic Study of the VKS

We first perform hydrodynamic computations integrating (6.1) in the range Re ∈

[200, 2500] setting the magnetic induction field B to zero. We have run a total

of 20 turns for each hydrodynamic simulation. Table 6.1 shows the discretization

parameters used for each run. All simulations were performed using the Brazos

Cluster at Texas A&M.

We will characterize the structure of the flow by representations of the velocity

field and by computing various time-averaged physical quantities. The time average

f of a quantity f is defined as follows:

f =
1

q

∑
1≤n≤q

fn. (6.24)

Quantities of interest are the kinetic energy E and an indicator of the fluctuation
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level δ defined by:

E(t) =
1

2
‖u‖L2(Ω) =

1

2

∫
Ω

|u(r, t)|2dr, δ(u) =
‖u‖2

L2(Ω)

‖u‖2
L2(Ω)

. (6.25)

We also introduce the poloidal and toroidal components, respectively denoted by

P (u) and T (u), of the velocity fields that we define as Ravelet in [49]:

P (u) =
1

|Ω|

∫
Ω

√
u2
r,0 + u2

z,0dΩ, T (u) =
1

|Ω|

∫
Ω

|uθ,0|dΩ (6.26)

where ur,0, uθ,0 and uz,0 are the radial, azimuthal and vertical components associated

to the Fourier mode m = 0 of the velocity u. We also consider the ratio of the poloidal

and toroidal components Γ(u) = P (u)/T (u) and two other quantities which are the

root mean square velocity and the dimensionless torque Kp defined by:

URMS =

√
2E

|Ω|
, Kp =

1

2ω2

∫
Ωsolid

|(r× F) · ez|dΩ, (6.27)

where F is the force that induces a rotating motion of the impellers and ω is the

impeller angular velocity. Due to the non-dimensionalization of the problem we have

ω = 1. Using χ and uobs respectively defined in equations (6.20) and (6.23) Kp is

given by:

Kp =
1

2

∫
Ω

r(1− χ)sign(z)
3

2
(u− uobs) · eθdΩ (6.28)

with sign(z) equal to 1 if z > 0 and −1 elsewhere.

Figure 6.2 shows the time evolution of the kinetic energy: at Re = 200 the flow is

steady, at Re = 500 the flow is marginally unsteady, and increasing further Re leads

to a fluctuating regime. Figures 6.3-6.5 show the time averaged velocity components

ux,uy, and uz respectively.
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Figure 6.7 shows the time averaged azimuthal spectra of the kinetic energy: Em =∫
Ω2D

fluid
π|û(r,m, z, t)|2rdrdz where û(r,m, z, t) is the m-th Fourier component of the

velocity field u(r, θ, z, t). The maxima at m = 0 and m = 8 of the energy spectrum

correspond respectively to the large scale forcing induced by the rotating disks and to

the flow induced by the 8 rotating blades. As expected the steady flow at Re = 200 is

dominated by the m = 0 and m = 8 modes (and their harmonics). At Re = 500 the

flow is dominated by the m = 0 and m = 2 modes: the azimuthal shear layer near the

equator acquires a wavy structure with two co-rotating radial vortices as seen in [50].

The spectrum in figure 6.7b shows that all even modes are populated by nonlinearity.

At higher Re numbers, the m = 1, 2, 3 modes compete with a predominance of the

m = 3 mode (and still the m = 0 and 8 modes). These modes populate all the modes

and the spectra are more continuous (see figure 6.7d). Intense helical vortices are

generated between the blades as seen in figure 6.10 and first numerically evidenced

by [51, 36].

Figure 6.8 shows the instantaneous velocity component uz on the plane cut at

z = 0. It is clearly seen the dominance of mode m = 2 for Re = 500 and the

dominance of mode m = 3 for Re = 1000 in figures 6.8b and 6.8c, respectively. This

strengthens the statements mentioned in the preceding paragraph. The dominance

of mode m = 3 is still noticed for Re = 1500 and Re = 2500 in figures 6.8d and 6.8e,

respectively; however the fluid is more unstable. Figure 6.9 shows the instantaneous

velocity component uz on the plane cut at z = −0.8.

Table 6.2 shows that all quantities except Kp increase with Re. It is known

that the quantities δ(u) (characterizing the turbulent fluctuations in inhomogeneous

anisotropic flows [12]) and Kp (the dimensionless torque) should reach Reynolds

independent values at large Re numbers. Despite our limited Re range the global

trend followed by the global quantities compares well with the experimental results
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of [50].

Re ∆t P1-npts P1-nelems P2-npts nmodes DoF nprocs
200 0.01 7568 14758 29893 64 8621312 64
500 0.01
1000 0.0025
1500 0.00125 13319 26260 52897 15246464 192
2500 0.00125 20780 41039 82598 23804928 192

Table 6.1: Discretization parameters for each VKS hydrodynamic run, where Pk-
npts is the total number of points for the Pk-mesh; similarly Pk-nelems is the total
number of elements, nmodes is the number of complex Fourier modes, DoF is the
degrees of freedom, and nprocs is the number of CPU cores used. All computations
were performed using the Brazos Cluster at Texas A&M.

Re E δ(u) P (u) T (u) Γ(u) URMS Kp

200 0.2287 1.0122 0.07533 0.1936 0.3892 0.2698 0.063108
500 0.2983 1.0201 0.09327 0.2005 0.4653 0.3082 0.053126
1000 0.3893 1.1172 0.11446 0.2460 0.4651 0.3520 0.050474
1500 0.4078 1.2123 0.11569 0.2263 0.5113 0.3603 0.050783
2500 0.4427 1.3461 0.12437 0.2193 0.5671 0.3754 0.051977

Table 6.2: Hydrodynamic computations for the TM73 set-up.

6.5 MHD Results of the VKS

We now solve the full MHD system (6.1)-(6.2) using as initial velocity field the

velocity computed during the Navier-Stokes runs at Re = 500 or Re = 1500 and

a random initial seed for the magnetic field. Various MHD runs are performed for

different values of the magnetic Reynolds number and relative magnetic permeabil-

ity of the impellers summarized in tables 6.3 and 6.4. The onset of dynamo action

111



0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 100 200 300 400 500 600 700

E
(t

)

t

Re=200
Re=500

Re=1000
Re=1500
Re=2500

Figure 6.2: Time evolution of the total kinetic energy at different Re.

(a) Re = 200. (b) Re = 500. (c) Re = 1000.

(d) Re = 1500. (e) Re = 2500.

Figure 6.3: Component ux of the mean velocity at final time at plane cut x = 0.
This corresponds to the azimuthal component of u.
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(a) Re = 200. (b) Re = 500. (c) Re = 1000.

(d) Re = 1500. (e) Re = 2500.

Figure 6.4: Component uy of the mean velocity at final time at plane cut x = 0.

(a) Re = 200. (b) Re = 500. (c) Re = 1000.

(d) Re = 1500. (e) Re = 2500.

Figure 6.5: Component uz of the mean velocity at final time at plane cut x = 0.
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(a) Re = 200. (b) Re = 500. (c) Re = 1000.

(d) Re = 1500. (e) Re = 2500.

Figure 6.6: Time evolution of the kinetic energy at different Re for modes m = 0, 1, 2
and 3.
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Figure 6.7: Time averaged spectra of the kinetic energy as a function of the azimuthal
mode.
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(a) Re = 200. (b) Re = 500. (c) Re = 1000.

(d) Re = 1500. (e) Re = 2500.

Figure 6.8: Component uz of the instantaneous velocity at plane cut z = 0 at final
time.

(a) Re = 200. (b) Re = 500. (c) Re = 1000.

(d) Re = 1500. (e) Re = 2500.

Figure 6.9: Component uz of the instantaneous velocity near the bottom blades at
plane z = −0.8 at final time.

115



(a) Kinetic energy (b) Vorticity

Figure 6.10: Navier-Stokes simulations in the TM73 VKS configuration at Re = 2500:
(a) full scale for ‖u‖L2(Ω) = 2E(t), (b) partial scale for the vorticity field ∇×u (total
scale is between 5 and 41).

is monitored by recording the time evolution of the magnetic energy in the con-

ducting domain, M(t) = 1
2

∫
Ω∪Ωout

h(r, t) · b(r, t)dr, as well as the modal energies

Mm(t) =
∫

Ω2D∪Ω2D
out
π|ĥ(r,m, z, t)|2rdrdz. Linear dynamo action occurs when Mm(t)

is an increasing function of time and nonlinear dynamo action takes place when M(t)

saturates.

6.5.1 Two Distinct Families at Re = 500

We have seen that the flow at Re = 500 is characterized by the predominance of

the even modes for the velocity field. Due to this azimuthal dependence, the eigen-

value problem associated with (6.1)-(6.2) has two disconnected families of magnetic

eigenspaces generated by the even and odd Fourier modes. We henceforth refer to

these vector spaces as the 0-family and the 1-family respectively. Given any initial

data for (6.1)-(6.2) with nonzero projection on the two families, time integration of

the equations gives a magnetic field which is a superposition of the leading eigenvec-

tors in each family.
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Figure 6.11: Time evolution of the modal magnetic energies Mm(t) for m = 0, 1, 2, 3
and for Rm ∈ [50, 300] at Re = 500 and µ = 5.

A typical time evolution of the modal magnetic energy Mm for m = 0 to 3 and

for Rm ∈ [50, 300] at Re = 500 and µ = 5 is shown in figure 6.11. As expected the

two families display two distinct growth-rates for each Rm. Note that the 1-family

is supercritical before the 0-family at Rm = 150. Linear interpolation of the growth-

rates determines the critical magnetic Reynolds number Rmc when the growth-rate

is zero, reported in table 6.3. Figure 6.13a shows the magnetic field at the end of

the integration of figure 6.11b. Note the parallel and anti-parallel vectors near the

vertical axis. We observe the expected m = 1 eigenmode evidenced in kinematic

dynamo computations in figure 6.12; compare with [25] (see figure 2d therein). This

mode is characterized by an equatorial dipole with two opposite axial structures

mainly localized in the bulk of the fluid.

An estimate of the effective magnetic permeability of the soft iron TM73 used

in [42] is µ ≈ 65 [66]. Therefore we vary the relative permeability of the impellers.

Increasing µ enhances the 0-family growth-rates (see figure 6.14) and switches the

ordering of the thresholds. Note that the 1-family thresholds barely change with µ be-

cause the corresponding eigenmode is localized mainly in the bulk while the 0-family

thresholds vary dramatically because the corresponding eigenmode is characterized
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(a) Isosurface (b) Isosurface with streamlines

Figure 6.12: MHD simulations in the TM73 VKS configuration at Re = 500, Rm =
150, with µb = µd = 5 represented by isosurface ‖H‖2 (12% of maximum value)
colored by the vertical component.

(a) µ = 5 (b) µ = 100

Figure 6.13: MHD simulations in the TM73 VKS configuration at Re = 500, Rm =
150 and (a) µ = 5 (1-family), (b) µ = 100 (0-family). Arrows represent in-plane
{hy, hz} vectors or {hx, hy} vectors and color represents the out-of-plane component
hx wrt the meridian plane Oyz.
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Figure 6.14: Time evolution of the modal magnetic energies Mm(t) for m = 0, 1, 2, 3
and for Rm ∈ {50, 150} at Re = 500 and µ = 100.

by an axial dipole in the bulk and an azimuthal magnetic component concentrated

in the impellers (see figure 6.13b).

µ Rmc(0-family) Rmc(1-family)

5 240 ±5 147 ±1
50 130 ±2 138 ±2
100 82 ±2 144 ±2

Table 6.3: Magnetic thresholds for Re = 500.

6.5.2 No Distinct Magnetic Family at Re = 1500

At Re = 1500 the flow is more fluctuating and all the velocity modes are coupled

with a predominance of the m = 0 and m = 3 modes. Therefore there is no distinct

magnetic family and the eigenmode is mainly axisymmetric. Computations need

more spatial resolution and CPU time. We have tested two relative permeabilities

µ ∈ {5, 50} and reported the thresholds in table 6.4. The modal magnetic energies

for the m ∈ [0, 4] modes show that the m = 0 and m = 3 magnetic modes are coupled
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Figure 6.15: Time evolution of the modal magnetic energies Mm(t) for m ∈ [0, 4]
and for Rm ∈ {50, 100} at Re = 1500 and µ = 5.

as well as m = 1 and m = 4 magnetic modes because of the predominance of the

m = 3 mode in the velocity field (see figures 6.15 and 6.16).

An illustrative view of the generated magnetic field is displayed on figure 6.17.

The radial component is odd with respect to z whereas the azimuthal and vertical

components are even and of opposite sign. These features are compatible with the

magnetic field measured at saturation in the experimental dynamo regime obtained

with soft iron impellers (see figure 6b in [7]). Using a ferromagnetic material decreases

the dynamo threshold and enhances the predominantly axisymmetric magnetic field.

µ Rmc

5 130 ±5
50 90 ±5

Table 6.4: Magnetic thresholds for Re = 1500.

Finally, table 6.5 shows the discretization parameters used for all MHD runs for

Re = 500 and Re = 1500. All simulations were performed using the Brazos Cluster
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Figure 6.16: Time evolution of the modal magnetic energies Mm(t) for m ∈ [0, 4]
and for Rm ∈ {50, 100} at Re = 1500 and µ = 50.

(a) Instantaneous magnetic field (b) Time averaged magnetic field

Figure 6.17: MHD simulations in the TM73 VKS configuration at Re = 1500, Rm =
150 and µ = 50. Arrows represent in-plane {hy, hz} vectors or {hx, hy} vectors and
color represents the out-of-plane component hx wrt the meridian plane Oyz.
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at Texas A&M.

Re 500 1500
P1-npts for Ωcf 7568 13319

P1-nelems for Ωcf 14758 26260
P2-npts for Ωcf 29893 52897
P1-npts for Ω 9092 14843

P1-nelems for Ω 17818 29320
P2-npts for Ω 36202 59206

nmodes 64 64
DoF 19052800 32303104

nprocs 64 192

Table 6.5: Discretization parameters used for all MHD-VKS runs for Re = 500, and
Re = 1500, where Pk-npts is the total number of points for the Pk-mesh to discretize
Ωcf or Ω = Ωcf ∪ Ωout; similarly Pk-nelems is the total number of elements, nmodes
is the number of complex Fourier modes, DoF is the degrees of freedom, and nprocs
is the number of CPU cores used. We have used P2 for each component of Bc, and
P1 for pc. All computations were performed using the Brazos Cluster at Texas A&M.

6.5.3 Conclusion

Our results show for the first time that the ferromagnetic impellers are crucial to

obtain the predominantly axisymmetric dynamo mode in a VKS configuration in a

full-MHD model at moderate kinetic Reynolds numbers. Increasing Re from 500 to

1500 decreases the dynamo threshold and a numerical challenge would be to extend

the range of Re in numerical simulations.
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7. CONCLUSION

All the studies led in this PhD time frame have been motivated by upgrading

of the SFEMaNS code in order to simulate numerically the VKS experiment. This

project comes after the previous PhD thesis of R. Laguerre [37], A. Ribeiro [53], and

F. Luddens [39] that allowed the beginning of SFEMaNS, and its development into a

massive parallel code that can approximate MHD problems involving discontinuous

magnetic permeability in the radial and vertical directions.

In this period we first studied a simpler model that mimics the induction equation

of the Maxwell equations in the low frequency regime. We proposed two time stepping

schemes that avoid implicit convolutions when Fourier-finite element methods are

used for spacial discretization. Stability of both schemes was proved. We then

extended these ideas for general scalar parabolic PDEs with variable coefficients in

time and space. A second order accurate in time scheme was proposed, which avoids

implicit convolutions using time independent matrices. Its stability was also proved.

Taking inspiration from our studies of the simpler model, a new formulation

of the MHD equations using B, and a novel time stepping method were proposed

to handle non-axisymmetric magnetic permeability. The method was implemented

in SFEMaNS, and comparisons against the 3D code DOLMEN [67] were done for the

kinematic dynamo problem to validate our new method and its implementation.

Then in collaboration with L. Cappanera [11], SFEMaNS was extended to simulate

the Navier-Stokes equations when non-axisymmetric moving obstacles are present.

Numerical studies with the VKS set up and using SFEMaNS were performed, then

giving acceptable results against experimental data [50].

Finally, full VKS-MHD computations were performed using SFEMaNS code. Our
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results show for the first time that the ferromagnetic impellers are crucial to obtain

the predominantly axisymmetric dynamo mode in a VKS configuration in a full-MHD

model at moderate kinetic Reynolds numbers (500 ≤ Re ≤ 1500).

7.1 Future Studies

The main goal is to study the turbulence effects to generate the fluid dynamo as

in the real VKS experiment. This implies the objective of overcoming the numerical

challenge of extending the range of Re in numerical simulations. As of now, a Large

Eddy Simulation (LES) model is being implemented in SFEMaNS by L. Cappanera.

To handle Re ≥ 103, our current algorithm for the Maxwell equations may need

stabilization for high-magnitude velocities.
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von Kármán flow driven by ferromagnetic impellers. New J. Phys., 12(3):033006,

2010.

[67] H. Zaidi, F. Bouillault, C. Nore, A. Bossavit., and J.-L. Guermond. Approxi-

mation of the time-dependent induction equation with advection using Whitney

elements: application to dynamo action. COMPEL, 35(1):326–339, 2016.

132


