
A FINE MOTOR SKILL CLASSIFYING FRAMEWORK TO SUPPORT

CHILDREN’S SELF-REGULATION SKILLS AND SCHOOL READINESS

A Dissertation

by

HONG-HOE KIM

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Tracy Anne Hammond
Committee Members, Yoonsuck Choe

Jeffrey Liew
Frank Shipman

Head of Department, Dilma Da Silva

May 2016

Major Subject: Computer Science

Copyright 2016 Hong-Hoe Kim



ABSTRACT

Children’s self-regulation skills predict their school-readiness and social behav-

iors, and assessing these skills enables parents and teachers to target areas for im-

provement or prepare children to enter school ready to learn and achieve. Assessing

these skills enables parents and teachers to target areas for improvement or prepare

children to enter school ready to learn and achieve.

To assess children’s fine motor skills, current educators are assessing those skills by

either determining their shape drawing correctness or measuring their drawing time

durations through paper-based assessments. However, the methods involve human

experts manually assessing children’s fine motor skills, which are time consuming

and prone to human error and bias. As there are many children that use sketch-

based applications on mobile and tablet devices, computer-based fine motor skill

assessment has high potential to solve the limitations of the paper-based assessments.

Furthermore, sketch recognition technology is able to offer more detailed, accurate,

and immediate drawing skill information than the paper-based assessments such

as drawing time or curvature difference. While a number of educational sketch

applications exist for teaching children how to sketch, they are lacking the ability to

assess children’s fine motor skills and have not proved the validity of the traditional

methods onto tablet-environments.

We introduce our fine motor skill classifying framework based on children’s digital

drawings on tablet-computers. The framework contains two fine motor skill classifiers

and a sketch-based educational interface (EasySketch). The fine motor skill classi-

fiers contain: (1) KimCHI: the classifier that determines children’s fine motor skills
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based on their overall drawing skills and (2) KimCHI2: the classifier that determines

children’s fine motor skills based on their curvature- and corner-drawing skills. Our

fine motor skill classifiers determine children’s fine motor skills by generating 131

sketch features, which can analyze their drawing ability (e.g. DCR sketch feature

can determine their curvature-drawing skills).

We first implemented the KimCHI classifier, which can determine children’s fine

motor skills based on their overall drawing skills. From our evaluation with 10-

fold cross-validation, we found that the classifier can determine children’s fine motor

skills with an f-measure of 0.904. After that, we implemented the KimCHI2 classifier,

which can determine children’s fine motor skills based on their curvature- and corner-

drawing skills. From our evaluation with 10-fold cross-validation, we found that

the classifier can determine children’s curvature-drawing skills with an f-measure of

0.82 and corner-drawing skills with an f-measure of 0.78. The KimCHI2 classifier

outperformed the KimCHI classifier during the fine motor skill evaluation.

EasySketch is a sketch-based educational interface that (1) determines children’s

fine motor skills based on their drawing skills and (2) assists children how to draw

basic shapes such as alphabet letters or numbers based on their learning progress.

When we evaluated our interface with children, our interface determined children’s

fine motor skills more accurately than the conventional methodology by f-measures

of 0.907 and 0.744, accordingly. Furthermore, children improved their drawing skills

from our pedagogical feedback.

Finally, we introduce our findings that sketch features (DCR and Polyline Test)

can explain children’s fine motor skill developmental stages. From the sketch feature

distributions per each age group, we found that from age 5 years, they show notable

fine motor skill development.
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1. INTRODUCTION

Children experience a major transition in environments upon entering kinder-

garten. They will have increased interactions with non-family members through

their teachers and classmates. In order to successfully participate in classroom social

and play group learning activities, they need school-readiness [151]. School-readiness

is obtained through skills that support their sense of mastery and confidence or self-

efficacy to engage in classroom activities and school work [153, 154]. Child devel-

opment research has found that self-regulation skills, which are a set of construc-

tive attention and behavioral skills that affect learning not only determine school

readiness [151], but are also needed to complete tasks and goals even in the face of

distractions and competing interests [57]. While self-regulation skills notably include

abilities such as gross and fine motor control, it is fine motor control that plays a

more crucial role for children to master essential basic skills required in the class-

room such as writing and drawing [152]. For example, many children draw shapes in

their kindergarten classes using writing implements such as crayons or pencils that

demand a certain level of proficiency in fine motor skills [153]. Furthermore, children

benefit for enhancing their learning and memory abilities from fine motor skills in

handwriting through integrated sensory modalities such as vision, motor commands,

and kinesthetic feedback [164]. From these advantages, many educational researchers

found evidence that fine motor control abilities predict children’s social, communi-

cation, and studying skills [14, 40, 153]. As a result, children with improved fine

motor skills correspond with improved self-regulation skills that are so important to

the success of their school readiness and future achievement.

Educational psychologists have thus introduced various approaches to assess chil-
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Figure 1.1: Example of a traditional assessment for fine motor skills (“star drawing
test”). It asks a child to draw a star in the space between the two dark lines.

dren’s fine motor abilities for evaluating their self-regulation skills [145, 167]. One

approach developed and validated by Liew et al. involved a battery of assessments

for behavioral self-regulation skills including fine motor control [145]. Several of

these assessments required children tracing basic geometric figures such as stars or

circles with a pencil (e.g. Figure 1.1). One of the assessments has the following

steps [153, 167]:

1. Step 1: Trace a simple geometric shape (e.g., star, circle) without being pro-

vided additional instruction that may slow or inhibit their sketch.

2. Step 2: Draw that shape as quickly as possible.

3. Step 3: Draw that shape as slowly as possible.

From these steps, educational psychologists assess children’s fine motor skills from

their sketches through metrics that first calculate the time difference between slow

drawing (Step 3) and normal drawing (Step 1). After that, the metrics count the
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number of times a child’s pen crosses outside or inside the tracing lines from fast

drawing (Step 2) [153]. From these assessments, Liew et al. later found a posi-

tive correlation with self-regulation skills like fine motor control and academic out-

comes [152, 153]. However, the limitation of these assessments is that researchers

need to manually log children’s drawing durations and drawing errors (i.e., the num-

ber of times that the user accidentally traced outside the figure outlines) in order to

measure children’s fine motor skills. This activity is also time-consuming to educa-

tional psychologists and prone to error due to their individual bias from their manual

measurements [143, 156]. Another major drawback is that the assessment does not

analyze children’s sketches, but instead only measures their drawing durations. As

a result, regardless of their sketching skills, if the child’s drawing time difference is

higher than a specific threshold, the assessments determine the child’s fine motor

skill as “mature”. Finally, as Dennis [56] discussed, high deviations from the draw-

ing time difference exist even in the same age group. Therefore, it is challenging for

setting optimal threshold of the drawing time difference that can reliably determine

children’s fine motor skills.

In order to overcome the limitations of existing educational psychological re-

search approaches, sketch-recognition technology can be a solution. Furthermore,

sketch recognition technology is able to offer more detailed, accurate, and imme-

diate drawing skill information than the paper-based assessments such as drawing

time or curvature difference. Because more and more children already exhibit grow-

ing familiarity with manipulating tablet computing devices [126], and so applica-

tions (e.g., [25, 88, 258]) on these devices that aim to teach children how to sketch

through interesting feedback and instructions and accompanying sounds and ani-

mations. However, the applications are rarely informed by theories and research in

child development and learning, and also include overly simplistic fine motor skill
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exercises incorporating limited binary feedback (i.e., either correct or incorrect) on

children’s drawing. As a result, there was no research that validates and facilitates

conventional approach to assess children’s fine motor skills on tablet computer.

In this research, we introduce our fine motor skill classifying framework that

determines children’s fine motor skills on their digital drawings. The framework

includes two fine motor skill classifiers and a sketch-based educational interface.

1.1 KimCHI and KimCHI2: Fine Motor Skill Classifiers

To solve the limitations of the current paper-based fine motor skill assessments,

we implemented two fine motor skill classifiers (KimCHI [141, 142, 143, 144] and Kim-

CHI2). The KimCHI (Kim Computer Human Interaction) classifier determines chil-

dren’s fine motor skills based on their overall drawing skills. On the other hand, the

KimCHI2 classifier determines children’s fine motor skills based on their curvature-

and corner-drawing skills. To implement the fine motor skill classifiers, we gener-

ated 130 sketch features proposed by Cali [94], Hse [131], Long [155], Paulson [177],

and Rubine [215]. From the sketch features, we analyzed how children are drawing.

For example, Direction Change Ratio (DCR) [143, 177] sketch feature can measure

whether they can draw curvatures smoothly.

To implement the KimCHI classifier, we first asked twenty children (i.e. preschool-

ers ages 3-4 years and grade-schoolers ages 7-8 years) and four adults to draw alpha-

bet A-F and digits 0-9, and collected a total of 725 digital sketches. After generating

the 130 sketch features [94, 131, 155, 177, 215], we applied subset selection to find

the best features to determine their age and gender information. From the subset

selection, we found that (1) curvature-related features (e.g. DCR [143, 177]) were

selected for determining their age information and (2) density (e.g. Stroke den-

sity [54, 143, 177]) and curvature related features were selected for determining their
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gender information. In terms of age information, when we evaluated the selected

features with Random Forest + Bagging classifier, the KimCHI classifier was able

to determine non-mature group (preschoolers) vs. mature group (grade-schoolers +

adults) with a precision of 0.909, recall of 0.909, p-value of 0.001, and an f-measure

of 0.904 with 10-fold cross-validation. In terms of gender information, when we eval-

uated the selected features with Bayes Net classifier, the KimCHI classifier was able

to determine grade-schooler’s gender information with a precision of 0.757, recall of

0.73, p-value of 0.001, and an f-measure of 0.728 with 10-fold cross-validation.

As Crosser [50] explained, older children have better dexterity and fine motor

skills. We hypothesized that older children will draw curvatures and corners better

than young children, and we would be able to determine their fine motor skills based

on their curvature- and corner-drawings. To implement the KimCHI2 classifier that

determines children’s fine motor skills based on their curvature- and corner-drawings,

we collected 852 digital drawings from 75 child participants including 44 preschoolers

(aged 3-4 years) and 31 grade-schoolers (aged 5-8 years). For curvature-drawings,

we asked the child participants to draw the letter ‘C’, ‘circle’, and ‘curve’. For

corner-drawings, we asked the child participants to draw the letter ‘A’, ‘triangle’,

‘rectangle’, and ‘square’. After generating 131 sketch features [94, 131, 155, 177, 215,

271], we found that curvature-related sketch features such as Direction Change Ratio

(DCR) [143, 177] were selected for determining children’s curvature-drawing skills

and line drawing-related sketch features such as Polyline Test [177] were selected

for classifying corner-drawing skills. Using those selected features, we were able to

classify children’s (1) curvature-drawing skills with a precision of 0.82, recall of 0.82,

and an f-measure of 0.82 with 10-fold cross-validation with Random Forest and (2)

corner-drawing skills with a precision of 0.78, recall of 0.765, and an f-measure of

0.766 with 10-fold cross-validation with BayesNet.
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1.2 EasySketch: A Sketch-based Educational Interface

After we implemented the fine motor skill classifiers, we designed and devel-

oped a sketch-based educational interface, EasySketch. The interface (1) determines

children’s fine motor skills based on their drawing skills using the KimCHI classi-

fier [141, 142, 143, 144] and (2) assists children how to draw basic shapes (e.g. digits

1-3 and alphabet letter A-C) based on their learning progress by recognizing their

shape drawing correctness from the the Valentine recognizer [86, 250], a modification

of Stahovich’s Hausdorff recognizer [136] and their sketch-gesture correctness from

our sketch-gesture correctness recognizer. We evaluated our interface with 89 chil-

dren. To evaluate if our interface can determine children’s fine motor skills better

than conventional approaches, we evaluated both our interface and the conventional

approach (i.e. “star drawing test”) (Figure 1.1) with 70 child participants. As

a result, we found that our interface determined children’s fine motor skills more

accurately than the conventional methodology by f-measures of 0.907 and 0.744, ac-

cordingly. Furthermore, children improved their drawing skills from our pedagogical

feedback.

1.3 Contributions

The contribution of our work include the following:

1.3.1 KimCHI: A Fine Motor Skill Classifier Based on Overall Drawing Skills

1. We implemented the fine motor skill classifier that determines children’s overall

drawing skills.

2. We found that curvature-related sketch features such as Direction Change Ratio

can determine children’s age (fine motor skill) information.

3. We found that density- and curvature-related sketch features can determine
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children’s gender (fine motor skill) information.

4. We found that older children are able to draw curvatures better than younger

children, and girls’ curvature-drawing skills are better than boys. We also

observed that girls are drawing more considerably than boys.

1.3.2 KimCHI2: A Fine Motor Skill Classifier Based on Curvature- and

Corner-Drawing Skills

1. We implemented fine motor skill classifiers that determine children’s curvature-

and corner-drawing skills.

2. We found that curvature-related sketch features such as Direction Change Ratio

can determine children’s curvature-drawing skills.

3. We found that line drawing-related sketch features such as Polyline Test can

determine children’s corner-drawing skills.

4. We evaluated the both KimCHI2 and KimCHI [143] classifiers, and found that

the KimCHI2 classifier can determine children’s curvature- and corner-drawing

skills more accurately than the KimCHI classifier.

5. We validated that sketch features (Direction Change Ratio [143, 177] and Poly-

line Test [177]) can explain children’s fine motor skill development stages. From

the feature value distributions, we found that from age 5 years, they show no-

table fine motor skill development than younger children (i.e. 3-4 years).

1.3.3 EasySketch: A Sketch-based Educational Interface

1. We employed the fine motor skill classifier (i.e., the KimCHI classifier [143]),

which not only automatically determines children’s fine motor skills for analyz-
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ing “how they drew,” but also does not require researchers’ manual measure-

ments. The interface also benefits parents and teachers for becoming better

informed of their children’s fine motor skill levels. We implemented our fine

motor skill feedback system to provide richer information of fine motor skills in

three different areas (i.e., overall drawing, curved shapes, linear shapes), and

adults can use this information to assist children in determining areas that they

perform well and that require improvement.

2. We implemented a developmentally-appropriate interface that is capable of

individualized instructions and feedback, based on children’s performance and

progress while they learn to draw basic shapes such as alphabet letters and

numbers. From our evaluation, we discovered that children improved their

drawing skills through our interface’s pedagogical feedback.

3. We evaluated both our interface and conventional methodology (i.e., “star

drawing test”) (Figure 1.1) with children between the ages of 3 and 8 years.

We found that our interface can determine children’s fine motor skills more

accurately than the conventional methodology by f-measures of 0.95 and 0.75,

accordingly.

4. During our user study, we noticed that children ages from 5 years show notable

fine motor skill development than younger children (i.e. 3 and 4 years) both

on fine motor skill results from our interface and “star drawing test”. We

also found that “hook” feature in drawings can explain their decision-making

process.
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1.4 Contribution Summary

To make our contributions more clear, we summarized the contributions as fol-

lows:

1. We have the world largest young children’s pen-based digital drawing set (109

children with 2,258 digital sketch), and the first dataset containing pen data for

children 3-8. There exist pen-based datasets [138, 178], but none with small

children. Likewise, there exist published research works that include young

children’s drawings [7, 256], however, their study sets include only touch-based

finger drawings.

2. We implemented a method to automatically classify children’s fine motor skills

(age and gender) information with sketch features.

3. We evaluated our computer-based fine motor skill assessment (i.e. EasySketch)

with the paper-based assessment (i.e. “star drawing test” [153, 167]), and we

validated that the computer-based assessment can classify children’s fine motor

skills more accurately than the paper-based assessment.

4. During the user study, we showed that how interface affects children’s draw-

ing learning. After following the pedagogical system in EasySketch, the child

participants improved their drawing skills.
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2. RELATED WORK

There are many child-computer interaction (CCI) researchers [1, 2, 3, 19, 20, 23,

34, 35, 41, 45, 49, 55, 77, 87, 99, 101, 124, 130, 132, 133, 135, 158, 159, 160, 163,

185, 214, 216, 217, 222, 226, 246, 247, 249, 267, 276]. Anthony [4, 5, 8, 9, 12, 13] and

Brown [37, 38, 39] examined children’s sketches on touch-screen. Bonsignore [27,

28, 29, 30, 31, 32, 33] and Druin [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76], Fails [79, 80, 81, 82, 83, 84, 85], Guha [103, 104, 105, 106, 107],

Subramaniam [230, 231, 232, 233], Walsh [260, 261, 262, 263, 264, 265], and Yip [279,

280]’s studies described children’s role in participatory design and systems using

storytelling. Dray [59, 60] described design for women. Read [190, 191, 193, 194,

195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,

212, 213], Fitton [89, 90, 91, 92, 93], Horton [127, 128, 129], Mcknight [161, 162],

Sim [223, 224, 225, 227, 228], and Xu [277, 278]’s works include many studies about

UX for children. Foss examined children’s search behaviors [95, 96, 97, 98]. Vatavu

explained children’s fine motor skill on touch-screen [254, 256]. The CCI researchers’

common opinion is that children are not “just short adults” but entirely different user

populations with their own culture [22]. To know the difference between children and

adults, we will review the research from educational psychologists that describes the

cognitive and physical factor differences between children and adults. After that, we

will discuss the related work of children’s touch and sketch gesture interaction and

relevant children’s sketch applications. Finally, we will review the sketch recognition

algorithms.
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2.1 Children’s Cognitive and Physical Factors

Children’s cognitive and physical factors are widely studied in the fields of devel-

opmental and educational psychology, since these two factors contribute significantly

to children’s school readiness [57, 145, 153]. Piaget’s Stages of Cognitive Develop-

ment explain how children’s understanding progresses from infancy to adolescence

(Figure 2.1). According to Piaget, there are four stages of cognitive development

in children: the sensory motor (from birth to 2 years), preoperational (2-7 years),

concrete operational (7-11 years), and formal operational (adolescence through adult-

hood). From their cognitive development, children’s own sensory and motor expe-

riences contribute to their intellectual functioning1. The acts of sketching, drawing,

and writing provide concrete experiences and engagements to construct and repre-

sent children’s knowledge and mental states [164]. As Crosser2 explained, children

are developing their sketching (fine motor) skills and knowledge while they are grow-

ing. Children around 18 months first draw by scribbling as they have small muscle

coordination and control. Around age 2-3 years, the scribble forms enclosures re-

sembling primitive shapes such as circles or squares [140]. Around age 3-4 years,

children attempt to make realistic drawing (e.g. draw a person).

To explore cognitive and physical factors, educational psychologists assess gross

and fine motor skills. Dennis [56] introduced a gross motor skill test (“Walk-a-Line

Slowly” test) that asks a child to walk along a line taped on the floor at regular speed

and twice slowly. From the score of the average of the two slow trials, the test can

assess the child’s gross motor and self-regulation skills. The NEPSY test [146, 268]

includes another fine motor skill test that asks a child to tap the thumb with the

index finger 32 times in a row, as quickly as possible. Low values indicate better

1http://www.education.com/reference/article/importance-motor-skills
2http://www. earlychildhoodnews.com/earlychildhood/article view. aspx
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Figure 2.1: Piaget’s Stage of Cognitive Development [180, 182, 266]

dexterity. Virginia school health guideline3 is assessing preschoolers’ fine motor skills

by sketch-correctness. The assessment requires children to copy a circle and make

predominantly circular lines. However, the problems of these assessments are that:

(1) they require researchers’ manual efforts for assessments and (2) they prone to

error due to their individual bias from their own manual measurements (e.g. each

researcher could have different opinion that decides whether child’s circle draw is

predominantly circular lines).

2.2 Children’s Touch and Sketch Gesture Interactions

To analyze touch and sketch gesture interactions, previous works have examined

the usability of interactions on touch- and sketch-enabled devices [21, 257, 259]. How-

ever, most of the researchers discussed adults’ interaction results without considering

children’s interactions. Read [192] and Ryall [218] discussed children’s touch gesture

interactions on tablets. However, the findings have been general conclusion rather

than comparison between adults and children. There are a few researchers [7, 255]

that examined touch- and sketch-gesture interactions of children and adults together,

3http://www.doe.virginia.gov/support/health_medical/virginia_school_health_

guidelines/early_periodic_screening.pdf
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Figure 2.2: Anthony et al. had a user study that asks each participant to touch four
different sized targets: (a) very small, (b) small, (c) medium, and (d) large. During
the studies, all four target sizes were represented equally [7].

but it still needs more research in this area.

Anthony et al. conducted touch- and surface-gesture interaction studies with a

total of 74 participants: 44 children (age 6-17) and 30 adults (age 18-30) [7]. To

find the touch skills of participants, they implemented an Android app that shows

four different sized targets: very small (0.125”), small (0.25”), medium (0.375”), and

large (0.5”). Each participant was asked to touch the targets on screen by fingers.

They found that most of the participants missed targets that are small, and young

children (age 7-10) missed more targets than older children and adults (Figure 2.2).

This result shows that young children have less touch skills (fine motor skill) than

older people.

To find the sketching skill (fine motor skill) of participants and to know which

sketch recognizer performs better, they conducted a user study that analyzes sketch

recognition accuracy on touch-enabled devices. They asked the participants to draw

a set of 20 gestures such as alphabets or digits by fingers on touch-enabled devices

(Figure 2.3). To analyze which sketch recognizer performs better, they tested three
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Figure 2.3: Anthony et al. conducted two studies to analyze sketch recognition
accuracy on touch-enabled devices. From study 1, the interface has a small “done”
button: (a) before drawing the gesture and (b) after drawing the gesture. From
study 2, the interface has a larger “done” button: (a) before drawing the gesture
and (b) after drawing the gesture [7].

Figure 2.4: Anthony et al. compared the sketch recognition performance of three
different sketch-recognizers($N-Protractor [11], $P [255], and Microsoft Tablet PC
recognizer) with user-dependent and user-independent mode. They found that user-
dependent $P is the best performer but still performs low (84% for young children)
[7].
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different recognizers ($N-Protractor [11], $P [255], and Microsoft Tablet PC recog-

nizer). From the user study, they found that $P recognizer performs better than

other recognizers, but the recognizer still performs low (84%) accuracy for young

children (Figure 2.4). As a result, Anthony et al. concluded that young children

(age 6-10 years) have less sketching skills (fine motor skills) than older children and

adults. Furthermore, they insisted that we need to develop sketch recognizers for

young children to allow them to manipulate touch-devices easily. However, the lim-

itation of this research is that: (1) they are missing younger children (less than age

6 years), who are diligent IT consumers and need to improve their fine motor skills

to prepare for kindergarten and (2) the research analyzed touch-interaction using

fingers not sketch-interaction using pens. Because there are many study materials

that use pens in kindergarten and we already have many sketch-enabled devices,

there is a need to analyze children’s sketch-interactions on sketch-enabled devices.

To acknowledge children’s (including younger children whose ages are under than

6) sketching skills, our research investigated the pen-based interactions on sketch-

enabled device [141, 142, 143, 144].

2.3 Children’s Sketch-based Educational Applications

As touch- and sketch-based interactions become more commonplace, interactive

technologies such as surface computing or natural gesture interfaces will enable new

means of motivating and engaging students in active learning in next-generation

classroom and educational environments [7]. Major challenges in developing appli-

cations for children include appealing to children’s interests because children tend to

lose focus more easily than adults, and making the application more age-appropriate

so that children do not frustrate by the difficulty of the application or by its simplic-

ity [143]. To meet these requirements, designs need to have strong consideration in
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Figure 2.5: The application includes a sketch-recognizer that can determine children’s
drawing correctness: (top) the application asks children to draw simple shapes with
text, and children can draw the shapes on the sketch-panel and (bottom) after chil-
dren draw the shape, the application determines the correctness of the shapes [173].

developing both engaging features and compelling contents.

One of the example works is Learn Your Shape Game [173]. The application in-

cludes study materials that ask children to draw simple shapes such as circle or line

on sketch-enabled devices, and the application determines if the drawing is correct or

incorrect (Figure 2.5). However, the limitation of this work is that it provides sim-

plistic static binary feedback (correct or incorrect). If the children already know how

to draw the shapes, the study material would be too simple for the children. As a

result, the children may lose interest. On the other hand, if the children do not know

how to draw the shapes, the application could be too complex for the children. As

the application does not guide how to draw the shapes, but only returns correctness

of their drawings, they could feel frustrate. To address the limitation of the previous

application and encourage children to draw the shapes, TAYouKi [258] includes an
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Figure 2.6: This application includes an agent system that changes emotion according
to the history of children’s drawing correctness. The left panel has a question and
a sample shapes. When children finish their drawings, the agent system runs a
sketch-recognizer and returns feedback [258]

agent system that emulates emotions based on the correctness of their drawings (Fig-

ure 2.6). The cartoon-style face changes the emotion by the user’s sketch correctness

history with supplementary text and sound feedback. However, the limitations of

these two applications are that they are using adult-trained sketch recognizers, and

they perform worse for children. Furthermore, the applications do not guide chil-

dren to make correct shape drawings, but only determine the correctness of their

drawings.

There are many sketch-apps on touch-based devices run on iOS or Android. The

apps provide learning materials to help preschoolers to develop their fine motor

skills through drawing. These applications can help the preschoolers’ readiness for

kindergarten. One of the examples is “Create & Learn” by Fisher-Price, which runs

on iOS. The application provides a sketchpad, which looks like a sketch board, and

children can follow the instructions to draw alphabets.

Another example is “Dexteria Jr. and Dexteria” by BinaryLabs [24, 25]. From
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Figure 2.7: An example of “Dexteria Jr.”. The app shows a mirror and children can 
follow the mirror to find a “star” reprinted with permission from[25].

Figure 2.8: An example of “Dexteria”. The app shows instructions on how to draw 
the letter “P”, and children can follow the instructions to draw the shape reprinted 
with permission from[24].
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the application, children can practice fine motor skills by drawing.

Finally, “PBS Parents Play & Learn” [179] provides many useful learning mate-

rials that includes simple mathematical examples and drawing examples. Children

can follow instructions to draw alphabets. The application also supports drawing

directions to teach children draw shapes with correct orders.

As a result, these applications provide activities that encourage children to en-

hance their fine motor skills by drawing. The applications also include many inter-

esting animations to encourage children to enjoy drawing. We can hope that these

practices actually enhance children’s fine motor skills. Unfortunately, these applica-

tions do not recognize children’s fine motor skill levels automatically, but only have

simple fine motor skill activities, which cannot describe whether preschoolers’ fine

motor skills reached more matured level like those of grade-schoolers. To recognize

children’s fine motor skills, our sketch-based educational interface (EasySketch) in-

cludes the fine motor skill classifier [143] that determines sketchers’ fine motor skills

as “mature” or “in training” from shape drawings by digital pen.

Another deficiency of these related applications is that they have limited binary

feedback that only checks whether their traces are correct or incorrect. As a result,

the applications cannot tell what “shape” the children drew. To teach children how

to draw digits/letters better, our interface (EasySketch) has a shape recognizer [250]

that can recognize the children’s shape drawings. Furthermore, the interface has a

sketch-gesture recognizer to acknowledge the children’s shape drawing gesture cor-

rectness and give feedback that can lead children to draw shapes correctly.

2.4 Sketch Recognition

Sketch recognition is the development and application of machine learning and

artificial intelligence techniques to recognize hand drawn strokes [120, 183, 184].
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Methods tend to be grouped either by the type of features examined or the type of

algorithm used process those features [111]. The types of features include (a) vision

based, focusing on the ink on the page [186, 187], (b) geometric features, which focus

on the shapes created and the constraints between them [119], or (c) gesture based

features, looking the path of the stroke that the hand makes while laying down the

ink [46, 47, 78, 157, 221]. Algorithmic approaches include: (1) the geometric-based

approaches, creating a graphical model to represent higher level shapes [238], (2) the

template-matching approaches, which match one shape to another [123], and (3) the

statistical feature-based approaches that send the bin of features to a SVN, linear,

quadratic, decision-tree, or other classifier. Several researchers have also chosen to

combine approaches to improve recognition accuracy or include the ability recognize

more shapes [48, 121].

The geometric-based approach first segments the strokes and attempts to recog-

nize primitives, such as circles and lines among the sketch. It then examines how

the shapes combine together looking for certain constraints to be fulfilled in order

for higher level shapes to be recognized. An early approach is the LADDER system

by Hammond et al. [110, 117]. The strength of the geometric approach is that it can

enlarge recognizable shapes by representing more rules of primitives in each shape,

and can differentiate hundreds of shapes without needing more than a single training

example for each shape. However, the approaches need to have accurate rules for

representing primitives in shapes, which can be difficult for non-mathematical minds.

The template-matching approach compares the input data with data sets, which

we already have, picking the closest match. The approach recognizes the best

matched shapes for the input data. To compare each shape, the approach calcu-

lates the distances between input shape and the shapes in the data sets. There are

many researchers who developed their algorithms with this approach. The examples
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are: (1) the elastic structure matching, which uses dynamic programming [42], (2) $1

and $N recognizer by Wobbrock et al. [10, 269], and (3) the vision-based recognizer

by Kara et al. [136].

Our EasySketch uses a shape recognizer (the Valentine recognizer [250]) that

is based on a template matching algorithm that uses vision-based features. The

benefit of the template approach is that the approach does not need to represent

rules of primitives in shapes. However, the template-matching approach needs many

examples of each shape for comparison, which can be quite slow when there are many

shapes and variations.

The statistical feature-based approach which simply applies any computed values

into a numerical classifier and uses the mean and standard deviation of each class, or

another statistical measure to classify each shape. Gesture based feature recognizers

include Long [155], Paulson [176, 177], and Rubine [215]. Usually, the sketch features

are used for determining user’s drawn shape. However, we used the sketch features

to decide children’s fine motor skills by analyzing “how they drew”.

The following sections describe in more details about these three feature types

and three algorithm approaches.

2.4.1 Review of Gesture-based Recognition

Gesture based features rely on the path of the stroke, rather than the ink on the

page.

2.4.1.1 Freeman’s chain code

Freeman’s chain code uses direction of each line as a feature. Freeman’s chain

code is a widely used algorithm for representing shapes [100]. For example, Chan

et al. used the chain code for their elastic structural matching algorithm [42, 43].

The chain code has eight values from 0 to 7, which indicates the direction from the
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Figure 2.9: Directions in Freeman’s chain code [100].

current point to the next point.

Figure 2.9 shows how the direction values are expressed in Freeman’s chain code.

The following formula describes the calculation of direction.

Using the directions, Chan et al. [42] described five types of primitives:

• line

• up (curve going counter clockwise)

• down (curve going clockwise)

• loop (curve joining itself at some point)

• dot ( a very short segment)

Figure 2.10 represents the example of the digit “3”, and the letter has two down

primitives.

However, the limitation of this approach is that it is not free from the variances

of each shape.
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Figure 2.10: An example of directions in Freeman’s chain code [42].

2.4.1.2 Rubine and Long

Statistical feature-based approach retrieves sketch features from strokes and rec-

ognizes users’ drawn shapes by running classifiers such as Bayes Net. In this ap-

proach, feature sets play an important role for classifying sketches. As a result, this

approach recognizes shapes by analyzing “how they were drawn”.

Rubine [215] introduced one of the first gesture recognition system, GRANDMA

(Gesture Recognizers Automated in a Novel Direct Manipulation Architecture). Ru-

bine proposed thirteen features such as cosine or sine values between two points

for accurately classifying simple gestures such as ellipse or dot. Long et al. [155]

extended Rubine’s work by introducing nine new features and proposed a more op-

timized feature set consisting of seventeen features (i.e., eleven and six from Rubine

and Long, respectively) (Table 2.1).
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1.? Cosine of initial angle 2.? Sine of initial angle

3. Size of bounding box 4.? Angle of bounding box

5.? Distance between first and last points
6.? Cosine of angle between
first and last points

7.? Sine of angle between first and last points 8. Total length

9.? Total angle 10.? Total absolute angle

11.? Sharpness 12.? Aspect [abs(45◦ - #4)]

13.? Curviness 14. Total angle traversed / total length

15.? Density metric 1 [#8 / #5] 16.? Density metric 2 [#8 / #3]

17.? Non-subjective “openness” [#5 / #3] 18. Area of bounding box

19. Log(area) 20. Total angle / total absolute angle

21.? Log(total length) 22.? Log(aspect)

Table 2.1: Features examined by Long et al. [155]. The features with ? are those
chosen as the optimal subset through feature subset selection for their model, and
features 1-11 are taken from Rubine’s work [215]

2.4.2 Review of Geometric-based Recognition

Geometric based recognition algorithms use the mathematical principle of the

shapes to recognize the primitives drawn on the page. To help with this, strokes

are segmented using corner-finding algorithms [273]. The shapes are then combined

together to find higher level shapes.

2.4.2.1 LADDER Sketching Language

Hammond et al. implemented LADDER sketching language, which describes “A

Language to Describe, Display, and Editing in Sketch Recognition (LADDER) [109,

112, 113, 114, 115, 116, 117, 118, 122]. LADDER describes how sketch diagrams for

various domains are drawn, displayed, and edited.

To recognize user’s input data, geometric methods such as LADDER, first break

strokes at the corners using various segmenting approaches. Then the geometric

algorithms, such as LADDER, recognize the substrokes or combinations therein as

geometric primitives using the geometric mathematical definitions for each of the
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Figure 2.11: A shape description for the Chinese character ten [234].

shapes [171, 174, 176, 177]. The primitives are often used on their own in simple

sketch-based applications applications [51, 52].

After recognizing the primitives, the geometric algorithm will recognize higher

level shapes together by examining the constraints between the shapes and comparing

them to geometric and perceptual rules [53, 58].

There are many applications that use LADDER for their recognition system.

For example, the Mechanix system [15, 16, 86, 102, 139, 150, 170, 250, 251, 253]

recognizes geometric shapes by LADDER system. Taele et al. [234, 235, 236, 237,

239, 240, 241, 242, 243, 244, 245] also introduced many educational systems built in

LADDER for their recognition algorithms. For example, Taele [234] introduced an

educational system for teaching how to draw East Asian character sets. The system

teaches how to draw the characters by representing geometrical constrains per each
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character.

Figure 2.11 explains the Chinese character “ten”. The components field explains

that the character ten should have two lines: a horizontal line and a vertical line.

The constraints and aliases fields explain the geometric rules for the two lines.

2.4.3 Review of Template-Matching Recognition

This section explains various gesture-based template-matching recognition ap-

proaches.

2.4.3.1 $1 and $N recognizer

Wobbrock developed many gesture-based template-matching algorithms [11, 166,

255, 269] to recognize shapes. The examples are the $1 recognizer (for one-stroke

shapes) [269] and the $N recognizer (for multi-strokes shapes) [10]. The $1 recognizer

has preprocessing steps for the raw data. The raw data has several issues as follows:

• The number of points can be different by writing speed ratio and devices used.

• The users can have different experiences with the devices.

To alleviate the problems, the preprocessing steps in $1 and $N recognizer have

the following four steps: (1) resampling points, (2) rotating once based on the “in-

dicative angle”, (3) scaling and translate, and (4) finding optimal angle for the best

score [269].

The problem of the multi-strokes is that it can have various kinds of stroke orders

by people. Figure 2.12 is one of the examples of multi-strokes. The “X” has two

strokes and each stroke has two end points. To compare the shapes, the $N recognizer

translates the multi-stroke shape into the one-stroke shape (Figure 2.13).
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Figure 2.12: There are 8 possibilities for a two-stroke “x”. The numbered dots mean
the stroke order [10].

Figure 2.13: Based on the two-stroke gestures in Figure 2.12, it makes 8 uni-stroke
permutations for a two-stroke “x” [10].

2.4.3.2 Review of Vision-based Features

Kara [136], Ray [189], and Valentine [86, 250] introduced algorithms that use the

vision (image)-based recognition. The main idea of the features only use the ink on

the page, and not any timing data. When working with stroke data, an algorithm

using the vision-based features first converts the shapes into fixed pixel (Figure 2.14).

The Kara and Valentine recognizers are both template-based algorithms, which
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Figure 2.14: The Kara algorithm converts the shapes into fixed pixel. Left: a me-
chanical pivot: middle: “a”, right: “8” [136].

compare the new shape to previously classified shapes. The algorithms translate

both the new and template shapes into a 40×40 (48×48 for Kara’s recognizer [136])

bounding window to ensure both shapes are approximately the same size. Subse-

quently, the Valentine algorithm, used in this work, resamples the points in both

shapes so each is made up of 40 equidistant points [252]. After preprocessing, the

recognizer considers each point in each shape – 40 equidistant points from both

shapes for a total of 80 points – and then records the distance from that point to the

closest point in the other shape. From these shortest distances, it calculates three

similarity metrics: the maximum of the distances (i.e., the Hausdorff distance), the

average of the distances (i.e., a modified Hausdorff distance), and the ratio of points

with shortest distances less than 4 pixels over the total number of points (i.e., the

Tanimoto coefficient) [86, 136, 137, 252, 272]. The recognizer normalizes the dis-

tances to a value between 0 and 1, and then the three measures are averaged to form

the final similarity confidence value. If that confidence value is above its empirically

defined threshold of 0.65, the two shapes are deemed similar [86, 136, 252]. This

error value for template matching can then be used also as an input feature for a

statistical classifier in combination with other features.
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Our EasySketch system employs the modified Valentine recognizer [250] for our

shape recognizer. As we found that Tanimoto coefficient itself gave the best ac-

curacy [141], we only employed Tanimoto coefficient for our measurement. The

Tanimoto coefficient calculates similarity between two images. The equation is:

T (A,B) =
nab

na+nb-nab

(2.1)

where na is the total number of black pixels in A, nb is the total number of black

pixel in B, and nab is the number of overlapping black pixels in A and B. T(A,B)

describes the number of matching points in A and B, and the result is between 0.0

(minimum similarity) to 1.0 (highest similarity). The problem of this equation is

that if images contain mostly black pixels, the T(A,B) value can be vanished.

To solve the problem, the following equation is used:

T c(A,B) =
noo

na+nb-2 nab+noo

(2.2)

where noo is the number of matching white pixels.

The two equations can be combined to form the Tanimoto similarity coefficient.

Tsr(A,B) = αT (A,B) + (1− α)T c(A,B) (2.3)

α is a weighting factor between 0.0 and 1.0.

2.4.4 Review of Statistical Feature-based Recognition

Any of the methods can produce features that can then be placed in a numerical

classifier.

This section explains various statistical feature-based recognition approaches.
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2.4.4.1 Paulson

Paulson et al. [177] introduced a hybrid approach that first proposes a larger set

of forty-four features: thirteen gesture-based features from Rubine [215] and thirty-

three new geometric-based features. Paulson et al. proceeded a user study with

1,800 examples to determine the optimal features from the proposed set to classify

basic geometric shapes (e.g., lines, helixes), and subsequently discovered an optimal

set consisting of fifteen features (i.e., fourteen geometric- and one gesture-based).

Table 2.2 explains the feature sets used, where the features with ? indicate the

optimal feature set through feature subset selection for primitive shape recognition.

2

As a result, the previous studies [155, 176, 177, 215] focused on generating opti-

mized feature sets for recognizing user’s drawn shape by analyzing “how the strokes

were drawn” from calculated sketch features. Our research differs from Paulson in

that we suggest a larger set of 130 features [94, 131, 155, 177] for analyzing sketches

that help determine the sketcher’s developmental stage, with the intent of eventually

providing educators with a tool for gauging children’s developmental progress. The

following section will explain our fine motor skill classifier implementation proce-

dures.

2.4.5 Extended Uses of Sketch Recognition Methods

This work shows how pen sketch data can give insight into the level of develop-

ment of fine motor skills of young children. Others have used sketch data to find out

the unexpected with the sketch data or sketch recognition algorithms.

Paulson et al. showed that using sketch recognition methods, he was able to

recognize what objects people in an office were interacting with by the shape of

their hands [172, 175]. Other work used sketch recognition features and techniques
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1.? Endpoint to stroke length ratio (100%) 2.? NDDE (90%)

3.? DCR (90%) 4. Slope of the direction graph (20%)

5. Maximum curvature (40%) 6. Average curvature (30%)

7. # of corners (30%) 8. Line least squares error (0%)

9. Line feature area error (40%) 10. Arc fit: radius estimate (0%)

11. Arc feature area error (20%) 12.? Curve least squares error (90%)

13.? Polyline fit: # of sub-strokes (70%) 14.? Polyline fit: percent of sub-strokes
pass line test (50%)

15.? Polyline feature area error (80%) 16. Polyline least squares error (30%)

17. Ellipse fit: major axis length 18. Ellipse fit: minor axis length
estimate (20%) estimate (30%)

19. Ellipse feature area error (10%) 20. Circle fit: radius estimate (30%)
21.? Circle fit: major axis to
minor axis ratio (80%)

22. Circle feature area error (0%)

23.? Spiral fit: avg. radius/bounding
24.? Spiral fit: center
closeness error (70%)

box radius ratio (60%)

25. Spiral fit: max distance between
26. Spiral fit: average
radius estimate (10%)

consecutive centers (20%)
27. Spiral fit: radius test passed
(1.0 or 0.0) (40%)

28.? Complex fit: # of sub-fits (60%)

29.? Complex fit: # of non-polyline
primitives (50%)

30.? Complex fit: percent of sub-fits

that are lines (90%)

31.? Complex score / rank (50%) 32. Cosine of the starting angle (30%)

33. Sine of the starting angle (10%)
34. Length of bounding
box diagonal (20%)

35. Angle of the bounding
box diagonal (40%)

36. Distance between endpoints (10%)

37. Cosine of angle between endpoints (0%)
38. Sine of angle between
endpoints (10%)

39. Total stroke length (20%) 40.? Total rotation (100%)

41. Absolute rotation (10%) 42. Rotation squared (10%)

43. Maximum speed (20%) 44. Total time (30%)

Table 2.2: Features examined by [177]. The features with ? are those chosen as
the optimal subset through feature subset selection for primitive shape recognition.
Percentage values indicate how often a feature was chosen as optimal through various
folds of subset selection when attempting to recognize single-stroke shapes.
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to recognize three-dimensional hand and body movements [18, 181, 188] and even

musical instruments [165]. Li recognized what people were sketching by sound alone

using inspiration for corner recognition methods [148, 149].
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3. FINE MOTOR SKILL CLASSIFIER FOR OVERALL DRAWING SKILLS

(KIMCHI)∗

In this section, we will explain the implementation of the KimCHI (Kim Com-

puter Human Interaction) classifier. The KimCHI classifier determines children’s age

and gender information based on their overall drawing skills (fine motor skills).

3.1 Research Question

Prior to designing the methodology of our user study, we were very interested in

first defining research questions that appropriately guided the direction of the study.

We therefore were particularly interested in investigating the following four specific

research questions.

1. Can the sketch features classify children’s age (fine motor skill) information?

If it is, which sketch features can determine the information?

2. If there are fine motor skill differences between age group, what are the differ-

ences?

3. Can the sketch features classify children’s gender (fine motor skill) information?

If it is, which sketch features can determine the information?

4. If there are fine motor skill differences between gender group, what are the

differences?

∗Reprinted with permission from “KimCHI: a sketch-based developmental skill classifier to
enhance pen-driven educational interfaces for children” by Kim et al., 2013. Proceedings of the
International Symposium on Sketch-Based Interfaces and Modeling, Expressive 2013 - The Joint
Symposium on Computational Aesthetics and Sketch-Based Interfaces and modeling and Non-Photo
realistic Animation and Rendering, 33-42, Copyright 2013 by ACM.
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Table 3.1: Basic demographics of participants in the user study.

Group Adults 7-8 year-olds 3-4 year-olds Overall

# of volunteers 4 12 8 24

# of sketches 320 227 178 725

3.2 User Study

To implement the fine motor skill classifier, we collected a total of 725 digital

drawings from twenty young children (i.e. 3-4 years and 7-8 years) and four adults

(i.e., engineering graduate students) with a sketch-based interface [142, 143, 144]

(Table 3.1). The child participants were accompanied with their parents to ensure

that the children felt at ease throughout the study. However, the parents did not

provide feedback or instructions on their children’s sketches, since we desired natural

and uncoached sketches for our analysis.

To determine gender differences from digital drawings, we also analyzed sketches

collected from six male and six female grade-schooler participants ages 7-8. We relied

on sketch data from the grade-schooler participants for analyzing gender differences,

since children of that age range have already mastered how to write digits or letters

that are conventionally introduced at the kindergarten level. On the other hand,

preschoolers ages 3-4 demonstrated numerous variations in their domain knowledge,

since many of them did not learn how to draw the shapes from their parents or in

school. Moreover, because there were many personal differences with motor skills

within the preschoolers, we did not analyze the gender differences from this group

(Figure 3.1).

While collecting the sketch data, we asked the adults and grade-schoolers to draw

and then copy each digit (i.e., 0-9) and letter (i.e., A to F). We reduced the testing

size for the preschoolers and only prompted them to draw each digit (i.e., 0-9) and
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Figure 3.1: There were many variations in young children’s domain knowledge (e.g.
Child 1 and 2). However, older children (e.g. Child 3 and 4) knew how to draw the
letter correctly.

letter (i.e., A-D) only once, since we believed that prompting this group again would

cause them to lose interest in the study [125]. All of the participants were also

allowed to draw the shapes naturally without restriction of stroke order.

Hanna et al. suggested that a user test involving children should be limited to

45 minutes [125], and we adhered to the recommendation in our study. All of our

participants completed the study within 20 minutes using a Panasonic Touchbook

and a digital stylus.

3.3 Implementation

This section will explain the process of implementing the KimCHI classifier. The

process includes (1) preprocessing step and (2) sketch feature extraction step.

3.3.1 Preprocessing

During the user study, we collected digital ink data. The data collected digital

ink information of x and y coordinate points and time information. Using the infor-

mation, we first generated basic feature sets such as direction value changes, stroke

length overtime, and total stroke length. Algorithm 1 explains this procedure.
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Algorithm 1 Calculate the stroke direction value overtime, stroke length overtime,
and total stroke length

Input: (1) sketch: the whole strokes on the screen and (2) numberOfPoints:
the number of points in sketch,
Output: (1) directionArray: a stroke direction value overtime, (2) lengthArray:
a stroke length overtime, and (3) totalLength: a total stroke length
for i = 0 ; i < numberOfPoints-1 ; i++ do
directionArray [i] = atan (angle whose tangent) values of X and Y values be-
tween i+1th point and ith point
lengthArray [i] = sqrt (square root) values of X and Y values between i+1th
point and ith point
totalLength += lengthArray [i]

end for

After that, we combined the strokes in their sketch into one stroke, which is

required for extracting our 130 feature sets [94, 131, 155, 177] (Algorithm 2).

3.3.2 Sketch Feature Extraction

As mentioned above, our goal is to determine if sketch features and classifiers

can distinguish demographic data about the developmental level of the sketcher,

including (1) age: between preschool age (age 3-4), school age (age 7-8), and adult,

and (2) gender (within the 7-8 age group). To our knowledge, no researcher has tried

to recognize age (developmental level) and gender via features of sketching style. As

a result, we propose our own approach that recognizes the information. We used

130 sketch features introduced by Cali [94], Hse [131], Long [155], Paulson [177], and

Rubine [215], which are generally used in the sketch recognition field to recognize

shapes.
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Algorithm 2 Combine strokes into one stroke

Input: strokes in sketch
Output: newStroke: a combined stroke
if size of strokes == 1 then

return strokes.get(0)
end if
currentStroke = strokes.get(0)
dist1 = distance between currentStroke.getFirstPoint and
strokes.get(1).getFirstPoint
dist2 = distance between currentStroke.getFirstPoint and
strokes.get(1).getLastPoint
dist3 = distance between currentStroke.getLastPoint and
strokes.get(1).getFirstPoint
dist4 = distance between currentStroke.getLastPoint and
strokes.get(1).getLastPoint
min = minimum values between dist1, dist2, dist3, and dist4
if min == dist1 or dist2 then
newStroke = add currentStroke to the newStroke in reverse order

else
newStroke = add currentStroke to the newStroke

end if
for i = 1 ; i < strokes.size() ; i++ do
currentStroke = strokes.get(i)
dist1 = distance between currentStroke.getFirstPoint and
newStroke.getLastPoint
dist2 = distance between currentStroke.getLastPoint and
newStroke.getLastPoint
if dist1 > dist2 then
newStroke = add currentStroke to the newStroke in reverse order

else
newStroke = add currentStroke to the newStroke

end if
end for
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Table 3.2: Our optimal features for classifying preschoolers vs. grade-schoolers.

Feature

Average curvature of the stroke (100%)
+ Direction change ratio (100%)
+ The error of the best fit line of the direction graph (100%)
+ The maximum curvature to average curvature value (100%)

3.4 Evaluation

3.4.1 Research Question 1: Evaluation of Classifying Age Information

To recognize the children’s developmental progress, we tried to differentiate age

information by two approaches: (1) preschoolers vs. grade-schoolers and (2) preschool-

ers vs. matures (grade-schoolers + adults). To find the optimal subset of the 130

considered sketch features for classifying each of these groups, we used BestFirst

selection built-in to the Weka system [108] with 10-fold cross-validation.

Table 3.2 and 3.3 show the selected features (each of which has a p-value <=

.001). The percentage in these tables describes the percentage of selected features

during the subset selection. The selected features in the tables were all curvature

related features (e.g. direction change ratio). This indicates that older children (7

and 8 years) are able to draw curvatures better than younger children (i.e. 3 and 4

years), and curvature related features can be useful information to check children’s

developmental progress. All of the selected features were from Paulson [177].

To know the best classifier to determine their age (fine motor skill) information,

we tried eight classifiers: ADTree, Bayes Net, BFTree, MultilayerPerceptron, Naive

Bayes, Random Tree, Random Forest, and RBFNetwork. To find the optimal classi-

fier for recognizing children’s age (fine motor skill) by sketches, we took the selected

feature sets and found that the Random Forest classifier + Bagging performed better
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Table 3.3: Our optimal features for classifying preschoolers vs. matures (grade-
schoolers + adults).

Feature

Average curvature of the stroke (100%)
+ Direction change ratio (100%)
+ The angle of the major axis relative to center (100%)
+ The error of the best fit line of the direction graph (100%)
+ The maximum curvature to average curvature value (100%)
+ Slope of the direction graph (100%)

Table 3.4: Top techniques for classifying preschoolers vs. grade-schoolers.

Classifier (Accuracy)

Random Forest + Bagging(82.7%)

Random Forest (81.51%)

Bayes Net (79.43%)

BFTree (79.43%)

NBTree (78.13%)

ADTree (77.08%)

Naive Bayes (77.08%)

Random Tree (77.08%)

MultiPerceptron (75.52%)

than other classifiers (Table 3.4 and 3.5) with 10-fold cross-validation. Table 3.6 and

3.7 are the confusion matrices of the age recognition using best classifiers (Random

Forest + Bagging) and selected feature sets in Table 3.2 and 3.3.

Using such identified features and differences, we were able to automatically dis-

tinguish preschoolers (ages 3-4) and grade-schoolers (ages 7-8) with a precision of .83,

recall of .828, p-value of 0.001, and an f-measure of .827 with 10-fold cross-validation

(Table 3.4). When distinguishing between preschool (ages 3-4) and more mature

sketchers (combining children and adults), we got a precision of .909, recall of .909,
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Table 3.5: Top techniques for classifying preschoolers vs. matures.

Classifier (Accuracy)

Random Forest + Bagging (90.4%)

Random Forest (88.48%)

NBTree (86.63%)

BFTree (86.34%)

Bayes Net (85.63%)

Naive Bayes (85.35%)

ADTree (84.21%)

Random Tree (84.07%)

MultiPerceptron (77.81%)

Table 3.6: Results of classifying preschoolers (p,p’) vs. grade-schoolers (s,s’).

actual
value

Prediction outcome

p s total

p′
74.7
%

25.3
%

100

s′
10.7
%

89.3
%

100

p-value of 0.001, and an f-measure of .904 with 10-fold cross-validation (Table 3.5).

3.4.2 Research Question 2: Contrast between Children and Adults

As many educational psychologists [140, 164, 182] insisted, children are developing

their sketching (fine motor) skills and knowledge while they are growing. As a result,

generally children have less fine motor skills and dexterity than adults [6, 256].

During the user study, we found three primary contrasts between participants in

the three age groups with the entire gesture set, including letters (i.e., A-D), which
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Table 3.7: Results of classifying preschoolers (p,p’) vs. matures (m,m’).

actual
value

Prediction outcome

p m total

p′
68.82
%

31.18
%

100

m′
02.07
%

97.93
%

100

we will explain for demonstration.

The first primary contrast was that stroke lengths varied between the three

groups, where stroke length was calculated from its Euclidean distance in pixels be-

tween each (x,y)-point. As seen in Figure 3.2, the stroke lengths of adults’ sketches

were significantly longer than the other groups, while the stroke lengths of preschool-

ers’ sketches were shortest. We believe that the differences came from many factors

including physical hand size differences, such as the preschooler participants sketch-

ing smaller shapes compared to the other groups, and existing domain knowledge,

such as children drawing smaller shapes due to possible shyness with their lack of

familiarity of certain shapes.

The second primary contrast was that number of points varied between the three

groups. Because the number of points is dependent on the time between the pen

down and pen up motions, a higher number of points means that the user took more

time to draw. Figure 3.3 shows the result that the adults took the least amount

of time to draw shapes (despite their tendency to draw larger shapes), presumably

because they have already mastered how to draw the shapes. However, the ages 7-8
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Figure 3.2: Stroke lengths for the letters ‘A’, ‘B’, ‘C’, and ‘D’. The stroke lengths
of the adults’ written letters were the longest, while preschool children’s were the
shortest. [141, 143]

Figure 3.3: Analysis of the number of points from letters ’A’, ’B’, ’C’, and ’D’. Adults
spent the least time to write the letters, while the grade-schoolers spent the most
time. [141, 143]
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Figure 3.4: The Valentine recognizer determined adults’ and grade-schoolers’
shapes fairly well. However, the recognizer performed poorly on the preschoolers’
shapes. [141, 143]

participants needed more time than other groups. During the user study, we found

that these children drew the sketches slower and with more consideration than the

adults. Some of them erased the shapes when they thought that the shapes were not

drawn well enough. The preschoolers drew faster than grade-schoolers because they

had little domain knowledge (i.e. digits and letters).

Finally, we analyzed the recognition accuracy for participants per each group.

We measured the shape recognition accuracy using the Valentine recognizer [252].

As seen in Figure 3.4, the accuracy for adults’ drawings was the highest, and the

recognizer determined grade-schooler’s shape drawings fairly well. However, the

recognizer could not recognize the preschooler’s shape drawings well. The results

explain that adults and grade-schoolers have better domain knowledge than younger

children (i.e. 3-4 years). To further understand which shapes proved difficulty for the
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Figure 3.5: Recognition accuracy between age groups for the full gesture set, where
circled areas indicate shapes that yielded numerous recognition differences. [141, 143]

preschooler participants, we analyzed the recognition accuracy for each shape (Figure

3.5) and found that both preschoolers and grade-schoolers had difficulty drawing

curved shapes (e.g., digits ‘2’ and ‘3’). This result can also explain the result from

our age (fine motor skill) classifying result from the previous section. The selected

features chosen for recognizing age information were all curvature-related features.

As a result, we proved that curvature-drawing skills can determine the sketcher’s

developmental progress.

3.4.3 Research Question 3: Evaluation of Classifying Gender Information

When we interviewed the children’s parents, most of the parents believed that

girls would draw better than boys. Researchers from the educational and develop-

mental psychology field also insist that girls possessed superior visual-motor skills

over boys. For example, Brown [36] and Tennant [248] explained that girls achieved

better performance with visual-motor skills than boys. However, other researchers
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Table 3.8: Our optimal features for classifying genders within children.

Feature

Stroke density (100%) +
A density metric for the gesture stroke that uses the stroke’s length
and bounding box size (100%) +
Direction change ratio (70%)

Table 3.9: Best top techniques for classifying genders within children.

Classifier (Accuracy)

Bayes Net (72.8%)

BFTree (69.6%)

Naive Bayes (68.4%)

Random Forest (68.2%)

ADTree (67.82%)

MultiPerceptron (63.79%)

Random Tree (62.64%)

NBTree (61.49%)

(e.g., [156]) insist that the reverse is true. One potential reason for conflicting results

may be the inconsistent use of measurements across the various studies.

An additional limitation of the prior research works involves researchers grouping

all students of one gender together regardless of age within the range of ages 7-

13. In order to discover any potential differences amongst genders, we tried to

classify gender information within the same age group. For confirming any possible

gender difference in their sketches, we employed the grade-schoolers’ 227 sets of data

gathered from six female children and six male children.

After retrieving 130 sketch features [94, 131, 155, 177], we found the optimal

sketch features using BestFirst selection built-in to the Weka system [108] with 10-

fold cross-validation.
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Table 3.10: Results of classifying female children (f,f’) vs. male children (m, m’)

actual
value

Prediction outcome

f m total

f′
62.11
%

37.89
%

100

m′
13.92
%

86.08
%

100

Table 3.8 explains the best feature sets and the percentage of selected features

during the subset selection from our 130 features with 10-fold cross-validation (each

of which has a p-value <= .001). The selected features in the table were density

and curvature related features. This indicates that girls spend more time on drawing

(more careful), and girls are drawing curvatures better than boys. We also found

that density and curvature related features can be useful in identifying gender. More

explanation about the features can be found in [177]. Using those selected features,

we found that Bayes Net classifier performed better than other classifiers (Table 3.9)

with 10-fold cross-validation.

From the selected features and best classifier (Bayes Net), we could determine

sketcher’s gender with a precision of 0.757, recall of 0.73, p-value of 0.001, and an

f-measure of 0.728 with 10-fold cross-validation. Table 3.10 is the confusion matrix

of the gender recognition using best classifiers (Bayes Net classifier) and selected

feature sets in Table 3.8.
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Figure 3.6: Recognition accuracy between genders in children for the full gesture
set, where circled areas indicates shapes that yielded numerous recognition differ-
ences. [141, 143]

3.4.4 Research Question 4: Contrast between Genders

During the user study, we found two primary contrasts between gender in the

grade-schooler group.

The first primary contrast was the sketch recognition accuracy. When we com-

pared the sketch recognition accuracy from the Valentine recognizer [252], the recog-

nition accuracy of the girl participants was higher than the boys’ on both sketched

digits and letters (i.e., 88.5% and 77.8% for girls and boys, respectively). Additional

insights included boy participants having greater difficulty in drawing curved shapes

(Figure 3.6). As we mentioned in the previous section, density and curvature related

features were selected for classifying their gender information. As a result, we found

that girls have better fine motor skills than boys with better curvature-drawing skills.

The second primary contrast was the density in their sketches. During the user

study, we found that females taking longer to sketch due to greater density (i.e.,

47



Figure 3.7: An example sketch of the letter ‘B’ from a female and male child. The
female child’s sketch yielded greater density (i.e., width of the sketches) than the
male child’s. [141, 143]

producing more points) in their sketches (Figure 3.7). From these observations, we

believe that sketch features related to density and curvature may assist in determining

the sketcher’s gender for that age range.
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4. FINE MOTOR SKILL CLASSIFIER FOR CURVATURE- AND CORNER-

DRAWING SKILLS (KIMCHI2)

The previous section explained the KimCHI classifier [142, 143, 144] that deter-

mines children’s fine motor skills based on their overall drawing skills. However, the

study still has limitations. One of the limitations is that the user group has many age

gaps. The previous study [142, 143, 144] included age 3-4 years and age 7-8 years.

As a result, the study missed age 5-6 years. According to educational psychologists,

age 2-7 are rapidly developing their fine motor skills with various developmental

stages including fine motor skills [50, 182]. To better assess their fine motor skill

development per age, this study includes continuous age 3-8 years’ sketch data.

Another limitation is that the previous study [142, 143, 144] did not determine

children’s fine motor skills from curvature- and corner-drawing skills, but from their

overall drawing skills. As many researchers explained [6, 50, 182, 256], older children

have better fine motor skills and dexterity. We specially interested in determining

their fine motor skills based on their curvature- and corner-drawings, as those skills

require children’s dexterity and fine motor skills [50].

This section will explain the fine motor skill classifier (KimCHI2) that determines

fine motor skills based on children’s curvature- and corner-drawing skills. We will also

introduce our findings that sketch features (Direction Change Ratio (DCR) [143, 177]

and Polyline Test [176]) can explain children’s fine motor skill developmental stages.

4.1 Research Question

Prior to designing our user study, we defined research questions that appropri-

ately guided the direction of the study. We therefore were particularly interested in

investigating the following four specific research questions:
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1. Can the sketch features classify children’s fine motor skills based on curvature-

drawings? If it is, which sketch features can determine the information?

2. Can the sketch features classify children’s fine motor skills and age information

based on corner-drawings? If it is, which sketch features can determine the

information?

3. Can the KimCHI2 classifier determine children’s fine motor skills more accu-

rately than the KimCHI classifier [142, 143, 144]?

4. If there are fine motor skill differences between age group, what are the dif-

ferences? Furthermore, can the sketch features explain the fine motor skill

differences between age group?

4.2 User Study

To implement the fine motor skill classifier and understand children’s fine motor

skill development stage per age, we collected digital drawings from 75 child partic-

ipants including 44 preschoolers (aged 3-4 years) and 31 grade-schoolers (aged 5-8

years) with a sketch-enabled interface (Table 4.1). Our hypothesis was that older

children who go to kindergarten (i.e., aged 5-8 years) would demonstrate better fine

motor skills than younger children (i.e., aged 3-4 years), so we segmented the users

into two age groups (preschoolers and grade-schoolers). We specially interested in

their curvature- and corner-drawings as those skills require children’s dexterity and

fine motor skills [50]. For curvature-drawings, we asked the child participants to

draw the letter ‘C’, ‘circle’, and ‘curve’. For corner-drawings, we asked the child

participants to draw the letter ‘A’, ‘triangle’, ‘rectangle’, and ‘square’. As a result,

we collected a total of 852 digital drawings (370: curvature drawings and 482: corner

drawings).
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Table 4.1: Demographics of user group
Age Group Group size # of curvatures # of corners

3-4 years old 44 200 282

5-8 years old 31 170 200

Total 75 370 482

4.3 Implementation

This section will explain the process of implementing the KimCHI2 classifier. The

process includes (1) preprocessing and (2) sketch feature extraction step.

4.3.1 Preprocessing

The preprocessing step followed the same step with the previous study (the Kim-

CHI classifier [142, 143, 144]). We first generated basic feature sets such as direction

value changes, stroke length overtime, and total stroke length through the Algo-

rithm 1. After that, we combined the strokes into one stroke (Algorithm 2), which

is requirement for extracting 131 sketch features [94, 131, 155, 177, 271].

4.3.2 Sketch Feature Extraction

After the preprocessing step, we extracted sketch features. In addition to the

previous study, we added one more sketch feature, which can detect corners in

shapes [271]. As a result, we calculated 131 state-of-the-art features [94, 131, 155,

177, 271]. We hypothesized that older children would have better cognition and

fine motor skills, and they would be able to draw curvatures more smoothly than

younger children. In terms of cornered shapes (e.g. square), older children would be

able to draw lines and corners better than younger children. To determine curvature-

and corner-drawing skills, we were especially interested in Direction Change Ratio

(DCR) sketch feature for curvature-drawing and Polyline Test sketch feature for
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Figure 4.1: Direction graphs for a polyline (left) and arc (right). The arc has lower
DCR values than the polyline, because the direction changes smoothly [176].

corner-drawing. The following sections will explain more detail about the features.

4.3.2.1 Direction Change Ratio (DCR) for Curvature Drawing Skill

Direction change ratio (DCR) feature calculates whether sudden direction changes

are present in the direction graph [177]. This value is computed as the maximum

change in direction divided by the average change in direction. During the re-

search [176], Paulson et al. differentiated polyline and arc using the DCR feature. As

seen in Figure 4.1, the arc has relatively little changes between consecutive direction

values. However, the polyline has sudden direction change in its direction graph.

Therefore, the arc will have lower DCR values than the polyline.

As young children have less fine motor skills and dexterity [6, 143, 256], we hy-

pothesized that younger children may not be able to draw curvature smoothly. This

will result their high DCR value, because they will have relatively higher direction

changes than older children. Algorithm 3 explains the DCR calculation procedure.

DCR =
maximum of direction changes

average of direction changes
(4.1)
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Algorithm 3 Calculate the Direction Change Ratio (DCR) (max direction change
divided by overage direction change)

Input: directionArray from Algorithm 1
Output: DCR
maxDirectionChange = 0
for i = 0 ; i < directionArray.size()-1 ; i++ do
tempDirectionChange = math.abs(directionArray [i+1] - directionArray [i])
if tempDirectionChange > maxDirectionChange then
maxDirectionChange = tempDirectionChange

end if
sumDirectionChange += tempDirectionChange

end for
averageDirectionChange = sumDirectionChange / directionArray.size()
DCR = maxDirectionChange / averageDirectionChange

4.3.2.2 Polyline Test for Corner Drawing Skill

Polyline Test [176] calculates the percentage of substrokes that passed a line test.

To get the value, we first divided the stroke into substrokes by analyzing corners

using the algorithm from [271]. After that, we proceeded each substroke’s line test

by measuring average least square error of each sub-stroke and counted the number

of lines that passed the line test [174, 176]. We hypothesized that younger children

would have low percentage of Polyline test as they have relatively less fine motor

skills than older children and may not be able to draw straight lines. Algorithm 4

explains the Polyline Test procedure.

PolylineTest =
#of substrokes that passed line test

#of substrokes
(4.2)
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Algorithm 4 Calculate the Polyline Test (the percentage of substrokes that passed
a line test)

Input: segmented strokes from sketch using corner-detection algorithm in [271]
Output: Polyline Test
numLinePassed = 0
for i = 0 ; i < strokes.size() ; i++ do
currentStroke = strokes.get(i)
linePassed = decide if the currentStroke passed line test using Algorithm
from [174, 176]
if linePassed = True then
numLinePassed = numLinePassed + 1

end if
end for
PolylineTest = numLinePassed / strokes.size

Table 4.2: Regression output for classifying ages for curved shape.
Feature Multiple R-value P-value

Percentage of Direction Window Passed [177] 0.429574005 4.78E-18

Get the percentage of the slope test that passed [177] 0.343231139 1.14E-11

Curve Error [177] 0.272028581 1.06E-07

Density of sub dot [177] 0.270090109 1.32E-07
The error of the best fit line
of the direction graph [177]

0.259521329 4.15E-07

The sum of gesture intersegment angles whose
absolute value is less than 19 degrees [155]

0.247402646 1.45E-06

Direction change ratio [177] 0.233121645 5.85E-06

Largest quadrilateral area / convex hull area [94] 0.23215282 6.41E-06
Difference of bounding boxes’ largest Y value and
smallest Y value / y value movement in sketch [94]

0.180140871 0.000497906
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4.4 Evaluation

4.4.1 Research Question 1: Evaluation of Classifying Curvature-drawing Skills

To recognize the children’s fine motor skills based on curvature-drawings, we tried

to differentiate age information (i.e. preschoolers and grade-schoolers). We classified

children’s curvature drawing skills by curvature drawings (i.e. the letter ‘C’, ‘curve’,

and ‘circle’).

To find the optimal subset of the 131 considered sketch features for classifying the

age information, we first ran BestFirst selection built-in to the Weka system [108]

with 10-fold cross-validation. From this step, 17 features were chosen more than

80%. After that, we proceeded linear regression analysis with each feature value (X

value) and age information (Y value) (i.e. age 3-8 years). From the linear regression,

we assessed how close the features and age information are fitted in a regression line.

We produced multiple r-values and p-values, and sorted them by r- and p-values.

Table 4.2 describes the features that have lower than p-value of 0.05. Table A.1,

A.2, A.3, A.4, and A.5 in Appendix introduce the linear analysis of every 131 feature

and age information. Most of the selected features were curvature related features

including Direction change ratio (DCR). The other features included were Density

of sub dot, which shows how the children drew the shape considerably (taking longer

to sketch due to greater density) and Largest quadrilateral area / convex hull area,

which shows whether the children drew the shape as desired. This indicates that

older children (i.e. grade-schoolers) are able to draw curvatures more smoothly than

younger children (i.e. preschoolers), and they are spending more time on drawing.

As the selected features were mostly curvature related features, we concluded that

curvature related features can be useful information to check children’s fine motor

skills on curvature-drawings.

55



When we ran the linear regression analysis with these features (X value) to age

information (Y value), they were able to produce regression lines with Multiple R

value of 0.53 and Adjusted R Square of 0.26 (Table 4.3), which shows high relation

between the sketch features and age information.

Table 4.3: Summary output for classifying ages for curvature shape.
Regression Statistics

Multiple R-Value 0.534947185137479

Adjusted R Square 0.266284605

Standard Error 1.325571201

To verify if those selected features can identify children’s age information (fine

motor skills), we labeled the age information with young (i.e. 3-4 years) and old

(i.e. 5-8 years). To know the best classifier to determine their age (fine motor skill)

information, we tried eight classifiers: ADTree, Bayes Net, BFTree, MultilayerPer-

ceptron, Naive Bayes, Random Tree, Random Forest, and RBFNetwork. To find

the optimal classifier for recognizing children’s age (fine motor skill) by sketches, we

Table 4.4: Best top-performing techniques for classifying age for curved shape.

Classifier (Accuracy)

Random Forest (81.89%)

Random Tree (77.3%)

ADTree (77.03%)

Bayes Net (77.03%)

MultiPerceptron (77.03%)

NBTree (76.76%)

BFTree (74.32%)

RBFNetwork (71.62%)

Naive Bayes (68.38%)
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Table 4.5: Results of classifying curvature-drawing skills in grade schoolers (g,g’) vs.
preschoolers (p,p’).

actual
value

Prediction outcome

g p total

g′
167 33

200

p′
34 136

170

took the selected feature sets and found that the Random Forest classifier performed

better than other classifiers (Table 4.4) with 10-fold cross-validation. Table 4.5 is

the confusion matrix of the age recognition using best classifiers (Random Forest)

and selected feature sets in Table 4.2 and 4.4.

Using those selected features, we were able to determine children’s curvature-

drawing (fine motor) skills with a precision of 0.82, recall of 0.82, and an f-measure

of 0.82 with 10-fold cross-validation with Random Forest.

4.4.2 Research Question 2: Evaluation of Classifying Corner-drawing Skills

In this section, we will discuss studies of classifying fine motor skills by differenti-

ating age information (1) by preschoolers and grade-schoolers and (2) by their exact

age information (i.e. age 3-8 years).

4.4.2.1 Classifying fine motor skills

To recognize the children’s fine motor skills based on corner-drawings, we tried

to differentiate age information (i.e. preschoolers and grade-schoolers). We classified

children’s corner drawing skills by corner drawings (i.e. the letter ‘A’, ‘triangle’,
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Table 4.6: Regression output for classifying ages for corner shape.

Feature Multiple R-value P-value

Largest quadrilateral area / convex hull area [94] 0.473701784 2.83E-28
Largest quadrilateral perimeter /
convex hull perimeter [94]

0.445422351 8.07E-25

Largest triangle area / bounding box area [94] 0.391388683 4.67E-19

Count of corners 0.323223271 3.69E-13
Computes the sum of the absolute value
of the angles at each mouse point [155]

0.302459951 1.24E-11

Get the percentage of substrokes that
passed a line test [177]

0.299690307 1.94E-11

Number of strokes [177] 0.295667976 3.69E-11
Largest triangle perimeter / enclosing
rectangle perimeter [94]

0.283402153 2.46E-10

Computes the sum of the squared values
of the angles at each mouse point [94]

0.28053494 3.78E-10

Calculate the orthogonal distance squared error
between the stroke and the ideal curve [177]

0.265424525 3.37E-09

Get the percentage of the slope test
that passed [177]

0.262479123 5.08E-09

Number of points inside the triangle [94] 0.251192224 2.34E-08
Get the perimeter (of bounding box) to
stroke length ratio [177]

0.165534439 0.000266154

The number of revolutions that the stroke
makes [177]

0.124237847 0.006367394

‘square’, and ‘rectangle’).

Table 4.7: Summary output for classifying ages for corner shape.
Regression Statistics

Multiple R-Value 0.627853058

Adjusted R Square 0.375999447

Standard Error 1.203778371

To find the optimal subset of the 131 considered sketch features for classifying

the age (fine motor skill) information, we first ran BestFirst selection built-in to the

Weka system [108] with 10-fold cross-validation. From this step, 18 features were
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chosen more than 80%. After that, we proceeded linear regression analysis with each

feature value (X value) and age information (Y value) (i.e. age 3-8 years). From the

linear regression, we assessed how close the features and age information are fitted in

a regression line. Table B.1, B.2, B.3, B.4, and B.5 in Appendix introduce the linear

analysis of every 131 feature and age information. We produced multiple r-values

and p-values, and sorted them by r- and p-values. Table 4.6 describes the features

that have lower than p-value of 0.05. The selected features in the tables were mostly

line drawing related features including PolylinePctPassed. Largest quadrilateral area

/ convex hull area and Largest triangle area / bounding box area introduce how

the children can draw desired shape, which is also very relevant to their domain

knowledge and cognition ability. As most of the selected features are line drawing

related features, this indicates that older children (i.e. grade-schoolers) are able

to draw lines more smoothly than younger children (i.e. preschoolers), and line-

drawing related features can be useful information to check children’s fine motor

skills on corner-drawings.

When we ran the linear regression analysis with these features (X value) to age

information (Y value), they were able to produce regression lines with Multiple R

value of 0.63 and Adjusted R Square of 0.38 (Table 4.7), which shows high relation

between the sketch features and age information.

To verify if those selected features can identify children’s age information (fine

motor skills), we labeled the age information with young (i.e. 3-4 years) and old

(i.e. 5-8 years). To know the best classifier to determine their age (fine motor skill)

information, we tried eight classifiers: ADTree, Bayes Net, BFTree, MultilayerPer-

ceptron, Naive Bayes, Random Tree, Random Forest, and RBFNetwork. To find the

optimal classifier for recognizing children’s age (fine motor skill) by sketches, we took

the selected feature sets and found that the Bayes Net classifier performed better
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Table 4.8: Best top-performing techniques for classifying age for corner shape.

Classifier (Accuracy)

Bayes Net (77.13%)

BFTree (76.64%)

Random Forest (76.3%)

NBTree (76.09%)

ADTree (76.09%)

MultiPerceptron (75.05%)

RBFNetwork (73.39%)

Naive Bayes (68.19%)

Random Tree (68.19%)

Table 4.9: Results of classifying corner-drawing skills in grade-schoolers (g,g’) vs.
preschoolers (p,p’) .

actual
value

Prediction outcome

g p total

g′
221 60

281

p′
46 154

200

than other classifiers (Table 4.8) with 10-fold cross-validation. Table 4.9 is the con-

fusion matrix of the age recognition using best classifiers (Bayes Net) and selected

feature sets in Table 4.6 and 4.8.

Using those selected features, we were able to determine children’s curvature-

drawing (fine motor) skills with a precision of 0.783, recall of 0.78, and an f-measure

of 0.781 with 10-fold cross-validation with Bayes Net.
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4.4.2.2 Classifying age information

The previous section explained our fine motor skill classifying result by dividing

the age groups into young children (age 3-4 years) and old children (5-8 years). As we

found that sketch features show high correlations with age information, we tried to

classify children’s exact age information with our 131 features [94, 131, 155, 177, 270,

271, 274, 275]. We took the same child participants from the previous section, and

Table 4.10 explains more detailed information about our user demography. As the

conventional fine motor skill assessment (i.e. “star drawing test” [153, 167]) assesses

fine motor skills by corner-drawing, we applied corner drawing examples (i.e. ‘A’,

‘triangle’, ‘rectangle’, and ‘square’) to classify their age information.

Table 4.10: Demographics of user group
Age Group Group size # of corners

3 years old 24 153

4 years old 20 128

5 years old 8 64

6 years old 12 60

7 years old 8 61

8 years old 3 16

Total 75 482

We first applied supervised Resample filter in Weka [108] because our data set

has many variations in their age group. This filter takes the class distribution into

account for generating the sample with replacement or without replacement. After

that, we applied BestFit selection built-in to the Weka system [108] with 10-fold

cross-validation to find the optimal subset of the 131 considered sketch features.

Table 4.11 describes the selected feature sets that were chosen more than 80%, and

most of the selected features were from our previous study (Table 4.6). The selected
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Table 4.11: Our optimal features for classifying ages within children.

Feature

Curve Error (100%) [177] +
Number of strokes (100%) [177] +
Get the percentage of substrokes that passed a line test (80%) [177] +
Largest quadrilateral area / convex hull area (100%) [94] +
Largest triangle area / bounding box area (100%) [94] +
Largest triangle area / largest quadrilateral area (100%) [94] +
Absolute value of bounding box’s X difference / x value
movement in sketch (80%) [94] +
Number of points inside the triangle (90%) [94] +
Convex hull perimeter / stroke length (90%) [94] +
Largest quadrilateral perimeter / convex hull perimeter (100%) [94] +
A density metric for the gesture stroke that uses the stroke’s length
and distance between the first and last point (100%) [155] +
Count of corners (100%)

features included curvature and corner drawing ability (i.e. Curve Error and Count

of corners), and features from [94] determined if they drew desired shapes well (i.e.

Largest quadrilateral area / convex hull area).

To know the best classifier to determine their age (fine motor skill) information,

we tried seven classifiers: Bayes Net, BFTree, MultilayerPerceptron, Naive Bayes,

Random Tree, Random Forest, and RBFNetwork. To find the optimal classifier for

recognizing children’s age information by sketches, we took the selected feature sets

and found that the Random Forest classifier performed better than other classifiers

(Table 4.12) with 10-fold cross-validation.

Using those selected features, we were able to determine children’s curvature-

drawing (fine motor) skills with a precision of 0.751, recall of 0.746, and an f-measure

of 0.742 with 10-fold cross-validation with Random Forest.

From this study, we concluded that sketch features can decide exact information.

However, as our study data set has many variations in age groups, we need to recruit
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Table 4.12: Best top-performing techniques for classifying age using digital sketch
features
Classifier (Accuracy)

Random Forest (74.64%)

Random Tree (73.8%)

BFTree (67.15%)

NBTree (63.83%)

MultiPerceptron (56.96%)

Bayes Net (53.22%)

RBFNetwork (48.65%)

Naive Bayes (37.0%)

more child participants to validate this study.

4.4.3 Research Question 3: Better Fine Motor Skill Classification Performance

than the KimCHI Classifier

To evaluate our classifier performance over to the KimCHI classifier [142, 143,

144], we applied our sketch data set to the both classifiers and generated classifying

result with the Weka system[108]. The main difference between our classifier and the

KimCHI classifier is that the previous fine motor skill classifier [142, 143, 144] disre-

garded children’s specific curvature- and corner-drawing skills, but solely focused on

the overall drawing behaviors. As a result, the previous study [142, 143, 144] trained

all shapes together including curvature and corner shapes and retrieved sketch fea-

tures for identifying fine motor skill information. As the KimCHI2 classifier sepa-

rately trained their curvature- and corner-drawings, we hypothesized that the Kim-

CHI2 classifier will perform better than the prior study [143].

Figure 4.2 explains our classifying result. When we applied the previous study’s [143]

selected sketch features (e.g. Average curvature of the stroke) and their selected

machine learning classifier (i.e. Random Forest and Bagging), it was able to rec-
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Figure 4.2: We applied our data set to the both classifiers. When we classified their
fine motor skill classification results on curved- and cornered-drawings, our classifier
performed better than the prior study.

ognize the curvature-drawing skills by a precision of 0.74, a recall of 0.74, and an

f-measurement of 0.74 and corner-drawing skills by a precision of 0.51, a recall of

0.53, and an f-measurement of 0.53. The KimCHI2 classifier outperformed for both

curvature- and corner-drawing skill recognition. Especially, the prior study’s corner-

drawing skill performance (f-measurement of 0.53) was much lower than this study’s

performance (f-measurement of 0.78). We believe that because the prior study only

uses curvature-related feature sets, it was not able to determine corner-drawing skills

well.

4.4.4 Research Question 4: Fine Motor Skill Development Per Age

During the user study, we observed that each age group shows different drawing

skills. As seen in Figure 4.3 and 4.4, generally, younger children (i.e. 3-4 years) had
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lower dexterity and domain knowledge than older children (i.e. 5-8 years), which

results higher DCR and lower Polyline Test values.

Figure 4.3: The example of a ‘circle’ drawing from each age group.

To find the fine motor skill stage differences between age groups, we first produced

and compared their direction value changes in their drawings using the algorithm

from [219, 220]. Sezgin [220] used the direction and speed values in strokes to find

edges in sketch (e.g. a ‘square’ will have four edges and direction changes in the

edges). The direction value calculating procedure can be found in Algorithm 5.

We applied the direction values to know children’s fine motor skill stage differ-

ences. To understand if older children’s drawing behaviors show similar values with

adults (who already mastered their fine motor skills), we compared the values with

an adult’s sketch data. We produced each age group’s direction values while draw-

ing a ‘circle’ (Figure 4.5). As seen in Figure 4.6, older age group (adult and age

6 years)’s direction graph grows smoothly. However, younger age (age 3 years)’s

direction graph has many direction changes.

We found the same result when we produced each age group’s direction values

65



Figure 4.4: The older child (left) drew the lines in square better than the younger
child (right) with 100% line pass rate.

while drawing a ‘square’ (Figure 4.7). As seen in Figure 4.8, younger age (age 3

years)’s direction graph had many variations compared to older age group’s direction

values.

We got an idea from these results that younger children have less fine motor skills

than older ages. To find if sketch features can explain those fine motor skill stages,

we generated Direction Change Ratio (DCR) and Polyline Test sketch features per

each age. As we described earlier, young children will have higher Direction Change

Ratio (DCR) values and lower Polyline Test as they have less fine motor skills than

older children.

We generated the child participants and adult’s mean values of Direction Change

Ratio (DCR) and Polyline Test from curvature-drawings and cornered-drawings. As

Figure 4.9 and 4.10 describe, after age 5 years, the graphs show stable values from

aged 5 years to adult. On the other hand, aged 3-4 years’ sketch feature values

have many differences than the older ages. In terms of curvature-drawing skills, the

age 3 years had highest DCR values and the age 4 years had less Direction Change

Ratio (DCR) values, but the values were still higher than older children. In terms of
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Algorithm 5 Calculate the Direction Value

Input: points from sketch
Output: DirectionV alues
DirectionV alues[0] = 0.0
for i = 1 ; i < points.size() ; i++ do
d = arctac value between points[i] and points[i− 1]
// Make sure there are no large jumps in direction - ensures graph continuity
while d-DirectionV alues[i− 1] > Math.PI do
d -= (Math.PI * 2)

end while
while DirectionV alues[i− 1] - d > Math.PI do
d += (Math.PI * 2)

end while
DirectionV alues[i] = d

end for
for i = 1 ; i < points.size() ; i++ do
SmoothDirectionV alues[i] = (DirectionV alues[i− 1] + DirectionV alues[i] +
DirectionV alues[i+ 1]) / 3.0

end for
DirectionV alues = SmoothDirectionV alues

Figure 4.5: The example of a ‘circle’ drawing from each age group.
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Figure 4.6: Young child could not draw curvature smoothly (many direction changes)
than older child.

Figure 4.7: The example of a ‘square’ drawing from each age group.

68



Figure 4.8: Young child could not draw line and corner smoothly (many direction
changes) than older child.

Figure 4.9: From age 5 years, they were able to draw curvature smoothly with
relatively lower DCR values than younger ages (3-4 years). Younger children had
higher DCR values because they had relatively higher direction changes than older
children.
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Figure 4.10: From age 5 years, they were able to draw lines better than younger ages
(3-4) years with higher Polyline test percentages. Younger children could not draw
lines better than older children, which results their lower Polyline test results.

Table 4.13: Standard deviations of count of strokes
Age Group \Shape circle curve square rectangle

Age 3 0.504006933 0.534983081 2.464563668 1.87259546

Age 4 0.287902241 2.611527476 1.46406754 1.985688546

Age 5 0.223606798 0.458831468 0.786397516 0.933302004

Age 6 0.323380833 0.514495755 0 0.383482494

Age 7 0 0 0.452267017 0.452267017

Age 8 0 0 0 0

corner-drawing skills, the age 3-4 years had lower Polyline Test than older children.

We believe that because age 5 years are the ages that entering kindergarten, they

will have more drawing practice and better psychical development, which will result

their better fine motor skills than younger children.

To further explain their fine motor skill stages, we compared their number of

strokes and drawing times. When we generated their number of strokes for curved-

and cornered-shapes, we found that most of the children drew curved-shapes with
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Figure 4.11: This figure explains the number of strokes per shape by age. We found
that most of the children drew curved shapes with around one stroke. However,
younger children (age 3-4 years) required more stroke than older children when they
drew cornered shapes.

around one stroke as they were already familiar with those shapes (Figure 4.11).

However, when we compared their stroke sizes of cornered-shapes, younger children

(3-4 years)’s drawings had more number of strokes than older children (5-8 years).

This indicated that corner-drawings require more domain knowledge than curved-

shapes. When we calculated the standard deviations of stroke sizes (Table 4.13),

from age 5 years, they had lower standard deviations. This indicates that from age

5 years, they would have better fine motor skills and domain knowledge.

When we generated their drawing times per each age group, we also found that

younger children (3-4 years) mostly required more drawing times than older age

groups (5-8 years) for both curved- and cornered-shapes (Figure 4.12). When we

calculated the standard deviations of drawing times (Table 4.14), from age 5 years,

they had lower standard deviations. From these findings, we concluded that older
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Table 4.14: Standard deviations of drawing times
Age Group \Shape circle curve square rectangle

Age 3 2457.624251 1954.997553 16898.24586 6308.21305

Age 4 778.968364 2284.392067 3614.114208 4860.538499

Age 5 631.067306 620.5253057 1567.682811 1195.263367

Age 6 2337.249671 853.2580619 1103.311393 1136.722834

Age 7 626.5699494 1489.509712 684.4516662 849.623923

Age 8 691.3245339 402.7785303 2023.895037 1387.646673

Figure 4.12: When we compared their drawing time per shape by age, younger
children (age 3-4 years) took more drawing times than older children.

children have better domain knowledge and fine motor skills than younger children.

Especially, around age 5 years, they have better fine motor skills and domain knowl-

edge than younger children.
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5. SKETCH-BASED EDUCATIONAL INTERFACE (EASYSKETCH)

After developing the fine motor skill classifiers (i.e. KimCHI and KimCHI2), we

designed and developed a sketch-based educational interface, EasySketch. As we

mentioned earlier, the existing educational psychological research approaches [152,

153] have many limitations when assessing children’s fine motor skills. The main

drawback of the approaches was that they required researchers’ manual measure-

ments to decide the fine motor skills, which are prone to human error and bias.

In order to overcome the limitations of existing educational psychological research

approaches, sketch-recognition technology can be a solution. There are many sketch-

based educational interfaces that teach children how to sketch through interesting

feedback and instructions (e.g., [25, 88, 258]). However, the interfaces are missing fine

motor skill classifiers, but solely include simplistic fine motor skill exercises incorpo-

rating limited binary feedback (i.e., either correct or incorrect) on children’s drawing.

As a result, there was no research that validates and facilitates conventional approach

to assess children’s fine motor skills on tablet computer. This section will explain

the sketch-based educational interface that (1) determines children’s fine motor skills

based on their drawing skills and (2) assists children how to draw basic shapes such

as alphabet letters or numbers based on their learning progress. We will also in-

troduce our findings that (1) our interface can determine children’s fine motor skills

more accurately than the conventional approach (“star drawing test”) (Figure 1.1)

and (2) from age 5 years, they show notable fine motor skill development.

5.1 Field Study

Prior to designing our interface, we engaged in an ethnographic study in a

preschool classroom environment. Because ages 3-4 years are active ages in which
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children learn basic shapes, we specifically targeted this age group for our study. The

classroom we observed included ten preschoolers and two teachers. We observed the

preschool class over the course of five consecutive school days for thirty minutes per

day. Prior to our study, we spent some time becoming acquainted with the children

and teachers in the preschool classroom, in order for the children to be better accli-

mated to our presence and for the teachers to become more aware with our study

approach.

Figure 5.1: After learning the letter, each child played with a piece of paper that
contains the letter.

From our five-day visit, we observed one teacher spending time each day teaching

the alphabet to their preschoolers. We learned from the teacher that a different

letter to discuss in the class changes weekly, and that the letter that was taught as

we observed was the letter ‘S’. During this class time, the preschoolers were seated
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on the ground as the teacher taught, standing in front of them for approximately

ten minutes per day to teaching concepts regarding that letter. The instructional

process that the teacher followed during our visit is elaborated below.

1. The teacher shows a letter on paper and demonstrates sounding the letter out

to the preschoolers. The teacher also introduces English words starting with

the letter ‘S’ (e.g., “snake”), and the preschoolers imitate pronouncing the

words.

2. The teacher demonstrates how to physically draw the letter on paper to the

preschoolers.

3. The teacher draws the letter on each child’s back and arm using their finger.

The teacher also holds each preschooler’s fingers grasping a pen, and the two

draw the letter together.

4. Each child plays with a piece of paper that contains the letter (Figure 5.1).

5. Each child places a sticker containing the letter on a diagram of a letter tree

(Figure 5.2).

From this instructional lesson, the preschoolers were able to learn the letter shapes

using a variety of integrated sensory modalities such as vision, motor commands, and

kinesthetic feedback. We also found that there were many books and posters that

teach children how to draw alphabet letters with gestures using tracing dots and

arrows. During an interview with the teachers, they explained that children can

develop drawing skills by drawing practice, and also shared that tracing dots with

drawing gestures help children to more easily follow the letters’ drawing gestures

and learn the letters. They also explained that there is no correct drawing gesture,
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Figure 5.2: After the preschoolers learned a letter, they placed letter stickers on a
diagram of an alphabet tree.

but there are common drawing gestures on digits and letters, which can also help

children’s school-readiness. They periodically assessed children’s fine motor skills

every six months by asking children to draw basic shapes (e.g. ‘circle’) and counted

the sketch correctness manually. However, they issued the difficulty of the test that

we explained in the prior section (i.e. prone to error from bias and need manual

effort).

From ethnographic study, we found that (1) children like drawing; (2) tracing

dots with drawing gesture can assist the children to develop their fine motor skills

and school readiness; and (3) automatically assessing their sketch correctness and

fine motor skills would be helpful to reduce human efforts. In order to assist children

to develop their fine motor skills, we chose our application enables sketch-recognition

technique and employed tracing dots with drawing gestures in the interface to assist
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Figure 5.3: The architecture of our drawing assessment system consists of the fol-
lowing components (L-R): a fine motor skill classifier, a shape recognizer, and a
gesture-correctness recognizer.

how to draw basic shapes.

5.2 Implementation

5.2.1 Drawing Assessment System

Before describing our interface, we first provide information of our drawing as-

sessment system. The system combines the capabilities of three relevant sketch

recognition algorithms to assist in providing human expert-emulated assessment on

children’s sketches of basic shapes. Specifically, the recognizers that we incorporated

specialize in providing feedback on children’s (1) fine motor skills, (2) shape correct-

ness, and (3) gesture correctness. Figure 5.3 explains the architecture of our drawing

assessment system.
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5.2.1.1 Fine motor skill classifier

In order to handle classification of children’s fine motor skills, we employed Kim-

CHI [143], a gesture-based classifier. As we mentioned earlier, the major drawback

of the current methodology (i.e. “star drawing test”) is that the methodology does

not analyze children’s sketches. The KimCHI [143] classifier resolves the drawback of

the current methodology by focusing on recognizing the physical act of how sketches

are made (e.g. smoothness of curvature-drawing). The classifier first calculates a

dimensionality-reduced subset of gesture-based sketching features (e.g., angle be-

tween important sketch points, total change in angle), derived from features in the

existing sketch recognition techniques of [94, 155, 177, 215]. After that, Random

Forest + Bagging machine learning technology determines the sketch’s label (e.g.

mature or non-mature) based on the sketch features. Since KimCHI [143] performed

well in classifying the performance of children’s fine motor skills, we chose to take ad-

vantage of the classifier in our interface’s drawing assessment system for determining

children’s fine motor skill levels.

5.2.1.2 Shape correctness recognizer

We assess the correctness of children’s sketched shapes using the child-trained

recognizer [141], which is a modified version of the Valentine recognizer [252]. The

recognizer takes as input two shapes: one template shape, whose shape definition

is known; and one user-generated shape, whose shape definition is unknown. The

recognizer will output a value between 0 and 1 that reflects the confidence that

the two shapes are similar, where 0 denotes no confidence and 1 denotes complete

confidence. To calculate this confidence, the recognizer first scales and translates the

shapes into a 48×48 bounding window to ensure both shapes are approximately the

same size. Subsequently, the recognizer resamples the points in both shapes so each
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is made up of 48 equidistant points [141].

After preprocessing, the recognizer considers each point in each shape – 48

equidistant points from both shapes for a total of 96 points – and then records the

distance from that point to the closest point in the other shape. From these short-

est distances, it calculates similarity values from the Tanimoto coefficient [136, 252],

which is the ratio of points with shortest distances less than 4 pixels over the total

number of points. If that confidence value is above its empirically defined threshold

of 0.65, the two shapes are deemed similar [86, 136, 141, 252]. As a result, the user’s

shape could be defined by the template’s shape definition. The recognizer labels

the user shape with the shape definition of the template with the highest similarity

confidence value.

The merit of this recognizer is its extensibility. Whenever we want to add shapes

to be recognized, we only need to add one sample shape as a template. Our applica-

tion takes advantage of the Valentine recognizer to inform users whether they have

drawn the prompted shape correctly.

5.2.1.3 Gesture-correctness recognizer

Lastly, we developed a specialized naive recognizer for handling the correctness of

gestures from the set of letter and number shapes in children’s sketches. For example,

the recognizer can determine whether a child drew the number ‘3’ by starting at the

top and curving downward, or whether the child instead started at the bottom and

curved upward. In order to do so, we first produced tracing dots, which have certain

order of drawing. The recognizer calculates the distance between the tracing dots

and the corresponding user’s shapes, and adds a tracing dot to an ordered list if the

points in the user’s sketched shape lie within a certain distance threshold of that

tracing dot. If the complete list of tracing dots is added and in the desired order,
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Figure 5.4: The recognizer calculates the distance between the tracing dots and the
user’s shape. (1) It first calculates the distance between the first desired tracing dot
(number “1” in Figure) and the user’s point. If the point is within distance threshold
with the tracing dot, we add it to the user’s drawing order list, (2) Next, it calculates
the distance between the next desired tracing dot (number “2” in Figure) and the
user’s point. If the point is within distance threshold with the tracing dot, we add
it to the user’s drawing order list, and (3) Finally, when the distance comparison
finishes, it compares the user’s drawing order list with designated tracing dot order
list. In this case, the drawing gesture was drawn correctly.

our recognizer then determines the user’s shape as correct (Figure 5.4).

5.2.2 User Interface

We target our interface for preschoolers, whom conventionally fall within the age

group of 3-6 years in the United States, are still developing their fine motor skills,

and are preparing for kindergarten. Our target user group additionally includes

children whom are enrolled in kindergarten but are lacking in age-appropriate fine
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Figure 5.5: Our system provides different text feedback to children based on their
shape-correctness. (a): for correct drawing and (b): for incorrect drawing, we en-
courage them to draw again with positive response.

motor skills compared to their peers.

Designing an interface for children has its own unique set of challenges. Interfaces

for such applications should capture and maintain the interests of children that they

hope to cater to, since children can easily lose their focus using applications that

do not gauge their interest [125]. In order to address the challenges of maintaining

children’s attention, we primarily considered the following:

• Ease of use. Since preschoolers are one of the core target users of our appli-

cation, a child should ideally be capable of independently using the sketch user

interface, following an initial guided practice with a parent or teacher.

• Ease of following. The application should include animations and tracing

dots for showing a child how to draw basic shapes and easily explore the prob-

lem space.

• Positive and straightforward feedback. The target users should be pre-

sented with the results of our three recognizers in a developmentally-appropriate

and exciting way. Since informative and immediate feedback are crucial to

children’s motivation, our interface includes text feedback and audio cues that
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specifically cater to children. Furthermore, children can get frustrated easily

from their negative outcomes. Because positive social comparative feedback

was found to enhance learning of children [17], we made our feedback positive

even in the face of negative outcome. For example, if a child’s sketched in-

put is incorrect, then the application reveals the text feedback of “Yay! You

are learning” while simultaneously playing an audio cue corresponding to that

result (Figure 5.5).

Figure 5.6: The application’s sketch user interface. The interface will show the
tracing dots on sketch area when the child could not draw the shape correctly.

Figure 5.6 depicts the user interface of our application containing the following

five areas:

• Question Text Area. Prompts the child to sketch the shape.

• Question Image Area. Displays an animated image of the prompted shape,

as well as instructions on how to draw that shape (Figure 5.8).
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• Feedback Area. Displays the text feedback.

• Sketch Area. The space for children to sketch the shapes.

• Button Area. The collection of interactive buttons consisting of buttons for

erasing and reporting. The report button is used to prompt the application to

check the fine motor skill level from the sketch.

5.2.2.1 Procedure

Figure 5.7 explains the overall procedure of our interface. The application will

let a child attempt to draw the shape correctly three times at maximum before

moving on to the next question, and we designed the application as such so that the

child does not feel frustrate or lose interest due to a single question. Our interface

displays an animated image (Figure 5.8) that shows the correct drawing gesture in

the instructions area for the child to learn or reference. When choosing “correct”

drawing gestures, we referenced books recommended by our field-study preschool

teachers (e.g. [229]).

5.2.2.2 Pedagogical Feedback System

As preschoolers develop their cognitive and fine motor skills, they apply these

skills as they are learning at their own individual pace and approach [182]. We

observed this learning contrast from the children in our user study, where many of

the younger children (i.e., 3-4 years) lack knowledge of how to draw basic shapes

compared to their older counterparts (i.e., 5-8 years). Due to these contrasts in

domain knowledge, we developed the pedagogical feedback system of our application

to support children’s individual learning differences (Figure 5.7). Naka discussed that

repeated hand writing facilitates children’s learning [169]. To help children’s learning,

our pedagogical feedback system evaluates children’s drawing, and asks children to
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Figure 5.7: The application displays different instructions that is dependent on the
the children’s drawing correctness and learning progress.

Figure 5.8: Children can see a view how a shape is drawn from an animated graphic.
The animation displays the visualized model drawing at different stages from start
to finish (a) - (d).
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repeat drawing when they could not draw the shapes correctly. Specifically, our

system first determines the shape and gesture correctness of each child’s sketched

input, and then provides differential instruction based on that determination. If the

child sketched and gestured the shape correctly, the child will proceed to the next

question with a new prompted shape (e.g., the number ‘4’) with corresponding sound

and text feedback. However, if the shape was incorrect, the application displays

tracing dots of the corresponding shape for the children to guide their drawing to

the correct sketching motions on sketch area (Figure 5.6). If instead the user drew

the shape correctly but with an incorrect gesture, the child will be shown animated

tracing dots (Figure 5.9) on sketch area (Figure 5.6). A tracing dot will appear every

second in order to demonstrate to the child what the correct sketching motion is.

Figure 5.9: If the child drew the prompted shape incorrectly, the application displays
a partial visualization of the shape with tracing dots while adding another dot every
second after: (a) 3 seconds, (b) 5 seconds, (c) 9 seconds, and (d) 12 seconds.
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Figure 5.10: A feedback window for parents and teachers to view our system’s as-
sessment of their children’s fine motor skills performance.

Once the child finishes the lesson containing the set of shapes as defined by the

teacher or parent, the application automatically assesses the child’s fine motor skill

level. The post-lesson report screen (Figure 5.10) revealed after the child completes

the lesson allows for the parent or teacher to receive an assessment of the child’s

fine motor skills per overall, curved (e.g. number ‘3’), and linear (e.g. number ‘1’)

shapes as “in training” or “mature”, which provides a richer feedback rather than

current manual assessments [56, 153] that only determine overall fine motor skills and

automatic assessment [143] that only determines fine motor skills per drawing. Our

report’s information can better assist these adults in determining areas of improve-

ment on the child’s sketching performance, such as whether the child is struggling

with curved or linear shapes, or whether the child is conceptually understanding or

skillfully drawing the shapes.
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5.3 Evaluation

5.3.1 Research Question

Prior to designing the methodology of our user study, we were very interested in

first defining research questions that appropriately guided the direction of the study.

We therefore were particularly interested in investigating the following four specific

research questions.

1. At what age do children show notable fine motor skill development?

2. Does our interface classify children’s fine motor skills more accurately than the

conventional method (“star drawing test”), and why does our method work

better?

3. What are the limitations of the conventional assessment method (i.e. “star

drawing test”)? What are the limitations of the conventional assessment

method (i.e. “star drawing test”)?

4. Is there any potential way to extend “star drawing test” features into computer-

based assessment?

5. Do children improve their drawing skills through our interface?

5.3.2 Participants

We conducted a user study with a total of 89 children from, which we collected

1,853 sketches. Table 5.1 explains the demography of our participants. Our hypothe-

sis was that older children (i.e., 5 years or more) would demonstrate better fine motors

skills than younger children (i.e., 3-4 years), so we segmented the users into those

age groups. We recruited the children by sending email with a flyer (Figure 5.11) to
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our university graduate students, staffs, and faculty members. We also advertized

our research at Becky Gate’s Children’s Center and The Children’s Museum of the

Brazos Valley in our university area.

Table 5.1: Demographics of user group
Age Group Group size Male/female # of sketches

3-4 years old 54 24/30 1,082

5-8 years old 35 14/21 771

Total 89 38/51 1,853

Figure 5.11: We recruited the child participants through the flyer.

5.3.3 Procedure

89 children completed the assessments from our interface (Figure 5.6) and 70

children (39: ages 3-4 years and 31: ages 5-8 years) volunteered to complete the
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Figure 5.12: We proceeded our user study with their parents to make the children
to feel comfortable.

additional conventional assessments (i.e., “star drawing test”) (Figure 1.1). We com-

municated with the child to let them know that they can stop performing the user

study at any time. However, every child voluntarily chose to complete the session

and did so in approximately 20 minutes. Since our study participants consisted

entirely of children, they were accompanied by their parents throughout the study

(Figure 5.12).

In order to conduct the user study, we traveled either to the child’s home or

school/children’s museum, or performed the user study at our research lab. In the

case that the study took place at school/museum, we conducted the study in a

private room restricted to the user study participants. Before we began each user

study, we gave a brief explanation of the purpose of our study and the importance

of evaluating fine motor skills.

The user study included one or two sessions. Every child (a total of 89) performed

our interface test study, and 70 children volunteered to take the “star drawing test”

as well. In case of they volunteered, we first conducted the “star drawing test” [153],
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where we asked each child to draw a star using a pencil and paper (Figure 1.1) at three

different speeds – where the child was initially given no instruction, then instructed to

draw fast, and then to draw slow – and measured their drawing durations manually

using a stopwatch. Afterwards, we provided a Surface Pro 2 and a digital stylus

to the child. With our application running on the tablet, we asked the child to

draw shapes using the stylus in the presence of the parent by their side. In order to

ensure that we procured the children’s natural drawings and a clear understanding

of the usefulness of our instruction system, we requested the parent to not help

their children’s drawings. In the case that a child did not know what shape to

draw, the parent was allowed to explain the shapes. The interface test session had

two parts: (1) free drawing without our pedagogical feedback system: the child first

drew basic shapes (i.e., line, two lines, rectangle, square, curve, and triangle) each

twice, which are generally used for assessing their domain knowledge and fine motor

skills at preschool; and (2) instructed drawing with our pedagogical feedback system

(Figure 5.7): they drew digits (1-3) and capital alphabet letters (‘A’,‘B’, and ‘C’),

which we chose for the representative study data. Our interface assessed their fine

motor skill results from each drawing – including the basic shapes – and finally saved

an overview of the results to a spreadsheet.

5.3.4 Research Question 1: Fine Motor Skill Development Per Age

In order to assess children’s fine motor skill development per age, we introduce

the result of (1) “star drawing test”, (2) our interface test, and (3) hook planning

evidence that we found during our user study.

5.3.4.1 Star drawing test

The “star drawing test” uses only drawing time differences for assessing fine

motor skills. However, we collected both drawing time differences and error rates
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(i.e., the number of points that going outside the lines of the figure) for assessing

children’s fine motor skills that was introduced in [153], in order to determine if the

children would demonstrate significant differences in both drawing time differences

and error rates. We manually measured the error rates from the fast-speed drawing

and calculated the drawing time difference between slow- and normal-speed drawings.

As Krapp [147] discussed, children’s motor skills are constantly developing, often at

a rapid pace. We hypothesized that our age group (3-8 years) would have certain

years that have developmental progress. Furthermore, we hypothesized that older

children of 5 years or more will have greater time differences and smaller error rates

compared to younger children of 3-4 years.

Figure 5.13: We found that after age 6 years, the drawing time difference signifi-
cantly increased. From age 5 years, error rates significantly decreased. However, the
standard deviations of drawing time differences and error rates of each age group
were high.

Figure 5.13 explains the average values of time differences and error rates. As

seen in Figure 5.13, the drawing time difference significantly increases from age 6

years and error rate significantly decreases from age 5 years (which explains better
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self-regulation and fine motor skills [56]). We believe the reason is that ages 5 and

6 years are the ages in which children enter kindergarten in the United States, and

thus will have more drawing practices than younger children (3-4 years) and more

advanced physical development. During the user study, the parents of 5- and 6-year-

olds explained that they frequently practice drawing for school-readiness. We believe

that their drawing practice and physical development determined the sharp changes

in their fine motor skill stages.

Figure 5.14: The results of similarity values per by age group (Left: overall similarity
values per age and Right: detailed shape similarity values per age). When we assess
the children’s similarity value per age, about after 5 years, their similarity values
were higher than younger children.

5.3.4.2 Interface test

To assess the fine motor skill development per age, we calculated similarity values

of children’s digital drawings from interface test using the modified Valentine recog-
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nizer [141, 252]. As we explained earlier, the recognizer returns a similarity value

which lies in the [0..1] interval, with 1 denoting that the user’s drawing is identical

to the designated shape. As a result, if the similarity value of the child’s drawing

is closer to 1, it means the child drew a shape correctly. Figure 5.14 and Table 5.2

explains our similarity value results of the children’s digital drawings from our inter-

face test (Left of Figure 5.14: overall similarity value per each age group, Right of

Figure 5.14: detailed shape (i.e. digits: 1, 2, 3, and letters: ‘A’, ‘B’, ‘C’) similarity

values per each age group). When we assessed the children’s similarity value per

age, about after 5 years, their similarity values were higher than younger children.

Furthermore, when we assessed each age group’s standard deviations of similarity

values from the overall shape drawings (Left of Figure 5.14), young children had

higher standard deviations in their similarity values (0.188: age 3 and 0.203: age

4) than older children (lower than 0.15). When we assessed their detailed shape

drawings’ standard deviations in their similarity values (Table 5.2), young children

had higher standard deviations in their similarity values than older children for most

of the shapes.

As a result, we believe that the similarity value results will indicate their fine

motor skills, and after ages 5 and 6 years children will have better fine motor skills

than younger children, which shows the same results with our “star drawing test”.

Table 5.2: Standard deviations of similarity values
Age Group \Shape 1 2 3 A B C Overall

Age 3 0.197 0.162 0.170 0.106 0.142 0.243 0.188

Age 4 0.218 0.183 0.192 0.160 0.192 0.220 0.203

Age 5 0.172 0.123 0.124 0.115 0.125 0.155 0.150

Age 6 0.146 0.064 0.079 0.123 0.067 0.114 0.114

Age 7 0.170 0.102 0.068 0.115 0.111 0.109 0.122

Age 8 0.127 0.124 0.050 0.180 0.062 0.096 0.118
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5.3.4.3 Hook Planning Evidence in Digital Drawings

Our user study result from “star drawing test” and “interface test” explained

the fine motor skill development per each age. While we are performing our user

study, we found another evidence about the fine motor skill stage. We observed that

children’s drawings can show their decision-making process. As Bindman et al. [26]

discussed, as a child begins to write, they must first generate and articulate an idea,

which reinforces vocabulary and background knowledge. In addition, the child must

employ code-related skills to decide which marks to place on the page and in what

order.

We hypothesized that older children would have a better grasp of this decision-

making process in their sketches, because they would have more domain knowledge

than younger children. To determine the level of planfulness exhibited by each child,

we focused on the “hook” feature in sketches (Figure 5.15). When users draw sketches

on sketch panels, the sketches contain unexpected points at the end of their strokes,

which look like “hooks”. Generally, sketch recognizers eliminate these hooks to

avoid unexpected recognition results [141]. However, we found that hooks show their

planfulness by pointing to the next stroke’s start point.

To analyze the hook distributions, we assessed sketch data that has more than

two strokes (i.e. ‘1’, ‘A’,‘B’, square, rectangle, and cross). During the interface test,

each child drew the basic shapes (i.e. square, rectangle, and cross) two times. In

terms of more complex shape drawings (i.e. ‘1’, ‘A’, and ‘B’), we assessed their

sketches when they did not have any tracing dots to know their decision-making

process. Finally, we analyzed 362 sketch data from the user study group (Table 5.1).

When we analyzed their hook features, from age 4 years, the children’s sketches

include hook features that show plan to the next stroke in their sketches (Figure 5.16).
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Figure 5.15: The “hook” (end point of the current stroke) points to the next stroke’s
start point, which explains their decision-making process.

Figure 5.16: The hook features were found from age 4 years’ sketches.
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Figure 5.17: Older children (+5 years) contained hooks in more complex shapes. On
the other hand, age 4 years’ sketches contained hooks in basic shapes.

On the other hand, the youngest children’s (age 3 years) sketches did not have hook

features that show the plans. Age 6-8 years children had higher hook rates in their

sketches than age 4-5 years.

Furthermore, when we analyzed their hook distributions (Table 5.3), most of the

age 4 years contained hooks in basic shapes such as cross or square rather than

more complex shapes (i.e. ‘1’ and ‘B’). On the other hand, older children (+5 years)

contained hooks in more complex shapes. Figure 5.17 shows example of hook features

in age groups. From this finding, we concluded that older children’s drawings show

their decision-making process by “hook” features.

When we compared the similarity values (sketch correctness values) of age 4 years,

the group that contains “hook” feature in their sketches had higher similarity values

than those who do not have (Figure 5.18). From this finding, we believe that “hook”

features could predict their drawing skills. We also concluded that from age 4 years,

they would be familiar with shape drawings and develop their decision-planning

process while developing their domain knowledge.
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Figure 5.18: When we compared the similarity values, those who have hook feature
in their sketches had better drawing skills than those who do not have hook.

5.3.5 Research Question 2: Better Fine Motor Skill Classification Performance

than the Star Drawing Test

As previously mentioned, a major problem with conventional assessment ap-

proaches (i.e., “star drawing test”) is that it does not assess children’s drawing skills,

but instead only measures their drawing time differences. Since our interface’s fine

motor skill classifier assesses drawing skills by “how they drew”, we hypothesized

that our interface would perform better than the “star drawing test”. Therefore, in

order to compare the fine motor skill classification performance between our interface

and the “star drawing test”, we followed the following procedures:

1. To assess children’s actual fine motor skill levels, we employed a style of mea-

surement [44] that we used at the preschool during our initial field study. This
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Table 5.3: Distributions of hooks in shapes
Age Group \Shape 1 A B cross rectangle square

3 years old 0 0 0 0 0 0

4 years old 0 6/28 0 7/32 1/32 3/32

5 years old 0 3/11 1/15 4/18 1/18 0/18

6 years old 2/10 4/9 4/19 8 0 0

7 years old 1/6 3/7 2/13 4/16 0 0

8 years old 0 3/5 4/13 3/10 0 0

measure indicates that as children develop, they have proficiency in drawing

increasingly more shapes. In our study, three experts (i.e., a computer scientist

and two elementary school teachers who both have experience with young chil-

dren’s sketches) met and manually labeled the fine motor skills for each child.

The experts viewed printouts of the basic shape sketches (i.e., line, two lines,

circle, rectangle, square, and triangle) that were drawn on the tablet during

the interface test, and the experts determined their drawing correctness and

labeled their fine motor skill levels as “mature” if the children drew the every

basic shape correctly, and labeled “in training” otherwise.

2. To assess children’s fine motor skills from the “star drawing test”, we first

decided the age 6 years’ mean time of time difference for our threshold, because

we found that after age 6 years, they have sudden changes in drawing time

difference during our study (Figure 5.13). We chose 11.5 seconds to be the

threshold, which was the mean time of age 6 years from the study [56] as they

included more child participants than us. If a child’s drawing time difference is

higher than 11.5 seconds, we then labeled their fine motor skills as “mature”.

3. We assessed children’s fine motor skills from our interface test that the KimCHI

classifier [143] determined their skills as either “in training” or “mature”.
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Table 5.4: Interface Test results of classifying fine motor skills in In Training (t,t’)
vs. Mature (m,m’).

Test
Value

Actual Value

t m total

t′
34 kids 5 kids

39 kids

m′
2 kids 29 kids

31 kids

Table 5.5: Star Drawing Test results of classifying fine motor skills in In Training
(t,t’) vs. Mature (m,m’).

Test
Value

Actual Value

t m total

t′
32 kids 18 kids

50 kids

m′
4 kids 16 kids

20 kids
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Figure 5.19: Our interface determined children’s fine motor skills better than the
“star drawing test”

Figure 5.19 and Table 5.4 and 5.5 show the results of our system compared with

traditional assessments. Our interface classified children’s fine motor skills with a

precision of 0.872, a recall of 0.944, and an f-measure of 0.907. On the other hand,

the “star drawing test” classified their fine motor skills with a precision of 0.64, a

recall of 0.899, and an f-measure of 0.744. This verifies that our interface classifies

fine motor skills better than the traditional “star drawing test” assessment.

5.3.6 Research Question 3: Limitation of Star Drawing Test

During the user study, we observed the limitations of the “star drawing test”.

The first limitation was from high variation of drawing time differences and error

rates in age group. As seen in Figure 5.13, the standard deviations of drawing time

differences of each age group was high, especially in the ages of 6-8 years. Figure 5.14

also shows high variations of similarity values of children’s drawings in age group.

As a result, the high standard deviations make the time differences between ages
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statistically insignificant, except possibly in the case of 5 years, therefore indicating

that time differences and error rates are not reliable features for fine motor skill

evaluation.

The second limitation was from “star drawing test” only measures drawing time

differences. During our user study, one 3 year old child earned a “mature” rating

from the “star drawing test” because the value of the child’s drawing time difference

between slow (28.32 seconds) and normal drawing (15.98 seconds) was 12.34 seconds,

which is higher than our drawing time difference threshold (11.5 seconds), which was

the mean time of age 6 years from the study [56]. However, when we assessed the

child’s drawings, the child could not draw many of the basic shapes such as circle

or square, and our interface reported that the child’s skills were “in training” not

“mature”. Another example is a 6-year-old child who drew every basic shape (e.g.

circle and square) correctly. The child was very careful about drawing when no speed

instructions were given (i.e., normal drawing time of 20.95), so when the child was

instructed to draw slowly, he drew only 4.52 seconds slower. The “star drawing test”

labeled this child as “in training” because the initial conscientiousness meant that

the time difference did not meet the 11.5 seconds threshold for “mature.” On the

other hand, our interface determined the child’s fine motor skills as “mature”.

5.3.7 Research Question 4: Potential Way to Extend Star Drawing Test Features

into Computer-based Assessment

The previous section explains that “star drawing test” has limitation, because

they are determining fine motor skills by drawing time difference. As there are many

variations in their time drawings, determining optimal threshold for determining fine

motor skill cannot be standardized.

We hypothesized that if we extend those five features (normal/fast/slow drawing
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times, time difference, and error rate) in “star drawing test” into computer-based

classifier, we would be able to determine their fine motor skills and age information.

To do this, using those features from our child participants (Table 5.6), we tried to

differentiate age information with Weka system [108].

Table 5.6: Demographics of user group
Age Group Group size

3 years old 19

4 years old 20

5 years old 9

6 years old 10

7 years old 8

8 years old 4

Total 70

We first calculated linear correlation values between five features used in “star

drawing test” with age information (i.e. age 3-8 years). Table 5.7 describes the

correlation between those features (x value) and age information (y value). Every

feature except “slow drawing” had lower than 5% of p-value.

Table 5.7: Regression output for classifying ages for curved shape.
Feature Multiple R-value P-value

Time Difference 0.570630122 2.50313E-07

Error Rate 0.682180568 1.49732E-10

Normal Drawing 0.047115572 0.04711557

Slow Drawing 0.052110009 0.668341933

Fast Drawing 0.49958023 1.06857E-05

Next, we applied supervised Resample filter in Weka system to make their age

group into equal distribution by generating the sample with replacement or without
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replacement. To know the optimal subset for deciding age information, we applied

BestFit selection built-in to the Weka system [108] with 10-fold cross-validation from

four feature sets (normal/fast drawing, time difference, error rate) used in “star

drawing test” except for slow drawing time, which had higher than 5% of p-value

during our linear correlation procedure. Table 5.8 shows that selected feature for

determining age information was only “time difference”. As the current “star drawing

test” only uses time difference for assessing fine motor skills, this study validates

that time difference is the optimal feature set to deciding fine motor skills and age

information.

Table 5.8: Our optimal features for classifying ages within children.

Feature

normal drawing time (0%) +
fast drawing time (0%) +
time difference (100%) +
error rate (0%)

To know the best classifier to determine their age (fine motor skill) information,

we tried seven classifiers: Bayes Net, BFTree, MultilayerPerceptron, Naive Bayes,

Random Tree, Random Forest, and RBFNetwork. To find the optimal classifier for

recognizing children’s age information by sketches, we took the selected feature sets

and found that the Random Forest classifier performed better than other classifiers

(Table 5.9) with 10-fold cross-validation.

Using those selected features, we were able to determine children’s curvature-

drawing (fine motor) skills with a precision of 0.762, recall of 0.743, and an f-measure

of 0.743 with 10-fold cross-validation with Random Forest.
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Table 5.9: Best top-performing techniques for classifying age using Star Drawing
Test
Classifier (Accuracy)

Random Forest (74.29%)

Random Tree (72.86%)

RBFNetwork (65.71%)

BFTree (52.86%)

MultiPerceptron (51.43%)

Naive Bayes (47.14%)

NBTree (44.29%)

Bayes Net (24.29%)

From this study, we concluded that features in “star drawing test” has high po-

tential to improve its fine motor skill assessment ability by computer-based classifier.

However, as our study data set has many variations in age groups, we need to recruit

more child participants to validate this study.

5.3.8 Research Question 5: Drawing Skill Improvement with EasySketch

In order to assess whether or not children improved their drawing skills with our

interface, we compared similarity values from the modified Valentine recognizer [141,

252] of the sketches before (i.e., their original drawing) and after following tracing

dots. As we described earlier, if the similarity value of the child’s drawing is closer

to 1, it means the child drew a shape correctly. As a result, if the similarity value

increases after following tracing dots, it means they can draw shapes better than

before tracing dots (better drawing skills).

When we grouped the children as young children (age 3-4 years) and older chil-

dren (age 5+ years), each group improved their drawing skills with higher similarity

values after following the tracing dots (Figure 5.20). We also noticed that young

children remarkably improved their drawing skills by 0.268. Their parents positively
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Figure 5.20: After following tracing dots, young children’s similarity value enhanced
by 0.268 and older children’s similarity value enhanced by 0.166.

evaluated our interface that improves their children’s drawing skills. The example of

the feedback from their parents were:

• Parent of child 1 (age 3 years): At first time, she could not draw the

alphabet ‘A’ correctly. And, I didn’t believe that she would follow tracing dots

well. However, when the interface showed the tracing dots, my kid followed

the tracing dots and finally drew the ‘A’ !

• Parent of child 9 (age 3 years): It is hard to teach how to draw shapes on

paper to my kid because she does not enjoy drawing. However, she enjoyed this

software because it runs on computer. The tracing dots were easy to follow.
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6. CONCLUSION

Pen-based assessments such as “star drawing test [145, 167]” have been used

to assess children’s fine motor skills and school readiness. However, the activities

are time-consuming for researchers and prone to human error when implementing

manual measurements [143]. Furthermore, the current assessment methods do not

analyze children’s sketches, but instead only measures their drawing durations. In

order to assess children’s fine motor skills more correctly and reduce the researchers’

manual efforts, we introduced our digital-based assessments.

6.1 KimCHI and KimCHI2: Fine Motor Skill Classifiers

To solve the limitations of the current paper-based fine motor skill assessments,

we introduced our fine motor skill classifiers (KimCHI [142, 143, 144] and KimCHI2).

The KimCHI classifier determines children’s fine motor skills based on their overall

drawing skills. On the other hand, the KimCHI2 classifier determines their fine motor

skills based on their curvature- and corner-drawing skills. We generated 130 sketch

features proposed by Cali [94], Hse [131], Long [155], Paulson [177], and Rubine [215].

From the sketch features, we analyzed how children are drawing.

The KimCHI classifier determined children’s age information with a precision of

.909, recall of .909, p-value of 0.001, and an f-measure of .904 with 10-fold cross-

validation and gender information with a precision of 0.757, recall of 0.73, p-value

of 0.001, and an f-measure of 0.728 with 10-fold cross-validation. We found that

curvature-related features such as DCR were chosen for age classification and density

and curvature-related features were chosen for gender classification. From the result,

we concluded that better fine motor skill children can draw curvatures well, and girls

are drawing more considerably than boys.
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The KimCHI2 classifier determined children’s curvature-drawing skills with a

precision of 0.82, recall of 0.82, and an f-measure of 0.82 with 10-fold cross-validation,

and corner-drawing skills with a precision of 0.783, recall of 0.78, and an f-measure of

0.781 with 10-fold cross-validation. We found that curvature-related sketch features

such as DCR were chosen for curvature-drawing skill classification and line-drawing

related sketch features such as Polyline Test were chosen for corner-drawing skill

classification. Furthermore, we proved that sketch features (DCR and Polyline Test)

can explain their fine motor skill developmental stages.

6.2 EasySketch: A Sketch-based Educational Interface

In order to assess children’s fine motor skills more correctly and reduce the re-

searchers’ manual efforts, we designed, developed, and evaluated a sketch-based edu-

cational interface to automate assessment and provided more detailed analysis. The

interface both determines children’s fine motor skills and teaches children how to

draw and provides children’s fine motor skills and school readiness information to

parents and teachers. During the user study, we found that our interface assessed

children’s fine motor skills better than the conventional approach (i.e. star drawing

test), and the children enhanced their drawing skills through our pedagogical feed-

back system. Furthermore, during our user study, we found that there is a period

of peak growth at age five; five year old children have markedly better fine motor

skills than younger children (i.e. 3-4 years). We found another evidence that hook

features in their sketches can explain their decision-making process. We believe that

their drawing practice and physical development play a strong role in the sharp

changes in their fine motor skill stages. As children become more exposed to using

pen and touch interaction [134, 168, 192], we believe that this research can assist

researchers, designers, and educators in assessing children’s fine motor skill stages
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on digital drawings and also help children to support their self-regulation skills and

school-readiness.
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7. FUTURE WORK

This research presented our research that classifies children’s fine motor skills

based on digital drawings. During our user study using EasySketch, we found that

our interface classified children’s fine motor skills better than the conventional ap-

proach and improved children’s drawing skills. To further validate the usability of

our interface, we are planning to employ our interface to preschool or clinic and con-

ducting a longitudinal study. From the study, we will further test our interface and

its impact on improving young children’s fine motor skills and school readiness.
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Table A.1: Regression output for classifying ages for curved shape.
Feature R-value P-value
Average distance between closest point
to each corner of the bounding box [177]

0.113682958 0.028784241

Average curvature of the stroke [177] 0.263677214 2.65925E-07
The error of the best fit line of the
direction graph [177]

0.259521329 4.14678E-07

Direction change ratio [177] 0.233121645 5.85388E-06
Get the distance (normalized by bounding box size)
between the furthest corner and the stroke [177]

0.173678978 0.00079362

The endpoint to stroke length ratio of the
stroke [177]

0.110142894 0.034181857

The angle of the major axis relative to
center [177]

0.014698795 0.054412247

The error of the best fit line of the direction
graph [177]

0.134253699 0.00972667

Max distance between closest point and
each corner [177]

0.173678978 0.00079362

The error of the best fit line of the direction
graph [177]

0.277952166 5.45174E-08

The maximum curvature to average
curvature value [177]

0.076639429 0.141192304

Minimum distance between closest point
and each corner [177]

0.131074535 0.011614859

The normalized distance between direction
extremes [177]

0.191202697 0.000215939

The number of revolutions (based on direction graph)
that the stroke makes [177]

0.042240002 0.41787405

Percentage of Direction Window Passed [177] 0.429574005 4.779E-18

Slope of the direction graph [177] 0.00034616 0.994705281
Standard deviation between closest point and
each corner [177]

0.00034616 0.994705281

Length of the stroke [177] 0.116469329 0.025066163

The error of the line fit [177] 0.084867853 0.103126068

The least squares error of the fit / stroke length [177] 0.019785905 0.704436256

Get the error of the arc fit [177] 0.062529641 0.230183479

The estimated radius of the arc [177] 0.065723806 0.207197506

Get the arc to area ratio [177] 0.058100684 0.264957845

The angle between the endpoint [177] 0.131360577 0.011432611

Curve Error [177] 0.272028581 1.06401E-07

Get the error of the poliline fit [177] 0.100330984 0.053824921

Number of strokes [177] 0.137832969 0.007931255
Get the percentage of substrokes that passed
a line test [177]

0.010793533 0.836071345

Get the error of the elipse fit [177] 0.141960058 0.006232676

Get the error of the circle fit [177] 0.225811535 1.1564E-05

Get the major axis to minor axis length ratio [177] 0.205936287 6.58739E-05

Get the error of the spiral fit [177] 0.059328423 0.254975813
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Table A.2: Regression output for classifying ages for curved shape (Continued).
Feature R-value P-value
Get the percentage of the radius test
that passed [177]

0.037928673 0.467001935

Get the average radius to bounding box
radius ratio [177]

0.065678965 0.207508267

Get the max distance from a point to the
center divided by the average radius [177]

0.041794428 0.42280639

Distance between two points that meet
at the head [177]

0.041620219 0.424744019

Size difference between last two strokes
(the head) [177]

0.00258766489460978 0.960436053

Number of intersections between the ends of
the head and the shaft [177]

0.016617398 0.750043139

The error of the rectangle fit [177] 0.117379857 0.023944544
Get the major axis to bounding box diagonal
length ratio [177]

0.230277584 7.64936E-06

Perimeter (of bounding box) to stroke
length ratio [177]

0.081134085 0.119248893

Number of segmented strokes [177] 0.100330984 0.053824921
Stroke length to perimeter (of bounding box)
ratio [177]

0.081134085 0.119248893

Get the width to height ratio of the square
[177]

0.1014713 0.051143754

Get the error of the diamond fit [177] 0.120366477 0.120366477
Get the perimeter (of bounding box) to
stroke length ratio [177]

0.074933437 0.150286724

Get the major axis to bounding box diagonal
length ratio [177]

0.195518717 0.000153868

Get the width to height ratio of the square fit
used for the diamond fit [177]

0.000153868 2.95667E-05

Stroke density [177] 0.018029853 0.729593915

Height to width ratio of bounding box [177] 0.122416134 0.01849183

Wave segment size [177] 0.210589518 4.44692E-05
Get the percentage of the slope test
that passed [177]

0.343231139 1.14392E-11

Get the ratio between the smallest and
largest segment of the wave segmentation
[177]

0.081090581 0.119447723

Get the ratio between the smallest segment
and the sum [177]

0.020716072 0.691237739

Get the angle between the middle segments
[177]

0.060179196 0.248213324

Get the percentage of the horizontal
alignment test that passed [177]

0.03835399 0.462017932

Get average slope of first and last segment
[177]

0.057264329 0.271909402

Get percentage of slope test that passed [177] 0.026332867 0.613631549
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Table A.3: Regression output for classifying ages for curved shape (Continued).
Feature R-value P-value
Ratio between largest and smallest
segment [177]

0.344785603 9.1113E-12

Density of sub dot [177] 0.270090109 1.31975E-07

Number of revolutions of sub dot [177] 0.24804383 1.36003E-06

Convex hull area / bounding box area [94] 0.249782597 0.249782597

Convex hull area / enclosing rectangle area [94] 0.111222683 0.032450891

Largest quadrilateral area / convex hull area [94] 0.23215282 6.41484E-06
Largest quadrilateral area / enclosing rectangle
area [94]

0.165988905 0.00135385

Largest triangle area / bounding box area [94] 0.062714431 0.228806368

Largest triangle area / convex hull area [94] 0.145829952 0.004944247

Largest triangle area / enclosing rectangle area [94] 0.125800183 0.015467094

Largest triangle area / largest quadrilateral area [94] 0.024830167 0.024830167
Absolute value of bounding box’s Y difference /
bounding box’s X difference [94]

0.096758123 0.096758123

Enclosing rectangle’s distance ratio [94] 0.168195064 0.168195064
Absolute value of bounding box’s X difference /
x value movement in sketch [94]

0.090234379 0.083032138

Number of points inside the triangle [94] 0.145319772 0.005099109

Convex hull area2 / convex hull area [94] 0.005099109 0.000181278

Convex hull perimeter / stroke length [94] 0.017185268 0.017185268
Convex hull perimeter / bounding box
perimeter [94]

0.00010985 0.00010985

Convex hull perimeter / enclosing rectangle
perimeter [94]

0.23136724 6.90694E-06

Largest quadrilateral perimeter /
convex hull perimeter [94]

0.221780729 1.66732E-05

Largest quadrilateral perimeter /
enclosing rectangle perimeter [94]

0.238289194 3.5692E-06

Largest triangle perimeter / bounding box
perimeter [94]

0.090910811 0.080740543

Largest triangle perimeter / convex hull
perimeter [94]

0.141776629 0.006300618

Largest triangle perimeter /
enclosing rectangle perimeter [94]

0.200235333 0.000105355

Largest triangle perimeter / quadrilateral
perimeter [94]

0.017054278 0.743698604

Stroke Length / convex hull perimeter [94] 0.077389987 0.077389987
Difference of bounding boxes’ largest Y value
and smallest Y value / y value movement
in sketch [94]

0.180140871 0.000497906

Zernike1 [131] 0.135233607 0.009202371

Zernike2 [131] 0.249983407 1.11717E-06

Zernike3 [131] 0.11798451 0.11798451

Zernike4 [131] 0.061259981 0.239804171
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Table A.4: Regression output for classifying ages for curved shape (Continued).
Feature R-value P-value

Zernike5 [131] 0.184072207 0.000372017

Zernike6 [131] 0.230124243 7.75975E-06

Zernike7 [131] 0.220361055 1.89363E-05

Zernike8 [131] 0.172071518 0.172071518

Zernike9 [131] 0.140079902 0.006961261

Zernike10 [131] 0.171806383 0.000905716

Zernike11 [131] 0.016671153 0.749261578

Zernike12 [131] 0.054624464 0.294661706

Zernike13 [131] 0.137700525 0.007992023

Zernike14 [131] 0.16088433 0.001906346

Zernike15 [131] 0.162294469 0.001736064

Zernike16 [131] 0.180474163 0.000485866

Zernike17 [131] 0.104514244 0.044529238

Zernike18 [131] 0.048602975 0.351189459

Zernike19 [131] 0.203125296 8.31719E-05

Zernike20 [131] 0.155760091 0.002661714

Zernike21 [131] 0.159086121 0.002145625

Zernike22 [131] 0.118783496 0.022300451

Zernike23 [131] 0.08581921 0.099307152
Calculates the cosine of the
initial angle [155]

0.08638339 0.097096066

Calculates the sine of the
initial angle [155]

0.053945874 0.300709895

Get the length of the diagonal of the
bounding box [155]

0.106098436 0.106098436

Get the angle of the diagonal of the
bounding box [155]

0.021571486 0.679181754

Calculates the distance between the
first and last point [155]

0.143400253 0.005721646

Calculates the cosine between the
first and last point [155]

0.102623767 0.048548112

Calculates the sine between the
first and last point [155]

0.091324294 0.079365128

Computes the total gesture length [155] 0.117066326 0.024325768

Sum of angle changes between points [155] 0.076115769 0.076115769
Computes the sum of the absolute value of the angles
at each mouse point [155]

0.238061488 3.64873E-06

Computes the sum of the squared values of the angles
at each mouse point [155]

0.216312915 0.216312915

Calculates the gesture aspect, which is abs
(45 degrees - angle of bounding box) [155]

0.096412181 0.063944299

The sum of gesture intersegment angles whose
absolute value is less than 19 degrees [155]

0.247402646 1.45089E-06

Returns the total angle traversed /
total length of gesture stroke [155]

0.065799778 0.206671759
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Table A.5: Regression output for classifying ages for curved shape (Continued).
Feature R-value P-value
A density metric for the gesture stroke that uses
the stroke’s length and distance between the
first and last point [155]

0.047378397 0.363472366

A density metric for the gesture stroke that
uses the stroke’s length and bounding box size [155]

0.077266975 0.137955036

How “open” or spaced out is a gesture [155] 0.165827156 0.001368817

Get the area of the bounding box [155] 0.092533393 0.075451735

The log of the bounding box area [155] 0.087223949 0.093874723
Returns the total angle divided by the
total absolute angle [155]

0.05710878 0.273215875

Log of the total length [155] 0.088185703 0.090294239

Log of the aspect [155] 0.083870857 0.107252033

Count of corners 0.14279493 0.005931666

Stroke length / bounding box area 0.01694341 0.745307121
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Table B.1: Regression output for classifying ages for corner shape.
Feature R-value P-value
Average distance between closest point
to each corner of the bounding box [177]

0.258645139 8.6129E-09

Average curvature of the stroke [177] 0.146657211 0.001257388
The error of the best fit line of the
direction graph [177]

0.236242493 1.58757E-07

Direction change ratio [177] 0.102381591 0.024738316
Get the distance (normalized by bounding box size)
between the furthest corner and the stroke [177]

0.121098502 0.007842449

The endpoint to stroke length ratio of the
stroke [177]

0.291114495 7.53803E-11

The angle of the major axis relative to
center [177]

0.065864085 0.149212062

The error of the best fit line of the direction
graph [177]

0.065344127 0.152456167

Max distance between closest point and
each corner [177]

0.121098502 0.007842449

The error of the best fit line of the direction
graph [177]

0.071123165 0.119288371

The maximum curvature to average
curvature value [177]

0.05989277 0.05989277

Minimum distance between closest point
and each corner [177]

0.25386394 0.25386394

The normalized distance between direction
extremes [177]

0.054350733 0.054350733

The number of revolutions (based on direction graph)
that the stroke makes [177]

0.124237847 0.006367394

Percentage of Direction Window Passed [177] 0.011335189 0.011335189

Slope of the direction graph [177] 0.023770443 0.023770443
Standard deviation between closest point and
each corner [177]

0.232989191 2.36808E-07

Length of the stroke [177] 0.127672957 0.127672957

The error of the line fit [177] 0.082924691 0.082924691

The least squares error of the fit / stroke length [177] 0.125817484 0.005723742

Get the error of the arc fit [177] 0.038356679 0.401274169

The estimated radius of the arc [177] 0.079574416 0.079574416

Get the arc to area ratio [177] 0.075271255 0.099173843

The angle between the endpoint [177] 0.162731439 0.000338881

Curve Error [177] 0.265424525 3.37068E-09

Get the error of the poliline fit [177] 0.264977542 3.58869E-09

Number of strokes [177] 0.295667976 3.6874E-11
Get the percentage of substrokes that passed
a line test [177]

0.299690307 1.93999E-11

Get the error of the elipse fit [177] 0.097233513 0.033006603

Get the error of the circle fit [177] 0.032454389 0.477632547

Get the major axis to minor axis length ratio [177] 0.099534243 0.029057962

Get the error of the spiral fit [177] 0.07146832 0.11750167
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Table B.2: Regression output for classifying ages for corner shape (Continued).
Feature R-value P-value
Distance between two points that meet
at the head [177]

0.05107491 0.263577453

Size difference between last two strokes
(the head) [177]

0.121986336 0.007397089

Number of intersections between the ends of
the head and the shaft [177]

0.041277095 0.366362988

The error of the rectangle fit [177] 0.149003396 0.00104652
Get the major axis to bounding box diagonal
length ratio [177]

0.127499771 0.005103137

Perimeter (of bounding box) to stroke
length ratio [177]

0.099744622 0.028718015

Number of segmented strokes [177] 0.264977542 3.58869E-09
Stroke length to perimeter (of bounding box)
ratio [177]

0.099744622 0.028718015

Get the width to height ratio of the square
[177]

0.017134903 0.707773884

Get the error of the diamond fit [177] 0.135217824 0.002963483
Get the perimeter (of bounding box) to
stroke length ratio [177]

0.165534439 0.000266154

Get the major axis to bounding box diagonal
length ratio [177]

0.221565679 9.21034E-07

Get the width to height ratio of the square fit
used for the diamond fit [177]

0.211469835 2.88495E-06

Stroke density [177] 0.038999957 0.393418074

Height to width ratio of bounding box [177] 0.06936398 0.128726533

Wave segment size [177] 0.171023945 0.000163974
Get the percentage of the slope test
that passed [177]

0.262479123 5.08334E-09

Get the ratio between the smallest and
largest segment of the wave segmentation
[177]

0.032571788 0.476040362

Get the ratio between the smallest segment
and the sum [177]

0.107854927 0.107854927

Get the angle between the middle segments
[177]

0.024511457 0.59177881

Get the percentage of the horizontal
alignment test that passed [177]

0.021058697 0.645011925

Get average slope of first and last segment
[177]

0.041985797 0.041985797

Get percentage of slope test that passed [177] 0.115583542 0.011185265
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Table B.3: Regression output for classifying ages for corner shape (Continued).
Feature R-value P-value
Ratio between largest and smallest
segment [177]

0.066432687 0.145724869

Density of sub dot [177] 0.157255699 0.000537227

Number of revolutions of sub dot [177] 0.137752942 0.002463871

Convex hull area / bounding box area [94] 0.153679689 0.000720127

Convex hull area / enclosing rectangle area [94] 0.035716802 0.434483853

Largest quadrilateral area / convex hull area [94] 0.473701784 2.83214E-28
Largest quadrilateral area / enclosing rectangle
area [94]

0.246652074 4.24549E-08

Largest triangle area / bounding box area [94] 0.391388683 4.67116E-19

Largest triangle area / convex hull area [94] 4.24549E-08 0.001012074

Largest triangle area / enclosing rectangle area [94] 0.318522766 8.38171E-13

Largest triangle area / largest quadrilateral area [94] 0.036043575 0.430289216
Absolute value of bounding box’s Y difference /
bounding box’s X difference [94]

0.023160739 0.612364621

Enclosing rectangle’s distance ratio [94] 0.070834776 0.120797437
Absolute value of bounding box’s X difference /
x value movement in sketch [94]

0.147750943 0.001154644

Number of points inside the triangle [94] 0.251192224 2.34336E-08

Convex hull area2 / convex hull area [94] 0.048396645 0.28947209

Convex hull perimeter / stroke length [94] 0.128263232 0.004842042
Convex hull perimeter / bounding box
perimeter [94]

0.293175941 5.46204E-11

Convex hull perimeter / enclosing rectangle
perimeter [94]

0.220567994 1.03356E-06

Largest quadrilateral perimeter /
convex hull perimeter [94]

0.445422351 8.07107E-25

Largest quadrilateral perimeter /
enclosing rectangle perimeter [94]

0.326828388 1.95092E-13

Largest triangle perimeter / bounding box
perimeter [94]

0.359954259 3.68161E-16

Largest triangle perimeter / convex hull
perimeter [94]

0.052587871 0.249675523

Largest triangle perimeter /
enclosing rectangle perimeter [94]

0.283402153 2.45877E-10

Largest triangle perimeter / quadrilateral
perimeter [94]

0.108424844 0.01737042

Stroke Length / convex hull perimeter [94] 0.140010758 0.00208493
Difference of bounding boxes’ largest Y value
and smallest Y value / y value movement
in sketch [94]

0.070350678 0.123364028

Zernike1 [131] 0.142715431 0.001701474

Zernike2 [131] 0.201094676 8.81553E-06

Zernike3 [131] 0.162673384 0.000340566

Zernike4 [131] 0.031996227 0.483873921
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Table B.4: Regression output for classifying ages for corner shape (Continued).
Feature R-value P-value

Zernike5 [131] 0.071299126 0.118374871

Zernike6 [131] 0.166304539 0.000248894

Zernike7 [131] 0.348197868 3.71645E-15

Zernike8 [131] 0.129000308 0.004601465

Zernike9 [131] 0.104123841 0.022378375

Zernike10 [131] 0.149259954 0.001025557

Zernike11 [131] 0.043631195 0.339642514

Zernike12 [131] 0.15883039 0.000471264

Zernike13 [131] 0.025179021 0.581723073

Zernike14 [131] 0.019305043 0.672783868

Zernike15 [131] 0.185054068 4.43982E-05

Zernike16 [131] 0.10485408 0.02144882

Zernike17 [131] 0.032605561 0.475582872

Zernike18 [131] 0.207655456 4.37873E-06

Zernike19 [131] 0.088625941 0.0520784

Zernike20 [131] 0.074860305 0.101037504

Zernike21 [131] 0.074728135 0.101642769

Zernike22 [131] 0.028955408 0.526392667

Zernike23 [131] 0.382684987 3.18565E-18
Calculates the cosine of the
initial angle [155]

0.175474888 0.000109503

Calculates the sine of the
initial angle [155]

0.093360801 0.04068688

Get the length of the diagonal of the
bounding box [155]

0.085877972 0.059832136

Get the angle of the diagonal of the
bounding box [155]

0.113592934 0.0126712

Calculates the distance between the
first and last point [155]

0.342848352 1.03105E-14

Calculates the cosine between the
first and last point [155]

0.082459739 0.07078474

Calculates the sine between the
first and last point [155]

0.058443307 0.200713758

Computes the total gesture length [155] 0.126853584 0.005333964

Sum of angle changes between points [155] 0.084072333 0.065429012
Computes the sum of the absolute value of the angles
at each mouse point [155]

0.302459951 1.2394E-11

Computes the sum of the squared values of the angles
at each mouse point [155]

0.28053494 3.78126E-10

Calculates the gesture aspect, which is abs
(45 degrees - angle of bounding box) [155]

0.019831779 0.664393113

The sum of gesture intersegment angles whose
absolute value is less than 19 degrees [155]

0.300963631 1.57977E-11

Returns the total angle traversed /
total length of gesture stroke [155]

0.035123933 0.442154047
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Table B.5: Regression output for classifying ages for corner shape (Continued).
Feature R-value P-value
A density metric for the gesture stroke that uses
the stroke’s length and distance between the
first and last point [155]

0.088280216 0.053005291

A density metric for the gesture stroke that
uses the stroke’s length and bounding box size [155]

0.101748766 0.025647189

How “open” or spaced out is a gesture [155] 0.344857629 7.04416E-15

Get the area of the bounding box [155] 0.109644724 0.01614165

The log of the bounding box area [155] 0.065706415 0.150190194
Returns the total angle divided by the
total absolute angle [155]

0.059795384 0.190475186

Log of the total length [155] 0.093319091 0.040777194

Log of the aspect [155] 0.010860388 0.812211379

Count of corners 0.323223271 3.69345E-13

Stroke length / bounding box area 0.039083681 0.392402463
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Table C.1: Star Drawing Test results

age in
yrs.

(Gender)

time of no
instruction
(seconds)

time of
fast drawing

(seconds)

time of
slow drawing

(seconds)

drawing
time

difference
(seconds)

# of
error rate

1 3 (Female) 26.8 10.53 29.46 2.66 34

2 3 (Female) 3.76 4.45 4.51 0.75 19

3 3 (Female) 23.58 6.48 17.13 -6.45 16

4 3 (Female) 30.3 13.3 13.11 -17.19 14

5 3 (Female) 16.25 6.18 16.28 0.03 15

6 3 (Female) 17.66 10.59 16.21 -1.45 42

7 3 (Female) 13.86 7.53 19.16 5.3 20

8 3 (Female) 13.85 16.48 8.75 -5.1 12

9 3 (Male) 15.43 14.53 18.53 3.1 17

10 3 (Male) 10.61 3 14.9 4.29 15

11 3 (Male) 15.03 8.33 13.31 -1.72 19

12 3 (Male) 27.13 6.53 12.61 -14.52 33

13 3 (Male) 27.46 13.16 20.45 -7.01 44

14 3 (Male) 25.7 9.13 16 -9.7 24

15 3 (Female) 12.1 12.98 20.46 8.36 14

16 3 (Female) 11.7 4.8 14.08 2.38 18

17 3 (Female) 28.03 9.28 24.15 -3.88 16

18 3 (Male) 21.05 8.06 10.28 -10.77 20

19 3 (Male) 25.06 25.45 36.28 11.22 14

20 4 (Female) 19.18 8.21 20.4 1.22 21

21 4 (Female) 14.53 10.63 20.32 5.79 8

22 4 (Female) 14.33 5.58 22.18 7.85 12

23 4 (Female) 23 13.11 31.7 8.7 11

24 4 (Female) 19.4 6.9 24.35 4.95 11

25 4 (Female) 12.75 5.93 22.95 10.2 14

26 4 (Female) 20.4 10 26.53 6.13 12

27 4 (Female) 15.65 6.33 14.8 -0.85 10

28 4 (Male) 15.98 14.41 28.32 12.34 16

29 4 (Male) 18.01 13.35 14.85 -3.16 13

30 4 (Male) 7.88 7.4 17.88 10 28

31 4 (Male) 18.75 7.43 13.85 -4.9 15

32 4 (Male) 21.91 6.21 24.51 2.6 17

33 4 (Male) 25.73 3.75 47.23 21.5 20

34 4 (Male) 15.18 7.46 56.1 40.92 7

35 4 (Male) 30.77 10.11 31.23 0.46 8

36 4 (Male) 14.92 6.85 30.72 15.8 16

37 4 (Male) 15.4 9.93 21.35 5.95 17

38 4 (Male) 11.55 5.4 9.78 -1.77 13

39 4 (Male) 32.68 17.4 30.17 -2.51 10
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Table C.2: Star Drawing Test results (Continued).

age in
yrs.

(Gender)

time of no
instruction
(seconds)

time of
fast drawing

(seconds)

time of
slow drawing

(seconds)

drawing
time

difference
(seconds)

# of
error rate

40 5 (Female) 8.98 5.75 13.86 4.88 10

41 5 (Female) 21.81 5.36 17.18 -4.63 2

42 5 (Female) 26.63 27.28 29.86 3.23 2

43 5 (Female) 16.05 7.66 15.91 -0.14 8

44 5 (Female) 22.13 10.25 23.45 1.32 3

45 5 (Female) 11.86 8.4 17.52 5.66 2

46 5 (Female) 16.71 4.1 26.6 9.89 17

47 5 (Female) 16.76 14.73 20.86 4.1 6

48 5 (Female) 15.36 4.31 49.73 34.37 16

49 6 (Female) 22.81 8.56 50.8 27.99 0

50 6 (Female) 20.95 17.46 25.47 4.52 0

51 6 (Female) 21.36 11.38 30.97 9.61 7

52 6 (Female) 20.96 8.2 26.81 5.85 14

53 6 (Female) 12.68 6.63 28.67 15.99 5

54 6 (Female) 18.41 10.48 33.58 15.17 7

55 6 (Female) 6.81 3.96 3.51 -3.3 5

56 6 (Female) 19.91 8.9 68.4 48.49 0

57 6 (Male) 13.35 7.4 20.91 7.56 17

58 6 (Male) 26.78 10.4 75.23 48.45 2

59 7 (Female) 16.71 9.41 38.13 21.42 2

60 7 (Female) 17.78 10.05 37.27 19.49 0

61 7 (Female) 19.76 8.05 42.48 22.72 0

62 7 (Female) 16.88 8.28 57.37 40.49 0

63 7 (Male) 11.71 8.63 18.85 7.14 7

64 7 (Male) 24.53 6.56 68.82 44.29 9

65 7 (Male) 11.53 5.13 28.52 16.99 9

66 7 (Male) 20.38 9.23 38.28 17.9 8

67 8 (Female) 7.58 4.25 13.38 5.8 5

68 8 (Male) 36.72 19.53 66.12 29.4 0

69 8 (Male) 16.41 7.06 18.61 2.2 13

70 8 (Male) 17.76 7.3 48.77 31.01 0
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Table C.3: Interface Test results
Age in

yrs.
(Gender)

Overall fine motor
skill classifying

result

Curvature fine motor
skill classifying

result

Line fine motor
skill classifying

result

1 3 (Female) In training In training In training

2 3 (Female) In training In training In training

3 3 (Female) In training In training In training

4 3 (Female) In training In training In training

5 3 (Female) In training In training In training

6 3 (Female) In training In training In training

7 3 (Female) In training In training In training

8 3 (Female) In training In training In training

9 3 (Female) In training In training In training

10 3 (Female) In training In training In training

11 3 (Female) In training In training In training

12 3 (Female) In training In training In training

13 3 (Female) In training In training In training

14 3 (Female) In training In training In training

15 3 (Female) In training In training In training

16 3 (Female) In training In training In training

17 3 (Female) In training In training In training

18 3 (Female) In training In training In training

19 3 (Female) In training In training In training

20 3 (Female) In training In training In training

21 3 (Female) In training In training In training

22 3 (Male) In training In training In training

23 3 (Male) In training In training In training

24 3 (Male) In training In training In training

25 3 (Male) In training In training In training

26 3 (Male) In training In training In training

27 3 (Male) In training In training In training

28 3 (Male) In training In training In training

29 3 (Male) In training In training In training

30 3 (Male) In training In training In training

31 3 (Male) In training In training In training

32 4 (Female) In training In training In training

33 4 (Female) In training In training Mature

34 4 (Female) In training In training In training

35 4 (Female) In training In training In training

36 4 (Female) Mature Mature Mature

37 4 (Female) Mature In training Mature

38 4 (Female) In training In training In training

39 4 (Female) In training In training In training

40 4 (Female) In training In training In training

41 4 (Female) In training In training Mature
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Table C.4: Interface Test results (Continued)
Age in

yrs.
(Gender)

Overall fine motor
skill classifying

result

Curvature fine motor
skill classifying

result

Line fine motor
skill classifying

result

42 4 (Male) Mature In training Mature

43 4 (Male) In training In training In training

44 4 (Male) In training In training In training

45 4 (Male) In training In training In training

46 4 (Male) In training In training In training

47 4 (Male) In training In training In training

48 4 (Male) Mature In training In training

49 4 (Male) Mature In training Mature

50 4 (Male) In training In training In training

51 4 (Male) In training In training In training

52 4 (Male) In training In training Mature

53 4 (Male) In training In training Mature

54 4 (Male) Mature In training Mature

55 5 (Female) Mature In training Mature

56 5 (Female) In training In training In training

57 5 (Female) Mature In training Mature

58 5 (Female) Mature In training In training

59 5 (Female) Mature In training In training

60 5 (Female) In training In training In training

61 5 (Female) In training In training In training

62 5 (Female) Mature In training Mature

63 5 (Male) Mature In training Mature

64 5 (Male) In training In training In training

65 6 (Female) Mature Mature Mature

66 6 (Female) Mature In training Mature

67 6 (Female) Mature In training Mature

68 6 (Female) Mature In training Mature

69 6 (Female) In training In training In training

70 6 (Female) Mature Mature Mature

71 6 (Female) Mature In training Mature

72 6 (Female) Mature In training Mature

73 6 (Male) In training In training In training

74 6 (Male) Mature Mature Mature

75 6 (Male) Mature In training In training

76 6 (Male) Mature In training Mature

77 7 (Female) Mature In training Mature

78 7 (Female) Mature In training Mature

79 7 (Female) Mature Mature Mature

80 7 (Female) Mature In training Mature
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Table C.5: Interface Test results (Continued)
Age in

yrs.
(Gender)

Overall fine motor
skill classifying

result

Curvature fine motor
skill classifying

result

Line fine motor
skill classifying

result

81 7 (Male) Mature In training In training

82 7 (Male) Mature In training In training

83 7 (Male) Mature In training In training

84 7 (Male) Mature In training In training

85 8 (Male) Mature Mature Mature

86 8 (Male) Mature In training Mature

87 8 (Male) Mature Mature Mature

88 8 (Male) Mature Mature Mature

89 8 (Male) Mature In training Mature
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