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ABSTRACT 
 

The aim of this study is to provide a systems perspective on shale gas 

monetization to fuels and chemicals. The properties of shale reservoirs and shale gas 

production processes will be discussed briefly before focusing on four main building 

blocks of the chemicals industry: methanol, ethylene, propylene, and butadiene. For each 

of these building blocks, the main derivatives and their chemical processes are discussed 

as well as the changes incurred on their markets because of the shale gas boom. In 

addition, the chemistry of gas-to-liquids (GTL) technology and existing commercial 

applications of it are detailed.  Also, an overview of existing and proposed plants for 

each of the five monetization pathways will be given. Based on this survey, an 

optimization formulation is developed and solved to determine the optimal pathways of 

a given shale gas resource. The objective of the optimization formulation is to maximize 

profit based on capital and operating costs of the given processes, feedstock prices, the 

sales prices of the produced chemicals while accounting for supply, demand, technical, 

and environmental factors (e.g., CO2). A case study is solved for the Barnett and Eagle 

Ford shale formations. 
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NOMENCLATURE 

MTA = Metric tons per annum 

MMT = Million metric tons 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

Traditionally, the optimization of chemical processes has concentrated on 

maximizing an economic criterion (e.g. profit, sales). Recently, there has been 

heightened awareness of the need to incorporate environmental and safety aspects in the 

decision-making process as well (Grossmann and Guillén-Gosálbez, 2010). As a result, 

the goal in process systems engineering (PSE) has been expanded from maximizing 

profitability to finding alternatives that are also more sustainable and inherently safe.  

Environmental and safety factors can be included in PSE applications at different 

levels of the decision-making process. Fig. 1.1 illustrates the breakdown of the 

hierarchical levels in PSE applications in terms of their spatial and temporal scale. As it 

can be seen from the figure, the bottom section of the pyramid corresponds to the 

optimization of single units of equipment, production lines, and entire chemical plants. 

On the other hand, the top section corresponds to multi-site problems involving a wider 

temporal and spatial scope. While the previous focus in the PSE community has been on 

the development of optimization tools for single-site applications, recent advances in 

optimization theory and software application have allowed for an expansion of the 

analysis beyond the manufacturing stage (Grossmann and Guillén-Gosálbez, 2010). 

Consequently, supply chain management (Shapiro, 2001) and enterprise-wide 

optimization (Grossmann, 2005) have recently emerged as active areas of research.  
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Fig. 1.1- Decision-support levels in process systems engineering. Reprinted from 

Grossmann and Guillen-Gosalbez (2010). 
 
 

Papageorgiou (2009) presented a critical review of mathematical programming 

models for supply chain optimization problems at the strategic and tactical levels. As 

shown in Fig. 1, this means that the reviewed works will focus on supply chain design 

and planning/scheduling. Sabri and Beamon (2000) developed a steady-state 

mathematical model for a multi-objective supply chain model that combined strategic 

and operational design and planning decisions. Tsiakis et al. (2001) described a mixed 

integer linear programming model to determine production capacity allocation among 

different products, optimal layout and flow allocations of the distribution network by 

minimizing an annualized network cost. Also, Tsiakis and Papgeorgiou (2008) 

developed a mixed integer linear program (MILP) model to determine the optimal 

configuration of a production and distribution network subject to operational and 

financial constraints. The authors used a case study for the coatings business unit of a 

global specialty chemicals manufacturer to prove the applicability of their approach.  
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Pooley (1994) presented the results of a MILP model used by the Ault Foods 

company to restructure their supply chain. In this work, the objective of the company 

was to minimize the total operating cost of a production and distribution network. Camm 

et al. (1997) combined integer programming, network optimization, and geographical 

information systems (GIS) for Procter and Gamble’s North American supply chain. The 

authors reported annual savings of $200 million. Ferrio and Wassick (2008) presented a 

MILP model capable of optimizing a multi-product supply chain network made up of 

production sites, an arbitrary number of echelons of distribution centers, and customer 

sites. In their work, the authors emphasized the redesign of existing supply chain 

networks by dealing with individual customer demand to address the customer’s 

preferred mode of transport at each location. By doing so, the model avoids lumping 

customer demand into zones.  

Elia et al. (2011) developed a mixed-integer nonlinear programming (MINLP) 

formulation to analyze U.S. energy supply chain network for hybrid coal, biomass, and 

natural gas to liquids (CBGTL) facilities. The model the in the study selects the optimal 

locations of these facilities, their feedstock combination, and the size of each facility in a 

way that gives the minimum overall production cost. The authors present two case 

studies to investigate the effects of various technologies and hydrogen prices and 

perform life cycle analysis on each facility in the supply chain network. They conclude 

that U.S. fuel demands can be fulfilled with an excess of 50% emissions reduction 

compared to petroleum-based products. 
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Floudas et al. (2012) provided a detailed review of the key contributions made 

within the energy community with regards to thermochemically based hybrid energy 

systems for liquid transportation fuels. The authors were the first to provide a 

comprehensive description of the contributions for the supply chains of single-feedstock 

energy systems and hybrid-feedstock energy systems.  

Gao and You (2015) used a mixed-integer nonlinear programming (MINLP) 

approach to address the life cycle economic and environmental optimization of a shale 

gas supply chain network based on the Marcellus shale play. The authors proposed a 

model covering the well-to-wire life cycle of electricity generated from shale gas and the 

resulting Pareto-optimal frontier revealed the trade-off between the economic and 

environmental objectives. 

Onel et al (2015) investigated the co-production of liquid transportation fuels and 

olefins from a natural gas feedstock. The authors modeled a superstructure of 

alternatives (multiple natural gas conversion routes, hydrocarbon production and 

upgrading methods, olefins purification options) as a MINLP. This program was solved 

to goal optimality using a branch-and-bound framework.    

Cafaro and Grossman (2014) addressed the long-term planning of the shale gas 

supply chain by presenting a MINLP. The model focused on determining aspects of the 

upstream portion of the supply chain such as the number of wells to drill at every 

location and the size of gas processing plants, among other items. The objective of this 

model was to maximize the net present value of the project by optimally determining the 
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previously mentioned items. The authors followed a decomposition approach based on 

successively refining a piecewise linear approximation of the objective function. 

Garcia and You (2015) identified the challenges and opportunities in supply chain 

design and optimization. The authors determined three major areas where knowledge 

gaps exist: multi-scale challenges, multi-objective and sustainability challenges, and 

multi-player challenges. Then, they proceeded to provide an overview of these areas, a 

description of the technical challenges that exist in each area, and a perspective on how 

to address these challenges in supply chain design.  

Environmental Considerations 

Green supply chain management (GrSCM) is a new discipline has evolved 

recently through the combination of environmental management and supply chain 

management into a single framework (Grossmann and Guillén-Gosálbez, 2010). 

Srivastava (2007) has done an exhaustive review of the work done in GrSCM and 

identified two main types of approaches in this discipline: empirical studies and 

mathematical modeling. Within the latter group, there exist a variety of tools and 

techniques such as mathematical programming (LP, NLP, MILP, MINLP, and dynamic 

programming), Markov chains, Petri nets, input-output models, game theory, fuzzy logic 

data envelopment analysis (DEA), descriptive statistics and simulations.  

The above-mentioned techniques can be applied to the design of sustainable 

processes following two different approaches. The first, which has been the most 

common approach, has included them as additional constraints to be satisfied by the 

optimization model. However, Cano-Ruiz and McRae (1998) pointed out that 
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environmental concerns should be regarded as new design objectives and not merely as 

constraints on operations. The latter approach is particularly suited for considering 

environmental issues at the design stage, since it can lead to both environmentally and 

economically conscious strategic investment planning (Hugo and Pistikopoulos, 2005). 

Unfortunately, this approach leads to more complex problems that require the use of 

multi-objective optimization methods, at times in conjunction with some of the 

mathematical tools previously described. Azadeh et al. (2015) used a multi-objective 

multi-period fuzzy linear programming model that considered both economic and 

environmental objectives to evaluate and optimize a natural gas supply chain. 

One of the most important topics considered in literature is the definition of a suitable 

metric to assess the environmental performance of a process or product. Researchers 

have not yet reached an agreement to support objective environmental assessments. As a 

result of this lack of consensus over a general binding value system, a plethora of 

performance indicators have been evolving over time in order to capture a wide range of 

environmental effects. Cano-Ruiz and McRae (1998) suggested four main types of 

environmental objectives according to their exhaustive literature review on these 

metrics. These environmental objectives are the minimization of: (1) the emissions of 

pollutants of concern (Chang and Hwang, 1996); (2) the mass of waste generated Hilaly 

and Sikdar, 1995); (3) the contribution to specific environmental problems (Grossmann 

et al. 1982); and (4) specific overall indicators of the environmental impact (Cabezas, et 

al. 1997). 
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Regardless of the environmental objective followed, it has become clear as of 

late that the environmental performance of a process should be assessed over its entire 

life cycle. Traditionally, environmental concerns were included within the decision 

making process focused at the plant level. While this could lead to decreased 

environmental impact locally, it can increase the overall damage in other stage of the life 

cycle of the process (Grossmann et al. 2002).  In response to this situation, the life cycle 

assessment (LCA) methodology arose as a tool to evaluate the environmental loads 

associated with a product, process, or activity over their entire life cycle (Guinée et al. 

2002). This method is based on identifying and quantifying the energy and materials 

used in a process in order to translate them into a set of meaningful environmental 

indicators that inform about the impact caused in different categories (i.e., human heath, 

eco-system quality, and resources). The performance achieved in these damage 

categories can be employed to assess different process alternatives that can be 

implemented to achieve environmental improvements (Grossmann and Guillén-

Gosálbez, 2010). 
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CHAPTER II 

NATURAL GAS VALUE CHAIN  

Introduction 

 In the previous chapter, existing literature on shale gas supply chains was 

reviewed. In this part of the study, a review of shale gas monetization from a life cycle 

perspective is presented in three main parts: (1) shale gas treatment and processing, (2) 

production processes for the major chemical building blocks (methanol, ethylene, and 

propylene) and their derivatives, and (3) an overview of the current market outlook for 

these building blocks. 

Shale Gas Production Overview 

With the recent discovery of unconventional shale gas resources, the potential 

supply of natural gas has increased significantly. Fig. 2.1 shows the increase in proved 

shale gas reserves in the United States between 2007 and 2013. Natural gas in shale 

formations is more difficult to extract than natural gas in conventional ones due to the 

low permeability of unconventional reservoirs. A combination of horizontal drilling and 

hydraulic fracturing is used to retrieve the gas from such formations.  
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Fig. 2.1- Proved shale gas reserves, production, and NGLs produced in the United 

States, Tcf (EIA, July 2015). 
 
 

Shale gas is primarily composed of methane, with heavier hydrocarbons like 

ethane and propane, in addition to other inorganic gases such as nitrogen, carbon dioxide 

and hydrogen sulfide, also being present. The composition of the produced gas varies 

from one formation to another and can also vary between wells located within the same 

formation.  

Production from shale gas plays has increased from 1.3 trillion cubic feet in 2007 

to 11.4 trillion cubic feet in 2013, as shown in Fig. 2.1. This accounts for approximately 

47% of the total United States natural gas production in 2013 (EIA AEO 2015). With the 

increase in shale gas production, the volume of the heavier hydrocarbons, also known as 

natural gas liquids (NGLs), has increased and is expected to reach more than 3.1 MMBD 

in 2016 (“The Great NGL Surge” Nov. 11, 2011).  After several processing and 

0

20

40

60

80

100

120

140

160

180

2006 2008 2009 2010 2012 2013 2014

Sh
al

e 
G

as
 V

ol
um

e,
 T

cf

Year

Production

Proved Reserves

NGLs Produced



 

10 
 

fractionation steps, the produced NGLs are used by the chemicals industry to produce a 

variety of derivatives and products which become raw materials for multiple 

manufacturing sectors (PWC report “Reshaping the US chemicals industry).  

Shale Gas Composition 

 Shale gas has different compositional makeup depending on the formation, as 

well as the well it is produced from. This is illustrated in Table 2.1, which shows the 

composition of different shale plays in volume percent (Noureldin, 2013).   The Antrim 

play has the highest nitrogen content while the Haynesville play has the lowest. The 

New Albany shale play has the highest amount of carbon dioxide with an average of 7.9 

vol% for the tested wells. Also, the carbon content (sum of C1-C3) of the Antrim shale 

play varies greatly between 32.0 and 90.3 vol%. The Marcellus shale contains the 

highest amount of carbon with a range of 98.8-99.6 vol%.  In the Marcellus shale 

formation, there is relatively little carbon dioxide and nitrogen but the gas composition 

varies greatly across the field, in that it contains NGLs in the western portions, while the 

eastern ones are generally dry. This is illustrated in the data shown in Table 2.1, where 

wells 1-3 contain 15.0-20.1 vol% of NGLs (C2 and C3), while well 4 contains only 4 

vol%. The differences between shale formations highlight the need to assess gas 

processing operations and the ability of a processing plant to treat a variety of shale 

gases to pipeline specifications (Speight 2013: Shale Gas Production Processes) 
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Table 2.1: Shale gas composition (vol%), adapted from Noureldin (2013) 
Well  C₁ C₂ C₃ CO₂ N₂ Well  C₁ C₂ C₃ CO₂ N₂ 

Antrim Shale Gas Marcellus Shale Gas 
1 27.5 3.5 1.0   65.0 1 79.4 16.1 4.0 0.1 0.4 
2 57.3 4.9 1.9 0.3 5.9 2 82.1 14.0 3.5 0.1 0.3 
3 77.5 4.0 0.9 3.3 14.3 3 83.8 12.0 3.0 0.9 0.3 
4 85.6 4.3 0.4 9.0 0.7 4 95.5 3.0 1.0 0.3 0.2 

Barnett Shale Gas New Albany Shale Gas 
1 80.3 8.1 2.3 1.4 7.9 1 87.7 1.7 2.5 8.1   
2 81.2 11.8 5.2 0.3 1.5 2 88.0 0.8 0.8 10.4   
3 91.8 4.4 0.4 2.3 1.1 3 91.0 1.0 0.6 7.4   
4 93.7 2.6 0.0 2.7 1.0 4 92.8 1.0 0.6 5.6   

Fayettville Shale Gas Haynesville Shale Gas 
1 97.3 1.0 0.0 1.0 0.7 1 95.0 0.1 0.0 4.8 0.1 

 
 

Shale Gas Processing 

After shale gas is extracted, it must undergo a series of processing steps at the 

wellhead and at a processing plant in order to make it marketable and up to pipeline 

specifications. In general, shale gas processing has the same steps that are undertaken for 

conventional gas processing. The sequence consists of the removal of condensates and 

free water, dehydration, acid gas removal (carbon dioxide and hydrogen sulfide), and 

nitrogen removal. Then, the gas stream is sent to a de-methanizer which separates NGLs 

from pipeline-quality natural gas. The pipeline-quality natural gas is taken by 

transmission pipelines from processing facilities to market centers, where they tie into 

existing local distribution systems, where it is used for heat, power, and transportation 

(Goellner, 2012). Fractionation is a process that separates out the NGLs one by one 

based on their individual normal boiling points, which are shown below in Table 2.2. 

The fractionators used are placed in the following order: de-ethanizer, de-propanizer, de-
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butanizer, and butane splitter (separates iso-butane and n-butane) (Speight “Natural Gas: 

A Basic Handbook” 2007). Fig. 2.2 is a schematic of the shale gas processing steps 

outlined above. 

Table 2.2: Normal boiling point of natural gas components 

Hydrocarbon Formula 
Normal Boiling 

Point (°C) 
Normal Boiling 

Point (°F) 
Methane CH₄ -162 -259 
Ethane  C₂H₆ -89 -128 

Propane C₃H₈ -42 -44 
Butane C₄H₁₀ -1 30 
Pentane C₅H₁₂ 36 97 
Hexane C₆H₁₄ 68 154 

C₇+ and heavier   98+ 209+ 
 
 

 
Fig. 2.2- Shale gas processing scheme, adapted from Goellner (2012). 

 

Natural Gas Value Chain 

Methane, the principal component of natural gas, is used for home and industrial 

heating, electrical power generation, and as a source for chemicals and fuels. Methane 

can be converted to a variety of derivatives either directly or indirectly. Indirect methods 

of methane utilization require synthesis gas, which is produced by one of the following 
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processes or a combination thereof: steam reforming, autothermal reforming, or partial 

oxidation. Fig. 2.3 shows a diagram of the major chemicals that represent the natural gas 

value chain. The focus will be on five major pathways for natural gas monetization: 

methanol, gas-to-liquids (GTL), ethylene, propylene, and butadiene. For each one, the 

production chemistry, existing and future plants, and value chain will be discussed. 
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Fig. 2.3- Natural gas value chain 
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Methanol 

Methanol is an important chemical building block that affects human lives daily. 

It is used in the manufacture of paints and adhesives, and also has applications in the 

transportation fuel industry. With over 80,000 MT of methanol shipped daily from one 

continent to another, it is considered a global commodity (www.methanol.org, July 28, 

2015). 

Methanol Production Chemistry 

Methanol production is carried out in two steps: production of synthesis gas, then 

catalytic synthesis of methanol. Fig. 2.4 provides an illustration of the steps outlined in 

this section. 

Desulfurizati
onMethane Steam 

Reforming
Autothermal 
Reforming

Steam/Oxygen

ConverterSyngas Separator 
Cooler

Steam

Methanol

 
Fig. 2.4- Methanol production scheme. 

 
 

The first step is achieved through a combined reforming process in which de-

sulfurized natural gas and steam are passed to the primary reformer and the exit gases 

are then led to an autothermal reformer. Also, preheated oxygen mixed with steam is fed 

into the oxygen-blown autothermal reformer. The amounts of natural gas and steam are 

adjusted to generate synthesis gas with stoichiometric ratio of just over two (Wells, 

1999). The two steps described above are: 

𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 → 3𝐻𝐻2 + 𝐶𝐶𝑂𝑂 

𝐶𝐶𝐻𝐻4 + 1 2⁄ 𝑂𝑂2 → 2𝐻𝐻2 + 𝐶𝐶𝑂𝑂 

http://www.methanol.org/
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For the methanol synthesis step, either one of the following reactions can occur, 

depending on the composition of the synthesis gas: 

𝐶𝐶𝑂𝑂 + 2𝐻𝐻2 → 𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 

𝐶𝐶𝑂𝑂2 + 3𝐻𝐻2 → 𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 + 𝐻𝐻2𝑂𝑂 

Methanol Plants 

Globally, there are ninety methanol plants with a combined production capacity 

of about 100 MMT/year (www.methanol.org, July 28, 2015). Table 2.3 lists some of the 

major plants around the world. The largest producer of methanol is Methanex 

Corporation, and the largest share of this production comes from the three plant in 

Taranaki, New Zealand which ship their products to the Asia Pacific markets 

(www.methanex.com, Methanex: Global Methanol Production Facilities).  

Table 2.3: Major methanol production plants in the world 
Company Location Production 

Capacity 

(MT/year) 

Source 

Methanex Geismar, Louisiana  1,000,000 www.methanex.com 

Statoil Tjeldbergodden, 

Norway 

900,000 www.statoil.com 

Methanex Medicine Hat, 

Alberta, Canada 

470,000 www.methanex.com 

Saudi International 

Petrochemical Corp.  

Al-Jubail, Saudi 

Arabia 

967,000 www.chemicals-

technology.com 

Methanex Taranaki, New 

Zealand (3 plants) 

2,400,000 www.methanex.com 

Methanex Damietta, Egypt 1,300,000 www.methanex.com 

http://www.methanol.org/
http://www.methanex.com/
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The availability of cheap natural gas in the United States has resulted in the 

proposal of several new methanol production plants. After relocating one of their Chile 

plants to Louisiana and starting production in January 2015, Methanex is relocating a 

second plant to the same location and expects to start production there in the first quarter 

of 2016 (www.methanex.com, Methanex: Global Methanol Production Facilities). Table 

2.4 lists the proposed facilities in the United States.  

Table 2.4: Proposed methanol plants in the United States. 
Company Location Production 

Capacity 

(MT/year) 

Source 

Zero Emission 

Energy 

La Place, Louisiana 1,800,000 adi-

analytics.com 

Cleanese Corp. Clear Lake, Texas 1,300,000 adi-

analytics.com 

Valero Energy 

Corp. 

St. Charles, Louisiana 1,600,000 adi-

analytics.com 

Methanex Corp. Geismar, Lousiana 1,000,000 adi-

analytics.com 

North West 

Innovations 

Kalama, 

Washignton/Westward, 

Oregon 

3,800,000 adi-

analytics.com 

OCI Parners LP Beaumont, Texas 1,800,000 adi-

analytics.com 

G2X Energy Pampa, Texas 60,000 adi-

analytics.com 

 

 

http://www.methanex.com/
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Methanol Value Chain 

Methanol is used primarily as a chemical feedstock. One of the most important 

outlets for methanol is the production of formaldehyde, which accounts for about 33% of 

methanol demand (ADI Analytics, April 6 2015). Formaldehyde is produced by the 

catalytic oxidation of methanol, commonly known as the Formox process shown in Fig. 

2.5. The main outlet for formaldehyde is the preparation of resins and adhesives, used in 

the production of plywood and particle board.  Another major use of formaldehyde is as 

an intermediate for the manufacture of polyacetal and polyurethane resins, surface 

coatings, plasticizers, cross-linking agents, and slow-release fertilizers (Wells, 1999). 

Preheating 
of Methanol

Catalytic 
Incineration of 

Overhead 
Gases

Absorption of 
Product 
Gases

Catalytic 
ReactionMethanol

Air

Overhead Gases

Methanol Vapor 
(Recycle)

Formaldehyde  
Fig. 2.5- Catalytic oxidation of methanol (Formox process). 

 
 

 Aside from formaldehyde, other significant chemicals produced from methanol 

are acetic acid, dimethyl ether, and methylamines. Acetic acid is one of the most 

important organic chemicals and is produced mainly by the carbonylation of methanol 

process shown in Fig. 2.6. Other routes include the oxidation of butane or naphtha and 

the oxidation of acetaldehyde. The largest application of acetic acid is in the production 

of vinyl acetate monomer used to manufacture polyvinyl acetate, which is used in paints, 
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adhesives, and plastics (Wells, 1999). It is also used in the production of purified 

terephthalic acid (PTA) which is used to manufacture polyester fibers (Grand View 

Research, February 2014).  

Methanol
Catalytic 
Reaction

Carbon Monoxide

Separation
Drying & 
Product 

Recovery
Crude Acetic Acid

Overhead Gases Light-Ends

Acetic Acid

 
Fig. 2.6- Acetic acid production by the carbonylation of methanol. 

 
 

Furthermore, methanol is used in the production of fuel additives such as methyl-

tert-butyl-ether (MTBE) and tertiary-amyl-methyl-ether (TAME). Although MTBE is no 

longer used in the United States, it is still used around the world. For example, 7 MMT 

of methanol were blended in the Chinese gasoline pool in 2014 (Nash, 2015).It is 

produced by the catalytic addition of methanol to isobutylene from a butadiene-free C₄ 

stream, a process shown in Fig. 2.7.  
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Fig. 2.7- MTBE production by addition of methanol and Isobutylene. 

 
 

Another outlet for methanol is the production of olefins, which has become a 

reality in China. The methanol-to-olefins (MTO) technology is enabled by the use of 

silicoaluminophosphate (SAPO) molecular sieve catalysts, whose unique properties 
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enabled a more selective route for methanol conversion to ethylene and propylene with 

reduced heavy byproducts (Shale Gas Monetization-How to Get into the Action, 2013).  

Methanol Market Outlook 

The methanol market is expanding, from both a capacity and demand 

perspective, and the pathways in which methanol is utilized are changing as well. For 

example, methanol production capacity is expected to increase from approximately 80 

MMT in 2010 to about 160 MMT in 2020 (Mark Eramo, IHS). Also, global methanol 

demand is expected to increase from 60.7 MMT in 2013 to more than 109 MMT in 2023 

(IHS, August 29 2014). The major driver in methanol demand is China, which is 

expected to double its methanol consumption from 30 MMT in 2013 to 60.7 MMT in 

2023, and increase its imports from 4 MMT to 25 MMT in the same time span (IHS, 

August 29, 2014). The rising Chinese demand will be addressed mostly by the 

aforementioned methanol-to-olefins (MTO) technology that is employed in five active 

plants, plus 13 planned MTO facilities with a capacity of about 9 MMTA (ICIS 

Chemical Business, 26 September 2014).  

Ethylene 

Ethylene is the primary hydrocarbon used in the petrochemical industry, and the 

most consumed of the olefin building blocks. It is produced by steam cracking of a wide 

range of hydrocarbons such as naphtha, ethane, propane, butane, LPGs, and gas oils 

(Wells, 1999). While the traditional feedstock has been naphtha, the shale gas boom in 

the United States has created many opportunities to use of lighter feedstock. From 2005 
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to 2013, the share of ethane as a feedstock for steam crackers in the U.S. increased from 

45% to 65% (Nexant APIC 2014). 

Production Chemistry 

Steam cracking of hydrocarbons is a process in which high-pressure steam is 

used to break molecular bonds to produce olefins. The cracking of ethane to produce 

ethylene is given by the following equation: 

𝐶𝐶2𝐻𝐻6 → 𝐶𝐶2𝐻𝐻4 + 𝐻𝐻2 

In this process, steam and hydrocarbons are fed into a tubular reactor where cracking 

takes place at a temperature of 750-870°C. To prevent secondary reactions, the exit gases 

are quenched to 550-600°C in a quench tower. The exit stream is then compressed in a 

multi-stage compression system to pressure of 32-38 bar. After each stage, liquids are 

removed and the remaining gases are treated to remove acid gases. The stream then 

passes through a cooling train to condense water, and molecular sieves to dry the gases. 

Finally, a series of fractionators are used to remove methane, ethane, propane, and 

heavier fractions (Wells, 1999). Fig. 2.8 shows the important steps in a steam cracking 

process. 
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Fig. 2.8- Ethylene from steam cracking process. 
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Existing/Planned Plants 

As of 2014, global ethylene production capacity is more than 146 MMTA 

(Robert Brelsford, 2014, Oil & Gas Journal). The ten largest ethylene production plants 

worldwide as of 2014 are shown in Table 2.5. This list may change as new facilities are 

commissioned, existing capacities increased or decreased. 

Table 2.5: Ten largest ethylene plants, adapted from (OGJ, July 7 2014). 

Company Location 
Production Capacity 

(MTA) 

ExxonMobil Jurong Island, Singapore 3,500,000 

Formosa Yunlin, Taiwan 2,935,000 

Nova Chemicals Alberta, Canada 2,811,792 

Arabian Petrochemical Jubail, Saudi Arabia 2,250,000 

ExxonMobil Baytown, Texas, U.S.A 2,197,000 

Chevron Phillips Sweeny, Texas, U.S.A 1,865,000 

Dow Terneuzen, Netherlands 1,800,000 

Ineos 
Chocolate Bayou, Texas, 

U.S.A 
1,752,000 

Equistar Chemicals 
Channelview, Texas, 

U.S.A 
1,750,000 

Yanbu Petrochemical Yanbu, Saudi Arabia 1,705,000 

 

 

In the United States, ethylene production capacity was about 28 MMTA, as of 

2014. The shale gas boom has provided a flood of low-cost feed which, coupled with 

rising demand, spurring proposals for 10 new ethane cracking facilities, or around 12.5 
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MMTA of ethylene capacity (ICIS Chemical Business, January 16 2014). Table 2.6 lists 

these facilities and their expected startup dates. It is important to note that these facilities 

are at different stages of planning or construction, and may experience delays in those 

processes. 

Table 2.6: Planned ethylene facilities in the U.S., adapted from (ICIS Chemical 
Business, January 16 2014). 

Company Location 
Expected Capacity 

(MTA) 

Start-up 

Date 

Projection 

Chevron Phillips Cedar Bayou, Texas 1,500,000 
Mid-late 

2017 

ExxonMobil Baytown, Texas 1,500,000 Late 2016 

Dow Freeport, Texas 1,500,000 2017 

Sasol 
Lake Charles, 

Louisiana  
1,500,000 2017 

Formosa 
Point Comfort, 

Texas 
1,000,000 2017 

Formosa Louisiana 1,200,000 N.A. 

Occidental 

Chemical/Mexichem 
Ingleside, Texas 544,000 2017 

Axiall/Partner Louisiana World-scale 2018 

Shell 
Monaca, 

Pennsylvania 
World-scale 2019-2020 

Odebrecht 
Wood County, West 

Virginia 
World-scale N.A. 
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Value Chain 

Ethylene is utilized exclusively as a chemical intermediate. As shown in Fig. 2.9 

there are three main derivatives produced from ethylene:  polyethylene, ethylene 

dichloride, and ethylene oxide. Also, acetaldehyde is another derivative but it will not be 

discussed in detail because its global market has been trending downward due to the 

commercialization of more efficient technologies for products formerly based on 

acetaldehyde (IHS, April 1 2013).  
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Fig. 2.9- Ethylene value chain. 

 
 

For polyethylene, several types of it exist for different applications. Low density 

polyethylene (LDPE) is produced by the polymerization of ethylene in tubular or stirred 

autoclave reactors and its largest applications being in films (food packaging, industrial 
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liners) and sheathing for electrical communication cables. The process variant where 

tubular reactors are used is shown in Fig. 2.10. 

Compression Tubular 
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Separation
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Ethylene
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Fig. 2.10- LDPE production process. 

 
 

 Also, high density polyethylene (HDPE) and linear low density polyethylene 

(LLDPE) are made by one of the following types of ethylene polymerization: gaseous, 

slurry (suspension), or solution. Fig. 2.11 shows the steps of a gaseous polymerization 

process. The major applications of HDPE are blow molding and film and sheet 

(wrapping, industrial liners) and those of LLDPE are film applications where it is seen as 

a replacement for LDPE.  
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Fig. 2.11- HDPE/LLDPE production process. 

 
 

Ethylene dichloride (EDC) is produced industrially by the direct chlorination of 

ethylene with chlorine or by oxychlorination using hydrogen chloride. In practice, both 

routes are utilized in an integrated ethylene-EDC-vinyl chloride process. Fig. 2.12 shows 

the direct chlorination route. Ethylene dichloride is used almost exclusively to produce 
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vinyl chloride, which in turn is used to make polyvinyl chloride (PVC). The major uses 

of the latter are in the cyclical and automotive industries.  
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Fig. 2.12- EDC production process. 

 
 

The third ethylene derivative, ethylene oxide, is produced by the direct oxidation 

of ethylene in the presence of air or oxygen over a silver oxide catalyst. Fig. 2.13 shows 

the major steps of this process. Ethylene oxide is used as a raw material to produce 

ethylene glycol, ethoxylates, ethanolamines, glycol ethers, and trieethylene glycols.  
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Fig. 2.13- Ethylene oxide production process. 

 
 

Ethylene is the most important raw material in the petrochemical industry, with 

approximately 130 MMT of it processed globally in 2013 and global capacity expected 

to reach 200 MMT by 2020 (Mark Eramo, IHS). The shale gas boom in the United 

States has had a considerable effect on the ethylene market. With the increasing supply 

of ethane, twelve new ethane crackers have been announced and are slated to for start-up 

in the next five years, representing a 60% increase over current U.S. ethylene capacity 
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(ICIS Chemical Business, January 19 2015). These projects flourished because of the 

record profits gained by U.S. petrochemical producers, who have enjoyed the benefit of 

low costs based on natural gas prices and high chemical prices based on high crude oil 

prices until the second half of 2014. In addition, the abundance of ethane supply has 

moved many European manufacturers to announce their intention to change over to 

using imported ethane as feedstock (IHS Chemical Week, March 2014). However, it is 

forecasted that the increase in ethylene production capacity will outpace the increase in 

demand, which will negatively influence price trends. Thus, revenue generated by 

ethylene globally is expected to increase by 3.2% per annum (p.a.) between 2013 and 

2021, which is significantly lower than the period of 2005-2013 (Ceresna Ethylene 

Market Study). 

Propylene 

Propylene is the second most important petrochemical feedstock. It is produced 

by steam cracking of a wide range of hydrocarbons as a by-product of ethylene 

manufacture and is separated out from the C₃ stream. The shift from naphtha cracking to 

ethane cracking has led to a shortfall in propylene and butadiene (Hydrocarbon 

Processing, 27 February 2015). This is due to the lower propylene yield of ethane 

feedstock (2%) in comparison to its naphtha counterpart (15%) (Robert Brooks USAEE, 

31 May 2013). To fill this propylene shortfall, two new technological advances have 

gained attention in industry: propane dehydrogenation (PDH) and methanol-to-olefins 

(MTO). 

 



 

27 
 

Production Chemistry 

In steam cracking, mixed gases (propane, propylene, propadiene, and propyne) 

exit a depropanizer and are fed into a selective dehydrogenation unit containing a 

palladium catalyst at a pressure of 18 bar. This process is shown in Fig. 2.14.The 

reaction shown below is carried out either in the gas phase at a temperature of 50-120°C, 

or in the liquid phase below 25°C (Wells, 1999).  

2𝐶𝐶3𝐻𝐻8 → 𝐶𝐶3𝐻𝐻6 + 𝐻𝐻2 + 𝐶𝐶2𝐻𝐻4 + 𝐶𝐶𝐻𝐻4 
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Fig. 2.14- Propylene from steam cracking process. 

 
 

PDH is a catalytic dehydrogenation process whereby propane, recycle propane, 

and hydrogen are preheated to a temperature of 500-700°C and fed into a moving or 

fixed-bed reactor at near atmospheric pressure. A noble metal (e.g. platinum) on 

activated alumina impregnated with 20% chromium is used as the catalyst (Wells, 1999). 

There are five licensed technologies (STAR, Catofin, Oleflex, FBD, and PDH) for this 

process that differ in catalyst type, temperature, and pressure (Witcoff, Reuben, and 

Plotkin 2013). A block diagram for the process is shown in Fig. 2.15, and the reaction 

that occurs in it is as follows: 

𝐶𝐶3𝐻𝐻8 → 𝐶𝐶3𝐻𝐻6 + 𝐻𝐻2 
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Fig. 2.15- Propylene from PDH process. 

Existing/Planned Plants 

In 2013, approximately 90 MMT of propylene were produced around the world 

(Mark Eramo, IHS). A selection of the largest operating propylene production plants is 

shown in Table 2.7. 

Table 2.7: Major propylene production plants 
Company Location Production 

Capacity (MTA) 

Source 

LyondellBasell Channelview, 

Texas 

1,450,000 ICIS 

ExxonMobil Baytown, Texas 1,000,000 ICIS 

Total Olefins Antwerp, Belgium 710,000 Oil & Gas Journal, 

2011 

Chicago Bridge & 

Ironworks 

Tianjin, China 600,000 www.process-

worldwide.com 

Naphthachimie Lavera, France 540,000 ICIS, 2013 

Chevron Port Arthur, Texas 499,000 www. platts.com 

Sanyuan 

Petrochemical 

Zhejiang Province, 

China 
450,000 

Oil & Gas Journal, 

2015 
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Currently, there is one PDH plant in the United States (Flint Hills Resources facility in 

Houston) that produces about 657,000 MMTA of propylene. There are six new projects 

that have been announced and are in various stages of development. As of late 2014, 

only three to four will be built in the immediate future because of cost issues and 

questions over propylene derivative demand (ICIS News, 5 October 2014). Table 2.8 

shows the proposed units (adapted from ICIS News, 5 October 2014).  

Table 2.8: Proposed PDH plants in the United States, adapted from ICIS News (5 
October, 2014) 

Company Location 
Expected Capacity 

(MTA) 

Start-up 

Date 

Projection 

Ascend Performance 

Materials 

Chocolate Bayou, 

Texas 
1,173,000 Late 2015 

Dow Freeport, Texas 750,000 Mid-2015 

Enterprise Products Mont Belvieu, Texas 750,000 Early 2016 

Williams Alberta, Canada 500,000 Mid-2016 

Formosa 
Point Comfort, 

Texas 
658,000 2017 

Value Chain 

Similar to the ethylene value chain, the propylene chain has two main 

derivatives: polypropylene (PP) and propylene oxide. As with polyethylene, 

polypropylene is produced by polymerization of propylene. Historically, slurry 
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polymerization was the most-used method to produce polypropylene, but gas-phase 

polymerization has been replacing it. Fig. 2.16 shows a block diagram of the latter 

process. This change is due to that the gas-phase process produces a dry polymer and its 

stereospecific catalysts result in higher yields and greater selectivity (Wells 1999). 

Polpropylene has a higher melting point, lower density, and better stress cracking than 

other polyolefins, and is used for injection molding and several applications in the 

automotive industry (e.g. battery cases).  
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Fig. 2.16- Polypropylene from gas-phase polymerization. 

 
 

Propylene oxide, the other major derivative, is used to produce polyether polyols, 

propylene glycols, and propylene glycol ethers. Polyether polyols are used to make 

polyurethanes for the manufacture of foams, while propylene glycol is used for de-icing 

aircraft and runways. Consequently, in harsh winters, demand for propylene glycol 

increases. Propylene oxide is manufactured from propylene by two routes: 

chlorohydrination and epoxidation. Fig. 2.17 shows the major steps in a 

chlorohydrination process, while Fig. 2.18 shows the same for the epoxidation route.  
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Fig. 2.17- Propylene oxide from chlorohydrination. 
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Fig. 2.18- Propylene oxide from epoxidation. 

 
 

Market Outlook 

Propylene is considered the second most important petrochemical feedstock with 

approximately 85 MMT processed globally in 2013, and capacity is expected to reach 

140 MMT by 2020 (Mark Eramo, IHS). While the increasing use of ethane has created a 

propylene shortfall, PDH and MTO plants are expected to solve that problem. PDH 

technology already supplies 4 MMT of propylene annually to the global market (ICIS 

Chemical Business, 16 April 2012).  In China, a total of six PDH plants will be in 

operation by late 2015 and are expected to produce 3.51 MMT of propylene annually. 

MTO is another technology that is expected to help increase propylene production with 

UOP having announced four licenses for this technology since 2011. These projects will 

have a combined propylene/ethylene production capacity of 1.72 MMTA (UOP Press 

Release, June 18, 2014). As a result, global propylene prices are expected to stabilize 

(ICIS Propylene: Market Overview, 2015).  

Processes Under Development 

Aside from the processes mentioned previously, there have been ongoing efforts 

at finding different pathways to produce the same chemicals. Many of these processes 

that are undergoing laboratory-scale tests are biologically-based pathways. For example, 
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catalyst maker Siluria Technologies claims to have developed a catalyst that converts 

methane into ethylene, from which two-thirds of global chemical production is derived. 

This process is called the oxidative coupling of methane (OCM). The developers used a 

virus that is 900 nanometers long and nine nanometers in diameter to serve as a template 

for forming small nanowires when exposed to metals and other elements under certain 

conditions. According to them, the catalyst can activate methane at a temperature about 

200°C less than the best existing catalyst, which operates between 800 and 950°C 

(Fairley, 2010).  

Conclusions 

With over 10 MMT of proposed capacity to be added, the United States is 

expected to become a net exporter of methanol by 2017. On the other hand, China is the 

main driver of global growth in methanol consumption. Between 2013 and 2023, it is 

expected to double its consumption from 30 MMT to 60.7 MMT (IHS, August 29, 

2014). This demand is expected to be driven by fuel and MTO applications with 13 

MTO units planned over the next several years. Also, with several China-related 

methanol plants planned in the U.S. as mentioned, it is possible that the coal-to-methanol 

industry in China will be negatively impacted (ICIS Chemical Business, 26 September 

2014). As ethane from shale gas replaces naphtha as the feedstock for ethylene 

production, propylene co-production will be essentially eliminated (Jasper and El-

Halwagi, 2015). Thus, a significant gap between propylene supply and production is 

expected to grow. In order to deal with this gap, MTO/MTP and on-purpose propylene 

production (PDH) are gaining an increasing share of global propylene production. For 
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example, China is expected to add 3.5 MMT of propylene production by the end of 2015 

through six PDH plants. This change in supply methods will make propylene prices 

more prone to the change in feedstock prices and the technological risks and challenges 

associated with these new processes. 
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CHAPTER III 

METHODOLOGY OF OPTIMIZATION PROGRAM 

In the previous chapter, the process chemistry and value chains of three major 

chemical building blocks (methanol, ethylene, and propylene) was surveyed. In this part 

of the study, the methodology used to write the optimization program for the chemical 

production complex being proposed is discussed in three parts: (1) 

profitability/economics, (2) environmental aspects, and (3) safety considerations. 

Introduction 

As the review of literature shows, most of the work done hitherto has focused on 

the optimization of shale gas supply chain for the purposes of electricity production and 

fuels production. In this work, the focus is on optimization of the production of 

chemicals from a given resource of shale gas, in this case the annual production of dry 

gas in the state of Texas. In 2014, dry gas production in Texas was 7,146,549 MMSCF, 

which can be converted into metric tons per annum (MTA) as follows: 

7,146,549 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀
𝑦𝑦𝑦𝑦 ×

1 × 106𝑀𝑀𝐶𝐶𝑀𝑀
1 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 ×

1 𝑙𝑙𝑙𝑙 −𝑚𝑚𝑚𝑚𝑙𝑙 𝐶𝐶𝐻𝐻4
379.5 𝑀𝑀𝐶𝐶𝑀𝑀 ×

16.04 𝑙𝑙𝑙𝑙
1 𝑙𝑙𝑙𝑙 −𝑚𝑚𝑚𝑚𝑙𝑙 𝐶𝐶𝐻𝐻4

×
0.000453592 𝑀𝑀𝑀𝑀

1 𝑙𝑙𝑙𝑙 = 137,010,656 𝑀𝑀𝑀𝑀𝑀𝑀 

The methodology followed in the optimization program is based on the chemical 

reactions that occur in the reactor(s) of the given processes. The optimization program 

takes into account three separate criteria: profitability/economics, safety, and the 

environment.  
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Profitability/Economics 

For this part of the optimization study, an input-output block model was 

developed from each of the process designs to mathematically represent the chemical 

processes in the superstructure being studied. The statement for the optimization 

problem in the chemical production complex can be given as follows: 

Optimize: Objective function 

Subject to: Constraints from plant model 

The objective function in this study is a simple profit function shown here: 

Profit=∑ Product sales-∑Capital Costs-∑ Raw material costs -∑ Energy costs 

The constraint equations describe the relationship among variables and parameters in the 

processes and in this optimization program, they are material balances. In other works, 

they are material and energy balances, chemical reaction rates, thermodynamic 

equilibrium relations, and others (Sengupta “Chemicals from Biomass”, 2012). The 

objective of optimization in this study is to find optimal solutions that maximize profit 

from a given resource of shale gas produced in Texas.  

Also, the program involves three different cases: a base case, a reduced methanol price 

sensitivity case, and an urea price sensitivity case.  

For the first case, which will be called the base case, the sales prices for natural 

gas and chemicals as of November 2015 are utilized in the program. All prices are on a 

dollar per metric ton basis ($/MT). The Henry Hub price of natural gas as of November 

2015 was $2.260/MMBtu, which can be converted to $/MT as follows: 

$2.260
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ×

1𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
1,000  𝐶𝐶𝑀𝑀 ×

379.5𝑀𝑀𝐶𝐶𝑀𝑀
1 𝑙𝑙𝑙𝑙 − 𝑚𝑚𝑚𝑚𝑙𝑙 ×

1 𝑙𝑙𝑙𝑙 − 𝑚𝑚𝑚𝑚𝑙𝑙
16.04 𝑙𝑙𝑙𝑙 ×

1 𝑙𝑙𝑙𝑙
0.00045359 𝑀𝑀𝑀𝑀 =

$117.88
𝑀𝑀𝑀𝑀  
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For the second case, the price of methanol, which is the main intermediate, will 

be reduced from its current level of $366/MT to $130/MT to account for what may 

happen when several new methanol production facilities are expected to come online by 

2017. As mentioned in the previous chapter, methanol production in the U.S. is expected 

to increase by about 12 MMT over the next five years if all the proposed plants come 

online. Naturally, this is expected to drive global prices for methanol down. Since the 

chemical superstructure has two main intermediates (methanol and ammonia), a change 

in the price of one of them will have an impact on the quantity that will produced of that 

intermediate and how it will be monetized. This includes whether it will be sold as 

methanol, or further processed into any of dimethyl ether, acetic acid, or formaldehyde. 

Environmental Emissions 

Under this criterion, the aim is to find the most environmentally-friendly 

processes in the chemical complex being studied. The harmful emissions being studied 

to make this determination will be greenhouse gases (GHG) and criteria air pollutants 

(CAP). This is what distinguishes this research study from others, in that the emission 

examined are beyond GHG. While greenhouse gas emissions are mostly concerned with 

carbon dioxide and methane emissions, CAP are defined as commonly found air 

pollutants found all over the United States (www3.epa.gov/airquality/urbanair). They 

include six major air pollutants and they are: carbon monoxide (CO), particulate matter 

(PM), lead, sulfur dioxide (SO2), and nitrogen oxides.  The data for CAP can be 

obtained from the National Emission Inventory (NEI), which estimates both Criteria and 

Hazardous air pollutants from all air emissions sources The NEI is prepared by the 
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Environmental Protection Agency (EPA) and is prepared every three years based upon 

emission estimates and emission model inputs provided by state, local, and tribal air 

agencies for sources in their jurisdictions, and is also supplemented by data developed 

by the EPA (www3.epa.gov/ttn/chief/net/2011inventory.html).   

The environmental aspect of this study aims to find the most environmentally 

friendly processes in the proposed chemical production complex from shale gas. Most of 

the previous research work. Most of the previous research work  related to shale gas, 

only greenhouse gases have been considered for environmental criteria. In this research, 

criteria pollutants in addition to GHGs have been considered for a complete 

environmental profile of the chemicals produced. GHGs are carbon dioxide, methane, 

nitrous oxide (𝑁𝑁2𝑂𝑂), and fluorinated gases. On the other hand, CAPs are defined as 

commonly found air pollutants found all over the United States 

(www3.epa.gov/airquality/urbanair). They include six major air pollutants and they are: 

carbon monoxide (CO), particulate matter (PM), lead, sulfur dioxide (SO2), and nitrogen 

oxides. The data for CAPs is reported by facilities producing a certain chemical in the 

United States every three years. The EPA compiles this data based on reports by state, 

local, and tribal air agencies. 

Safety Considerations 

For safety factors, the metric taken into account in this study is the Dow Fire & 

Explosion Index. It is used to analyze the hazards associated with the reactor(s) in each 

process focusing on fires and explosions. The basic starting value in the computation of 

F&EI is the Material Factor (MF), which is a measure of the intrinsic rate of potential 
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energy release from fire or explosion produced by combustion or other chemical reaction 

(AIChE, 1987). The index is calculated based on two areas: general process hazards and 

special process hazards. Fig. 3.1shows a sample of the form used to determine Dow Fire 

& Explosion Index. Since this calculation will be done mainly to gain a rough idea of the 

risks associated with each process in the chemical superstructure, there are several items 

in the F&EI form that will not be considered such as: enclosed or indoor process units, 

access, drainage and spill control, and rotating equipment.  

Under “General Process Hazards”, the main item for which a penalty is assessed is 

“Exothermic Chemical Reactions”. In each process, the reaction that occurs is unique 

and requires a certain penalty as specified in the Fire & Explosion Index Hazard 

Classification Guide. This penalty is determined from the type of reaction that occurs in 

the process and under what exotherm category it falls under. The categories of 

exotherms and their corresponding penalties are given in Table 3.1. 

Table 3.1: Exotherm categories and their corresponding penalties. 
Exotherm Penalty 

Mild 0.30 

Moderate 0.50 except for addition reactions (0.75) 

and oxidation reactions (1.00) 

Critical-to-control 1.00 

Particularly sensitive 1.25 
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Another important item under “General Process Hazards” for which a penalty is 

assessed is “Material Handling and Transfer”. This item takes into account the potential 

for fire involving the reactor(s) during handling, transfer, and warehousing of materials 

(AIChE, 1987). For the purposes of this study, a penalty of 0.50 will be used for any 

loading or unloading operation involving Class I flammables or LPG-type materials 

where transfer lines are connected or disconnected (AIChE, 1987).  
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Fig. 3.1- Dow Fire & Explosion Index form (www.processoperations.com). 

 
 

Under “Special Process Hazards”, the penalty for the item labeled “Toxic 

Material(s)” is determined from the health factor 𝑁𝑁ℎ found in Appendix A of the Hazard 

Classification Guide. 𝑁𝑁ℎ is the health factor of a material as defined in the National Fire 

Protection Association 704 standard (AIChE, 1987). The health factor used is that of the 

http://www.processoperations.com/
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basic material in the process and the penalty assessed is: 0.20× 𝑁𝑁ℎ.  Another important 

item is “Pressure”, where a penalty is applied to offset the effect of high pressure on the 

potential for leaks with higher release rates (AIChE, 1987). This item is determined from 

a chart, a modification of which is shown in Table 3.2, in the Hazard Classification 

Guide which gives a penalty based on the operating pressure of the process unit. 

Table 3.2: Pressure penalty for flammable and combustible liquids. 
Pressure (psig) Penalty Factor 

1,500 0.92 

2,000 0.96 

2,500 0.98 

3,000-10,000 1.00 

>10,000 1.50 

 
 

The last two items of relevance in the F&EI form in this study were the items 

“Quantity of Flammable/Unstable Material” and “Corrosion and Erosion”.  The penalty 

for the former is determined using Figure 3 in page 24 of the Hazards Classification 

Guide, while the penalty for the latter is determined by searching for values of corrosion 

rates of the chemicals being examined in the F&EI study. Table 3.3 shows corrosion 

rates and their corresponding penalties. 
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Table 3.3: Corrosion rates and their corresponding penalty factors, modified from 
the Hazards Classifications Guide (AIChE, 1987). 

Corrosion Rate (mm/year) Penalty Factor 

<0.50 0.10 

0.50<CR<1.00 0.20 

>1.00 0.50 

 
 

Afterwards, the items under each of the “General Process Hazards” and “Special 

Process Hazards” are summed up and two values are obtained, F1 and F2. F1 refers to 

the General Process Hazards Factor and F2 refers to the Special Process Hazards Factor. 

Then, they are multiplied to obtain a Process Unit Hazards Factor, labelled F3. Finally, 

the Dow Fire & Explosion Index is obtained by multiplying the Process Unit Hazards 

Factor by Material Factor mentioned earlier in this chapter. In order to understand the 

significance of the Dow F&EI, Table 3.4 shows a qualitative level of hazard for various 

Dow F&EI values modified from Turton and Bailie’s textbook from 2012.  

 
Table 3.4: Dow Fire & Explosion Index (adapted from Turton et al. 2012). 

Fire & Explosion Index Qualitative Hazard Level 

1-60 Light 

61-96 Moderate 

97-127 Intermediate 

128-158 Heavy 

159- Severe 
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CHAPTER IV 

CHEMICAL PRODUCTION COMPLEX OPTIMIZATION: RESULTS AND 

DISCUSSION 

In the previous chapter, the methodology behind the formulation of the 

optimization program was explained. In this part of the study, the objectives are to: (1) 

examine the results of the optimization program based on market conditions as of 

November 2015,  (2) examine the effects of a reduction in the price of methanol (a major 

intermediate), (3) determine the impact urea prices have on the monetization pathway 

chosen, (4) determine carbon dioxide emissions for the base case and see effects of 

limiting CO2 emissions, and (5) obtain Dow Fire & Explosion Index values to provide a 

safety metric for the processes in the complex. 

Introduction: Superstructure Processes 

The superstructure contains processes for the production of the following 

chemicals: methanol, acetic acid (2), dimethyl ether (2), formaldehyde, ethylene, 

propylene, ammonia, and urea. Methanol is a major intermediate and is subsequently 

used in the production processes of acetic acid, dimethyl ether, formaldehyde, and 

olefins.  While methanol has been produced from syngas previously, it can also be 

produced from methane directly by a two-step reforming process. The chemistry has 

been explained previously in Chapter 2 of this study.  

 One of the major chemicals globally is acetic acid, and it can be produced by one 

of two methods: a two-step process from methanol, and the recently-developed 

integrated three-step SaaBre process by BP. Both processes are included in the 
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chemical superstructure. For the two-step process, it is a well-established one developed 

by Monsanto and is used in Dow Chemical’s Hahnville plant which part of the 

company’s St. Charles Operations (Xu, 2004). The reactions involved in this process are 

as follows: 

𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝑂𝑂 + 3𝐻𝐻2 

𝐶𝐶𝑂𝑂2 + 𝐻𝐻2 → 𝐶𝐶𝑂𝑂 + 𝐻𝐻2𝑂𝑂 

𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 + 𝐶𝐶𝑂𝑂 → 𝐶𝐶𝐻𝐻3𝐶𝐶𝑂𝑂𝑂𝑂𝐻𝐻 

𝐶𝐶𝐻𝐻4 + 3𝐶𝐶𝑂𝑂2 + 4𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 → 4𝐶𝐶𝐻𝐻3𝐶𝐶𝑂𝑂𝑂𝑂𝐻𝐻 + 2𝐻𝐻2𝑂𝑂 

The first two equations are the steam reforming reaction and the water-gas shift 

reaction, respectively. The third equation is the reaction of methanol and carbon 

monoxide to form acetic acid while the fourth reaction is an overall reaction for this 

process obtained by summing up the three previous reactions. Fig. 4.1 illustrates the 

block diagram for this process with the stream names as they appear in the chemical 

superstructure, while Table 4.1 defines those streams. 

Fig. 4.1- Block diagram of methanol to acetic acid plant. 
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Table 4.1: Process streams in methanol to acetic acid plant. 
 

Name of Stream 
Description 

Ich4aa1 Natural gas to acetic acid plant 

Imeohaa1 Methanol to acetic acid plant 

Ico2aa1 𝐶𝐶𝑂𝑂2 to acetic acid plant 

Paa1 Total production of acetic acid from acetic acid plant 

Ih2oaa1 Water produced from acetic acid plant 

 

As for the BP SaaBre process, it eliminates the need for the purchase of methanol 

and the purification of carbon monoxide (BP, 2013). The reaction for the process can be 

represented the following equation: 

𝐶𝐶𝐻𝐻4 +
1
2𝐶𝐶𝑂𝑂2 +

1
2𝑂𝑂2 →

3
4𝐶𝐶𝐻𝐻3𝐶𝐶𝑂𝑂𝑂𝑂𝐻𝐻 +

1
2𝐻𝐻2𝑂𝑂 

Fig. 4.2 illustrates the block diagram for the SaaBre process, with the stream names as 

they appear in the chemical superstructure defined in Table 4.2. 

 

Fig. 4.2- Block diagram of synga to acetic acid (BP SaaBre) plant. 
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Table 4.2: Process streams in syngas to acetic acid plant. 
 

Name of Stream 
Description 

Ich4aa2 Natural gas to BP SaaBre plant 

Io2aa2 Oxygen to BP SaaBre plant 

Ico2aa2 𝐶𝐶𝑂𝑂2 to BP SaaBre plant 

Paa2 Total production of acetic acid from BP SaaBre plant  

Ih2oaa2 Water produced from BP SaaBre plant 

 

The second major derivative of methanol is dimethyl ether (DME), and it is 

produced by one of two processes: the dehydration of methanol, or the syngas-to-DME 

route. First, the reaction for the dehydration of methanol process can be represented by 

the following equation: 

2𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 → 𝐶𝐶𝐻𝐻3𝑂𝑂𝐶𝐶𝐻𝐻3 + 𝐻𝐻2𝑂𝑂 

Fig. 4.3 shows the block diagram for the dehydration of methanol to DME, with Table 

4.3 containing the definitions for the process inlet and outlet streams. 

 

 

Fig. 4.3- Block diagram of methanol to DME plant. 
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Table 4.3: Process streams in methanol to acetic acid plant. 
 

Name of Stream 
Description 

Imeohdme1 Methanol to dimethyl ether plant 

Pdme1 Total production of dimethyl ether from plant 

Ih2odme1 Water produced from dimethyl ether plant 

 

In addition to the previous method, DME can be produced in an integrated 

process using the syngas route. While there are different approaches for producing the 

syngas, the method used in this reaction is steam reforming (Peng, 1999). The equation 

for the reaction is as follows: 

2𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝐻𝐻3𝑂𝑂𝐶𝐶𝐻𝐻3 + 2𝐻𝐻2 

A block diagram showing the inlet and outlet streams for the process is given below in 

Fig. 4.4, while Table 4.4 defines these streams. 

 

 

Fig. 4.4- Block diagram of syngas to DME plant. 
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Table 4.4: Process streams in syngas to DME plant. 
 

Name of Stream 
Description 

Ich4dme2 Natural gas to syngas-to-DME plant 

Ih2odme2 Water to syngas-to-DME plant 

Pdme2 Total production of DME from syngas-to-DME plant 

Ih2dme2 Hydrogen produced from syngas-to-DME plant 

 

In addition to acetic acid and dimethyl ether, methanol is used in the production 

of formaldehyde, an important precursor in the manufacture of industrial resins. The 

process can occur by one of two routes, both starting with methanol: oxidation-

dehydrogenation, and oxidation with air. In this study, the latter process will be 

considered in the superstructure and the chemical reactions for it are as follows: 

𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 +
1
2𝑂𝑂2 → 𝐻𝐻𝐶𝐶𝐻𝐻𝑂𝑂 + 𝐻𝐻2𝑂𝑂 

𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 → 𝐻𝐻𝐶𝐶𝐻𝐻𝑂𝑂 + 𝐻𝐻2 

The oxidation of methanol to formaldehyde occurs at a temperature of 470°C in a reactor 

containing tubes filled with a catalyst based on iron, molybdenum, or vanadium oxide. 

In order to write the material balances for this process, an overall reaction was obtained 

by summing up the two equations above, resulting in the following reaction equation: 

2𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 +
1
2𝑂𝑂2 → 2𝐻𝐻𝐶𝐶𝐻𝐻𝑂𝑂 + 𝐻𝐻2𝑂𝑂 + 𝐻𝐻2 
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Fig. 4.5 is a block diagram illustration of the oxidation of methanol to formaldehyde 

showing all the inlet and outlet streams. These streams are then defined in Table 4.5. 

 
Fig. 4.5- Block diagram of formaldehyde plant. 

 
Table 4.5: Process streams in formaldehyde plant. 

 
Name of Stream Description 

Imeohform Methanol to formaldehyde plant 
Io2form Oxygen to formaldehyde plant 

Pform Production of formaldehyde from plant 

Ih2oform Water produced from formaldehyde plant 

Ih2form Hydrogen produced from formaldehyde plant 

 
 

Methane can also be used in the production of olefins (ethylene, propylene) and 

there are three such processes included in the superstructure: oxidative coupling of 

methane, the methanol-to-olefins process, and the methanol-to-propylene process.  

The oxidative coupling of methane (OCM) process has been the subject of research 

interest for almost thirty years because of its potential to reduce costs, energy, and 

environmental emissions in the production of ethylene 

(http://siluria.com/Technology/Oxidative_Coupling_of_Methane). The first 

demonstration plant commercializing this technology was commissioned around April of 
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2015 and produces approximately 1 metric ton/day of ethylene (ICIS “US Siluria starts 

up methane-to-ethylene demo plant”, April 1 2015). The reason for this breakthrough is 

Siluria’s development of a process that uses viruses as a design tool to create a biological 

template for  nanowire catalysts.  

 In this process, methane and oxygen react over a catalyst environment to produce 

ethylene and water, as shown in the following reaction: 

2𝐶𝐶𝐻𝐻4 + 𝑂𝑂2 → 𝐶𝐶2𝐻𝐻4 + 2𝐻𝐻2𝑂𝑂 + 𝐻𝐻𝐻𝐻𝐻𝐻𝑀𝑀 

The nanowire catalyst can activate methane at a temperature that is “a couple of hundred 

degrees” lower than the best existing catalyst, which operate between 800°C to 950°C 

(Fairley, 2010). Fig. 4.6 shows a block diagram representation of the process with the 

reactants and products streams defined in Table 4.6. 

Fig. 4.6- Block diagram of OCM-to-ethylene plant. 
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Table 4.6: Process streams for OCM-to-ethylene plant. 
 

Name of Stream 
Description 

Ich4ocm Methane to OCM plant 

Io2ocm Oxygen to OCM plant 

Pethocm Production of ethylene from OCM plant 

Ih2oocm Water produced from OCM plant 

 

The UOP methanol-to-olefins (MTO) process is a means to produce ethylene and 

propylene from feedstock sources other than crude oil or condensates.  The discovery 

and utilization of the SAPO-34 catalyst in this process provided a technology 

breakthrough since it created a more selective route for methanol conversion to ethylene 

and propylene with reduced amounts of heavy byproducts (“Shale Gas Monetization-

How to Get Into the Action”, 2013). The reactor in the process operates in the vapor 

phase at temperatures of 340°C to 540°C  and pressures between 15 and 45 psig (1.03 

and 3.1 bar). The reaction for MTO occurs in two steps. The first step is the conversion 

of methanol to dimethyl ether (DME) and water: 

2𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 → 𝐶𝐶𝐻𝐻3𝑂𝑂𝐶𝐶𝐻𝐻3 + 𝐻𝐻2𝑂𝑂 

 The second step is the conversion of DME to both ethylene and propylene. The ratio 

between ethylene and propylene production depends on the catalyst, reaction parameters, 

and the technology (Jasper and El-Halwagi, 2015).  The reactions, which occur in a 

fluidized bed reactor, for this step can be represented as follows: 

𝐶𝐶𝐻𝐻3𝑂𝑂𝐶𝐶𝐻𝐻3 → 𝐶𝐶2𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 



 

52 
 

2𝐶𝐶𝐻𝐻3𝑂𝑂𝐶𝐶𝐻𝐻3 → 𝐶𝐶3𝐻𝐻6 + 3𝐻𝐻2𝑂𝑂 

In order to write the material balance equations for the optimization program, one 

overall equation for each of ethylene and propylene had to be written. These equations 

are written as follows for ethylene and propylene, respectively: 

2𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 → 𝐶𝐶2𝐻𝐻4 + 2𝐻𝐻2𝑂𝑂 

6𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 → 2𝐶𝐶3𝐻𝐻6 + 6𝐻𝐻2𝑂𝑂 

Fig.4.7 shows a block diagram representation of the MTO process with the reactants and 

products defined in Table 4.7. 

 

Fig. 4.7- Block diagram of MTO plant. 
 
 

Table 4.7: Process streams of MTO process. 
 

Name of Stream 
Description 

Imeohmto Methane to MTO plant 

Pethmto Production of ethylene from MTO plant 

Ppropmto Production of propylene from MTO plant 

Ih2omto Water produced from MTO plant 

 
 

The Lurgi methanol-to-propylene (MTP) process differs from the MTO process 

in that crude methanol has to be purified prior to the reaction. Fig. 4.8 is a block diagram 
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illustration of the MTP process and its inlet and outlet streams, while Table 4.8 gives the 

stream definitions. The process also produces liquefied petroleum gases (LPGs) and 

gasoline. 

Fig. 4.8- Block diagram of MTP plant. 

Table 4.8: Process streams of MTP process. 

Name of Stream 
Description 

Ich4amm Natural gas to ammonia plant 

Ih2oamm Steam to ammonia plant 

In2amm Air to ammonia plant 

 As for the reaction, methanol is first converted to DME and water, and then is 

further reacted to propylene on a zeolite-based catalyst (ZSM-5) in a fixed bed reactor 

(Jasper and El-Halwagi, 2015).  Similar to the MTO process, the reactions of the MTP 

process are written as follows: 

2𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 → 𝐶𝐶𝐻𝐻3𝑂𝑂𝐶𝐶𝐻𝐻3 + 𝐻𝐻2𝑂𝑂 

2𝐶𝐶𝐻𝐻3𝑂𝑂𝐶𝐶𝐻𝐻3 → 𝐶𝐶3𝐻𝐻6 + 3𝐻𝐻2𝑂𝑂 

In addition to the chemicals above, ammonia is another widely-produced 

chemical that is included in the superstructure. Fig. 4.9 gives the block diagram for the 
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ammonia process and Table 4.9 gives the definitions of the inlet and outlet streams. 

After natural gas is desulfurized, it is fed to a steam reformer, where part of the methane 

is converted to carbon oxides and hydrogen over a nickel catalyst. Then, the gas mixture 

enters an autothermal reformer where air is injected to provide nitrogen needed in 

ammonia synthesis. Since carbon oxides are poisonous to the ammonia synthesis 

catalyst, the reformed gas mixture is shifted for more 𝐻𝐻2. Also, carbon monoxide is 

oxidized to carbon dioxide. Then, a methanator is utilized to remove remaining 𝐶𝐶𝑂𝑂2 

traces by reaction with 𝐻𝐻2 to produce methane and water. In the last step, the syngas is 

compressed and converted to ammonia in the synthesis reactor.  

 
 

Fig. 4.9- Block diagram for ammonia production plant. 
 
 

Table 4.9: Process streams for ammonia production plant. 
 

Name of Stream 
Description 

Ich4amm Natural gas to ammonia plant 

Ih2oamm Steam to ammonia plant 

In2amm Air to ammonia plant 

Iamm Total production from ammonia plant 

Ico2amm 𝐶𝐶𝑂𝑂2 production from ammonia plant 
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The steam reforming reaction and water-gas shift reaction can be summed up into the 

following reaction equation: 

𝐶𝐶𝐻𝐻4 + 2𝐻𝐻2𝑂𝑂 → 4𝐻𝐻2 + 𝐶𝐶𝑂𝑂2 

The ammonia synthesis reaction is as follows: 

1
2𝑁𝑁2 +

3
2𝐻𝐻2 → 𝑁𝑁𝐻𝐻3 

In order to write the material balance equations for this block, the summation of the 

steam reforming and water-gas shift reactions was multiplied by 3 and the ammonia 

synthesis reaction was multiplied by 8 (in order to eliminate hydrogen) resulting in the 

following overall equation for the process: 

4𝑁𝑁2 + 3𝐶𝐶𝐻𝐻4 + 6𝐻𝐻2𝑂𝑂 → 3𝐶𝐶𝑂𝑂2 + 8𝑁𝑁𝐻𝐻3 

In this study, there were two options for the monetization of ammonia: to be sold 

as ammonia, or to be further processed into urea. The major outlet for urea (about 80% 

of total consumption) is as a fertilizer, and it is also used in the manufacture of urea-

formaldehyde resins produced by the condensation reaction between urea and 

formaldehyde. Subsequently, these resins are used in adhesives for paper, board, 

plywood, surface-coatings molding resins and textile processing (Wells, 1999). Fig. 4.10 

is an illustration of the urea production process, and Table 4.10 shows the inlet and 

outlet streams.  

 
Figure 4.10- Block diagram for urea production plant. 
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Table 4.10: Process streams for urea production plant. 

 

Name of Stream 
Description 

Iammur Ammonia to urea plant 

Ico2ur 𝐶𝐶𝑂𝑂2 to urea plant 

Pur Urea produced from urea plant  

Ih2our Water produced from urea plant 

 

The formation of ammonia occurs in two steps, which are represented by the following 

two equations: 

𝐶𝐶𝑂𝑂2 + 2𝑁𝑁𝐻𝐻3 → 𝑁𝑁𝐻𝐻2𝐶𝐶𝑂𝑂𝑂𝑂𝑁𝑁𝐻𝐻4 

𝑁𝑁𝐻𝐻2𝐶𝐶𝑂𝑂𝑂𝑂𝑁𝑁𝐻𝐻4 → 𝑁𝑁𝐻𝐻2𝐶𝐶𝑂𝑂𝑁𝑁𝐻𝐻2 + 𝐻𝐻2𝑂𝑂 

Usually, these two reaction steps are expressed as the following overall reaction: 

𝐶𝐶𝑂𝑂2 + 2𝑁𝑁𝐻𝐻3 → 𝑁𝑁𝐻𝐻2𝐶𝐶𝑂𝑂𝑁𝑁𝐻𝐻2 + 𝐻𝐻2𝑂𝑂 

The reaction occurs at a temperature between 180°C and 210°C and a pressure of 150 

bar, and around 70% of the carbamate (𝑁𝑁𝐻𝐻2𝐶𝐶𝑂𝑂𝑁𝑁𝐻𝐻2) formed is decomposed into urea 

(Wells, 1999).  

Economics/Profitability 

Base Case 

As previously mentioned, the prices of chemicals and of natural gas as of 

November 2015 are used in the calculation of the objective profit equation. The 

superstructure is a mixed-integer nonlinear programming problem (MINLP), solved with 
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the global solvers in LINGO. The results of the chemical production complex for this 

case can be seen in Fig. 4.11. The methanol produced in the complex was distributed 

between three pathways: the formaldehyde production process, the MTO process, and 

sold as is. Thus, no methanol was used to produce acetic acid or DME. Instead, acetic 

acid was produced by the BP SaaBre process, while DME was produced through the 

syngas route. Ethylene was produced through the oxidative coupling of methane (OCM) 

process, a new technology for which the first pilot plant started up in April 2015. 

Propylene, the other major olefin, was produced by the MTO technology. Also, 2.0 

MMTA of ammonia was produced and sold as is, so no urea was manufactured in this 

case of the complex. 
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Fig. 4.11- Chemical production complex base case. 
 
 

In this case, it is observed that out of 2.50 MMTA of methanol produced, 

approximately 60,000 MTA of it was sold as is to the market.  From the 2.44 MMTA 

remaining, 1.67 MMTA of methanol is used to produce 0.73 MMTA of propylene (sold 

for $819/MT) via the MTO process. The remaining 0.773 MMTA of methanol is 

converted through the formaldehyde production unit to formaldehyde which is 

subsequently sold in the market at $830/MT.  While 1.16 MMTA of carbon dioxide 

were consumed, it should be noted that 13.8 MMTA was produced in this case of the 
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production complex. As for water, 2.90 MMTA of it were consumed in the complex 

compared to 4.06 MMTA of it being produced. Also, there were 0.044 MMTA of 

hydrogen, an important chemical building block, produced in the complex. The annual 

profit obtained in this case was $3,731 million per year. These results are shown in 

Table 4.11. 

 
Table 4.11: Sales and costs associated with base case. 

Category Value ($ millions) 
Income from Sales 5,183 

Annualized fixed costs 268 
Raw material costs 912 

Utility costs 232 
Gross Profit 3,771 

 

Methanol Price Sensitivity Case 

After the base case, the objective was to examine the effect of price sensitivity on 

the type and quantity of chemicals produced. Specifically, the effects of fluctuations in 

the price of methanol will be examined here. After the middle of 2015, the price of 

methanol declined again to approximately $161/MT in response to the 60% increase in 

U.S. production capacity (ICIS, January, 15, 2016).  Thus, the price of methanol in the 

program was changed from $366/MT to $161/MT to examine how the effects of that 

price change on the chemical production complex. From the results in Fig. 4.12, it can 

be seen that no methanol was sold as is to the market. This can possibly be explained by 

the drop in methanol price, thus rendering the product less likely to make a profit than if 

it was further processed into formaldehyde or olefins. In this case of the complex, of the 
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2.5 MMTA of methanol that were produced: 0.773 MMTA were used to produce 0.725 

MMTA of formaldehyde, and the remaining 1.73 MMTA were used to produce 0.757 

MMTA of propylene via the MTO process. By comparing these values to the base case, 

it can be concluded that the methanol that was previously sold as is (60,000 MTA) was 

further processed into propylene in the MTO process. As a result, the amount of 

propylene produced was slightly higher in this case (0.757 MMTA) than in the base case 

(0.73 MMTA). Similar to the base case, 2.00 MMTA of ammonia, and no urea, were 

produced and sold as is to the market. As for the amounts of water, carbon dioxide, and 

hydrogen that were reacted and produced in the complex, the numbers were very similar 

to the base case, with the exception being a slight increase in the amount of water 

produced to 4.09 MMTA (up from 4.06 MMTA). This slight increase can be attributed 

to the increase in the amount of propylene produced in comparison to the base case. 
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Fig. 4.12- Chemical production complex for methanol price sensitivity case. 
 
 
 The total profit generated in this case of the production complex was $3,766 million, 

which is almost the same as the base case. Table 4.12 shows the breakdown of the sales 

and costs associated with the profit equation. 
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Table 4.12: Sales and costs associated with methanol price sensitivity case. 
Category Value ($ millions) 

Income from Sales 5,183 
Annualized fixed costs 268 

Raw material costs 915 
Utility costs 234 
Gross Profit 3,766 

 

Urea Price Sensitivity Case 

In both the base and the lower methanol price cases, it was noted that no urea 

was produced in the production complex. This raises the opportunity to experiment with 

the LINGO program to determine the conditions under which urea is produced and the 

changes that will incur on the quantity and types of chemicals manufactured in the 

complex as well as the profit. It should be noted that the methanol price in this case of 

the program is the same as it was in the base case ($366/MT). To gain a better idea of 

the changes that urea prices have gone through over the past ten years, Fig. 4.13 shows 

that urea has experienced a steady decline over the last four years after reaching 

$500/MT in early 2012. Looking back earlier, the price of urea was around $750/MT 

around the time of the 2008 recession before crashing to $250/MT 

(www.indexmundi.com).  

 
Fig. 4.13- Urea price history over the period 2006-2015 (www.indexmundi.com). 

http://www.indexmundi.com/
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For this case of the production complex, the price of urea was $500/MT, an 

increase from the base case price of $255/MT. This change resulted in urea being 

manufactured from ammonia, and the results for the complex can be seen in Fig. 4.14. 

Similar to the base case, 2.00 MMTA of ammonia was produced and was processed in 

two routes: 1.15 MMTA sold as ammonia, and 0.849 MMTA processed into urea. In 

comparison to the base case, the production of other chemicals such as acetic acid, 

DME, and olefins was not affected. The addition of the urea process increased the 

amount of carbon dioxide consumed in the complex to 2.25 MMTA (up from 1.16 

MMTA) and the amount of water produced to 4.51 MMTA (up from 4.06 MMTA).  
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Fig. 4.14- Chemical production complex for urea price sensitivity case. 
 
 
For this case, the overall profit as $3,823 million representing an increase of $92 million 

in profits attributable to urea sales. Table 4.13 shows a breakdown of the sales and costs 

associated with this case of the production complex. 

 
Table 4.13: Sales and costs associated with urea price sensitivity case. 

Category Value ($ millions) 
Income from Sales 5,339 

Annualized fixed costs 296 
Raw material costs 912 

Utility costs 268 
Gross Profit 3,863 
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Restrictions on Available Gas 

Another case that was examined is when the amount of natural gas available for 

usage is less than the total Texas annual production used previously. In reality, only 20-

25% of the gas would be available for usage in the proposed chemical production 

complex because the remainder would have been contracted to other entities. When this 

was done, the amount of gas available was reduced from 137 MMTA (77,146,549 

MMSCF/yr) to 27.4 MMTA 15,429,310 MMSCF/yr). However, as shown in Fig. 4.15, 

no change was incurred on the results. This was due to that only about 5.65% of the 

available gas is actually being used in the production complex. In the program, the 

amount of available methane was set by the following equation: 

𝐼𝐼𝐶𝐶𝐻𝐻4 = 𝑀𝑀𝑛𝑛𝑛𝑛 ∗ 0.8675 

The fraction 0.8675 used above is the average volume percent of methane in Barnett 

shale samples (86.75%) as shown in Table 2.1 (table in Chapter2). Using the above 

equation, if the amount of methane of 6.71 MMTA, then the amount of natural gas used 

is: 

𝑀𝑀𝑛𝑛𝑛𝑛 =
𝐼𝐼𝐶𝐶𝐻𝐻4

0.8675 =
6.71 × 106𝑀𝑀𝑀𝑀𝑀𝑀

0.8675 = 7.735 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚𝑜𝑜 𝑔𝑔𝐻𝐻𝑔𝑔 

The amount of 7.735 MMTA of gas is only 5.65% of the available 137 MMTA of dry 

natural gas production in Texas. 
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Fig. 4.15- Chemical production complex results for limited available gas case. 
 
 

Environmental Aspects 

Aside from economics/profitability, it is desired to see the effect of 

environmental aspects or emission restrictions on the results of the chemical production 

complex. This is done by incorporating 𝐶𝐶𝑂𝑂2 emissions obtained from literature as rates 

per metric ton of product. In addition to the 𝐶𝐶𝑂𝑂2 emissions associated with production, 

there are emissions resulting from the fuel burned for utilities (heating, cooling, and 

electric power) in the process. In this complex, it will be assumed that natural gas, which 

emits 117 lbs CO2/MMBtu, is used as fuel (www.eia.gov).  
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For the methanol production process, there were 182.7 lbmol/hr of CO2 produced from 

the process, which can be converted to 28,880 MTA (Ehlinger, 2014). Given that the 

process produces 1.65 MMTA of methanol, the ratio of CO2 produced per methanol is 

0.0175 MT CO2/MT methanol. However, this does not account for the CO2 produced 

for utilities. The utilities used in the process were reported as follows (Ehlinger, 2014): 

Table 4.14: Utilities for methanol production process. 
Utility Value 

Heating  1.425 × 106 MMBtu/yr 

Cooling 11.2 × 106 MMBtu/yr 

Power 398.5 × 103 MMBtu/yr 

Total 𝟏𝟏𝟏𝟏.𝟎𝟎𝟎𝟎 × 𝟏𝟏𝟎𝟎𝟔𝟔 MMBtu/yr 

 

To determine the amount of CO2 produced as a result of using natural gas for utilities, 

the following calculation is performed: 

13.02 × 106
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑦𝑦𝑦𝑦 ×

117 𝑙𝑙𝑙𝑙𝑔𝑔 𝐶𝐶𝑂𝑂2
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ×

1 𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2 
2204.6 𝑙𝑙𝑙𝑙𝑔𝑔 𝐶𝐶𝑂𝑂2 = 0.691 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2 

0.691 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2
1.65 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝐻𝐻𝑀𝑀ℎ𝐻𝐻𝑎𝑎𝑚𝑚𝑙𝑙 +

0.0175 𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2 
1 𝑀𝑀𝑀𝑀 𝑀𝑀𝐻𝐻𝑀𝑀ℎ𝐻𝐻𝑎𝑎𝑚𝑚𝑙𝑙 =

0.437 𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2 
𝑀𝑀𝑀𝑀 𝑀𝑀𝐻𝐻𝑀𝑀ℎ𝐻𝐻𝑎𝑎𝑚𝑚𝑙𝑙  

For the SaaBre process, the amount of CO2 produced was calculated from the heat of 

reaction of acetic acid from the reaction equation: 

𝐶𝐶𝐻𝐻4 +
1
2𝐶𝐶𝑂𝑂2 +

1
2𝑂𝑂2 →

3
4𝐶𝐶𝐻𝐻3𝐶𝐶𝑂𝑂𝑂𝑂𝐻𝐻 +

1
2𝐻𝐻2𝑂𝑂 

The resultant heat of reaction for the above equation was -234.1 kJ/mol of acetic acid 

(AA) produced, which can be converted to -221.9 Btu/mol. To estimate the amount of 
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CO2 produced as a result of utilities for this process, the following calculation was 

performed: 

221.9 𝑀𝑀𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚𝑙𝑙 𝑀𝑀𝑀𝑀 ×

1 𝑚𝑚𝑚𝑚𝑙𝑙 𝑀𝑀𝑀𝑀
60.05 𝑔𝑔 ×

1000 𝑔𝑔
1 𝑘𝑘𝑔𝑔 ×

1000 𝑘𝑘𝑔𝑔
1 𝑀𝑀𝑀𝑀 =

3.69 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀  

3.69 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀 ×

117 𝑙𝑙𝑙𝑙𝑔𝑔 𝐶𝐶𝑂𝑂2
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ×

1 𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2
2204.6 𝑙𝑙𝑙𝑙𝑔𝑔 𝐶𝐶𝑂𝑂2

=
0.196 𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2 

1 𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀  

For the direct syngas-to-DME process, the amount of CO2 produced from utilities was 

determined in a similar method to that used for the methanol process. The utilities used 

by the process were reported as follows (Karagoz, 2014): 

Table 4.15: Utilities for syngas-to-DME production process. 
Utility Value 

Heating  1.302 × 106 MMBtu/yr 

Cooling 7.252 × 106MMBtu/yr 

Power 589 × 103 MMBtu/yr 

Total 𝟗𝟗.𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟎𝟎𝟔𝟔 MMBtu/yr 

 
 
Given that the production rate was 3,250 MT/day in the study by Karagoz (2014), the 

amount of CO2 produced was determined to be: 

9.143 × 106 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑦𝑦𝑦𝑦 ×

117 𝑙𝑙𝑙𝑙𝑔𝑔 𝐶𝐶𝑂𝑂2
1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ×

1 𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2
2204.6 𝑙𝑙𝑙𝑙𝑔𝑔 𝐶𝐶𝑂𝑂2

×
 𝑦𝑦𝑦𝑦

1.07 𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝑀𝑀𝐷𝐷

=
0.452 𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2 

1 𝑀𝑀𝑀𝑀 𝐷𝐷𝑀𝑀𝐷𝐷  
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Similar to the acetic acid process, the CO2 emissions from the formaldehyde production 

process were determined by calculating the heat of formation of the following chemical 

reaction equation: 

2𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 +
1
2𝑂𝑂2 → 2𝐻𝐻𝐶𝐶𝐻𝐻𝑂𝑂 + 𝐻𝐻2𝑂𝑂 + 𝐻𝐻2 

The heat of reaction for the above equation was -33.5 kJ/mol of acetic acid (AA) 

produced, which can be converted to -31.8 Btu/mol. To estimate the amount of CO2 

produced as a result of utilities for this process, the following calculation was performed: 

31.8 𝑀𝑀𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚𝑙𝑙 𝑜𝑜𝑚𝑚𝑦𝑦𝑚𝑚. ×

1 𝑚𝑚𝑚𝑚𝑙𝑙 𝑜𝑜𝑚𝑚𝑦𝑦𝑚𝑚.
30.031 𝑔𝑔 ×

1000 𝑔𝑔
1 𝑘𝑘𝑔𝑔 ×

1000 𝑘𝑘𝑔𝑔
1 𝑀𝑀𝑀𝑀 =

1.058 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀 𝑜𝑜𝑚𝑚𝑦𝑦𝑚𝑚.  

1.058 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀 𝑜𝑜𝑚𝑚𝑦𝑦𝑚𝑚. ×

117 𝑙𝑙𝑙𝑙𝑔𝑔 𝐶𝐶𝑂𝑂2
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ×

1 𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2
2204.6 𝑙𝑙𝑙𝑙𝑔𝑔 𝐶𝐶𝑂𝑂2

=
0.0561 𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2 

1 𝑀𝑀𝑀𝑀 𝑜𝑜𝑚𝑚𝑦𝑦𝑚𝑚.  

As for the MTO process, the reported numbers which are shown in Table 4.16 include 

CO2 emissions from utilities (Jasper and El-Halwagi, 2015). 

Table 4.16: CO2 emission values used in the optimization program. 

Process 
Rate of CO2 Emissions 

(MT CO2/MT product) 
Source 

Methanol 0.437 Ehlinger, 2014 

Acetic Acid 0.196 ∆𝐻𝐻𝑟𝑟𝑟𝑟𝑛𝑛 

Syngas-to-Dimethyl Ether 0.452 Karagoz, 2014 

Formaldehyde 0.0561 ∆𝐻𝐻𝑟𝑟𝑟𝑟𝑛𝑛 

Methanol-to-Olefins 
20.9 (MT of 

propylene) 

Jasper and El-Halwagi, 

2015 
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Base Case CO2 Emissions 

First, the rates of 𝐶𝐶𝑂𝑂2 emissions were added to the base case and it was 

determined that a total of 30.81 MMTA of 𝐶𝐶𝑂𝑂2 was produced. Next, it was desired to 

place restrictions on the amount of carbon dioxide produced and observe the effects that 

would have on the configuration of products and the profit generated by the complex. 

Several trials were conducted using the LINGO program with the amount of  𝐶𝐶𝑂𝑂2 to be 

generated restricted to 90%, 85%, 80%, and 75% of the amount produced in the base 

case. The cases at 90% and 80% will be examined in detail here. 

90% of Base Case CO2 Emissions 

Starting with the 90% case, the profit declined to $3,625 million in comparison to 

the $3,731 million in the base case, or a reduction of about 2.8%. Aside from profit, 

there are many differences between the base case and the 90% case. Starting with the 

raw materials, there was a 2% reduction in the amount of gas used in the complex from 

6.73 MMTA to 6.60 MMTA. Also, the amount of methanol produced declined by 7.2% 

from 2.50 MMTA to 2.32 MMTA, and no methanol was sold to the market whereas 

60,000 MTA of it were sold in the base case. The amount of ethylene produced in the 

OCM process declined from 2.00 MMTA to 1.93 MMTA, with an additional 0.0720 

MMTA of ethylene produced from the MTO process. The amount of propylene 

produced by the MTO process also declined to 0.606 MMTA from 0.757 MMTA which 

can be attributed to the decline in methanol produced by the complex. Fig. 4.16 provides 

a summary of these results. 
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Fig. 4.16- Chemical production complex results for CO2 emissions restricted to 
90%. 

80% of Base Case CO2 Emissions  

 As for the 80% case, the profit generated from the production complex further 

declined to $3,517 million, representing a decline of about 5.7% compared to the base 

case ($3,731 million), and 3% compared to the 90% case ($3,625 million). The amounts 

of acetic acid, dimethyl ether, and formaldehyde produced remained the same as in the 

base case, and similar to the 90% case, no methanol was sold as is to the market. As for 

olefins, the amount of ethylene produced in the OCM process declined from 1.92 
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MMTA in the 90% case to 1.78 MMTA, with an additional 0.219 MMTA of ethylene 

produced from the MTO process. This means that the amount of propylene produced by 

the MTO process also declined to 0.459 MMTA from 0.606 MMTA which can be 

attributed to the decline in methanol produced by the complex in this case compared to 

the base case. Fig. 4.17 provides a summary of these results. 

 
 

 

Fig. 4.17- Chemical production complex results for CO2 emissions restricted to 
80% of base case. 
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ethylene production gradually switched to the MTO process from the OCM process, and 

propylene production declined. Table 4.17 provides the amount of 𝐶𝐶𝑂𝑂2 produced and 

the profit generated by the production complex for every case examined via the program, 

and Fig. 4.18 shows this relationship in graphical form. 

Table 4.17: Profit generated vs. CO2 emissions restriction. 

Case 
CO2 Produced 

(MMTA) 
Profit ($ millions) 

Base (100%) 30.81 3,731 

90 27.73 3,625 

85 26.19 3,576 

80 24.65 3,517 

75 23.11 3,458 

65 20.03 3,339 

55 16.95 3,224 
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Fig. 4.18- Graphical representation of profit generated vs. CO2 emissions 
restrictions for the chemical production complex base case. 

Safety Considerations 

 The final set of considerations taken into account for this chemical production 

complex are safety metrics, which will be done through a Dow Fire & Explosion Index 

analysis of the reactors of each of the processes involved in the base case of the complex. 

The DFEI results will not be included in the objective function (profit equation) but 

provide a starting point for further analysis of the safety aspects of this proposed 

chemical complex. While the DFEI is useful in identifying process units where 

hazardous conditions exist, it does not estimate the damage that might result from 

such an event (Turton, 2012). Table 3.14  shows the qualitative hazard levels for 

various values of the DFEI. Throughout the analysis, the following items in the DFEI form 

were considered: A-C under General Process Hazards, and A, E, and G under Special 

Process Hazards. Table 4.18 shows the Dow Fire & Explosion Index values that were  
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obtained using this methodology and their corresponding qualitative hazard levels. 

Table 4.18: DFEI values and their corresponding qualitative hazard levels. 

Process 
Dow Fire & 

Explosion Index 

Qualitative Hazard 

Level 

Methanol 153 Heavy 

Acetic Acid 110.5 Intermediate 

Syngas-to-Dimethyl 

Ether 
88 

Moderate 

Formaldehyde 73.6 Moderate 

Methanol-to-Olefins 98 Intermediate 

Ammonia 153 Heavy 
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CHAPTER V 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 The objective of this work was to provide a high-level preliminary analysis of a 

chemical production complex using natural gas as a feedstock taking into account 

economic, environmental, and safety considerations. In Chapter I, literature on supply 

chain optimization was surveyed with a special focus on shale gas. It was determined 

that while many works focus on a specific process or the whole supply chain, there is 

little work done on a chemical complex that would utilize shale gas as feedstock and 

take into account economics, environment, and safety factors. 

 In Chapter II, a brief overview of shale gas composition, production, and 

processing was discussed to provide some background on the importance of shale gas 

and its current role in U.S. energy industry. Also, the production chemistry, value chain, 

and market outlook was detailed for three major chemical building blocks derived from 

natural gas: methanol, ethylene, and propylene. In each discussion, the rise of the shale 

gas industry in the United States and its impact was discussed. 

 In Chapter III, the methodology used in developing the chemical production 

complex optimization program was detailed. The amount of available natural gas was 

determined as the dry gas production for Texas in 2014. The objective function was 

defined as the maximization of profit based on the constraints which were material 

balance equations,  production constraints for each plant, and capital and utility costs. In 

addition, the type of environmental and safety considerations that will be taken into 
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account in the study were detailed to be CO2 emissions and the Dow Fire & Explosion 

Index for the reactor unit in each process, respectively. 

 In Chapter IV, the results of the optimization program were discussed in detail. 

First, the block diagrams and streams for each process were shown to give a clear idea of 

the chemical production complex and its component processes. Second, taking into 

account profitability only, three cases were tested using the program. A base case (latest 

prices obtained as of November 2015) was presented, as well as two more cases 

involving a reduced methanol price, and an increased urea price. It was seen that 

reducing the sales price of methanol no longer made it viable to sell as is to the market 

and instead was diverted to the MTO process where it is used in the production of more 

valuable olefins. As for the case where urea price was increased, it was seen that the 

profit increased in comparison to the base case as urea was made from ammonia and 

sold, where it had not been in the base case. Another case was tested where the amount 

of gas available as feedstock was limited to 20% of the available quantity, but that did 

not have an effect on the results because only 5% of the available gas was being utilized. 

Afterwards, environmental considerations for the base case were added in the form of 

CO2 emissions which were based on peer-reviewed sources or heats of reaction for the 

chemical equations of the processes in question. It was determined that as the amount of 

CO2 was further restricted, profit declined because production of certain chemicals 

declined to comply with the new CO2 restrictions. Finally, the Dow Fire & Explosion 

Index for each process was calculated for the reactor unit and a qualitative hazard level 

was presented. 
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Based on the above, there are ample future research opportunities available from 

this work. The following is a list of these possible avenues: 

1. Inclusion of criteria air pollutants (CAP) emissions from data provided by 

the National Emissions Inventory (NEI). 

2. Performing ASPENPlus® simulations on each process to get a more 

accurate picture of the production quantities.  

3. Based on these simulations, a better safety analysis of the chemical 

production complex can be performed using DFEI or other metrics as 

determined by the researcher. 

4. Inclusion of the safety metrics as a constraint in the optimization program. 
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