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ABSTRACT 

 

Global climate experiments project an average increase of ambient temperatures of 0.2°C per 

decade.  Such prediction emphasizes the importance of crop varieties that have high heat 

tolerance.  Wheat is significantly affected by high temperature.  Optimizing heat and drought 

tolerance in wheat is one way to improve breeding efficiency. 

Previous studies on wheat leaf epicuticular wax (EW) have shown a strong 

association between wax load and high temperature stress tolerance.  This study aimed to 

investigate the relationship between EW on wheat glume and high temperature tolerance.  

This study also compared the effect of glume EW to the effect of leaf EW on the plant 

agronomic productivity.  A recombinant inbred line (RIL) population derived from the heat 

tolerant Australian cultivar ‘Halberd’ which we have previously identified as having a unique 

genetic loci regulating spike cooling, was used in this experiment.  The RIL mapping panel 

contains 180 lines derived from Halberd and a heat susceptible cultivar, Len.  The population 

was grown at multiple field locations at Collage Station, Texas, Uvalde, Texas, and Obregon, 

Mexico for the growing seasons of 2013 and 2014.  The EW of leaves and glumes were 

extracted using published methods (Richardson et al, 2007).  An alpha lattice design with 180 

recombinants and 2 replications was used in four different environments over 2 years.  The 

EW samples were collected at 10DAP and leaf/spike temperatures were recorded at the same 

time.  Spectral canopy reflectance was measured between 350–1100 nm range.  Yield 

components were estimated after harvest.  Spike temperature depression was measured.  The 

180 RIL and their parents were mapped using 90K SNPs markers to identify linkage groups 

or QTL for EW.  
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A strong correlation was found between mean wax load for leaf and that for glume as 

function of  mean high temperature recorded for 10DAP across the environments with  R² = 

0.6719 and R² = 0.8483 respectively .  The maximum mean of leaf EW at OBR14 being 5.37 

and that of CS13 was 2.51 mg/dm2, while the glume EW mean at OBR14 was 5.97 mg/dm2 

and CS13 was 2.38 mg/dm2.  The EW mean was higher in glumes as compared to that of leaf 

for all locations except for CS13, which was considered a more optimum climate for wheat.  

A strong correlation between the two wax loads for UVL13 was observed with R2 = 0.8285 

and r=0.9195 significant at p≤ 0.001.  A significant correlation also was observed for the two 

wax loads for OBR14 with R² = 0.0304 and r=0.1744 significant at p≤ 0.05.  All yield and 

yield components data showed significant variation between the different growing locations. 

Correlation between WI was significant at p≤ 0.05 for most water status indices were   

associated with the glume wax with R2 ranging from 0.274 to 0.2198, whereas there was no 

correlation between WI and leaf wax.  The thermal index had negative correlation and was 

only significant with glume wax content with r = -0.5943 and significance level of P≤0.001.  

Spike temperature had a positive correlation with both leaf and glume wax content with an 

R2 values of 0.078 and 0.1952 respectively.  

Two significant QTL for EW were detected on chromosome 5B.  Leaf EW, 

QLWax.tam-5B, was on position 104.584 and explained 6.8% of the variation.  Glume EW, 

QGWax.tam-5B, was located on position 102.098 and explained 6.6% of the variation. 
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NOMENCLATURE 

 

CT  canopy temperature  

CTD  canopy temperature depression 

DAP  days after pollination 

EW  epicuticular wax 

LOD               likelihood of odds 

LSD  least significant deference 

MSHW mean single head weight 

NDVI  normalized difference vegetation index 

NDWI  normalized difference water index 

NIR  near infrared 

NWIs   normalized water indices 

PRI  photo reflective index 

PAR  photothynstic active region 

QTL               quantitative trait loci 

RILs  recombined inbred lines  

RWC  relative water content 

SKW  single kern weight 

SNP                single nucleotide polymorphism 

SRI  spectral reflectance indices  

SR  simple ratio index 

TI  thermal index  
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CHAPTER I 

 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Model simulation experiments on global climates projects an average increase of ambient 

temperatures of 0.2°C per decade for the 2000 to 2100 period.  This translates into an 

increase of about 1.7 and 5.8°C of overall global temperature by the end of this century 

(IPPC, 2007).  Such prediction emphasizes the importance of crop varieties that have high 

heat tolerance.  Wheat is one of the very important crops because it is a staple food for the 

world population.  Heat and drought are major factors limiting wheat yields worldwide, 

especially in regions where 60% of global land area is classified as arid or semiarid.  

Controlling heat and drought tolerance in wheat is one way to improve breeding efficiency.  

 Generally speaking, most rain-fed farmers are limited in resources, own small land 

holdings, and have minimal capacity to adopt high input technologies.  Consequently, heat 

and drought tolerant wheat varieties are appropriate solution because they are farmer friendly 

and are based on seed technology that is easy to disseminate.  Although steady progress has 

been made with up to date breeding work (e.g. Trethowan et al., 2002; Ammar et al., 2008), 

overall performance of cereals still shows considerable grain yield loss to high temperatures 

(Wardlaw et al., 1989; Reynolds et al., 1994). 

 Wheat is considered a temperate cereal, grown widely throughout the world in semi-

arid regions of Central to West Asia and North Africa (CWANA).  While it’s normally well 

adapted to environment in these regions, it can be very sensitive to elevated temperature 

(Slafer and Satorre 1999).  High temperatures induces heat stress in wheat, particularly 

during reproductive and grain-filling stages (Wollenweber et al. 2003). The ideal temperature 
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for wheat anthesis and grain filling is between 12 to 22 ̊C, and temperatures above this 

reduce grain yield significantly (McDonald et al., 1983; Macas et al., 1999, 2000; Mullarkey 

and Jones, 2000; Tewolde et al., 2006).  Heat stress during anthesis can cause increased 

embryo abortion, pollen sterility, tissue dehydration, lower CO2 assimilation and increased 

photorespiration (Wardlaw and Wrigley 1994).  It was found that many current Hard Red 

Winter Wheat (HRWW) cultivars grown in the Southern Great Plains are heat susceptible in 

terms of sterility, abortion and an early transition to the dry seed stage (Hays et al 2007a, and 

b). 

 In order for wheat to maintain growth and productivity, it must be adaptable to heat 

stress conditions via of specific tolerance mechanisms.  Some of these mechanisms involve 

the alteration of various photosynthetic attributes and physiological traits under heat stress 

exposure.  Changes after perception of heat stress signals also occur at the molecular level, 

altering the expression of genes and accumulation of transcripts as a stress tolerance strategy 

(Iba 2002).  As an example of tolerance adaptation, germplasm from Australia, CIMMYT, 

and ICARDA were found to exhibit heat and drought tolerance while in active productive 

stage.  These lines uphold photosynthesis and yield through production of high seed set, grain 

weight, and an extended grain filling under heat stress conditions. 

The first line of defense against high temperatures in wheat is the epicuticular wax 

that covers the plants cuticle in various areas of the plant (figure 1.1).  The presence of this 

waxy layer on the leaf and glume can reduce heat stress by epidermal transpiration and 

excess light energy (figure 1.2).  Studies show that surface reflectance was reduced when the 

waxy layer from the leaf was removed with chloroform and reduction was observed for the 

abaxial surface and the adaxial surface (Uddin, M. Nizam et.al 1988).  This indicates that 
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epicuticular wax is a major factor in leaf rolling mechanism and abaxial reflectance.  As an 

adaxial and abaxial reflective surface to excess energy, epicuticular wax reduces 

transpirational cooling needs and stomatal conductance.  The scattering of heat during high 

temperatures by the epicuticular layer help maintain a temperate cellular environment, 

minimizing water loss and optimizing metabolic function.  Consequently, epicuticular wax 

can hinder induction of drought responses that reduce photosynthesis and promote seed 

abortion.  Therefore, it is important to perform studies that focus on epicuticular wax to 

optimize structural content and chemical composition in crops such as wheat.  Such studies 

could prove effective as a strategy in reducing economic disadvantages of irrigation, 

increasing yield, improving quality, and producing cultivars with high heat tolerance to 

elevated temperature environments.   

 The long-term goal of this project was to produce new wheat cultivars that have high 

heat tolerance by using a focused program of enhancing the structure or function of the leaf 

and glume epicuticular wax layer.  The main objective of this study was to preform 

quantitative and qualitative analysis on the epicuticular wax layer in wheat glume tissue to 

define the importance of structure and function of this layer and correlate this analysis in the 

context of higher yield and quality stability during reproductive stage heat stress.  The 

hypothesis is that the presence of higher epicuticular wax in the glume tissue confers to 

higher adaptation to heat stress tolerance in wheat.  Furthermore, the epicuticular layer in the 

glume in particular is important in maintaining a cooler metabolically optimal sink 

environment for the developing grain.  To maximize the impact of the study, recombinant 

inbred line (RIL) that has been developed which differs in glume wax content, glaucousness, 

and spike temperature depression (or spike cooling) have been used.  The RILs have been 
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used to define the molecular and ecophysiological basis of improved adaptation to heat stress 

using physiological and quantitative trait loci mapping. Field evaluations also used to 

evaluate heat tolerance in the RIL population. Each RIL and panel line was planted in 

Uvalde, and College Station, Texas, and in Obregon, Mexico in an alpha lattice design. 

These locations consistently experiences high temperatures during mid-spring reproductive 

development.  The study aimed to define the content and chemical composition in wax layers 

in glumes tissues specifically during reproductive stage heat stress.  All obtained results were 

combined with our preexisting wheat breeding program to improve heat and drought 

tolerance. The following specific objectives were used to test the hypothesis: 

Objective1.  Define the correlation between high glume wax, cooler canopies, and increased 

yield and yield stability during reproductive stage heat stress. 

Objective2.  Identify the link between QTLs regulating the epicuticular wax in the spike 

glume during reproductive stage and yield stability under heat stress in wheat. 

 The QTLs were identified using 180 RIL’s that were previously improved by AgriLife as 

a heat tolerant panel.  Correlations were made between the QTLs for wax content and 

composition, heat stress tolerance, spectral reflectance, spike canopy temperature depression, 

and yield stability. 

This project is novel because it focuses on the glume epicuticular wax as a new way in 

moderating heat stress in wheat.  The significance of these results is in providing wheat 

breeders with reproducible high heat tolerant cultivars using manageable breeding techniques 

with maintained high yields and quality.  The presence of high glumes wax content will keep 

the developing grains at desired temperatures under heat stress conditions which will 

improve heat and drought tolerance.  The higher content of glume wax will also moderate the 
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dependency on evaporative cooling which reduces irrigation needs from underground and 

surface water resources.  This is important because according to an estimate published by 

Richards et al (1986), high wax could save as much as 31,000 liters/acre (8,000 U.S. 

gal/acre) or 1/3 inch of rain/irrigation per day of water loss.  

 

1.2. Literature review 

1.2.1. Wheat 

Wheat (Triticum spp.) is one of the predominant staple food crops grown worldwide.  It 

covers more cultivated land in the world than any other crop.  Average world production is 

nearly 600 million tons per annum.  In terms of total production for use in cereal products, 

wheat ranks second in importance directly after maize while rice ranks third, according to the 

Food and Agriculture Organization of the United Nations (FAO 2006).  Wheat is cultivated 

on more than 240 million hectares, larger than any other crop, and its global trade is greater 

than all other crops combined.  Furthermore, wheat is the single most important source of 

plant protein in human diet due to its high protein content.  This makes wheat an important 

cereal food and provides that provides more nourishment for humans than any other food 

source.  Additionally, wheat is the source of almost 20% of total necessary calories for the 

world’s population (Naseem et al. 2001).  Wheat is the top source of carbohydrate in most 

countries; it provides energy and protein for more people than any other single food crop 

(Anon. 1985). 

 1.2.2. Wheat genetics 

The wheat genome is a complicated field crop, since it possesses three ancestral genomes or 

six sets of seven related chromosomes.  Hexaploid wheat was developed from domesticated 
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emmer or durum wheat hybridized with another wild diploid grass (Aegilops tauschii) 

(Hancock et al. 2004).  Common bread wheat Triticum aestivum is a hexaploid, with three 

complete related genomes termed A, B and D each consisting of seven pairs of chromosomes 

(Chromosome number 2n =6x= 42 Genome: AABBDD) (Sears 1952).  Wheat is a relatively 

recent product of hybridizations between three diploid ancestors which are the cultivated 

tetraploid wheat T. turgidum subsp. dicoccoides (AABB) and the wild diploid goat grass 

Aegilops tauschii (Lubbers et al. 1991, Dvorak et al. 1998).  Each of these genomes size is 

estimated at 17, 44 Mb, more or less almost twice of the human genome and consists of 

around 5,500 million base pairs (Kaitao et al. 2012).  Despite bread wheats hexaploid 

chromosome number, it is an amphidiploid behaves meiotically like a diploid with 21 

bivalents, because of the presence of Ph1 gene which is a single dominant locus located on 

the long arm of chromosome 5B.  For hexaploid wheat to be highly fertile, only true 

homologues may pair within each set of the seven related chromosomes during meiosis (Al-

Kaff et al 2008).  Ph1 is a major regulator of chromosome pairing and recombination during 

meiosis (Roberts et al, 1999).  

1.2.3. High temperature stress 

Abiotic stress is a common occurrence for wheat in many places worldwide.  High 

temperature and drought are the most significant stresses that limit world crop production 

(Blum 1988).  In addition, high temperature and drought stresses will increase as a result of 

global warming arising from elevated CO2 concentration in the atmosphere, and could reduce 

its agricultural productivity and threatens its future (Iba 2002).  High temperature and 

drought stress frequently occur simultaneously and result in reduced growth, productivity, 

and quality of crops; however severe stresses can lead to catastrophic losses.  Dudal (1976) 

http://en.wikipedia.org/wiki/Aegilops_tauschii
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estimated that 90% of world’s arable lands may be categorized as a stress effected by abiotic 

stress including high temperature and drought stress.  Wheat production is negatively 

affected by exposure to high temperature stress (Wardlaw and Wrigley 1994).  Furthermore, 

around 7 million hectares of wheat are affected by persistent heat stress, whereas in 40% of 

temperate environments high temperature stress occurring waves affects over 36 million 

hectares.  High temperature stress is currently recognized as a major limitation to wheat 

productivity in the drier and warmer climatic regions of the world (Fischer 1986).  At the 

same time, there is a need to expand production in these hot climate regions (Mohammadi et 

al. 2008).  Accordingly, the release of a new high temperature tolerance cultivars is a vital 

objectives in wheat breeding programs (Wardlaw et al. 2002).  Many of the good agronomic 

HRWW varieties show susceptibility to high temperature stress in terms of their inability to 

maintain yield, primary components of grain yield and the duration of grain filling under heat 

stress (Hays et al. 2007b). 

1.2.4. High temperature stress effect 

High temperature stress has a large negative impact on wheat grain yield.  Every degree rise 

in temperature above 15°C exhibits a 3% reduction in yield (Wardlaw et al. 1989).  In 

addition, a persistent high temperature stress during the wheat life cycle leads to a failure in 

the cultivation of wheat in many countries.  Consequently, many of these countries import 

more than 20 million tons of wheat per year (CIMMYT 1995).  This impact becomes obvious 

through reduction in the potential number of grains, which is considered as a major abiotic 

stress factor that reduces wheat production mainly during grain filling (Fokar et al. 1998 b). 

Wheat growth and development stages may be divided to three phases: vegetative, 

reproductive, and grain filling or ripening.  The vegetative stage consists of tillering and stem 
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elongation/jointing.  The reproductive stage is booting heading or flowering.  High 

temperature stress affects plant growth at all developmental stages, however it is more 

problematic at the flowering and grain filling stages (Wahid et al 2007).  Among the phases 

that are influenced by high temperature stress are the reproductive and grain filling stages.  

During the vegetative stage, high temperature stress has no major effect because of sowing 

wheat during the winter or spring months (Satorre and Slafer 1999).  Wheat plants suffer 

serious injuries when high temperature stress occurs during reproductive stages.  Abortion of 

floral buds, pollen and anther sterility, and restricted embryo development are examples of 

injuries caused by heat stress.  These injuries lead to yield loss because of a reduction in 

grain number and yield.  In wheat, both weight and grain number are sensitive to high 

temperature stress (Ferris et al. 1998).  Even though high temperature stress accelerates 

growth (Fischer, 1980; Kase and Catsky 1984) temperature stress during reproductive stage 

can also cause pollen sterility, tissue dehydration, lower CO2 assimilation and increased 

photorespiration (Wardlaw and Wrigley 1994).  The most favorable temperature for wheat 

flowers and grain filling ranges started from 12 ̊C to 22 ̊C.  If wheat plants are exposed to 

temperatures above this, it can significantly reduce grain yield (McDonald et al., 1983; 

Mullarkey and Jones, 2000; Tewolde et al., 2006).  Also grain filling rate and duration are 

affected by high temperature stress.  This stress can accelerate the rate of grain filling, 

shortening the grain filling duration, and resulting in decreased grain yield (Dias and Lidon, 

2009).  This reduction of the duration of grain fill by high temperature leads to shortening in 

the time to endosperm apoptosis and harvest maturity (Altenbach et al. 2003).  For example, 

in wheat, the grain filling rate reduced by 12 days, temperatures increase 5 ̊C above 20 ̊C 

(Yin et al. 2009).  High temperature stress also severely reduces grain yield throughout grains 
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per spike and individual grain weight.  When high temperature stress remains for 10 days at 

35 ̊C day and 20 ̊C night, the kernel weight is reduced by 29% and the kernel number by36% 

(Assad and Paulsen 2002).  The degree of high temperature stress affects depend on the 

intensity and duration of stress. High temperature stress also induces an early abortion of 

tapetal cells, which causes the pollen mother cells to rapidly progress toward meiotic 

prophase and finally undergo programed cell death, a consequence leading to pollen sterility 

(Oshino et al. 2007). 

1.2.5. Canopy Temperature Depression (CTD) and its role for diagnosing high temperature 

stress 

Wheat has many adaptive mechanisms to overcome high temperature stress.  One widely 

observed mechanism is leaf rolling.  This enables wheat plant to decrease leaf area that is 

exposed to high light high temperature stress by rolling the leaves, thus decreasing 

transpiration.  Also rolled leaves are cooler than un-rolled leaves.  Therefore, plant genotypes 

with rolled leaves will be more tolerant to high temperature stress.  For that reason, canopy 

temperature depression (CTD) can be very suitable tool to select between tolerant and 

susceptible genotypes for high temperature depression.  Also, CTD acts as a useful tool for 

selecting high temperature stress tolerant genotypes, as it is considered a reliable and 

constant; this because when CTD is used at different stages, it shows a robust correlation to 

temperature tolerance (Reynolds et. al. 1997; Fischer et al. 1998).  

 Plant leaf temperature is accurate measurements of the plant response to its 

environment since it is influenced by radiational, convectional, and transpirational processes.  

Certainly, transpiration of water from leaves can reduce its temperature.  Continual plant leaf 

transpiration reduces soil moisture, which will eventually reduces transpiration rate and 
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decrease degree of leaf temperature depression.  Hence, canopy temperature depression 

should be proportional to the evapotranspiration rate (Reynolds et al 1997).  Scientists have 

shown that there is a significant association between grain yield and CTD in hot 

environments (Reynolds et al. 1994; Fischer et al. 1998).  Canopy temperature depression 

can be measured either with a hand-held infrared thermometer, or with remote sensing 

thermal camera.  The readings are calculated by subtracting the temperature of the canopy 

from the surrounding ambient air temperature and can be used to evaluate hundreds of lines 

in a short period of time (Ayeneh et al. 2002; Balota et al. 2007; Bilge et al. 2008). 

1.2.6. Epicuticular wax 

Despite variability, all cuticles consist of the same two types of highly lipophilic materials.  

One of them, cutin, is a polymer consisting mainly of a very long -chain hydroxyl and epoxy 

fatty acids (Heredia et al 2003; Nawrath 2006).  In contrast, the second component, cuticular 

wax, is monomeric and can be extracted by many organic solvents.  Cuticular wax is a 

complex mixture of straight chain aliphatics and may include secondary metabolites such as 

triterpenoids, phenylpropanoids, and flavonoids (Jetter R et al. 2006).  Jetter R et al. 2001 

demonstrated that the intracuticular wax, interspersed within the cutin polymer, has a distinct 

chemical composition from the epicuticular wax lying on the outer surface of the cutin 

polymer.  According to Stark RE et al 2006 the cutin is a fatty acid–based polyester that 

forms the structural skeleton of the cuticle, while wax is a mixture of highly lipophilic 

aliphatics surrounding and covering the cutin and sealing the plant surface.  Ishag HM (2003) 

suggested that the leaf waxes may reduce high temperature stress input, thus lowering leaf 

temperatures. 
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Leaf waxyness has been associated with cooler canopies under both high temperature 

and drought conditions (Richards et al. 1986; Bennett et al. 2012); however, the effect of 

epicuticular wax in reducing canopy temperature under high temperature stress is still poorly 

studied.  Jordan et al. (1984) reported that epicuticular wax plays significant role in reducing 

leaf transpiration and decreasing dehydration.  Leaf epicuticular wax can lower 

evapotranspiration rate and reduce the risk of irreversible photo-inhibition through 

decreasing radiation load to leaf surface (Richards, 1996). 

Periodic drying increased the total wax and light reflectance (genotype x environment) in 

tobacco (Kimberly et.al 2005) and in barley (Gonzalez & Ayerbe 2010).  The elevated wax presence 

enhances heat stress avoidance by altering transpiration cooling needs.  It acts as a reflective 

surface to excess photosynthetic and infrared energy, and thus, dissipates heat during high light, 

high temperatures, and drought stresses. 

Epicuticular wax is an important adaptive trait that covers both sink and source organs such 

as leaves and glumes.  This layer covers in a way that forms a protective barrier between the 

environment and the plant, offering protection against both abiotic, and biotic stress (Jenks et al. 

1992; Kunst and Samuels, 2003; Shepherd and Griffiths 2006). 

1.2.7. Quantitative trait loci (QTL) analyses of traits related to heat 

One of the major challenges in wheat breeding is to find a linkage between genotype and 

phenotype in the context of the biotic or abiotic stresses.  The polyploid nature of the wheat 

genome makes molecular analysis more difficult (Barnabas´ et al. 2008).  The basic theories 

of identifying QTL were developed almost a century ago (Sax 1923).  There are two methods 

for complex trait analysis.  The first one is through using QTL analysis in biparental (RILs) 

mapping populations.  The second one is a genome wide association study over a set of 
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unrelated individuals.  Therefore, QTL studies are very important to recognize genomic 

regions of interest that can be used for marker assisted breeding (Cardon and Bell 2001).  

However, the majority of the traits related with yield, yield component, and high temperature 

stress tolerance are controlled by a number of genes each with a very small individual effects 

but with significant effect when acting simultaneously.  In wheat, there are many factors that 

can negatively affect molecular analysis.  The QTLs analysis has, partly, been hindered by 

the large genome size (Bennett et al. 1982).  Generally, mapping studies of plant QTL is 

implemented using a population of RILs resulting from a biparental cross of two inbred lines 

that possess different traits (Jansen 2001).  Many studies have shown that high temperature 

stress tolerance, physiological traits that responded to high temperature stress and yield 

components are inherited quantitatively (Maestri et al. 2002).  This is consistent with what 

has been reported in previous studies that grain yield in wheat is controlled by multiple QTL 

and is highly affected by the environmental stresses, making it difficult to make satisfactory 

gains in yield improvement (Kato et al. 2000).  Determining the physiological traits 

associated with high temperature stress tolerance and finding QTL associated with these 

traits might be a crucial result for high temperature tolerance in wheat breeding.  Especially 

when we know that heat stress tolerance is a quantitatively inherited and environmentally 

influenced (Blum 1988; Yang et al. 2002).  Because of repetitive DNA sequences, natural 

genetic variation may be used in the course of direct selection under high temperature stress 

through the reproductive phase or throughout QTL mapping.  Molecular analysis for QTL 

mapping can be a useful tool to provide a realistic estimation of numbers, locations, scale of 

phenotypic effects, and models of gene action (Vinh and Paterson 2005).  For instance, there 

is a 17% variation under high temperature stress for yield QTL’s and canopy temperature 
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QTL’s at the same location  (Pinto et al. 2010).  A number of publications recommend the 

use of main spike for the identification of QTLs genomic regions associated with high 

temperature tolerance (Mason et al. 2010). 

Recently, a number of QTLs have been identified in wheat for high temperature stress 

tolerance during the reproductive stage.  Such QTL were used by Ottaviano et al. (1991) to 

understand and delineate heat stress tolerance in cereals.  Also QTL on chromosome 4A for 

canopy temperature under heat has been identified (Pinto et al., 2010).  Yield stability heat 

tolerance QTL’s were found to overlap with QTL for epicuticular wax (Suchismita et al. 

2011).  Detection of two major grain yield QTL’s were identified in bread wheat under heat, 

drought and high yield potential environments (Bennett et al. 2012).  Detection of QTL on 

bread wheat chromosomes 1B, 3D and 5A associated with constitutive production of leaf 

cuticular wax may contribute to lower leaf temperatures under heat stress (Suchismita et al. 

2015). 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bennett%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22772727
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Figure 1.1.  Scanning electron microscopy (SEM) imaging of epicuticular wax of heat 

tolerance and heat susceptible wheat varieties (S. Mondal- Thesis 2011). 

 

 

 

 

Figure 1.2.  Epicuticular wax on leaf (Koch et al. 2006) 



 

15 

 

CHAPTER II 

SPECTRAL REFLECTANCE INDEXES ANALYSIS ON GLUME AND LEAF 

EPICUTICULAR WAX AND THEIR RELATION TO HEAT TOLERANCE UNDER 

HIGH TEMPERATURE STRESS IN WHEAT      

2.1. Introduction 

High temperature and drought are major factors limiting wheat yields in many countries 

worldwide.  Boyer 1982 reported that heat and drought stresses are primary abiotic factors in 

limiting plant growth and crop productivity worldwide.  Moreover, they are complex 

morphological and physiological phenomena in plants.  At the plant cell level, water shortage 

results in osmotic stress.  A flux of water from the cells results from an alteration in 

extracellular solute concentrations.  The loss of water causes a decrease in turgor and 

increase in concentrations of intracellular solutes, putting a stress on membranes and 

macromolecules.  If chloroplasts are exposed to excessive excitation energy at the same time, 

water deficiency leads to the production of cell-toxic substances such as superoxide and 

peroxides that damage cell membranes (Holmberg and Bülow 1998).  Consequently, high 

temperature and drought tolerant wheat varieties a valuable resource, especially when they 

are farmer friendly and based on seed technology that is easy to disseminate.  In harsh 

climatic zones where plants are exposed to heat and drought stress adjusting stress adaptive 

strategies should include traits that reduce radiation load such as wax, pigments composition, 

leaf angle and rolling to increased transpiration efficiency (Richards 2006). 

Epicuticular wax covers plant aerial organs to protect them from various biotic and 

abiotic stresses.  EW is a very thin film upon the cutin matrix.  This thin layer appears as 

microscopic mixtures called EW crystals (Barthlott et al. 1998; Jetter & Schäffer 2001).  The 
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structure of epicuticular waxes is determined by the shape and density of single wax crystals.  

However, the morphology of such crystals depends on the plant’s species, specific chemistry 

(Baker, 1982), and predominant wax compounds (Jetter & Riederer 1994; 1995).  However, 

many factors can affect the amount and chemical composition of the EW surface.  EW is not 

only species and organ specific, but it also varies due to the plant growth environment and 

development stage.  The amount and orientation of the leaf wax crystals changes between 

leaf regions of variable age (Rhee et al. 1998). 

Temperate cereals like wheat are relatively well adapted to high temperature and dry 

environments, being grown widely throughout the world.  A high temperature and drought 

resistant genotype yield significantly higher than average under conditions where crop water 

availability is limited.  While current breeding work has made steady progress, performance 

of cereals still show substantial loss to high temperatures (Reynolds et al. 1994).  Moreover, 

significant breeding effort will be required to maintain their productivity under warmer 

conditions.  Although breeders regard improved high temperature and drought resistance as 

specific target in their breeding programs, progress towards this objective is often hard to 

improve and achieve.  

Plant phenotyping is a useful approach that can be applied to physiological breeding 

for the improvement of yield gains and traits that are related to the adaptation of different 

environments, such high temperature and dry environments.  Plus it is a non-destructive, fast 

and often easy to implement (Reynolds et al. 1998). 

Applying several physiological traits such as measuring plant water status is a vital 

evaluation for monitoring the physiological status of plants, and assisting wheat breeder in 
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selecting for high temperature and drought wheat species, as verities (Peñuelas et al. 1993, 

1996). 

  Understanding water relations traits has been used to identify complementary parents 

in breeding for improved adaptation of wheat to water limited environments.  Optimization 

of phenotyping methodologies has offered easy and rapid screens that permit precision 

phenotyping of large numbers of genotypes within a time frame that does not confuse 

measurement that are environmentally unstable (Pinto et al. 2010).  Relative water content 

(RWC) for wheat plants after a period of drought-stress represents the ability of a genotype 

to retain water in their tissues.  It appears to be a better indicator of turgor pressure and 

consequently cell volume as a result of drought-stress.  Nevertheless, this trait and most of 

water relations traits such as leaf water potential, leaf relative water content (RWC), root 

characteristics, and osmotic adjustment generally require destructive preparation of sampling, 

are labor-intensive, and time consuming for an applied routine in breeding programs.  

However, these physiological traits are very useful tools and accurate indicators of stress 

levels in field trials (Peñuelas et al. 1993; Reynolds et al. 1994).  By applying high-

throughput phenotyping tools for measuring such physiological traits e.g. spectral reflectance 

indices (SRI), and canopy temperature depression CTD could rapidly overcome these 

drawbacks.  Understanding these relationships has permitted the identification of efficient 

tools that are used in plant selection for adaptation to high temperature and drought. 

Blum et al (1982) reported that using of infrared imaging to quantify differences in 

the CTD of wheat genotypes under drought is a useful tool for identifying cultivars.  Canopy 

temperature depression can be measured either with a hand-held infrared thermometer, or 

with a remote sensing thermal camera.  The readings are calculated by subtracting the 
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temperature of the canopy from the surrounding ambient air temperature and can be used to 

evaluate hundreds of lines in a short period of time (Ayeneh et al. 2002; Balota et al. 2007; 

Bilge et al. 2008). 

It has been found that phenotypic correlations of CTD with grain yield were 

occasionally positive (Reynolds 1997).  The suitability of CTD as an indicator of yield and 

stress tolerance, however, must be determined for individual environments. For example, it 

can be a poor indicator where yield is highly dependent on hygroscopic water vapor pressure 

deficit CTD, while net radiation, air temperature, and wind speed have slight effects (Smith 

et al., 1986).  CTD is effected by biological and environmental factors such as soil water 

status, wind, evapotranspiration, cloudiness, conduction systems, plant metabolism, air 

temperature, relative humidity, and continuous radiation (Reynolds et al. 2001).  CTD 

measurements are actual integrative and scoring many leaves at once, thus reducing error 

associated with leaf to leaf variation.  The main disadvantage is CTD readings are somewhat 

sensitive to the environment, needing relatively stable weather to obtain reliable data 

(Reynolds 2012). 

However, spectral radiometry can detect with high resolution an even greater range of 

light reflected from the canopy in the range of 350–2500 nm.  Many indices have been 

calculated using different wavelengths that relate to different traits including photochemical 

reflective index (PRI) (Penuelas et al. 1995), normalized difference vegetation index (NDVI) 

(Gao, B.C. 1995), and the water index (Peñuelas et al. 1993).  Accordingly spectral 

reflectance techniques can be easy to apply in the field and provides several rapid, reliable, 

and non-intrusive measurements by quantifying the patterns in both the visible (400-750 nm) 

and the near-infrared (750-1100 nm) wavelengths. Plots can be smaller, and measurements 
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can be repeated many times (Mullan et al 2010).  Previous study have already shown effects 

of nutrient and water deficiencies on the spectral reflectance and transmittance of single 

leaves (Peñuelas 1994).  High-resolution reflectance between 750-1100 nm has already been 

proven to be a reliable method for estimating plant water concentration (Carter 1991; Danson 

et al. 1992).  Water absorption bands throughout the mid-infrared region 1300-2500 nm 

showed the highest sensitivity to leaf water concentration (Carter 1991). 

While field sampling of single leaves provides the most accurate assessment of plant 

water status, it is time consuming especially for large areas.  Whereas the spectral radiometry 

techniques offer alternative of a non-destructive and instantaneous method to assess water 

status of vegetation over large spatial scales (Gao 1995). 

 

2.2. Material and methods 

2.2.1. Plant material 

In this study a set of 180 recombined Inbred lines (RILs) of wheat were used.  These RILs 

were derived from crossing of two spring wheat lines, Halberd and Len. Halberd is an 

Australian spring wheat (Triticum aestivum L) as a donor cultivar with the pedigree 

Scimitar/Kenya/C6042/ Bobin/2/Insignia49 (Paull et al. 1998).  Halberd is a heat and drought 

tolerant cultivar, and maintains carbohydrate accumulation during moisture stress (Ji et al. 

2010).  Len is hard red spring wheat as a recurrent cultivar developed in North Dakota with 

the pedigree ND499/3/Justin/RL4205/W1261.  Len is a semi-dwarf that is a drought and heat 

susceptible; however, it is known for its good agronomic characteristics (Hossain et al. 

2012).  The two parents were chosen due to similarities in flowering period and maturity.  

The 180 RILs were developed by preceding the F1 progeny through single seed descent in 
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head rows to the F5 generation.  Seeds from the F5 generation were bulked to develop 180 

F5:6 RILs.  The F6 lines were advanced in the field and were evaluated during 2010 as an 

F5:7 generation.  During 2011 and 2012, F8 and F9 generations were used respectively, to 

conduct experiments (S. Mohammed et al 2014). 

2.2.2. Growing environment 

The RILs and the two parents were grown in the field during the winter season.  The crop 

growing seasons for all experiments are referred to as year 2014 seasons at CIMMYT's 

experimental station Ciudad Obregon, Northwest Mexico (27.3° N, 109.9o W, 38 m above 

sea level).  Weather conditions were mostly sunny and dry during the winter cropping cycle.  

The soil type is coarse sandy clay, low in organic matter, and slightly alkaline (pH 7.7) in 

nature (Sayre et al. 1997).  Nitrogen and phosphorus were applied to the plots at a rate of 150 

kg ha−1 and 22 kg ha−1, respectively.  Field plots consisted of two raised beds (28 cm apart) 

each 5 m long and 80 cm wide.  An alpha lattice design with two repetitions was used for 

experiment.  The planting dates were in February and plants reached booting and heading 

during April–May and were harvested in May. 

2.2.3. Agronomic and physiological measurements 

Physiological traits measured at 10 DAP are CT, SRI measurements, glume EW and leaf 

EW.  Measurements were always taken at a specific time between 1 pm and 3 pm.   

2.2.3.1. Airborne data collection thermal infrared imagery (thermal index) 

Aerial imagery was collected via the AscTec Falcon 8 Unmanned Aerial Vehicle (UAV) 

Ascending Technologies GmbH., Krailling, Germany).  Thermal camera measures the 

emitted thermal radiation.  The thermal index (TI) was calculated using the sum of the green 

http://jxb.oxfordjournals.org/content/61/12/3291.full#ref-33
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and blue bands of the plot averaged values of the processed images acquired from the 

recorded video. 

𝑻𝑰 = 𝑻𝑮 + 𝑻𝑩, 2 

Where 𝑻𝑮 and 𝑻𝑩 are the averaged ‘plot’ values at the green and blue bands respectively. 

The thermal index is positively related to temperature, so the higher the temperature, the 

higher the thermal index. 

2.2.3.2. The ground based measurements of canopy temperature 

CT were recorded at 10 DAP.  Measurements were taken using a portable infrared 

thermometer a hand-held infrared thermometer (Fluke 561 HVACPro Combination IR Non-

Contact and K -type thermocouple thermometer, Fluke Infrared Instrument Co. Inc., Everett, 

WA).  The measurements were obtained from the same side of each plot at an angle of 

approximately 45° for 30 s.  With respect to the horizontal angle to integrate as many spikes 

as possible without capturing the soil in the measurement.  The measurements were taken in 

the afternoon at a specific time between (13.00–14.00 h) when the crop experienced 

maximum transpiration rates.  Hot weather, sunny, non-cloudy, and low wind conditions 

were taken into consideration during CT measurements. 

2.2.3.3. Spectral reflectance measurements  

Spectral of canopy reflectance was measured in the 350–1100 nm range and collected at 1.5 

nm intervals using a high-resolution spectro-radiometer ASD handheld 2 Field Spec 

spectroradiometer (Analytical Spectral Devices, Boulder, CO).  Data was calculated from 

four readings per plot at10 days after pollination (10DAP) at midday (between 10.30 h and 

14.00 h) to avoid differences due to the solar inclination.  After the machine was calibrated 

using a white plate of barium sulphate (BaSO4) which provides maximum reflectance 
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(Labsphere Inc., North Sutton, USA).  Measurements were taken at a height of 0.5 m above 

the canopy and with a field of view of 25°.  The water index proposed by Peñuelas et 

al. (1993) was calculated (WI=R970/R900) and four normalized water indices (NWIs) were 

also calculated according to Babar et al. (2006) and Prasad et al. (2007) (NWI-1=[R970–

R900]/[R970+R900], NWI-2=[R970–R850]/[R970+R850], NWI–3=[R970–

R880]/[R970+R880], and NWI-4=[R970–R920]/[R970+R920]). Simple ratio (SRI) calculated 

according to Peñuelas et al. (1998) was calculated R980 / R680 for estimation of canopy 

photosynthetic area.  Photochemical reflective index (PRI) was calculated according to 

Peñuelas et al. (1995) was calculated by (R531 – R570/ (R531+R570) for estimation of 

radiation-use efficiency.  Normalized difference vegetation index (NDVI) was calculated 

(R780 – R670)/ (R780+ R670) for estimation of canopy photosynthetic area Peñuelas et al. 

(1993). 

2.2.4. Wax sample collection 

Samples were collected at 10 DAP.  Four glumes were collected for wax analysis using 

tweezers to carefully remove glume without touching the glume surface avoiding any 

slightest scratches on the EW layer.  Leaf discs for wax analysis were collected from flag 

leaves using a disc punch with a 1 cm diameter drum (Rabbit Tool USA, Rock Island IL 

USA).  Four 1cm (diameter) leaf punches was collected from the primary inflorescence, and 

placed in Borosilicate Glass Vails with Screw Caps.  The sample vials were placed in the 

laminar flow to air dry and stored at normal room temperature. 

2.2.5. Wax extraction  

EW concentrations were determined using the colorimetric method (Ebercon et al., 1977).  

Glume and leaf EW was extracted by submerging glumes and leaf discs in 1 ml HPLC grade 

http://jxb.oxfordjournals.org/content/61/12/3291.full#ref-26
http://jxb.oxfordjournals.org/content/61/12/3291.full#ref-26
http://jxb.oxfordjournals.org/content/61/12/3291.full#ref-4
http://jxb.oxfordjournals.org/content/61/12/3291.full#ref-28
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chloroform for 30 s, the submersion time previously determined to completely remove the 

epicuticular wax from the leaf (Mayeux and Jordan, 1984). The resulting mixture was 

transferred to a clean 1.8 ml glass GC vial (VWR Auto sampler Vial, Radnor, PA).  The 

chloroform solvent was removed under a continuous flow of nitrogen gas by leaving the vial 

without cap overnight in the laminar flow hood. 

2.2.6. Wax quantification 

The resulting extract was oxidized by adding 300μl acidified potassium dichromate and 

heated for 30 min water bath at 100 0C.  After boiling, vials were allowed to cool for a 1hr 

period and 700μl of deionized water was added to each vial, allowing color development for 

another hour.  A spectrophotometer (PHERAstar plus, BMG LABTECH, Offenburg, 

Germany) was used to determine the optical density for each sample at 590 nm.  Samples 

were loaded in 96 well, sanitized, clear flat bottom microplates (Greiner Bio-One, Monroe, 

NC, USA).  A standard curve was developed from randomly selected wheat flag leaves from 

Halberd.  Samples were placed in large glass vials and 20 ml HPLC grade chloroform was 

added to remove EW.  The resulting chloroform-wax solution was proportioned based on the 

serial dilution technique.  The standard curve was used to calculate wax levels based on leaf 

area (Mondal et al. 2014). 

2.2.7. Statistical analyses 

Statistical analyses of all phenotypic traits were performed using JMP Pro 11.2.1 (JMP 

Version 11, SAS Institute Inc., Cary, NC).  All phenotypic traits were tested for normality.  

The generalized linear model (GLM) was used for analysis of variance and the means were 

compared using Fischer’s least significant difference (LSD).  A combined analysis of 

variance was also done using GLM procedure considering genotype and year as fixed effects.  
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Pearson’s correlations were estimated for determining the association between leaf and 

glume epicuticular waxes and the physiological and phenological responses under high 

temperature stress. 

 

2.3. Results 

2.3.1. Leaf and glume epicuticular wax load  

Analysis of wax load in both leaf and glume showed normally distributed data with 

significant differences observed between lines (Fig 2.1.).  Contrary to what is expected, 

comparison between wax content of glume and that of the leaf showed no significant 

variation between the two data sets.  ANOVA test put the means of both set at F correlation 

value of 0.7126 with  glume wax mean  of 5.37 mg/dm2 and leaf wax mean of 5.97 mg/dm2 

(Fig 2.2.).  Glume and leaf wax had minimums of 1.04 mg/dm2 and 1.56  

mg/dm2, and maximums of 12.92 mg/dm2 and 11.00 mg/dm2 respectively.  A significant but 

weak correlation exists between glume wax and leaf wax with r of 0.0304 at p≤0.05 

significance level (Fig 2.3.).  However, the same sample did not produce matching leaf and 

glume wax content throughout the lines (Fig2.4).  
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Figure 2.1.  Quantile plot of log 10 transformation of glume and leaf wax load mg/dm2 (A1, 

A2); Normal distribution of glume and leaf wax load mg/dm2 (B1, B2). 
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Figure 2.2.  One-way analysis of wax (mg/dm2) by plant part. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Linear correlation between glume wax and leaf wax, **significant at p≤ 0.05 

with Pearson’s correlation. 
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Figure 2.4.  Leaf and glume wax load for wheat lines 1-50 (A), 51- 100 (B), and 101 -182 

(C). 
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2.3.2. Canopy spectral reflectance and wax correlation 

Differences were observed in reflectance between the lines across the photosynthetic active 

region and the near infrared region NIR with reflectance beginning at 2% and reaching 35% 

(Fig 2.5).  Reflectance bands in the NIR overlapped for some lines but completely varied 

between the lowest readings and the highest readings.  The percent reflectance in the NIR 

ranged from a minimum of 25% and a maximum of 35% for lines 122 and 168 respectively 

with average percent change of 33% (Fig 2.6.).  Parent line (182) Hallberd achieved 

reflectance at 30% in the NIR which is approximately midway between the lowest observed 

reading and highest observed reading.  On the other hand, parent line (181) Len reflectance 

was in the lower at 27%. 

 All spectral indices data showed variation between the lines to a certain extent (Fig 

2.8.).  WI showed the largest range among the water status indices of 0.63 as compared to the 

smallest range by NWI-4 with of 0.035 (Table 2.1.).  Both NWI-2 and NWI-3 did not vary 

significantly for across for the different line with similar ranges of 0.0462 and 0.0432 

respectively.  (Figure 2.8.) shows that other spectral indices NDVI, PRI, and SRI also varied 

across the lines yet only SRI had significant variation and a larger range of 1.58 (Table 2.1.).  

 Water status indices related negatively with the wax load of both the leaf and the 

glume (Fig 2.10., 2.11.).  Moreover, the correlation was significant at p≤ 0.05 for all water 

status indices   associated with glume wax except NWI-2 which was not significant.  R2 

values for the correlation ranged from 0.274 to 0.2198   for WI and NWI-1 respectively 

(Table 2.2.).  Whereas all the correlation of the water status indices with the leaf wax were 

not significant with R2 values ranging from 0.0076 to 0.0708 for NWI-3 and WI respectively 

(Table 2.3.).  The normalized difference vegetation index followed the same pattern as the 



 

29 

 

water status indices by being positively correlated to glume wax and negatively correlated to 

leaf wax (Fig 2.12.).  Again, the correlation was significant at p≤ 0.05 with Pearson’s 

correlation value of 0.5304 for NDVI with glume wax as compared to none significant 

Pearson’s correlation value of -0.0750 for NDVI with leaf wax (Table 2.3.).  While the 

correlation between simple ratio index and glume wax was also positive, it was not 

significant like the others, neither was that of the leaf wax with r = 0.2664 and r= -0.1066 

respectively (Fig 2.13.).  Photo reflective index repeated that pattern of having a positive 

significant correlation with glume wax with (r = 0.5334) and negative none significant 

correlation with leaf wax (Table 2.3. and Fig 2.14.).   
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Figure 2.5.  Percent reflectance of all lines and two parent lines in photosynthetic active 

region and near infrared region. 
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Figure 2.6.  Percent reflectance of selected lines of high leaf wax load (128), low leaf wax load (44), high glume wax load (139), 

     low glume wax load (79), two parent lines (181and 182), higher reflectance (168 and 117), lower reflectance (122 and 142). 
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Figure 2.7.  Linear relationship between reflectance at 900 nm and leaf wax (left), 

reflectance at 900 nm and glume wax (right), ** significant at p≤ 0.05. 

 

 

 

Table 2.1.  Spectral reflectance indices quantiles and summery of statistics 

 

Index Mean STD Maximum Minimum Range 

WI 0.963 0.0153 0.998 0.925 0.063 

NWI-1 -0.0188 0.00794 -0.001 -0.0388 0.0378 

NWI-2 0.00248 0.00919 0.0248 -0.0214 0.0462 

NWI-3 -0.0118 0.00937 0.00921 -0.034 0.0432 

NWI-4 -0.0193 0.00742 -0.0028 -0.0378 0.035 

NDVI 0.527 0.0421 0.621 0.415 0.206 

PRI -0.0849 0.0066 -0.07 -0.100 0.03 

SRI 3.15 0.338 4.05 2.47 1.58 
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Figure 2.8.  Distribution and quantile plots of spectral reflectance plant water status data. 

Normal distribution and quantile plot of WI (A1, B1), Normal distribution and quantile plot 

of NWI-1 (A2, B2) ; Normal distribution and quantile plot of NWI-2 (A3,B3), Normal 

distribution and quantile plot of NWI-3 (A4,B4), Normal distribution and quantile plot of 

NWI-4 (A5,B5), 
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Figure 2.9.  Spectral reflectance distribution and quantile plots of NDVI (A1, B1), SR (A2, 

B2), PRI (A3, B3). 

 

 

 

 

Figure 2.10.  Linear relationship between water index and leaf wax (left) and glume wax 

load (right).   
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Figure 2.11.  Linear relationship between normalized water indices and leaf wax (top) and 

glume wax load (bottom). 
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Figure 2.12.  Linear relationship between normalized difference vegetative index (NDVI) vs. 

leaf wax load (left) and glume wax load (right). 

 

 

 

Figure 2.13.  Linear relationship between simple ratio index (SR) vs. leaf wax load (left) and 

glume wax load (right). 
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Figure 2.14.  Linear relationship between photochemical reflection index (PRI) vs. leaf wax 

load (left) and glume wax load (right). 

 

 

 

Table 2.2.  Pearson's correlation coefficients of glume epicuticular wax load, water status 

indices (WI, NWI-1, NWI-2, NWI-3, and NWI-4), NDVI, SRI, and PRI.  *, **, *** 

significant at p≤ 0.01, 0.05 and 0.001 respectively. NS not significant. 

Indices 
 

WI 

 

NDVI 

 

NWI-1 

 

NWI-2 

 

NWI-3 

 

NWI-4 

 

Glume 

wax 

 

SRI 

NDVI -0.8826***        

NWI-1 1.0000***        

NWI-2 0.9924*** -0.8409*** 0.9926***      

NWI-3 0.9977*** -0.8665*** 0.9976*** 0.9953***     

NWI-4 0.9950*** -0.8574*** 0.9948*** 0.9898*** 0.9968***    

Glume 

wax 
-0.5235** 0.5304** -0.5264** -0.4959NS -0.5098** -0.5186**   

SRI -0.0926 NS 0.2891 NS -0.0964 NS -0.1171 NS -0.1043 NS -0.0876 NS 0.2664  

PRI -0.3260 NS 0.2903 NS -0.3287 NS -0.3447 -0.3540NS -0.3763 NS 0.5334** 0.6422*** 
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Table 2.3.  Pearson's correlation coefficients of leaf epicuticular wax load, water status 

indices (WI, NWI-1, NWI-2, NWI-3, and NWI-4), NDVI, SRI, and PRI.  *, **, *** 

significant at p≤ 0.05, 0.01 and 0.001 respectively. NS not significant. 

Indices WI NDVI NWI1 NWI2 NWI3 NWI4 Leaf wax SRI 

NDVI -0.6975***                

NWI-1 1.0000*** -0.6983***             

NWI-2 0.9870*** -0.6599*** 0.9867***           

NWI-3 0.9899*** -0.6365*** 0.9896*** 0.9950***         

NWI-4 0.9893*** -0.6665*** 0.9893*** 0.9725*** 0.9863***       

Leaf wax -0.2502NS -0.0750NS -0.2507NS -0.2254NS -0.2660NS -0.2650NS     

SRI -0.6860*** 0.9926*** -0.6870*** -0.6514*** -0.6279*** -0.6538*** -0.1066NS   

PRI -0.6619*** 0.9191*** -0.6625*** -0.6587*** -0.6272*** -0.6403*** -0.0350NS 0.921*** 

 

 

 

2.3.3. Canopy temperature and wax correlation 

Both canopy thermal index (TI) and spike temperature (CT) had a normally distributed data 

with significant variation across the lines (Fig 2.15.).  TI ranged from a minimum of 92.55 to 

a maximum of 128.0 while CT ranged from a minimum of 30.25 to a maximum of 36.2 ̊C 

including the ambient air temperature (Table 2.4.).  The variation of CT appeared mostly at a 

0.5 ̊C level of measurement. 

 Thermal index had negative correlation with both leaf and glume wax content with an 

R2 values of 0.0185and 0.3532 respectively.  The correlation was only significant with glume 

wax content with Pearson’s coefficient r = -0.5943 and significance level of P≤0.001 

(Fig2.16, A).  On the other hand, spike temperature had a positive correlation with both leaf 

and glume wax content with an R2 values of 0.078 and 0.1952 respectively.  The correlation 
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was not significant for both leaf and glume wax content at any significance level (Fig 2.16, 

B).  

 

 

 

Figure 2.15.  Canopy thermal index distribution and quantile plot (A1, B1) and spike and 

ambient air temperature distribution and quantile plot PRI (A2, B2). 

 

 

 

Table 2.4.  Simple statistics of TI and CT including ambient air temperature. 

Trait Mean STD Maximum Minimum Range 

TI 110.3 6.597 128.01 92.55 35.46 

CT ( ̊ C) 32.83 0.92 36.2 30.25 5.95 
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Figure 2.16.  Linear relationship between Thermal index vs. leaf wax load (A1) and glume 

wax load (A2), and spike temperature vs. leaf wax load (B1) and glume wax load (B2). 

 

 

2.3.4. Grain yield and wax correlation 

Grain yield had wide range of 544 and varied significantly among the lines with minimum 

yield of 213 and maximum yield of 757.  The mean for the yield was 496 with a standard 

deviation of 106 (Fig 2.17.).  The linear regression of grain yield with leaf wax was not 

significant with R2 of 0.009.  The regression for grain yield with glume wax was significant 

and negatively correlated with R2 of 0.3156 and Pearson’s correlation of -0.5935 significant 

at p≤ 0.05 (Fig 2.18.). 
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Figure 2.17.  Grain yield distribution and quantile plot (maximum = 757.5, minimum = 

213.5, Mean = 496.2, standard deviation = 106.5). 

 

 

 

Figure 2.18.  Linear relationship between grain yield vs. leaf wax load (left) and glume wax 

load (right), ** significant at p≤ 0.05. 
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2.4. Discussion 

2.4.1. Leaf and glume epicuticular wax load  

The physical and chemical makeup of epicuticular wax in plants is effected by both genetic 

and environmental factors (Whitecross et al 1972).  Some environmental conditions that 

effect wax content and composition are relatively high-humidity conditions, such as in tissue 

culture, suppress wax production (Sutter and Langhans, 1979, 1982), and the photoperiod 

affects the chain length of wax components (von Wettstein-Knowles et al. 1980).Waxes 

differ widely among plant species and among the organs and tissues of a single plant, 

attesting to the genetic diversity and developmental influences ( von Wettstein-Knowles 

1995; Lemieux 1996; Post-Beittenmiller 1996).  Different organs on the plant, or different 

parts of the plant, may have different proportions of wax component (Tulloch 1973).  

Analysis of data on waxes from different parts of the plant can contribute to assessment of 

physiological traits (Baum et al 1975).  In this study, a comparison was made between the 

epicuticular wax load on wheat glume and flag leaf of 180 RILs and their parents under high 

temperature environment.  Analysis of wax load in both leaf and glume showed normal 

distributed data with significant differences observed across the 180 RILs.  Wax load for 

both glume and leaf reached readings as high as ~13 mg/dm2 and as low as ~ 1 mg/dm2.  

There was no apparent consistency in the glume wax to leaf wax ratio within the line.  For 

example some lines had 1:1 ratio in the wax load of glume to leaf like lines 58, 72 and 91.  

Others had more varied ratios like 1:3, 1:4, and 1:12 for lines 84, 79, and 98 where leaf wax 

was noticeably higher than that of the glume.  Another pattern where the glume wax was 

higher than the leaf wax like in lines 33 and 139 with ratios of 2:1 and 3:1 respectively.  This 

observed variation is most likely due to genetic makeup of the different RILs.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B22
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B23
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B25
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B25
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B20
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 The anticipated results of crossing between Halberd X Len is in agreement with 

previously reported studies on flag leaf wax content in wheat due to genetic variability 

(Uddin and Marshall 1988; Clarke et al. 1993).  ANOVA test; on the other hand, suggests 

that there is no significant deference between the means of glume wax and leaf wax load (Fig 

2.2.).  In addition, when fitting the data to a linear model, a significant positive relationship 

for glume wax vs. leaf wax was observed with Pearson’s correlation r of 0.0304 at p≤0.05 

significance level and R2 of 0.03 (Fig 2.3.).  This small correlation may be due to a previous 

reported correspondence between the presence of wax filaments on glumes and the 

occurrence of relatively high amounts of β-diketones among Triticeae (Simpson et al 1980).  

2.4.2. Canopy spectral reflectance and wax correlations 

The thin layer of epicuticular wax that is secreted on the tissue surface of the plant organ 

plays an important role as a protective layer against excess radiation and water loss through 

the reflection of visible and infrared wavelengths (Shepherd and Griffiths 2006).  Thus, it 

makes sense to relate between epicuticular wax load and reflected radiation using high-

resolution spectroradiometer device.  In this experiment, correlations where made between 

the variable wax load in flag leaf and glume produced by different RILs and canopy 

reflectance.  Differences were observed in percent reflectance between the lines where RILs 

exhibited a minimum ranges in the 2% to 3% reflectance in the photosynthetic active region 

and maximum ranges of 25% to 35% in the near infrared region.  Reflectance of RILs were 

compared with leaf and glume wax loads at wavelength 900 nm, where there was maximum 

reflectance and there is no absorption by water concentration but reflectance is affected in the 

same way with respect to plant structure only (J. Peñuelas et al. 1997).  Interestingly, a 

significant positive relationship was found between wax content of glume and the reflectance 
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but no relationship was detected between wax content of leaf and reflectance at 900 nm.  The 

finding that higher epicuticular wax content gave rise to higher reflectance is in agreement 

with previous studies (Koch and Ensitak 2008).  However, what is catching here is that the 

reflectance correlated to glume wax instead of leaf wax.  Almost all the spectral indices gave 

similar results to this correlation when related with glume wax and leaf wax.  This suggests 

that this correlation was not coincidental but as a matter of fact it is specific to this study.  

Water index and its normalized derivatives were significantly and negatively associated with 

glume wax but not significant with leaf wax.  The similarities between the water indices 

indicated that the choice of wavelength for a water index was less important for thin 

canopies, and the best wavelengths were those where water absorbance was weak to 

moderate (Sims et al. 2003).  Moreover, the values indicates that while the canopy was able 

to maintain good water status under heat stress conditions during grain filling stage ( Prasad 

et al. 2009) it is the glume that can be used as an indicator of that status. This may be due to 

early senesces of leaf as compared with glume’s viability and higher stay-green which makes 

it more photosynthetically active during this stage than the leaf (Kong et al. 2015).  Since 

photosynthetic activity is in direct relationship to chlorophyll content, then vegetation indices 

will also show stronger relation with glume wax content than leaf wax content.  This is 

because strong absorption by chlorophyll in the red region of the spectrum results in the well-

known saturation of the normalized difference vegetation index (NDVI) and simple ratio 

index at high leaf area indices (Gamon et al. 1995; Sellers 1985).  The results of this study 

did agree with this prediction where both NDVI and SR related positively and significantly 

with glume wax content but did not relate to leaf wax content again during grain filling and 

under high heat stress.  The vegetative indices, SR and NDVI, increased through the increase 
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in glume wax content under HT conditions, which suggest an increase in plant health for 

RILs with higher glume wax content.  On the other hand, the index that measures radiation 

use efficiency, PRI in this case, may be used to measure changes in the status of xanthophyll 

pigments without canopy scale PAR manipulations (Araus, 1996).  Heat stress causes plants 

to respond with the conversion of the xanthophyll cycle (Demmig-Adams & Adams 1992).  

Here, PRI had higher values for glumes with higher wax content.  PRI is expected to increase 

compared to non-stressed conditions, indicating a reduction in radiation use efficiency 

(Penuelas et al. 1995; Babar et al. 2006).   The variation between PRI was very small across 

the RILs because they were all under the same heat stress condition but the small differences 

detected by the spectrophotometer correlated significantly with wax content of glume, 

reinforcing the outcome of the study where glume wax content was observed to have 

correlations with all spectral indices analyzed. 

2.4.3. Canopy temperature and wax correlation 

CT integrates many physiological functions that facilitates adaptations to different 

environment making it highly versatile measurement (Amani et al. 1996; Blum et al. 1982).  

Under heat stress, cooler canopies were associated with yield among random lines as well as 

providing a powerful tool for selecting advanced lines for performance at a number of heat-

stressed target environments (Reynolds et al. 2001).  In this study, CT by ground base 

showed no significant correlation with both leaf and glume wax content.  The reason behind 

the lack of correlation using ground based imaging is likely due to dramatic change in 

weather conditions during data collection.  The proses of collecting data via ground was time 

consuming and thus both wind and temperature varied considerably from the start to end of 

collection time. 
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Thermal index via airborne method is a well-known measure of stomatal conductance 

in plants.  In this study, thermal index related negatively and significantly with glume wax 

content as compared to leaf wax content.  Not only does this mean that wax content in 

general decreased the thermal index at the grain filling stage and under heat stress, but also it 

was the glume that was mostly “seen” by the sensor camera.  This is similar to a previous 

study on cereals where it was found that developing and maturing seed heads tend to have 

stomata, and transpire less than the leaves resulting in an increased canopy temperatures 

(Milthorpe and Moorby 1979; H. G. Jones et al.2009).    

2.4.4. Grain yield and wax correlation 

Grain yield is one of the most important, yet complex traits in crops.  It is a combination of 

interaction between environment and developmental processes during growth stages that 

occur throughout the life cycle of crop (Quarrie et al. 2006).  Grain yield is directly 

determined by yield its component (such as SKW and seed number).  Yield-related traits 

(such as biomass, harvest index, plant architecture, adaptation, resistance to biotic and abiotic 

constraints) may also indirectly affect yield by affecting the yield component traits or by 

other, unknown mechanisms.  (Shi. et al 2009) 

Grain yield related negatively and significantly with glume wax content as compared 

with none significant correlation with the leaf wax content in the present study.  It was 

projected that the yield will increase for those RILS with higher glume wax content after all 

the above successes   however, a closer look at the parent lines suggest otherwise.  This is 

because parent Halberd and Len both had an average leaf wax content as compared to the rest 

of the RILs  leaf wax content, but parent Len had a low glume wax content with very high 

yield (~700) while parent Halberd had an average glume wax content and grain yield (~400).  
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Thus, it is possible that high yield trait was associated with low glume wax trait.  QTL 

analysis was performed on these RIL and their parent lines to further explore this relation. 
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CHAPTER III 

A COMPARATIVE ANALYSIS ON THE ROLE OF LEAF EPICUTICULAR WAX 

TO GLUME EPICUTICULAR WAX ON IMPROVED ADAPTATION FOR HIGH 

TEMPERATURE STRESS IN WHEAT  

3.1. Introduction 

High temperature and drought are major factors limiting wheat yields in many countries 

worldwide.  Yield components such as kernel weight, number of kern per spike, and number 

of spike per m2 are assumed to be inherited quantitatively (Benmoussa et al. 2005).  High 

temperature stress negatively effects these yield components during kernel development, and 

ripening.  A study by Gibson and Paulsen (1999) showed that yield and yield component 

were reduced by 78% through a reduction in kernel weight and kernel number by 29% and 

63%, respectively when exposed to a 35/20 °C (day/night) at 10 days after pollination (DAP) 

until ripeness.  However, exposure of wheat grain to the same temperature in the later stages 

of seed development at 15 and 20 DAP, showed less yield loss.  High temperature stress 

during grain filling stage lead to decrease in starch in endosperm cells, leading to a reduction 

in the amount of starch per granule which reduced grain weight (Jenner 1991).  At the plant 

cell level, water shortage results in osmotic stress.  A flux of water from the cells results from 

an alteration in extracellular solute concentrations.  The loss of water causes decrease in 

turgor and increase in concentrations of intracellular solutes, putting a stress on membranes 

and macromolecules.  If chloroplasts are exposed to excessive excitation energy at the same 

time, water deficiency leads to the production of cell-toxic substances such as superoxide and 

peroxides damaging cell membranes and enzymes (Holmberg and Bülow 1998). 
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Heat tolerance is also inherited quantitatively based on phenotypic traits like higher 

seed set, grain weight and an extended  grain filling duration at higher temperatures (Yang et 

al. 2002).  Controlling high temperature and drought tolerance in wheat is one way to 

improve breeding efficiency.  Consequently, high temperature and drought tolerant wheat 

varieties are the most appropriate solution especially when they are farmer friendly and based 

on seed technology that is easy to disseminate.  In harsh climatic zones where plants are 

exposed to heat and drought stress adaptive trait strategies should include breeding traits that 

reduce radiation load, such as increased wax pigment composition, leaf angle and rolling that 

increased transpiration efficiency (Richards 2006).  Plants utilize stress adaptive 

physiological mechanisms to survive under high temperatures according to the degree of 

stress.  Reduced photosynthetic rate, and waxy leaf and glume are some of the physiological 

responses that have been associated with yield under high temperature stress in wheat 

(Reynolds et al. 1994).  In pea cultivars, EW influences grain yield indirectly by improving 

harvest index, decreasing residual transpiration rates, and leaf CT under water-deficit 

conditions (Sánchez et al. 2001).  Increased leaf EW may compensate for increased stomatal 

conductance, thereby increasing leaf temperature depression and yield stability under heat 

stress conditions ( Mondal et al. 2014). 

 Higher plants comprise a cuticular layer covered by a waxy deposit.  Epicuticular wax 

(EW) plays a major role in the water balance of plants (Eglinton 1967).  EW covers plant 

aerial organs to protect them from various biotic and abiotic stresses.  EW could be described  

as a very thin film upon the cutin matrix, this thin layer appear as microscopic mixtures 

called EW crystals expanded from this thin film (Barthlott et al. 1998; Jetter & Schäffer 

2001).  The structure of epicuticular wax is determined by the shape and density of single 
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wax crystals.  However, the morphology of such crystals depends on the plant’s species and 

specific chemistry (Baker 1982), and by a predominating wax compounds (Jetter & Riederer 

1994; 1995).  However, many factors likely affect the amount and chemical composition of 

EW surface.  EW is not only species and organ specific, but also vary due to plant growth 

environment and development stage.  The amount and orientation of the leaf wax crystals 

changes between leaf regions of variable age in expanding leaves (Rhee et al. 1998).  Leaf 

EW was consider to have low heritability in wheat compared to different crops  (Mondal et 

al. 2014).  Temperate cereals like wheat are relatively well adapted to high temperature and 

dry environments, being grown widely throughout the world.  A high temperature and 

drought resistant genotype gives significantly higher yield than average under conditions 

where crop water availability is limited by environmental aspects.  Ongoing breeding work 

has made steady progress, yet performance of cereals still shows substantial loss to high 

temperatures (Reynolds et al. 1994).  Moreover, significant breeding effort will be required 

to maintain their productivity under warmer conditions.  Although breeders regard improved 

high temperature and drought resistance as specific target in their breeding programs, 

progress towards this objective is often hard to improve and achieve.  This study aims to 

compare and analysis the role of leaf epicuticular wax to glume epicuticular wax on 

improved adaptation for high temperature stress in wheat. 

 

3.2. Material and methods 

3.2.1 Plant material 

In this study, a set of 180 recombined inbred lines (RILs) of wheat were used.  These RILs 

were derived from cross of the heat tolerant spring wheat lines ‘Halberd’ with Len.  Halberd 
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is an Australian spring wheat (Triticum aestivum L) as a donor cultivar with the pedigree 

Scimitar/Kenya/C6042/ Bobin/2/Insignia49 (Paull et al. 1998).  Halberd is a heat and drought 

tolerant cultivar, also has ability to maintain carbohydrate accumulation during moisture 

stress (Ji et al. 2010).  Len is hard red spring wheat as a recurrent cultivar developed in North 

Dakota with the pedigree ND499/3/Justin/RL4205/W1261.  Len is a semi-dwarf that is a 

drought and heat susceptible however, it is known for its good agronomic characteristics 

(Hossain et al. 2012).  The two parents were chosen due to similarities in flowering period 

and maturity.  The 180 RILs were developed by preceding the F1 progeny through single 

seed descent in head rows to the F5 generation.  Seeds from the F5 generation were bulked to 

develop 180 F5:6 RILs.  The F6 lines were advanced in the field and were evaluated during 

2010 as an F5:7 generation.  During 2011 and 2012, F8 and F9 generations were used 

respectively, to conduct experiments (S. Mohammed et al. 2014). 

3.2.2. Growing environment 

The RILs and the two parents were grown in the field during the winter seasons.  Yield trials 

were conducted at Uvalde Agrilife research station during 2013 and 2014 seasons, College 

Station Agrilife research station, and International Maize and Wheat Improvement Center 

(CIMMYT) Ciudad de Obregon, Mexico during 2014 season.  All growing parameters were 

the same with variability being only in growing location.  

Weather conditions are mostly sunny and dry during the winter cropping cycle.  Table 

1 list daily temperature for the three locations during grain filling stage.  Nitrogen and 

phosphorus were applied to the plots at a rate of 150 kg ha−1 and 22 kg ha−1, respectively.  

Field plots consisted of two raised (28 cm apart) each 3m long and 1m wide and seeded at 

50g per plot.  An alpha lattice design with two repetitions was used for all experiments.  The 
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planting dates were in February for Obregon location and plants reached booting and heading 

during April–May and were harvested in May. For College station and Uvalde, planting dates 

were in January and plants reached booting and heading during April–May and were 

harvested in May.  Record was made for daily high temperature for the 10 DAP (table 3.1). 

 

Table 3.1.  Daily high temperature during grain filling stage for all growing environments. 

 

DAP 
Daily high temperature (F ̊ ) 

OBR14 UVL13 UVL14 CS13 

1 95 93 77 86 

2 98 81 79 72 

3 89 79 93 69 

4 91 88 93 82 

5 94 88 95 73 

6 91 93 96 78 

7 91 100 95 86 

8 92 103 93 87 

9 101 95 88 80 

10 106 97 93 84 

Mean 94.8 91.7 90.2 79.7 
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3.2.3. Yield and yield component measurements 

Measurements were taken after complete plant maturity, when leaves are completely dry and 

heads are chlorotic, ready to harvest.  The plants were harvested and threshed separately for 

primary spike and all other spikes were bulked.  Plot yield (gm⁻²), thousand kernel weight (g) 

(TKW), and kernel number per spike (KNS) were estimated by harvesting 50 heads at each 

plot.  Mean single head weight (MSHW) was the average weight of seed from 50 heads 

harvested from each plot.  Main heads were harvested from the central region of the plot area 

uniformly, excluding secondary tiller heads.  Grain weight for 100 kernels was measured 

using a seed-counting machine (SeedBuro TM 801 Count-a-Pak) and weighed to calculate 

the TKWs (g).  

3.2.4 Wax sample collection 

Samples were collected during early spring 10 DAP.  Four glumes per RIL replicate were 

collected for wax analysis using tweezers to carefully remove the glume without touching the 

surface EW layer.  Leaf discs for wax analysis were collected from flag leaves using a disc 

punch with a 1 cm diameter drum (Rabbit Tool USA, Rock Island IL USA).  Four 1cm 

(diameter) leaf punches was collected from the primary inflorescence leaf per plant of four 

pates per plot and placed in Borosilicate Glass Scintillation Vials with Screw Caps.  The 

sample vials were placed in the laminar flow to air dry and stored at room temperature. 

3.2.5 Wax extraction  

EW concentrations was determined using the colorimetric method of Ebercon et al., (1977).  

Glume and Leaf EW was extracted by submerging glumes and leaf discs in 1 ml HPLC grade 

chloroform for 30 s, the submersion time previously determined to completely remove the 

epicuticular wax from the leaf (Mayeux and Jordan, 1984). The resulting mixture was 
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transferred to a clean 1.8 ml glass GC vial (VWR Auto sampler Vial, Radnor, PA).  The 

chloroform solvent was removed under a continuous flow of nitrogen gas by leaving the vial 

uncapped overnight in the laminar flow hood. 

3.2.6 Wax quantification 

The resulting extract was oxidized by adding 300μl acidified potassium dichromate and 

heated for 30 minutes in a water bath at 100 0C.  After boiling, vials were allowed to cool for 

a 1 hour period and 700μl of deionized water was added to each vial, allowing color 

development for another hour.  A spectrophotometer (PHERAstar plus, BMG LABTECH, 

Offenburg, Germany) was used to determine the optical density for each sample at 590 nm.  

Samples were loaded in 96 well, sanitized, clear flat bottom microplates (Greiner Bio-One, 

Monroe, NC, USA).  A standard curve was developed from randomly selected wheat flag 

leaves from Halberd.  Samples were placed in large glass vials and 20 ml HPLC grade 

chloroform was added to remove EW.  The resulting chloroform-wax solution was 

proportioned based on the serial dilution technique.  The standard curve was used to calculate 

wax levels based on leaf area (Mondal et al. 2014). 

3.2.7. Statistical analysis 

Statistical analyses of all phenotypic traits were performed using JMP Pro 11.2.1 (JMP 

Version 11, SAS Institute Inc.,Cary, NC).  Also; all this phenotypic traits were determined 

and tested for normality.  The generalized linear model (GLM) was used for analysis of 

variance and the means were compared using Fischer’s least significant difference.  A 

combined analysis of variance was also done using GLM procedure considering genotype 

and year as fixed effects.  Pearson’s correlations were estimated for determining the 
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association between leaf and glume epicuticular waxes and the physiological and 

phenological responses under high temperature stress for the three locations. 

 

3.3. Results 

3.3.1. Leaf and glume epicuticular wax load and temperature correlations  

Analysis of wax load in both leaf and glume showed normally distributed data with 

differences observed between lines being significant at p≤0.001.  A maximum of 4.89 and 

5.036 mg/dm2 for leaf and glume epicuticular wax load respectively were observed in CS13 

which are the  lowest readings of wax load maximums as compared to the other locations 

(Table 3.2.).  Contrary to what is expected, wax load mean was higher in glume as compared 

to that of leaf for all locations except for CS13 (Fig 1).  ANOVA test for leaf epicuticular 

wax ranks the mean of the locations from highest to lowest as OBR14, UVL13, UVL14, and 

CS13, with the mean of OBR14 being 5.37 and that of CS13 being 2.508 mg/dm2 

respectively (Fig 3.2.).  This order was repeated for glume epicuticular wax load were 

OBR14 had a mean of 5.97 mg/dm2 and CS13  mean of 2.38 mg/dm2 (Fig 3.3.).  However, 

the same line did not produce matching leaf and glume wax content throughout the lines and 

the locations as shown in Fig 4.  A plot of glume wax load vs. leaf wax load showed no 

significant relationship when tested for CS13 and UVL14.  However, there was a very strong 

correlation between the two wax loads for UVL13 with R2 = 0.8285 and r=0.9195 significant 

at p≤ 0.001.  A significant correlation also was observed for the two wax loads for OBR14 

with R² = 0.0304 and r=0.1744 significant at p≤ 0.05 (Fig 3.5.).  A strong correlation was 

also found between the mean wax load for leaf and that for glume as function of the mean 

high temperature recorded for grain filling stage days.  While both leaf and glume wax 
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showed a strong correlation with temperature, the one for leaf wax load vs. temperature had 

an R² = 0.6719 while that of the glume wax was stronger at R² = 0.8483 (Fig 6). 

 

Table 3.2.  Summary of statistics of leaf and glume epicuticular wax for all growing 

locations. 

Location 

Leaf wax load (mg/dm2) Glume wax load (mg/dm2) 

Max Min Mean STD Max Min Mean STD 

CS13 4.890 1.353 2.508 0.696 5.036 0.918 2.386 0.873 

UVL13 6.649 1.527 3.620 1.096 12.096 1.476 5.341 2.412 

UVL14 10.7 0.303 3.107 2.12 14.29 0.325 3.644 2.55 

OBR14 12.944 2.64 5.37 2.22 14.71 0.139 5.97 3.35 

 

 

 

Figure 3.1.  Leaf and glume mean wax load for all growing locations. 
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Figure 3.2.  One-way analysis of leaf epicuticular wax (mg/dm2) by growing location, 

significant at p≤ 0.001. 

 

 

Figure 3.3.  One-way analysis of glume epicuticular wax (mg/dm2) by growing location, 

significant at p≤ 0.001. 
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Figure 3.4.  Leaf and glume wax load for sample wheat lines for all growing locations. 
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Figure 3.5.  Linear correlation between glume wax and leaf wax for all growing locations, 

**significant at p≤ 0.05, ***significant at p≤ 0.001 with Pearson’s correlation 

 

 

Figure 3.6.  Mean wax load as a function of mean high temperature during grain filling stage 

for both leaf and glume. 
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3.3.2. Yield and yield component and wax correlation 

All yield and yield components gave normally distributed data and showed variation between 

the different growing locations (Figures 3.7. and 3.12.).  Means of ANOVA analysis on 

SKW for CS13 and UVL13 were very close with CS13 higher by only 0.002g.  The 

minimum weight measured for both location was 0.028g (Table 3.3., Fig 3.8.).  A similar 

result was observed when comparing MSHW of both CS13 and UVL13.  In this comparison, 

CS13 had a mean of 40.14g as compared to 38.36g for UVL13 with F ratio of 7.28 

significant at p ≤ 0.001 (Fig 3.9.). 

A plot of SKW as a function of wax load for both leaf and glume showed no 

significant relation at CS13 and UVL14.  However, the relation was more apparent for 

UVL13 where R2 for SKW vs. Leaf wax was 0.0202 and that for glume was 0.0286 with r = 

0.1692 significant at p ≤ 0.05 (Fig 3.10.).  This pattern was repeated again when plotting 

MSHW vs. wax load for both leaf and glume, yet, the leaf-wax relationship was stronger at 

UVL13 with R² = 0.023 and r=0.1516 significant at p ≤ 0.001(Fig 3.11). 

Grain yield had a wide range and varied significantly among the lines for both 

OBR14 and UVL14.  An ANOVA analysis of grain yield between UVL14 and OBR14 

showed noticeable variation with F ratio = 252.3 significant at p ≤ 0.001 (Fig 3.13.).  In this 

analysis OBR14 had a lower mean of 496g as compared to the mean of UVL14 which was 

729g.  Also, OBR14 reached a maximum of 757g while UVLD14 maximum was 1047g 

(Table 3.3.).  A comparison of the grain yield behavior for each line between the two 

locations showed a higher reported yield on average UVL14 as compared for the yield of 

OBR14 for the same line (Fig 3.14.).  This was reinforced when plotting yield of UVL14 vs 
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that of OBR14 where there was a significant correlation at p≤0.001 with R² = 0.0295 and 

r=0.1638 (Fig 3.15.). 

Linear regression of grain yield with leaf wax was not significant for both OBR14 

and UVL14 with R2 of 0.0013 and 0.0069 respectively.  The regression for grain yield with 

glume wax was significant and negatively correlated with R2 of 0.3156 and Pearson’s 

correlation of 0.5935 significant at p≤ 0.05 for OBR14 but was not significant for UVL14 

(Fig 3.16.). 

 

Table 3.3.  Summary of statistics of yield and yield components for all growing locations. 

 

Location 
Yield 

Component 
Max Min Mean STD 

CS13 
SKW (g) 

0.048 0.028 0.038 0.0037 

UVL13 0.044 0.028 0.036 0.0031 

CS13 
MSHW (g) 

58.45 23.20 40.14 6.12 

UVL13 52.30 20.85 38.36 6.29 

UVL14 Grain Yield 

(g) 

1047 374.5 729.96 153.59 

OBR14 757.5 213.5 496.60 106.68 
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 Figure 3.7.  Distribution and quantile plots of SKW data; Normal distribution and quantile 

plot of SKW for CS13 (A1, A2), Normal distribution and quantile plot of SKW for UVL13 

(B2, B2). 

 

 

Figure 3.8.  One-way analysis of SKW (g) by growing location for CS13 and UVL13, 

significant at p≤ 0.001. 
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Figure 3.9.  One-way analysis of MSHW (g) by growing location for CS13 and UVL13, 

significant at p≤ 0.001. 
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Figure 3.10.  Linear relationship between SKW (g) and wax load (mg/dm2) for both leaf and 

glume at CS13, UVL13, and UVL14, * significant at p≤ 0.05. 
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Figure 3.11.  Linear relationship between MSHW (g) and wax load (mg/dm2) for both leaf 

and glume at CS13, UVL13, and UVL14, * significant at p≤ 0.001. 
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Figure 3.12.  Distribution and quantile plots of grain yield data; Normal distribution and 

quantile plot of grain yield for UVL14 (A1,A2), Normal distribution and quantile plot of 

grain yield for OBR14 (B2,B2). 

 

 

Figure 3.13.  One-way analysis of grain yield (g) by growing location for OBR14 and 

UVL14, significant at p≤ 0.001. 
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Figure 3.14.  Random sample of lines showing grain yield (g) for each line for OBR14 and 

UVL14. 

 

 

 

 

 

Figure 3.15.  Linear relationship between grain yield for UVL14 (g) and grain yield for 

OBR14 (g), * significant at p≤ 0.001. 
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Figure 3.16.  Linear relationship between grain yield vs. leaf wax load (left) and glume wax 

load (right) for UVL14 and OBR14, *significant at p≤ 0.05. 
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attesting to the genetic diversity and developmental influences ( von Wettstein-Knowles 

1995; Lemieux 1996; Post-Beittenmiller 1996).  Different organs on the plant, or different 

parts of the plant, may have different proportions of wax component (Tulloch 1973).  

Analysis of data on waxes from different parts of the plant can contribute to assessment of 

physiological traits (Baum et al 1975). 

In this study, a comparison was made between the epicuticular wax load on wheat 

glume and flag leaf of 180 RILs and their parents under high temperature environment.  The 

effect of temperature on wax load for both plant parts was studied by planting the RILs and 

their parents in four different growing environments, College Station, and Uvalde, Texas in 

2013 and Uvalde, Texas and Obregon, Mexico in 2014.  Analysis of wax load in both leaf 

and glume showed a normally distributed data with significant differences observed across 

the 180 RILs and across the environments.  The mean wax load for leaves and glumes was 

higher as the temperature of grain filling stage increased for the environment.  CS13 reported 

the lowest mean temperatures for this study and thus those RILs for CS13 were considered 

under normal temperature.  The stress increased for UVL14, UVL13, and OBR14 

consecutively and those RILs of OBR14 were considered under very high temperature stress.  

The mean for both leaf and glume wax followed the order of temperature where the lowest 

mean was for CS13 and the highest for OBR14.  However, as the stress increased, the mean 

of glume wax became higher than that of leaf wax for all stressed environments.  This 

suggests that while epicuticular wax load production is more active during high temperature 

stress (Shepherd et al 2006), the glume response to temperature stress is even more 

prominent than the leaf.  Yet, no apparent consistency in the glume wax to leaf wax ratio 

between the lines was observed for the different stressed environments (Fig 3.4.).  This 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B25
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B25
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B20
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observed variation is most likely due to genetic makeup of the different RILs and the fact that 

wax load is effected by multiple environmental and genetic factors (Whitecross et al 1972).  

The anticipated results of crossing between Halberd X Len is in agreement with previously 

reported studies on flag leaf wax content in wheat due to genetic variability (Uddin and 

Marshall 1988; Clarke et al. 1993).  In addition, different behavior was observed when fitting 

data of glume wax and leaf wax to a linear model.  The model suggests that under no high 

temperature stress, like in CS13, or moderate high temperature stress, like UVL14, no 

significant relation exists in the amount of glume epicuticular wax load to leaf epicuticular 

wax load.  However, a significant strong positive relationship for glume wax vs. leaf wax 

was observed at high temperature stress, like UVL13, with Pearson’s correlation r = 0.9195 

at p ≤ 0.001 significance level and R² = 0.8285 (Fig 3.5.).  Then, as the stress increased more, 

this relationship became weaker while still significant with R² = 0.0304 and r=0.1744 

significant at p ≤ 0.05.  This correlation may be due to a previous reported correspondence 

between the presence of wax filaments on glumes and the occurrence of relatively high 

amounts of β-diketones among Triticeae genera (Simpson et al 1980).  Also, Jenks et al. 

(1994) reported an increase in the local density of vesicles adjacent to the site of wax 

excretion when wax production in sorghum was induced by light.  This could explain the 

coherent in production of wax load on glume and on leaf under high temperature stress.  Yet, 

when stress is even higher, the mechanisms of deposition and secretion probably differ 

between the glume and the leaf.  Another important factor that may play a role in these 

relations is the chemical composition of glume wax as compared to leaf wax.  The higher 

correlation between glume wax with leaf wax is likely due to difference in structure and 

composition of epicuticular waxes for the two parts (Kong et al. 2015).  Studies by Riederer 

http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2006.01826.x/full#b15
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2006.01826.x/full#b15
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2006.01826.x/full#b53
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& Schneider (1990) showed that in addition to affecting wax quantity, temperature influence 

composition of wax. 

The study showed that changes in daytime and nighttime temperatures may 

differentially effect wax composition.  Higher daytime temperature during leaf development 

reduced the quantities per unit area of alkanes, primary alcohols, fatty acids and alkyl esters, 

whereas, except for the esters, the amounts of these components increased with higher 

nighttime temperatures.  Therefore, the induced heat stress will most likely induce a change 

in the chemical makeup of wax on the different plant parts making a study of its make up as 

important as a study of its quantity. 

3.4.2. Grain yield and wax correlation 

Grain yield is one of the most important, yet complex, trait in crops.  It is a combination of 

interaction between environment and developmental processes during growth stages that 

occur throughout the life cycle of crop (Quarrie et al. 2006).  Grain yield is directly and 

multiply determined by yield component traits (such as SKW and MSHW).  In this study, 

yield and yield components of RILs and their parents planted in CS13 were compared to 

those planted in UVL13, UVL14 and, OBR14 to examine the effect of temperature on yield 

and yield components with relation to epicuticular wax on both leaves and glumes.  The data 

for all growing environment for all measured yield and yield components had significant 

variation between the lines with normally distributed data.  However, analyzed yield 

components did not vary significantly across the locations.  When comparing SKW of RILs 

in CS13, being the least temperature stressed location, to those of UVL13, being the high 

temperature stressed location, CS13 mean SKW was higher than that of UVL13 by only 

0.002g.  A similar observation was made when comparing MSHW of CS13 with that of 

http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2006.01826.x/full#b53
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710164/#bib27
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UVL13 where the two means differed by only 1.78g.  This was expected because in many 

temperate cereal crops, both grain weight and grain number appear to be impacted by heat 

stress, with a decline in grain number directly proportional with increasing temperatures 

during flowering and grain filling stages (Porter and Semenov 2005; Mahmood et al. 2010).   

A linear regression of the SKW data vs. epicuticular wax load for both leaf and glume 

for CS13, UVL13, and UVL14 gave significant positive correlation for glume wax at UVL13 

with R² = 0.0286 and  r=  0.1692 at p ≤ 0.05.  The correlation was also stronger at UVL13 vs. 

leaf wax load yet not statistically significant.  The positive, yet nonsignificant correlation 

between SKW and wax load across the locations along with the significant correlation at 

UVL13, suggests that wax load and SKW are somewhat related.  It seems that at high 

temperature stress, i.e. UVL13, the amount of wax and SKW increased proportionally to 

each other.  Again, this was repeated when plotting a linear regress of MSHW vs. 

epicuticular wax load of leaf and of glume for the three locations.  This time, it was the leaf 

wax at UVL13 that showed a significant positive relationship.  This implies that epicuticular 

wax, on glume or leaf, may have participated in the increased tolerance for high temperature 

stress of wheat.  The participation of epicuticular wax in the rise of SKW and MSHW is most 

likely via mechanical mechanisms.  For example, it was previously reported that wheat plants 

with higher leaf epicuticular wax content had lower canopy temperatures under heat stress 

conditions (Mondal 2011).  Spiertz et al. (2006) reported that high growth temperatures 

reduced the grain dry mass because of limited supply of assimilates.  High temperature stress 

not only reduces the size and number of starch granules per endosperm (Tester et al. 1995), 

but also significantly reduces the formation of high molecular starch and rate of carbon 

deposition in the grain (Spiertz et al. 2006).  Thus, a lower canopy temperature will prevent 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728475/#B123
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728475/#B97
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or minimize the reduction high molecular starch and as a result will prevent decrease in SKW 

or MSHW accordingly. 

Grain yield was reduced significantly when comparing grain yield of UVL14, with 

moderate high temperature stress, to that of OBR14, with very high temperature stress.  The 

same RIL gave lower yield on average for OBR14 as compared to that of UVL14 as shown 

in Figure 15.  This observation was expected since reduction of grain yield has been 

associated with high temperature stress in cereals (Viswanathan and Khanna-Chopra 2001).  

Grain yield related negatively and significantly with glume wax content only for OBR14 as 

compared with non-significant positive correlation with the leaf wax content of OBR14 and 

UVL14 and glume wax content of UVL14.  The negative significant correlation between 

glume wax content and yield suggests that reduction in yield may be caused by reduction in 

single head number rather than reduction in single kernel weight.  This is reinforced by the 

above observation of the positive significant correlation between SKW in UVL13 and wax 

load.  It is suggested here that epicuticular wax, on glume specifically, is an important factor 

in the tolerance mechanisms for high temperature stress at the grain level.  An increase in 

wax load was observed when RILs were exposed to high and very high temperature stress in 

the field during grain filling stage yet no significant variation in SKW was observed when 

compared to lower stress environments, namely CS13.  Thus, the reduction in yield was most 

likely caused by grain count rather than grain weight.  Barnabás et al. (2008) had reported 

that high temperature stress induces changes in respiration and photosynthesis and thus leads 

to a shortened life cycle and diminished plant productivity which in return reduces yield.  

However, because reduction in yield was still apparent and significant at very high 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728475/#B17
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temperature stress, the reduction of yield cause by seed abortion overcame the increased 

yield through maintenance of grain weight. 
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CHAPTER IV 

MAPPING THE GENETIC LOCI REGULATING HIGH TEMPERATURE 

TOLERANCE FOR LEAF AND GLUME EPICUTICULAR WAX IN WHEAT 

(TRITICUM AESTIVUM L.) 

4.1. Introduction 

Model simulation experiments on global climates projects an average increase of ambient 

temperatures of 0.2°C per decade for the 2000 to 2100 period.  This translates into an 

increase of about 1.7 and 5.8°C of overall global temperature by the end of this century 

(IPPC, 2007).  Such prediction emphasizes the importance of crop varieties that have high 

heat tolerance.  Wheat is one of the very important crops because it is a staple food for the 

world population.  Heat and drought are major factors limiting wheat yields worldwide, 

especially in regions where 60% of global land area is classified as arid or semiarid.  

Controlling heat and drought tolerance in wheat is one way to improve breeding efficiency.  

 Generally speaking, most rain-fed farmers are limited in resources, own small land 

holdings, and have minimal capacity to adopt high input technologies.  Thus, heat and 

drought tolerant wheat varieties are appropriate solution because they are farmer friendly and 

are based on seed technology that is easy to disseminate.  Although steady progress has been 

made with up to date breeding work (e.g. Trethowan et al., 2002; Ammar et al., 2008), 

overall performance of cereals still shows considerable grain yield loss to high temperatures 

(Wardlaw et al., 1989; Reynolds et al., 1994). 

   Increase in temperature induces heat stress in wheat particularly during the 

reproductive and grain-filling stages (Wollenweber et al. 2003).  The ideal temperature for 

wheat anthesis and grain filling is between 12 to 22◦C. Temperatures above this reduce grain 
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yield significantly (McDonald et al., 1983; Macas et al. 1999, 2000; Mullarkey and Jones 

2000; Tewolde et al. 2006).  Heat stress during anthesis can cause increased embryo 

abortion, pollen sterility, tissue dehydration, lower CO2 assimilation and increased 

photorespiration (Wardlaw and Wrigley, 1994).  It was found that many current Hard Red 

Winter Wheat (HRWW) cultivars grown in the Southern Great Plains are heat susceptible in 

terms of sterility, abortion and an early transition to the dry seed stage (Hays et al, 2007a, and 

b). 

 In order for wheat to maintain growth and productivity, it must adapt to heat stress 

conditions.  Some of these mechanisms involve the alteration of various photosynthetic 

attributes and physiological traits under heat stress exposure.  Also, changes after perception 

of high heat signals occur at the molecular level altering the expression of genes and 

accumulation of transcripts, thereby leading to the synthesis of stress-related protein as a 

stress tolerance strategy (Iba 2002).  As an example of tolerance adaptation, germplasm from 

Australia, CIMMYT, and ICARDA were found to exhibit heat and drought tolerance while 

in the reproductive stage.  These lines maintained photosynthesis and yield through 

production of high seed set, grain weight, and an extended grain filling under heat stress 

conditions. 

The first line of defense against high temperature environment in wheat is the 

epicuticular wax that covers the plants cuticle in various areas of the plant.  The presence of 

this waxy layer on the leaf and glume can reduce heat stress by epidermal transpiration and 

excess light energy.  Studies show that surface reflectance was reduced when the waxy layer 

from the leaf was removed with chloroform was for the abaxial and adaxial surface (Uddin, 

M. Nizam et.al 1988).  This indicates that epicuticular wax is a major factor in leaf rolling 



 

77 

 

mechanism and abaxial reflectance.  As an adaxial and abaxial reflective surface to excess 

energy, epicuticular wax reduces transpirational cooling needs and stomatal conductance.  

The scattering of heat during high temperatures by the epicuticular layer help maintain a 

temperate cellular environment, minimizing water loss and optimizing metabolic function.  

Consequently, epicuticular wax can hinder launching of drought indicators that reduce 

photosynthesis and promote seed abortion.  Therefore, it is important to preform studies that 

focus on epicuticular wax to optimize structural content and chemical composition in crops 

such as wheat. 

 Many important traits for abiotic stress tolerance like yield, leaf wax, and anthesis 

time, are controlled by many genes known as quantitative traits.  High density genetic maps 

(linkage maps) constructed with molecular markers are useful in facilitating the detection and 

estimation of the effect of QTL controlling those traits, and as tools for.  One of the major 

challenges in wheat breeding is to find a linkage between genotype and phenotype in the 

context of the biotic or abiotec stresses.  The polyploid nature of the wheat genome makes 

molecular analysis more difficult (Barnabas´ et al. 2008).  Thus, finding linkage while under 

high temperature stress by using the analysis of complex trait variation aims toward 

identifying alleles that control variation for a high temperature stress tolerance phenotypes.  

Many studies have shown that high temperature stress tolerance, physiological traits that 

responded to high temperature stress yield and yield components are inherited quantitatively 

(Maestri et al. 2002).  Determining the physiological traits associated with high temperature 

stress tolerance and finding QTL associated with these traits might be a crucial result for high 

temperature tolerance in wheat breeding.  
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          Recently, a number of QTLs have been identified in wheat for high temperature stress 

tolerance during the reproductive stage.  Such QTL were used by Ottaviano et al. (1991) to 

understand and explain heat stress tolerance in cereals.  Also QTL on chromosome 4A for 

canopy temperature under heat has been identified (Pinto et al. 2010).  Yield stability heat 

tolerance QTL’s were found to overlap with QTL for epicuticular wax (Mondal et al. 2011).  

Two major grain yield QTL’s in bread wheat where detected in heat, drought and high yield 

potential environments (Bennett et al. 2012). Detection of some QTL are associated with 

constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures 

under heat stress, on three bread wheat chromosomes which is  1B, 3D and 5A (Mondal et al. 

2015). 

The goal of the present study was to define QTL regulating high temperature 

tolerance for leaf and glume epicuticular wax in wheat (Triticum aestivum L.), and identify 

stable loci associated with yield and/or physiological traits such as CTD that will contribute 

to improve heat tolerance under field conditions. 

 

4.2. Material and methods 

4.2.1 Plant material 

In this study, a set of 180 recombined inbred lines (RILs) of wheat were used.  These RILs 

were derived from cross of the heat tolerant spring wheat lines ‘Halberd’ with Len.  Halberd 

is an Australian spring wheat (Triticum aestivum L) as a donor cultivar with the pedigree 

Scimitar/Kenya/C6042/ Bobin/2/Insignia49 (Paull et al. 1998).  Halberd is a heat and drought 

tolerant cultivar, also has ability to maintain carbohydrate accumulation during moisture 

stress (Ji et al. 2010).  Len is hard red spring wheat as a recurrent cultivar developed in North 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bennett%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22772727
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Dakota with the pedigree ND499/3/Justin/RL4205/W1261.  Len is a semi-dwarf that is a 

drought and heat susceptible however, it is known for its good agronomic characteristics 

(Hossain et al. 2012).  The two parents were chosen due to similarities in flowering period 

and maturity.  The 180 RILs were developed by preceding the F1 progeny through single 

seed descent in head rows to the F5 generation.  Seeds from the F5 generation were bulked to 

develop 180 F5:6 RILs.  The F6 lines were advanced in the field and were evaluated during 

2010 as an F5:7 generation.  During 2011 and 2012, F8 and F9 generations were used 

respectively, to conduct experiments (S. Mohammed et al 2014). 

4.2.2. Growing environment 

The RILs and the two parents were grown in the field during the winter seasons.  Yield trials 

were conducted at Uvalde Agrilife research station during 2013 and 2014 seasons, College 

Station Agrilife research station, and International Maize and Wheat Improvement Center 

(CIMMYT) Ciudad de Obregon, Mexico during 2014 season.  All growing parameters were 

the same with variability being only in growing location.  

Weather conditions are mostly sunny and dry during the winter cropping cycle.  Table 

1.  list daily temperature for the three locations during grain filling stage.  Nitrogen and 

phosphorus were applied to the plots at a rate of 150 kg ha−1 and 22 kg ha−1, respectively.  

Field plots consisted of two raised (28 cm apart) each 3m long and 1m wide and seeded at 

50g per plot.  An alpha lattice design with two repetitions was used for all experiments.  The 

planting dates were in February for Obregon location and plants reached booting and heading 

during April–May and were harvested in May.  For College station and Uvalde, planting 

dates were in January and plants reached booting and heading during April–May and were 

harvested in May. 
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Table 4.1.  Daily high temperature during grain filling stage for all growing environments. 

 

DAP 
Daily high temperature (F ̊ ) 

OBR14 UVL13 UVL14 CS13 

1 95 93 77 86 

2 98 81 79 72 

3 89 79 93 69 

4 91 88 93 82 

5 94 88 95 73 

6 91 93 96 78 

7 91 100 95 86 

8 92 103 93 87 

9 101 95 88 80 

10 106 97 93 84 

Mean 94.8 91.7 90.2 79.7 

 

 

4.2.3 Wax sample collection 

Samples were collected during early spring 10 DAP. Four glumes per RIL replicate were 

collected for wax analysis using tweezers to carefully remove the glume without touching the 

surface EW layer.  Leaf discs for wax analysis were collected from flag leaves using a disc 

punch with a 1 cm diameter drum (Rabbit Tool USA, Rock Island IL USA).  Four 1cm 

(diameter) leaf punches was collected from the primary inflorescence leaf per plant of four 

pates per plot and placed in Borosilicate Glass Scintillation Vials with Screw Caps.  The 

sample vials were placed in the laminar flow to air dry and stored at room temperature. 
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4.2.4 Wax extraction  

EW concentrations was determined using the colorimetric method of Ebercon et al. (1977).  

Glume and Leaf EW was extracted by submerging glumes and leaf discs in 1 ml HPLC grade 

chloroform for 30 s, the submersion time previously determined to completely remove the 

epicuticular wax from the leaf (Mayeux and Jordan 1984). The resulting mixture was 

transferred to a clean 1.8 ml glass GC vial (VWR Auto sampler Vial, Radnor, PA).  The 

chloroform solvent was removed under a continuous flow of nitrogen gas by leaving the vial 

uncapped overnight in the laminar flow hood. 

4.2.5. Wax quantification 

The resulting extract was oxidized by adding 300μl acidified potassium dichromate and 

heated for 30 minutes in a water bath at 100 0C.  After boiling, vials were allowed to cool for 

a 1 hour period and 700μl of deionized water was added to each vial, allowing color 

development for another hour.  A spectrophotometer (PHERAstar plus, BMG LABTECH, 

Offenburg, Germany) was used to determine the optical density for each sample at 590 nm.  

Samples were loaded in 96 well, sanitized, clear flat bottom microplates (Greiner Bio-One, 

Monroe, NC, USA).  A standard curve was developed from randomly selected wheat flag 

leaves from Halberd.  Samples were placed in large glass vials and 20 ml HPLC grade 

chloroform was added to remove EW.  The resulting chloroform-wax solution was 

proportioned based on the serial dilution technique.  The standard curve was used to calculate 

wax levels based on leaf area (Mondal et al. 2014). 

4.2.6. Statistical analysis  

A log 10 base was performed on all data collected for a data normalization and fit purposes.  

Statistical analysis was carried out using the PROC MIXED model procedure.  Data from all 
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traits were subjected to analysis of variance (ANOVA) for augmented design using the 

Mixed procedure of the (SAS v9.4) (Institute 2014).  The genetic variance of the yield 

components and physiological traits was calculated by considering the treatments as fixed 

and genotypes, years, and replications as random effects.  Simple contrast analysis was 

performed on QTL associated with parental alleles to determine phenotypic means of 

different traits. 

4.2.7. Molecular analysis  

DNA extraction was performed on the 180 RIL population including the parents using the 

DArT method (Doyle 1990; Jaccoud et al. 2001).  Extraction buffer stock (0.35M sorbitol, 

0.1 M Tris HCl, 5mM EDTA), lysis buffer stock (0.2M Tris HCl, 0.05 M EDTA, 2 M NaCl, 

and 2% CTAB) and sarcosyl stock 5% (w/v) solutions were prepared accordingly.  In 

addition, a fresh solution of 0.5% w/v sodium disulfite, 2% w/v PVP-40 

(Polyvinylpyrrolidone) (sigma chemicals) was added to the extraction, lysis, and sarcosyl 

buffers.  Fresh leaf tissue of 2 week old RIL seedlings were harvested and placed in 2 ml 

eppendorf tubes.  Then 1ml of the freshly prepared extraction buffer solution at 65ºC was 

added and the tissue was disrupted using a Fastprep -24 homogenizer at 4.0 Movement/s for 

a 2 min period.  The resulting mixtures were incubated in a water bath at 65ºC for 1 hr.  After 

cooling, 1 ml of chloroform:isoamyl alcohol (24:1) mixture was added to the samples and 

then centrifuged at 10,000 rpm for 20 min.  The supernatant of each tube was transferred into 

new 2 ml eppendorf tubes, and then an equal volume of ice cold isopropanol was added.  

Tubes were then centrifuged at 10000 rpm for 30 min to precipitate the DNA.  The 

supernatant was discarded, and the precipitate pellet was washed with 1.5 ml 70% ethyl 
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alcohol.  The resulted nucleic acid pellet was air dried and then dissolved in 200 μl of 1 X TE 

(10mM TrisHCl pH 8.0, 1 mM EDTA pH 8.0).  (Mohamed.S. 2013) 

DNA samples have been taken from the 180 RIL population and send to the USDA-

ARS, Fargo for genotyping using silica bead chips containing 90K SNPs (Single nucleotide 

polymorphism) array through Illumina Infinium Golden Gate assay.  The sequencing proses 

done by using next generation sequencing (Akhunov et al. 2009; Cavanagh et al. 2013).  The 

SNPs clustering and annotations was analyzed using GenomeStudio v2011.1 software.  Each 

SNP was annotated based on the clustering of individual alleles across the population.  After 

scoring and annotating of 90K SNPs, SNPs that showed monomorphic clustering, SNPs 

showing more than 20% missing points, SNPs with vague calling, and SNPs that had a minor 

allele frequency < 10% were discarded.  The resultant data set of 2,700 polymorphic SNPs 

was exported from GenomeStudio.  Linkage map was created by using  JoinMap software 

version 4.0 (Van Ooijen 2006) using recombinant events and the different reference 

population maps, such as a map from 9K SNPs (Gregersen et al. 2005), Avalon X Cadenza 

(Nelson et al. 1995), Savannah X Rialto (Snape et al. 2007), and Synthetic X Opeta (Allen et 

al. 2011).  Finally, 22 linkage groups were identified at a significance level of 0.05 and 

10,000 permutations across the wheat genome.  These linkage groups were mapped with 

phenotypic data across five environments to identify possible QTL using MapQTL v6 (Van 

Ooijen 2004).  The traits with significant segregation/genetic variations or low genetic by 

environment interactions or normally distributed populations were utilized for QTL mapping.  

The Kosambi function was used to calculate the recombinant event distances with a critical 

LOD score value of 2.5.  The mapping method MQM (multiple QTL mapping) was used, 

where markers of non-linkage groups were used as cofactors, which reduces noise on the 
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genetic background (Jansen and Stam 1994).  The QTL identified in four different individual 

environment were considered to be 'stable'.  Co-localized QTL with major effects identified 

across the wheat genome for yield, and different heat stress environment traits were 

represented graphically using the software map chart (Voorrips, R.E. 2002). 

 

4.3. Results 

Among the four growing environments, Obregon had the highest recorded temperature, 

41.1°C, and the highest mean temperature, 34.4°C, during the first ten days of grain filling 

stage.  Following in recorded temperature was Uvalde 2013 with high temperature of 39.4°C 

and mean temperature of 34.4°C.  While Uvalde 2014 had a mean temperature close to that 

of Uvalde 2013, 34.4°C, the highest recorded was only 35.5°C as compared to that of Uvalde 

2013 of 39.4°C.  Collage Station had the coolest growing environment with temperatures 

ranging between 20.5 and 30°C only and mean of 34.4°F (Table 4.1.).   

Phenotypic analysis of wax data collected for the 180 RILs and its parental lines for 

leaf and glume showed normally distributed data with differences observed between lines 

being significant at p≤0.001.  A maximum of 4.89 and 5.036 mg/dm2 for leaf and glume 

epicuticular wax load respectively were observed in CS13 which are the  lowest readings of 

wax load maximums as compared to the other locations (Table 4.2.).  Contrary to what is 

expected, wax load mean was higher in glume as compared to that of leaf for all locations 

except for CS13 (Fig 4.1.).  ANOVA test for leaf epicuticular wax ranks the mean of the 

locations from highest to lowest as OBR14, UVL13, UVL14, and CS13, with the mean of 

OBR14 being 5.37 and that of CS13 being 2.508 mg/dm2 respectively (Fig 4.2.).  This order 

was repeated also for glume epicuticular wax load were OBR14 had a mean of 5.97 mg/dm2 
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and CS13  mean of 2.38 mg/dm2 (Fig 4.3.).  However, the same line did not produce 

matching leaf and glume wax content throughout the lines and the locations as shown in (Fig 

4.4.)  A plot of glume wax load vs. leaf wax load showed no significant relationship when 

tested for CS13 and UVL14.  However, there was a very strong correlation between the two 

wax loads for UVL13 with R2 = 0.8285 and r=0.9195 significant at p≤ 0.001.  A significant 

correlation also was observed for the two wax loads for OBR14 with R² = 0.0304 and 

r=0.1744 significant at p≤ 0.05 (Fig 4.5.).   

 

Table 4.2.  Summary of statistics of leaf and glume epicuticular wax for all growing location 

Location 

Leaf wax load (mg/dm2) Glume wax load (mg/dm2) 

Max Min Mean STD Max Min Mean STD 

CS13 4.890 1.353 2.508 0.696 5.036 0.918 2.386 0.873 

UVL13 6.649 1.527 3.620 1.096 12.096 1.476 5.341 2.412 

UVL14 10.7 0.303 3.107 2.12 14.29 0.325 3.644 2.55 

OBR14 12.944 2.64 5.37 2.22 14.71 0.139 5.97 3.35 

 

 

Figure 4.1.  Leaf and glume mean wax load for all growing locations. 

0

1

2

3

4

5

6

7

CS13 UVL13 UVL14 OBR14

W
ax

 lo
ad

 (
m

g/
d

m
2

)

Leaf wax (mg/dm2) Glume wax (mg/dm2)



 

86 

 

 

Figure 4.2.  One-way analysis of leaf epicuticular wax (mg/dm2) by growing location, 

significant at p≤ 0.001. 

 

Figure 4.3.  One-way analysis of glume epicuticular wax (mg/dm2) by growing location, 

significant at p≤ 0.001. 
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Figure 4.4.  Leaf and glume wax load for sample wheat lines for all growing locations. 
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Figure 4.5.  Linear correlation between glume wax and leaf wax for all growing locations, 

**significant at p≤ 0.05, ***significant at p≤ 0.001 with Pearson’s correlation 

 

 

Table 4.3.  QTLs associated with Leaf and Glume wax load in a Halberd X Len 

Recombinant Inbred Line  

QTL name Position Chr Marker(s) Trait LOD R2 Additive 

QLWax.tam-5B 104.584 5B BS00003243 UVL13_LF 2.66 0.0170 -0.0356 

QGWax.tam-5B 102.098 5B RAC875_c27743_249 UVL13_GL 2.6 0.0171 -0.0348 
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Table 4.4.  QTL detected with insignificant LOD scores in a Halberd X Len Recombinant 

Inbred Line 

Treat Group Chr Marker Position 
 
Additive 

Yield_UVL_13* 

 
13 7A wsnp_Ex_c106_217340 54.879 

 

- 

SKW_CS_13** 

 
1 2B BS00009460 100.936 

 
0.0194806 

 

SKW_CS_13 

 
3 3A BS00059618 17.985 

 
0.00716533 
 

GY_OBR_14*** 

 
1 2B 

wsnp_Ex_rep_c101349 

_86725007 

351.674 

 

 
0.00721278 

 

GY_OBR_14 

 
2 1A BS00065750_51 74.945 

- 

GY_OBR_14 

 
5 7A 

wsnp_Ra_c8394_14242

358 
24.404 

- 

GY_OBR_14 

 
14 6A Excalibur_c37240_609 

 

121.51 

 

 
-0.0132277 

 

TI_OBR_14**** 

 
3 3A 

wsnp_Ex_c35457_4360

2830 
115.52 

- 

*50 spike yield, **SKW single kernel weight, *** GY grain yield, ****TI thermal index  
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Figure 4.6.  QTL for glume and leaf epicuticular wax in the 180 RIL population derived 

from Len and Halberd cultivars for UVL13. Identified co-localized QTLs were traced across 

different linkage groups of wheat genome with > 2.5 LOD scores. 

 

 

 
Two significant QTL were detected on the same chromosome, 5B, at a distant of less than 

20cM, one for leaf epicuticular wax and the other for glume epicuticular wax (Table 3.4.).  

Both QTLs favorable allele was contributed by ‘Len’ and were identified only in one 

individual environment of UVL13.  Leaf epicuticular wax, QTL QLWax.tam-5B, was 

located on position 104.584 of chromosome 5B and explained 6.8% of the variation with 

2.66 LOD score (Figure 4.6.).  Glume epicuticular wax QTL, QGWax.tam-5B, was located 

on position 102.098 and explained 6.6% of the variation with 2.6 LOD score (Figure 4.6.).  

Eight more QTLs were detected with insignificant LOD scores, yet they showed ideal 

looking curve.  Tow QTLs related to SKW of CS13 were detected on chromosomes 2B and 
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123.2

BS00068805128.0

wsnp_Ex_c54092_57099525130.8
RAC875_c23289_303130.9
Ex_c29928_1020131.2
RAC875_c10139_336131.9
BS00087043133.4
wsnp_Ku_c3294_6125586135.0
GENE-3383_162136.8
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3A.  Four QTLs related to grain yield in Obregon location were located on chromosomes 2B, 

1A, 7A, and 6A.  One QTL related to combined yield for UVL13 was detected on 

chromosome 7A, and another one related to thermal index of OBR14 was detected on 

chromosome 3A (Table 4.4.).  

 

4.4. Discussion 

Molecular mechanisms play a major rule in production of high temperature stress 

response elements during particular physiological stages of the plant cycle (Ai Li Qu et al 

2013).wheat, like many other plants, have used epicuticular wax expression as a tolerant 

adaptive method to high temperature stress(Shepherd et al 2006).  Waxes differ widely 

among plant species and among the organs and tissues of a single plant, attesting to the 

genetic diversity and developmental influences (von Wettstein-Knowles 1995; Lemieux 

1996; Post-Beittenmiller 1996).  Different organs on the plant, or different parts of the plant, 

may have different proportions of wax component (Tulloch 1973).  Analysis of data on 

waxes from different parts of the plant can contribute to assessment of physiological traits 

(Baum et al 1975).  This study focused on mapping QTLs localized for epicuticular wax on 

leaf and glume of 180 RILs and their parents under high temperature environment.  The 

effect of temperature on wax load and QTL linkage to the wax for both plant parts was 

studied by planting the RILs and their parents in four different growing environments, 

College Station, Texas and Uvalde, Texas in 2013 and Uvalde, Texas and Obregon, Mexico 

in 2014.  Phenotypic analysis of wax load in both leaf and glume showed that mean wax load 

for leaf and glume was higher as the temperature of grain filling stage increased for the 

environment.  CS13 reported the lowest mean temperatures for this study and thus those 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B25
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35092/#B20
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RILs for CS13 were considered under normal temperature.  The stress increased for UVL14, 

UVL13, and OBR14 consecutively and those RILs of OBR14 were considered under very 

high temperature stress.  The mean for both leaf and glume wax followed the order of 

temperature where the lowest mean was for CS13 and the highest for OBR14.  However, as 

the stress increased, the mean of glume wax became higher than that of leaf wax for all 

stressed environments.  This suggests that while epicuticular wax load production is more 

active during high temperature stress (Shepherd et al 2006), the glume response to 

temperature stress is even more prominent than the leaf.  Yet, no apparent consistency in the 

glume wax to leaf wax ratio between the lines was observed for the different stressed 

environments except in UVL13 where strong relation between glume wax load and leaf wax 

load was detected.  UVL13 was also the only location where QTL signal was observed. 

Interesting enough, QTLs for both leaf and glume wax where in close proximity to each other 

at the UVL13 location.  They were both expressed on 5B chromosome and, explained about 

7% of the variation, and had a LOD score of 2.6.  The detection of the QTL on chromosome 

5B is in agreement with a study where QTL for heat tolerance under hot and dry conditions 

were detected on chromosomes 2B and 5B in a spring wheat population (Butler JM et al 

2002).  The co-localization of leaf and glume QTLs suggests that they not controlled by the 

same gene.  In this case, it was the Len cultivar that contributed the two QTLs of leaf wax on 

5B, this QTL was previously detected by Mohamed (2013) in the same mapping population.  

While analyzing QTLs of all co-located data, few apparent peaks with low LOD 

scores were detected.  These peaks were relevant because they coincide with findings in 

previous study (Mohamed S. 2013).  The observations of low LOD scores across the four 

different environments and phenotypic variations could be a result of high genotype by 
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environment interactions, suggesting that traits for environmental adaptation or minimum 

effect QTLs, will be difficult to select for (Romagosa and Fox 1993). 
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CHAPTER V 

CONCLUSIONS 

 

The anticipated rise in global temperature in the coming years along with increased demand 

of wheat production place heavy emphasis on the importance of wheat improvement 

programs.  The ability to produce economically significant yield for high temperature 

environments relays on several plant physiological parameters and mechanisms that 

contribute to heat tolerance in the field.  In many cases, a heat-tolerant variety is 

characterized by higher photosynthetic rates, increased membrane thermostability and heat 

avoidance (Nagarajan et al., 2010; Scafaro et al., 2010).  In this study, a comparison was 

made between epicuticular wax on leaf as compared to that on glume under high temperature 

stress.  Epicuticular wax content and position proved to be useful indicator for different 

phenotyping measurements.  Although it is not being suggested that glume wax content 

should be mainly used for physiological studies in breeding program, it can be an indirect 

criteria and a powerful added tool for the program at hand.  Epicuticular wax is presumed to 

come of a relatively simple genetic makeup and is easy to select for visually.  The study 

employed this presumption by investigating high temperature-adaptive traits with significant 

genetic variation. The significant phenotypic correlations of physiological and agronomic 

traits give an indication to the existence of genetic linkage for high temperature -adaptive and 

potential yield attributes across different environments.  Both leaf and glume epicuticular 

wax have significant association with cooler canopies, likely by reflecting high energy 

wavelengths and reducing excess heat energy on the plant productive part’s surfaces.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728475/#B108
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728475/#B156
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Integrating genetic loci that regulate high levels of leaf and glume epicuticular wax and 

cooler canopies in the genetic background of abiotic susceptible elite lines can be achievable.  

 Further research is needed to quantify the cost benefit of different types of wax and 

its deposition strategies in variant environment.  This is to say that even with their vital 

importance to plant survival and protection, and extensive studies of wax composition, very 

little is known about the initiation of epicuticular wax production and how production may be 

influenced by developmental and environmental factors. 
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